
ORNL
Master Copy

t

c

Computer Science and Mathematics Division

Mathematical Sciences Section

MAY 2 7 K-

4
I

O W L /TM- 13372

THE DESIGN AND IMPLEMENTATION OF THE
PARALLEL OUT-OF-CORE SCALAPACK LU, QR AND CHOLESKY

FACTORIZATION ROUTINES

Ed F. D’Azevedo
Jack J. Dongarra

Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Date Published: April 1997

RECEIVED

I
This work was supported in part by the National Science Foundation Grant
No. ASC-9005933; by the Defense Advanced Research Projects Agency
under contra& DAAU)3-91-C-0047, administered by the Army Research
Office; by the OfEce of Scientific Computing, U.S. Department of Energy,
under Contract DEAC0584OR.21400, and by the National Science Foun-
dation Science and Technology Center Cooperative Agreement No. CCR-
8809615, and Center for Computational Sciences at Oak Ridge National
Laboratory for the use of the computing facilities.

I

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Lockheed Martii Energy Research Corp.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DEAC05960R22464 w

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liabiiity or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, proctss, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation. or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Contents

1
2

3

4
5
6

I

Introduction .

2.1 Low-level Details .
2.2 User Interface .
Left-looking Algorithm .
3.1 Partitioned Factorization .
3.2 LU Factorization .
3.3 QR Factorization .
3.4 Cholesky Factorization .
Numerical Results .
Conclusions .
Refer a c e s .

1/0 Library .
1
1
2
3
6
6
8
9

10
11
13
14

C

t

List of Tables

1
2
3

Performance of out-of-core LU factorization on 64 processors using MB=NB=50.
Performance of out-of-core QR factorization on 64 processors using MB=NB=50.
Performance of out-of-core Cholesky factorization on 64 processors using MB=NB=50.

12
12

13

- v -

List of Figures

1 Algorithm requires 2 in-core panels. 6

- vii -

8

THE DESIGN AND IMPLEMENTATION OF THE
PARALLEL OUT-OF-CORE SCALAPACK LU, QR AND CHOLESKY

FACTORIZATION ROUTINES

Ed F. D’Azevedo
Jack J. Dongarra

Abstract

This paper describes the design and implementation of three core factorization routines
- LU, QR and Cholesky - included in the out-of-core extension of ScaLAPACK. These
routines allow the factorization and solution of a dense system that is too large to fit entirely
in physical memory. An image of the full matrix is maintained on disk and the factorization
routines transfer sub-matrices into memory. The ‘left-looking’ column-oriented variant of
the factorization algorithm is implemented to reduce the disk 1/0 traffic. The routines
are implemented using a portable 1/0 interface and utilize high performance ScaLAPACK
factorization routines as in-core computational kernels.

We present the details of the implementation for the out-of-core ScaLAPACK factor-
ization routines, as well as performance and scalability results on the Intel Paragon.

1. Introduction

This paper describes the design and implementation of three core factorization routines - LU,
QR and Cholesky - included in the out-of-core extensions of ScaLAPACK. These routines
allow the factorization and solution of a dense linear system that is too large to fit entirely in
physical memory.

Although current computers have unprecedented memory capacity, out-of-core solvers are
still needed to tackle even larger applications. A modern workstation is commonly equipped
with 64 to 128Mbytes of memory and capable of performing over 100 Mflops/sec. Even on a
large problem that occupies all available memory, the in-core solution of dense linear problems
typically takes less than an hour. On a network of workstations (NOW) with 100 processors,
each with MMbytes, it may require about 30 minutes to factor and solve at 64bit precision
a dense linear system of order 30,000. This suggests that the processing power of such high
performance machines is under-utilized and much larger systems can be tackled before run
time becomes prohibitively large. Therefore, it is natural to develop parallel out-of-core solvers
to tackle large dense linear systems. Such dense problems arise from high resolution three-
dimensional electromagnetic scattering problems or in modeling fluid flow around complex
objects.

The development effort has the objective of producing portable software that achieves
high performance on distributed memory multiprocessors, shared memory multiprocessors, and
NOW. The implementation is based on modular software building blocks such as the PBLAS
(Parallel Basic Linear Algebra Subprograms), and the BLACS (Basic Linear Algebra Com-
munication Subprograms). Proven and’ highly efficient ScaLAPACK factorization routines are
used for in-core computations.

One key component of an out-of-core library is an efficient and portable 1/0 interface.
We have implemented a high level 1/0 layer to encapsulate machiie or architecture specific
characteristics to achieve good throughput. The 1/0 layer eases the burden of manipulating
out-of-core matrices by directly supporting the reading and writing of unaligned sections of
ScaLAPACK block-cyclic distributed matrices.

Section 2 describes the design and implementation of the portable 1/0 Library. The imple-
mentation of the ‘left-looking’ column-oriented variant of the LU, QR and Cholesky factoriza-
tion is described in 93. Finally, $4 summarizes the performance on the Intel Paragon.

2. I/O Library

This section describes the overall design of the 1/0 Library including both the high level user
interface, and the low level implementation details needed to achieve good performance.

- 2 -

2.1. Low-level Details

Each out-of-core matrix is associated with a device unit number (between 1 and 99), much
like the familiar Fortran 1/0 subsystem. Each 1/0 operation is record-oriented, where each
record is conceptually an MMB x NNB ScaLAPACK block-cyclic distributed matrix. Moreover if
this record/matrix is distributed with (MB,NB) as the block size on a P x 9 processor grid, then
mod(MMB, MB * P) = 0 and mod(NNB, NB * 9) = 0, Le. MMB (and NNB) are exact multiples of MB * P
(and NB * 9). Data to be transferred is first copied or assembled into an internal temporary
buffer (record). This arrangement reduces the number of lseek0 system calls and encourages
large contiguous block transfers, but incurs same overhead in memory-to-memory copies. All
processors are involved in each record transfer. Individually, each processor writes out an
(MMB/P) by (NNB/Q) matrix block. MMB and NNB can be adjusted to achieve good 1/0 performance
with large contiguous block transfers or to match RAID disk stripe size. A drawback of this
arrangement is that 1/0 on narrow block rows or block columns will involve only processors
aligned on the same row or column of the processor grid, and thus may not obtain full bandwidth
from the 1/0 subsystem. An optimal block size for 1/0 transfer may not be equally efficient for
in-core computations. On the Intel Paragon, NB (or NB) can be as small as 8 for good efficiency
but requires at least 64Kbytes 1/0 transfers to achieve good performance to the parallel file
system. A &dimensional cyclically-shifted block layout that achieves good load balance even
when operating on narrow block rows or block columns was proposed in MIOS (Matrix Input-
Output Subroutines) used in SOLAR. However, this scheme is more complex to implement,
(SOLAR does not yet use this scheme). Moreover, another data redistribution is required to
maintain compatibility with in-core ScaLAPACK software. A large data redistribution would
incur a large message volume and a substan1;ial performance penalty, especially in a NOW
environment.

The 1/0 library supports both a ‘shared’ and ‘distributed’ organization of disk layout. In a
‘distributed’ layout, each processor opens a unique file on its local disk (e.g ‘/tmp’ partition on
workstations) to be associated with the matrix. This is most applicable on a NOW environment
or where a parallel file system is not available. On systems where a shared pardel file system
is available (such as MASYNC mode for PFS on Intel Paragon), all processors open a common
shared fde. Each processor can independently perform lseek/read/urite requests to this
common file. Physically, the ‘shard’ layout can be the concatenation of the many ‘distributed’
files. Another organization is to ‘interlace’ contributions from individual processors into each
record on the shared file. This may lead to better pre-fetch caching by the operating system,
but requires an 1seekO operation by each priocessor, even on readiig sequential records. On
the Paragon, 1seekO is an expensive operation since it generates a message to the 1/0 nodes.
Note that most implementations of NFS (Networked File System) do not correctly support

- 3 -

multiple concurrent read/write requests to a shared file.
Unlike MIOS in SOLAR, only a synchronous 1/0 interface is provided for reasons of porta-

bility and simplicity of implementation. A fully portable (although possibly not the most
efficient) implementation of the 1/0 layer using Fortran record-oriented 1/0 is also possible'.
The current I/O library is written in C and uses standard POSIX 1/0 operations. System
dependent routines, such as NX-specific gopen0 or eseeko system calls, may be required to
access files over 2Gbytes. Asynchronous 1/0 that overlaps computation and 1/0 is most effec-
tive only when processing time for 1/0 and computation are closely matched. Asynchronous
1/0 provides little benefits in cases where in-core computation or disk 1/0 dominates overall
time. Asynchronous pre-fetch reads or delayed buffered writes also require dedicating scarce
memory for 1/0 buffers. Having less memory available for the factorization may increase the
number of passes over the matrix and increase overall 1/0 volume.

2.2. User Interface

To maintain ease of use and compatibility with existing ScaLAPACK software, a new ScaLA-
PACK array descriptor has been introduced. This out-of-core descriptor (DTYPE, = 601)
extends the existing descriptor for dense matrices (DTYPE- = 1) to encapsulate and hide
implementation-specific information such as the 1/0 device associated with an out-of-core
m a t h and the layout of the data on disk.

The in-core ScaLAPACK calls for performing a Cholesky factorization may consist of:

*
initialize descriptor for matrix A

8

CALL DESCINIT(DEsCA,H.N,HB,NB,RSRC.CSRC,ICONTXT,LDA,INFO~

* perform Cholesky factorization
*

CALL PDPOTRF (UPLO .N ,A. I A , JA ,DESCA , INFO)

where the array descriptor DESCA is an integer array of length 9 whose entries are described by
the following:

IWe are not aware of any implementation of fully portable asynchronous 1 / 0 without using threads. However,
a portable thread library may not be available and greatly complicates the code.

- 4 -

DESC-()

~

1

2

3
4
5

6

7

8

9

~~

Symbolic
Name
DTYPEA
CTXTA

M A
N A
MBA

NBA

RSRCA

CSRC-A

LLDA

Scope
-
Definition

-
The descriptor type DTYF’EA=l.
The BLACS context handle, indicating the
BLACS process grid over which the global
matrix A is distributed. The context itself
is global, but the handle (the integer value)
may vary.
The number of rows in the global array A.
The number of columns in the global array A.
The blocking factor used to distribute
the rows of the array.
The blocking factor used to distribute
the columns of the array.
The process row over which the first row
of the array A is distributed.
The process column over which the first
column of the array A is distributed.
The leading dimension of the local
array. LLDA 2 MAX(l,LOCp(MA)).

The out-of-core version is very similar:

*
initialize extended descriptor for out-of-core matrix A

*
CALL PFDESCINIT (DESCA , n , ~ ,ME ,m .RSRC ,CSRC ,ICONTXT, IODEV ,

‘SEARED’ ,HHB ,NNB,ASI:Q, ‘ /pf s/a.data’//CHAR(O) ,INFO)
*
* perform out-of -core Cholesky factorization

*
C A U PFDPOTRF(UPLO.N,A,IA, JA,DESCA,INFO)

where the array descriptor DESCA is an integer array of length 11 whose entries are described
by the following:

- 5 -

DESC-()

1

2

3
4
5

6

7

8

9

10

11

Symbolic
Name
DTYPEA

CTXTA

M A
N A
M B 4

N B A

RSRCA

CSRC-A

LLDA

IODEV-A

SIZEA

Scope Definition

The descriptor type DTYPEA=601
for an out-of-core matrix.
The BLACS context handle, indicating the
P x Q BLACS process grid over
which the global matrix A is distributed.
The context itself is global,
but the handle (the integer value) may vary.
The number of rows in the global array A.
The number of columns in the global array A.
The blocking factor used to distribute
the rows of the MMB x NNB submatrix.
The blocking factor used to distribute
the columns of the MMB x NNB submatrix.
The process row over which the first row
of the array A is distributed.
The process column over which the first
column of the array A is distributed.
The conceptual leading dimension of the global
array. Usually this is taken to be M-
The 1/0 unit device number associated with
the out-of-core matrix A.
The amount of local in-core memory available for
the factorization of A.

Here ASIZE is the amount of in-core buffer storage available in array ‘A’ associated with
the out-of-core matrix. A ‘Shared’ layout is prescribed and the Be ‘/pfs/A.data’ is used
on unit device IODEV. Each 1/0 record is an MMB by NNB ScaLAPACK block-cyclic distributed
matrix.

The out-of-core matrices can a h be manipulatd by &/write calls. For example:

CALL ZLAREAD(IODEV, W,N, IA, JA, B, IB, JB, DESCB, INFO)

reads in an M by N sub-matrix starting at position (IA , JA) into an in-core ScaLAPACK matrix
B (IB : IB+H-1 , JB : JB+N-l). Best performance is achieved with data transfer exactly aligned
to local processor and block boundary; otherwise redistribution by message passing may be
required for unaligned non-local data transfer to matrix B.

- 6 -

I I

Pa!WlX Panel Y

Figure 1: Algorithm requires 2 in-core panels.

3. Left-looking Algorithm

The three factorization algorithms, LU, QR, and Cholesky, use a similar ‘left-looking’ organi-
zation of computation. The left-looking variant is first described as a particular choice in a
block-partitioned algorithm in 53.1.

The actual implementation of the left-loolcing factorization uses two full column in-core
panels (call these X, Y; see Figure 1). Panel X is NNB columns wide and panel Y occupies the
remaining memory but should be at least NNB columns wide. Panel X acts as a buffer to hold
and apply previously computed factors to panel Y. Once all updates are performed, panel Y is
factored using an in-core ScaLAPACK algorithm. The results in panel Y are then written to
disk.

The following subsections describe in more detail the implementation of LU, QR a d
Cholesky factorization.

3.1. Partitioned Factorization

The ‘left-looking’ and ‘right-looking’ variants of LU factorization can be described as particular
choices in a partitioned factorization. The reader can easily generalize the following for a QR
or Cholesky factorization.

Let an m x n matrix A be factored into P d 4 = LU where P is a permutation matrix, and
L and U are the lower and upper triangular factors. We treat matrix A as a block-partitioned

- 7 -

where All is a square k x k submatrix.

1. The assumption is that the first k columns are already factored

9 () = () (Ull) 9

A21

If k 5 is small enough, a fast non-recursive algorithm such as ScaLAPACK PxGETRF
may be used directly to perform the factorization; otherwise, the factors may be obtained
recursively by the same algorithm.

2. Apply the permutation to the unmodified submatrix

3. Compute U12 by solving the triangular system

h U 1 2 = A12

4. Perform update to A22

, A22 + A22 - L21U12

5. Recursively factor the remaining matrix

6. Final factorization is

(4)

(5)

Note that the above is the recursively-partitioned LU factorization proposed by Toledo [4]
if k is chosen to be n/2. A right-looking variant results if k = no is always chosen where most

- 8 -

of the computation is the updating of

A 2 2 t A2:t - L2lU12 .

A left-looking variant results if k = n - no.
The in-core ScaLAPACK factorization routines for LU, QR and Cholesky factorization,

use a right-looking variant for good load balancing (11. Other work has shown [2, 31 that for
an out-of-core factorization, a left-looking variant generates less 1/0 volume compared to the
right-looking variant. Toledo [5] shows that the recursively-partitioned algorithm (I C = n/2)
may be more efficient than the left-looking variant when a very large matrix is factored with
miniial in-core storage.

3.2. LU Factorization

The out-of-core LU factorization PFxGETRF involves the following operations:

1. If no updates are required in factorizing; the first panel, all available storage is used as
one panel,

1. LAREAD: read in part of original matrix

2. PxGETRF: ScaLAPACK in-core factorization

3. LAWRITE: write out factors

Otherwise, partition storage into panels X and Y.

2. We compute updates into panel Y by reading in the previous factors (NNB columns at a
time) into panel X. Let panel Y hold (A,*, A22):,

1. LAREAD: read in part of factor into panel X

2. LAPIV: physically exchange rows' in panel Y to match permuted ordering in panel X

3. PxTRSM: triangular solve to compute upper triangular factor

.

- 9 -

4. PxGEMM: update remaining lower part of panel Y

A 2 2 4- A 2 2 - L2lU12
~.

3. Once aII previous updates are performed, we apply in-core ScaLAPACK PxGETRF to
compute LU factors in panel Y

The results are then written back out to disk.

4. A final extra pass over the computed lower triangular L matrix may be required to
rearrange the factors in the final permutation order

Note that although PFxGETRF can accept a general rectangular matrix, a column-oriented
algorithm is used. The pivot vector is held in memory and not written out to disk. During the
factorization, factored panels are stored on disk with only partially or ‘incompletely’ pivoted
row data, whereas factored panels were stored in origind unpivoted form in 121 and repivoted
‘on-the-fly’. The current scheme is more complex to implement but reduces the number of row
exchanges required.

3.3. QR Factorization

The out-of-core QR factorization PFxGEQRF involves the following operations:

1. If no updates are required in factorizing the first panel, al l available memory is used as
one panel,

1. LAREAD: read in part of original matrix

2. PxGEqRF: in-core factorization

3. LAWRITE: write out factors

Otherwise, partition storage into panels X and Y.

2. We compute updateshto panel Y by bringing in previous factors MNB columns at a time
into panel X.

- l 0 -

1. LAREAD: read in part of factor into :panel X

2. PxORMQR apply Householder transformation to panel Y

3. Once all previous updates are performed, we apply in-core ScaLAPACK PxGEQW to
compute QR factors in panel Y

Q21R22 + A z z

The results are then written back out to disk.

Note that to be compatible with the encoding of Householder transformation in the TAU(*)
vector as used ScaLAPACK routines, a columri-oriented algorithm is used even for rectangular
matrices. The TAU(*) vector is held in memory and is not written out to disk.

3.4. Cholesky Factorization

The out-of-core Cholesky factorization PxPOTRF factors a symmetric matrix into A = LLt
without pivoting. The algorithm involves the following operations:

1. If no updates axe required in factorizing the first panel, all available memory is used as
one panel,

1. LAREAD: read in part of original matrix

2. PxPOTRF: ScaLAPACK in-core factcdzation

3. PxTRSM modify remaining column

4. LAWRITE: write out factors

Otherwise, partition storage into panels X and Y. We exploit symmetry by operating
on only the lower triangular part of matrix A in panel Y. Thus for the same amount of
storage, the width of panel Y increases as the factorization proceeds.

2. We compute updates into panel Y by bringing in previous factors NNB columns at a time
into panel X.

- 11-

.
h

1. LAREAD: read in part of lower triangular factor into panel X

2. PxSyRK: symmetric update to diagonal block of panel Y

3. PxGEMM: update remaining columns in panel Y

3. Once all previous updates are performed, we perform a right-looking in-core factorization
of panel Y. Loop over each block column (width NB) in panel Y,

1. factor diagonal block on one processor using PxPOTRF

2. update same block column using PxTRSM

3. symmetric update of diagonal block using PxSYRK

4. update remaining columns in panel Y using PxGEMM

Finally the computed factors are written out to disk.

Although, only the lower triangular portion of matrix A is used in the computation, the code
still requires disk storage for the full matrix to be compatible with ScaLAPACK. ScaLAPACK
routine PxPOTRF accepts only a square matrix distributed with square sub-blocks, HB=NB.

4. Numerical Results

The prototype code is still under active development and testing2. The double precision ver-
sion was tested on the Intel Paragon systems at the Center for Computational Sciences, Oak
Ridge National Laboratory. The xps35 has 512 GP nodes arranged in a 16 row by 32 column
rectangular mesh. Each GP node has 32MBytes of memory. The xpsl50 has 1024 M P nodes
arranged in ’a 16 row by 64 column rectangular mesh. Each MP node has at least 64MBytes
of memory. The MF’ node has 2 compute CPUs to support multi-threaded code, but to make
results comparable to xps35, only one CPU was utilized in the test. The runs were performed
in a multiuser (non-dedicated) environment. Runs on 64 (256) processors were performed on
the xps35 (xpsl50) using a 8 x 8 (16 x 16) logical processor grid. The xpsl50 was used to ensure
that in-core solves of the large matrices are resident in memory without page faults to disk.

Initial experiments suggest that 1/0 performance may vary by a wide margin and depends
on the 1/0 and paging requests in other applications. The double precision version was tested
with block size of MB = NB = 50, MMB = 800 and NNB = 400. A shared file was used on ‘/pfs’
parallel file system (16-way interleaved RAID system with 64Kbyte stripes). The shared file
was opened with NX-specific MASYNC mode in the gopen0 system call.

Table 1 shows the runtime (in seconds) for the out-of-core LU factorization on the Intel
Paragon. The field Zwork is the amount of temporary storage (number of double precision

2The prototype code is available from http://w .netlib.org/scalapack/prototype

http://w

- 12 -

Table 1: Performance of out-of-core LU factorization on 64 processors using MB=NB=50.

size of
matrix (doubles) (sec)
5000 130000 38 :28
8000 250000 126 150
10000 375000 231 !35 74

Table 2: Performance of out-of-core QR factorization on 64 processors using MB=NB=50.

8000 260000

numbers) available to the out-of-core routine fo:r panels X and Y. Field update is the computation
time (excluding I/O) for PxTFtSM and PxGEMM updates from panel X to panel Y . Field fact is the
total computation time (excluding I/O) required to factor panel Y. Field reorder is the total
time for 1/0 and PxLAPIV to reorder the lower triangular factors into the final pivoted order.
Field in-core shows the Computation time (and number of processors used) for an all in-core
factorization using ScaLAPACK PDGETRF routine.

We are considering streamlining the out-of-tare PFxGETRF LU factorization code (and PFxGETRS
right-hand solver) to leave the lower factors in partially pivoted form and avoid the extra pass
required to reorder the lower triangular matrix: into final pivoted order. Note that without this
extra reordering cost and assuming perfect speedup from 64 to 256 processors, the out-of-core
solver incurs approximately a 18% overhead over in-core solvers ((3502- 290)/(681*4) k: 1.18).

Table 2 shows the runtime (in seconds) far the out-of-core QR factorization on the Intel
Paragon. The field lwork is the amount of temporary storage (number of double precision
numbers) available to the out-of-core routine for panels X and Y. Field update is the computation
time (excluding I/O) for Householder updates using PxORMQR from panel X to panel Y . Field
fact is the total computation time (excluding I/O) required to factor panel Y using PxGEQRF.
Field in-core shows the computation time (and number of processors used) for an all in-core
factorization using the ScaLAPACK PDGEQRF routine. For large problems (and assuming perfect
speedup), the out-of-core version incurs an overhead of around 16% over the in-core solver
((5466/4)/1176 1.16).

Table 3 shows the runtime (in seconds) fctr the out-of-core Cholesky factorization on the
Intel Paragon. The field Zwork is the amount of temporary storage (number of double precision

- 13-

Table 3: Performance of out-of-core Cholesky factorization on 64 processors using MB=NB=50.

8000 260000
10000 410000 93

total I in-core 1

191 (256)

numbers) available to the out-of-core routine for panels X and Y. Field update is the computation
time {excluding I/O) for PxSYRK and PxGEMM updates from panel X to panel Y. Field fact is
the total computation time (excluding I/O) required to factor panel Y. Field in-core shows
the computation time (and number of processors used) for an all in-core factorization using
SdAPACK PDPOTRF routine. For large problems (and assuming perfect speedup), the out-of-
core version incurs about a 22% overhead over the in-core version ((1655/4)/340 = 1.22).

5. Conclusions

Effectiveness of the out-of-core solvers depends in part on the amount of available core memory
and on the performance of the 1/0 system. The results on the xps35 suggest that the out-of-
core solvers are most effective on very large problems greater than available core memory and
incur about a 20% penalty over the in-core solvers.

- 1 4 -

6. References

(11 J. CHOI, J. J . DONGARRA, L. S . OSTROUCHOV, A. P. PETITET, D. W. WALKER, AND

R. C. WHALEY, The design and implemenibtion sf -the ScaLAPACK LU, QR, and Cholesky
factoritution routines, Tech. Report ORNL/TM-12470, Oak Ridge National Laboratory,
1994.

(21 J. DONGARRA, S . HAMMAFUING, AND D. WALKER, Key concepts for pamllel out-of-core
LU fuctovitation, Scientific Programming, 5 (1996), pp. 173-184.

[3] K. KLIMKOWSKI AND R. A. VAN DE GEIJN, Anatomy of u pamllel out-of-core dense linear
solver, in Proceedings of the International Conference on Parallel Processing, 1995.

141 S. TOLEDO, Locality of reference in lu decomposition with partial pivoting, Tech. Report RC
20344(1/19/96), IBM Research Division, T. J. Watson Research Center, Yorktown Heights,
New York, 1996.

[SI S. TOLEDO AND F. GUSTAVSON, The design and implementation of SOLAR, a portable
library for scalable out-of core linear algebnr computations, in IOPADS Fourth Annual Work-
shop on Parallel and Distributed I/O, AClM Press, 1996, pp. 28-40.

- 15-

I

1. T. S. Darland
2-6. E. F. D’Azevedo
7-11. J. Dongarra
12. M. R. Leuze
13. C. E. Oliver

ORNL/TM-13372

INTERNAL DISTRIBUTION

14. S. A. Raby
15. R. F. Sincovec
16. Laboratory Records - RC

17-18. Laboratory Records
Department /OSTI

19. Central Research Library

EXTERNAL DISTRIBUTION

20. Daniel A. Hitchcock, ER-31, Acting Director, Mathematical, Information, and
Computational Sciences Division, Office of Computational and Technology Re-
search, Office of Energy Research, Department of Energy, Washington, DC 20585

21. Frederick A. Howes, ER-31, Mathematical, Information, and, Computational Sci-
ences Division, Office of Computational and Technology Research, Office of Energy
Research, Department of Energy, Washington, DC 20585

22. Tom Kitchens, ER-31, Mathematical, Information, and, Computational Sciences
Division, Office of Computational and Technology Research, Office of Energy Re-
search Department of Energy, Washington, DC 20585

23. David B. Nelson, ER-30, Associate Director, Office of Energy Research, Direc-
tor, Office of Computational and Technology Research, Department of Energy,
Washington, DC 20585

