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ABSTRACT

[t is well known that a graph G of order p > 3 is Hamilton-connected if d(u) +d(v) > p+1
for each pair of nonadjacent vertices u and v. In this paper we consider connected graphs
G of order at least 3 for which d(u) + d(v) > |N(u) U N(v) U N(w)| + 1 for any path
vwv with wv ¢ E(G), where N(z) denote the neighborhood of a vertex z. We prove
that a graph G satisfying this condition has the following properties: (a) For each pair of
nonadjacent vertices z,y of G and for each integer k,d(z,y) < k < |V(G)| — 1, there is
an z — y path of length k. (b) For each edge zy of G and for each integer k (excepting
maybe one k € {3,4}) there is a cycle of length k containing zy.

Conseqguently G is panconnected {and also edge pancyclic) if and only if each edge of
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G belongs to a triangle and a quadrangle.
Our results imply some results of Williamson, Faudree, and Schelp. © 1996 John Wiley
& Sons, Inc.

1. INTRODUCTION

We use Bondy and Murty [6] for terminology and notation not defined here and consider
finite simple graphs only. For each vertex u of a graph G we denote by N (u) the set of all
vertices of G adjacent to u. The distance between vertices v and v is denoted by d(u, v).
A path with = and y as end vertices is called an x — y path. A path is called a Hamilton
path if it contains all the vertices of G. A graph G is Hamilton-connected if every two
vertices of GG are connected by a Hamilton path.

Let G be a graph of order p > 3. GG is called panconnected if for each pair of distinct
vertices z and y of G and for each [, d(z,y) <! < p— 1, there is an = — y path of length
l. GG is called pancyclic if it contains a cycle of length { for each [ satisfying 3 <! <p. G
is called a vertex pancyclic (edge pancyclic) if each vertex (edge) of G lies on a cycle of
every length from 3 to p inclusive.

The following results are known.

Theorem 1. (Ore [12]). Let G be a graph of order p > 3, where d(u) + d(v) > p+ 1 for
each pair u, v of nonadjacent vertices. Then G is Hamilton-connected.

Theorem 2. (Williamson [13]). A connected graph of order p > 3 is panconnected if any
of the following two conditions hold:

(a) d(u) > (p + 2)/2 for each vertex u of G,

(b) d(u) + d(v) > (3p — 2)/2 for each pair of nonadjacent vertices u, v of G.

Theorem 3. (Faudree and Schelp [8]). If G is a graph of order p > 5 with d(u) + d(v) >
p + 1 for each pair of nonadjacent vertices u,v then GG contains a path of every length
from 4 to n — 1 inclusive, between any pair of distinct vertices of G.

A shorter proof of Theorem 3 was given by Cai [7]. From results of Bondy [5] and
Haggkvist et al. [10] it follows that every graph G satisfying the condition of Theorem 1
is pancyclic. Some other properties of graphs satisfying the condition of Theorem 1 were
obtained in [4, 9, 14, 15]. ‘

The following generalization of Theorem 1 was found by Asratian et al. [1].

Theorem 4. [1]. Let G be a connected graph of order at least 3 where d(u) + d(v) >
[N (u)UN (v)UN (w)]+1 for any path uwv with uv € E(G). Then G is Hamilton-connected.

Denote by L the set of all graphs satisfying the condition of Theorem 4. It was proved
in [3] that every graph from L is pancyclic, and in [2] it was shown that a graph G € L is
vertex pancyclic if and only if each vertex of G lies on a triangle.

In this paper we show that a graph G € L has the following properties:

(a) For each pair of nonadjacent vertices z,y of G and for each integer n,d(z,y) <n <
[V(G)| — 1, there is an z — y path of length n.



PANCONNECTED GRAPHS 97

(b} For each edge zy and for each integer k£,3 < n < |V(G)|, (excepting maybe one
k € {3,4}) there is a cycle of length k containing zy.

This implies that a graph G € L is panconnected (and also edge pancyclic) if and only
if each edge of G lies on a triangle and on a quadrangle.

Note that for each » > 2 and each p > 3 there exists a panconnected graph G, , € L
of order pr with diameter r: its vertex set is U]_,V; where Vg, V1,..., V. are pairwise
disjoint sets of cardinality p and two vertices are adjacent if and only if they both belong
to V; UV, for some i € {0,1,...,7r — 1}.

2. NOTATION AND PRELIMINARY RESULTS

Let P be a path of G. We denote by P the path P with a given orientation and by P the
path P with the reverse orientation. If u,v € V(P), then uPv denotes the consecutive
vertices of P from u to v in the direction specified by P. The same vertices, in reverse
order, are given by v P u. We use w to denote the successor of w on P and w™ to denote
its predecessor. We denote by N (P) the set of vertices v outside P with N(v)NV(P) # 0.
If WCV(P) then Wt ={wt/we W} and W~ = {w /we W}.

We will say that a path P contains a triangle ajasazay if a1,a9,a3 € V(P), a1a3 € E(G)
and af = a; = a5 . A path P containing a triangle A is denoted by P2. The set of all
triangles contained in P2 we denote by T(P2). We assume that an = — y path P has an
orientation from z to y. A path on n vertices will be denoted by P,.

Let A and B be two disjoint subsets of vertices of a graph G. We denote by (A, B)
the number of edges in G with one end in A and the other in B.

Proposition 1. [11]. G € L if and only if for any path uwwv with wv ¢ E(G)|N(u) N
N(@)| > |N(w) \ (N(u) UN(v))} + 1 holds.

Corollary 1. If G € L then G is 3-connected and |N(u) N N(v)| > 3 for each pair of
vertices u, v with d(u,v) = 2.

Proof. Let d(u,v) = 2. If w € N(u) N N(v) then u,v € N(w) \ (N(u) U N(v)) and, by
Proposition 1, |N(u) N N(v)] > 3. This implies that G is 3-connected. 2

Proposition 2. Let G € L and z,y be two vertices of G with d(z,y) = ! > 2. Then there
exists an z — y path P2,.

Proof. Let P = upu; ---u; be an x — y path of length | = d(x,y) where vy = z and
u; = y. If there is a vertex outside P which is adjacent to two consecutive vertices of P then
there is an z—y path PﬁrQ. Suppose that there is no such vertex outside P. Since d(ug, us) =
2 then, by Proposition 1, we have |N(ug) N N{uz)| > |N{u1) \ (N(ug) U (u2))| +1 > 3.
Clearly,

N(ug) N V(P) = N(uo) N N(uz) N V(P) = {u1}. (1)

Let N(up) N N(ug) = {w1,...,wx} where k > 3 and wy = u;. Furthermore, let |N(w;) N
N(w2)| = m. If wyw; € E(G) for each pair i,5,1 < ¢ < j < k, then using (1) and



98 JOURNAL OF GRAPH THEORY

Proposition 1 we obtain
= [N(w) N N(ws)| > 1+ [N(ug) \ (N(w1) UN(wa))| > k + 1. )

Furthermore, since N(w1) N N(wz) € N(w1)} = N(wq) \ (N(up) U N(uz)) then k =
|N(up) N N(u2)| > 1+ |N(w1) \ (N(up) U N(uz))} > 1+ m, which contradicts (2). Hence
w;w; € E(G) for some pair i, j. Then there is an x — y path P,ﬁz = upw;w; Uy - - - u; With
A = pww;z. ]

Proposition 3. Let G € L and xy € E(G). Then there exists an x — y path P2 where
4<n<6.

Proof. 'Two cases are possible.

Case 1. zxy does not lie on a triangle.

Since G is 3-connected we have d(z) > 3. Let uyz € E(G) and uy # y. Since d(u1,y) =
2 and |N(y) N N(uy)| > 2 there exists a vertex ug € N(u;) N N(y),us #* x. Consider a
path P = upujusug where ug = z and uz = y. Clearly, uous, u1us ¢ E(G),d(ug, u2) = 2
and uguz € E(G). Now we can prove, by repeating the proof of Proposition 2 with (1)
changed to N(ug)NV(P) = N(ug) NN (uz)NV(P) = {u,us}, that there exists an ug — u3
path P2. Consequently there exists an z — y path P2, because = = uo and y = us.

Case 2. zy lies on a triangle zyzz.

Since G is 3-connected we have d(z) > 3. If there is a vertex u € N(z) \ {z, y} such
that uz € E(G) or uy € E(G) then we have an z — y path P{.

If no such vertex exists then uz, uy ¢ E(G) for each vertex v € N(z)\ {z, y}. Consider
avertex w € N(z)\{z,y}. Then d(w,z) = 2 and there is a vertex u; € (N(z)NN(w))\{z}.
Consider a path P = upujusug where ug = x,us = w,uz = z. Clearly, yus € E(G) and
yu1, Yus, vz, uruz € E(G). Using the same arguments as in Case 1 we will obtain that
there is an uy — uz path P2, Since x = up and yuz € E(G) then there is an x — y
path P2 B

3. MAIN RESULTS

Theorem 5. Let G € L and z,y be two distinct vertices of G. If there exists an z —y path
P2 such that 4 < n < |[V(G)| — 2 then there exists an z — y path PAlt where 1 <t < 2.

Proof.  Since G is connected and n < |V(G)| then N(P2) # 0. For each v € N(P2)
we denote by W, the set N(v)NV(P2). LetU; = {v € N(P2)/[W,|=1}and Up = {v €

N(P)/|Wy| 2 2 and W, \ {z,y} # 0}.

Suppose there does not exist an z — y path P2 ¢, where 1 <t < 2. Then the following
properties hold.

Property 1. vw' ¢ E(G) for each v € N(P2) and each w € W, \ {y}.
Property 2. If v € Uy, W, = {w} and w ¢ {z,y} then the set T(P2) contains the unique

triangle w~ ww* w

Proof. Let aiazasa; be atriangle from the set T(P2). Suppose a2 # w. Since d(v,w™) =
2 = d(v,w") then, by Corollary 1, there exist vertices v; and v, such that v; € (N(v) N
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N(w™))\ V(P2) and vy € (N(v) N N(w?)) \ V(P2). This gives an x — y path
pA { zl:’:fw_vlvw}:’;?y if az € wiﬁnAy
2 sPRwvvpwt P2y if ay € xPAw™
with A; = ajasasa; such that V(P2) V(P,LA;Q), a contradiction. 2
Property 3. U, # 0.
Proof. Since G is 3-connected then there exists a vertex v € N(P2) such that W, \
{z,y} # 0. Let w € W, \ {z,y}. If v ¢ U, then v € U; and, by Property 2, w—www™ is
the unique triangle in the set T(P2). Since d(v, w") = 2,|W,| = 1 and [N (v)NN(w*)| > 3

then there is a vertex u € (N(v) N N(wt)) \ V(P2). By Property 2, u € U,. Therefore
u € Us,. |

Property 4. Let v € U; and @ be a subset of the set W, = {wy,...,w,} such that y & Q.
Then

Do IN@NN@H 2 Y (IN@)\ (NE)UN @) +1). ()

w.€Q wi€Q
Furthermore, if a;a2a3a; is a triangle from the set T(PnA) with {a1,a2} N Q = @ then
N@w)NN(w) Cw, for each w; € Q 4)
and

wi w;L ¢ E(G) for each pair of vertices w;,w; € Q. (5

Proof. Clearly, (3) follows from Proposition 1. If (4) does not hold for some w; € @
then there is a vertex v; € (N (v)NN(w;"))\W,, and an z—y path PA‘2 = g P- wzvvluﬁPA
with A; = ajaqasa;, a contradlctlon So (4) holds. If (5) does not hold then w’Lw+ €
E(G) for some pair of vertices w;,w; € Q where ¢ < j. Then there is an z — y path

P = zPRwvw; PRwfwl PRy with

: + BA
A = 109030, if aq ¢wz Prw;
3020103 otherwise.

a contradiction. So (5) holds. 1

Property 5. Let a;aza3a, be a triangle from the set T(P2). Then {a;,a2} N W, # 0 #
{az,a3} N W, for each vertex v € Us.

Proof. Suppose that {a;,a2} N W, = 0 and let wy,...,w, denote the vertices of W,
occurring on P2 in the order of their indices. Set Q@ = {w,...,w,_1}. Then, by Property
4, we have (3), (4), and (5). Since w, can be adjacent to each vertex wj then

> IN@)NNw) <e@ Q%) +p— 1L (6)
w; €EQ
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Furthermore,

D7 IN(wi) \ (N(w) UN(w))] > e(@,Q") +p -1 (7)
w; €Q

since v ¢ Q* and v € N(w;) \ (N(v) U N(w})) for each i = 1,...,p — 1. Clearly, (7) is
equivalent to

>IN\ (N@)UN @) +1) 2 e(Q,Q%) +2(p — 1). (®)

w; €Q

But (6) and (8) contradict (3). So {a1,a2} NW, # 0.

We can prove {as, a>} "W, # @ by considering the path P A and the triangle azasaqas
and using the above arguments. B

Property 6. [W,| > 3 for each vertex v € Us.

Proof. Let A = ayacasa, be a triangle from the set T(P2). Suppose W, = {w1,ws}
for some v € U; where w; and w, occur on PnA in the order of their indices. Since v € Uy
then W, \ {z,y} # 0. W.lo.g. we assume wy # y. Then there is € {1,2} such that
w} ¢ {a1,a2,a3}. Since d(v, w,) = 2 then |N(v) N N(w;)| > 3 and there exists a vertex
v € (N(v) N N(w})) \ W, together with an z — y path P2, = xP2w,vv,w) P2y, a
contradiction. So |W,| > 3 for each v € Us. 1

Property 7. Let v € Us;. Then a, € W, for each triangle aazasa; from the set T(PnA).

Proof. Let wy,...,w, denote vertices of W, occurring on P2 in the order of their
indices. By Property 6, p > 3. Suppose az ¢ W, for some triangle a,asa3a; from the
set T(PnA). Then, by Property 5, a1 = wg, a3 = wiy1 and ap = w;c" = wy,, for some
wy € W,. W.Lo.g. we assume k < p — 1. (Otherwise we will consider the path P 5)
Clearly w;, w],, & E(G). Set @ = W,,\ {wy, w,}. Then, by Property 4, we have (3), (4),
and (5). Since the vertices wy and w, can be adjacent to each vertex w;r € @t we have

> IN@W) N N(w])| <e(Q,Q") +2(p—2). )
w, €Q
Furthermore,
S IN(w)\ (N(0) U N(w])] > (@ Q") +p -1 (10)
w; €Q

because wy,; € QT wi,; € N(wgy1) \ (N(v) UN(wf, ) and v ¢ QF,v € N(w;)\
(N(w;") U N(v)) for each w; € Q. Clearly, (10) is equivalent to

D> (INw)\ (N)UN@w)|+1) > (@, Q") +2(p—2) +1, (11)
w; €Q
But (9) and (11) together contradict (3). 1
Property 8. Let v € U, and wy,...,w, denote vertices of W, occurring on P2 in the

order of their indices. Then w; w;” € E(G) foreachi=2,...,p—1.
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Proof. Let A = ajasasa; be a triangle from the set T(P2). Then, by Property 7,
as = w, for some r,1 <r < p. W.lo.g. we assume r < p— 1. (Otherwise we will consider

the path P2.) Let us show that
if k< p—1and w;w{ € E(G) then w;, ,wf,, € E(G). (12)

Set @ = W, \ {wg,wp}. If w;+1w1:+1 ¢ E(G) then, by repeating the arguments in the
proof of Property 7, we obtain (3), (4), (5), (9), and (11). But (9) and (11) contradict (3).
So, w;w; € E(G) for each i,r <i < p— 1. If r > 2 then we will consider the path P2,
Using the above arguments we obtain w; w;” € E(G) for each 4,2 <i<r— 1.

Now using the above properties we will obtain a contradiction. Let v ¢ U, and
wi, ..., w, be vertices of W, occurring on P2 in the order of their indices. By Prop-
erty 8, w; wl € E(G) for each i = 2,...,p — 1. Clearly,

d(w},v) =2, Nw)NN@w) CW, and |N(v)nN(w}) > 3. (13)

Hence there is a vertex w,,, € W, which is adjacent to wf. If p>4thenthereisanx —y
path P2, = 2 PAwivw,wi PRw;wi PAy with
wy wawy wy ifm>2
Ay = — +,.,— : _
Wy WaWs Wy ifm=2

a contradiction. So, p = 3. From (13) we obtain
INW)NN(wf)| =3 and wiw;, € E(G) fori=1,2,3. (14)

Since G is connected and n < [V(G)| — 2 there is a vertex u € N(P2)\ {v}. Using
Properties 2 and 7 with the vertex u and the triangle w, wowy w5 we obtain wou € E(G).
Clearly, uv ¢ E(G). (Otherwise there is an z — y path

A _ . PA + BA, —. + PA
P}y = xPrwivuwow) Prwy wy Py

with A; = vuwsv, a contradiction.) Furthermore, wiu ¢ E(G). (Otherwise there is an
z —y path P2}, = P2 wivwouw] PAwy wyi PRy with A; = wauw ws, a contradiction.)
So, wz € N(wf) N N(v) and u,v,ws € N(ws) \ (N(v) U N(w])). Hence, by Proposition
1, we obtain |N(v) N N(w;)| > 4, which contradicts (14). The proof of Theorem 35 is
complete. 2

Theorem 6. Let G € L. Then, for each edge xy € E(G) and for each integer, n,3 < n <
|[V(G)|, (except maybe one n € {3,4}) there is a cycle of length n containing zy.

Proof. let zy € E(G). Since zy lies on a triangle or on a quadrangle (see proof
of Proposition 3) it is sufficient to prove that there exists an x — y path P, for each
n,5 < n < |[V(G)|. By Proposition 3 there exists an = — y path P2 where 4 < s < 6.
Hence there also exists an x — y path P;_;. Suppose there exist an z — y path P; for each
i,s—1<i<n-1,and an z — y path P2, where s <n < |V(G)| - 1.

If n < |V(G)| -2 then, by Theorem 5, there exists an x —y path P.\, where 1 <t < 2.
If t = 2 and A; = w-wwtw™ then we can obtain an  — y path P,,; by deleting the
vertex w from PnAJrlZ.
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Suppose now that n = |V(G)] — 1 and let v be the unique vertex outside P>. Let
wi, ..., w, be the vertices of W, occurring on P2 in the order of their indices. Since G
is 3-connected we have p > 3. If wj’ = w;41 for some 7,1 < i < p — 1, then there is a
Hamilton x — y path. Let w # w;,; foreachi=1,...,p—1. Set @ = W,, \ {y}. Clearly
(3) holds. Let us show w/w} € E(G) for some w;, w; € Q. Clearly N(v) N N{(w/) C W,
for each w; € Q. If wjw; ¢ E(G) for each pair of vertices w;, w; € Q then (6), (7), and
(8) hold. But (6) and (8) contradict (3). So w;fw; € E(G) for some w;,w; € E(G) where
i < j. Then there is a Hamilton = — y path P, ;1 = zP2w;vw, Isﬁwfw;“ﬁfy.

Repetition of our argument shows that there is an z — y path P, for each n,s <n <
|V(G)|. This proves the theorem because 4 < 5 < 6. I

Using Proposition 2 instead of Proposition 3 and the same arguments as in the proof
of Theorem 6 we can prove the following.

Theorem 7. Let G € L and z, y be two distinct vertices of G with d(z,y) > 2. Then for
each n,d(z,y) + 1 < n < |V(G)|, there exists an z — y path P,,.

Clearly, Theorems 6 and 7 imply Theorem 3. Moreover, from Theorem 6 and Theorem
7 we can obtain the following.

Theorem 8. A graph G € L is panconnected (and also edge pancyclic) if and only if
every edge of G lies in a triangle and a quadrangle.

Corollary 2. A graph G satisfying the condition of Theorem 1 is panconnected if and
only if each edge of G lies in a triangle and a quadrangle.

It is not difficult to check that in every graph satisfying the condition of Theorem 2
each edge lies on a triangle and a quadrangle. So, Theorem 2 follows from Corollary 2.

Corollary 3. Let G be a connected r-regular graph of order at least 4 where |N(u) U
N(v)UN(w)| < 2r—1 for any path vwv with uv ¢ E(G). Then G is panconnected unless
r=2n and G = Ky,,_1 V nK, where nK; denote the union of n disjoint copies of K.

Proof. If each edge of G lies in a triangle and a quadrangle then, by Theorem 8§, G is
panconnected. Now suppose that an edge e = xy does not lie in a triangle or a quadrangle.
Let N(z) = {y,v1,...,v,—1}. If N(z) N N(y) = @ then |N(y) U N(v;) U N(z)| > 2r
because G is r-regular, a contradiction.

So N(z) N N(y) # 0. Without loss of generality we assume that yv; € E(G). Since
zy lies in the triangle zyv;z then, by our assumption, zy does not lie in a quadrangle.
Hence v,v; ¢ E(G) for each i = 2,...,r — 1. Let N(v;) = {z,y,u1,...,u,2}. Since
IN(z)UN(v;) UN(v1)] € 2r — 1 and {z,y,u1,...,%r—2,V1,...,9—1} € N(z) UN(v;) U
N(vy) then |[N(z) U N(v;) UN(v1)| = 2r — 1 for each : = 2,...,r — 1. This implies that
N(v;) = {z,y,u1,...,ur—2} foreach : = 2,...,r — 1 and N(y) = {z,v1,...,0.1}. If
N(uj)\ {v1,. .., up—2,v1,...,0,.1} # 0 for some j,1 < j < r—2, then |N(u;) UN(v1)U
N(

z)| > 2r, a contradiction. So, N(u,;) < {ui,...,ur_2,v1,...,v._1} for each j =
1,...,7—2. Since G is r-regular we deduce that r — 2 is an even number and the subgraph
induced by the set {u;,...,u,_2} is a 1-factor. So, r = 2n and G = Ka,,_1 V nKs. g

Let, for each vertex w of a graph &, M5 (w) denote the set of vertices v with d(w, v) < 2.

Corollary 4. Let G be a connected r-regular graph of order at least 4 where |M>(w)| <
2r — 1 for each w € V(G). Then G is panconnected unless r = 2n and G = Ko, _; V nKj.
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Proof. Let vwv be a path of G with uv ¢ E(G). Clearly, N(u)UN(v)UN(w) C Ma(w).
Hence, |M>{w)| < 2r — 1 implies |N(u) U N(v) U N{(w)| < 2r — 1. Therefore, by Corollary
3, G is panconnected. [
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