
Spatially-Encoded Far-Field Representations for Interactive
Walkthroughs

Andrew Wilson Ketan Mayer-Pate1 Dinesh Manocha

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3 175

{awilson,kmp,dm} @cs.unc.edu
http://www.cs.unc.edu/“geom/Video/SE

Abstract: We introduce the notion of spatially encoded video
and use it for efficiently representing image-based impostors
for interactive walkthroughs. As part of a pre-process, we au-
tomatically decompose the model and compute the far-fields.
The resulting texture images are organized along multiple di-
mensions and can be accessed in a user-steered order at in-
teractive rates. Our encoding algorithm can compress the im-
postors size by two orders of magnitude. Furthermore, the
storage cost for additional impostors or samples grows sub-
linearly. The resulting system has been applied to a complex
CAD environment composed of 13 million triangles. We are
able to render it at interactive rates on a PC with little loss in
image quality.
Keywords: image databases, image-based rendering, MPEG,
rendering systems, spatial data structures

1 Introduction
Many applications like computer-aided design (CAD), archi-
tectural and urban visualization, flight simulation and virtual
environments generate large and complex three-dimensional
(3D) models composed of tens of millions of primitives. One
of the important problems in computer graphics and virtual
environments is to create an interactive system that enables a
viewer to experience the synthetic environment by simulating
a user-steered display or walkthrough of the model. However,
these datasets cannot be directly rendered at interactive rates
on current high-end graphics systems.

Different rendering acceleration techniques that reduce or
limit the number of geometric primitives rendered in each
frame have been proposed in the literature. These include
visibility culling, level-of-detail modeling, and use of image-
based representations. In this paper, we focus on image-
based rendering techniques that have been used to replace
subsets of the geometric model with image-based impos-
tors or simplifications. Typically these impostors are used
to replace geometry far from a given viewpoint. We re-
fer to an approximation of this distant geometry as afar-
field. A number of rendering acceleration algorithms and sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’OZ, Sept. 30-Oct. 52001, Ottawa, Canada.
Copyright 2001 ACM 1-581 l3-394-4/01/0009...$5.00

terns based on far-field representations have been developed
[ACW+99, AL99, Ali96, DCV98, DSSD99, MS95, SS96,
SGwHS98, SLS+96, SDB97, WLM+OO].

Some key issues in using image-based impostors for large
3D datasets are memory storage, bandwidth and sampling.
Each sample of reasonable resolution can take a few mega-
bytes (MBs) or more. Most algorithms discretize the viewing
space and generate impostors from a finite set of viewing di-
rections. This can lead to image artifacts such as popping,
cracks, aliasing or stretching. Moreover, the pre-computed
far-fields for moderately sized environments (composed of a
few million polygons) can easily take a few or tens of giga-
bytes [ACW+99, AL99, DSSD99] and it is hard to fit them
into main memory. Many of the image artifacts can be re-
duced by taking more impostor samples, but that adds to the
storage and bandwidth complexity.

Given the storage complexity, different compression tech-
niques have been applied to image-based representations.
These include motion estimation and compensation tech-
niques used to encode synthetic or parameterized animations
[ABC95, COMF99, HLSOO, Lev95, WKC94]. These have
been designed for streaming over a network. The resulting
application is different from interactive walkthroughs, where
the constraints imposed by faithful response to user spontane-
ity are different from pre-recorded videos or synthetic an-
imations. Some impostor based rendering acceleration al-
gorithms have used compression techniques based on DCT
(JPEG) or Lempel-Ziv (PNG) to reduce the storage complex-
ity of texture images [ACW+99, DSSD99, WLM+OO]. How-
ever, these techniques as well as current standards like MPEG
do not utilize spatial relationships and other properties unique
to image-based impostors .

Main Results: In this paper, we introduce the notion
of spatially-encoded video and use it for efficiently represent-
ing far-fields for interactive walkthroughs. As part of pre-
computation, we use spatial partitioning algorithms to auto-
matically decompose the model into rectangular cells and en-
close each cell with a cull-box. We approximate the geom-
etry outside each cull-box using image-based impostors and
encode them spatially. These frames are accessed in a user-
steered order at runtime. They are decoded at interactive rates
and rendered using projective texture mapping. The rest of the
model contained inside the cull-box is rendered as geometry.

The spatially-encoded video representation differs from

3 4 8

b r o u g h t t o y o u b y C O R EV i e w m e t a d a t a , c i t a t i o n a n d s i m i l a r p a p e r s a t c o r e . a c . u k

p r o v i d e d b y C r o s s r e f

https://core.ac.uk/display/204213101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

conventional video streams and compression algorithms in
many ways. The frames are organized along multiple dimen-
sions that include position and orientation. Furthermore, our
encoding algorithm utilizes spatial coherence between the im-
postors and model-based depth information. As compared to
earlier walkthrough systems that use image-based impostors,
our approach offers the following advantages:

1. Automaticity: Our approach for decomposing the model
into cells, computing cull-boxes, and encoding impostors is
fully automatic. Moreover, it is applicable to all geometric
datasets.
2. Storage Eff iciency: Our compression algori thm can lower
the storage overhead by an order of magnitude as compared to
earlier approaches. Moreover, as we generate more samples
or impostors, our storage cost grows sub-linearly (as com-
pared to linear growth for earlier approaches).
3. Reduced Pre-processing Overhead: The spatial coher-
ence and model information reduces the encoding time.
4. Improve Runtime Performance: Our average time to ac-
cess, decode and render the encoded impostors is reduced and
is more predictable. It significantly reduces the load on the
pre-fetching algorithm and this results in less variation in the
frame rates.
5. Dynamic Impostors: We use an auxiliary index to store
interframe relationships in multiple dimensions. This facili-
tates dynamically adding new impostors.

The resulting algorithm has been implemented on a dual-
processor PC with a nVIDIA Quadro2 graphics card. We
demonstrate its performance on a large and complex CAD en-
vironment composed of more than 13 million triangles. It is
able to render the scene at 12 - 25 frames a second with some
loss in image quality.
OVerVieW: The rest of the paper is organized in the fol-
lowing manner. We give a brief survey of related work on
image-based impostors and compression techniques in Sec-
tion 2. We present an overview of our approach in Section 3.
We introduce spatial video in Section 4 and show that it can be
used to encode different impostor representations efficiently.
Section 5 presents the algorithm for decomposing the model
into cells and cull-boxes as well as generating the far fields.
We describe its implementation and performance on complex
CAD environment in Section 6. Finally, we highlight many
areas of future research in Section 7.

2 Previous Work
In this section, we give a brief survey on image-based repre-
sentations, compression algorithms and spatial encoding.

2.1 Image-Based Representations for Interactive
Walkthroughs

Image-based representations and impostors have been widely
used for faster display of large environments. For example,
many flight simulation systems have used images to represent
terrains and other specialized models. In many cases these
images were hand-generated. More recently, different kinds
of far-field representations have been used for rendering ac-
celeration. Different representations, ordered in terms of in-
creasing space and time complexity, include:

1. Point Samples: Approximate the geometry with point
primitives and render them directly [GD98, PZvBGOO].

2. Cached Images: Render portions of the scene and
cache the resulting images. These images are texture
mapped onto planar projections [Ali96, MS95, SLS+96,
SS96, WLM+OO].

Texture Depth Meshes (TDMs): Render the scene onto
a planar projection, generate a depth mesh and apply a
polygon simplification algorithm to the resulting mesh.
At nmtime, the simplified mesh is displayed using pro-
jective texture mapping [ACW+99, DCV98, SDB97].
Multi-Mesh Impostors (MMIs): Consist of multiple
layers of textured meshes and limit the dis-occlusion er-
rors [DSSD99].
Range or Depth Images: Consist of per-pixel depth
along with the intensity values. They are rendered
at runtime using 3D image warping [M09.5, MMB97,
RAL98]
Layered Depth Images (LDIs): Each pixel consists of
multiple depth values corresponding to all the intersec-
tions of the ray with the scene. They reduce the dis-
occlusion artifacts [AL99, SGwHS981.

These representations are either pre-computed from a set of
viewpoints or can be dynamically updated [DSSD99, SS96,
SLS+96]. Other dynamic impostor representations are based
on cornpositing individually updated image layers [LS97].
All of them take considerable memory resources. For ex-
ample, a full-screen sized image in 24-bit color takes almost
three megabytes. Additional space is needed to represent the
meshes for TDMs or MMIs and the depth values for range
images or LDIs. In practice, most rendering acceleration al-
gorithms trade off storage overhead for frame rate or image fi-
delity. Our spatial encoding algorithm can compress all these
representations, though we mainly focus on cached images
and TDMs in this paper.

2.2 Compression
Data compression is a well-studied area. In this section, we
briefly survey algorithms for compressing image-based repre-
sentations and synthetic animations.

Some of the commonly used image compression algo-
rithms include lossless schemes like Lempel-Ziv, transform
coding schemes such as JPEG, vector quantization, etc. They
have been used to compress textures in a number of soft-
ware rendering and walkthrough systems [ACW+99, AL99,
BAC96, DSSD99]. However, these algorithms do not utilize
the spatial coherence between adjacent impostors.

Video compression is also a well studied area and standard
video compression techniques like MPEG [Leg911 were de-
veloped for use on natural scenes. Many algorithms have also
been proposed for compressing synthetic animations, where
the available model information is used to compute the op-
tical flow field between successive frames. These include
the lossless motion compensation algorithm [GYM93], fast
computation of optical flow, and per-block motion vectors us-
ing the Gouraud interpolation or texture mapping hardware
[WKC94], and accounting for non-translational block motion
using a least-squares formulation [ABC95]. Other approaches
include partitioning the rendering task between the server and
the client and using polygon assisted compression [Lev95] as
well as algorithms for texture intensive streaming applications
that use pre-computed view-dependent textures [COMF99].
An approach for arbitrary-dimensional parameterized anima-
tions that uses the texture mapping rasterization hardware for
decoding has been presented in [HLSOO]. All of these algo-
rithms were developed for faster transmission of synthetic an-
imations over networks, and utilize temporal coherence be-
tween successive frames.

Many techniques have been used for compressing the
dual-plane lumigraph parameterizations. These include

3 4 9

Model
S u b d i v i s i o n

Cel l
Placement

C u l l B o x
3ptimization

Spa t i a l
Video

Encoding

Fig. l(a): Preprocess

t f

geometry __* Impostors

Fig. l(b): Runtime System

Figure 1: Overview of our approach. Spatial video techniques are used for impostor representation and rendering.

vector quantization and entropy coding for light-fields
[LH96], wavelet basis [LF99] and block-based DCT encoders
[MRP98]. Gortler et al. [GGSC96] have treated lumi-
graphs as arrays of 2D images and proposed using JPEG and
MPEG for intra-frame and inter-frame compression, respec-
tively. Other algorithms include model-based coders for view-
dependent texture mapping [MGOO].

3 Algorithm Overview
Our rendering algorithm uses a combination of image-based
and geometry representations to render the datasets. The im-
postors or far-fields are used as a low-cost approximation of
the far geometry. The nearby geometry is rendered using a
combination of level-of-detail modeling and visibility culling.
The performance and fidelity of the rendering algorithm is
governed by the choice of image-based impostor. Each im-
postor representation (except point samples) highlighted in
Section 2 is typically generated from a single viewpoint in
the scene. As a result, whenever the viewer moves away from
that viewpoint, image artifacts are introduced. The only way
to minimize these artifacts is to pre-compute more samples or
add them dynamically. However, they add considerably to the
storage complexity. For example, the memory cost for a TDM
that uses a few thousand triangles to represent the mesh and a
512 x 512 image texture in true color is a few megabytes. For
a large environment, we may use tens or hundreds of thou-
sands of cells. Furthermore, we generate multiple impostors
for each cell, thereby resulting in a few million impostors for
the entire model.

We use spatially encoded cached images or TDMs as im-
postor representations. Their main benefit arises from the fact
that they can efficiently use the texture-mapped polygon ras-
terization hardware. Furthermore, as we generate more sam-
ples, the storage overhead for additional impostors grows sub-
linearly. This allows us to pre-compute impostors from mul-
tiple viewpoints within each cell. It also reduces the load on
the pre-fetching algorithm because of low storage complexity.
The pre-processing and runtime phases of the algorithms are
shown in Fig. 1.

Pre-process: (Fig. l(a)) We use cells and cull-boxes to clas-
sify the model into near and far geometry [ACW+99]. Our al-
gorithm automatically decomposes the environment into rect-
angular cells using spatial partitioning algorithms and en-

closes each cell with a rectangular cull-box. The partitioning
algorithm takes into account maximum deviation error in the
impostor representation from any viewpoint in the cell and
based on that subdivides some of the cells into sub-cells. All
the sub-cells of a given cell, share the same cull-box. It also
bounds the maximum geometry contained in the cull-box for
each cell. Finally, it computes six far fields for each cell and
sub-cell.

Runtime System: (Fig. l(b)) The algorithm tracks the cell
that contains the viewpoint. It maintains separate geometry
and impostor caches and uses pre-fetching algorithms to load
the geometry and impostors. The pre-fetching algorithms run
asynchronously and use spatial coherence to determine which
geometry and impostors to load. The impostors correspond-
ing to the particular cell or sub-cell are decoded and rendered
using projective texture mapping. Furthermore, we use visi-
bility culling and select an appropriate level-of-detail for each
object contained in the cull box. If a second rendering pipeline
is available, it is used to generate additional impostors and en-
codes them asynchronously. They can be dynamically added
to the set of far-field representations.

4 Spatially Encoded Video
The rendering algorithm uses either cached images or TDMs
as far-field representations. In either case, the texture images
dominate the storage cost, which is up to 85 - 95% of the
entire database. The simplest compression algorithms treat
each image separately, and use DCT (JPEG) encoding. In
practice, we achieve 5 - 20 times compression with JPEG.
As we generate more samples, the storage overhead grows al-
most linearly. However, the far-field impostors corresponding
to adjacent cells or sub-cells exhibit strong image or spatial
coherence. In this section, we present new spatial encoding
algorithms that utilize this coherence and achieve an order of
magnitude improvement in the compression ratios as well as
faster encoding and decoding performance.

Traditional video encoding schemes like MPEG have been
designed for frame sequences that are organized along a sin-
gle temporal dimension. The compression techniques attempt
to exploit inter-frame coherence by using one frame to predic-
tively encode the next one (as shown in Fig. 2(a)). Algorithms
for synthetic or parameterized animations make use of model
information to compute the optical flow between successive

3 5 0

- - - - .
Time X C
FrameNo: I 2 3 4 5 6 7 8 9 10

I’
’ I

Fig. 2(a) Traditional MPEG Encoding
p

.? Fig. 2(b) Spatial Encoding

Figure 2: Tradirional MPEG Encoding vs. Spatial Encoding. The latrer represenrs the bnpostors along multiple spatial dimen-
sions. They are traversed in a user-sreered order ot runtime.

frames, that improves the performance of the compression al-
gorithm.

We introduce the notion of spatially-encoded video and
use it for encoding the far-fields for interactive walkthroughs.
Earlier systems such as the one described in [WLM%Ol
have applied video compression to cached images of the far
field. However, to accommodate the semantics of a standard
MPEG encoder, that system arranged the (three-dimensional)
database of cached images in a single linear stream cone-
spending to a path through the environment that visited every
cell. As a result, the previous system could only exploit im-
age coherence in one spatial direction (forward and backward
along that path). As compared to the prior work on video
compression, the spatially-encoded video differs in the fol-
lowing manner:
I. Multi-dimensional Reoresentation: The video frames we
generated from a camera moving in space. However, there is
no single camera path, but instead the frames conespond to
samples of a multi-dimensional real world or synthetic en-
vironment. The different dimensions may correspond to the
position and orientation of the camera. For dynamic environ-
ments, we can also add the time dimension.
2. Random Access: No assumptions are made regarding the
order in which frames are accessed at runtime. They will
typically be used in an interactive or user-steered application,
where nothing is known a priori about user’s motion.
3. Interactive Decoding: Given the interactive nature of the
underlying application, it is important to decode the frames at
interactive rates.
4. Dynamic Updates: New frames or images can be gener-
ated dynamically or on-the-fly. The underlying representation
should be able to add them as encoded frames.

For interactive walkthroughs, we present a new spatial en-
coding scheme that extends the traditional MPEG standard.

4.1 Traditional MPEG encoding
In this section, we give a short overview of MPEG compres-
sion scheme [Leg91, Uni95] as it is usually applied to video
sequences. The scheme encodes the video frames as one of
three types: I, P, or B. I-frames contain all information re-
quired to decode the frame. Each frame is subdivided into
16 x 16 pixel regions called macroblocks. Each macroblock
is encoded using the Discrete Cosine Transform (DCT). P-
frames are predictively encoded using the previous I- or P-
frame. Each macroblock in a P-frame may be associated with
a motion vector that defines a region in the reference frame of
the same size to be used as a predictive base. The difference

Ii .J ! ,, i ,, I

Cell N (B-cell) i ,,./” Cell N+l (I-cell)
x _.................. 2 _...... ::

Motion Vector = (P,.*,, - P,+-)

Figure 3: The morion vecror associated with PB-,~~,,,~
is calculated by back projecting rke screen coordimtes into
world space (Pwor~d) using depth information and then re-
projecting Pworld info screen coordinates for the reference
frame (PI-, ramr). The diJj%rence between these coordinates
is a candidate motion vector for encoding the rnacroblock
containing PB-,,,~,.

between the prediction region and the actual pixel values is
DCT encoded. B-frames are predictively encoded in the same
way using both the previous I- or P-frame as well as the sub-
sequent I- or P-frame. Fig. 2(a) shows a typical pattern for I,
P, and B frames and their referential relationships.

4.2 Multi-dimensional Impostor Representation
The far-fields used in the walkthrough system are generated
by taking finite samples of the virtual environment. The cam-
era position corresponds to the center of each cell or sub-cell.
We generate a texture image for each face of the cull box and
the camera’s orientation and field of view is determined for
each face separately (as shown in Fig. 5 in Section 5). This
results in a4D representation of frames, given by the 30 cell
position and 1D orientation of the frames within each cell.
Moreover, each impostor is “near” several other impostors
in 4 different dimensions. Other sampling strategies or spa-
tial decompositions of the environment can result in different
multi-dimensional representations.

Given that the user can move in an arbitrary direction at
runtime, we do not know in advance the order in which the
impostors will be accessed. As a result, the compressed rep-
resentation of the far fields must have support for random ac-
cess. Traditional I-, P-, and B- frame sequences in MPEG-
encoded streams do not support random access. Furthermore,

351

the reference relationships between encoded frames need to
reflect the underlying multi-dimensional relationship of the
impos tors .

To accommodate these requirements, we extend the tradi-
tional MPEG encoding scheme in three important ways.

1. We avoid using P-frames altogether.
2. We construct and store an auxiliary index which explic-

itly defines reference information.
3 . We encode impostors by organizing them in a 4-D space

and define reference relationships within that space.
The auxiliary index data structure supports random access
by resolving reference relationships without having to scan
through and decode the compressed representations in any
particular order.

4.3 Spatial Encoding
Given our representation, we use the notion of l-cells. An I-
cell is simply a cell for which all of the far-field impostors
are encoded as I-frames. Surrounding each I-cell in all direc-
tions are B-cells. The far-field impostors associated with a
B-cell are encoded as B-frames. Each impostor encoded as a
B-frame uses the two I-frame encoded impostors in the same
orientation associated with the two nearest I-cells. Thus, each
I-cell is associated with 26 B-cells. Fig. 2(b) illustrates the
organization of I-cells and B-cells.
4.3.1 Encoding Heuristics
A traditional video encoder is not provided with any depth in-
formation associated with the video frames. Thus, the heuris-
tics used by available encoders for motion vector calculation
are all based on some sort of search. On the other hand, our
encoding algorithm uses the model and depth information.
When encoding an impostor as a B-frame, the spatial encoder
is provided with the depth of each pixel as well as the camera
information associated with the impostor and both reference
frames. To encode a macroblock, the depth associated with
each pixel in the macroblock is used to calculate a candidate
motion vector associated with that pixel. This is illustrated
in Fig. 3, where the difference ~~~~~~~~ - ~~~~~~~~ is a
candidate motion vector for encoding the macroblock of the
B-frame that contains the point.

The back projection produces 256 candidate motion vec-
tors for each 16 x 16 macroblock for each reference frame.
Because many of the pixels of a macroblock will correspond
to the same object in the virtual environment, many of the 256
motion vectors will be identical since they represent the rela-
tive spatial motion of that object. Thus, the number of motion
vectors to test is kept small which speeds up encoding con-
siderably. Traditional search heuristics do not use the depth
information for finding motion vectors. Given the same lim-
ited number of candidate vectors, they will be constrained to
a very small search area.

4.4 Interactive Decoding
The organization of I-cells and B-cells in our system guar-
antees that no more than 2 reference frames will be required
to decode any particular B-frame. Since the frames are orga-
nized along spatial dimensions, decoded reference frames are
cached and used to decode other nearby frames as the user in-
teractively moves through the model. Given a user-specified
direction, the access pattern for I- and B-frames is similar to
a traditionally encoded MPEG stream using only I- and B-
frames. By storing the multidimensional reference relation-
ships between frames in an auxiliary index, we are able to
locate each required frame in constant time. Once a frame is

60

0 5o
'd
2 40

8
'; 30

z
ii20
a

s 10

0
‘0

-3 0
NoBFrames

I I I I I

0 . 2 0 . 4 0 . 6 0 . 8

Sample Density (samples/cm) ’

Figure 4: Average compression ratios as a function of the
sampling density and ratio of B-frames to l-frames

located and reference frame data obtained (either from cache
or as a result of decoding), time required to decode a frame is
the same as that for a traditional MPEG decoder.

4.5 Representing Dynamically Generated Impos-
tors

Many rendering acceleration algorithms augment the pre-
computed far fields with dynamically generated impostors
[DSSD99]. Typically, they use a second rendering pipeline
and generate additional far fields from new viewpoints within
a cell. For each additional viewpoint, our algorithm computes
a sub-cell and generates the impostors corresponding to the
faces of the cull-box. The center of the new sub-cell and the
orientation within that sub-cell are used to add it to the multi-
dimensional data structure. Since the position of the encoded
representation is no longer entangled with the reference re-
lationships, the new far-field can be added to the auxiliary
index.

4.6 Compression Efficiency
The compression efficiency of our encoder is determined by
two factors: the ratio of B-frames to I-frames and the degree
of spatial coherence between the B-frames and their reference
frames. Because each I-frame is independently encoded and
does not exploit predictive encoding, for a given quality level,
the size of the I-frames represents a lower bound on the size
of the encoded impostors. The degree to which B-frames are
compressed is highly content dependent. If the far-field im-
postors exhibit strong spatial coherence, the size of B-frames
in the system decreases because the effectiveness of the pre-
dictive encoding increases. In general, this is related to the
cell sizes or sampling density associated with the impostors.
A higher sampling density (i.e. smaller cells), will result in
greater coherence. Additionally, higher sampling densities
also allow the ratio of B-frames to I-frames to be increased
while maintaining acceptable quality since the number of B-
frames that exhibit sufficient coherence with an I-frame in-
creases.

Fig. 4 shows the results of an experiment designed to illus-
trate these tradeoffs. We generated a set of impostors from a
large virtual environment at different sampling densities. The
graph in Fig. 4 shows the average compression ratio achieved
for different B/I ratios, where B is the number of B-frames
coded between consecutive I-frames. We notice that for a
given B/I ratio, compression efficiency increases with sam-

3 5 2

Figure 5: Each cell is contained wirhin a large cull box. A
cell may be further partitioned into sub-cells. Imposlors are
sampled in six directions in 30 (north, south, east, west, up,
down)from the center of each cell andsrcb-cell. In rhisjigure,
view frusta for the norrh face of each sub-cell are shown in
different colors.

pling density. The rate of increase is super-linear. Moreover,
the second derivative of the curve relating compression ratios
to the sampling density decreases. Finally, for any given sam-
pling density, compression ratios increase with B JI.

Lets be the sampling density and I(s) be the storage over-
head of all the impostors generated by the system. It follows
from the graph, that I’(s) > 0 and I”(s) < 0. This implies:

1 . I(s) is a sub-linear function. As we generate more sam-
ples, the average storage cost per impostor decreases.

2. When s is small, the rate of decrease in the average im-
postor size is the highest.

This tits well in the context of walkthrough applications. Typ-
ically, we don’t use a very high sampling rate, otherwise pre-
fetching will become a bottleneck. As we generate more sam-
ples to reduce the image artifacts, the storage costs increases
at a slower rate.

5 Model Decomposition
Our algorithm partitions the environment into virtual cells
and places a cull box around each cell [ACW+991. At run-
time, cells and cull-boxes are used to classify the scene into
near and far geometry. Objects which intersect or are con-
tained in the cull box associated with that particular cell ax
labeled as “nea geometry”. The remainder of the model
outside the cull-box is classified as “far geometry”. One of
the most important issues in impostor-based walkthroughs
are the viewpoints used for pre-computing the far-fields. In
OUT case, the algorithm computes six impostors for each cell
and sub-cell (as shown in Fig. 5). In practice, the databases
have an uneven geometric distribution. Computing an opti-
mal cell-decomposition is shown to be very hard in practice
[ACW+99]. For example, if we want an absolute bound on
the dis-occlusion artifacts, the algorithm may have to com-
pute the aspect graph of the model which can take O(m6)
time (m is the number of primitives). Some algotithms have
been oresented for so&al cases. when the user motion is con-
strained along a lid and the phmitives are extruded 2D ob-
iects IDSSD991.

We use a simple and adaptive approach for computing
cells, sub-cells and cull-boxes. It proceeds as:

l Compute a uniform grid of rectangular cells within the
model. This grid can be fairly coarse, although a denser
sampling improves the results achieved by the spatial
video encoder.

l Construct a cull-box for each cell. The cull-box is a cube
and its center is the same as that of the cell. Choose the
cull box sire to be as large as possible while forcing the
size of the near geometry to lie beneath some ceiling
(e.g. 100,000 p4ygons). The algorithm has only one
degree of freedom in terms of adjusting the size of the
cull-box and it performs binary search.

l If the original cell contains more geometry than our up-
per limit, we uniformly subdivide a cell into sub-cells
and perform cull-box optimizations for each of them.

. Subdivide cells into sub-cells to improve the impostor
fidelity. We use different error metrics based on the rel-
ative size of the cell (or sub-cell) to its cull-box, the res-
olution of the texture images, and maximum pixel devi-
ation error in the skins introduced by TDMs.

We share one copy of the model geometry among all the
cells and sub-cells. The potentially visible set for each cell
is computed and stored during preprocessing or computed at
runtime using hierarchical view frustum culling.

5.1 Far Field Generation
The far fields in our system correspond to either cached im-
ages or TDMs. The TDM computation stats with a range im-
age, identifies the almost-planar regions, and simplifies each
height field [ACW+99, SDB971. This process can result in
“skins” wherever there is significant depth discontinuity in the
original range image.

The use of impostors results in many image artifacts dur-
ing mntime. These include stretching, aliasing and dis-
occlusion artifacts as the viewer moves within the same cell
(or sub-cell) and popping as the viewer jumps from one cell
(or sub-cell) to an adjacent cell (or sub-cell). The three factors
governing the quality of impostors are as follows:

1. The size s of each cell or sub-cell. At mntime, the
viewer can be at most is away from any viewpoint used
to generate the impostor.

2. The relative size of the cull-box to the cell size. Based
on this ratio, the algorithm computes the maximum an-
gular distortion for an object in the distant geometry and
the maximum pixel deviation in the impostor. A smaller
ratio leads to more artifacts.

3. The underlying impostor representation and the resolu-
tion of the texture image. For example, a TDM reduces
the popping as compared to a cached image, when the
viewer jumps between cells.

The first two parameters are taken into account by our adap-
tive sub-cell decomposition algorithm. More samples in-
crease the spatial coherence between different impostor rep-
resentations.

6 Implementation and Performance
In this section we describe a walkthrough system which im-
plements the algorithms outlined in this paper. We highlight
its performance on a complex CAD database and compare our
work with earlier approaches.

6.1 Implementation
Preprocessing We first subdivide the model into chunks of
roughly 1000 polygons apiece. We then apply the cell gen-
eration algorithm described in Section 5 to generate the cells,

353

sub-cells, and cull boxes throughout the model. Given this
cell grid, we render six samples of the environment and en-
code them spatially.
Runtime Walkthrough The interactive portion of our walk-
through system, illustrated in Fig. l(b), is organized as two
independent processes: a rendering process and a prefetch-
ing process. The rendering process is responsible for han-
dling user interaction, locating nearby cells as the user moves
through the model, and rendering both geometry and impostor
data corresponding to the user’s viewpoint. The prefetching
process is responsible for making sure that the data needed by
the rendering process is available in main memory before it
is rendered. The two processes communicate through a cell
queue. If the data corresponding to the current cell is not
available, the rendering thread will pause and load the missing
*terns.

6.2 Spatial Encoding and Interface

The modifications required by our spatial encoding scheme
are not compatible with existing MPEG encoders and de-
coders. We have developed software-only implementations
of both the spatial encoder and spatial decoder. The use of
MPEG as a starting point was motivated by its open standard
definition, proven effectiveness for video compression, and
wide acceptance within the multimedia community.

We have developed a software library that defines an in-
terface to au impostor database which contains encoded im-
postors and the auxiliary index used to define the reference
relationships. Each impostor in the database is associated
with an index number that is calculated based on its spatial
position and orientation. The encoder is written as a stand-
alone program that can encode a particular impostor either as
an I-frame or a B-frame. The decoder is implemented in the
software. It provides a simple interface to retrieve encoded
the impostors from the impostor database and decodes them.
The decoder also implements a LRU caching policy of the
decoded impostors to avoid decoding reference frames mope
than once.

Figure I: This graph highlights the frame mfes through o
sample path. We use spotiol encoding to represent cached
imapes OS well as TDMs.

Flame

Figure 8: This graph highlights rhe memory eJ/iciency
achieved by spatial encoding on the sample path shown in
Fig. 7. It shows the total data Jelched from the disk at run
rime.

6.3 Performance and Results
We have tested our system on a PC equipped with two 1GHz
Pentium III processors and au nVIDIA Quadra 2 graphics
card. The system itself was written in C++ and uses OpenGL
for rendering.

We used a geometric model of a coal-fired pawelplaut to
test the performance of our algorithms. This environment has
a footprint 50 meters wide by 60 meters deep by 80 meters
tall and contains roughly 13.2 million triangles (as shown
in Fig. 9). It contains 1,877 objects (before subdivision)
and occupies 502 MB on disk. The power plant poses chal-
lenges to both geometric and image-based rendering acceler-
ation algorithms. In particular, roughly half of the polygons
in the model are devoted to densely packed arrays of long,
thin cylindrical pipes. These pipes are difficult to simplify
with level-of-detail algorithms, as they are coarsely tessel-
lated and the polygons are very long and thin. They also cause
considerable challenges in terms of using image-based sam
pies, as a small change in the viewpoint changes the occlusion
relationship between different objects. Fig. IO, which was
taken inside the power plant, contains a lot of high-frequency
information that can pose problems for image compression
schemes. Even rendering the paver plant using only the

3 5 4

original geometry shows significant aliasing in the displayed
frames.

We generated a cell grid for a region near the top of the
power plant. Cell centers were initially spaced at I-meter in-
tervals. We chose a budget of 100,000 polygons for optimiz-
ing cull box sizes. Due to the highly non-uniform distribu-
tion of geometry within the power plant, optimized cull box
sizes range from 1.5 meters on a side (in the middle of the
arrays of pipes) to roughly 25 meters on a side (outside the
building proper). Fig. 6 illustrates the distribution of cull box
sizes. After sub-cell generation and cull-box optimization, we
had 3,776 cells and 6,464 sub-cells (or 10,240 cells). The
sub-cells were generated to meet the criterion that each cull-
box is at least four times larger than the size of its associated
cell. The sampled images of the environment generated from
the center of each cell had a resolution of 512 x 512 (down-
sampled from 1024 x 1024 images).

We arrange the cell grid in memory as a graph. Each cell
has links to its neighbors, its sob-cells (if any), and its par-
ent cell (if a sub-cell). The entire cell grid occupies roughly
I.SMB in memory. We also precompute the potentially vis-
ible set for each cell at a cost of 680KB of memory. The
indexing structures for our spatially encoded impostors re-
quires 96OKB of memory at runtime. We generated cached
images and textured depth meshes (TDMs) for a few sample
paths within the model. These meshes were simplified from
the original impostor depth fields (511 x 511 x 2 = 522,242
triangles) to a maximum of 10,000 triangles apiece. TDMs
can be prefetched at runtime along with model geometry and
impostor images.

6.3.1 Compression and Image Fidelity

Our system takes about 16 hours to generate all the impos-
tors and spatially encodes them. It takes 359 MB to repre-
sent 22,656 impostors and the average size of an encoded
512 x 512 full color textore image is less than 16K. The per-
formance of the encoding algorithm varies on different texture
images. During the encoding process, each 16 x 16 mac-

roblock had about 7 distinct candidate vectors (among 256
vectors corresponding to each pixel). This implies that our
algorithm is able to capture the spatial or object-to-object co-
herence and it eliminates the search step. The average com-
pression ratio obtained by the encoding algorithm across the
entire model is about 48. However, the variance is high and
the ratio varies in the range 2 : 1 to 303 : 1.

Our encoding algorithm is not lossless. Like other en-
coders [Leg91], it uses a constant quality factor with every
macroblock. Moreover, its performance is content dependent.
In general, if the original frame does not have high frequency
components, the encoder produces little degradation that is
not noticeable. In the context of the powerplant model, we
have opted for a slightly degraded compression ratio in eh-
change for good image fidelity. Our lowest compression ratio
occurs in situations like the one in Fig. 10(a). ‘The image
contains many high-frequency components that are difficult
to handle with video-based encoding techniques.
6.4 Runtime Performance
Our spatially encoded impostor representation has allowed us
to achieve frame rates between 12 and 35 frames per second
on a PC using the power plant model. Fig. 7 shows a graph
of frame rates along a pre-recorded sample path through the
model. When we render this same path using only vtstbrhty
culling, we observe frame rates on the order of one frame ev-
ery 10 - 14 seconds. As we generate more samples, there arc
fewer dis-occlusion xtifacts and it also reduces the Dotmine
problem.

. . I

We have also compared its performance with an imple-
mentation that does not use spatial encoding (i.e. 5 times more
memow to represent the far-fields). There is little additional
loss in image fidelity when we use spatial encoding.

We find that the prefetching task is not a bottleneck for our
system for reasonable user velocities (up to 3 meters/second).
Fig. 8 shows the cumulative number of bytes fetched along
a sample path. The average impostor size in this case is less
than 16K, if we use spatial encoding, and about 49K if we
use JPEG compression for each far-field.
6.5 Comparison with Earlier Approaches
Our spatial encoding algorithm can also be used for other im-
postor based rendering acceleration algorithms, as highlighted
in Section 2. It will either reduce the storage overhead or
let us generate more samples in the same amount of stor-
age. In terms of interactive walkthrough of large datasets,
spatial video can improve the performance of the following
algorithms and systems:
. MMIs: The MMIs based acceleration algorithm combines
pre-generated and dynamically updated impostors into a sin-
gle framework [DSSD991. It has been applied to city walk-
through, where the pm-computed impostor database is larger
than 2GB. However, the storage requirement for impostors is
a major issue [DSSD99]. Our spatial encoding algorithm can
utilize the spatial coherence between different MM& as well
as among multiple layers of textured meshes within the same
MMI.
l Guaranteed Frame Rate with LDIs: Aliaga and Lastra
[AL991 replace portions of the model using LDIs. However,
their system assumes that the entire impostor database (about
4GB) fits into main memory Moreover, the size of the impos-
tor databases affects the performance of their system [AL991.
Our spatial encoding algorithm can be applied to the inten-
sity values of each LDI and reduce its storage cost by a factor
of two or three. However, no good techniques are known for
compressing the depth information.

355

Fig. IO(a): Only Near Geometry Fig. IO(b): Only Far Fields Fig. IO(c): Far-Fields +
Near Geometry

l Cell Based Walkthrough System: The pm-computed im- Our algorithm generates more samples because of spatial
postor database in the MMR system takes more than 10 GB encoding. However, the rendering system has some popping
and pm-fetching the data at rontime is a major bottleneck artifacts when the user switches between cells. We would like
[ACW+99]. Our spatial encoding reduces the storage over- to explore blending techniques to reduce the popping. We
head and the compression ratios on different impostors vary would also like to apply our rendering algorithm to other syn-
in the range 2 - 15 (average compression ratio is 5). It lowers thetic environments including terrains and urban models as
the load on the prefetching process. Our algorithm for cell well as dynamic datasets. An exciting area of research is
and cull-box decomposition algorithm is automatic. and we to apply this approach to real-world models, including light-
use an adaptive scheme to decompose the cell into sub-cells fields and lumigraphs as well as range datasets. Tnese are
and improve the impostor fidelity. For example, the “skin” captured from known spatial locations and spatial video tech-
artifacts that arise in TDMs are considerably reduced. niques can be used to represent them efficiently.

Wilson et al. [WLM+CO] have presented a variation of the
MMR system, where they used cached images as impostors
and arranged them as a one dimensional array. They used tra-
ditional MPEG encoding on the resulting stream of images,
by treating it as a temporal sequence. Our approach utilizes
the spatial coherence between different impostor representa-
tions and results in better compression ratios as compared to
the algorithm presented in [WLM%O]. Furthermore, our sys-
tem has fewer image artifacts.

7 Conclusions and Future Work

8 Acknowledgements
We are grateful to members of UNC Walkthrough Research
group for many interesting discussions. Andrew Zaferakis
helped us with video editing. This research was supported
in pan by AR0 DAAGSS-98-I-0322, DOE ASCII Grant,
NSF ACI-9876914, ONR Young Investigator Award, an NSF
Graduate Research Fellowship, and Intel.

References

In this paper, we have introduced spatial video and applied it
to encode the far fields for interactive walkthroughs. We ex-
tended the traditional MPEG encoding algorithm and showed
that our multi-dimensional representation can be used for in-
teractive applications. We have demonstrated its performance
on a complex CAD environment composed of more than 13M
triangles and we are able to render it at 15 - 25 frames on a
PC. Spatial video encoding can either lower the storage over-
head or reduce the popping artifacts. In practice, the storage
cost for additional impostors grows sub-linearly.

There are many avenues for future work. We would like to
improve the encoding algorithm so that it results in fewer ar-
tifacts, especially when the images have high frequency com-
ponents. This will involve more investigation of the relation-
ship between the quality factor and compression rate. An-
other area of research is depth encoding. Our current scheme,
based on video compression techniques, is only applicable to
the image portion of a far-field impostor.

3 5 6

[DSSD99] X. Decoret, G. Schaufler, E Sillion, and J. Dorsey. Multi-layered
impostors for accelerated rendering. Computer Graphics Forum,
18(3), 1999.

[GD98J J. Grossman and W. J. Dally. Point sample rendering. Eurogrph-
its Workshop on Ren&ring, pages 181-192.1998.

[GGSC96J S. Go&r, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumi-
graph. In Pmt. qfACM SIGGRAPH, pages 43-54, 1996.

[GYM931 B. Guenter, H. Yun, and R. Mersereau. Motion compensated
compression of computer animation frames. In Pmt. of ACM
S I G G R A P H , pages 297-304, 1993.

[HLSOOI Z. Hakura, J. Lengyel, and J. Snyder. Parameterized animation
compression. Proc. of 11th Eurographics Workshop on Render-
ing, pages 101-112,200O.

LL=?g911 D. Legall. A v ideo compress ion s t andard fo r mul t imed ia app l i -
cations. Communications qf the ACM, 34(4):46-58, 1991.

[Lev95] Marc Levoy. Polygon-ass is ted JPEG and MPEG compression of
synthetic images. In SIGGRAPH 95 Cmference Proceedings,
pages 21-28, 1995.

[LF99] P. blonde and A. Fournier. Interactive rendering of wavelet pro-
jle;&&l light fields. Proc. qf Graphrcs Interface, pages 107-l 14,

[LH96] Marc Levoy and Pat Hanrahan. Light field rendering. In S/G-
GRAPH 96 Cmferrnce Proceedings, pages 31-42,1996.

[LS97] J. Lengyel and J. Snyder. Rendering with coherent layers. Proc.
qfACM SIGGRAPH, pages 233-242.1997.

[MGOO] M. Magnor and B. Girod. Model-based coding of multi-
viewnoint imanerv. SPIE Confercwe on Visunl Communications
and hmge P&&sing, pages ‘i4-22, 2000.

[MMB97] W . M a r k , L . Mcmillan, and G. Bishop. Post - render ing 3d warp-
ing. Symposium on Interactive 30 Graphics, pages 7-16, 1997.

[MO951 N. Max and K. Ohsaki. Rendering trees from precomputed Z-
buffer views. In Eurographrcs Renderrng Workshop 1995, 1995.

IMRP981 G. Miller, S. Rubin, and D. Poncelen. Lazy decompression of
surface light fields for pre-computer global illumination. Proc. qf
Eurographics Workshop on Rendering, pages 281-292, 1998.

[MS951 P. Maciel and P. Shirley. Visual navigation of large environments
using textured clusters. In ACM Symposium on Znferactive 30
G r a p h i c s , pages 95-102, 1995.

[F’ZvBGOO] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surf&: Sur-
face elements as renderinr! orimitives. Proc. ofACM SZGGRAPH.

I.

2000.

[RAL98]

[SDB97]

M. Rafferty, D. Al&a, and A. Las&i. 3d image warping in ar-
chitectural walktbroughs. IEEE VRAIS, pages 228-233, 1998.

F. Sillion, G. Drettakis,, and B. Bodelet. Efficient impostor manip-
ulation for real-time wualization of urban scenery. In Computer
Graphics Forum, volume 16,1997.

[SGwHS981 J. Shade, S. Gortler, Li wei He, and R. Szeliski. Layered depth
images. Proc. qfACM SIGGRAPH, pages 231-242,199s.

[SLS+96] 1. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder.
Hierarchical image caching for accelerated walkthroughs of com-
@ele6avironments. In Pm. oj’ACM SIGGRAPH, pages 75-82,

[SS96] G. Schaufler and W. Stunlinger. A three dimensional image
cache for virtual reality. Computer Graphics Forum, 15(3):C227-
C235,1996.

[Uni95] International Telecommunications Union. Generic coding of
moving p i c tu re s and a s soc i a t ed aud io in fo rma t ion . ZTU-T R e c -
ommendation H.262, 1995.

[WKC94] D. Wallach, S. Kunapalli, and M. Cohen. Accelerated MPEG
compression of dynamic polygonal scenes. In Pi-or. @ACM SIG-
G R A P H , pages 193-197, 1994.

IWLM+OO] A. Wilson, M. Lin, D. Manocha, B. Yea, and M. Yeung. Video-
based rendering acceleration algorithms for interactive walk-
throughs. Pm-. qfACM Multimedia, pages 75-84.2000.

357

