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Abstract

A Reissner-Mindlin-type modelization of piezoelectric plates is here considered in a suitable
variational framework. Both the membranal and the bending behaviour are studied as the thick-
ness of the structure tends to zero. A finite element scheme able to approximate the solution is
then proposed and theoretically analysed. Some numerical results showing the performances of
the scheme under consideration are discussed.
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1 Introduction

In recent years, a growing interest towards the study of piezoelectric bodies has been devoted by the
engineering practice. The main reason consists in the fact that piezoelectric materials are widely
used as sensors and actuators in structure control problems.

In the present paper, we consider a piezoelectric plate, comprised of homogeneous linearly-
piezoelectric transversely-isotropic material (Hermann-Maugin class ∞mm [15]), with the axis of
transverse isotropy oriented in the thickness direction. Many different modelizations of this body
are available in the literature (cf. [14], [11], [13], [19], [20], [21], [16] and [22], for instance). Among
them, the one proposed in [6], based on Reissner-Mindlin kinematical assumptions, is considered in
this work. We here analyze such a model in a variational framework, particularly well-suited for
finite element applications. We are thus led to consider two uncoupled variational problems, namely
the membranal and the bending one. The former one was independently formulated in [21].

We recognize that the membranal problem is in fact elliptic, so that a standard finite element
discretization properly works. As far as the bending problem is concerned, we first re-write the gov-
erning equation in such a way that they lead to a symmetric variational formulation. Furthermore,
we recognize that we are dealing with a penalization of a constrained problem, the penalization
parameter being essentially the plate thickness. We show that a suitable scaling for the electrome-
chanical loads applied to the plate is capable to recover the Kirchhoff-type model proposed in [5].
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Moreover, a mixed formulation, arising from the introduction of the scaled shear stress as indepen-
dent unknown, is presented. We then pass to discuss the discretization of the problem by means
of finite element techniques. We mainly consider the case of bending behaviours, since, as already
mentioned, the membranal problem has been recognized to be standard. In particular, a finite el-
ement method based on a linking technique (cf. [1] and [2]) is studied. The main result consists
in establishing an error estimate which predicts the convergence of the proposed method when the
mesh is refined, and uniformly in the thickness. We finally present some numerical tests, showing
the accordance of the computational performances with the theoretical predictions.

In appendix A we establish a convergence result referred to in this paper. In appendix B we
report a brief derivation of the piezoelectric plate model proposed in [6] and highlight the hypothe-
ses on which it relies. In appendix C we present a critical evaluation of this model, through an
analytical comparison between the results it supplies and the ones supplied by the Voigt theory of
piezoelectricity.

2 The piezoelectric plate model

Let A = Ω × (−t/2, t/2) be a plate-like region, with regular midplane Ω ⊂ IR2 and thickness
t > 0. Let italic letters represent scalars, if not otherwise specified; underlined italic letters denote
elements of the two-dimensional vector space V parallel to Ω; and double-underlined italic letters
denote elements of the space Sym of second-order tensors over V .

The region A is the reference configuration of a plate comprised by a homogeneous linearly-
piezoelectric transversely-isotropic material (Hermann-Maugin class ∞mm [15]), with the axis of
transverse isotropy oriented in the thickness direction. The constitutive behaviour of such a material
is completely described by ten independent material constants. By adopting a standard notation
[15], the “closed-circuit” elastic moduli are denoted by c11, c33, c44, c12 and c13; the “clamped”
permittivity constants are denoted by ε11 and ε33; and the “closed-circuit/clamped” piezoelectric
constants are denoted by e31, e33 and e15. In order to guarantee a stable behaviour of the material,
these constants are assumed to satisfy the inequalities c11 > 0, |c12| < c11, 2c213 < c33(c11 + c12),
ε33 > 0, c44 > 0, ε11 > 0. For a later use, the following auxiliary material constants are introduced

ε33 = ε33 + e233/c33

ε11 = ε11 + e215/c44

e31 = e31 − c13e33/c33

c66 = (c11 − c12)/2

c11 = c11 − c213/c33

c12 = c12 − c213/c33

ĉ11 = c11 + e231/ε33

ĉ12 = c12 + e231/ε33. (1)

The plate is acted upon on its upper and lower faces Ω × {±t/2} by surface in-plane forces P±,
surface normal forces P± and surface free electric charges Υ±. For the sake of simplicity, essentially
without loss of generality, no body loads are considered and the plate is assumed to be clamped and
grounded along its lateral boundary ∂Ω × (−t/2, t/2).

It is of interest in applications to compute the displacement field, the electric potential field, the
strain field, the stress field, the electric field, and the electric-displacement field which arise in the
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plate, due to the presence of the applied loads. According to the piezoelectric plate model proposed
in [6], these fields, which are of course defined over the three-dimensional region A, are parametrized
by the unknown functions U , W , Θ, Π and X, defined over the two-dimensional region Ω. For
example, the in-plane displacement field S, the transversal displacement field S and the electric
potential field Φ are given by

S(Y , ζ) = U(Y ) + ζΘ(Y )

S(Y , ζ) = W (Y )

Φ(Y , ζ) = Π(Y ) + ζX(Y ), (2)

where a Cartesian reference frame (O, Y , ζ) is chosen with the origin O on the middle cross section
of the plate and the ζ-axis in the thickness direction. In particular, the meaning of the unknowns
U , W , Θ, Π, and X clearly appears: U , W , and Π are respectively the in-plane displacement, the
transversal displacement and the electric potential of the middle cross section, Θ is the rotation of
the transversal fibres and −X is the transversal electric field.

The unknown fields are determined by solving the following two uncoupled boundary-value prob-
lems [6]

M - Membranal (or stretching, or in-plane) problem:

find (U,X) defined over Ω and satisfying the equations

−tdiv (2c66∇SU + c12IdivU) − te31∇X = R∗

(t3/12)ε11∆X + t[−ε33X + e31divU ] = −Υ∗, (3)

equipped with homogeneous Dirichlet boundary conditions;

B - Bending (or transversal) problem:

find (Θ,W,Π) defined over Ω and satisfying the equations

−(t3/12)div (2c66∇SΘ + ĉ12Idiv Θ) + t[c44(Θ + ∇W ) + e15∇Π] = M∗

−tdiv [c44(Θ + ∇W ) + e15∇Π] = R∗

−tdiv [−ε11∇Π + e15(Θ + ∇W )] = −Ψ∗, (4)

equipped with homogeneous Dirichlet boundary conditions.

In equations (3) and (4), div denotes the divergence operator acting on vector fields, div denotes
the divergence operator acting on tensor fields, ∇ denotes the gradient operator acting on scalar
fields, ∇S denotes the symmetric part of the gradient operator acting on vector fields, ∆ denotes
the Laplace operator acting on scalar fields and I is the unit second-order tensor over V . Moreover,

R∗ = P+ + P−
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Υ∗ = (t/2)(Υ+ − Υ−)

M∗ = (t/2)(P+ − P−)

R∗ = P+ + P−

Ψ∗ = Υ+ + Υ−.

(5)

It is pointed out that the applied loads enter equations (3) and (4) only through the quantities R∗,
Υ∗, M∗, R∗ and Ψ∗. For this reason, in what follows just these quantities (instead of P±, P± and
Υ±) will be regarded as data. Moreover, we will always suppose them to be smooth enough, namely
L2-regular.

2.1 The membranal problem

Following the guideline used for elastic plate problems [8], a sequence of problems, capable to lead to
a good limit problem as the thickness approaches zero, is introduced. More precisely, the electrome-
chanical loads are scaled in such a way to recover, at the limit t→ 0, the Kirchhoff-type piezoelectric
model proposed in [5]. The following positions are thus introduced

R∗ = tR

Υ∗ = tΥ, (6)

where R and Υ are independent of t.
Moreover, for the sake of simplicity, dimensionless quantities are introduced

u = U/l

χ = X
√

ε33/c11

r = Rl/c11

υ = Υ/
√
ε33c11, (7)

where l is a characteristic in-plane length (e.g., the diameter of Ω). In addition, the following
dimensionless material constants are defined

ν = c12/c11

α =
√

ε11/(12ε33)

ξ = e31/
√
c11ε33, (8)

and the slenderness (small) parameter δ is defined as follows

δ = α
t

l
. (9)

It is easily seen that the membranal problem M is equivalent to the following system
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• Find (u, χ), solution of

−div ((1 − ν)∇Su+ νIdiv u) − ξ∇χ = r

ξdiv u− χ+ δ2∆χ = −υ, (10)

equipped with homogeneous Dirichlet boundary conditions. Here and in the remainder of this
section differential operators are intended with respect to the dimensionless in-plane variable
y = Y /l, which range in the domain ω = {y: ly ∈ Ω}.

A classical functional framework is chosen for problem (10). In particular, let (·, ·) denote the
scalar product in L2(ω); ||·||0 the L2(ω)-norm, ||·||1 the H1

0 (ω)-norm and |·|1 the seminorm defined as
the L2(ω)-norm of the gradient of the argument. Then, problem (10) is recasted into the variational
formulation

• Find (u, χ) ∈ H1
0 (ω)

2 ×H1
0 (ω), solution of

(1 − ν)(∇Su,∇Sv) + ν(div u, div v) + ξ(χ, div v) = (r, v) ∀v ∈ H1
0 (ω)

2

ξ(div u, τ) − (χ, τ) − δ2(∇χ,∇τ) = −(υ, τ) ∀τ ∈ H1
0 (ω). (11)

The following result establishes the uniform boundedness of the family of solutions (u, χ), as δ

approaches zero, in the space H1
0 (ω)

2 × L2(ω).

Proposition 2.1 The system (11) has a unique solution (u, χ) ∈ H1
0 (ω)

2 ×H1
0 (ω). Moreover, the

following estimate holds
||u||1 + ||χ||0 + δ|χ|1 ≤ C. (12)

Proof. Let

AM(u, χ; v, τ) := (1 − ν)(∇Su,∇Sv) + ν(div u, div v) + ξ(χ, div v)

−ξ(div u, τ) + (χ, τ) + δ2(∇χ,∇τ). (13)

It is easily recognized that problem (11) is equivalent to the problem

• Find (u, χ) ∈ H1
0 (ω)

2 ×H1
0 (ω), solution of

AM(u, χ; v, τ) = (r, v) + (υ, τ) ∀(v, τ) ∈ H1
0 (ω)

2 ×H1
0 (ω). (14)

The space H1
0 (ω)

2 ×H1
0 (ω) is then endowed with the norm

|||u, χ|||2 := ||u||21 + ||χ||20 + δ2|χ|21, (15)

with respect to which AM is bounded:

AM(u, χ; v, τ) ≤ C|||u, χ||| |||v, τ |||. (16)
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In addition, since |ν| < 1, AM is also coercive with respect to the ||| · |||-norm, as a consequence of
Korn’s inequality:

AM(u, χ;u, χ) ≥ C|||u, χ|||2 ∀(u, χ) ∈ H1
0 (ω)

2 ×H1
0 (ω). (17)

Hence, by the Lax-Milgram lemma it follows that problem (14) has a unique solution. Estimate
(12) is an easy consequence of the standard theory.

Furthermore, by using estimate (12), the following Proposition follows.

Proposition 2.2 The couple (u, χ) strongly converges in H1
0 (ω)

2 × L2(ω), as δ → 0, to (u0, χ0) ∈
H1

0 (ω)
2 × L2(ω), solution of the variational problem

• Find (u0, χ0) ∈ H1
0 (ω)

2 × L2(ω), such that

(1 − ν)(∇Su0,∇Sv) + ν(div u0, div v) + ξ(χ0, div v) = (r, v) ∀v ∈ H1
0 (ω)

2

ξ(div u0, τ) − (χ0, τ) = −(υ, τ) ∀τ ∈ L2(ω). (18)

Remark 2.1 It is remarked that problem (18), in differential form, reads as follows

• Find (u0, χ0), solution of

−div ((1 − ν)∇Su0 + νIdiv u0) − ξ∇χ0 = r

ξdiv u0 − χ0 = −υ, (19)

which is just the limit of the system (10) as δ approaches zero. In particular, u0 solves the differential
equation in Ω

−div ((1 − ν)∇Su0 + νIdiv u0) − ξ2∇div u0 = r + ξ∇υ (20)

and χ0 is then post-computed by the equation

χ0 = ξdiv u0 + υ. (21)

Of course, no boundary conditions can be imposed on χ0 in the limit problem. We remark that the
loss of boundary conditions for χ0 causes, in general, a boundary layer effect. The study of such
phenomenon, altough very interesting, is not investigated in the present paper.

The above equations fit the framework of the Kirchhoff-type piezoelectric plate theory recently
proposed by Bisegna and Maceri (cf. [5]). More precisely, it is the governing equation for the
in-plane mechanical equilibrium.

Remark 2.2 It is pointed out that the membranal piezoelectric problem is essentially an elliptic
problem, so that standard finite elements should properly work and no pathological phenomena such
as locking effects should occur.
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2.2 The bending problem

As in the previous case, the electromechanical loads are scaled in such a way to recover, at the
limit t→ 0, the Kirchhoff-type piezoelectric model proposed in [5]. The following positions are thus
introduced

M∗ = t3M

R∗ = t3R

Ψ∗ = tΨ, (22)

where M , R and Ψ are independent of t.
In addition, the following dimensionless quantities are defined

θ = Θ

w = W/l

β = (Π/l)
√

ε11/c44

m = 12Ml2/ĉ11

r = 12Rl3/ĉ11

ψ = Ψl/
√
c44ε11, (23)

together with some dimensionless material constants

µ = ĉ12/ĉ11

λ =
√

ĉ11/(12c44)

κ = e15/
√
c44ε11 (24)

and the following slenderness (small) parameter ε

ε = λ
t

l
. (25)

It is easily seen that the bending problem B is equivalent to the following system.

• Find (θ, w, β), solution of

−div ((1 − µ)∇Sθ + µIdiv θ) + ε−2[θ + ∇w + κ∇β] = m

−ε−2div [θ + ∇w + κ∇β] = r

∆β − κdiv (θ + ∇w + κ∇β) = −ψ, (26)

equipped with homogeneous Dirichlet boundary conditions.
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Here and in the remainder of this section differential operators are intended with respect to the
dimensionless variable y. Moreover, let us notice that for κ = 0 the problem (26) turns out to be the
usual purely elastic plate problem. Thus, in the sequel we will only consider the case κ 6= 0. This
system is then recasted in a variational formulation as follows.

• Find (θ, w, β) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω), solution of

aB(θ, η) + ε−2(θ + ∇w + κ∇β, η) = (m, η) ∀η ∈ H1
0 (ω)

2

ε−2(θ + ∇w + κ∇β,∇ζ) = (r, ζ) ∀ζ ∈ H1
0 (ω)

−(∇β,∇ρ) + κ(θ + ∇w + κ∇β,∇ρ) = −(ψ, ρ) ∀ρ ∈ H1
0 (ω), (27)

where
aB(θ, η) := ((1 − µ)∇Sθ,∇Sη) + (µdiv θ, div η). (28)

A glance to it reveals that a first drawback stands in its lack of symmetry. In order to find out an
equivalent variational formulation overcoming this difficulty, the third equation of (26) is modified.
It is multiplied by −1 and the result is added with the second of (26) multiplied by (1+ ε2)κ. Then,
the differential problem (26) has been changed into the problem

• Find (θ, w, β), solution of

−div ((1 − µ)∇Sθ + µIdiv θ) + ε−2[θ + ∇w + κ∇β] = m

−ε−2div [θ + ∇w + κ∇β] = r

−∆β − κε−2div (θ + ∇w + κ∇β) = ψ + κ(1 + ε2)r, (29)

equipped with homogeneous Dirichlet boundary conditions.

Trivially, the following Proposition holds.

Proposition 2.3 The two problems (26) and (29) are equivalent.

A variational formulation of problem (29) reads as follows

• Find (θ, w, β) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω), solution of

aB(θ, η) + ε−2(θ + ∇w + κ∇β, η) = (m, η) ∀η ∈ H1
0 (ω)

2

ε−2(θ + ∇w + κ∇β,∇ζ) = (r, ζ) ∀ζ ∈ H1
0 (ω)

(∇β,∇ρ) + ε−2(θ + ∇w + κ∇β, κ∇ρ) = (ψ, ρ) + κ(1 + ε2)(r, ρ) ∀ρ ∈ H1
0 (ω). (30)
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Let us set
Aε(θ, w, β; η, ζ, ρ) := AB(θ, w, β; η, ζ, ρ) + ε−2AS(θ, w, β; η, ζ, ρ) (31)

where
AB(θ, w, β; η, ζ, ρ) := aB(θ, η) + (∇β,∇ρ), (32)

and
AS(θ, w, β; η, ζ, ρ) := (θ + ∇w + κ∇β, η + ∇ζ + κ∇ρ) (33)

and
Lε(η, ζ, ρ) := (m, η) + (r, ζ) + (ψ, ρ) + ε2κ(r, ρ) + κ(r, ρ). (34)

It is easily recognized that the variational problem (29) may be written as

• Find (θ, w, β) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω), solution of

Aε(θ, w, β; η, ζ, ρ) = Lε(η, ζ, ρ) ∀(η, ζ, ρ) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω). (35)

In order to understand the behaviour of the solution (θ, w, β) as the parameter ε approaches

zero, the subspace K ⊂ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω) is defined by

K =
{

(η, ζ, ρ) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω): η + ∇(ζ + κρ) = 0
}

, (36)

i.e. K is the kernel of the continuous bilinear form AS (cf. (33)). Due to the continuity, K is a closed

subspace of H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω). Furthermore, it is straightforward to check that K 6= (0).
First, the following Lemma is proved

Lemma 2.1 The bilinear form AB defined by (32) is coercive over the subspace K.

Proof. Let (η, ζ, ρ) ∈ K. By Korn’s inequality

AB(η, ζ, ρ; η, ζ, ρ) = aB(η, η) + ||∇ρ||20 ≥ C

2
||η||21 +

C

2
||η||21 + ||∇ρ||20. (37)

Since (η, ζ, ρ) ∈ K it holds
η + ∇(ζ + κρ) = 0, (38)

by which
||η||21 ≥ ||η||20 = ||∇(ζ + κρ)||20. (39)

Hence

AB(η, ζ, ρ; η, ζ, ρ) ≥ C

2
||η||21 +

C

2
||∇(ζ + κρ)||20 + ||∇ρ||20, (40)

and the estimate
AB(η, ζ, ρ; η, ζ, ρ) ≥ C

(

||η||21 + ||ζ||21 + ||ρ||21
)

(41)

follows by a little algebra along with Poincaré’s inequality. The proof is thus complete.

Now it is not difficult to prove the Proposition

Proposition 2.4 Let (θ, w, β) be the solution of variational problem (35). Then (θ, w, β) strongly
converges, as ε approaches zero, to (θ0, w0, β0) ∈ K, solution of the problem
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• Find (θ0, w0, β0) ∈ K, solution of

AB(θ0, w0, β0; η0
, ζ0, ρ0) = L0(η0

, ζ0, ρ0) ∀(η
0
, ζ0, ρ0) ∈ K, (42)

where L0 is defined by
L0(η, ζ, ρ) := (m, η) + (r, ζ) + (ψ, ρ) + κ(r, ρ). (43)

Moreover, (θ0, w0, β0) = 0 if and only if L0 ∈ K0, K0 being the polar set of K.

Proof. As it is straightforward to check that Lε strongly converges to L0, the proof is a direct
consequence of the abstract result given in the Appendix, together with Lemma 2.1.

Proposition 2.4 says that problem (35) is nothing but a penalization of the constrained limit
problem (42). This suggests to pass to a mixed formulation of the problem. More precisely, we set

γ = ε−2(θ + ∇w + κ∇β) (44)

as Lagrange multiplier, and we get in a standard way the following mixed variational formulation of
the problem.

• Find (θ, w, β; γ) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω) × L2(ω)
2
, solution of

aB(θ, η) + (∇β,∇ρ) + (γ, η + ∇ζ + κ∇ρ) = (m, η) + (r, ζ) + (ψ, ρ) + κ(1 + ε2)(r, ρ)

(θ + ∇w + κ∇β, s) − ε2(γ, s) = 0, (45)

for each (η, ζ, ρ, s) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω) × L2(ω)
2
.

For problem (45) we have the following

Proposition 2.5 Problem (45) has a unique solution (θ, w, β; γ) ∈ H1
0 (ω)

2 × H1
0 (ω) × H1

0 (ω) ×
L2(ω)

2
. Moreover, as ε→ 0, (θ, w, β; γ) converges to (θ0, w0, β0; γ0

) in H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω) ×
H−1(div , ω), where (θ0, w0, β0; γ0

) is the solution of the problem

• Find (θ0, w0, β0; γ0
) ∈ H1

0 (ω)
2 ×H1

0 (ω) ×H1
0 (ω) ×H−1(div , ω), solution of

aB(θ0, η) + (∇β0,∇ρ) + (γ
0
, η + ∇ζ + κ∇ρ) = (m, η) + (r, ζ) + (ψ, ρ) + κ(r, ρ)

(θ0 + ∇w0 + κ∇β0, s) = 0, (46)

for each (η, ζ, ρ, s) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω) ×H−1(div , ω).

Above, H−1(div , ω) is the Hilbert space defined by

H−1(div , ω) :=
{

s ∈ H−1(ω)2 : div s ∈ H−1(ω)
}

, (47)

equipped with the norm

||s||2H−1(div ,ω) := ||s||2−1 + ||div s||2−1. (48)
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Setting

A(θ, w, β, γ; η, ζ, ρ) = aB(θ, η)+ (∇β,∇ρ)+ (γ, η+∇ζ +κ∇ρ)− (θ+∇w+κ∇β, s)+ ε2(γ, s), (49)

our mixed problem can also be written as

• Find (θ, w, β; γ) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω) × L2(ω)
2
, solution of

A(θ, w, β, γ; η, ζ, ρ, s) = Lε(η, ζ, ρ, s) ∀(η, ζ, ρ, s) ∈ H1
0 (ω)

2×H1
0 (ω)×H1

0 (ω)×L2(ω)
2
, (50)

where

Lε(η, ζ, ρ, s) := Lε(η, ζ, ρ). (51)

3 Discretization of the problem

Aim of this section is to discuss the discretization of the piezoelectric problem by means of finite
element techniques (cf. [8] and [10], for instance). As established in the previous section, we know
that we are dealing with two uncoupled problems, so that we will treat them separately. Moreover,
in what follows, we will suppose that our computational domain ω is partitioned by means of a
sequence of quadrilateral regular meshes Th, where h represents the mesh size.

3.1 The discretized membranal problem

We notice that the membranal problem is essentially an ellptic problem, so that a standard discretiza-
tion will lead to performant results. Thus, choosing Uh ⊂ H1

0 (Ω)2 and Xh ⊂ H1
0 (Ω) conforming finite

element spaces, we consider the problem

• Find (uh, χh) ∈ Uh ×Xh, solution of

(1 − ν)(∇Suh,∇Sv) + ν(div uh, div v) + ξ(χh, div v) = (r, v) ∀v ∈ Uh

ξ(div uh, τ) − (χh, τ) − δ2(∇χh,∇τ) = −(υ, τ) ∀τ ∈ Xh. (52)

For such a problem standard techniques for error analysis give the following

Proposition 3.1 System (52) has a unique solution (uh, χh) ∈ Uh ×Xh. Moreover, the following
estimate holds

||u− uh||1 + ||χ−χh||0 + δ|χ−χh|1 ≤ C

(

inf
v

h
∈Uh

||u− vh||1 + inf
τh∈Xh

(||χ− τh||0 + δ|χ− τh|1)
)

, (53)

where (u, χ) is the solution of problem (11).

For example, if we choose both Uh ⊂ H1
0 (ω) and Xh ⊂ H1

0 (ω) as the classical isoparametric
bilinear finite element space, we have the following error estimate
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Corollary 3.1 Let (uh, χh) ∈ Uh ×Xh be the solution of system (52). It holds

||u− uh||1 + ||χ− χh||0 + δ|χ− χh|1 ≤ Ch (54)

where (u, χ) is the solution of problem (11).

3.2 The discretized bending problem

In this Subsection we will deal with formulation (30) as the starting point of our discretization.
Therefore, we here recall that we are considering the variational problem

• Find (θ, w, β) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω), solution of

aB(θ, η) + ε−2(θ + ∇w + κ∇β, η) = (m, η) ∀η ∈ H1
0 (ω)

2

ε−2(θ + ∇w + κ∇β,∇ζ) = (r, ζ) ∀ζ ∈ H1
0 (ω)

(∇β,∇ρ) + ε−2(θ + ∇w + κ∇β, κ∇ρ) = (ψ, ρ) + κ(1 + ε2)(r, ρ) ∀ρ ∈ H1
0 (ω), (55)

which can also be written as (cf. (31)–(35))

• Find (θ, w, β) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω), solution of

AB(θ, w, β; η, ζ, ρ) + ε−2AS(θ, w, β; η, ζ, ρ) = Lε(η, ζ, ρ), (56)

for each (η, ζ, ρ) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω).

The presence of the parameter ε−2 in front of the bilinear form AS in (56) suggests that, when ε is
small, a naive discretization (i.e. a standard discretization) will possibly lead to pathologies such as
locking phenomenon, which already occurs in considering purely elastic Reissner-Mindlin plates. We
thus propose to discretize the bending problem by means of a mixed formulation. More precisely, we
here consider an element based on the linking technique, presented in [2] and theoretically analysed
in [1] within the context of purely elastic plates. We first set

Γh = {sh ∈ L2(ω)
2

: sh|K = (a+ bη, c+ dξ) ∀K ∈ Th}, (57)

where (ξ, η) are the standard isoparametric coordinates of K.
We then select

Θh = {η
h
∈ H1

0 (ω)
2

: η
h|K

∈ Q1(K)2 ⊕ ΓhbK ∀K ∈ Th}, (58)

where Qr(T ) is the space of polynomials defined on K of degree at most r in each isoparametric
coordinate ξ and η, while bK = (1 − ξ2)(1 − η2). Moreover, we take

Wh = {ζh ∈ H1
0 (ω) : ζh|K ∈ Q1(K) ∀K ∈ Th} (59)

and

Πh = {ρh ∈ H1
0 (ω) : ρh|K ∈ Q1(K) ∀K ∈ Th}. (60)
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Let us now introduce for each K ∈ Th the functions

ϕi = λjλkλm . (61)

In (61) {λi}1≤i≤4 are the equations of the sides ofK and the indices (i, j, k,m) form a permutation
of the set (1, 2, 3, 4). Thus, the function ϕi is a sort of edge bubble relatively to the edge ei of K.
Let us set

EB(K) = Span {ϕi}1≤i≤4 . (62)

We introduce the operator L, which is locally defined (cf. [2]) as

L|Kηh
=

4
∑

i=1

αiϕi ∈ EB(K), (63)

by requiring that

(η
h

+ ∇Lη
h
) · τ i = constant along each ei. (64)

Therefore, we will deal with the problem

• Find (θh, wh, βh; γ
h
) ∈ Θh ×Wh × Πh × Γh, solution of

aB(θh, η) + (∇βh,∇ρ) + (γ
h
, η + ∇(ζ + Lη) + κ∇ρ) = (m, η) + (r, ζ + Lη)

+(ψ, ρ) + κ(1 + ε2)(r, ρ)

(θh + ∇(wh + Lθh) + κ∇β, s) − ε2(γ
h
, s) = 0, (65)

for each (η, ζ, ρ; s) ∈ Θh ×Wh × Πh × Γh.

Problem (65) can also be written as

• Find (θh, wh, βh; γ
h
) ∈ Θh ×Wh × Πh × Γh, solution of

Ah(θh, wh, βh, γh
; η, ζ, ρ, s) = Lε,h(η, ζ, ρ, s) ∀(η, ζ, ρ; s) ∈ Θh ×Wh × Πh × Γh, (66)

where

Ah(θh, wh, βh, γh
; η, ζ, ρ, s) : = aB(θh, η) + (∇βh,∇ρ) + (γ

h
, η + ∇(ζ + Lη) + κ∇ρ)

− (θh + ∇(wh + Lθh) + κ∇β, s) + ε2(γ
h
, s) (67)

and

Lε,h(η, ζ, ρ, s) := (m, η) + (r, ζ + Lη) + (ψ, ρ) + κ(1 + ε2)(r, ρ). (68)

We will develop our stability analysis by means of the norm
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|||θh, wh, βh; γ
h
|||2 := ||θh||21 + ||wh||21 + ||βh||21 + ε2||γ

h
||20 +

∑

K∈Th

h2
K ||γ

h
||20,K . (69)

We have the following Proposition.

Proposition 3.2 Given (θh, wh, βh; γ
h
) ∈ Θh ×Wh × Πh × Γh there exists (η, ζ, ρ, s) ∈ Θh ×Wh ×

Πh × Γh such that

Ah(θh, wh, βh, γh
; η, ζ, ρ, s) ≥ C|||θh, wh, βh, γh

|||2 (70)

and

|||η, ζ, ρ, s||| ≤ C|||θh, wh, βh, γh
|||. (71)

Proof. We will perform the proof in three steps.
i) Choose (η

1
, ζ1, ρ1, s1) = (θh, wh, βh, γh

). We easily get

Ah(θh, wh, βh, γh
; η

1
, ζ1, ρ1, s1) ≥ C

(

||θh||21 + ||∇βh||21 + ε2||γ
h
||20
)

(72)

and

|||η
1
, ζ1, ρ1, s1||| ≤ C|||θh, wh, βh, γh

|||. (73)

ii) Choose now ζ2 = 0, ρ2 = 0, s2 = 0 and η
2|T

= h2
KbKγh

. We have, since Lη
2

= 0,

Ah(θh, wh, βh, γh
; η

2
, ζ2, ρ2, s2) = aB(θh, η2

) +
∑

K∈Th

h2
K(γ

h
, bKγh

)K , (74)

which easily implies

Ah(θh, wh, βh, γh
; η

2
, ζ2, ρ2, s2) ≥ aB(θh, η2

) + C
∑

K∈Th

h2
K ||γ

h
||20,K . (75)

Moreover,

aB(θh, η2
) ≥ −M

2δ
||θh||21 −

Mδ

2
||η

2
||21 ≥ −M

2δ
||θh||21 −

Cδ

2

∑

K∈Th

h2
K ||γ

h
||20,K , (76)

for δ > 0. Taking δ sufficiently small, we get

Ah(θh, wh, βh, γh
; η

2
, ζ2, ρ2, s2) ≥ C2

∑

K∈Th

h2
K ||γ

h
||20,K − C3||θh||21. (77)

Finally, an easy scaling argument shows that it holds

|||η
2
, ζ2, ρ2, s2||| ≤ C|||θh, wh, βh, γh

|||. (78)

iii) It remains to get control on the deflections. To this end, we select η
3

= 0, ζ3 = 0, ρ3 = 0 and
s3 = −∇wh. We thus get

Ah(θh, wh, βh, γh
; η

3
, ζ3, ρ3, s3) = ||∇wh||20 + (θh + ∇Lθh,∇wh) + (κ∇β,∇wh) + ε2(γ

h
,∇wh). (79)
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Using the technique in ii) we may obtain

Ah(θh, wh, βh, γh
; η

3
, ζ3, ρ3, s3) ≥ C4||∇wh||20 − C5||θh||21 − C6||∇β||20 − C7ε

2||γ
h
||20. (80)

Furthermore we have

|||η
3
, ζ3, ρ3, s3||| ≤ C|||θh, wh, βh, γh

|||. (81)

Now, taking a suitable linear combination of
{

(η
i
, ζi, ρi, si)

}3

i=1
gives the result. The proof is

then complete.

In the error analysis which follows, we will use a result concerning the linking operator L, whose
proof can be found in [1]. In fact, we have

Lemma 3.1 Let (·)I denote the usual Lagrange interpolating operator over the piecewise bilinear
and continuous functions, and (·)II denote the Lagrange interpolating operator over the piecewise
bilinear and continuous vectorial functions. Then we have

|ζ − ζI + L((∇)II)|1 ≤ Ch2|ζ|3 ∀ζ ∈ H3(ω) (82)

and

|Lη
h
|1 ≤ Ch|η

h
|1 ∀η

h
∈ Θh. (83)

By using the techniques developed in [1], it is not hard to obtain the following error estimate.

Proposition 3.3 Let (θh, wh, βh, γh
) ∈ Θh×Wh×Πh×Γh be the solution of the discretized problem

(65); let (θ, w, β, γ) ∈ H1
0 (ω)

2 ×H1
0 (ω) ×H1

0 (ω) × L2(ω)
2

be the solution of the continuous problem
(45). Then we have

||θh − θ||1 + ||wh − w||1 + ||βh − β||1 +





∑

K∈Th

h2
K ||γ

h
− γ||20,K





1/2

+ ε||γ
h
− γ||0 ≤ Ch. (84)

Proof. We only sketch the proof, since it is very similar to that given in [1]. Let θII ∈ Θh be the
Lagrange interpolant of θ; wI ∈ Wh and βI ∈ Πh be the ones for w and β, respectively. Finally, let
γ∗ ∈ Γh be the L2(ω)-projection of γ. By 3.2, there exists (η, ζ, ρ, s) ∈ Θh ×Wh ×Πh ×Γh such that

C|||θh − θII , wh − wI , βh − βI , γh
− γ∗|||2 ≤ Ah(θh − θII , wh − wI , βh − βI , γh

− γ∗; η, ζ, ρ, s) (85)

and

|||η, ζ, ρ, s||| ≤ C|||θh − θII , wh − wI , βh − βI , γh
− γ∗|||. (86)

Hence, we have
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C|||θh − θII , wh − wI , βh − βI , γh
− γ∗|||2 ≤ aB(θ − θII , η) + (∇(β − βI),∇ρ)

+(γ − γ∗, η + ∇(ζ + Lη) + κ∇ρ) − (θ − θII + ∇[(w + κβ) − (w + κβ)I ] −∇LθII , s)

+ε2(γ − γ∗, s). (87)

Above, the only term which is not straightforward to bound is

(∇[(w + κβ) − (w + κβ)I ] −∇LθII , s). (88)

We notice that

ε2γ = θ + ∇(w + κβ), (89)

so that

θII = ε2γ
II

− [∇(w + κβ)]II . (90)

Hence, our term to treat turns out to be

(∇[(w + κβ) − (w + κβ)I ] + ∇L[∇(w + κβ)]II , s) + ε2(∇Lγ
II
, s). (91)

By using Lemma 3.1 we easily get

(∇[(w+κβ)−(w+κβ)I ]+∇L[∇(w+κβ)]II , s)+ε
2(∇Lγ

II
, s) ≤ Ch



(
∑

K∈Th

h2
K ||s||20,K)1/2 + ε||s||0



 .

(92)
¿From (87) we obtain

|||θh−θII , wh−wI , βh−βI , γh
−γ∗|||2 ≤ Ch|||θh−θII , wh−wI , βh−βI , γh

−γ∗||| · |||η, ζ, ρ, s|||, (93)

by which, using (86) and the triangle inequality, we get (84).

4 Numerical tests

Aim of this section is to present some numerical tests showing the behavior of the interpolating
schemes previously considered, relevant to both membranal and bending problems. The schemes
have been implemented into the Finite Element Analysis Program (FEAP) (cf. [23]), and their
performances have been checked on a series of model problems for which the analytical solutions can
be easily obtained. This allows to determine the discrete-solution error.

The model problems consider a square plate of unit side. Two different aspect ratios are inves-
tigated: t/l = 0.001 and t/l = 0.2, corresponding to a “thin” and a “thick” plate, respectively. The
plate is simply supported and grounded along its boundary, and is comprised by a homogeneous
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linearly-piezoelectric transversely-isotropic material, whose elastic, dielectric and piezoelectric prop-
erties are reported in Table 1. The in-plane characteristic length l is taken equal to the side of the
plate. The Cartesian frame is chosen such that the middle cross section is ω = [0, 1] × [0, 1].

All the analyses are performed using regular meshes and discretizing only one quarter of the
plate, due to symmetry considerations.

4.1 Membranal problems

The following three loading conditions are considered:

• Load a:

r = r0

[

cos(πy1)sin(πy2)
sin(πy1)cos(πy2)

]

υ = 0

• Load b:

r = r0

[

cos(πy1)sin(πy2)
−sin(πy1)cos(πy2)

]

υ = 0

• Load c:

r = 0

υ = υ0sin(πy1)sin(πy2)

Under the previous loading conditions, the analytical solutions of system (10) are respectively
given by:

• Load a:

u =
r0(1 + 2δ2π2)

2π2(1 + ξ2 + 2δ2π2)

[

cos(πy1)sin(πy2)
sin(πy1)cos(πy2)

]

χ = − ξr0
π(1 + ξ2 + 2δ2π2)

sin(πy1)sin(πy2)

• Load b:

u =
r0

π2(1 − ν)

[

cos(πy1)sin(πy2)
−sin(πy1)cos(πy2)

]

χ = 0
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• Load c:

u =
ξυ0

2π(1 + ξ2 + 2δ2π2)

[

cos(πy1)sin(πy2)
sin(πy1)cos(πy2)

]

χ =
υ0

1 + ξ2 + 2δ2π2
sin(πy1)sin(πy2)

The results obtained in the numerical computations are reported respectively in Tables 2, 3 and
4, together with the analytical solutions. In the tables, the unknown u2 is computed at the point
P2(1/2, 0), while the unknown χ is computed at P1(1/2, 1/2).

The error of a discrete solution is measured as:

E2
f =

∑

Ni
(fh(Ni) − f(Ni))

2

∑

Ni
f(Ni)2

(94)

where the field f is either u1, u2 or χ and the sum is performed over all the nodal points Ni. It is
pointed out that the above error measure can be seen as discrete L2-type error.

Figures 1-2 show the relative errors versus the number of nodes per side, respectively for the case
of thin and thick plate. Load cases a, b and c are plotted by using solid, dotted and dash-dot lines,
respectively. The error lines for the fields u2 and χ are distinguished by using a circle and a x-mark,
respectively. It is interesting to observe that both the figures show the quadratic convergence rate
for all the unknown fields and all the loading conditions. Of course, the attained h2 convergence
rate in these norm actually means a h1 convergence rate in the H1 energy-type norm.

4.2 Bending problems

The following four loading conditions are considered:

• Load a:

r = r0sin(πy1)sin(πy2)

m = 0

ψ = 0

• Load b:

r = 0

m = m0

[

cos(πy1)sin(πy2)
sin(πy1)cos(πy2)

]

ψ = 0
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• Load c:

r = 0

m = m0

[

cos(πy1)sin(πy2)
−sin(πy1)cos(πy2)

]

ψ = 0

• Load d:

r = 0

m = 0

ψ = ψ0sin(πy1)sin(πy2)

Under the previous loading conditions, the analytical solutions of system (26) are respectively
given by:

• Load a:

θ = − r0
4π3

[

cos(πy1)sin(πy2)
sin(πy1)cos(πy2)

]

w =
r0
4π4

[1 + 2π2ε2(1 − κ2)]sin(πy1)sin(πy2)

β =
κr0
2π2

ε2sin(πy1)sin(πy2)

• Load b:

θ =
m0

2π2

[

cos(πy1)sin(πy2)
sin(πy1)cos(πy2)

]

w = −m0

2π3
sin(πy1)sin(πy2)

β = 0

• Load c:

θ =
m0ε

2

1 + π2ε2(1 − µ)

[

cos(πy1)sin(πy2)
−sin(πy1)cos(πy2)

]

w = 0

β = 0
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• Load d:

θ = 0

w = −κψ0

2π2
sin(πy1)sin(πy2)

β =
ψ0

2π2
sin(πy1)sin(πy2)

The results obtained in the numerical computations are reported respectively in Tables 5, 6, 7,
8, together with the analytical solutions. In the tables, the unknowns w and β are computed at the
point P1(1/2, 1/2), while the unknown θ2 is computed at P2(1/2, 0).

The error of a discrete solution is measured as indicated in equation (94), where f is either w,
θ1, θ2 or β. For simplicity, the summations are performed on all the nodes Ni relative to global
interpolation parameters (that is, in the error evaluation the internal parameters associated with
bubble functions are neglected).

Figures 3-4 show the relative errors versus the number of nodes per side, respectively for the
case of thin and thick plate. Load cases a, b, c and d are plotted by using solid, dotted, dash-dot
and dashed lines, respectively. The error lines for the fields w, θ2 and β are distinguished by using
a circle, a x-mark and a square, respectively.

It is worth noting that:

• at least the quadratic convergence rate for all the unknown fields and all the loading conditions
is attained; as said above, the attained h2 convergence rate in these norm actually means a h1

convergence rate in the H1 energy-type norm.

• the presented method is fully insensitive to the variation of thickness, in such a way that the
error graphics for different choices of the aspect ratio all show at least a quadratic convergence
rate. As a consequence, the proposed element is actually locking-free and it can be used for
both thin and thick piezoelectric plate problems.

5 Conclusions

The numerical schemes proposed have been tested on a series of model problems; the numerical
investigations clearly show that the adopted schemes have the appropriate convergence rate.

In conclusion, the present study highlights that the only possible pathology associated with a
finite-element discretization based on the piezoelectric plate model proposed in [6] is the classical
locking phenomenon. At the same time, both the theoretical and the numerical investigations show
that a typical locking treatment as proposed in [1] is sufficient to overcome the same effect for the
piezoelectric case.

Finally, we observe that if very special situations would occur advising the use of higher-order
theories of piezoelectric plates, then numerical treatments of those theories would be required. At
the authors’ knowledge, such treatments are not available in the literature. The present work can
constitute a guide for the theoretical development and evaluation of numerical treatments of high-
order theories.
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1968.

[13] G. A. Maugin and D. Attou, An asymptotic theory of thin piezoelectric plates, Q. Jl. Mech.
Appl. Math. 43 (1990), 347-362.

[14] R. D. Mindlin, High frequency vibrations of piezoelectric crystal plates, Int. J. Solids Structures
8 (1972), 895-906.

[15] T. Ikeda, Fundamentals of piezoelectricity , Oxford University Press, Oxford 1990.

[16] V. Nicotra and P. Podio-Guidugli, Piezoelectric plates with changing thickness, Journal of Struc-
tural Control 5 (1998), 73-86.

[17] E. Reissner, On a certain mixed variational theorem and a proposed application, Int. J. Numer.
Methods Eng. 20 (1984), 1366-1368.

[18] L. Teresi and A. Tiero, On variational approaches to plate models, Meccanica 32 (1997), 143-
156.

21



[19] H. F. Tiersten, Equations for the control of the flexural vibrations of composite plates by partially
electroded piezoelectric actuators, in Active Materials and Smart Structures, G. L. Anderson
and D. C. Lagoudas, Eds., SPIE Proceedings Series 2427 (1994), 326-342.

[20] H. A. Tzou, Piezoelectric shells, Kluwer Academic Publishers, 1993.

[21] J. S. Yang, Equations for elastic plates with partially electroded piezoelectric actuators in flex-
ure with shear deformation and rotatory inertia, Journal of Intelligent Material Systems and
Structures 8 (1997), 444-451.

[22] J. S. Yang, Equations for thick elastic plates with partially electroded piezoelectric actuators and
higher order electric fields, Smart Mater. Struct. 8 (1999), 73-82.

[23] O. C. Zienkiewicz and R.L. Taylor, The finite element methods, McGraw-Hill, New York, NY,
1989.

A An abstract convergence result

The aim of this section is to slightly extend the convergence result given in [9]. More precisely, the
following variational problem is studied

• Find uε ∈ V , solution of

aε(uε, v) := a0(uε, v) + ε−2a1(uε, v) = Lε(v) ∀v ∈ V. (95)

Above, V is a Hilbert space with norm ||·||, a0(·, ·) and a1(·, ·) are continuous symmetric positive-
semidefinite bilinear forms, and Lε belongs to V ′, the topological dual space of V . Moreover, ε is a
real parameter such that 0 < ε ≤ ε0. We are interested in studying the behaviour of the solution
uε as ε → 0, under suitable hypotheses generally met in most applications, especially in the linear
theory of thin structures. We remark that such an analysis has been already developed in [9] for the
case of Lε ∈ V ′ independent of ε. We make the following assumptions

• The form a0(·, ·) + a1(·, ·) is coercive on V , i.e. there exists α > 0 such that

a0(v, v) + a1(v, v) ≥ α||v||2 ∀v ∈ V. (96)

• The kernel K of a1(·, ·), defined by

K := {v ∈ V : a1(v, v) = 0} (97)

is not trivial, i.e. K 6= (0).

• Lε strongly converges in V ′ to a functional L0 ∈ V ′, as ε→ 0.

We are now ready to prove the following

Proposition A.1 Under the above hypotheses, problem (95) has a unique solution uε ∈ V . Fur-
thermore, uε strongly converges in V , as ε→ 0, to u0 ∈ K, solution of the variational problem

• Find u0 ∈ K, such that
a0(u0, v0) = L0(v0) ∀v0 ∈ K. (98)
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Finally, u0 = 0 if and only if L0 ∈ K0, K0 being the polar set of K.

Proof. The proof follows the guidelines detailed in [9]. First of all, by Lax-Milgram lemma (cf.
also (96)) one has that problem (95) is uniquely solvable. Choosing in (95) v = uε one obtains

α||uε||2 ≤ aε(uε, uε) = Lε(uε) ≤ C||uε||, (99)

where the last inequality follows also from the strong convergence hypothesis Lε → L0. Hence we
have that the family (uε) is bounded in V . Therefore, there exists a subsequence of (uε), still denoted
by (uε), which weakly converges to a certain limit w0 ∈ V . We now multiply equation (95) by ε2,
thus obtaining

ε2a0(uε, v) + a1(uε, v) = ε2Lε(v) ∀v ∈ V. (100)

Passing to the limit as ε→ 0, since uε → w0 weakly, and since the dual norms ||Lε||∗ are bounded
uniformly in ε, one has

a1(w0, v) = 0 ∀v ∈ V. (101)

Hence w0 ∈ K. Next, we choose v ∈ K in equation (95) and find that

a0(uε, v) = Lε(v) ∀v ∈ K. (102)

Again, passing to the limit as ε→ 0, one has that the limit w0 solves

a0(w0, v) = L0(v) ∀v ∈ K. (103)

Since, by Lax-Milgram lemma, the variational problem (98) has a unique solution u0 ∈ K, it
follows that w0 = u0. We proceed by showing that the convergence of the subsequence (uε) to u0 is
indeed strong. We have

α||uε − u0||2 ≤ aε(uε − u0, uε − u0) = aε(uε, uε) − 2aε(uε, u0) + aε(u0, u0). (104)

As we have
aε(u0, u0) = a0(u0, u0) = L0(u0), (105)

and
aε(uε, uε) = Lε(uε) (106)

and
aε(uε, u0) = Lε(u0), (107)

from (104) we get
α||uε − u0||2 ≤ (Lε(uε) − Lε(u0)) + (L0 − Lε)(u0). (108)

Since
lim
ε→0

Lε(uε) = L0(u0), (109)

and
lim
ε→0

Lε(u0) = L0(u0) (110)

and
lim
ε→0

(L0 − Lε)(u0) = 0, (111)
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it follows from (108) that
lim
ε→0

||uε − u0||2 = 0. (112)

Hence uε → u0 strongly in V . To summarize, we have shown that any weakly convergent
subsequence of (uε) converges indeed strongly to the same limit u0 ∈ K, solution of problem (98).
This means that the only cluster point of the whole family (uε) is u0. As (uε) is bounded, it follows
that the whole family strongly converges to u0. The proof is thus complete.

B A brief derivation of the piezoelectric plate model

In this section we outline a brief derivation of the piezoelectric plate model proposed in [6], in order
to emphasize the hypotheses on which this model is based. For a more detailed discussion, we refer
to the original paper.

As a starting point, we consider a weak formulation [13] of the Voigt theory of piezoelectricity.
It is a generalization to piezoelectric bodies of the classical Hellinger-Prange-Reissner functional of
liner elasticity:

H =
1

2

∫

A
[−(s11 − s12)||T ||2 − s12(trT )2 − s33σ

2 + β33d
2 − 2s13σ(trT ) − 2g31d(trT ) − 2g33σd

−s44||τ ||2 + β11||d||2 − 2g15τ · d] dv +

∫

A
[T · ∇SS + τ · (S′ + ∇S) + σS ′ + d · ∇Φ + dΦ′] dv

−
∫

Ω
[P± · S(·,±t/2) + P±S(·,±t/2) − Υ±Φ(·,±t/2)] da

−
∫

∂Ω×(−t/2,t/2)
[Tn · S + (τ · n)S + (d · n)Φ] da (113)

Here T is the in-plane stress, τ is the transversal shear stress, σ is the normal stress in the thickness
direction, d is the in-plane electric displacement, d is the electric displacement in the thickness
direction, tr denotes the trace operator, an apex denotes the differentiation with respect to ζ and
n is the exterior normal to the lateral boundary of the plate. The material constants s11, s33, s44,
s12 and s13 are the “open-circuit” elastic compliances; β11 and β33 are the “free” impermeability
constants; g31, g33 and g15 are the “open-circuit/free” piezoelectric constants. They are related to
the material constants introduced in section 2 by the equations [15]:









s11 s12 s13 g31
s12 s11 s13 g31
s13 s13 s33 g33
−g31 −g31 −g33 β33









=









c11 c12 c13 −e31
c12 c11 c13 −e31
c13 c13 c33 −e33
e31 e31 e33 ε33









−1

,

[

s44 g15
−g15 β11

]

=

[

c44 −e15
e15 ε11

]−1

(114)
We recall that, essentially without loss of generality, no body loads are considered and the plate

is assumed to be clamped and grounded along its lateral boundary ∂Ω × (−t/2, t/2). If this were
not the case, straightforward modifications of H would be needed, but the present derivation of the
plate model would remain essentially unchanged.

With a view toward deriving the plate model, a partially-mixed formulation is obtained from
(113), by enforcing a-priori the stationarity conditions of H with respect to T and d. After simple
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computations, we obtain:

R =
1

2

∫

A
[2c66||∇SS||2 + ĉ12(divS)2 − ε33

c33ε33
σ2 +

1

ε33
d2 + 2

ε̂33
ε33

σ(divS) − 2
e31
ε33

d(divS)

−2
e33
c33ε33

σd− 1

c44
||τ ||2 − ε11||∇Φ||2 + 2

e15
c44

τ · ∇Φ] dv +

∫

A
[τ · (S′ + ∇S) + σS ′ + dΦ′] dv

−
∫

Ω
[P± · S(·,±t/2) + P±S(·,±t/2) − Υ±Φ(·,±t/2)] da−

∫

∂Ω×(−t/2,t/2)
(τ · n)S da (115)

defined on the manifold: S = 0 and Φ = 0 on ∂A. Here ε̂33 = (c13ε33 + e31e33)/c33. The functional
R is the extension to piezoelectric bodies of a functional introduced by Reissner [17].

Needless to say that the variational formulations (113) and (115) are exact consequences of
the Voigt theory of piezoelectricity. In order to derive models of piezoelectric plates, simplifying
hypotheses concerning the structure of the involved fields have to be introduced.

The hypotheses underlying the model proposed in [6] are:

i) the transversal normal strain S ′ vanishes;

ii) the transversal shear strain ∇S + S ′ is constant in the thickness;

iii) the transversal electric field −Φ′ is constant in the thickness.

The approximations introduced by these hypotheses are mitigated [18] by complementing them with
the following “dual” hypotheses:

i′) the transversal normal stress σ vanishes;

ii′) the transversal shear stress τ is constant in the thickness;

iii′) the transversal electric displacement field d is constant in the thickness.

The hypotheses i), ii) and i′) are the classical hypotheses of the Reissner-Mindlin theory of elastic
plates. The hypothesis iii) was introduced first in [14], then enforced, among others, in [11] and
[16]. The hypothesis ii′) was adopted in [14]. It is emphasized that none of the previous hypothesis
is a rigorous assumption, even if the plate thickness aspect ratio approaches zero [4]. As a matter
of fact, this “drawback” is shared by the celebrated Reissner-Mindlin theory of elastic plates, since
it is well known that elastic plates do not fulfil none of the hypotheses i), ii) and i′), even if the
plate thickness aspect ratio approaches zero. Of course, it is the very essence of a modelization to
retain only some features of a complex problem and to neglect the remaining ones. As it is shown
in appendix C, the piezoelectric plate model proposed in [6] is able to grasp the main features of the
problem, in most of practical situations.

As a consequence of the hypotheses i), ii) and iii), the displacement field and the electric
potential field can be represented by means of the unknown functions U , W , Θ, Π and X, defined
over the two-dimensional region Ω, according to equation (2). Analogously, as a consequence of
the hypotheses i′), ii′) and iii′), the transversal normal- and shear-stress fields and the transversal
electric-displacement field can be represented by means of the unknown functions V and D, defined
over the two-dimensional region Ω, according to the equations:

σ(Y , ζ) = 0
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τ(Y , ζ) = V (Y )

d(Y , ζ) = D(Y ). (116)

By substituting the representation formulas (2) and (116) into equation (115) and performing
the integration with respect to the thickness variable ζ, the functional R is transformed into:

P = Pm + Pb (117)

where

Pm =
t

2

∫

Ω
[2c66||∇SU ||2 + ĉ12(divU)2 +

1

ε33
D2 − 2

e31
ε33

D(divU)] da

− t3

24

∫

Ω
ε11||∇X||2 da+ t

∫

Ω
DX da−

∫

Ω
(R∗ · U − Υ∗X) da (118)

and

Pb =
t3

24

∫

Ω
[2c66||∇SΘ||2 + ĉ12(div Θ)2] da+

t

2

∫

Ω
[− 1

c44
||V ||2 − ε11||∇Π||2 + 2

e15
c44

V · ∇Π] da

+t

∫

Ω
V · (Θ + ∇W ) da− t

∫

∂Ω
(V · n)W dl −

∫

Ω
(M∗ · Θ +R∗W − Ψ∗Π] da (119)

The functional P is defined on the manifold: U = 0, X = 0, Θ = 0 and Π = 0 on ∂Ω. It completely
characterizes the piezoelectric plate model proposed in [6].

In order to derive the field equations (3) and (4) presented in section 2, a total-potential-energy
functional is carried out. It is obtained by enforcing a-priori the stationarity conditions of P with
respect to D and V . After simple calculations, we get the functional:

E = Em + Eb (120)

where

Em =
t

2

∫

Ω
[2c66||∇SU ||2 + c12(divU)2 − ε33X

2 + 2e31X(divU)] da

− t3

24

∫

Ω
ε11||∇X||2 da−

∫

Ω
(R∗ · U − Υ∗X) da (121)

and

Eb =
t3

24

∫

Ω
[2c66||∇SΘ||2 + ĉ12(div Θ)2] da+

t

2

∫

Ω
[c44||Θ + ∇W ||2 + 2e15(Θ + ∇W ) · ∇Π

−ε11||∇Π||2] da−
∫

Ω
(M∗ · Θ +R∗W − Ψ∗Π] da (122)

The functional E is defined on the manifold: U = 0, X = 0, W = 0, Θ = 0 and Π = 0 on ∂Ω. It is an
easy task to verify that the field equations (3) of the membranal problem are obtained as stationary
conditions of E with respect to U and X, and the field equations (4) of the bending problem are
obtained as stationary conditions of E with respect to Θ, W and Π. Of course, this variational
formulation supplies also the compatible boundary operators [12], which are not reported here for
the sake of brevity.
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C A critical evaluation of the piezoelectric plate model

In this section, in order to emphasize the scope of the model proposed in [6] and adopted in this
paper, we refer to the problems introduced in section 4 and present a thorough analytical comparison
between the results supplied by the present model, reported in section 4, and the ones supplied by
the Voigt theory of piezoelectricity, reported in what follows. To the authors’ knowledge, such an
analytical comparison was not performed for other existing models of piezoelectric plates.

C.1 Membranal problems

The loading conditions are the ones considered in section 4.1. Under those loading conditions,
explicit solutions, computed in the framework of the Voigt theory of piezoelectricity, are available in
the literature [4]. Those solutions were expanded in [4] as power series of the slenderness parameter
δ, and the leading-order terms of the expansions are reported here:

• Load a:

u =
r0

2π2(1 + ξ2)

[

cos(πy1)sin(πy2)
sin(πy1)cos(πy2)

]

+ o(1)

s =
ε̂33r0

π(1 + ξ2)ε33
z sin(πy1)sin(πy2) + o(1)

χ = − ξr0
π(1 + ξ2)

sin(πy1)sin(πy2) + o(1)

• Load b:

u =
r0

π2(1 − ν)

[

cos(πy1)sin(πy2)
−sin(πy1)cos(πy2)

]

+ o(1)

s = 0

χ = 0

• Load c:

u =
ξυ0

2π(1 + ξ2)

[

cos(πy1)sin(πy2)
sin(πy1)cos(πy2)

]

+ o(1)

s = −υ0(e33c11 − c13e31)

(1 + ξ2)c33
√
ε33c11

z sin(πy1)sin(πy2) + o(1)

χ =
υ0

1 + ξ2
sin(πy1)sin(πy2) + o(1)

where s = S/t, z = ζ/t and o(·) is the Landau symbol.
It is emphasized that in all load cases the leading-order terms of the Voigt solutions for u and χ

are exactly coincident with the leading-order terms of the solutions supplied by the model proposed
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in [6]. Hence, in particular, this model accounts for the correct value of the membrane mechanical
stiffness, electric capacity and piezoelectric coupling. The model proposed in [6] is unable to give
s, due to the hypothesis i) introduced in appendix B. This drawback, which is shared by most of
existing models of piezoelectric plates and even by the celebrated Reissner-Mindlin theory of elastic
plates, is almost always negligible in practical applications. In situations where the computation of
s could be useful, the model proposed in [16] would be indicated.

C.2 Bending problems

The loading conditions are the ones considered in section 4.2. As in the previous case, explicit
solutions, computed in the framework of the Voigt theory of piezoelectricity, are available in the lit-
erature [4]. The leading-order terms of their expansions as power series of the slenderness parameter
ε are reported here:

• Load a:

θ = − r0
4π3

[

cos(πy1)sin(πy2)
sin(πy1)cos(πy2)

]

+ o(1)

w =
r0
4π4

sin(πy1)sin(πy2) + o(1)

β =
κr0
2π2

ε2
[

1 +
ε11c44e31
ε33ĉ11e15

(6z2 − 1

2
)

]

sin(πy1)sin(πy2) + o(ε2)

• Load b:

θ =
m0

2π2

[

cos(πy1)sin(πy2)
sin(πy1)cos(πy2)

]

+ o(1)

w = −m0

2π3
sin(πy1)sin(πy2) + o(1)

β = −e31
√
ε11c44

πĉ11ε33
m0ε

2(6z2 − 1

2
)sin(πy1)sin(πy2) + o(ε2)

• Load c:

θ = m0ε
2
[

cos(πy1)sin(πy2)
−sin(πy1)cos(πy2)

]

+ o(ε2)

w = 0

β = 0

• Load d:

θ =
ψ0

2π

e31
√
c44ε11

ĉ11ε33

[

cos(πy1)sin(πy2)
−sin(πy1)cos(πy2)

]

+ o(1)
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w = − ψ0

2π2

[

κ+
e31

√
c44ε11

ĉ11ε33

]

sin(πy1)sin(πy2) + o(1)

β =
ψ0

2π2
sin(πy1)sin(πy2) + o(1)

We emphasize that in the situations corresponding to load cases a, b and c the model proposed
in [6] supplies very satisfactory results. In particular, it accounts for the correct bending stiffness
of the piezoelectric plate, and this is a very valuable feature in practical applications. Indeed, the
leading-order terms of the solutions for θ and w that it supplies are exactly coincident with the

leading-order terms of the Voigt solution. Moreover, since
∫ 1/2
−1/2(6z

2−1/2) dz = 0, we point out that

the model proposed in [6] supplies the exact mean value of the electric potential: this is of course the
best result obtainable under the assumptio iii) introduced in appendix B and is sufficient for most
of practical applications. A less satisfactory result is obtained in the situations corresponding to
load case d, since only the electric potential is exactly estimated. More satisfactory results in these
situations could be obtained by using the higher-order model proposed in [22], or, alternatively, by
using the model proposed in [6] in the framework of a layer-wise modelization of the plate, regarded
as a bilayer structure [7]. As a matter of fact, load case d involves electric-charge distributions with
the same sign on the two surfaces of the plate: this is completely unrealistic, since in applications
a piezoelectric plate used as a sensor or an actuator behaves as a capacitor, and hence the electric-
charge distributions have opposite signs on the two surfaces. We can conclude that the model
proposed in [6] joins the simplicity and easiness of a first-order model with the ability to supply
results which are very valuable in practical applications.
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c11 [GPa] 126.
c12 [GPa] 79.5
c13 [GPa] 84.1
c33 [GPa] 117.
c44 [GPa] 23.0
ε11 [nF/m] 15.0
ε33 [nF/m] 13.0
e31 [C/m2] -6.5
e33 [C/m2] 23.3
e15 [C/m2] 17.0

Table 1: Piezoelectric ceramic PZT-5H. Elastic, dielectric and piezoelectric properties

Thin Thick

Mesh 100u2(P2) 10χ(P1) 100u2(P2) 10χ(P1)

2 × 2 3.7422 1.6039 3.8591 1.4925
4 × 4 3.5216 1.5126 3.6300 1.4121
8 × 8 3.4695 1.4904 3.5758 1.3924

16 × 16 3.4566 1.4849 3.5625 1.3875
32 × 32 3.4534 1.4835 3.5591 1.3863
64 × 64 3.4526 1.4831 3.5583 1.3860

Analytical 3.4524 1.4830 3.5580 1.3859

Table 2: Membranal problem. Load case a. r0 = 1. Numerical and analytical solutions for thin and
thick plates.
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Thin Thick

Mesh 10u2(P2) χ(P1) 10u2(P2) χ(P1)

2 × 2 -1.4326 0. -1.4326 0.
4 × 4 -1.4298 0. -1.4298 0.
8 × 8 -1.4287 0. -1.4287 0.

16 × 16 -1.4284 0. -1.4284 0.
32 × 32 -1.4283 0. -1.4283 0.
64 × 64 -1.4283 0. -1.4283 0.

Analytical -1.4283 0. -1.4283 0.

Table 3: Membranal problem. Load case b. r0 = 1. Numerical and analytical solutions for thin and
thick plates.

Thin Thick

Mesh 102u2(P2) 10χ(P1) 102u2(P2) 10χ(P1)

2 × 2 -8.0194 7.6383 -7.4625 7.1076
4 × 4 -7.5629 7.0115 -7.0604 6.5457
8 × 8 -7.4519 6.8632 -6.9621 6.3792

16 × 16 -7.4243 6.8269 -6.9377 6.3792
32 × 32 -7.4174 6.8176 -6.9316 6.3709
64 × 64 -7.4157 6.8155 -6.9301 6.3694

Analytical -7.4151 6.8146 -6.9296 6.3684

Table 4: Membranal problem. Load case c. υ0 = 1. Numerical and analytical solutions for thin and
thick plates.

Thin Thick

Mesh 103θ2(P2) 103w(P1) 108β(P1) 103θ2(P2) 103w(P1) 104β(P1)

2 × 2 -8.4852 2.5393 1.2545 -8.5281 2.9497 5.0179
4 × 4 -8.1722 2.5623 1.2074 -8.1747 2.9519 4.8297
8 × 8 -8.0904 2.5656 1.1960 -8.0906 2.9512 4.7834

16 × 16 -8.0698 2.5663 1.1930 -8.0698 2.9509 4.7719
32 × 32 -8.0646 2.5665 1.1922 -8.0646 2.9508 4.7691
64 × 64 -8.0633 2.5665 1.1920 -8.0633 2.9508 4.7683

Analytical -8.0629 2.5665 1.1920 -8.0629 2.9508 4.7681

Table 5: Bending problem. Load case a. r0 = 1. Numerical and analytical solutions for thin and
thick plates.
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Thin Thick

Mesh 102θ2(P2) 102w(P1) β(P1) 102θ2(P2) 102w(P1) β(P1)

2 × 2 5.3262 -1.5963 0. 5.3516 -1.5998 0.
4 × 4 5.1344 -1.6099 0. 5.1360 -1.6102 0.
8 × 8 5.0833 -1.6120 0. 5.0834 -1.6120 0.

16 × 16 5.0704 -1.6124 0. 5.0704 -1.6124 0.
32 × 32 5.0672 -1.6125 0. 5.0672 -1.6125 0.
64 × 64 5.0663 -1.6126 0. 5.0663 -1.6126 0.

Analytical 5.0661 -1.6126 0. 5.0661 -1.6126 0.

Table 6: Bending problem. Load case b. m0 = 1. Numerical and analytical solutions for thin and
thick plates.

Thin Thick

Mesh 107θ2(P2) w(P1) β(P1) 102θ2(P2) w(P1) β(P1)

2 × 2 679.61 0. 0. -1.3167 0. 0.
4 × 4 40.843 0. 0. -1.3102 0. 0.
8 × 8 -.68873 0. 0. -1.3079 0. 0.

16 × 16 -3.3102 0. 0. -1.3073 0. 0.
32 × 32 -3.4742 0. 0. -1.3071 0. 0.
64 × 64 -3.4844 0. 0. -1.3071 0. 0.

Analytical -3.4851 0. 0. -1.3071 0. 0.

Table 7: Bending problem. Load case c. m0 = 1. Numerical and analytical solutions for thin and
thick plates.

Thin Thick

Mesh θ2(P2) 102w(P1) 102β(P1) θ2(P2) 102w(P1) 102β(P1)

2 × 2 0. -3.5996 5.3315 0. -3.5996 5.3315
4 × 4 0. -3.4646 5.1314 0. -3.4646 5.1314
8 × 8 0. -3.4314 5.0824 0. -3.4314 5.0824

16 × 16 0. -3.4231 5.0701 0. -3.4231 5.0701
32 × 32 0. -3.4211 5.0671 0. -3.4211 5.0671
64 × 64 0. -3.4206 5.0663 0. -3.4206 5.0663

Analytical 0. -3.4204 5.0661 0. -3.4204 5.0661

Table 8: Bending problem. Load case d. ψ0 = 1. Numerical and analytical solutions for thin and
thick plates.
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Figure 1: Membranal solutions for a thin-plate problem. Load cases a, b and c. Relative error for
the unknown fields u2 and χ versus number of nodes per side. The attainment of the h2 convergence
rate in the L2 error norm clearly appears.
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Figure 2: Membranal solutions for a thick-plate problem. Load cases a, b and c. Relative error for
the unknown fields u2 and χ versus number of nodes per side. The attainment of the h2 convergence
rate in the L2 error norm clearly appears.
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Figure 3: Bending solutions for a thin-plate problem. Load cases a, b, c and d. Relative error for the
unknown fields w, θ2 and β versus number of nodes per side. The attainment of the h2 convergence
rate in the L2 error norm clearly appears.

35



10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 Number of nodes per side

 R
el

at
iv

e 
er

ro
r

a) w  
a) θ

2
a) β   
b) w  
b) θ

2
c) θ

2
d) w  
d) β   

Figure 4: Bending solutions for a thick-plate problem. Load cases a, b, c and d. Relative error for the
unknown fields w, θ2 and β versus number of nodes per side. The attainment of the h2 convergence
rate in the L2 error norm clearly appears.
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