
RTOS Scheduling in Transaction Level Models

Haobo Yu, Andreas Gerstlauer, Daniel Gajski

CECS Technical Report 03-12
March 20, 2003

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{haoboy,gerstl,gajski}@ics.uci.edu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/204212707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RTOS Scheduling in Transaction Level Models

Haobo Yu, Andreas Gerstlauer, Daniel Gajski

CECS Technical Report 03-12
March 20, 2003

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425,USA

(949) 824-8059

{haoboy,gerstl,gajski}@ics.uci.edu

Abstract

Rasing the level of abstraction in system design promises to enable faster exploration of the design space at early stages.
While scheduling decision for embedded software has great impact on system performance, it’s much desired that the designer
can select the right scheduling algorithm at high abstraction levels so as to save him from the error-prone and time consuming
task of tuning code delays or task priority assignments at the final stage of system design. In this paper we tackle this problem
by introducing a RTOS model and an approach to refine any unscheduled transaction level model (TLM) to a TLM with RTOS
scheduling support. The automation of the RTOS scheduling refinement process provides a useful tool to the system designer
to quickly evaluate different dynamic scheduling algorithms and make the optimal choice at the early stage of system design.
Experiments with the tool on a system design example shows the usefulness of our approach.

2

Contents

1 Introduction 1

2 Related Work 2

3 Design Flow 2

4 The RTOS Model 3

5 Scheduling Refinement 4
5.1 RTOS Model Instantiation . 4
5.2 Task Creation . 4
5.3 Synchronization Refinement . 5
5.4 Preemption Point Creation . 5
5.5 Scheduling Refinement Example . 6

6 Experimental Results 6

7 Summary and Conclusions 7

i

List of Figures

1 Design flow . 2
2 Scheduling refinement tool . 3
3 Interface of the RTOS model . 3
4 Refinement example . 4
5 Task modeling . 5
6 Task creation . 6
7 Synchronization refinement . 6
8 Simulation trace for model example. 7

ii

RTOS Scheduling in Transaction Level Models

Abstract

Rasing the level of abstraction in system design promises
to enable faster exploration of the design space at early
stages. While scheduling decision for embedded software
has great impact on system performance, it’s much desired
that the designer can select the right scheduling algorithm
at high abstraction levels so as to save him from the error-
prone and time consuming task of tuning code delays or task
priority assignments at the final stage of system design. In
this paper we tackle this problem by introducing a RTOS
model and an approach to refine any unscheduled trans-
action level model (TLM) to a TLM with RTOS scheduling
support. The automation of the RTOS scheduling refine-
ment process provides a useful tool to the system designer
to quickly evaluate different dynamic scheduling algorithms
and make the optimal choice at the early stage of system de-
sign. Experiments with the tool on a system design example
shows the usefulness of our approach.

1 Introduction

Real time systems differs fundamentally from other sys-
tems in that bothcomputation resultand time affect the
correctness of the whole system. These two aspects are
addressed separately in system design. The computation
correctness is usually determined at the early stage of sys-
tem design by a high level model,whereas the actual timing
properties are checked at run time through target specific
binary code implementation. Wether a piece of computa-
tion can be finished on time or not largely depends on both
the scheduling scheme (tasks and their priorities) and the
system architecture. Since the scheduling behavior is hard
to capture through high level model simulation, the tim-
ing properties of a system design usually change from high
level model to implementation. As a result, the designer
has to tune code delays or task priority assignments at final
stage of system design which is both error prone and time
consuming. However, this situation can be avoided if we
provide a way to abstract the dynamic scheduling behavior
and adjust the scheduling algorithm at higher abstraction
levels.

Transaction level modeling is a high level approach to
model digital systems where communication among system
components is separated from the implementation of the
processing elements (PE) [11]. This allows to abstract the
communication between PEs independently from the imple-
mentation of the PEs. A high level of communication ab-
straction achieves high simulation speeds, hence enabling
early architecture exploration and speeding embedded soft-
ware development.

Many designers use preemptive, priority-driven and
task-based real time operating systems (RTOS) [1, 3] to sup-
port the dynamic real-time behavior of the the system. To
capture the dynamic scheduling behavior at higher level, we
need techniques to abstract the RTOS scheduling because
using a detailed, real RTOS implementation would negate
the purpose of a high level model. Furthermore, at higher
levels, not enough information might be available to target
a specific RTOS.

In this paper, we address this design challenge by in-
troducing a high level RTOS model and a set of refine-
ment steps to create a TLM with RTOS scheduling support
from any unscheduled TLM. We make a scheduling refine-
ment tool implementing these refinement steps. The out-
put model generated by our tool provides simulation result
close to the final implementation (in terms of RTOS timing)
and the tool can be easily integrated into the existing system
level design flows to accurately evaluate a potential system
design (e.g. in respect to timing constraints) for early and
rapid design space exploration.

The rest of this paper is organized as follows: Section
2 gives an insight into the related work on software mod-
eling and synthesis. Section 3 describes how the schedul-
ing refinement process is integrated with the system level
design flow. Section 4 provides information of the RTOS
model used to model dynamic scheduling, Section 5 gives
the detailed information of the RTOS scheduling refinement
process. Experimental results are shown in Section 6 and
Section 7 concludes this paper with a brief summary and an
outlook on future work.

1

2 Related Work

A lot of work recently has been focusing on automatic
RTOS and code generation for embedded software. In [7],
a method for automatic generation of application-specific
operating systems and corresponding application software
for a target processor is given. In [4], a way of combining
static task scheduling and dynamic scheduling in software
synthesis is proposed. While both approaches mainly focus
on software synthesis issues, their papers do not provide any
information regarding high level model of dynamic schedul-
ing integrated into the whole system.

In [12], a technique for modeling fixed-priority preemp-
tive multi-tasking systems based on concurrency and ex-
ception handling mechanisms provided by SpecC is shown.
However, their model is limited in its support for different
scheduling algorithms and inter-task communication, and
its complex structure makes it hard to use.

In [5], a high-level model of OS called SoCOS is in-
troduced as a high level RTOS model supporting software
generation. The main difference between our approach and
theirs is that SoCOS requires its own proprietary simulation
engine while our RTOS model is build on top of existing
system level design luange (SLDL) and can be directly in-
tegrated into any system model and design flow supported
by the chosen SLDL. Besides, we generate RTOS based
dynamic scheduling TLM automatically while the SoCOS
based system model is created manually.

3 Design Flow

Figure 1 shows a typical system level design flow [9].
The system design process starts with the specification
model written by the designer to specify the desired system
functionality. During system design, the specification func-
tionality is partitioned onto multiple processing elements
(PEs). The result is a TLM in which each PE executes a
specific behavior in parallel with other PEs and communi-
cation between PEs takes place through abstract channels.
After that, the communication synthesis step generates the
bus functional model in which a communication architec-
ture consisting of busses and bus interfaces is synthesized
to implement communication between PEs.

Due to the inherently sequential nature of PEs, processes
inside the same PE need to be serialized. Depending on the
nature of the PE and the data inter-dependencies, processes
are scheduled statically or dynamically. In case of dynamic
scheduling, a RTOS is required for the final implementa-
tion. Usually, the scheduling process takes place after the
bus functional model has been generated. In our approach,
we move the scheduling into higher level of abstraction, i.e.
perform scheduling at TLM level. Since a detailed commu-
nication architecture is not required to evaluate scheduling

Bus Functional Model

Implementation Model

RTOS

IP

RTL

IP

Hardware

Synthesis

Interface

Synthesis

Software

Synthesis

Transaction Level Model

Specification Model

Partition

Communication

Refinement

Scheduling

Scheduling

Figure 1. Design flow

results, using a TLM can improve the simulation speed and
result in faster design space exploration.

Current definition of TLM is general and ambiguous.
Depending on the abstraction of transaction, there are dif-
ferent kind of TLMs. In the higher abstraction level, trans-
action between the PEs is represented by the message pass-
ing channels. On the other hand,abstracting only low level
bus protocol primitives (i.e.send, receive) between the PEs
results in a different TLM where the bus drivers are used
inside each PE to drive the protocol channels. Note that
interrupt handlers are used as part of the bus drivers. Our
scheduling refinement tool can be used in both of the TLMs.
However, in order to demonstrate the effect of the interrupt
scheduling, we use the latter TLM in our example.

In order to validate the scheduling in TLM, a represen-
tation of the dynamic scheduling implementation, which is
usually handled by a RTOS in the real system, is required.
Therefore, a high level model of the underlying RTOS is
needed for inclusion into TLMs during system design. The
RTOS model provides an abstraction of the key features that
define a dynamic scheduling behavior independent of any
specific RTOS implementation.

The scheduling refinement tool (Figure 2) refines the un-
scheduled TLM into a scheduled TLM based on the refine-
ment decisions from the designer. In general, for each PE
in the system a RTOS model corresponding to the selected
scheduling strategy is imported from the library and instan-
tiated in the PE. Processes inside the PEs are converted into
tasks with assigned priorities. Synchronization as part of
communication between processes is refined into OS-based
task synchronization. In the scheduled output TLM, each
PE runs multiple tasks on top of its local RTOS model
instance. Therefore, the output model can be validated
through simulation or verification to evaluate different dy-
namic scheduling approaches (e.g. in terms of timing) as

2

Refinement

Decisions

Unscheduled TLM

Scheduling Refinement

RTOS

Model

Scheduled TLM

W

Z

X

Y

W

ISR
 S1

PE

protocol

read

()

write

()
B

u

s

d

r
i

v

e

r

B

u

s

d
r

i
v

e

r

ISR
 S1

PE

protocol

read

()

write

()
B

u

s

d

r
i

v
e

r

B

u

s

d
r

i
v

e

r

RTOS Model

T1

T3
T2

PE

PE

Task table

T1: X

T2: W,Y

T3: Z

Figure 2. Scheduling refinement tool

part of system design space exploration.
As the last step of the design flow, each PE in the bus

functional model is then implemented separately. Custom
hardware PEs are synthesized into a RTL description. Com-
munication interfaces are synthesized in hardware and soft-
ware. Finally, embedded software is generated from the
scheduled output TLM of the schedule refinement tool. In
this process, services of the RTOS model are mapped onto
the API of a specific standard or custom RTOS. The code is
then compiled into the processor’s instruction set and linked
against the RTOS libraries to produce the final executable.

4 The RTOS Model

As mentioned previously, the RTOS model is a very im-
port component of the scheduling refinement tool. We im-
plemented the RTOS model on top of the SpecC SLDL [6].
It is incorporated into the RTOS model library of the refine-
ment tool. The library provides RTOS models with different
scheduling algorithms typically found in RTOS implemen-
tations, e.g. round-robin or priority-based scheduling. In
addition, the models are parametrizable in terms of task pa-
rameters, preemption, and so on. The detailed information
about the RTOS model can be found in [10].

Figure 3 shows the interface of the RTOS model. The
RTOS model provides four categories of services: operating
system management, task management, event handling, and
time modeling.

Operating system management mainly deals with initial-

1 interface RTOS
2 { /* OS management */
3 void init();
4 void start(int sched_alg);
5 /* Task management */
6 Task task_create(const char *name,
7 int type,sim_time period);
8 void task_terminate();
9 void task_sleep();

10 void task_activate(Task t);
11 void task_endcycle();
12 void task_kill(Task t);
13 Task fork();
14 void join(Task t);
15 /* Event handling */
16 Task enter_wait();
17 void wakeup_wait(Task t);
18 /* Delay modeling */
19 void time_wait(sim_time nsec);
20 };

Figure 3. Interface of the RTOS model

ization of the RTOS during system start whereinit initial-
izes the relevant kernel data structures whilestart starts the
multi-task scheduling.

Task management is the most important function in
the RTOS model. It includes various standard rou-
tines such as task creation (taskcreate), task termination
(task terminate, taskkill), and task suspension and activa-
tion (tasksleep, taskactivate). Two special routines are in-
troduced to model dynamic task forking and joining:fork
suspends the calling task and waits for the child tasks to
finish after whichjoin resumes the calling task’s execu-
tion. Our RTOS model supports both periodic hard real
time tasks with a critical deadline and non-periodic real time
tasks with a fixed priority. In modeling of periodic tasks,
taskendcyclenotifies the kernel that a periodic task has fin-
ished its execution in the current cycle.

Event handling in the RTOS model sits on top of the ba-
sic SLDL synchronization events. Two system calls,en-
ter wait andwakeupwait, are wrapped around each SpecC
wait primitive. This allows the RTOS model to update its
internal task states (and to reschedule) whenever a task is
about to get blocked on and later released from a SpecC
event.

During simulation of high level system models, the log-
ical time advances in discrete steps. SLDL primitives (such
as waitfor in SpecC) are used to model delays. For
the RTOS model, those delay primitives are replaced by
time wait calls which model task delays in the RTOS while
enabling support for modeling of task preemption.

The RTOS model interface introduced in this section will
be later implemented by using the real RTOS APIs during
software synthesis. Generally, this means that each routine
of the RTOS model interface will be mapped to 1 orN target

3

(a) unscheduled model
 (b) scheduled model

PE

RTOS Model

B

u

s

d
r

i
v

e

r

IP

HW

B

u

s

uP

B2
 B3

B1

ISR

IP

HW

B

u

s

B2
 B3
C1

C2

uP

S1
 S1

B

u

s

d
r

i
v

e
r

PE

B

u

s

d
r

i
v

e

r

B2

B1

Task

B2

Task

B3

C1

C2

Task_PE

Run Time Environment

ISR

Figure 4. Refinement example

RTOS APIs.

5 Scheduling Refinement

The scheduling refinement tool refines the input un-
scheduled model into a RTOS based multi-task model. The
refinement process can be divided into four relatively in-
dependent steps, namely,RTOS model instantiation, task
creation, synchronization refinementandpreemption point
creation, each can be further divided into sub-steps.

In this section, we illustrate the scheduling refinement
process through a simple yet typical example (Figure 4).
The unscheduled model (Figure 4(a)) executes behaviorB1
followed by the parallel composition of behaviorsB2 and
B3. BehaviorsB2 andB3 communicate via two channels
C1 andC2 while B3 communicates with other PEs through
a bus driver. As part of the bus interface implementation,
the interrupt handlerISRfor external events signals the main
bus driver through a semaphore channelS1.

5.1 RTOS Model Instantiation

As the first step of the scheduling refinement, a RTOS
model implementinginterface RTOSis selected from
the RTOS library and a run time environment which coor-
dinates the interaction between the RTOS model and tasks
is created for each PE. The run time environment is imple-
mented as a behavior which wrappers around the top-level
PE behavior. The RTOS model gets instantiated in the run
time environment and the initial values of the internal data
structures for the RTOS model are set. At the same time, a
main task (taskPE) for the PE is created which is the only
task available for the RTOS model to schedule at system
start time.

Algorithm 1 TaskCreate(IRDesign, BPE)

1: for all BehaviorB∈ IRDesign do
2: if IsChildBehavior(B,BPE) then
3: BInst = FindInstance(B);
4: while BInst 6= NULL do
5: if IsParallel(BInst,BPE) then
6: GenTaskFromBehavior(B,BInst);
7: end if
8: BInst = FindNextInstance(B,BInst);
9: end while

10: end if
11: end for
12: for all FunctionF ∈ IRDesign do
13: if IsMemberFunction(F ,BPE) then
14: Stmnt= GetFirstStatement(B);
15: while Stmnt6= NULL do
16: if IsParStatment(Stmnt) then
17: GenDynamicTasks(Stmnt);
18: end if
19: Stmnt= GetNextStatment(B,Stmnt);
20: end while
21: end if
22: end for

5.2 Task Creation

The task creation step converts parallel pro-
cesses/behaviors in the specification into RTOS-based
tasks. This is by far the most important and time con-
suming part of the scheduling refinement process. The
task creation process is shown in Algorithm1. The input
to Algorithm1 is the internal representation for the whole
designIRDesignand the top level behavior for the PEBPE.

Task creation is carried out in a two-step process. In the
first step (line 1-11), each behavior instanceBInst inside
BPE are checked to see if they are running in parallel with
other behavior instance insideBPE. If such a behavior in-
stance is found (line 5), a task definition for this behavior
instance is created (line 6).

In our example, sincebehavior B2 and B3 are run-
ning in parallel (Figure 4(a)), functionGenTaskFromBe-
havior create the task definitionTaskB2 (Figure 5(b)) for
behavior B2 (Figure 5(a)). The task is modeled as a
behavior [2] and there’s an methodos taskcreate in-
serted into to the behavior for construction of the task. Fi-
nally, the main body of the task (methodmain) is enclosed
in a pair of taskactivate/ task terminatecalls so that the
RTOS model can control the task activation and termina-
tion.

The second step (line 12-22) involves dynamic creation
of child tasks in a parent task. The tool goes through each
statement of the member functions ofbehavior BPE or

4

Algorithm 2 SyncRefine(IRDesign, BPE)

1: for all ChannelC∈ IRDesign do
2: if IsUsedInBehavior(C,BPE) then
3: for all FunctionF ∈ C do
4: Stmnt=GetFirstStatement(B);
5: while Stmnt6= NULL do
6: if IsWaitStatment(Stmnt) then
7: RefineWait(Stmnt);
8: end if
9: Stmnt= GetNextStatment(B,Stmnt);

10: end while
11: end for
12: end if
13: end for
14: for all FunctionF ∈ IRDesign do
15: if IsMemberFunction(F ,BPE) then
16: Stmnt= GetFirstStatement(B);
17: while Stmnt6= NULL do
18: if IsWaitStatment(Stmnt) then
19: RefineWait(Stmnt);
20: end if
21: Stmnt= GetNextStatment(B,Stmnt);
22: end while
23: end if
24: end for

any of it’s child behaviors. If a parallel statement (par
statement in SpecC) is found (line 16), a dynamic task in-
stances are created for this statement (line 17).

This step is illustrated by our example in Figure 6. The
par statement in the input model (line 9-12 in Figure 6(a))
is converted to dynamically fork and join child tasks as part
of the parent’s execution (line 6-13 in Figure 6(b)). Dur-
ing this refinement process, theinit methods of the children
are called to create the child tasks (line 6,7 in Figure 6(b)).
Then, fork is inserted before thepar statement to suspend
the calling parent task by the RTOS model before the chil-
dren are actually executed in thepar statement. After the
two child tasks finish execution and thepar exits, join is
inserted to resume the execution of the parent task by the
RTOS model.

5.3 Synchronization Refinement

Replacing SLDL synchronization primitives with RTOS
calls is necessary to keep the internal task state of the RTOS
model updated. This is achieved by synchronization re-
finement which wraps event wait primitives in the input
model with the RTOS model interface routinesenterwait
and wakeupwait. The two routines make sure that the
RTOS model can intercept event wait primitives thus takes
care of task switching.

1 behavior B2()
2 { void main(void)
3 { ...
4 waitfor (BLOCK1_DELAY);/*model delay*/
5 ...
6 waitfor (BLOCK2_DELAY);/*model delay*/
7 ...
8 }
9 };

(a) unscheduled model

1 behavior task_B2(RTOS os) implements Init
2 {Task h;
3 void init(void) {
4 h = os.task_create("B2", APERIODIC, 0);
5 }
6 void main(void) {
7 os.task_activate(h);
8 ...
9 os.time_wait(BLOCK1_DELAY);/*model delay*/

10 ...
11 os.time_wait(BLOCK2_DELAY);/*model delay*/
12 ...
13 os.task_terminate(h);
14 }
15 };

(b) scheduled model

Figure 5. Task modeling

Algorithm 2 shows how the synchronization refinement
works. It is also a two step process: the first step (line 1-13)
refines all thewait statements inside the channels used in
the selected PE while the second step (line 14-23) refines
thewait statements inside all the member functions of be-
haviorBPE and its child behaviors.

Figure 7 shows the synchronization refinement for our
example: thewait statement insidechannel C1 in the
input model (line 10 in Figure 7(a)) is refined into three
lines of code in the output model (line 9-11 in Figure 7(b)).

5.4 Preemption Point Creation

In high level system models, simulation time advances in
discrete steps based on the granularity ofwaitfor state-
ments used to model delays (e.g. at behavior or basic block
level) (line 4,6 in Figure 5(a)). The time-sharing implemen-
tation in the RTOS model makes sure that delays of con-
current task are accumulative as required by any model of
serialized task execution.

Usually the task switch happens when a task calls the
RTOS routine (e.g.wait event), however, additionally
replacingwaitfor statements with corresponding RTOS
time modeling calls is necessary to accurately model pre-
emption. Thetime wait method (line 9,11 in Figure 5(b)) is

5

1 behavior B2B3()
2 {B2 b2();
3 B3 b3();
4 void main(void)
5 {
6

7

8

9 par
10 { b2.main();
11 b3.main();
12 }
13

14 }

(a) before

1 behavior B2B3(RTOS os)
2 {Task_B2 task_b2(os);
3 Task_B3 task_b3(os);
4 void main(void)
5 {Task t;
6 task_b2.init();
7 task_b3.init();
8 t = os.fork();
9 par {

10 b2.main();
11 b3.main();
12 }
13 os.join(t);
14 }

(b) after

Figure 6. Task creation

1 channel C1()
2 { event eRdy;
3 event eAck;
4 void send(...)
5 {
6 ...
7 notify eRdy;
8 ...
9

10 wait (eAck);
11

12 ...
13 }
14 };

(a) before

1 channel C1(RTOS os)
2 { event eRdy;
3 event eAck;
4 void send(...)
5 { Task t;
6 ...
7 notify eRdy;
8 ...
9 t = os.enter_wait();

10 wait (eAck);
11 os.wakeup_wait(t);
12 ...
13 }
14 };

(b) after

Figure 7. Synchronization refinement

a wrapper around thewaitfor statement that allows the
RTOS kernel to reschedule and switch tasks whenever time
increases, i.e. in between regular RTOS system calls. Nor-
mally, this would not be an issue since task state changes
can not happen outside of RTOS system calls. However,
external interrupts can asynchronously trigger task changes
in between system calls of the current task in which case
proper modeling of preemption is important for the accu-
racy of the model (e.g. response time results). For exam-
ple, an interrupt handler can release a semaphore on which
a high priority task for processing of the external event is
blocked. Note that, given the nature of high level models,
the accuracy of preemption results is limited by the granu-
larity of task delay models.

5.5 Scheduling Refinement Example

Figure 8 illustrates the simulation result of the output
model generated from our refinement tool for the example

from Figure 4. Figure 8(a) shows the simulation trace of
the unscheduled model. BehaviorsB2andB3are executing
truly in parallel, i.e. their simulated delays overlap.

After executing for timed1, B3 waits until it receives a
message fromB2 through the channelc1. Then it continues
executing for timed2 and waits for data from another PE.
B2continues for time(d6+d7) and then waits for data from
B3. At time t4, an interrupt happens andB3 receives its data
through the bus driver.B3executes until it finishes. At time
t5, B3 sends a message toB2 through the channelc2 which
wakes upB2 and both behaviors continue until they finish
execution.

Figure 8(b) shows the simulation result of the scheduled
model for a priority based scheduling. It demonstrates that
in the refined modeltaskB2 andtaskB3 execute in an in-
terleaved way. SincetaskB3 has the higher priority, it exe-
cutes unless it is blocked on receiving or sending a message
from/to taskB2 (t1 throught2 andt5 throught6), waiting for
an interrupt (t3 throught4), or it finishes (t7) at which points
execution switches totaskB2. Note that at timet4, the inter-
rupt wakes uptaskB3andtaskB2 is preempted bytaskB3.
However, the actual task switch is delayed until the end of
the discrete time stepd6 in taskB2based on the granularity
of the task’s delay model. In summary, as required by pri-
ority based dynamic scheduling, at any time only one task,
the ready task with the highest priority, is executing.

6 Experimental Results

We used the scheduling refinement tool in the design of
a voice codec for mobile phone applications.The Vocoder
contains two tasks for encoding and decoding in software,
assisted by a custom hardware co-processor. For the imple-
mentation, the Vocoder was compiled into assembly code
for the Motorola DSP56600 processor and linked against a
small custom RTOS kernel that uses a scheduling algorithm
where the decoder has higher priority than the encoder[8].

Table 1 shows the results for the vocoder model. The
Vocoder models were exercised by a testbench that feeds
a stream of 163 speech frames corresponding to 3.26 s of
speech into encoder and decoder. Furthermore, the mod-
els were annotated to deliver feedback about the number
of context switches and the transcoding delay encountered
during simulation. The transcoding delay is the latency
when running encoder and decoder in back-to-back mode
and is related to response time in switching between encod-
ing and decoding tasks.

Experimental results show that the simulation overhead
introduced by the scheduling refinement tool is negligi-
ble while providing accurate results. As explained by the
fact that both tasks alternate with every time slice, round-
robin scheduling causes by far the largest number of con-
text switches while providing the lowest response times.

6

0

logical time

B1

C1

interrupt

C2

d1
 d2
 d3
 d4

d5
 d6
 d8

B3

B2

t4

d7

t1
 t2
 t3
 t7
t5(t6)

(a) unscheduled model

logical time

0

task_PE

task_B2

task_B3

C1

interrupt

C2

d1

t4
 t5

d2
 d3
 d4

d5
 d6
 d8
d7

t1
 t2
 t3
 t6
 t7
t4'

(b) scheduled model

Figure 8. Simulation trace for model example.

Lines Sim. Context Transcoding
of code time switches delay

Unsched. 11,313 27.3s 0 9.7ms
Roundrobin 13,343 28.6s 3262 10.29ms
Encod>decod 13,356 28.9s 980 11.34ms
Decod>encod 13,356 28.5s 327 10.30ms
Impl. 79,096 5h 327 11.7ms

Table 1. Vocoder experimental results.

Note that context switch delays in the RTOS were not
modeled in this example, i.e. the large number of con-
text switches would introduce additional delays that would
offset the slight response time advantage of round-robin
scheduling in a final implementation. The simulation re-
sult shows that in priority-based scheduling, it is of advan-
tage to give the decoder the higher relative priority. Since
the encoder execution time dominates the decoder execu-
tion time this is equivalent to a shortest-job-first schedul-
ing which minimizes wait times and hence overall response
time. Furthermore, the number of context switches is lower
since the RTOS does not have to switch back and forth be-
tween encoder and decoder whenever the encoder waits for
results from the hardware co-processor. Therefore, priority-
based scheduling with a high-priority decoder was chosen
for the final implementation. Note that the final delay in the
implementation is higher due to inaccuracies of execution
time estimates in the high-level model. In summary, com-
pared to the huge complexity required for the implemen-
tation model, the scheduling refinement tool enables early
and efficient evaluation of dynamic scheduling implemen-
tations.

7 Summary and Conclusions

In this paper,we presented a RTOS model and the re-
finement steps for transforming an unscheduled TLM into
TLM with RTOS scheduling support. In the design flow,
our contribution is primarily the automation of the schedul-
ing refinement process that facilitates rapid evaluation of
scheduling algorithms in the early stage of system design
using TLM. We developed a tool to automate the refinement
process. Experiments are performed to show the usefulness
of the tool in system design. Currently the tool is written
for SpecC SLDL because of its simplicity. However, the
concepts can be applied to any SLDL (SystemC, Superlog)
with support for event handling and modeling of time.

Future work includes the development of tools for soft-
ware synthesis from the scheduled TLM down to target-
specific application code linked against the target RTOS li-
braries.

References

[1] QNX. Available: http://www.qnx.com/.

[2] SpecC. Available: http://www.specc.org/.

[3] VxWorks. Available: http://www.vxworks.com/.

[4] J. Cortadella. Task generation and compile time
scheduling for mixed data-control embedded soft-
ware. InProceedings of the IEEE Design Automation
Conference, June 2000.

[5] D. Desmet et al. Operating system based software
generation for system-on-chip. InProceedings of the
IEEE Design Automation Conference, June 2000.

[6] R. Dömer, A. Gerstlauer, and D. Gajski. Specc lan-
guage reference manual. InSpecC Technology Open
Consortium, 2002.

[7] L. Gauthier et al. Automatic generation and targeting
of application-specific operating systems and embed-
ded systems software.IEEE Trans. on CAD, Novem-
ber 2001.

[8] A. Gerstlauer et al. Design of a GSM Vocoder using
SpecC Methodology. Technical Report ICS-TR-99-
11, University of California, Irvine, Feburary 1999.

[9] A. Gerstlauer and D. Gajski. System-level abstrac-
tion semantics. InInternational Symposium on System
Synthesis, October 2002.

[10] A. Gerstlauer, H. Yu, and D. Gajski. Rtos model-
ing for system level design. InProceedings of De-
sign,Automation and Test in Europe, March 2003.

7

[11] T. Grötker, S. Liao, G. Martin, and S. Swan.System
Design with SystemC. Kluwer Academic Publishers,
2002.

[12] H. Tomiyama et al. Modeling fixed-priority preemp-
tive multi-task systems in SpecC. InSASIMI, October
2001.

8

