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ABSTRACT

Public gene expression databases contain data about more than million biological

samples, from hundreds of tissues and diseases. In principle, we know the ex-

pression patterns for all genes in these samples. By re-using and integrating these

datasets it is possible to tackle novel biological problems with only computational

means. To take maximal advantage of public gene expression data, there is a need

for appropriate statistical methodology, user friendly software for exploring the

data, novel ways of visualisation, etc. This thesis presents several articles that

address these problems.

In many cases even making the data more easily accessible can be useful. As

a first project, we built a web based data atlas for a large consortium studying

embryonic stem cells. The atlas consisted of series of interactive visualisations

that presented the data from various angles. The goal of this work was to facilitate

collaboration between the partners and to give the public an easy way to access

the data.

Often it is possible to increase the power of an analysis by performing it in

many datasets simultaneously and then integrating the results. Our web server

MEM takes advantage of this idea, by allowing to search for genes with similar

expression pattern over hundreds of datasets. By using many experiments we

increase the reliability of results.

Using many datasets creates a need to integrate the results. For MEM we

created novel method RRA for integrating ranked gene lists. It works well on

noisy input data, since it is robust and evaluates also the significance of the results.

These features, however, make the method useful also in many other bioinformatic

applications, where data has to be integrated from multiple experiments.

Visual inspection of results is critical in every step of the microarray analy-

sis, since the data is complex and can contain unexpected patterns. This thesis

presents a method for visualising the results of functional analysis of gene lists

as word clouds. It allows to combine the annotations of multiple gene lists and

present them together with experimental data. This way it is possible to create

concise and effective summaries for common analyses on gene expression data.
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CHAPTER 1

INTRODUCTION

The invention of gene expression microarrays has given molecular biologists the

ability to measure expression of thousands of genes in parallel with a relatively

low effort. The results from such experiments carry a wealth of information, but

the sheer size of the data has created numerous computational and statistical chal-

lenges. This has attracted many computer scientists and statisticians to work on

this topic. They study how to effectively store and handle the data, how to nor-

malise and preprocess it and, finally, how to interpret it statistically. By the mid-

point of previous decade, main components of the analysis pipeline for a single

experiment had emerged. The software and infrastructure has evolved signifi-

cantly from then, but methods for basic analyses such as normalisation, clustering

and statistical testing have not seen major improvements.

At the same time new bioinformatic challenges emerged from terabytes of

data that had been gathered into public gene expression databases. The interest-

ing aspect about the gene expression data is that the measurements are relatively

comprehensive. They yield information also about the genes that are not in the

immediate interest of the researchers who conducted the experiment. This infor-

mation, however, can be relevant in some other context. Therefore, the existing

genomic data can be re-used to find answers to new biological questions. There

have been numerous studies since then employing this approach, for example, to

predict gene function or to identify disease specific genes.

Still, there is big potential in re-use of the existing data. Databases contain tens

of thousands of experiments describing hundreds of tissues and diseases. When

presented appropriately these datasets can assist in day-to-day lab work: in de-

signing experiments, in prioritising candidate genes for experimental analysis or

in viewing the obtained results in a wider context. Although the data can be down-

loaded freely from public databases, it is not easy to extract the relevant informa-

tion from there. Useful bits of information are hidden in huge amounts of data and

what can be called "useful" depends heavily on the question at hand. Thus, each
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biological question requires customised approach and there is no single solution

that would take care of all the problems related to re-use of gene expression data.

Rather the solution is to develop many approaches that can reveal different aspects

of the data.

The main goal for this work is to create methods and tools that help to take

advantage of public gene expression data. This thesis covers four articles that

tackle this problem from different angles.

One of the main obstacles for re-using gene expression data is its accessibil-

ity. Even though there are huge collections of data freely available in dedicated

databases, it still takes considerable effort to download the data, perform proper

pre-processing and actual analysis. Moreover, people who would need the results

the most, lack the specific statistical and computational skills that the analysis re-

quires. One way to improve the accessibility of the data is to create web based

environments for that make certain types of analysis on public data more user

friendly. This thesis covers two articles that take this approach.

• Article I - "The FunGenES database: a genomics resource for mouse em-
bryonic stem cell differentiation." - describes a database for Functional Ge-

nomics in Embryonic Stem Cells (FunGenES) consortium data, where we

provided tools to interactively mine the gene expression data generated by

the consortium.

• Article II - "Mining for coexpression across hundreds of datasets using
novel rank aggregation and visualization methods." - describes a web based

tool called Multi Experiment Matrix (MEM) that allows to search genes

with correlated expression patterns over large collections of public gene

expression data.

Often when re-using gene expression data there is a need to integrate results

from multiple sources. For example, there can be multiple similar studies or sev-

eral experimental approaches to study the same question. There are many meth-

ods for data integration, but often the analysis reduces to comparison of gene

lists. While this task is common, there are not many techniques that are designed

specifically with lists of genes in mind. This thesis presents a rank aggregation

method that can handle many of the practical problems that integration of gene

lists presents.

• Article III - "Robust Rank Aggregation for gene list integration and meta-
analysis." - describes the Robust Rank Aggregation algorithm in detail.

While re-using expression data and working with multiple datasets it is im-

portant to obtain good overview about each dataset. Knowing features like data

14



quality or most important experimental factors could have substantial impact for

the downstream analysis. Various visualisation methods in combination with data

mining approaches are the key to summarise the large datasets in compact format.

Last article in this thesis presents a novel visualisation method that can quickly

create high level functional overviews of complex datasets and, thus, improve the

quality of subsequent analysis.

• Article IV - "GOsummaries: an R package for visual functional annotation
of experiemtnal data" - describes an R package GOsummaries package that

allows to summarise the results of common analysis methods in compact

manner, by representing functional annotations of gene lists as word clouds.

Thesis itself is organised as follows. First, the Preliminaries chapter gives a

short background of the methods in molecular biology and bioinformatics that are

required to understand the rest of the thesis. Next chapters give more specific

context and summarise shortly the articles I-IV. As several of those are written in

collaboration with many co-authors, then the summaries are concentrating more

on my contribution to the studies. Copies of the articles I-IV are included at the

end of this dissertation.
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CHAPTER 2

PRELIMINARIES

2.1 Gene expression and its regulation

The heritable information in most living organisms is stored in long molecules of

deoxyribonucleic acid (DNA). These molecules are chains of four nucleic acids:

guanine, adenine, thymine, and cytosine (G, A, T and C). The order of the nucleic

acids encodes instructions on how a cell is built and how does it work. Most

importantly, regions in the genome, called genes, encode the sequence of amino

acids of all the proteins that can be found in the cell. Proteins are vital parts of a

cell that participate in almost every process taking place in there. Humans have

roughly 20000 protein-coding genes (Consortium et al., 2012).

The information in DNA is turned into functional proteins in a two step pro-

cess. First, the sequence of the DNA is transcribed into a complementary se-

quence of ribonucleic acid (RNA), called messenger RNA (mRNA). Then these

molecules are transported to ribosomes, where the RNA sequence is translated

into amino acid sequence that forms a protein. This process of converting infor-

mation in a gene into a protein is called gene expression

In principle, the genomic sequence is the same in every cell of the organ-

ism. The diversity in the build-up and function of the cells only becomes possible

through the differential regulation of gene expression. There is a number of mech-

anisms that control the gene expression.

An important class of proteins that has the ability to bind to DNA in a sequence-

specific manner is called transcription factors. When bound, they can attract

RNA polymerase protein that performs the transcription, or conversely block the

transcription. All of the transcribed RNA is not used to make proteins. Some

RNA itself is used for regulating gene expression. For example, small microRNA

(miRNA) molecules bind to complementary mRNA molecules and suppress their

translation into proteins.

The gene expression and the described regulatory mechanisms represent only
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a subset of all the events happening in a cell. However, these processes are the

most relevant in the context of this work, since they can be characterised in a

high-throughput manner.

2.2 Measuring gene expression

Measuring the expression of genes and the activity of the regulatory mechanisms

often boils down to quantifying the abundance of different RNA/DNA molecules.

The amount of a specific protein, can be approximated by the number of the cor-

responding mRNA molecules in the cell.

The ideal way to quantify RNA/DNA molecules would be sequencing them

individually and counting afterwards. Until recently such an approach was pro-

hibitively slow and expensive. As a substitute high-throughput technique, mi-

croarrays were developed. Microarrays are experimental devices that contain sin-

gle stranded DNA molecules with predefined sequence to capture RNA molecules

with complementary sequence from the solution of interest. The molecules in the

sample are labeled with a fluorescent dye, so the abundance of molecules that are

bound to a specific set of probes on the array can be estimated by the intensity

of light they emit. Typical microarray can fit in the order of 10000 - 1000000

different probes. Therefore, it is possible to fit a probe or even multiple probes

for every gene to a microarray. This makes microarrays convenient for measuring

gene expression.

Much of the work in this thesis is devoted to the analysis of gene expression

microarray data. Thanks to all the new developments in sequencing, imaging and

other high-throughput methods, the importance of gene expression microarrays

in molecular biology is declining. However, most of the methodology that was

developed for analysing such data will remain relevant as it can be easily adapted

to newer technologies.

2.3 Gene expression data and common analysis
approaches

At first glance a dataset with information about all genes offers a large number of

possibilities for analysis, but in most cases the analysis follows the steps shown in

the Figure 2.1.

First, the measurements are obtained from the machine in a raw format. The

format and content of these files depends a lot of the technology used. The first

goal of the analysis is to convert the data into a matrix format where rows corre-

spond to genes, columns to samples and the values in the matrix show the expres-
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Gene expression 
experiments

Differential expression Clustering Co-expression . . .
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Visualisation

Preprocessing/
Normalisation

PCA

Rank aggregation

Figure 2.1: Overview of the typical analysis pipeline of gene expression microarrays.

sion levels. This step again depends on the technology, but usually involves image

processing, background correction, removal of technical biases, etc. A great deal

of research has been conducted on pre-processing and normalisation of the raw

data (Amaratunga and Cabrera, 2001; Bolstad et al., 2003; Huber et al., 2002).

However, in this thesis we focus on analysis that comes after we have obtained

the gene expression matrix.

To get a first glance of the data, people often use Principal Component Analy-

sis (PCA). PCA reduces dimensionality of the data while preserving relationships

between the observations or samples. In case of expression data, it allows to

shrink thousands of gene expression values into only a few principal components

that can be visualised as a scatterplot. The distances between the samples in this

plot approximate the actual distances in the high dimensional space, giving a good

overview of their relationships. This type of visualisation is popular, since it sum-

marises the data concisely in one plot, does not require any additional data or pose

any constraints to the experimental setup. A more thorough overview about PCA

is given in section 6.2.

The most important approach in genome-wide gene expression analysis is

finding differentially expressed genes between experimental groups. In the sim-

plest case of two groups of samples, healthy and diseased for example, we can

apply a t-test across every row of the expression matrix. As a result we obtain a

list of genes where the difference in average expression between the experimental
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groups is statistically significant. Depending on the experimental setup one can

apply also more complex statistical algorithms than t-test, such as more sophis-

ticated linear models (Smyth, 2004), non-parametric tests (Breitling et al., 2004)

or Bayesian approaches (Baldi and Long, 2001). Differential expression analysis

allows to discover genes that are related to various diseases, specific to certain

tissues, etc.

Another central concept in gene expression analysis is the co-expression be-

tween the genes. Most fundamentally, if two genes have a similar expression

profile through several biological conditions, they can be expected to be similar

also at functional level. For example, they can be regulated by the same factors or

participate in similar processes. There are various ways how the similarity infor-

mation is used in the bioinformatic analyses. For example, the similarly expressed

genes have been used to assign functions to the unannotated genes (Huttenhower

et al., 2009), to prioritise the disease related genes (Aerts et al., 2006), to verify

predicted protein-protein interactions (Kemmeren et al., 2002), etc.

The most popular approach using similarity of expression profiles is cluster-

ing. Since the number of distinct patterns in the data is usually much lower than

the number of genes then it makes sense to group together genes with similar pro-

files. There are two main types of clustering. Hierarchical clustering creates a tree

using the similarity scores. K-means and other similar algorithms divide the data

into predefined number of groups. Clustering of genes is mostly used for visuali-

sation purposes, to identify major trends in the dataset with more than two or three

experimental groups. The columns of the expression matrix can be clustered as

well, this reveals the similarity structure between the biological samples. This has

been used, for example, to define subtypes of cancer that have similar expression

profiles (Sørlie et al., 2001).

Clustering, co-expression analysis, differential expression analysis and many

other methods yield (ranked) lists of genes as a result. A gene list in turn is a nat-

ural entry format for many downstream analyses that try to integrate the findings

with existing information. A common approach is to search biological processes

and pathways that are enriched in a list of genes. This approach is called Gene

Ontology enrichment analysis and is described in detail in section 6.1. It allows

to convert the gene names into more general and understandable functional terms.

But lists of genes can also be viewed in the context of existing gene networks to

see if they are functionally related or can have protein level interactions (Szklar-

czyk et al., 2011).

An important part of any analysis is data visualisation. The gene expres-

sion data contains information about tens of thousands of genes in many samples.

Thus, it is not possible to comprehend the information in the data by just look-

ing at the numbers. Visualisation usually accompanies every part of the analysis
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described in Figure 2.1, aiding the understanding of the results, providing sanity

checks for the methods and helping to identify outliers and dominant patterns in

the data. The most common way to display the gene expression data is a clustered

heatmap (Eisen et al., 1998). It is a great fit, since it is designed to display larger

numeric matrices, just like gene expression matrix.

When the results of a gene expression experiment are published, the raw

data is usually uploaded to some public database like Gene Expression Omnibus

(GEO) (Barrett et al., 2009) or ArrayExpress (Parkinson et al., 2009). This allows

to independently validate the analytic procedures and the claims of the authors.

2.4 Re-analysis of collections of gene expression data

Storing data in public gene expression databases has also created the opportunity

to re-use the datasets in other contexts. In the beginning of 2013 there was data

from over 30 000 experiments covering over million samples in ArrayExpress

database (Rustici et al., 2013). It means that wide spectrum of tissues, diseases

and treatments are covered already with existing microarray data. Therefore, it

is a great opportunity for the bioinformatics community to re-analyse or create

tools that allow re-analysing the growing amount of public experimental data. A

good overview about the usage of public data can be found in (Rung and Brazma,

2013). The goal of this thesis was to create tools and methods that would facilitate

re-use of public data.

One aspect that complicates the re-use of expression data is the poor avail-

ability of annotations describing the original experiment in appropriate detail.

Even though there are rigorous standards for annotating microarray experiments

(Brazma et al., 2001), in most cases it is still hard to understand the experimental

setup and the origin of samples without reading the original article. Performing an

analysis on larger set of data requires a lot of re-curation to unify all annotations.

It has been done on several occasions (Lukk et al., 2010; Rhodes et al., 2004b),

but it is often not practical.

There are many things that can be done with collections of gene expres-

sion data with adequate annotations. One common approach has been to gather

datasets from specific domains of molecular biology, such as stem cells or cancer

and to present them in the web in a more accessible format. Examples include

Stemformatics (Wells et al., 2013), Stembase (Sandie et al., 2009), ESCDb (Jung

et al., 2010), etc. These databases are aimed to be used by biologists who need

to compare their own results against existing data and who want to learn more

about the behaviour of specific genes in a larger set of relevant conditions. Even

without complicated analyses, just by making the data more easily accessible, it

is possible to create useful resources for the experimental community.
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A common approach is to scale up single dataset analysis methodologies. For

example, the co-expression analysis can be used in multiple dataset approach.

We can be more confident that co-expression indicates functional relationship be-

tween specific genes, if it persists across many conditions. Therefore, including

multiple datasets in the analysis should considerably improve the biological inter-

pretation of the results. In co-expression studies we also do not have to worry too

much about re-curation of the datasets, since correlations between the expression

values can be calculated without knowing anything about the samples. There are

many examples that use co-expression information in this way. Most importantly

it has been used for predicting gene function (Huttenhower et al., 2009; Hibbs

et al., 2007; Wolfe et al., 2005; Sardiello et al., 2009).

Other popular approach is to collect experiments with similar goals, perform

differential expression analysis and try to aggregate the results in a meta-analysis

(Ramasamy et al., 2008). For example, there are many studies identifying lung

cancer specific genes in different cohorts, therefore, it is reasonable to base the

conclusions on larger number of samples. This has been done, for example, for

thyroid (Griffith et al., 2006), breast (Wirapati et al., 2008) and colorectal cancers

(Chan et al., 2008). A web based resource Oncomine (Rhodes et al., 2007) has

been created that collects differentially expressed gene lists from public cancer

data and allows researchers easily select and combine results of the experiments.

In both differential expression meta-analysis and co-expression studies method-

ological questions arise on how to integrate information from many sources. There

are many options and the choice depends heavily on the nature and quality of the

data. An overview about the integration methods for differential expression meta-

analysis can be found in section 5.1.
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CHAPTER 3

FUNGENES DATABASE

The FunGenES consortium (2004-2007) consisted of 15 research groups and was

founded to study basic biological properties of embryonic stem cells and their dif-

ferentiation. Among other experiments, consortium partners created many gene

expression datasets describing various lineages of cell differentiation. Our role as

the bioinformatics partner in this collaboration was mainly to provide bioinfor-

matic support in analysing and interpreting the data. As the experiments explored

closely related topics and were often complementary, it was also important to fa-

cilitate sharing of the results and data between research groups. Most importantly,

there was little embryonic stem cell data in public domain at that time, therefore,

we also had to create a publicly available resource that allowed convenient access

to the FunGenES experiments.

As a result, we contributed to several individual studies by analyzing the data

(Billon et al., 2010; Trouillas et al., 2009; Storm et al., 2009; Gaspar et al., 2012;

Doss et al., 2010). However, to facilitate collaboration within the project and share

the data with community we ended up building a set of simple web based tools

and interfaces available at http://biit.cs.ut.ee/fungenes/. These are introduced in

more detail below.

3.1 FunGenES database - article I

A common scenario within the consortium was that one group identified a set of

genes with interesting expression pattern in one experiment and then wanted to

check how these genes are behaving in related experiments. Based on raw data,

such analysis would take more time and effort than the expected result is worth.
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Expressview: web based clustering and visualisation tool

To make this analysis easier we created a simple web service. It included all the

FunGenES data and people could enter genes of interest and see their expression

as a clustered heatmap on selected dataset. Despite being a simple tool, it gave

the biologists an access to data generated within the consortium and a way to put

their own results into a wider context.

A B

C

Figure 3.1: Panel A shows the result of two level clustering on the time course data. Each

row in the left heatmap corresponds to a cluster of genes. The clusters centers are in

turn clustered hierarchically. In the web interface one can zoom into clusters or combine

clusters together by clicking either on the heatmap rows or the nodes of the tree. The right

heatmap displays the expression of gene from cluster 13 that is marked with the orange

square. Panel B shows the overview of the gene expression "wave" analysis, where we

associated genes with prespecified array of patterns. Panel C shows an overview of on

specific wave (marked with red star in B).

This tool gave an overview of only small part of the dataset. Some of the

datasets were rather complex, covering several time points and treatments. To

generate sensible hypotheses it was important to understand the general structure

of the dataset in terms of prevalent trends and patterns. This type of analysis is
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usually done by clustering, however, the ordinary methods have several shortcom-

ings. The k-means type of methods divide the genes into predefined number of

groups. These methods are fast and can handle all the genes easily, but it is hard

to optimise the number of clusters. The distribution of genes in gene expression

space is rather continuous and their division into non-overlapping groups is rather

arbitrary. Ideally, we would also like to take into account the functional similarity

of the genes, vary the level of granularity of the clusters based on the interest-

ingness of the patterns, etc. Therefore, the results generated using an automatic

methods often just do not "feel right". Hierarchical clustering is much better in

that sense. Based on the tree it creates, it is easy to select the sub-trees that are

interesting. However, hierarchical clustering has both computational and percep-

tional problems with larger datasets. Its complexity grows quadratically as the

number of genes increases. It is possible to speed up the computations to be able

to cluster large datasets (Kull and Vilo, 2008), but even then it is hard to visually

inspect a clustering tree that covers thousands of genes.

To build on the strengths of both approaches, we decided to merge them and

provide a web interface where one could interactively browse and re-organise the

clusters. At first we used the k-means clustering of the data, using an arbitrary

number of clusters, for example 50. Then we performed hierarchical clustering of

the centres of these pre-formed clusters and displayed the result on a heatmap. In

the web interface it is possible to merge the clusters that are similar to each other

according to the hierarchical clustering tree. Also, it is possible to zoom into the

clusters to see individual genes. An example of this visualisation can be seen on

Figure 3.1A.

The original k-means clusters give an unbiased general overview of all the

patterns present in the data. However, owing to the subsequent hierarchical clus-

tering we excluded the problem of the number of clusters being too big, since

redundant clusters could always be merged afterwards.

This type of clustering turned out to be useful for displaying and analysing the

stem cell differentiation time series included in the project. This data contained

many temporal patterns related to the specific stages of differentiation. Statistical

tests fitting regressions or group-wise comparisons would quantify the presence

of predefined patterns. However, the number of possible patterns in such setting

is too high to be tested individually. Ordinary k-means clustering would identify

the most common patterns, but there would be questions about the correct number

of clusters and other parameters that influence the result. The hierarchical display

of the k-means results and interactive features of our web interface allow to zoom

into clusters and combine them to create an optimal grouping of the genes.
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Time series clustering with templates

Using the clustering approach, we found out that the dominant patterns in the data

were "waves" of genes switched on and off at different points of differentiation.

To quantify these patterns more rigorously, we created a set of wave like template

patterns and searched for most correlated genes with every template. We created

an interactive web interface to display these gene groups. It can be seen in Figure

3.1B and 3.1C. In this page, it is possible to see the prevalence of various patterns

and study the relevant genes together with their functional annotations.

The FunGenES project also spurred development of some standalone tools in

our group, such as g:Profiler (Reimand et al., 2011) for GO enrichment analysis

and KEGGAnim (Adler et al., 2008) for overlaying expression data to the KEGG

pathway maps. Although the use of each individual tool is fairly limited, when

combined together, they can give a rather comprehensive overview of the available

data and provide an easy way for access. We created a separate webpage that

brought all the analyses together and added also quick links to external databases.

For example, with only few clicks, it is possible to start from a group of genes

with interesting wave pattern, inspect how these genes behave in other FunGenES

datasets, annotate them functionally with g:Profiler or visualise their relations in

gene networks using external tool like STRING (Szklarczyk et al., 2011).

Summary and impact

By creating FunGenES database, we have generated a resource that adds value

to the body of data that arose from the consortium. Several studies (Trouillas

et al., 2009; Billon et al., 2010) from the FunGenES consortium and elsewhere

(Singh et al., 2012; Davis and Summers, 2012; Tanwar et al., 2014) have used

these database features extensively, for viewing their results in the context of

FunGenES data. The tools have been used by our group in several subsequent

collaboration projects and are still being developed further.

Contribution

In this project, I developed the heatmap-based visualisation and clustering tools,

the time series clustering and put together the final website. Additionally, I took

part of writing the article and provided several case studies for it.
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CHAPTER 4

CO-EXPRESSION QUERIES ON LARGE
COLLECTIONS OF DATA

Within FunGenES consortium, we created a web-based resource that presents ex-

tensive microarray data in a more accessible format. The users can now browse

and ask simple questions without the need to deal with the technical analysis

details of microarray data. Such approach can be developed further, if we in-

clude more data from pubic domain and implement more demanding data analysis

pipelines.

Co-expression analysis is one of the analytical techniques that benefits greatly

from the usage of multiple experiments (see also Chapter 2). Since co-expression

can reveal functional relations between the genes, it is relevant in many applica-

tions. Even though in co-expression analysis one does not have to worry about

the data annotations too much, it is still a lot of work. One has to download all

the datasets, perform proper normalisation, decide on the aggregation strategy,

perform the actual analysis, etc.

To make co-expression analysis on public microarray data easier, we have

created a web based resource named Multi-Experiment Matrix (MEM) that is

located at http://biit.cs.ut.ee/mem/. We have downloaded and pre-processed large

amounts of microarray data and built a query interface that can identify co-expressed

genes in a given set of experiments.

4.1 MEM - article II

The goal of MEM is to find genes that are co-expressed with a given gene across

many gene expression experiments. The co-expression search is performed in

several steps:

• in every dataset, search for genes with profiles similar to a gene of interest;
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• aggregate the individual gene lists;

• visualise the results in an interactive manner.

The result will be a ranked list of genes. In the next sections each of those steps

is discussed in more detail

Similarity search

First, MEM performs the similarity search in every dataset. In principle, any

distance measure can be used in this step to measure the co-expression. Several

of those are also implemented in MEM. However, the most natural metric for co-

expression is the correlation distance, since we are interested in gene pairs with

similar expression dynamic. Some biological questions also require other type of

distances. For example, if the query gene is a suppressor of transcription, then

it would be interesting to search for genes that are anti-correlated with it. Some

regulators can both induce and repress gene expression, thus, both correlated and

anti-correlated genes are interesting. For these reasons, we have also the anti-

correlation and absolute correlation implemented in MEM

Gene list aggregation

In the next step of the analysis, the information from all the individual similarity

searches is aggregated. We considered using the actual similarity scores, like cor-

relation values, for aggregation, but this demonstrated to have several drawbacks.

First, we would have had to create a custom aggregation scheme for every metric,

since their characteristics are quite different. More importantly, we discovered

that the distribution of the similarity scores depended heavily on the structure of

the dataset, the experimental design, number of samples, etc. Therefore, the simi-

larity scores from different datasets were not directly comparable and we decided

to aggregate the data on the ranked gene list level.

An obvious solution would have been to re-order the genes by their average

rank or use some rank aggregation method. However, all the existing methods

exhibit the same problem, they take into account all the information in the in-

put rankings and, thus, are sensitive to noisy inputs. There were not many gene

pairs that were co-expressed universally in every dataset. Even with gene pairs

with strong co-expression there was a large proportion of datasets where the co-

expression was non-existent. Therefore, a good rank aggregation algorithm for

our setting had to be sensitive in a situation where many of the inputs could be

considered as noise.

To find a more sensitive method, we introduced a new probabilistic approach

for aggregating ranks. Instead of trying to find genes that are consistently similar
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to the query gene in all the datasets, we tried to find the ones that are similar in

unexpectedly many datasets. Since we published this method in a separate article

it is described in more detail in the next chapter.

| Help | Intro |

MEM - Multi Experiment Matrix

Enter gene ID(s) nanog  (for example: Jun, 203325_s_at, ENSG00000204531, ...) [?]

1 NANOG 1.1  1429388_AT (NANOG) Homeobox protein NANOG (Homeobox transcription factor Nanog) (Early embryo specific expression NK-type homeobox protein) (ES cell- associated

Select collection  A ymetrix GeneChip® Mouse Genome 430 2.0 [Mouse430_2] (487 datasets)  [?]

Submit query

Options:  Similarity  Output  Gene filters  Dataset filters

[?] | GO annotations | ExpressView | URLMap link | Static URL | Query details |

Results

Handpicked datasets :  :  :  :  : reset all | 419 datasets excluded by filters

B

A

C

D

B

C

A

D

Figure 4.1: Example of MEM user interface and output for embryonic stem cell regu-

lator Nanog. The top part shows the user interface for specifying the query and bottom

part displays the results. The most co-expressed genes are displayed in the rows and the

matrix shows the correlation ranks in individual datasets. The visual cues A-D, highlight

the interactive features of MEM that allow to get more information about the genes and

experiments.

User interface

The MEM analysis is performed in a web based user interface. User has to enter

the name of a gene of interest and optionally select the datasets to run the analysis.

The resulting gene list and additional information is shown as a heatmap type

plot. Figure 4.1 shows an example of MEM output for well known embryonic

stem cell regulator Nanog. The heatmap shows the top genes from the query
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and their positions in every dataset as a matrix. For example, in Figure 4.1 we

can see that most of the top genes are co-expressed with Nanog only in a small

number of datasets. Several interactive features allow more in-depth study of these

results. For example, one can get more detailed information about the experiments

and genes (Figure 4.1B and 4.1C). The datasets with similar results can also be

characterised using text mining approaches. The resulting word cloud can be

seen in Figure 4.1A. We have also integrated the heatmap drawing web interface

that was developed for FunGenES to MEM and this can be used to visualise the

expression of the resulting genes in the underlying datasets (Figure 4.1D).

Dataset selection

The core algorithm of MEM works as described above. However, we discovered

that we can obtain more meaningful results by performing dataset selection, prior

to performing any analysis. In theory, adding datasets should increase the breadth

of the search and, thus, improve the results of co-expression analysis. In prac-

tice, however, a gene might not always be expressed or its expression is the same

across samples and its co-expression with other genes is random. Also the pres-

ence of various regulatory mechanisms means that the co-expression patterns be-

tween tissues can be different. For solving these problems we have implemented

two dataset selection mechanisms. To concentrate on a specific tissue, disease or

cell type, one can manually select the datasets using the dataset annotations as a

guide. To remove noisy datasets from the search, MEM will only use datasets

where the standard deviation of the query gene is above some threshold. We ar-

gue that in case of small variation the changes in expression correspond to random

fluctuations, but larger variation can indicate some biologically meaningful signal.

To find a suitable default threshold, we performed an experiment. We ran

MEM queries on 2000 genes. In each query we recorded the number of genes

above the same significance limit. Then we checked if the number of results in a

MEM query is correlated with the number of datasets where standard deviation of

the query gene was over some threshold. Indeed, we found correlation. Therefore,

we get more results from a MEM query if the variation of a query gene is over

some threshold in more datasets. To find the best standard deviation threshold,

we found this correlation with many potential thresholds between 0 and 1 and

found that values around 0.3 gave the best correlation and, thus, serves as the best

threshold. This number is valid for Affymetrix data that is normalised with RMA

method (Irizarry et al., 2003), since this is the main type of data that is used by

MEM.

Empirical observations confirmed the utility of selecting the datasets for a

query gene in such a way. For example, in Figure 4.1 the genes that were identified

as co-expressed with Nanog, an embryonic stem cell regulator, were also related
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to embryonic stem cells. However, if we performed this query on all datasets,

then the results were rather generic and did not display strong enrichment of any

specific functional category.

Summary and impact

With MEM we created a unique tool that enables analyses what in most cases

would be practically infeasible. The amount of raw data processed for the origi-

nal publication was large, around half a terabyte. At the time of publishing, at the

end of 2009, it was one of the largest gene expression data collections that can be

interactively queried and mined. MEM has already been used in several studies.

For example, to add evidence that two genes are functionally related (Chen et al.,

2013; Tabach et al., 2013; Sircoulomb et al., 2011; Schraenen et al., 2010). In

some studies the gene lists that were identified by MEM were used to infer func-

tional context of certain genes or gene groups (Lacunza et al., 2013; Ivanov et al.,

2013).

Contribution

The large amount of data that was included into MEM created various challenges.

We had to develop suitable methodology and implement it in an efficient manner

to make the queries possible. Also, we had to create a user interface that would

allow to customise queries and display the results in a compact but informative

manner. Tackling such challenges takes a group effort. I was mainly responsible

for the methodological part, but also performed several case studies and drafted

the article.
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CHAPTER 5

ROBUST RANK AGGREGATION

In MEM, the co-expression query was performed in individual datasets and the

ranked gene lists from these queries were aggregated into one ranking afterwards.

Since the inputs were noisy, the traditional rank aggregation methods were not the

best choice. Thus, we came up with a statistical rank aggregation method - Robust

Rank Aggregation (RRA) - that is more tolerant to noise and also adds statistical

confidence to the re-ranked elements.

Rank aggregation, in principle, could have many applications in bioinformat-

ics, especially when re-using public expression data. Ranked lists of genes are

a common output type for many bioinformatic analysis pipelines (see Figure 2.1

from Chapter 2) and rank aggregation methods are a natural fit for integrating

data from multiple sources. However, the same problems that we had in MEM,

are present in other bioinformatic applications. The gene lists tend to be noisy

and in many cases there might be nothing relevant in the output at all. Also there

can be problems with missing information. We recognised that RRA with some

modifications has several features that make it a great fit for this setting and, thus,

can be practical in many other situations beyond MEM.

The most obvious application of this method is differential expression meta-

analysis. Next section gives a brief background on the problems and methods

related to such analysis. Although, it is only one possible scenario for using RRA,

much of this applies to other use-cases as well.

5.1 Meta-analysis of gene expression data

Differential expression meta-analysis integrates differentially expressed gene lists

from multiple experiments with similar goals, for example, mis-regulated genes

in different cancer cohorts.
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Ramasamy et al. (2008) list the best practices to perform such study. It would

be ideal to download raw data for all the experiments, normalise it, put it all to-

gether in one table and perform differential expression analysis using a suitable

model. However, in practice the experiments are done using different platforms,

covering differing sets of genes and using incompatible technologies. More im-

portantly, many of the published studies do not include raw data and the published

list of genes is the only available result. Therefore, first, the results have to be ac-

quired from the individual studies and then aggregated somehow.

For aggregation there are several options. Simplest is maybe vote counting

(Rhodes et al., 2004a; Griffith et al., 2006), where genes are ranked by the num-

ber of input lists where they are present. The statistical significance can be as-

sociated with the results using permutations. Rank aggregation approaches take

more information into account, as they consider also the ordering of the significant

results. Several studies apply the classical rank aggregation methods (DeConde

et al., 2006; Pihur et al., 2008), but some have devised novel strategies that take

the biological setting more into account (Zintzaras and Ioannidis, 2008; Hong and

Breitling, 2008). Finally, one can also include the information about the effect

sizes and p-values and use a technique like Fisher sum of logs (Rhodes et al.,

2002) for combining p-values or inverse variance technique to combine effect

sizes (Choi et al., 2003).

In theory, the latter methods are preferred, but in practice we might not be able

to apply them because there are several common problems with the data. First,

the effect size and p-value information might be incomparable between datasets,

since initially different statistical tests were used. Second, several methods require

full gene lists to be able to work properly, but if the raw data is not available, we

can only rely on the lists of significant genes. Third, some genes are missing from

some lists, since they were not measured by a certain platform. It is common

that newer arrays can cover several times as many genes as the older ones. This

type of structurally missing data should be handled properly, otherwise the results

are biased towards genes that are represented in more lists. Finally, it is entirely

plausible that even the top results of the aggregation are not relevant at all, if the

input lists correspond to different biological questions, the underlying cohorts are

incompatible or have just poor quality. Therefore, it is critical that the aggregation

method would assess the significance of the results.

If the critical statistical information, such as effect sizes and p-values for all

genes, is missing or incompatible, then it is not possible to use the methods like

Fisher sum of logs. However, even if they are available, simpler rank aggregation

methods can provide a better fit. The p-values and effect sizes are sensitive to

study design and structure of the cohorts (Hong and Breitling, 2008). The ranking

of the genes tends to be more stable between comparisons than the p-values.
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On the other hand, vote counting methods are robust and can almost always

be applied, since they need only gene lists that even do not have to be ranked.

But these methods have several other problems. First, the results will be granular,

especially, when the number of lists to be aggregated is small. Second, the results

depend on rather arbitrary significance thresholds and studies with larger number

of significant genes may dominate overall results. Most importantly, it is hard to

assess significance of the results. In principle, it can be done using permutations.

However, it gets complex if the number of the significant genes differs between

the lists and there is structurally missing information.

Rank aggregation methods have the potential to be a good compromise be-

tween the two options. They take into account the ordering information, but are

resistant to the noise in the actual p-values. Available methods, however, have

several problems. The classical rank aggregation methods (DeConde et al., 2006;

Pihur et al., 2008), do not assign significance to the results, do not take the struc-

turally missing information into account properly and are not robust enough, to be

really practical. Other rank aggregation methods (Zintzaras and Ioannidis, 2008;

Hong and Breitling, 2008) require full rankings that are often unavailable. The

Robust Rank Aggregation (RRA) method that we developed for MEM, however,

fits this setting well. On one hand it is robust and can measure significance of the

final results, and on the other hand it copes with most of the practical problems.

5.2 Robust Rank Aggregation method - article III

Unlike the classical rank aggregation methods, RRA is based on statistical model.

It means that we have described an uninteresting scenario, a null model, and try

to re-rank genes based on how much do they deviate from this. In the null model,

all the input lists would be random permutations of the same set of genes. That

means, if we take one gene and extract its positions from all the input lists, then

the distribution of them should be uniform. However, we are interested in genes

that preferentially are ranked at the top of the list. Therefore, we have to look for

the genes that have more of small ranks than would be expected by the uniform

distribution. The difference from uniform distribution can be tested statistically

and the test scores can be used for re-ranking the genes.

Algorithm

First, we normalise the ranks in each input list by dividing them with the total

number of genes. This converts them to the range from 0 to 1. Now we have

to compare for each gene the actual normalised rank distribution with standard

uniform distribution. A simple option would be to set an arbitrary threshold, for
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example 10%, and use the number of times a gene appeared at the top 10% as

a test statistic. Under null hypothesis of uniform distribution this number has a

binomial distribution. Knowing this, it is possible to calculate a p-value for every

gene and re-rank them according to the p-values.

Of course the 10% cutoff would be rather arbitrary and is not always optimal.

For example, in some cases the ranks are most enriched at top 5% and in other at

top-20%. Therefore, we can try several cutoffs and select the one with the best p-

value. In RRA we use each individual rank in the rank vector as a cutoff, calculate

a p-value and report the smallest of them. After using Bonferroni correction we

can use this score as a p-value.

An illustration of this algorithm is shown in Figure 5.1. There are examples

with two genes, one with many ranks at the top and other with more uniform

distribution. The panel B shows how the p-values change with different cutoffs

and where they reach the minimum. In case of the first gene, we can see that

the p-value drops rapidly, since there are many ranks close to 0. For the second

gene none of the p-values get too small since the ranks are distributed more or less

according to the null (uniform) distribution.
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Figure 5.1: Illustraton of RRA principle on two genes with different rank distribution.

Panel A shows the distribution of the ranks for two genes in 20 input rankings. Panel B,

shows the p-values for each of the ranks. Yellow dot marks the minimal value that is used

as the final score for the gene.

The RRA method satisfies most of the requirements for gene expression meta-

analysis that were listed above. First it is robust by design. The scores depend only

on the best ranks and do not take into account the worse ones. Thus, adding a to-

tally random list to the inputs would not change the results much. The robustness

was confirmed by the simulations and case studies in the article.

Second, RRA assigns a p-value to every gene. This p-value shows if a gene is

ranked more often at the top than expected by the null model. Having such scores
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is important in practice, since it gives an indication of how many genes at the top

of the aggregated list we can trust.

Missing data

Often we have only the top rankings or only the significant results available. For

RRA this is not a big problem, since it takes into account only the best ranks

anyway. Therefore, we can replace the unknown ranks with the worst possible

rank. Simulations show that this schema is efficient. There is no big difference in

the number of significant genes if we have either full rankings available or only

the top lists.

The RRA framework can also handle properly the structurally missing infor-

mation, i.e. situations where some genes are measured in only a subset of input

lists. This requires small adjustments to the algorithm. When the number of

genes measured by different platforms has large differences, the comparison of

raw ranks is not entirely fair. However, RRA uses normalised ranks and taking

into account the total number of genes measured by a certain platform. When

calculating the p-values it is possible to leave out all the lists where a gene was

not measured. As a result we get a valid p-value that measures the statistical evi-

dence of a gene being ranked more preferentially at the top. As such, it is correct

to compare these p-values, even if they are based on wildly differing numbers of

rankings.

Example: meta-analysis of miRNAs in cancer

Simulations and case studies showed that in terms of pure rank aggregation per-

formance it is comparable or slightly better than alternative methods. However,

its real value lies in its versatility and ability to handle the most common practical

problems. Here we take a look at a meta-analysis study that employed the RRA

algorithm and where many of its features proved to be critical.

MicroRNAs (miRNAs) are interesting class of small RNA molecules that are

not translated into proteins, but are involved in the regulation of the messenger

RNA translation. The role of miRNAs in cancer is reported in many articles, con-

centrating mainly on the miRNA expression differences between cancerous and

normal tissue. In every study the results are somewhat different, due to differences

in patient cohorts, sample collection and analysis methodologies. Urmo Võsa and

Dr Tarmo Annilo from the Institute of Molecular and Cell Biology at University

of Tartu decided to summarise the already published results in a meta-analysis

(Võsa et al., 2013).

More specifically, they identified 20 articles where miRNA expression in non-

small lung cancer was compared to normal samples and tried to create a meta
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signature of up- and down-regulated miRNAs. Since in many cases the raw data

was not available, they had to resort to aggregating published gene lists. When

analysing these gene lists, they faced many of the problems that were described

above.

For example, the number of samples in these studies varied wildly. Seven

studies relied on less than ten samples, whereas two studies had more than hun-

dred samples. It shows that some of the inputs might have been of much poorer

quality than the others. Therefore, the robustness of the approach was important.

In many cases, the raw data and full rankings were not available, so one had to

use the top lists of miRNAs published in the original articles. Different number

of miRNAs measured by different platforms imposed a bigger problem. Earlier

arrays measured only as little as 228 different miRNA while later ones measured

almost four times as many. Therefore, for some miRNAs much more evidence

was available than for the others and the ability to handle such situation properly

was critical.

Using the RRA method it was possible to identify a meta-signature of 15

significant miRNAs: 7 up- and 8 down-regulated. Downstream analysis showed

that the targets of the identified miRNAs were enriched for signalling and cancer

related genes. It was important that the RRA assigns significance to every miRNA,

since otherwise it would have been hard to know how many of them were actually

relevant.

Summary and impact

In RRA we have created a novel rank aggregation methodology that is particu-

larly well suited for genomic setting due to its robustness and versatility. It has

already been used in several studies showing the wide array of potential use-cases.

As described above, it has been employed in differential expression meta-analysis

projects (Võsa et al., 2013; Ma et al., 2013; Frampton et al., 2014), but also on re-

sults from siRNA screens (Widau et al., 2014) and significantly enriched pathways

(Sun et al., 2013).

Contribution

In large part the algorithm was designed by me. Co-authors contributed with

proper mathematical treatment of missing data and also helped with case-studies

for the article.
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CHAPTER 6

GOSUMMARIES PACKAGE FOR
VISUALISING GENOMIC ANALYSIS

RESULTS

While working with multiple public datasets it is helpful to know as much as

possible about each dataset. Being aware of potential problems, influential factors

and dominant expression patterns helps to formulate more appropriate research

questions and select optimal analysis strategy. Thorough analysis of each dataset

can be a time consuming undertaking. Running a typical analysis pipeline as

depicted in Figure 2.1 in Chapter 2 can be relatively fast. However, it is not easy

to visualise the results in concise manner and, thus, the study and comparison of

datasets can take a lot of time.

From all the steps in the analysis pipeline, visualising the results of functional

analysis is the most complicated. The long tables of functional category names

do not lend themselves to compact visual representations. At the same time, func-

tional analysis is a critical part of any gene expression analysis pipeline, as most

of the analyses converge on this step (see Figure 2.1). Thus, improvements for

visualising functional enrichment analysis results can improve the interpretability

of of results from several different analysis methods.

This chapter presents a visualisation method GOsummaries that allows to cre-

ate easily readable visual summaries of functional enrichment analysis results.

But before introducing the method itself, next section gives an overview about the

functional enrichment analysis and existing visualisation methods.
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6.1 Gene Ontology enrichment analysis and
visualisation

Functional enrichment analysis of gene lists is usually performed using data from

Gene Ontology (GO) project (Gene Ontology Consortium, 2001). This is a cu-

rated resource, where genes are associated with functional terms. Gene Ontology

vocabulary of functional terms is defined in a tree-like structure . The general

terms, like "Growth", "Signalling" or "Metabolic process", are in the top and spe-

cific, like "heart capillary growth" or "neuronal signal transduction" in the bottom

of the concept tree (acyclic directed graph). Its main difference from a tree is

that every term can have multiple parents. Genes are associated with the func-

tional terms by special teams of curators who extract up-to-date information from

publications and computer algorithms that extrapolate existing associations. The

tree-like structure is leveraged, by propagating associations from children to par-

ent terms.

Typical use for GO is searching for enriched GO terms in a list of genes. First,

the number of overlapping genes is found between the gene lists of interest and

every GO term. The significance of the overlaps is usually assessed using Fisher

exact test. The result will be a list of significantly enriched GO terms with the

corresponding p-values. Such analysis can be performed using web-based tools,

like g:Profiler (Reimand et al., 2011) or DAVID (Dennis et al., 2003). If the gene

lists of interest is ranked, for example a list of differentially expressed genes,

one can use also the Gene Set Analysis (GSA) analysis algorithms, like GSEA

(Subramanian et al., 2005) or GAGE (Luo et al., 2009). These use rank based

statistical tests to find GO terms with genes preferentially in the top of the ranked

list of interest. However, the result looks the same: a subset of significant GO

terms with p-values.

As the GO vocabulary contains many related terms that share the large pro-

portion of the genes, the number of results is usually large, but rather redundant.

In case of one or two gene lists the interpretation of enrichment results is rather

straightforward. However, typical gene expression analysis workflow (Figure 2.1)

usually yields more than one or two lists. For example, in differential expression

the up- and down-regulated genes in every comparison are viewed separately and

there are usually more than one comparison done. Additionally, the results of

GO analysis cannot be interpreted without considering them in a wider context

of experimental lists p and biological background of the gene lists. Thus, good

visualisation methods are needed, to summarise GO enrichment analysis results

effectively, to allow comparison between the lists and to put the results back into

their biological context.

Inherently, the results, a collection of terms with p-values, are not easy to vi-
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sualise. Still, there are some methods available. Several tools use the hierarchical

structure of GO to visualise the results: g:Profiler (Reimand et al., 2011) uses

this to group the significant results, GOrilla (Eden et al., 2009) overlays the GO

graph with enrichment scores, Enrichment Map (Merico et al., 2010) visualises

the results as a network and REVIGO (Supek et al., 2011) displays significant

categories as a treemap.

All these tools concentrate on visualising GO enrichment results describing

one gene list. They become less effective if the number of gene lists grows. One

promising approach is representing the data as word clouds. Using word cloud

it is possible to create a compact view of textual expressions, by highlighting the

most important ones in size and colour. The word clouds can be easily arranged

together in one figure to give overview of GO annotations of multiple gene lists

and it is possible to also add the graphs of experimental data. Several tools offer

the word cloud visualisation feature such as GeneCodis3 (Tabas-Madrid et al.,

2012), REVIGO (Supek et al., 2011) and Cytoscape word cloud plugin (Oesper

et al., 2011). But in all the cases the visualisation concentrates on one gene list

and does not fully exploit the option to combine several word clouds together.

For that reason, we created an R package GOsummaries that can create word

clouds from GO enrichment analysis results and arrange them together to sum-

marise results across several gene lists. To ease the interpretation in the biological

context we can also include the figures describing the experimental data behind

the gene lists. As such, GOsummaries can be used to visualise the results of

several gene analysis methods, like k-means clustering or Principal Component

Analysis. The latter is a popular approach to visualise microarray data and we

provide more details about how it works and how its results can be interpreted in

the following section.

6.2 Principal Component Analysis

Let us have a n ×m data matrix X . Principal Component Analysis (PCA) is an

orthogonal linear transformation of the data into a new coordinate system. The

first coordinate, or principal component as it is called, is chosen to maximise the

variance of the projection of the data. Mathematically, the projection is done by

multiplying X with an m element unit vector. Therefore, the first component is

defined by a vector

w(1) = arg max
||w||=1

V ar(Xw).

The next components are defined in a similar manner, but with additional con-

straint that the new weight vector was orthogonal to the previous ones. Vector

w(k) is called a weight or loadings vector, as each of its elements shows how
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much a feature in the original data contributes to the principal component. The

number of principal components is equal to min(m,n).
The euclidean distance between two data points that are projected to the prin-

cipal components will be the same as in the original dataset. Usually, in real data

first few components describe most of the variation, thus, the distance between

data points in the space of first two or three principal components can be used as

an approximation of their actual distance. Therefore, it is possible to use PCA

to reduce the dimensionality of the data without losing too much of the original

information.

This property makes PCA extremely useful in many situations. In gene ex-

pression analysis it is common to use PCA to visualise the relationships between

the samples. The PCA is applied to transposed gene expression matrix, where

rows represent biological samples and columns represent genes. If we drew the

scatterplot of the samples on the first two principal components, then we could

immediately see how the samples cluster, or if there are some outliers, etc. If

these principal components explain large enough proportion of variation then the

structure seen on the plot would be rather close to the actual clustering pattern of

the original data.

Another question is how to interpret the meaning of the components. Standard

approach is to study the loadings vector w(k) to see what are the features that have

the largest positive and negative loadings, as these have the most profound impact

on the observation distribution on the principal component. This approach has

been used, for example, to interpret and name the "Big 5" of independent person-

ality traits in psychology (Goldberg, 1990). In the gene expression applications,

however, it is not so common to interpret the loadings of a principal component.

One reason might be that the loading vectors might be just too long for reason-

able interpretation. However, in this case it is possible to perform GO enrichment

analysis on the genes that have the loadings with largest impact. This is exactly

what GOsummaries does.

6.3 GOsummaries package - article IV

Construction of word clouds

The most important input for GOsummaries is a group of gene lists. These are

annotated functionally using g:Profiler web tool (Reimand et al., 2011). To filter

the results GOsummaries uses several additional parameters. It removes both too

generic and too specific terms from the results, by constraining the size of GO

terms. To remove redundant terms GOsummaries uses the hierarchical filtering

option by g:Profiler. It overlays the enriched terms on GO graph and from each

connected component selects the category with strongest enrichment.
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The remaining GO terms with p-values are visualised as word clouds. The

size of the words is proportional to the −log10 of p-values. The sizes are not

comparable between word clouds of the same plot, since GOsummaries tries to

use the available space as efficiently as possible. However, the absolute scale of

p-values is expressed as the colour of the words.

Layout of a GOsummaries plot

For displaying the word clouds GOsummaries has defined a special structure of a

plot. GOsummaries shows the word clouds together with information describing

the underlying gene list, like the name and size of it. Most importantly it is also

possible to add plots describing the gene list. For example, GOsummaries can

display the expression values of the underlying genes next to the word clouds.

By displaying the expression patterns together with functional annotations we can

create concise summaries of the common analysis pipelines. In the package we

have defined GOsummaries plots for three different analysis methods: differential

expression, clustering and PCA.

In general, the figure consists of blocks that represent either one or two closely

related gene lists, such as a cluster or up- and down-regulated genes from a differ-

ential expression analysis. Each block contains the word cloud(s), name, size and

plot with background information about the list. On Figure 6.1 one can see three

blocks, one for every analysis type. In principle, the graph slot can contain any

type of plot and users can define their own. However, currently GOsummaries

implements few options that depend on the underlying data. If there is no addi-

tional data besides the gene list, it shows the number of genes in the list as a bars.

If there is also expression data available, it displays the expression of the genes

as boxplot (see Figures 6.1A and 6.1B). In these figures each box represents one

sample and they show the distribution of expression values on y-axis. By adding

the expression values it is possible to immediately relate the GO annotations to

the actual gene expression patterns, which is important, for example, in case of

clustering.

Principal Component Analysis

For clustering and differential expression, the GOsummaries provides just a con-

cise representation of the results. It makes the comparison of annotations easier,

but does not provide qualitatively novel insights. With PCA our approach is a

bit more unconventional. Usually, PCA of gene expression data is visualised as

a 2D scatterplot of samples projected onto the first 2 principal components. This

visualisation allows to study the global similarity and dissimilarity of the samples.

It is possible to see if there are any outliers or whether the samples with similar
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Figure 6.1: An example of GOsummaries output using expression data from 4 tissues.

The panels correspond to different input types: k-means clustering (A), differential ex-

pression (B) and PCA (C). The plots above the word clouds display the underlying exper-

imental data. For clustering (A) and differential expression (B), we show the distribution

of expression values as boxplots, where each box corresponds to one sample. In case of

PCA (C) the histogram displays the projection of samples to a principal component.

annotation group together. But this is basically all that we can conclude from such

plots.

The GOsummaries visualisation of PCA is different in several aspects and

can be considered complementary to the usual 2D display. Each block shows one

component. The panel displays the distribution of samples on each principal com-

ponent separately as a histogram, that is coloured based on sample annotations.

The GO annotations are based on 500 genes with largest positive and negative

loadings. Example of this visualisation can be seen in Figure 6.1C. Figure 6.2

shows how the GOsummaries representation of PCA is related to the ordinary

depiction of PCA results.

When 2D scatterplot tries to show the clustering structure of the samples, then
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Figure 6.2: Ordinary 2D representation of PCA and corresponding components as dis-

played by GOsummaries.

GOsummaries visualisation helps to dive into and interpret the meaning of every

single component. The histogram display shows the biological groups that are

distinguished by the component. The word cloud identifies the functional cate-

gories of genes that either drive the samples right or left on the principal axis.

This allows us to say, for example based on Figure 6.1C, that cell lines and mus-

cle cells differ mostly by higher expression of cell cycle genes in cell lines and

higher expression of muscle structure development related genes in muscle cells.

This type of annotation of the principal components allows to reveal the underly-

ing biological processes responsible for the structure of the clusters, that would

remain unnoticed in a typical PCA plot analysis.

Another advantage of GOsummaries display is that it makes easy to study

more than two or three principal components. In more complex datasets, com-

ponents beyond the first few can reveal interesting factors influencing the dataset.

With GOsummaries it is possible to draw a plot with even 10 or 20 components

and to check quickly if there is anything relevant.
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Summary

The GOsummaries package improves the presentation of gene expression analysis

results. It combines the patterns that were found from data with their functional

annotation into easy-to-read figures. This approach can considerably speed up the

process of interpretation of the results, generation of new hypotheses and identi-

fication of the inconsistencies in the data. Although the package is best suited for

gene expression data analysis, the methods apply nicely to many other scenarios

where the output of the analysis can be represented as a list of genes.

Contribution

The method was designed and implemented by me.
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CONCLUSION

The gene expression microarrays allow creating comprehensive snapshots of cel-

lular states, by measuring the expression of all genes in parallel. As these datasets

have accumulated in databases, there is possibility to re-use this information to

test novel hypotheses. Taking advantage of the public data is mostly a bioin-

formatic challenge. It involves developing more appropriate statistical methods,

insightful ways to view the data and user friendly software that makes the data and

the analysis methods more accessible. The work presented in this thesis covers

all these aspects, with a general aim to make re-use of gene expression data more

accessible, effective and insightful.

The most significant methodological contribution here is the Robust Rank Ag-

gregation (RRA) algorithm for integrating ranked lists of genes. It is common to

have multiple experiments or data sources that describe the same phenomena and

there is a need to aggregate the results. The integration is often done with ad hoc
methods. RRA is an algorithm for the integration task that has a solid statisti-

cal background and takes into account common problems with gene lists. The

method was designed for MEM web server, but has been subsequently used in

several other studies, most notably, for differential expression meta-analysis.

Other projects have also methodological components, but they are more closely

related to visualisation. In FunGenES database we combined two common clus-

tering techniques: k-means and hierarchical clustering into one approach that al-

lows to create high level overviews of large datasets. With GOsummaries package

it is possible to summarise complex analysis pipelines in concise and easily read-

able figures. This allows to rapidly study and compare the biological content of

multiple datasets. Most important innovation in GOsummaries is the visualisa-

tion of Principal Component Analysis (PCA) results. PCA is used ubiquitously

for analysing all types of high-throughput data, but information the typical results

convey is relatively limited. By associating functional annotations to the princi-

pal components, GOsummaries can make the PCA analysis results much more

revealing and insightful.

Finally, much of the focus in this work has been on creating user friendly tools

that would make analysis methods and the public data more accessible. Both RRA
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and GOsummaries are implemented as add-on packages to statistical software R,

which is the most popular platform for gene expression analysis. In FunGenES

database and MEM we did not just implement an algorithm, but built full web-

based user interfaces for accessing and analysing the data. The tools developed for

FunGenES formed a seed for a suite of web-based data analysis tools that is still

in use and being developed further in our working group. In MEM we created a

unique resource that allows to search information interactively from thousands of

datasets and perform an analysis that would be in most cases practically infeasible.
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KOKKUVÕTE
(SUMMARY IN ESTONIAN)

MEETODID AVALIKE
GEENIEKSPRESSIOONI ANDMETE

TAASKASUTAMISEKS

Geeniekspressiooni mikrokiipide leiutamine on andnud bioloogidele võimaluse

mõõta tuhandete geenide avaldumist paralleelselt. Taolistest eksperimentidest saa-

dud tulemused sisaldavad rohkelt huvitavat informatsiooni, kuid andmete rohkus

omakorda esitab mitmeid arvutuslikke ja statistilisi väljakutseid. Seetõttu on pal-

jud statistikud ja arvutiteadlased hakanud nende probleemidega tegelema. Uuri-

takse, kuidas säilitada ja käidelda andmeid efektiivselt, kuidas töödelda ja norma-

liseerida ning lõpuks kuidas oleks kõige õigem neid statistiliselt tõlgendada.

Eelmise kümnendi keskpaigaks olid geeniekspressiooni andmete analüüsi pea-

mised sammud paika pandud. Analüüsi tarkvara ja taristu on sellest ajast oluliselt

arenenud, kuid peamised meetodid ühe andmestiku analüüsiks on samad. Küll

aga on uued arvutuslikud väljakutsed esile kerkinud seoses andmete kogunemi-

sega avalikesse andmebaasidesse. Kuna geeniekspression mõõtmised hõlmavad

kogu genoomi, siis mõõdetakse igas eksperimendis ka nende geenide avaldumist,

mis otseselt antud kontekstis huvi ei paku. Need väärtused võivad aga huvitavad

olla mõnes teises olukorras, kus nende põhjal võib leida vastuseid uutele bioloo-

gilistele küsimustele. Taolist lähenemist on kasutatud paljudes uuringutes, näiteks

ennustamaks geenide funktsioone või leidmaks uusi haigustega seotud geene.

Sellegipoolest on neis andmetes palju kasutamata potentsiaali. Andmebaasi-

des on kümneid tuhandeid eksperimente, mis kirjeldavad sadu erinevaid koetüüpe

ja haiguseid. Sobivalt esitatuna võivad need andmed aidata katsete planeerimisel,

kandidaatgeenide prioritiseerimisel, tulemuste laiemasse konteksti panekul jne.

Olgugi, et geeniekspressiooni andmed on vabalt alla laetavad, pole neist vajaliku
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informatsiooni eraldamine sugugi lihtne. Iga huvitava informatsiooni killu kohta

on kordades rohkem ebahuvitavat ning see, mis informatsioon on parajasti huvi-

tav, sõltub küsimusest mida uuritakse. Seetõttu ei ole olemas ühte meetodit või

tööriista, mis lahendaks kõik andmete taaskasutamisega seotud probleemid. Pi-

gem on lahendus töötada välja palju erinevaid lähenemisi, mis näitavad andmeid

erinevatest vaatenurkadest.

Antud töö peamiseks eesmärgiks ongi muuta bioloogilisi uuringuid efektiiv-

semaks läbi olemasolevate andmete taaskasutamise. Väitekiri koosneb viiest pea-

tükist, millest esimene kirjeldab bioloogilist tausta kui ka olulisemaid bioinfor-

maatilisi meetodeid geeniekspressiooni andmete analüüsiks. Järgmised neli aga

annavad igaüks ülevaate ühest konkreetsest artiklist.

Üks peamisi takistusi andmete uuestikasutamisel on nende ligipääsetavus. And-

mete alla laadimine, eeltöötlus ja analüüs on suhteliselt ajamahukas ettevõtmi-

ne, mis nõuab ka oskust kasutada suhteliselt spetsiifilisi statistilisi ja arvutuslikke

meetodeid. Paljudel teadlastel, kellel oleks taolise analüüsi tulemustest kasu, sel-

lised oskused puuduvad. Üks viis andmete ligipääsetavust parandada on luua vee-

bikeskkondi, mis võimaldavad lihtsa vaevaga jooksutada avalikel andmetel konk-

reetseid analüüse. Antud töös on kaks artiklit pühendatud sellele teemale.

Artikkel I kirjeldab veebipõhist analüüsi keskkonda mis võimaldab uurida ühe

üleeuroopalise konsortsiumi tekitatud ekspresiooni andmid. See koosnes mitmest

tööriistast, mis ühest küljest andsid üldise pildi andmetes toimuvast, kuid samas

võimaldasid andmetest väljatulevaid konkreetseid mustreid detailselt kirjeldada.

Artikkel II kirjeldab veebipõhist tööriista MEM, mis keskendub sarnase eksp-

ressiooni mustriga geenide otsimisele üle sadade või isegi tuhandete avalike and-

mestike. Selleks laadisime me alla ligi pool terabaiti andmeid ja viisime need

analüüsiks sobivale kujule. MEM ise on veebiserver, mis võimaldab sellel and-

mestikul teha interaktiivseid päringuid. Avaldamise ajal oli MEM üks suuremaid,

kui mitte suurim, geeni ekspressiooni andmekogu, mida oli võimalik veebis inte-

raktiivselt kaevandada. Kokkuvõttes on MEM unikaalne tööriist, mis võimaldab

teha päringuid, mis oleks muude vahenditega liiga töömahukad olemaks praktili-

sed.

Tihti on geeniekspressiooni andmete taaskasutamisel eesmärgiks integreerida

olemasolevad andmed mitmetest allikatest, näiteks tulemused mitmetest sarnas-

test uuringutest või erinevat tüüpi mõõtmised sama bioloogilise fenomeni kohta.

Meetodeid andmete integreerimiseks on palju, kuid tihtipeale taandub see analüüs

geeni nimekirjade võrdlemise peale. Olgugi, et see ülesanne on väga tavaline, siis

olemasolevad metoodikad ei võta hästi arvesse geeni nimekirjade eripärasid. An-

tud töö tutvustab ühte lähenemist geenide nimekirjade agregeerimiseks.

Artikkel III kirjeldab üldist astakute agregeerimise algoritmi RRA, mis on eriti

sobiv just geenide nimekirjade jaoks. RRA kõige olulisem omadus on tema mü-
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rakindlus, mis on oluline, sest ülegenoomseid mõõtmisi võivad mõjutada paljud

tehnilised faktorid, mis konkreetsete geenide puhul muudavad andmed ebausal-

dusväärseks. Seetõttu on tähtis, et RRA mõõdab ka tulemuste statistilist olulisust,

mis võimaldab aru saada, kas agregeeritavates nimekirjades üldse oli midagi ühist.

Lisaks suudab RRA hästi toime tulla ka olukordades, kus geenide nimekiri ka-

tab ainult kõige olulisemad tulemused või kus paljude geenide puhul pole isegi

mõõtmisi teostatud. Praktikas on mõlemad olukorrad väga tavalised, kuid enamus

alternatiivseid meetodeid ei võta neid oma arvutustes arvesse.

Andmete taaskasutamisel tuleb enda küsimusele vastuse leidmiseks läbi vaa-

data mitmeid andmestikke. Seetõttu on oluline, et neist oleks võimalik kiirelt

ülevaade saada, nägemaks kas andmed on kvaliteetsed, mis tüüpi mustreid nad

sisaldavad, jne. Siin tulevad appi erinevad andmete visualiseerimise võtted, mis

kombineerituna andmekaeve meetoditega võimaldavad esitada suurte andmestike

kohta kompaktseid graafilisi ülevaateid. Viimane artikkel antud töös käsitleb just

genoomsete andmete visualiseerimise teemat.

Artikkel IV tutvustab andmete visualiseerimise meetodit ja R paketti nimega

GOsummaries, mis annab võimaluse näidata koos geenide funktsionaalseid an-

notatsioone ja ekspressiooni tasemeid. Peamine idee on esitada geenide nimekirja

iseloomustavaid bioloogiliste protsesside nimesid kompaktse sõnapilvena. Tavali-

selt esitatakse neid tulemusi pikkade tabelitena, mida on väga raske omavahel võr-

relda. Sõnapilvi aga on lihtne kokku panna ning saab ka lisada graafikuid, mis kir-

jeldavad antud geenide käitumist ekspressiooni andmetes. Nii on võimalik kiiresti

võrrelda funktsionaalseid annotatsioone erinevate nimekirjade vahel ning seosta-

da neid vastavate bioloogiliste mustritega. Kasutades GOsummaries paketti saab

tekitada kokkuvõtlikke graafikuid erinevate geeniekspressiooni analüüsi meetodi-

te kohta, sest enamusel neist on tulemuseks just nimekirjad geenidest. Taoliseid

joonised on võimalik tekitada vaid mõne rea koodiga. Seega annab GOsumma-

ries võimaluse kiiresti, kuid samas sisukalt, uurida andmestikke, mida plaanitakse

oma töös kasutada.

60



PUBLICATIONS

16



CURRICULUM VITAE

Personal data

Name Raivo Kolde

Birth April 21st, 1983, Tallinn, Estonia

Citizenship Estonian

Marital Status Married

Languages Estonian, English

Address Savi 6-12, 50405 Tartu, Estonia

Contact raivo.kolde@eesti.ee

Education

2009– University of Tartu, Ph.D. candidate in Computer Science

2005–2008 University of Tartu, M.Sc. in Mathematical Statistics

2001–2005 University of Tartu, B.Sc. in Mathematical Statistics

1998–2001 Tallinn Secondary Science School, secondary education

1989–1998 Tallinn Õismäe School of Humanities, primary education

Employment

2013– University of Tartu, Institute of Computer Science, researcher

2012–2013 University of Tartu, Institute of Computer Science, program-

mer

2008–2009 University of Tartu, Institute of Computer Science, extraordi-

nary researcher

2007– OÜ Quretec, researcher

2006–2007 AS EGeen, bioinformatician

115



ELULOOKIRJELDUS

Isikuandmed

Nimi Raivo Kolde

Sünniaeg ja -koht 21. Aprill 1983

Tallinn, Eesti

Kodakondsus eestlane

Perekonnaseis abielus

Keelteoskus eesti, inglise

Aadress Savi 6-12, 50405 Tartu, Eesti

Kontaktandmed +372 50 67 961

raivo.kolde@eesti.ee

Haridustee

2009– Tartu Ülikool, informaatika doktorant

2005–2008 Tartu Ülikool, MSc matemaatilises statistikas

2001–2005 Tartu Ülikool, BSc matemaatilises statistika

1998–2001 Tallinna Reaalkool, keskharidus

1989–1998 Tallinna Õismäe Humanitaar Gümnaasium, põhiharidus

Teenistuskäik

2013– Tartu Ülikool, Arvutiteaduse instituut, teadur

2012–2013 Tartu Ülikool, Arvutiteaduse instituut, programmeerija

2008–2009 Tartu Ülikool, Arvutiteaduse instituut, erakorraline teadur

2007– OÜ Quretec, teadur

2006–2007 AS EGeen, bioinformaatik

116



DISSERTATIONES MATHEMATICAE 
UNIVERSITATIS TARTUENSIS 

 
 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical 

tubes and circular discs. Tartu, 1991, 23 p. 
 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu, 

1991, 14 p. 
 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu, 

1992, 47 p. 
 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu, 

1992, 15 p. 
 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p. 
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the 

case of Von Mises yield condition. Tartu, 1992, 32 p. 
 7. Ants Aasma. Matrix transformations of summability and absolute summa-

bility fields of matrix methods. Tartu, 1993, 32 p. 
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with     

piece-wise constant thickness. Tartu, 1993, 28 p. 
 9. Toomas Kiho. Study of optimality  of   iterated   Lavrentiev   method   and   

its generalizations. Tartu, 1994, 23 p. 
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p. 
11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-

plastic structures. Tartu, 1995, 93 p, (in Russian). 
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells 

by taking into account geometrical and physical nonlinearities. Tartu, 1995, 
74 p, (in Russian). 

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of 
analysis. Tartu, 1996, 134 p. 

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion. 
Tartu, 1996, 96 p. 

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p. 
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness 

property. Tartu, 1999, 74 p. 
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence 

spaces. Tartu, 1999, 72 p. 
18. Krista Fischer. Structural mean models for analyzing the effect of 

compliance in clinical trials. Tartu, 1999, 124 p. 

11730



19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999, 
56 p. 

20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p. 
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p. 
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk. 
23.  Varmo Vene. Categorical programming with inductive and coinductive 

types. Tartu, 2000, 116 p.  
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p. 
25. Maria Zeltser. Investigation of double sequence spaces by soft and hard 

analitical methods. Tartu, 2001, 154 p. 
26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p. 
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p. 
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p. 
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p. 
30. Eno Tõnisson. Solving of expession manipulation exercises in computer 

algebra systems. Tartu, 2002, 92 p. 
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p. 
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu, 

2003. 100 p. 
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference  

problems. Tartu 2003. 78 p. 
34. Mare Tarang. Stability of the spline collocation method for volterra 

integro-differential equations. Tartu 2004. 90 p.  
35. Tatjana Nahtman. Permutation invariance and reparameterizations in 

linear models. Tartu 2004. 91 p. 
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.  

70 p. 
37. Kristiina Hakk. Approximation methods for weakly singular integral 

equations with discontinuous coefficients. Tartu 2004, 137 p. 
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.  
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly 

singular integro-differential equations. Tartu 2005, 140 p. 
40. Natalia Saealle. Convergence  and  summability with  speed  of  functional  

series. Tartu 2005, 91 p. 
41. Tanel Kaart. The reliability of linear mixed models in genetic studies. 

Tartu 2006, 124 p. 
42. Kadre Torn. Shear and bending response of inelastic structures to dynamic 

load. Tartu 2006, 142 p. 

118



43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach 
spaces of operators. Tartu 2006, 72 p.  

44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra 
integral equations. Tartu 2006, 117 p. 

45. Kristo Heero. Path planning and learning strategies for mobile robots in 
dynamic partially unknown environments. Tartu 2006, 123 p.  

46.  Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.  
137 p. 

47.  Annemai Raidjõe. Sequence spaces defined by modulus functions and 
superposition operators. Tartu 2006, 97 p. 

48.  Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p. 
49.  Härmel Nestra. Iteratively defined transfinite trace semantics and program 

slicing with respect to them. Tartu 2006, 116 p.  
50.   Margus Pihlak. Approximation of multivariate distribution functions. 

Tartu 2007, 82 p.  
51. Ene Käärik. Handling dropouts in repeated measurements using copulas. 

Tartu 2007,  99 p. 
52. Artur Sepp. Affine models in mathematical finance: an analytical approach. 

Tartu 2007, 147 p. 
53. Marina Issakova. Solving of linear equations, linear inequalities and 

systems of linear equations in interactive learning environment. Tartu 2007, 
170 p.  

54. Kaja Sõstra. Restriction estimator for domains. Tartu 2007, 104 p. 
55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language. 

Tartu 2007, 162 p. 
56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-

tions. Tartu 2008, 123 p. 
57. Evely Leetma. Solution of smoothing problems with obstacles. Tartu 2009, 

81 p. 
58. Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model 

with heavy-tailed claims. Tartu 2009, 139 p. 
59. Reimo Palm. Numerical Comparison of Regularization Algorithms for 

Solving Ill-Posed Problems. Tartu 2010, 105 p. 
60. Indrek Zolk. The commuting bounded approximation property of Banach 

spaces. Tartu 2010, 107 p. 
61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory 

systems. Tartu 2010, 153 p. 
62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-

ture by Counting Method. Tartu 2010, 87 p. 
63.  Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral 

Equations with Singularities. Tartu 2010, 134 p. 

119



64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs. 
Tartu 2010, 137 p. 

65.  Larissa Roots. Free vibrations of stepped cylindrical shells containing 
cracks. Tartu 2010, 94 p. 

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p. 

67.  Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p. 

68. Olga Liivapuu. Graded q-differential algebras and algebraic models in 
noncommutative geometry. Tartu 2011, 112 p.    

69. Aleksei Lissitsin. Convex approximation properties of Banach spaces. 
Tartu 2011, 107 p.  

70. Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu 
2011, 101 p. 

71.  Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p. 
72.  Margus Treumuth. A Framework for Asynchronous Dialogue Systems:  

Concepts, Issues and Design Aspects. Tartu 2011, 95 p. 
73. Dmitri Lepp. Solving simplification problems in the domain of exponents, 

monomials and polynomials in interactive learning environment T-algebra. 
Tartu 2011, 202 p. 

74.  Meelis Kull. Statistical enrichment analysis in algorithms for studying gene 
regulation. Tartu 2011, 151 p. 

75.  Nadežda Bazunova. Differential calculus d3
 = 0 on binary and ternary 

associative algebras. Tartu 2011, 99 p. 
76.  Natalja Lepik. Estimation of domains under restrictions built upon gene-

ralized regression and synthetic estimators. Tartu 2011, 133 p. 
77.  Bingsheng Zhang. Efficient cryptographic protocols for secure and private 

remote databases. Tartu 2011, 206 p. 
78.  Reina Uba. Merging business process models. Tartu 2011, 166 p. 
79. Uuno Puus. Structural performance as a success factor in software develop-

ment projects – Estonian experience. Tartu 2012, 106 p.  
80. Marje Johanson. M(r, s)-ideals of compact operators. Tartu 2012, 103 p.   
81.  Georg Singer. Web search engines and complex information needs. Tartu 

2012, 218 p. 
82. Vitali Retšnoi. Vector fields and Lie group representations. Tartu 2012, 

108 p. 
83. Dan Bogdanov. Sharemind: programmable secure computations with 

practical applications. Tartu 2013, 191 p.  
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu 

2013, 151 p.  
85. Erge Ideon. Rational spline collocation for boundary value problems. 

Tartu, 2013, 111 p.  
86.  Esta Kägo. Natural vibrations of elastic stepped plates with cracks. Tartu, 

2013, 114 p. 

120



87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language 
development in enterprise information systems. Tartu, 2013, 151 p. 

88. Boriss Vlassov. Optimization of stepped plates in the case of smooth yield 
surfaces. Tartu, 2013, 104 p.  

89.  Elina Safiulina. Parallel and semiparallel space-like submanifolds of low 
dimension in pseudo-Euclidean space. Tartu, 2013, 85 p. 

 

31




