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Abstract

Often, an outcome must be chosen on the basis
of the preferences reported by a group of agents.
The key difficulty is that the agents may re-
port their preferences insincerely to make the
chosen outcome more favorable to themselves.
Mechanism design is the art of designing the
rules of the game so that the agents are mo-
tivated to report their preferences truthfully,
and a desirable outcome is chosen. In a recently
emerging approach proposed in UAI-02—called
automated mechanism design—a mechanism is
computed for the preference aggregation set-
ting at hand. This has several advantages, but
the downside is that the mechanism design op-
timization problem needs to be solved anew
each time. Unlike the earlier work on auto-
mated mechanism design that studied a benev-
olent designer, in this paper we study auto-
mated mechanism design problems where the
designer is self-interested. In this case, the cen-
ter cares only about which outcome is chosen
and what payments are made to it. The reason
that the agents’ preferences are relevant is that
the center is constrained to making each agent
at least as well off as the agent would have been
had it not participated in the mechanism. In
this setting, we show that designing optimal de-
terministic mechanisms is NP-complete in two
important special cases: when the center is in-
terested only in the payments made to it, and
when payments are not possible and the center
is interested only in the outcome chosen. We
then show how allowing for randomization in
the mechanism makes problems in this setting
computationally easy.

1 Introduction

In multiagent settings, often an outcome must be cho-
sen on the basis of the preferences reported by a group
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of agents. Such outcomes could be potential presi-
dents, joint plans, allocations of goods or resources, etc.
The preference aggregator generally does not know the
agents’ preferences a priori. Rather, the agents report
their preferences to the coordinator. Unfortunately, an
agent may have an incentive to misreport its preferences
in order to mislead the mechanism into selecting an out-
come that is more desirable to the agent than the out-
come that would be selected if the agent revealed its
preferences truthfully.

Manipulability is a pervasive problem across preference
aggregation mechanisms. A seminal negative result, the
Gibbard-Satterthwaite theorem, shows that under any
nondictatorial preference aggregation scheme, if there
are at least 3 possible outcomes, there are preferences
under which an agent is better off reporting untruth-
fully [6, 16]. (A preference aggregation scheme is called
dictatorial if one of the agents dictates the outcome no
matter what preferences the other agents report.)

What the aggregator would like to do is design a prefer-
ence aggregation mechanism so that 1) the self-interested
agents are motivated to report their preferences truth-
fully, and 2) the mechanism chooses an outcome that is
desirable from the perspective of some objective. This
is the classic setting of mechanism design in game the-
ory. In this paper, we study the case where the designer
is self-interested, that is, the designer does not directly
care about how the outcome relates to the agents’ pref-
erences, but is rather concerned with its own agenda for
which outcome should be chosen, and with maximizing
payments to itself. This is the mechanism design setting
most relevant to electronic commerce.

In the case where the mechanism designer is interested
in maximizing some notion of social welfare, the impor-
tance of collecting the agents’ preferences is clear. It is
perhaps less obvious why they should be collected when
the designer is self-interested and hence its objective is
not directly related to the agents’ preferences. The rea-
son for this is that often the agents’ preferences impose
limits on how the designer chooses the outcome and pay-
ments. The most common such constraint is that of
individual rationality (IR), which means that the mech-
anism cannot make any agent worse off than the agent
would have been had it not participated in the mech-
anism. For instance, in the setting of optimal auction
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design, the designer (auctioneer) is only concerned with
how much revenue is collected, and not per se with how
well the allocation of the good (or goods) corresponds to
the agents’ preferences. Nevertheless, the designer can-
not force an agent to pay more than its valuation for the
bundle of goods allocated to it. Therefore, even a self-
interested designer will choose an outcome that makes
the agents reasonably well off. On the other hand, the
designer will not necessarily choose a social welfare max-
imizing outcome. For example, if the designer always
chooses an outcome that maximizes social welfare with
respect to the reported preferences, and forces each agent
to pay the difference between the utility it has now and
the utility it would have had if it had not participated in
the mechanism, it is easy to see that agents may have an
incentive to misreport their preferences—and this may
actually lead to less revenue being collected. Indeed, one
of the counterintuitive results of optimal auction design
theory is that sometimes the good is allocated to nobody
even when the auctioneer has a reservation price of 0.

Classical mechanism design provides some general mech-
anisms, which, under certain assumptions, satisfy some
notion of nonmanipulability and maximize some objec-
tive. The upside of these mechanisms is that they
do not rely on (even probabilistic) information about
the agents’ preferences (e.g., the Vickrey-Clarke-Groves
(VCG) mechanism [17, 2, 7]), or they can be easily ap-
plied to any probability distribution over the preferences
(e.g., the dAGVA mechanism [5, 1], the Myerson auc-
tion [12], and the Maskin-Riley multi-unit auction [11]).
However, the general mechanisms also have significant
downsides:

• The most famous and most broadly applicable gen-
eral mechanisms, VCG and dAGVA, only maximize
social welfare. If the designer is self-interested, as
is the case in many electronic commerce settings,
these mechanisms do not maximize the designer’s
objective.

• The general mechanisms that do focus on a self-
interested designer are only applicable in very re-
stricted settings—such as Myerson’s expected rev-
enue maximizing auction for selling a single item,
and Maskin and Riley’s expected revenue maximiz-
ing auction for selling multiple identical units of an
item.

• Even in the restricted settings in which these mecha-
nisms apply, the mechanisms only allow for payment
maximization. In practice, the designer may also be
interested in the outcome per se. For example, an
auctioneer may care which bidder receives the item.

• It is often assumed that side payments can be
used to tailor the agents’ incentives, but this is
not always practical. For example, in barter-
based electronic marketplaces—such as Recipco,
firstbarter.com, BarterOne, and Intagio—side pay-
ments are not allowed. Furthermore, among soft-
ware agents, it might be more desirable to con-
struct mechanisms that do not rely on the ability

to make payments, because many software agents
do not have the infrastructure to make payments.

In contrast, we follow the recently emerging approach
where the mechanism is designed automatically for the
specific problem at hand. This approach addresses all of
the downsides listed above. We formulate the mechanism
design problem as an optimization problem. The input
is characterized by the number of agents, the agents’
possible types (preferences), and the aggregator’s prior
distributions over the agents’ types. The output is a
nonmanipulable mechanism that is optimal with respect
to some objective. This approach is called automated
mechanism design.

The automated mechanism design approach has four ad-
vantages over the classical approach of designing gen-
eral mechanisms. First, it can be used even in set-
tings that do not satisfy the assumptions of the clas-
sical mechanisms (such as availability of side payments
or that the objective is social welfare). Second, it may
allow one to circumvent impossibility results (such as the
Gibbard-Satterthwaite theorem) which state that there
is no mechanism that is desirable across all preferences.
When the mechanism is designed for the setting at hand,
it does not matter that it would not work more gener-
ally. Third, it may yield better mechanisms (in terms
of stronger nonmanipulability guarantees and/or better
outcomes) than classical mechanisms because the mech-
anism capitalizes on the particulars of the setting (the
probabilistic information that the designer has about
the agents’ types). Given the vast amount of informa-
tion that parties have about each other today, this ap-
proach is likely to lead to tremendous savings over clas-
sical mechanisms, which largely ignore that information.
For example, imagine a company automatically creating
its procurement mechanism based on statistical knowl-
edge about its suppliers, rather than using a classical
descending procurement auction. Fourth, the burden of
design is shifted from humans to a machine.

However, automated mechanism design requires the
mechanism design optimization problem to be solved
anew for each setting. Hence its computational com-
plexity becomes a key issue. Previous research has stud-
ied this question for benevolent designers—that wish to
maximize, for example, social welfare [3]. In this paper
we study the computational complexity of automated
mechanism design in the case of a self-interested de-
signer. This is an important setting for automated mech-
anism design due to the shortage of general mechanisms
in this area, and the fact that in most e-commerce set-
tings the designer is self-interested.

The rest of this paper is organized as follows. In Sec-
tion 2, we justify our focus on nonmanipulable mecha-
nisms. In Section 3, we define the problem. In Section 4,
we show that designing an optimal deterministic mecha-
nism is NP-complete even when the designer only cares
about the payments made to it. In Section 5, we show
that designing an optimal deterministic mechanism is
also NP-complete when payments are not possible and



the designer is only interested in the outcome chosen.
Finally, in Section 6, we show that an optimal random-
ized mechanism can be designed in polynomial time even
in the general case.

2 Justifying the focus on
nonmanipulable mechanisms

Before we define the computational problem of auto-
mated mechanism design, we should justify our focus
on nonmanipulable mechanisms. After all, it is not im-
mediately obvious that there are no manipulable mecha-
nisms that, even when agents report their types strategi-
cally and hence sometimes untruthfully, still reach bet-
ter outcomes (according to whatever objective we use)
than any nonmanipulable mechanism. This does, how-
ever, turn out to be the case: given any mechanism,
we can construct a nonmanipulable mechanism whose
performance is identical, as follows. We build an in-
terface layer between the agents and the original mech-
anism. The agents report their preferences (or types)
to the interface layer; subsequently, the interface layer
inputs into the original mechanism the types that the
agents would have strategically reported to the original
mechanism, if their types were as declared to the inter-
face layer. The resulting outcome is the outcome of the
new mechanism. Since the interface layer acts “strategi-
cally on each agent’s behalf”, there is never an incentive
to report falsely to the interface layer; and hence, the
types reported by the interface layer are the strategic
types that would have been reported without the inter-
face layer, so the results are exactly as they would have
been with the original mechanism. This argument is
known in the mechanism design literature as the revela-
tion principle [10]. (There are computational difficulties
with applying the revelation principle in large combina-
torial outcome and type spaces [4, 15]. However, because
here we focus on flatly represented outcome and type
spaces, this is not a concern here.) Given this, we can
focus on truthful mechanisms in the rest of the paper.

3 Definitions

We now formalize the automated mechanism design set-
ting.

Definition 1 In an automated mechanism design set-
ting, we are given

A finite set of outcomes O;

A finite set of N agents;

For each agent i,

• a finite set of types Θi,

• a probability distribution γi over Θi (in the case of
correlated types, there is a single joint distribution γ over
Θ1 × . . .×ΘN ),

• a utility function ui : Θi ×O → R; 1

1Though this follows standard game theory notation [10],

An objective function whose expectation the designer
wishes to maximize.

There are many possible objective functions the designer
might have, for example, social welfare (where the de-
signer seeks to maximize the sum of the agents’ utilities),
or the minimum utility of any agent (where the designer
seeks to maximize the worst utility had by any agent).
In both of these cases, the designer is benevolent, because
the designer, in some sense, is pursuing the agents’ col-
lective happiness. However, in this paper, we focus on
the case of a self-interested designer. A self-interested
designer cares only about the outcome chosen (that is,
the designer does not care how the outcome relates to
the agents’ preferences, but rather has a fixed preference
over the outcomes), and about the net payments made
by the agents, which flow to the designer.

Definition 2 A self-interested designer has an objective

function given by g(o)+
N∑
i=1

πi, where g : O → R indicates

the designer’s own preference over the outcomes, and πi
is the payment made by agent i. In the case where g = 0
everywhere, the designer is said to be payment maxi-
mizing. In the case where payments are not possible, g
constitutes the objective function by itself.

We now define the kinds of mechanisms under study.

Definition 3 A deterministic mechanism without pay-
ments consists of an outcome selection function o :
Θ1×Θ2×. . .×ΘN → O. A randomized mechanism with-
out payments consists of a distribution selection function
p : Θ1×Θ2× . . .×ΘN → P(O), where P(O) is the set of
probability distributions over O. A deterministic mech-
anism with payments consists of an outcome selection
function o : Θ1×Θ2×. . .×ΘN → O and for each agent i,
a payment selection function πi : Θ1×Θ2×. . .×ΘN → R,
where πi(θ1, . . . , θN ) gives the payment made by agent
i when the reported types are θ1, . . . , θN . A random-
ized mechanism with payments consists of a distribution
selection function p : Θ1 × Θ2 × . . . × ΘN → P(O),
and for each agent i, a payment selection function πi :
Θ1 ×Θ2 × . . .×ΘN → R.2

There are two types of constraint on the designer in
building the mechanism.

3.1 Individual rationality (IR) constraints

The first type of constraint is the following. The util-
ity of each agent has to be at least as great as the

the fact that the agent has both a utility function and a type
is perhaps confusing. The types encode the various possible
preferences that the agent may turn out to have, and the
agent’s type is not known to the aggregator. The utility
function is common knowledge, but because the agent’s type
is a parameter in the agent’s utility function, the aggregator
cannot know what the agent’s utility is without knowing the
agent’s type.

2We do not randomize over payments because as long as
the agents and the designer are risk neutral with respect to
payments, that is, their utility is linear in payments, there is
no reason to randomize over payments.



agent’s fallback utility, that is, the utility that the agent
would receive if it did not participate in the mecha-
nism. Otherwise that agent would not participate in the
mechanism—and no agent’s participation can ever hurt
the mechanism designer’s objective because at worst, the
mechanism can ignore an agent by pretending the agent
is not there. (Furthermore, if no such constraint applied,
the designer could simply make the agents pay an infinite
amount.) This type of constraint is called an IR (indi-
vidual rationality) constraint. There are three different
possible IR constraints: ex ante, ex interim, and ex post,
depending on what the agent knows about its own type
and the others’ types when deciding whether to partici-
pate in the mechanism. Ex ante IR means that the agent
would participate if it knew nothing at all (not even its
own type). We will not study this concept in this paper.
Ex interim IR means that the agent would always par-
ticipate if it knew only its own type, but not those of the
others. Ex post IR means that the agent would always
participate even if it knew everybody’s type. We will
define the latter two notions of IR formally. First, we
need to formalize the concept of the fallback outcome.
We assume that each agent’s fallback utility is zero for
each one of its types. This is without loss of general-
ity because we can add a constant term to an agent’s
utility function (for a given type), without affecting the
decision-making behavior of that expected utility maxi-
mizing agent [10].

Definition 4 In any automated mechanism design set-
ting with an IR constraint, there is a fallback outcome
o0 ∈ O where, for any agent i and any type θi ∈ Θi,
we have ui(θi, o0) = 0. (Additionally, in the case of a
self-interested designer, g(o0) = 0.)

We can now to define the notions of individual rational-
ity.

Definition 5 Individual rationality (IR) is defined by:

• A deterministic mechanism is ex interim IR if for
any agent i, and any type θi ∈ Θi, we have
E(θ1,..,θi−1,θi+1,..,θN )|θi [ui(θi, o(θ1, .., θN ))
− πi(θ1, .., θN )] ≥ 0.

A randomized mechanism is ex interim IR if for
any agent i, and any type θi ∈ Θi, we have
E(θ1,..,θi−1,θi+1,..,θN )|θiEo|θ1,..,θn [ui(θi, o)
− πi(θ1, .., θN )] ≥ 0.

• A deterministic mechanism is ex post IR if for any
agent i, and any type vector (θ1, . . . , θN ) ∈ Θ1×. . .×
ΘN , we have ui(θi, o(θ1, . . . , θN ))−πi(θ1, . . . , θN ) ≥
0.

A randomized mechanism is ex post IR if for any
agent i, and any type vector (θ1, . . . , θN ) ∈ Θ1 ×
. . .×ΘN , we have Eo|θ1,..,θn [ui(θi, o)−πi(θ1, .., θN )]
≥ 0.

The terms involving payments can be left out in the case
where payments are not possible.

3.2 Incentive compatibility (IC) constraints

The second type of constraint says that the agents should
never have an incentive to misreport their type (as jus-
tified above by the revelation principle). For this type
of constraint, the two most common variants (or solu-
tion concepts) are implementation in dominant strate-
gies, and implementation in Bayes-Nash equilibrium.

Definition 6 Given an automated mechanism design
setting, a mechanism is said to implement its out-
come and payment functions in dominant strategies if
truthtelling is always optimal even when the types re-
ported by the other agents are already known. Formally,
for any agent i, any type vector (θ1, . . . , θi, . . . , θN ) ∈
Θ1 × . . . × Θi × . . . × ΘN , and any alternative type re-
port θ̂i ∈ Θi, in the case of deterministic mechanisms we
have
ui(θi, o(θ1, . . . , θi, . . . , θN ))− πi(θ1, . . . , θi, . . . , θN ) ≥
ui(θi, o(θ1, . . . , θ̂i, . . . , θN ))− πi(θ1, . . . , θ̂i, . . . , θN ).

In the case of randomized mechanisms we have
Eo|θ1,..,θi,..,θn [ui(θi, o)− πi(θ1, . . . , θi, . . . , θN )] ≥
Eo|θ1,..,θ̂i,..,θn [ui(θi, o)− πi(θ1, . . . , θ̂i, . . . , θN )].

The terms involving payments can be left out in the case
where payments are not possible.

Thus, in domi-
nant strategies implementation, truthtelling is optimal
regardless of what the other agents report. If it is op-
timal only given that the other agents are truthful, and
given that one does not know the other agents’ types,
we have implementation in Bayes-Nash equilibrium.

Definition 7 Given an automated mechanism design
setting, a mechanism is said to implement its outcome
and payment functions in Bayes-Nash equilibrium if
truthtelling is always optimal to an agent when that agent
does not yet know anything about the other agents’ types,
and the other agents are telling the truth. Formally, for
any agent i, any type θi ∈ Θi, and any alternative type
report θ̂i ∈ Θi, in the case of deterministic mechanisms
we have
E(θ1,..,θi−1,θi+1,..,θN )|θi [ui(θi, o(θ1, . . . , θi, . . . , θN ))
− πi(θ1, . . . , θi, . . . , θN )] ≥
E(θ1,..,θi−1,θi+1,..,θN )|θi [ui(θi, o(θ1, . . . , θ̂i, . . . , θN ))

− πi(θ1, . . . , θ̂i, . . . , θN )].

In the case of randomized mechanisms we have
E(θ1,..,θi−1,θi+1,..,θN )|θiEo|θ1,..,θi,..,θn [ui(θi, o)
− πi(θ1, . . . , θi, . . . , θN )] ≥
E(θ1,..,θi−1,θi+1,..,θN )|θiEo|θ1,..,θ̂i,..,θn [ui(θi, o)

− πi(θ1, . . . , θ̂i, . . . , θN )].

The terms involving payments can be left out in the case
where payments are not possible.

3.3 Automated mechanism design

We can now define the computational problem we study.

Definition 8 (AUTOMATED-MECHANISM-DESIGN



(AMD)) We are given an automated mechanism design
setting, an IR notion (ex interim, ex post, or none), and
a solution concept (dominant strategies or Bayes-Nash).
Additionally, we are told whether payments and random-
ization are possible. Finally, we are given a target value
G. We are asked whether there exists a mechanism of
the specified type that satisfies both the IR notion and
the solution concept, and gives an expected value of at
least G for the objective.

An interesting special case is the setting where there is
only one agent. In this case, the reporting agent al-
ways knows everything there is to know about the other
agents’ types—because there are no other agents. Since
ex post and ex interim IR only differ on what an agent is
assumed to know about other agents’ types, the two IR
concepts coincide here. Also, because implementation in
dominant strategies and implementation in Bayes-Nash
equilibrium only differ on what an agent is assumed to
know about other agents’ types, the two solution con-
cepts coincide here. This observation will prove to be
a useful tool in proving hardness results: if we prove
computational hardness in the single-agent setting, this
immediately implies hardness for both IR concepts, for
both solution concepts, for any number of agents.

4 Payment-maximizing deterministic
AMD is hard

In this section we demonstrate that it is NP-complete
to design a deterministic mechanism that maximizes the
expected sum of the payments collected from the agents.
We show that this problem is hard even in the single-
agent setting, thereby immediately showing it hard for
both IR concepts, for both solution concepts. To demon-
strate NP-hardness, we reduce from the MINSAT prob-
lem.

Definition 9 (MINSAT) We are given a formula φ in
conjunctive normal form, represented by a set of Boolean
variables V and a set of clauses C, and an integer K
(K < |C|). We are asked whether there exists an assign-
ment to the variables in V such that at most K clauses
in φ are satisfied.

MINSAT was recently shown to beNP-complete [8]. We
can now present our result.

Theorem 1 Payment-maximizing deterministic AMD
is NP-complete, even for a single agent, even with a
uniform distribution over types.

Proof: It is easy to show that the problem is in NP . To
show NP-hardness, we reduce an arbitrary MINSAT in-
stance to the following single-agent payment-maximizing
deterministic AMD instance. Let the agent’s type set
be Θ = {θc : c ∈ C} ∪ {θv : v ∈ V }, where C is
the set of clauses in the MINSAT instance, and V is
the set of variables. Let the probability distribution
over these types be uniform. Let the outcome set be
O = {o0} ∪ {oc : c ∈ C} ∪ {ol : l ∈ L}, where L is the

set of literals, that is, L = {+v : v ∈ V } ∪ {−v : v ∈ V }.
Let the notation v(l) = v denote that v is the variable
corresponding to the literal l, that is, l ∈ {+v,−v}. Let
l ∈ c denote that the literal l occurs in clause c. Then,
let the agent’s utility function be given by

• u(θc, ol) = |Θ|+ 1 for all l ∈ L with l ∈ c;

• u(θc, ol) = 0 for all l ∈ L with l /∈ c;

• u(θc, oc) = |Θ|+ 1;

• u(θc, oc′) = 0 for all c′ ∈ C with c 6= c′;

• u(θv, ol) = |Θ| for all l ∈ L with v(l) = v;

• u(θv, ol) = 0 for all l ∈ L with v(l) 6= v;

• u(θv, oc) = 0 for all c ∈ C.

The goal of the AMD instance is G = |Θ|+ |C|−K|Θ| , where

K is the goal of the MINSAT instance. We show the in-
stances are equivalent. First, suppose there is a solution
to the MINSAT instance. Let the assignment of truth
values to the variables in this solution be given by the
function f : V → L (where v(f(v)) = v for all v ∈ V ).
Then, for every v ∈ V , let o(θv) = of(v) and π(θv) = |Θ|.
For every c ∈ C, let o(θc) = oc; let π(θc) = |Θ|+ 1 if c is
not satisfied in the MINSAT solution, and π(θc) = |Θ| if
c is satisfied. It is straightforward to check that the IR
constraint is satisfied. We now check that the agent has
no incentive to misreport. If the agent’s type is some
θv, then any other report will give it an outcome that
is no better, for a payment that is no less, so it has no
incentive to misreport. If the agent’s type is some θc
where c is a satisfied clause, again, any other report will
give it an outcome that is no better, for a payment that
is no less, so it has no incentive to misreport. The final
case to check is where the agent’s type is some θc where
c is an unsatisfied clause. In this case, we observe that
for none of the types, reporting it leads to an outcome
ol for a literal l ∈ c, precisely because the clause is not
satisfied in the MINSAT instance. Because also, no type
besides θc leads to the outcome oc, reporting any other
type will give an outcome with utility 0, while still forc-
ing a payment of at least |Θ| from the agent. Clearly
the agent is better off reporting truthfully, for a total
utility of 0. This establishes that the agent never has an
incentive to misreport. Finally, we show that the goal
is reached. If s is the number of satisfied clauses in the
MINSAT solution (so that s ≤ K), the expected pay-

ment from this mechanism is |V ||Θ|+s|Θ|+(|C|−s)(|Θ|+1)
|Θ| ≥

|V ||Θ|+K|Θ|+(|C|−K)(|Θ|+1)
|Θ| = |Θ|+ |C|−K

|Θ| = G. So there

is a solution to the AMD instance.

Now suppose there is a solution to the AMD instance,
given by an outcome function o and a payment func-
tion π. First, suppose there is some v ∈ V such that
o(θv) /∈ {o+v, o−v}. Then the utility that the agent de-
rives from the given outcome for this type is 0, and hence,
by IR, no payment can be extracted from the agent for
this type. Because, again by IR, the maximum payment



that can be extracted for any other type is |Θ| + 1, it
follows that the maximum expected payment that could

be obtained is at most (|Θ|−1)(|Θ|+1)
|Θ| < |Θ| < G, con-

tradicting that this is a solution to the AMD instance.
It follows that in the solution to the AMD instance, for
every v ∈ V , o(θv) ∈ {o+v, o−v}. We can interpret this
as an assignment of truth values to the variables: v is
set to true if o(θv) = o+v, and to false if o(θv) = o−v.
We claim this assignment is a solution to the MINSAT
instance. By the IR constraint, the maximum payment
we can extract from any type θv is |Θ|. Because there
can be no incentives for the agent to report falsely, for
any clause c satisfied by the given assignment, the maxi-
mum payment we can extract for the corresponding type
θc is |Θ|. (For if we extracted more from this type, the
agent’s utility in this case would be less than 1; and if
v is the variable satisfying c in the assignment, so that
o(θv) = ol where l occurs in c, then the agent would be
better off reporting θv instead of the truthful report θc,
to get an outcome worth |Θ| + 1 to it while having to
pay at most |Θ|.) Finally, for any unsatisfied clause c, by
the IR constraint, the maximum payment we can extract
for the corresponding type θc is |Θ| + 1. It follows that
the expected payment from our mechanism is at most
V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)

Θ , where s is the number of satis-
fied clauses. Because our mechanism achieves the goal,

it follows that V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)
Θ ≥ G, which by

simple algebraic manipulations is equivalent to s ≤ K.
So there is a solution to the MINSAT instance.

Because payment-maximizing AMD is just the special
case of AMD for a self-interested designer where the
designer has no preferences over the outcome chosen,
this immediately implies hardness for the general case of
AMD for a self-interested designer where payments are
possible. However, it does not yet imply hardness for the
special case where payments are not possible. We will
prove hardness in this case in the next section.

5 Self-interested deterministic AMD
without payments is hard

In this section we demonstrate that it is NP-complete
to design a deterministic mechanism that maximizes the
expectation of the designer’s objective when payments
are not possible. We show that this problem is hard even
in the single-agent setting, thereby immediately showing
it hard for both IR concepts, for both solution concepts.

Theorem 2 Without payments, deterministic AMD for
a self-interested designer is NP-complete, even for a sin-
gle agent, even with a uniform distribution over types.

Proof: It is easy to show that the problem is in NP .
To show NP-hardness, we reduce an arbitrary MINSAT
instance to the following single-agent self-interested de-
terministic AMD without payments instance. Let the
agent’s type set be Θ = {θc : c ∈ C} ∪ {θv : v ∈ V },
where C is the set of clauses in the MINSAT instance,
and V is the set of variables. Let the probability dis-

tribution over these types be uniform. Let the outcome
set be O = {o0} ∪ {oc : c ∈ C} ∪ {ol : l ∈ L} ∪ {o∗},
where L is the set of literals, that is, L = {+v : v ∈
V } ∪ {−v : v ∈ V }. Let the notation v(l) = v denote
that v is the variable corresponding to the literal l, that
is, l ∈ {+v,−v}. Let l ∈ c denote that the literal l oc-
curs in clause c. Then, let the agent’s utility function be
given by

• u(θc, ol) = 2 for all l ∈ L with l ∈ c;

• u(θc, ol) = −1 for all l ∈ L with l /∈ c;

• u(θc, oc) = 2;

• u(θc, oc′) = −1 for all c′ ∈ C with c 6= c′;

• u(θc, o
∗) = 1;

• u(θv, ol) = 1 for all l ∈ L with v(l) = v;

• u(θv, ol) = −1 for all l ∈ L with v(l) 6= v;

• u(θv, oc) = −1 for all c ∈ C;

• u(θv, o
∗) = −1.

Let the designer’s objective function be given by

• g(o∗) = |Θ|+ 1;

• g(ol) = |Θ| for all l ∈ L;

• g(oc) = |Θ| for all c ∈ C.

The goal of the AMD instance is G = |Θ|+ |C|−K|Θ| , where

K is the goal of the MINSAT instance. We show the in-
stances are equivalent. First, suppose there is a solution
to the MINSAT instance. Let the assignment of truth
values to the variables in this solution be given by the
function f : V → L (where v(f(v)) = v for all v ∈ V ).
Then, for every v ∈ V , let o(θv) = of(v). For every c ∈ C
that is satisfied in the MINSAT solution, let o(θc) = oc;
for every unsatisfied c ∈ C, let o(θc) = o∗. It is straight-
forward to check that the IR constraint is satisfied. We
now check that the agent has no incentive to misreport.
If the agent’s type is some θv, it is getting the maximum
utility for that type, so it has no incentive to misreport.
If the agent’s type is some θc where c is a satisfied clause,
again, it is getting the maximum utility for that type,
so it has no incentive to misreport. The final case to
check is where the agent’s type is some θc where c is
an unsatisfied clause. In this case, we observe that for
none of the types, reporting it leads to an outcome ol
for a literal l ∈ c, precisely because the clause is not sat-
isfied in the MINSAT instance. Because also, no type
leads to the outcome oc, there is no outcome that the
mechanism ever selects that would give the agent utility
greater than 1 for type θc, and hence the agent has no in-
centive to report falsely. This establishes that the agent
never has an incentive to misreport. Finally, we show
that the goal is reached. If s is the number of satisfied
clauses in the MINSAT solution (so that s ≤ K), then



the expected value of the designer’s objective function is
|V ||Θ|+s|Θ|+(|C|−s)(|Θ|+1)

|Θ| ≥ |V ||Θ|+K|Θ|+(|C|−K)(|Θ|+1)
|Θ| =

|Θ| + |C|−K
|Θ| = G. So there is a solution to the AMD

instance.

Now suppose there is a solution to the AMD instance,
given by an outcome function o. First, suppose there
is some v ∈ V such that o(θv) /∈ {o+v, o−v}. The only
other outcome that the mechanism is allowed to choose
under the IR constraint is o0. This has an objective
value of 0, and because the highest value the objective
function ever takes is |Θ| + 1, it follows that the maxi-
mum expected value of the objective function that could

be obtained is at most (|Θ|−1)(|Θ|+1)
|Θ| < |Θ| < G, contra-

dicting that this is a solution to the AMD instance. It
follows that in the solution to the AMD instance, for ev-
ery v ∈ V , o(θv) ∈ {o+v, o−v}. We can interpret this as
an assignment of truth values to the variables: v is set to
true if o(θv) = o+v, and to false if o(θv) = o−v. We claim
this assignment is a solution to the MINSAT instance.
By the above, for any type θv, the value of the objective
function in this mechanism will be |Θ|. For any clause c
satisfied by the given assignment, the value of the objec-
tive function in the case where the agent reports type θc
will be at most |Θ|. (This is because we cannot choose
the outcome o∗ for such a type, as in this case the agent
would have an incentive to report θv instead, where v
is the variable satisfying c in the assignment (so that
o(θv) = ol where l occurs in c).) Finally, for any unsatis-
fied clause c, the maximum value the objective function
can take in the case where the agent reports type θc
is |Θ| + 1, simply because this is the largest value the
function ever takes. It follows that the expected value
of the objective function for our mechanism is at most
V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)

Θ , where s is the number of satis-
fied clauses. Because our mechanism achieves the goal,

it follows that V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)
Θ ≥ G, which by

simple algebraic manipulations is equivalent to s ≤ K.
So there is a solution to the MINSAT instance.

Both of our hardness results relied on the constraint that
the mechanism should be deterministic. In the next sec-
tion, we show that the hardness of design disappears
when we allow for randomization in the mechanism.

6 Randomized AMD for a
self-interested designer is easy

We now show how allowing for randomization over the
outcomes makes the problem of self-interested AMD
tractable through linear programming, for any constant
number of agents.

Theorem 3 Self-interested randomized AMD with a
constant number of agents is solvable in polynomial time
by linear programming, both with and without payments,
both for ex post and ex interim IR, and both for im-
plementation in dominant strategies and for implemen-
tation in Bayes-Nash equilibrium—even if the types are
correlated.

Proof: Because linear programs can be solved in poly-
nomial time, all we need to show is that the number
of variables and equations in our program is polynomial
for any constant number of agents—that is, exponen-
tial only in N . Throughout, for purposes of determin-
ing the size of the linear program, let T = maxi{|Θi|}.
The variables of our linear program will be the proba-
bilities (p(θ1, θ2, . . . , θN ))(o) (at most TN |O| variables)
and the payments πi(θ1, θ2, . . . , θN ) (at most NTN vari-
ables). (We show the linear program for the case where
payments are possible; the case without payments is eas-
ily obtained from this by simply omitting all the payment
variables in the program, or by adding additional con-
straints forcing the payments to be 0.)

First, we show the IR constraints. For ex post IR, we
add the following (at most NTN ) constraints to the LP:

• For every i ∈ {1, 2, . . . , N}, and for every
(θ1, θ2, . . . , θN ) ∈ Θ1 ×Θ2 × . . .×ΘN , we add
(
∑
o∈O

(p(θ1, θ2, . . . , θN ))(o)u(θi, o))− πi(θ1, θ2, . . . , θN ) ≥ 0.

For ex interim IR, we add the following (at most NT )
constraints to the LP:

• For every i ∈ {1, 2, . . . , N}, for every θi ∈ Θi, we add∑
θ1,...,θN

γ(θ1, . . . , θN |θi)((
∑
o∈O

(p(θ1, θ2, . . . , θN ))(o)u(θi, o)) −

πi(θ1, θ2, . . . , θN )) ≥ 0.

Now, we show the solution concept constraints. For im-
plementation in dominant strategies, we add the follow-
ing (at most NTN+1) constraints to the LP:

• For every i ∈ {1, 2, . . . , N}, for every
(θ1, θ2, . . . , θi, . . . , θN ) ∈ Θ1×Θ2×. . .×ΘN , and for every

alternative type report θ̂i ∈ Θi, we add the constraint
(
∑
o∈O

(p(θ1, θ2, . . . , θi, . . . , θN ))(o)u(θi, o))

− πi(θ1, θ2, . . . , θi, . . . , θN ) ≥
(
∑
o∈O

(p(θ1, θ2, . . . , θ̂i, . . . , θN ))(o)u(θi, o))

− πi(θ1, θ2, . . . , θ̂i, . . . , θN ).

Finally, for implementation in Bayes-Nash equilibrium,
we add the following (at most NT 2) constraints to the
LP:

• For every i ∈ {1, 2, ..., N}, for every θi ∈ Θi, and

for every alternative type report θ̂i ∈ Θi, we add the
constraint∑
θ1,...,θN

γ(θ1, ..., θN |θi)((
∑
o∈O

(p(θ1, θ2, ..., θi, ..., θN ))(o)u(θi, o))

− πi(θ1, θ2, ..., θi, ..., θN )) ≥∑
θ1,...,θN

γ(θ1, ..., θN |θi)((
∑
o∈O

(p(θ1, θ2, ..., θ̂i, ..., θN ))(o)u(θi, o))

− πi(θ1, θ2, ..., θ̂i, ..., θN )).

All that is left to do is to give the expression the designer
is seeking to maximize, which is:

• ∑
θ1,...,θN

γ(θ1, ..., θN )((
∑
o∈O

(p(θ1, θ2, ..., θi, ..., θN ))(o)g(o))

+
N∑
i=1

πi(θ1, θ2, ..., θN )).

As we indicated, the number of variables and constraints
is exponential only in N , and hence the linear program is



of polynomial size for constant numbers of agents. Thus
the problem is solvable in polynomial time.

7 Related research on computational
complexity in mechanism design

There has been considerable recent interest in mecha-
nism design in computer science. Some of it has fo-
cused on issues of computational complexity, but most
of that work has strived toward designing mechanisms
that are easy to execute (e.g. [13, 9]), rather than study-
ing the complexity of designing the mechanism. The
closest piece of earlier work studied the complexity of au-
tomated mechanism design by a benevolent designer [3].
Roughgarden has studied the complexity of designing a
good network topology for agents that selfishly choose
the links they use [14]. This is related to mechanism
design, but differs significantly in that the designer only
has restricted control over the rules of the game because
there is no party that can impose the outcome (or side
payments). Also, there is no explicit reporting of prefer-
ences.

8 Conclusions and future research

Often, an outcome must be chosen on the basis of the
preferences reported by a group of agents. The key diffi-
culty is that the agents may report their preferences in-
sincerely to make the chosen outcome more favorable to
themselves. Mechanism design is the art of designing the
rules of the game so that the agents are motivated to re-
port their preferences truthfully, and a desirable outcome
is chosen. In a recently emerging approach—called au-
tomated mechanism design—a mechanism is computed
for the specific preference aggregation setting at hand.
This has several advantages, but the downside is that
the mechanism design optimization problem needs to be
solved anew each time. Unlike earlier work on auto-
mated mechanism design that studied a benevolent de-
signer, in this paper we studied automated mechanism
design problems where the designer is self-interested—a
setting much more relevant for electronic commerce. In
this setting, the center cares only about which outcome
is chosen and what payments are made to it. The reason
that the agents’ preferences are relevant is that the cen-
ter is constrained to making each agent at least as well off
as the agent would have been had it not participated in
the mechanism. In this setting, we showed that design-
ing an optimal deterministic mechanism is NP-complete
in two important special cases: when the center is inter-
ested only in the payments made to it, and when pay-
ments are not possible and the center is interested only in
the outcome chosen. These hardness results imply hard-
ness in all more general automated mechanism design
settings with a self-interested designer. The hardness
results apply whether the individual rationality (partic-
ipation) constraints are applied ex interim or ex post,
and whether the solution concept is dominant strategies
implementation or Bayes-Nash equilibrium implementa-

tion. Finally, we showed that allowing randomization
in the mechanism makes the design problem in all these
settings computationally easy.

Future research includes studying automated mechanism
design with a self-interested designer in more restricted
settings such as auctions (where the designer’s objective
may include preferences about which bidder should re-
ceive the good—as well as payments). We also want to
study the complexity of automated mechanism design in
settings where the outcome and type spaces have special
structure so they can be represented more concisely. Fi-
nally, we plan to assemble a data set of real-world mecha-
nism design problems—both historical and current—and
apply automated mechanism design to those problems.
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