
THÈSETHÈSE
En vue de l'obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSEDOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse III - Paul Sabatier
Discipline ou spécialité : Mathématiques

JURY
Djalil Chafaï (rapporteur)

Christian Maes 
Arnoldus Kuijlaars (directeur)

Michel Ledoux (directeur)
Abey Lopez-Garcia

Alain Rouault (rapporteur)
Walter Van Assche (président du jury)

Ecole doctorale : EDMITT

Unité de recherche : Institut de Mathématiques de Toulouse
Directeurs de Thèse : Arnoldus Kuijlaars & Michel Ledoux 

Présentée et soutenue par Adrien Hardy

Le 7 Juin 2013

Titre : Problèmes d'équilibre vectoriels et grandes déviations

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Thèses en ligne de l'Université Toulouse III - Paul Sabatier

https://core.ac.uk/display/20391279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Vector equilibrium problems and large deviations

Adrien HARDY

Supervisory Committee:
Prof. dr. W. Van Assche, chair
Prof. dr. ir. A.B.J. Kuijlaars, supervisor
Prof. dr. M. Ledoux, supervisor

(Université de Toulouse)
Prof. dr. C. Maes
Dr. A. López García
Prof. dr. A. Rouault

(Université de Versailles-Saint-Quentin)
Prof. dr. D. Chafaï

(Université Paris-Est Marne-la-Vallée)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Sciences

June 2013



© KU Leuven – Faculty of Science
Kasteelpark Arenberg 11 - box 2100, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2013/10.705/35
ISBN 978-90-8649-620-4



Acknowledgements

My first thanks go to Arno Kuijlaars and Michel Ledoux, my PhD advisors.
In their own way, they both guided my first steps in the research world and
definitively influenced my mathematical style. I am extremely grateful for that.

It is my pleasure to thank Djalil Chafaï, Abey López García, Christian Maes,
Alain Rouault and Walter Van Assche for accepting to be members of the jury.

While I was a student, a few persons made research particularly attractive to me;
I am particularly grateful to Michèle Audin, Benjamin Enriquez, Claude Mitschi,
Janos Polonyi and Jean-Bernard Zuber for their support and encouragement.

Besides the scientific adventure that a PhD underlies, these last years have also
been a true human adventure. I have a warm feeling when I think about my
colleagues of Leuven and the ones of Toulouse (with a special mention for “les
collocs” and “ma coburette”), the Californian road trip with Dries Geudens, my
awesome o�cemate, the Chinese exploration with Camille Male, the chance I
had to meet such nice persons as Kim Dang, Tim Hulshof or Jeremy Voltz and
so many others, the help of Marie-Laure Ausset while I was stuck in Seattle
because of a stolen passport, and of course all the flatmates and the neighbors
of the Blaes family.

Last but not least, the final thank is for my family and old friends.

i





Abstract

In this thesis we investigate the convergence and large deviations of the empirical
measure associated with several determinantal point processes. These point
processes have in common that their average characteristic polynomial is a
multiple orthogonal polynomial, the latter being a generalization of orthogonal
polynomials.

The first simplest example is a 2D Coulomb gas in a confining potential at
inverse temperature — = 2, for which the average characteristic polynomial is an
orthogonal polynomial. A large deviation principle for the empirical measure is
known to hold, even in the general — > 0 case, with a rate function involving an
equilibrium problem arising from logarithmic potential theory. As a warming
up, we show this result actually extends to the case where the potential is
weakly confining, i.e. satisfying a weaker growth assumption that usual. To do
so, we introduce a compactification procedure which will be of important use in
what follows.

Motivated by more complex determinantal point processes, we then develop
a general framework for vector equilibrium problems with weakly confining
potentials to make sense. We prove existence and uniqueness of their solutions,
which improves the existing results in the potential theory literature, and
moreover show that the associated functionals have compact level sets.

Next, we investigate a determinantal point process associated with an additive
perturbation of a Wishart matrix, for which the average characteristic
polynomial is a multiple orthogonal polynomial associated with two weights.
We establish a large deviation principle for the empirical measure with a rate
function related to a vector equilibrium problem with weakly confining potentials.
This is the first time that a vector equilibrium problem is shown to be involved
in a large deviation principle for random matrix models.

Finally, we study on a more general level when both the empirical measure of a
determinantal point process and the zero distribution of the associated average
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iv Abstract

characteristic polynomial converge to the same limit. We obtain a su�cient
condition for a class of determinantal point processes which contains the ones
related to multiple orthogonal polynomials. On the way, we provide a su�cient
condition to strengthen the mean convergence of the empirical measure to the
almost sure one. As an application, we describe the limiting distributions for
the zeros of multiple Hermite and multiple Laguerre polynomials in terms of free
convolutions of classical distributions with atomic measures, and then derive
algebraic equations for their Cauchy-Stieltjes transforms.



Résumé

Dans cette thèse on s’intéresse à la convergence et aux grandes déviations de
la mesure empirique associée à certains processus ponctuels déterminantaux.
Le point commun entre ces processus ponctuels est que leur polynôme
caractéristique moyen est un polynôme orthogonal multiple, une généralisation
des polynômes orthogonaux usuels.

L’exemple le plus simple est fourni par un gaz de Coulomb bidimensionnel dans
un potentiel confinant à température inverse — = 2; son polynôme caractéristique
moyen est alors un polynôme orthogonal. Il a été prouvé, même dans le cas plus
général où — > 0, que la mesure empirique satisfait à un principe de grande
déviation, avec une fonction de taux qui fait intervenir un problème d’équilibre
bien connu en théorie logarithmique du potentiel. En guise d’échau�ement,
nous allons montrer que ce résultat s’étend au cas d’un potentiel faiblement
confinant, c’est-à-dire satisfaisant une condition de croissance plus faible que
d’habitude. Pour ce faire, nous utilisons un argument de compactification qui
sera d’importance pour la suite.

Anticipant la description asymptotique de processus déterminantaux plus
complexes, nous développons alors un cadre adéquat pour définir rigoureusement
des problèmes d’équilibre vectoriels avec des potentiels faiblement confinants.
Nous prouvons l’existence et l’unicité de leurs solutions, un résultat nouveau en
théorie du potentiel, et aussi que les fonctionnelles associées ont des ensembles
de niveau compacts.

Après, nous nous intéressons à un processus ponctuel déterminantal associé à
une perturbation additive d’une matrice de Wishart, pour lequel le polynôme
caracteristique moyen est un polynôme orthogonal multiple à deux poids. Nous
établissons un principe de grande déviation pour la mesure empirique avec
une fonction de taux qui fait intervenir un problème d’équilibre vectoriel ayant
des potentiels faiblement confinants. C’est la première fois qu’un problème
d’équilibre vectoriel intervient dans la description des grandes déviations de
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vi Résumé

matrices aléatoires.

Finalement, on étudie de façon générale quand est-ce que la mesure empirique
associée à un processus ponctuel déterminantal et la distribution des zéros
du polynôme caractéristique moyen associé convergent vers la même limite.
Nous obtenons une condition su�sante pour une classe de processus ponctuels
déterminantaux qui contient les processus liés aux polynômes orthogonaux
multiples. En chemin, nous donnons aussi une condition su�sante pour améliorer
la convergence en moyenne de la mesure empirique en une convergence presque
sûre. Comme application, on décrit les distributions asymptotiques des zéros
des polynômes de Hermite multiple et de Laguerre multiple en termes de
convolutions libres de distributions classiques avec des mesures discrètes, et
puis nous dérivons des équations algébriques pour leur transformée de Cauchy-
Stieltjes.



Samenvatting

In deze thesis onderzoeken we de convergentie en grote afwijkingen van
empirische maten geassocieerd aan determinantale puntprocessen. We
beschouwen voornamelijk puntprocessen waarvan de gemiddelde karakteristieke
veelterm een meervoudig orthogonale veelterm is, een veralgemening van het
meer bekende concept orthogonale veelterm.

Als eerste, eenvoudige, voorbeeld beschouwen we een tweedimensionaal
Coulombgas met inverse temperatuur — = 2 dat gevangen is in een beperkende
potentiaal. In dit geval is de gemiddelde karakteristieke veelterm een orthogonale
veelterm. Het is bekend dat dit model voldoet aan een principe van grote
afwijking met een ‘rate’-functie die uitgedrukt wordt met behulp van een
evenwichtsprobleem uit de logaritmische potentiaaltheorie. Als opwarmertje
tonen we aan dat dit resultaat kan veralgemeend worden naar een situatie
waarin de potentiaal slechts zwak beperkend is, d.w.z. dat de potentiaal
trager groeit dan gewoonlijk. Het bewijs van dit resultaat steunt op een
compactificatieargument dat ook later in het werk nog een belangrijke rol zal
spelen.

Om ook meer complexe determinantale puntprocessen te bestuderen, ontwik-
kelen we daarna een algemene theorie die betekenis geeft aan vectoreven-
wichtsproblemen met zwak beperkende potentialen. We tonen aan dat deze
vectorevenwichtsproblemen unieke oplossingen hebben. We bewijzen ook dat
de geassocieerde functionalen compacte niveauverzamelingen hebben. Deze
resultaten dragen bij aan de potentiaaltheorie.

Vervolgens onderzoeken we een determinantaal puntproces geassocieerd aan een
additieve perturbatie van een wishartmatrix, met als gemiddelde karakteristieke
veelterm een meervoudig orthogonale veelterm ten opzichte van twee gewichten.
We stellen een principe van grote afwijking op voor de empirische maat met een
ratefunctie gedefineerd aan de hand van een vectorevenwichtsprobleem met zwak
beperkende potentialen. Dit is de eerste keer dat een vectorevenwichtsprobleem
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opduikt in een principe van grote afwijking voor randommatrixmodellen.

Tenslotte bestuderen we wanneer de empirische maat van een determinantaal
puntproces en de genormaliseerde telmaat van de nulpunten van de geassocieerde
gemiddelde karakteristieke veelterm convergeren naar dezelfde limiet. We beko-
men een voldoende voorwaarde voor een klasse determinantale puntprocessen.
Deze klasse bevat de puntprocessen beschreven door meervoudig orthogonale
veeltermen. We geven ook een voldoende voorwaarde om de gemiddelde
convergentie te versterken tot ‘almost sure’ convergentie. Als toepassing
drukken we de limietverdelingen voor de nulpunten van meervoudige Hermite-
en meervoudige Laguerreveeltermen uit in functie van vrije convoluties van
klassieke verdelingen met puntmassa’s. We leiden ook algebraïsche vergelijkingen
af voor hun Cauchy-Stieltjestransformaties.
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Chapter 1

Overview of the thesis

This introductory chapter presents the problems investigated in this PhD thesis
and provides summaries of the next chapters.

1.1 Introduction

Most of this thesis is devoted to the asymptotic description of finite determinantal
point processes, in the limit where the numbers of particles goes to infinity.
For now, it is enough to think about such a point process as N real random
variables x

1

, . . . , x
N

for which the correlations are of repulsive nature and
extremely structured; such a structure is sometimes called integrable, in the
sense of integrable systems [26]. One of the reasons why the study of these
random variables has attracted so many researchers in the last decades is
certainly that they arise in several (a priori non related) fields of mathematics
and physics, such as probability theory of course, but also combinatorics and
representation of “large” groups, approximation theory, quantum mechanics,
statistical physics, and even analytic number theory. Another fascinating aspect
of determinantal point processes is the universal properties they exhibit, that
is several examples of strictly di�erent point processes are known to share an
identical asymptotic behavior as N æ Œ, see [38] for further information.
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2 Overview of the thesis

Global asymptotic and large deviations

The contribution of this thesis mainly concerns the asymptotic description of
the global distribution for several determinantal point processes as N æ Œ.
More precisely, if one endows the space M

1

(R) of probability measures on R
with its weak topology (i.e. the topology coming from duality with the Banach
space of bounded continuous functions on R), then the goal is to study the
convergence as N æ Œ of the empirical measure associated to the point process
x

1

, . . . , x
N

,

µ̂N = 1
N

N

ÿ

i=1

”
x

i

, (1.1.1)

and moreover to control the large deviations of µ̂N from its limit. Loosely
speaking, the sequence of random measures (µ̂N )

N

is said to satisfy a large
deviation principle (LDP) if one can find a lower semi-continuous function
� : M

1

(R) æ [0, +Œ], the rate function, such that for any Borel set B µ M
1

(R)
we have the estimate (precise statements will be provided later, see also [43] for
a general presentation concerning LDPs)

P
1

µ̂N œ B
2

ƒ exp
Ó

≠ N2 inf
µœB

�(µ)
Ô

, as N æ Œ. (1.1.2)

Here the speed N2 comes from the setting of determinantal point processes. A
pleasant situation is when the rate function � admits a unique minimizer µú,
�(µú) = 0, since then this entails the almost sure convergence of µ̂N towards
the minimizer µú.

Average characteristic polynomial

Another important object in this thesis is the average characteristic polynomial
associated to the point processes, which is

‰
N

(z) = E
C

N

Ÿ

i=1

(z ≠ x
i

)
D

, (1.1.3)

and its normalized zero counting measure. Namely, if one denotes by z
1

, . . . , z
N

the zeros of ‰
N

, the latter (deterministic) measure is defined by

‹
N

= 1
N

N

ÿ

i=1

”
z

i

. (1.1.4)

It seems reasonable to expect that, under natural conditions, if almost surely
both µ̂N and ‹

N

converge towards limiting distributions as N æ Œ, then these
two limits coincide.
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Multiple orthogonal polynomials

Multiple orthogonal polynomials (MOPs) are generalizations of orthogonal
polynomials, in the sense that one considers more that one orthogonalization
measure (see Section 5.4 for definitions). They have been introduced in the
context of the Hermite-Padé approximation of systems of Stieltjes functions,
which was itself first motivated by number theory after Hermite’s proof of the
transcendence of e, or Apery’s proof of the irrationality of ’(2) and ’(3) [99].
It turns out there are several examples of determinantal point processes for
which the average characteristic polynomial ‰

N

is a MOP; they are called MOP
ensembles. Examples are provided by the eigenvalues of perturbations of unitary
invariant random matrices, multi-matrix models, or non-intersecting di�usion
processes with non-trivial initial conditions [83].

The weak convergence of the zero distribution ‹
N

of MOPs is a question of
importance in approximation theory, since these zeros are the poles of the
rational approximants provided by the Hermite-Padé theory. In a similar way
as for orthogonal polynomials, for which the limit of ‹

N

is characterized as
the unique minimizer of a weighted logarithmic energy functional [92], main
character of logarithmic potential theory, certain classes of MOPs have their
limiting zero distributions described in terms of the unique minimizer of a
functional involving the logarithmic energies of several measures, the solution
of a so-called vector equilibrium problem [91].

Goals and achievements

The starting point of this PhD research project is to find out if the functionals
associated to such vector equilibrium problems may be involved as large deviation
rate functions for the empirical measures µ̂N associated to MOP ensembles.

The answer turns out to be positive, as we shall see in a particular example: a
MOP ensemble associated with a non-centered Wishart random matrix. Whilst
arising at this result would normally seem to be somewhat easy, the e�ort
to attain such a conclusion proved to be more problematic than we expected.
The main problem is that the vector equilibrium problem involved is of a type
which has not been considered yet in the (wide) potential theory literature: the
external fields (or potentials) violate the usual growth condition imposed to
them. In fact, following the classical presentations on logarithmic potential
theory, the functional we are interested in is not properly defined for all measures.
There are other (non-artificial) MOP ensembles for which one can expect vector
equilibrium problems to arise in the description of the large deviations, but
they all present the same disease. Thus the first task of this thesis is to provide
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a natural way to define such functionals, and then to prove existence and
uniqueness for the minimizers and regularity properties as well.

When one tries to establish a LDP with a rate function involving a vector
equilibrium problem from this new class, the weak growth of the potentials has
another annoying consequence: it seems that the classical way to show LDPs,
which is to prove an easier weak LDP and to strengthen it into a full one by
showing an exponential tightness property, is not clearly available anymore. An
other task here is to explain how one can bypass this problem with a natural
compactification procedure, and we first perform it on a toy model.

Independently, since the motivation for the research project started with the
bet that the empirical measure µ̂N and the distribution ‹

N

of the zeros of the
average characteristic polynomial ‰

N

share the same asymptotic description, it
is natural to ask for su�cient conditions so that this actually happens. This is
also a question which is answered in this thesis.

It is now time to provide a more precise picture of what the next chapters will
discuss.

Remark 1.1.1. Although the next chapter, which deals with the problem of
a weakly confining potential at the LDP level on a toy model, is based on a
work that has been written after the one of Chapter 3, we chose to reverse the
historical order for a pedagogical purpose, because to work out the LDP for
this simple model is a nice warming up for what follows.

1.2 Large deviations for 2D Coulomb gas

We now provide a summary of Chapter 2, where we investigate a simple point
process for which an (scalar) equilibrium problem arises in the description of the
large deviations of its empirical measure µ̂N , but involving a potential which
satisfies a weaker growth assumption than usual.

Strongly confining potentials

A 2D Coulomb gas of N particles at inverse temperature — > 0 in a continuous
potential V : C æ R refers to random variables x

1

, . . . , x
N

on C, or in a subset
� theoreof, with joint probability distribution

1
Z

N

Ÿ

1Æi<jÆN

|x
i

≠ x
j

|—
N

Ÿ

i=1

e≠NV (x

i

)dx
i

. (1.2.1)
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These random variables form a determinantal point process only when — = 2,
see Section 5.1.2, but the general — > 0 case is also of interest. A LDP for the
empirical measure µ̂N associated to (1.2.1) has been obtained by Ben Arous and
Guionnet [11] (resp. Ben Arous and Zeitouni [12]), in the case where � = R
(resp. � = C) and with V (x) = |x|2. Their approach can be extended to more
general continuous potentials satisfying a strong confining condition, see e.g.
[2]. Namely, it is known that if one assumes that the following growth condition
holds

lim inf
|x|æŒ

V (x)
—Õ log |x| > 1,

for some —Õ satisfying —Õ > 1 and —Õ Ø —, and introduce the quadratic map
defined on M

1

(�), with � = R or C, by

I
V

(µ) =
⁄⁄

3

—

2 log 1
|x ≠ y| + 1

2V (x) + 1
2V (y)

4

µ(dx)µ(dy) (1.2.2)

and finally denote by µú
V

its unique minimizer (which is known to have compact
support), then the empirical measure µ̂N satisfies a LDP with good rate function
�(µ) = I

V

(µ) ≠ I
V

(µú
V

).

Weakly confining potentials

Anticipating the introduction of vector equilibrium problems with weakly
confining potentials in Chapter 3, it is natural to wonder if the latter LDP
continues to hold under the weaker assumption

lim inf
|x|æŒ

1

V (x) ≠ —Õ log |x|
2

> ≠Œ. (1.2.3)

The problem is that although the minimizer µú
V

still exists, it may not be
compactly supported anymore. At the technical level, if one want to follow
the strategy of [11, 12], it is not clear how to establish directly the exponential
tightness for µ̂N . In Chapter 2 it is explained how one can bypass the need
of exponential tightness by using a natural compactification argument. The
results of Ben Arous, Guionnet and Zeitouni are then extended to the weakly
confining case, namely

Theorem 1.2.1. Let � = R or C. Under the growth assumption (1.2.3),
(µ̂N )

N

satisfies a LDP with good rate function I
V

≠ min I
V

. More precisely,

(a) The level set
)

µ œ M
1

(�) : I
V

(µ) Æ –
*

is compact for any – œ R.
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(b) For any closed set F µ M
1

(�),

lim sup
NæŒ

1
N2

logP
N

1

µ̂N œ F
2

Æ ≠ inf
µœF

Ó

I
V

(µ) ≠ I
V

(µú
V

)
Ô

.

(c) For any open set O µ M
1

(�),

lim inf
NæŒ

1
N2

logP
N

1

µ̂N œ O
2

Ø ≠ inf
µœO

Ó

I
V

(µ) ≠ I
V

(µú
V

)
Ô

.

In particular µ̂N converges almost surely towards µú
V

as N æ Œ.

1.3 Vector equilibrium problems

In Chapter 3 we introduce and study the class of weakly admissible vector
equilibrium problems.

The general setting

A vector equilibrium problem asks to find the (unique) minimizer of a functional
involving the logarithmic energies of several measures, namely to minimize the
quadratic map

ÿ

1Æi,jÆd

c
ij

⁄⁄

log 1
|x ≠ y|µi

(dx)µ
j

(dy) +
d

ÿ

i=1

⁄

V
i

(x)µ
i

(dy), (1.3.1)

where the vector (µ
1

, . . . , µ
d

) of Borel measures on C lies in a prescribed closed
convex set. One assumes that the d ◊ d real matrix [c

ij

] is positive definite,
the µ

i

’s have fixed finite total masses µ
i

(C) = m
i

> 0, 1 Æ i Æ d, and the
lower semi-continuous functions V

i

’s, the so-called potentials, satisfy appropriate
growth conditions.

The more advanced result available in the potential theory literature was [10],
where the following strong growth conditions are assumed

lim
|x|æŒ

V
i

(x)
2 log |x| = +Œ, 1 Æ i Æ d.

The problem is that the vector equilibrium problems associated to MOP
ensembles typically satisfy much weaker growth conditions for the V

i

’s. For
example one can consider the following vector equilibrium problem, arising from
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a non-centered Wishart matrix model that we will study in Chapter 4, for which
one of the potentials is identically zero

⁄⁄

log 1
|x ≠ y|µ1

(dx)µ
1

(dy) ≠
⁄⁄

log 1
|x ≠ y|µ1

(dx)µ
2

(dy) (1.3.2)

+
⁄⁄

log 1
|x ≠ y|µ2

(dx)µ
2

(dy) +
⁄

1

x ≠ 2
Ô

ax
2

µ
1

(dx).

Here, a is a positive parameter, µ
1

is a probability measure supported on
R

+

= [0, +Œ), µ
2

is a Borel measure supported on R≠ = (≠Œ, 0] with total
mass 1/2.

Related works

Although one can theoretically investigate the (global and local) asymptotic
description of MOP ensembles via Deift-Zhou steepest descent analysis, which
is available because the quantities of interest can be expressed in terms of
the solution of a Riemann-Hilbert problem, the existence of a minimizer for
a related vector equilibrium problem is of importance (it is used to normalize
Riemann-Hilbert problem at the infinity); see e.g. the works [52, 19] dealing
with a two-matrix model and an additive perturbation of GUE respectively.
In the latter works, where vector equilibrium problems of the same nature as
(1.3.2) appear, the proofs provided for the existence of the minimizers are rather
complicated and moreover incomplete (the lower semi-continuity of the energy
functional (1.3.1) has been implicitly assumed).

Weak admissiblity

In Chapter 3, we introduce the following weak growth condition for the potentials,
which involves the interaction matrix [c

ij

] and the masses m
i

’s of the measures
as well,

lim inf
|x|æŒ

A

V
i

(x) ≠ 2
1

d

ÿ

j=1

c
ij

m
j

2

log |x|
B

> ≠Œ, 1 Æ i Æ d. (1.3.3)

One can check that the vector equilibrium problem (1.3.2) satisfies (1.3.3),
and the ones in [52, 19] as well. Although the functional (1.3.1) may be not
well-defined for all µ

i

’s, we show that under the condition (1.3.3) it is possible
to extend its definition in a natural way and establish the following result.
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Theorem 1.3.1. The well-defined extension J
V

of (1.3.1) has its level sets
Ó

(µ
1

, . . . , µ
d

) : J
V

(µ
1

, . . . , µ
d

) Æ –
Ô

, – œ R,

compacts and is strictly convex on the set where it is finite. In particular, J
V

is lower semi-continuous and admits a unique minimizer provided J
V

is not
identically +Œ.

The key is to map the complex plane into the Riemann sphere and to use the
explicit change of metric. It turns out that the weak confining condition (1.3.3)
exactly means that the potentials of the induced vector equilibrium problem
on the sphere are lower semi-continuous. Then, we prove an existence and
uniqueness result for the minimizer of vector equilibrium problems on general
compact subsets of Rn, for every n Ø 1.

1.4 Large deviations for a non-centered Wishart
matrix

Chapter 4 describes a MOP ensemble for which a vector equilibrium problem
is involved as a large deviation rate function, and thus answers positively the
main question of the PhD research project.

The matrix model

For any M Ø N , consider the MOP ensemble induced by the N eigenvalues of
the random matrix

1
N

(X + A)ú(X + A), (1.4.1)

where X is an M ◊N matrix filled with i.i.d standard complex Gaussian random
variables, that is X

ij

≥ NC(0, 1), and where A is an M ◊ N (deterministic)
matrix. Note that the law of such a random matrix is not invariant under the
action by conjugation of the unitary group, except if A = 0. Our purpose is to
investigate the large deviations for the empirical measure µ̂N associated with
the eigenvalues of (1.4.1).

Related works

For a large class of perturbations A, a large deviation upper bound has been
obtained by Cabanal-Duvillard and Guionnet [29]. They actually obtained a
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similar result for several other perturbed matrix models. At first sight, the rate
function they obtained does not seem to exhibit any connection with vector
equilibrium problems. Note that although the large deviation upper bound has
been strengthened later by Guionnet and Zeitouni [65, 66] to a full LDP for
many perturbed matrix models, to obtain a full LDP for the spectral measure
of (1.4.1) with general A is still an open problem. Rather than to attack the
general case, our project here is to handle a specific case where the rate function
arises from a vector equilibrium problem.

A vector equilibrium problem involved as a rate function

We investigate the special case where

A =

S

W

W

W

U

Ô
a

. . . Ô
a

0

T

X

X

X

V

, (1.4.2)

for some parameter a > 0 in the regime M, N æ Œ and M/N æ 1. Then the
average characteristic polynomial ‰

N

is a MOP with respect to two measures
involving modified Bessel functions of the first kind.

We consider the following weakly admissible vector equilibrium problem
⁄⁄

log 1
|x ≠ y|µ1

(dx)µ
1

(dy) ≠
⁄⁄

log 1
|x ≠ y|µ1

(dx)µ
2

(dy) (1.4.3)

+
⁄⁄

log 1
|x ≠ y|µ2

(dx)µ
2

(dy) +
⁄

1

x ≠ 2
Ô

ax
2

µ
1

(dx),

with µ
1

œ M
1

(R
+

) and µ
2

œ M‡

1/2

(R≠), where M‡

1/2

(R≠) stands for the set of
absolutely continuous Borel measures on R≠ with total mass 1/2 which satisfy
the constraint

µ
2

(dx)
dx

Æ
Ô

a

fi
|x|≠1/2, x œ R≠.

Let J (µ
1

, µ
2

) be the well-defined extension of (1.4.3) in the sense of Chapter 3,
and denote by (µú

1

, µú
2

) its unique minimizer on the closed convex set M
1

(R
+

)◊
M‡

1/2

(R≠). The main result of this chapter is the following.

Theorem 1.4.1. The spectral measure µ̂N associated to (1.4.1)–(1.4.2) satisfies
a LDP with good rate function

�(µ) = inf
µ2 œ M‡

1/2(R≠)

J (µ, µ
2

) ≠ J (µú
1

, µú
2

).
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Namely,

(a) The level set
Ó

µ œ M
1

(R
+

) : inf
µ2œM‡

1/2(R≠)

J (µ, µ
2

) Æ “
Ô

is compact for any “ œ R.

(b) For any closed set F µ M
1

(R
+

),

lim sup
NæŒ

1
N2

logP
N

1

µ̂N œ F
2

Æ ≠ inf
(µ1,µ2)œF◊M‡

1/2(R≠)

Ó

J (µ
1

, µ
2

)≠J (µú
1

, µú
2

)
Ô

.

(c) For any open set O µ M
1

(R
+

),

lim inf
NæŒ

1
N2

logP
N

1

µ̂N œ O
2

Ø ≠ inf
(µ1,µ2)œO◊M‡

1/2(R≠)

Ó

J (µ
1

, µ
2

)≠J (µú
1

, µú
2

)
Ô

.

In particular, µ̂N converges almost surely towards µú
1

as N æ Œ.

The proof is rather technical and proceeds as follows. First, thanks to algebraic
manipulations based on the Nikishin structure satisfied by the weights of
the MOP, we represent the eigenvalue distribution of (1.4.1) as the marginal
distribution of a Coulomb gas with two types of particles. The particles of first
type are living on R

+

and are exactly the eigenvalues of the matrix model. The
particles of the second type are abstract and live on an N -dependent discrete
subset of R≠. They moreover attract the particles of the first type, expressing
the e�ect of the perturbation. This provides an insight into why a functional
like (1.4.3) should describe the limiting distribution, which is not so clear when
one only considers the zeros of the associated MOPs. Then, we perform a
large deviation investigation similar to [11], although instead of proving the
exponential tightness we use the compactification trick developed in Chapter 2.
Another important technical point is to deal with the possible contact at the
origin of the two di�erent types of particles.

1.5 Zeros of average characteristic polynomials

In Chapter 5, we provide a su�cient condition for the empirical measure µ̂N

and the zero distribution ‹
N

of ‰
N

to converge almost surely towards the same
limit.
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Determinantal point processes associated with projectors

We consider the class of determinantal point processes which are associated with
a non-trivial finite-rank bounded projection operator. More precisely, we are
interested in real random variables x

1

, . . . , x
N

such that their joint probability
distribution reads

1
N ! det

Ë

K
N

(x
i

, x
j

)
È

N

i,j=1

N

Ÿ

i=1

µ
N

(dx
i

),

where µ
N

is a measure on R with infinite support and all its moments, and
K

N

: R◊R æ R is a square µ
N

¢µ
N

-integrable function such that the operator

fi
N

: f(x) œ L2(µ
N

) ‘æ
⁄

K
N

(x, y)f(y)µ
N

(dy) (1.5.1)

is a bounded projector over an N -dimensional subspace of L2(µ
N

). A MOP
ensemble lies in this class; it is associated to a (non-necessarily orthogonal)
projector onto the subspace of polynomials of degree at most N ≠ 1.

The spectral theorem for compact operators then provides for every N two
biorthogonal families (P

k,N

)N≠1

k=0

and (Q
k,N

)N≠1

k=0

of (non-necessarily polynomial)
L2(µ

N

) functions, i.e. satisfying ÈP
k,N

, Q
m,N

Í
L

2
(µ

N

)

= ”
km

, such that

K
N

(x, y) =
N≠1

ÿ

k=0

P
k,N

(x)Q
k,N

(y).

We now restrict to the class of determinantal point processes which satisfy the
following.

Assumptions

(a) We assume that for every N one can complete the two families (P
k,N

)N≠1

k=0

and (Q
k,N

)N≠1

k=0

into two infinite ones, (P
k,N

)
kœN and (Q

k,N

)
kœN, which

are biorthogonal.

(b) We moreover assume there exists a sequence of integers (q
N

)
N

with sub-
power growth, that is for every n œ N, q

N

= o(N1/n) as N æ Œ, such
that for every k, N œ N,

xP
k,N

œ Span
1

P
m,N

2

k+q
N

m=0

.
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In the case of MOP ensembles, it turns out that these assumptions are fulfilled
with q

N

= 1, since P
k,N

is then a polynomial of degree k. Examples of
determinantal point processes which satisfy the latter assumptions with a
strictly increasing sequence (q

N

)
N

are provided by mixed-type MOP ensembles
[37].

Simultaneous convergence of µ̂N and ‹
N

For determinantal point processes which satisfy the latter assumptions, the
main result of Chapter 5 is the following.

Theorem 1.5.1. Assume there exists Á > 0 such that for every n œ N,

max
k,m œN : | k

N

≠1|Æ Á, | m

N

≠1|Æ Á

-

-ÈxP
k,N

, Q
m,N

Í
L

2
(µ

N

)

-

- = o(N1/n), (1.5.2)

as N æ Œ. Then, for all ¸ œ N, almost surely,

lim
NæŒ

-

-

-

-

⁄

x¸µ̂N (dx) ≠
⁄

x¸‹
N

(dx)
-

-

-

-

= 0.

We actually prove the simultaneous convergence of the moments of ‹
N

and of
E

#

µ̂N

$

, the mean empirical measure, and then we show that the moments of µ̂N

concentrate around those of E
#

µ̂N

$

at a rate N1+‘. At this level of generality,
this concentration result is new and may be of independent interest. Concerning
the proof, we develop a moment method involving weighted lattice paths, where
the weight of a path is a finite product of the ÈxP

k,N

, Q
m,N

Í
L

2
(µ

N

)

’s.

For MOP ensembles, the coe�cients ÈxP
k,N

, Q
m,N

Í
L

2
(µ

N

)

are in fact the
recurrence coe�cients of the MOPs; we also discuss a useful connection with
nearest neighbors recurrence coe�cients. As a consequence, we are able to check
that (1.5.2) holds for several MOP ensembles since these recurrence coe�cients
are explicit for classical MOPs.

Concerning the applications, by combining Theorem 1.5.1 with a result of
Kuijlaars and Van Assche, one obtains a unified way to describe the almost
sure convergence of classical orthogonal polynomial ensembles. Moreover, it
follows from Theorem 1.5.1 and Voiculescu’s theorems that the limiting zero
distributions of (properly rescaled) multiple Hermite and multiple Laguerre
polynomials can be described in terms of free convolutions of classical
distributions with atomic measures, from which we derive algebraic equations for
the Cauchy-Stieltjes transforms. It seems this is the first time that a description
of these limiting zero distributions is provided in such a level of generality.



Chapter 2

Large deviations for 2D
Coulomb gas

In this chapter, based on the work [67], we investigate a Coulomb gas in a
potential satisfying a weaker growth assumption than usual and establish a
large deviation principle (LDP) for its empirical measure. As a consequence, the
empirical measure is seen to converge towards a non-random limiting measure,
characterized by a variational principle from logarithmic potential theory, and
which may not have compact support. The proof of the large deviation upper
bound is based on a compactification procedure which will be of important use
all along this thesis.

2.1 Introduction and statement of the result

Given an infinite closed subset � of C, consider the distribution of N particles
x

1

, . . . , x
N

living on � which interact like a Coulomb gas at inverse temperature
— > 0 under an external potential. Namely, let P

N

be the probability distribution
on �N with density

1
Z

N

Ÿ

1Æi<jÆN

|x
i

≠ x
j

|—
N

Ÿ

i=1

e≠NV (x

i

), (2.1.1)

13
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where the so-called potential V : � æ R is a continuous function which, provided
� is unbounded, grows su�ciently fast as |x| æ Œ so that

Z
N

=
⁄

· · ·
⁄

�

N

Ÿ

1Æi<jÆN

|x
i

≠ x
j

|—
N

Ÿ

i=1

e≠NV (x

i

)dx
i

< +Œ. (2.1.2)

For � = R and — = 1 (resp. — = 2 and 4) such a density is known to match
with the joint eigenvalue distribution of a N ◊ N orthogonal (resp. unitary
and unitary symplectic) invariant Hermitian random matrix [89]. A similar
observation can be made when � = C (resp. the unit circle T, the real half-line
R

+

, the segment [0, 1]) by considering normal matrix models [32] (resp. the
—-circular ensemble, the —-Laguerre ensemble, the —-Jacobi ensemble, see [59]
for an overview).

In this work, our interest lies in the limiting global distribution of the x
i

’s as
N æ Œ, that is the convergence of the empirical measure

µ̂N = 1
N

N

ÿ

i=1

”
x

i

(2.1.3)

in the case where � is unbounded and V satisfies a weaker growth assumption
than usually presented in the literature, see (2.1.7). Note the µ̂N ’s are random
variables taking their values in the space M

1

(�) of probability measures on �,
that we equip with the usual weak topology.

When � = R, the almost sure convergence of (µ̂N )
N

towards a non-random
limit µú

V

is classically known to hold under the hypothesis that there exists
—Õ > 1 satisfying —Õ Ø — such that

lim inf
|x|æŒ

V (x)
—Õ log |x| > 1, (2.1.4)

that is, as |x| æ Œ, the confinement e�ect due to the potential V is stronger
than the repulsion between the x

i

’s. The limiting distribution µú
V

is then
characterized as the unique minimizer of the functional

I
V

(µ) =
⁄⁄

F
V

(x, y)µ(dx)µ(dy), µ œ M
1

(�), (2.1.5)

where we introduced the following variation of the weighted logarithmic kernel

F
V

(x, y) = —

2 log 1
|x ≠ y| + 1

2V (x) + 1
2V (y), x, y œ �. (2.1.6)

A stronger statement, first established by Ben Arous and Guionnet for a
Gaussian potential V (x) = x2/2 [11] and later extended to arbitrary continuous
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potential V satisfying the growth condition (2.1.4) [2, Theorem 2.6.1] (see also
[72, Theorem 5.4.3] for a similar statement with a slightly stronger growth
assumption on V ), is that (µ̂N )

N

satisfies a LDP on M
1

(�) in the scale N2 and
good rate function I

V

≠ I
V

(µú
V

). It is moreover known that µú
V

has a compact
support [2, Lemma 2.6.2]. A similar result is known to hold when � = C, see
e.g. [72, Theorem 5.4.9].

It is the aim of this work to show that such statements still hold, except that
µú

V

may not have compact support, when one allows the confining e�ect of the
potential V to be of the same order of magnitude than the repulsion between
the x

i

’s. Namely, we consider the following weaker growth condition: there
exists —Õ > 1 satisfying —Õ Ø — such that

lim inf
|x|æŒ

Ó

V (x) ≠ —Õ log |x|
Ô

> ≠Œ. (2.1.7)

We provide a statement when � = R or C, and discuss later the case of more
general �’s. More precisely, we will establish the following.

Theorem 2.1.1. Let � = R or C. Under the growth assumption (2.1.7),
(µ̂N )

N

satisfies a LDP with good rate function I
V

≠ min I
V

. More precisely,

(a) The level set
)

µ œ M
1

(�) : I
V

(µ) Æ –
*

is compact for any – œ R.

(b) I
V

admits a unique minimizer µú
V

on M
1

(�).

(c) For any closed set F µ M
1

(�),

lim sup
NæŒ

1
N2

logP
N

1

µ̂N œ F
2

Æ ≠ inf
µœF

Ó

I
V

(µ) ≠ I
V

(µú
V

)
Ô

.

(d) For any open set O µ M
1

(�),

lim inf
NæŒ

1
N2

logP
N

1

µ̂N œ O
2

Ø ≠ inf
µœO

Ó

I
V

(µ) ≠ I
V

(µú
V

)
Ô

.

Note that (2.1.7), together with the inequality |x ≠ y| Æ (1 + |x|)(1 + |y|),
x, y œ C, yields (2.1.2) and that F

V

is bounded from below, so that I
V

is well
defined on M

1

(�).

A consequence of Theorem 2.1.1 (b) and (c), together with the Borel-Cantelli
Lemma, is the almost sure convergence of (µ̂N )

N

towards µú
V

in the weak
topology of M

1

(�). Namely, if P stands for the probability measure induced
by the product probability space

o

N

!

�N ,P
N

"

, we have
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Corollary 2.1.2.

P
1

µ̂N converges weakly as N æ Œ to µú
V

2

= 1.

Let us now discuss few examples arising from random matrix theory where the
limiting distribution µú

V

has unbounded support.

Example 2.1.3. (Cauchy ensemble)

On the space H
N

(C) of N ◊ N Hermitian complex matrices, consider the
probability distribution

1
Z

N

det( I

N

+ X

2)≠N dX,

where I

N

œ H
N

(C) is the identity matrix, dX the Lebesgue measure of H
N

(C) ƒ
RN

2 and Z
N

a normalization constant. Such a matrix model is a variation of
the Cauchy ensemble [59, Section 2.5]. Performing a spectral decomposition
and integrating out the eigenvectors, it is known that the induced distribution
for the eigenvalues is given by (2.1.1) with � = R, — = 2, V (x) = log(1 + x2),
and some new normalization constant Z

N

. One can then compute, see Remark
2.2.2 below, that the minimizer of (2.1.5) is the Cauchy distribution

µú
V

(dx) = 1
fi(1 + x2)dx, (2.1.8)

where dx is the Lebesgue measure on R.

Example 2.1.4. (Spherical ensemble)

Given A and B two independent N ◊ N matrices with i.i.d. standard complex
Gaussian entries, it is known that the N zeros of the random polynomial
det(A ≠ zB) (i.e. the eigenvalues of AB

≠1 when B is invertible) are distributed
according to (2.1.1) with � = C, — = 2, V (x) = log(1 + |x|2) (up to a
negligible correction), see [81, Section 3]. One may also consider the probability
distribution on the space N

N

(C) of N ◊ N normal complex matrices given by
1

Z
N

det( I

N

+ X

ú
X)≠N dX,

where I

N

œ N
N

(C) is the identity matrix, dX the Riemannian volume form
on N

N

(C) induced by the Lebesgue measure of the space of N ◊ N complex
matrices (ƒ CN

2), Z
N

a normalization constant, and obtains the same Coulomb
gas for the eigenvalue distribution [32, Section 2]. The minimizer of (2.1.5) is
then the distribution

µú
V

(dx) = 1
fi(1 + |x|2)2

dx, (2.1.9)

where dx stands for the Lebesgue measure on C ƒ R2, see Remark 2.2.2.
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Remark 2.1.5. (Exponential tightness and compactification)

The proofs of the LDPs under the stronger growth assumption (2.1.4) presented
in [11, 72, 2] follow a classical strategy in the theory of LDPs (see e.g [43] for
an introduction), that is to control the deviations of (µ̂N )

N

towards arbitrary
small balls of M

1

(�), and then prove an exponential tightness property for
(µ̂N )

N

: there exists a sequence of compact sets (K
L

)
L

µ M
1

(�) such that

lim sup
LæŒ

lim sup
NæŒ

1
N2

logP
N

1

µ̂N /œ K
L

2

= ≠Œ. (2.1.10)

The exponential tightness is actually used to establish the large deviation upper
bound, and plays no role in the proof of the lower one. Under the weaker growth
assumption (2.1.7), it is not clear to the author how to prove the exponential
tightness for (µ̂N )

N

directly, and we thus prove Theorem 2.1.1 by using a
di�erent approach. We adapt an idea of [69] (which is presented in Chapter
3) and map C onto the Riemann sphere S, homeomorphic to the one-point
compactification of C by the inverse stereographic projection T , then push-
forward M

1

(C) to M
1

(S), and take advantage that the latter set is compact for
its weak topology. More precisely, it will be seen that it is enough to establish
upper bounds for the deviations of (Túµ̂N )

N

, the push-forward of (µ̂N )
N

by T ,
towards arbitrary small balls of M

1

(S). The latter fact is possible thanks to
the explicit change of metric induced by T .

Our approach is still available for a large class of supports � and for potentials
V satisfying weaker regularity assumptions, justifying our choice to consider
general �’s. Nevertheless, it is not the purpose of this note to establish in such
a general setting the large deviation lower bound, which is a local property and
in fact will be seen to be independent of the growth assumption for V . This is
the reason why we restricted � to be R or C in Theorem 2.1.1.

We first describe the announced compactification procedure in Section 2.2.1.
Then, we study (Túµ̂N )

N

and a related rate function in Section 2.2.2. From these
informations, we are able to provide a proof for Theorem 2.1.1 in Section 2.2.3.
Finally, we discuss in Section 2.3 some generalizations concerning the support
of the Coulomb gas, the regularity of the potential and the compactification
procedure of possible further interest.

2.2 Proof of Theorem 2.1.1

We first describe the compactification procedure. In this subsection, � is an
arbitrary unbounded closed subset of C.
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2.2.1 Compactification

We consider the Riemann sphere, here parametrized as the sphere of R3 centered
in (0, 0, 1/2) of radius 1/2,

S =
Ó

(x
1

, x
2

, x
3

) œ R3 | x2

1

+ x2

2

+ (x
3

≠ 1

2

)2 = 1

4

Ô

,

and T : C æ S the associated inverse stereographic projection, namely the map
defined by

T (x) =
3

Re(x)
1 + |x|2 ,

Im(x)
1 + |x|2 ,

|x|2
1 + |x|2

4

, x œ C.

It is known that T is an homeomorphism from C onto S \ {(0, 0, 1)}, so that
(S, T ) is a one-point compactification of C. We write for convenience

�S = clo
!

T (�)
"

= T (�) fi {(0, 0, 1)} (2.2.1)
for the closure of T (�) in S. For µ œ M

1

(�), we denote by Túµ its push-forward
by T , that is the measure on �S characterized by

⁄

�S
f(z)Túµ(dz) =

⁄

�

f
!

T (x)
"

µ(dx) (2.2.2)

for every Borel function f on �S. Then the following Lemma holds.
Lemma 2.2.1. Tú is an homeomorphism from M

1

(�) to
Ó

µ œ M
1

(�S) : µ({(0, 0, 1)}) = 0
Ô

.

Proof. T ú is clearly continuous. The inverse of Tú is given by push backward
via T , that is, for any µ œ M

1

(�S) satisfying µ({(0, 0, 1)}) = 0, Tú≠1µ(A) =
µ(T (A)) for all Borel set A µ �S. To show the continuity of Tú≠1, consider a
sequence (µ

N

)
N

in M
1

(�S) with weak limit µ and assume that µ
N

({(0, 0, 1)}) =
0 for all N and µ({(0, 0, 1)}) = 0. Then, for any Á > 0, the outer regularity
of µ and the weak convergence of (µ

N

)
N

towards µ yield the existence of a
neighborhood B µ �S of (0, 0, 1) such that

lim sup
NæŒ

µ
N

(B) Æ µ(B) Æ Á,

which equivalently means that (Tú≠1µ
N

)
N

is tight. As a consequence, since
f ¶ T ≠1 is continuous on �S for any continuous function f having compact
support in �, the continuity of Tú≠1 follows.

The next step is to obtain an upper control on the deviation of (Túµ̂N )
N

towards
arbitrary small balls of M

1

(�S).
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2.2.2 Weak LDP upper bound for (Túµ̂N)N

In this subsection, � is an arbitrary unbounded closed subset of C, the potential
V : � æ R fi {+Œ} is a lower semi-continuous map satisfying the growth
condition (2.1.7), and we assume there exists µ œ M

1

(�) such that I
V

(µ) <
+Œ.

The change of metric induced by T is given by (see e.g. [8, Lemma 3.4.2])

|T (x) ≠ T (y)| = |x ≠ y|


1 + |x|2


1 + |y|2
, x, y œ C, (2.2.3)

where | · | stands for the Euclidean norm of R3 (we identify C with {(x
1

, x
2

, x
3

) œ
R3 : x

3

= 0}). Note that by letting y æ +Œ in (2.2.3), squaring and using the
Pythagorean theorem, one obtains the useful relation

1 ≠ |T (x)|2 = 1
1 + |x|2 , x œ C. (2.2.4)

From the potential V we then construct a potential V : �S æ Rfi {+Œ} in the
following way. Set

V
!

T (x)
"

= V (x) ≠ —

2 log(1 + |x|2), x œ �, (2.2.5)

and
V((0, 0, 1)) = lim inf

|x|æŒ, xœ�

Ó

V (x) ≠ —

2 log(1 + |x|2)
Ô

. (2.2.6)

Note that the growth assumption (2.1.7) is equivalent to V((0, 0, 1)) > ≠Œ, so
that V is lower semi-continuous on �S. As a consequence the kernel

FV(z, w) = —

2 log 1
|z ≠ w| + 1

2V(z) + 1
2V(w), z, w œ �S, (2.2.7)

is lower semi-continuous and bounded from below on �S◊�S, and the functional

IV(µ) =
⁄⁄

FV(z, w)µ(dz)µ(dw), µ œ M
1

(�S), (2.2.8)

is well-defined. One understands from (2.2.3), (2.2.5) and (2.2.2) that the
potential V has been built so that the following relation holds

I
V

(µ) = IV
!

Túµ
"

, µ œ M
1

(�). (2.2.9)

Let us come back to Examples 2.1.3 and 2.1.4.
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Remark 2.2.2. (Examples 2.1.3, 2.1.4, continued)

For � = R or C, — = 2 and V (x) = log(1 + |x|2), we have V = 0 and thus from
(2.2.9)

I
V

(µ) =
⁄⁄

log 1
|z ≠ w|Túµ(dz)Túµ(dw), µ œ M

1

(�). (2.2.10)

Note that if � = R (resp. � = C) then �S = Sfl {(x
1

, x
2

, x
3

) œ R3 : x
2

= 0} is
a circle (resp. �C = S the full sphere). By rotational invariance, the minimizer
of

⁄⁄

log 1
|z ≠ w|‹(dz)‹(dw), ‹ œ M

1

(�S)

has to be the uniform measure U
�S of �S, and thus the minimizer µú

V

of I
V

is
given by the push-backward Tú≠1U

�S . Thus, if � = R (resp. � = C), an easy
Jacobian computation involving polar (resp. spherical) coordinates yields that
µú

V

equals (2.1.8) (resp. (2.1.9)).

Given a metric d on M
1

(�S), compatible with its weak topology (such as the
Lévy-Prohorov metric, see [49]), we denote for the associated balls

B(µ,” ) =
Ó

‹ œ M
1

(�S) : d(µ,‹ ) < ”
Ô

, µ œ M
1

(�S), ” >0.

The following Proposition gathers all the informations concerning IV and
(Túµ̂N )

N

needed to establish Theorem 2.1.1 in the next Section.

Proposition 2.2.3.

(a) The level set
)

µ œ M
1

(�S) : IV(µ) Æ –
*

is closed, and thus compact, for
any – œ R.

(b) IV is strictly convex on the set where it is finite.

(c) For any µ œ M
1

(�S), we have

lim sup
”æ0

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
N

1

Túµ̂N œ B(µ,” )
2Ô

Æ ≠IV(µ).

The proof of Proposition 2.2.3 is somehow classical and inspired from the ideas
developed in [11] (cf. also [72, 2, 69]).

Proof. (a) It is equivalent to show that IV is lower semi-continuous. Since
FV is lower semi-continuous, there exists an increasing sequence (F M

V )
M

of
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continuous functions on �S ◊ �S satisfying FV = sup
M

F M

V . We obtain for any
µ œ M

1

(�S) by monotone convergence

IV(µ) = sup
M

⁄⁄

F M

V (z, w)µ(dz)µ(dw),

and IV is thus lower semi-continuous on M
1

(�S) being the supremum of a
family of continuous functions.

(b) Denote for a (possibly signed) measure µ on S its logarithmic energy by

I(µ) =
⁄⁄

log 1
|z ≠ w|µ(dz)µ(dw) (2.2.11)

when this integral makes sense, and note that if µ œ M
1

(�S) then I(µ) Ø 0.
Since V is bounded from below and µ ‘æ

s

V(z)µ(dz) is linear, it is enough
to show that µ ‘æ I(µ) is strictly convex on the set where it is finite. Given
µ,‹ œ M

1

(�S) having finite logarithmic energies, we have for any 0 < t < 1

I
!

tµ + (1 ≠ t)‹
"

= tI(µ) + (1 ≠ t)I(‹) ≠ t(1 ≠ t)I(µ ≠ ‹).

Moreover, since I(µ ≠ ‹) Ø 0 with equality if and only if µ = ‹ [31, Theorem
2.5], the strict convexity of I where it is finite follows.

(c) Introduce for i = 1, . . . , N the random variables z
i

= T (x
i

) where the x
i

’s
are distributed according to (2.1.1) so that

Túµ̂N = 1
N

N

ÿ

i=1

”
z

i

. (2.2.12)

We can easily compute the distribution for the z
i

’s induced by (2.1.1). Indeed,
with V defined in (2.2.5)–(2.2.6), we obtain from the metric relations (2.2.3)–
(2.2.4) that

1
Z

N

Ÿ

1Æi<jÆN

|x
i

≠ x
j

|—
N

Ÿ

i=1

e≠NV (x

i

)dx
i

= 1
Z

N

Ÿ

1Æi<jÆN

|T (x
i

) ≠ T (x
j

)|—
N

Ÿ

i=1

!

1 ≠ |T (x
i

)|2
"

—/2

e≠N

!

V (x

i

)≠ —

2 log(1+|x
i

|2
)

"

dx
i

= 1
Z

N

Ÿ

1Æi<jÆN

|z
i

≠ z
j

|—
N

Ÿ

i=1

(1 ≠ |z
i

|2)—/2e≠NV(z

i

)⁄(dz
i

),



22 Large deviations for 2D Coulomb gas

where ⁄ stands for the push-forward by T of (the restriction of) the Lebesgue
measure on �. As a consequence, we have

Z
N

P
N

1

Túµ̂N œ B(µ,” )
2

=
⁄

. . .

⁄

)

zœ�

N

S : Túµ̂

N œB(µ,”)

*

Ÿ

1Æi<jÆN

|z
i

≠ z
j

|—
N

Ÿ

i=1

(1 ≠ |z
i

|2)—/2e≠NV(z

i

)⁄(dz
i

).

(2.2.13)

Then, with FV defined in (2.2.7), one can write

Ÿ

1Æi<jÆN

|z
i

≠ z
j

|—
N

Ÿ

i=1

(1 ≠ |z
i

|2)—/2e≠NV(z

i

)⁄(dz
i

)

= exp
Ó

≠
ÿ

1Æi”=jÆN

FV(z
i

, z
j

)
Ô

N

Ÿ

i=1

(1 ≠ |z
i

|2)—/2e≠V(z

i

)⁄(dz
i

)

= exp
Ó

≠ N2

⁄⁄

z ”=w

FV(z, w)Túµ̂N (dz)Túµ̂N (dw)
Ô

N

Ÿ

i=1

(1 ≠ |z
i

|2)—/2e≠V(z

i

)⁄(dz
i

).

(2.2.14)

With F M

V as in the proof of Proposition 2.2.3 (a) above, we have
⁄⁄

z ”=w

FV(z, w)Túµ̂N (dz)Túµ̂N (dw) Ø
⁄⁄

z ”=w

F M

V (z, w)Túµ̂N (dz)Túµ̂N (dw).

(2.2.15)
Moreover, since P

N

-almost surely

Túµ̂N ¢ Túµ̂N

1

{(x, y) œ �S ◊ �S : x = y}
2

= 1
N

,

we obtain on the event
)

Túµ̂N œ B(µ,” )
*

that
⁄⁄

z ”=w

F M

V (z, w)Túµ̂N (dz)Túµ̂N (dw)

Ø
⁄⁄

F M

V (z, w)Túµ̂N (dz)Túµ̂N (dw) ≠ 1
N

max
�S◊�S

F M

V

Ø inf
‹œB(µ,”)

⁄⁄

F M

V (z, w)‹(dz)‹(dw) ≠ 1
N

max
�S◊�S

F M

V . (2.2.16)
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From (2.2.13)–(2.2.16) we find

log
Ó

Z
N

P
N

1

Túµ̂N œ B(µ,” )
2Ô

Æ ≠ N2 inf
‹œB(µ,”)

⁄⁄

F M

V (z, w)‹(dz)‹(dw) (2.2.17)

+ N

3

max
�S◊�S

F M

V + log
⁄

�S
(1 ≠ |z|2)—/2e≠V(z)⁄(dz)

4

.

Note that by performing the change of variables z = T (x), using (2.2.4) and
the growth assumption (2.1.7), it follows that

⁄

�S
(1 ≠ |z|2)—/2e≠V(z)⁄(dz) =

⁄

�

e≠V (x)dx < +Œ,

and thus (2.2.17) yields

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
N

1

Túµ̂N œ B(µ,” )
2Ô

Æ ≠ inf
‹œB(µ,”)

⁄⁄

F M

V (z, w)‹(dz)‹(dw).

(2.2.18)
The continuity of the map

‹ ‘æ
⁄⁄

F M

V (z, w)‹(dz)‹(dw)

provides by letting ” æ 0 in (2.2.18)

lim sup
”æ0

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
N

1

Túµ̂N œ B(µ,” )
2Ô

Æ ≠
⁄⁄

F M

V (z, w)µ(dz)µ(dw),

(2.2.19)
and (c) is finally deduced by monotone convergence letting M æ Œ in (2.2.19).

Equipped with Proposition 2.2.3, we are now in position to prove Theorem 2.1.1
thanks to the compactification procedure described in Section 2.2.1.

2.2.3 Proof of Theorem 2.1.1

In this subsection, � = R or C, and V : � æ R is a continuous map satisfying
the growth assumption (2.1.7).
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Proof of Theorem 2.1.1. (a) Since IV(µ) = +Œ for all µ œ M
1

(�S) such that
µ({(0, 0, 1)}) > 0, we obtain from Lemma 2.2.1 and (2.2.9) that the levels sets
of I

V

and IV are homeomorphic, namely for any – œ R

Tú
Ó

µ œ M
1

(�) : I
V

(µ) Æ –
Ô

=
Ó

µ œ M
1

(�S) : IV(µ) Æ –
Ô

.

Thus, Theorem 2.1.1 (a) follows from Proposition 2.2.3 (a).

(b) Theorem 2.1.1 (a) yields the existence of minimizers for I
V

on M
1

(�). Since
Tú is a linear injection, it follows from (2.2.9) and Proposition 2.2.3 (b) that I

V

is strictly convex on the set where it is finite, which warrants the uniqueness of
the minimizer.

(c),(d) It is enough to show that for any closed set F µ M
1

(�),

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
N

1

µ̂N œ F
2Ô

Æ ≠ inf
µœF

I
V

(µ), (2.2.20)

and for any open set O µ M
1

(�),

lim inf
NæŒ

1
N2

log
Ó

Z
N

P
N

1

µ̂N œ O
2Ô

Ø ≠ inf
µœO

I
V

(µ). (2.2.21)

Indeed, by taking F = O = M
1

(�) in (2.2.20) and (2.2.21), one obtains

lim
NæŒ

1
N2

log Z
N

= ≠ inf
µœM1(�)

I
V

(µ) = ≠I
V

(µú
V

),

the latter quantity being finite.

Let us first show (2.2.20). We have for any closed set F µ M
1

(�) that

P
N

1

µ̂N œ F
2

Æ P
N

1

Túµ̂N œ clo(TúF)
2

, (2.2.22)

where clo(TúF) stands for the closure of TúF in M
1

(�S). Inspired from the
proof of [43, Theorem 4.1.11], we fix Á > 0, and introduce

IÁ

V(µ) = min
!

IV(µ) ≠ Á, 1/Á
"

, µ œ M
1

(�S).

Then for any µ œ M
1

(�S), Proposition 2.2.3 (c) provides the existence of ”
µ

> 0
such that

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
N

1

Túµ̂N œ B(µ,”
µ

)
2Ô

Æ ≠IÁ

V(µ). (2.2.23)

Since M
1

(�S) is compact, so is clo(TúF
"

, and thus there exists a finite number
of measures µ

1

, . . . , µ
d

œ clo(TúF
"

such that

P
N

1

Túµ̂N œ clo(TúF)
2

Æ
d

ÿ

i=1

P
N

1

Túµ̂N œ B(µ
i

, ”
µ

i

)
2

.
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As a consequence, it follows with (2.2.23)

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
N

1

Túµ̂N œ clo(TúF)
2Ô

Æ dmax
i=1

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
N

1

Túµ̂N œ B(µ
i

, ”
µ

i

)
2Ô

Æ ≠
d

min
i=1

IÁ

V(µ
i

) Æ ≠ inf
µœ clo(TúF)

IÁ

V(µ). (2.2.24)

By letting Á æ 0 in (2.2.24), we obtain

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
N

1

Túµ̂N œ clo(TúF)
2Ô

Æ ≠ inf
µœ clo(TúF)

IV(µ). (2.2.25)

If ‹ œ clo(TúF), then either ‹ œ TúF or ‹({(0, 0, 1)}) > 0. Indeed, let (Tú÷
N

)
N

be a sequence in TúF with limit ‹ satisfying ‹({(0, 0, 1)}) = 0. Lemma 2.2.1
yields ÷ œ M

1

(�) such that ‹ = Tú÷ and moreover the convergence of (÷
N

)
N

towards ÷. Since F is closed, necessarily ‹ œ TúF . As a consequence, since
IV(µ) = +Œ as soon as µ({(0, 0, 1)}) > 0, we obtain from (2.2.9)

inf
µœ clo(TúF)

IV(µ) = inf
µœTúF

IV(µ) = inf
µœF

I
V

(µ). (2.2.26)

Finally, (2.2.20) follows from (2.2.22), and (2.2.25)–(2.2.26).

We now prove (2.2.21). It is su�cient to show that for any µ œ M
1

(�) and any
neighborhood G µ M

1

(�) of µ we have

lim inf
NæŒ

1
N2

log
Ó

Z
N

P
1

µ̂N œ G
2Ô

Ø ≠I
V

(µ). (2.2.27)

For any k large enough, define µ
k

œ M
1

(R) to be the normalized restriction of
µ to the compact � fl [≠k, k]2. Then (µ

k

)
k

converges towards µ as k æ Œ and
one easily obtains from the monotone convergence theorem that

lim
kæŒ

I
V

(µ
k

) = I
V

(µ).

As a consequence, it is enough to show (2.2.27) under the extra assumption that
the µ’s are compactly supported, so that the statement (2.2.21) is independent of
the growth assumption on V . Thus, one can reproduce the proof of [2, Theorem
2.6.1] to show (2.2.27) when � = R, and similarly the one of [72, Theorem
5.4.9] when � = C. The prove of Theorem 2.1.1 is therefore complete.

Remark 2.2.4. A potential alternative approach to the proof of Theorem 2.1.1
(suggested to us by an anonymous referee for [67]) is as follows. Assume that one
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can establish a large deviation lower bound similar to (2.2.27) for Túµ̂N , so that
it would provide together with Proposition 2.2.3 a full LDP for Túµ̂N on M

1

(�S).
Then one would obtain a LDP for Túµ̂N on {µ œ M

1

(�S) : µ({(0, 0, 1)}) = 0},
equipped with the induced topology of M

1

(�S), by “inclusion principle” [43,
Lemma 4.1.5(b)], and then the required large deviation principle for µ̂N on
M

1

(�) by contraction principle along T ≠1

ú [43, Theorem 4.2.1], thanks to
Lemma 2.2.1.

2.3 Generalizations

In this section we consider some generalizations of the result and the method
presented in the previous sections.

2.3.1 Concerning the support of the Coulomb gas

A natural question is to ask if Theorem 2.1.1 still holds for more general supports
� and less regular potentials V , as suggested in the previous sections.

Let us emphasis that the compactification procedure presented in Section 2.2.1
and Proposition 2.2.3 hold under the only assumptions that � is a closed subset
of C and V : � æ R fi {+Œ} is a lower semi-continuous map which satisfies
the growth assumption (2.1.7), and such that there exists µ œ M

1

(�) with
I

V

(µ) < +Œ. As a consequence, the proofs of Theorem 2.1.1(a), (b) and the
upper bound (2.2.20) provided in Section 2.2.3 also hold under such a weakening
of assumptions on V and �. A full large deviation principle would hold as
soon as one can establish in this setting the lower bound (2.2.21) for µ̂N , or its
equivalent for Túµ̂N , see Remark 2.2.4.

2.3.2 Concerning the compactification procedure

The main use of the compactification procedure was to avoid the use of
exponential tightness to prove the large deviation upper bound. It turns
out that the proof of (2.2.20) can be adapted without any substantial change
to obtain a similar result in a more general setting that we present now.

Let X be a locally compact, but not compact, Polish space and consider a
sequence (µ̂N )

N

of random variables taking values in the space M
1

(X ) of Borel
probability measures on X . Let ( ‚X , T ) be a one-point compactification of X ,
that is a compact set ‚X with an element Œ œ ‚X such that T : X æ ‚X is an
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homeomorphism on its image T (X) and ‚X \ T (X ) = {Œ}. Define Tú to be
the push-forward by T similarly as in (2.2.2). We equip M

1

( ‚X ) with its weak
topology, so that it becomes a compact Polish space, and denotes B(µ,” ) the
ball centered in µ œ M

1

( ‚X ) with radius ” > 0.

Proposition 2.3.1. Let (–
N

)
N

and (Z
N

)
N

be two sequences of real positive
numbers with lim

NæŒ –
N

= +Œ. Assume there exists a lower semi-continuous
map � : M

1

( ‚X ) æ R fi {+Œ} which satisfies the following.

(a) For all µ œ M
1

( ‚X ), �(µ) = +Œ as soon as µ({Œ}) > 0.

(b) For all µ œ M
1

( ‚X ),

lim sup
”æ0

lim sup
NæŒ

1
–

N

log
Ó

Z
N

P
N

1

Túµ̂N œ B(µ,” )
2Ô

Æ ≠�(µ).

Then for any closed set F µ M
1

(X ),

lim sup
NæŒ

1
–

N

log
Ó

Z
N

P
N

1

µ̂N œ F
2Ô

Æ ≠ inf
µœF

� ¶ Tú(µ).

Moreover, note that � has compact level sets (resp. is strictly convex on the
set where it is finite) if and only if � ¶ Tú has (resp. is).

Let us mention that a similar strategy is used in Chapter 4 where a LDP
is established for a two type particles Coulomb gas related to an additive
perturbation of a Wishart random matrix model.





Chapter 3

Vector equilibrium problems

The purpose of this chapter, based on the joint work [69] with Arno Kuijlaars, is
to establish lower semi-continuity and strict convexity of the energy functionals
for a large class of vector equilibrium problems in logarithmic potential theory.
This, in particular, implies the existence and uniqueness of a minimizer for such
vector equilibrium problems. Our work extends earlier results in that we allow
unbounded supports without having strongly confining external fields. To deal
with the possible noncompactness of supports, we map the vector equilibrium
problem onto the Riemann sphere and our results follow from a study of vector
equilibrium problems on compacts in higher dimensions. Our results cover a
number of cases that were recently considered in random matrix theory and for
which the existence of a minimizer was not clearly established yet.

3.1 Introduction

A vector equilibrium problem in logarithmic potential theory asks to find the
minimizer of a functional involving logarithmic energies of several measures
lying in a prescribed set. The origins of vector equilibrium problems lie in the
works of Gonchar and Rakhmanov on Hermite-Padé approximation [61, 62, 63],
where they are used to describe the limiting distributions of the poles of the
rational approximants [91]. More recently, vector equilibrium problems also
appeared in random models related to multiple orthogonal polynomials, such
as random matrix ensembles, or non-intersecting di�usion processes; see the
surveys [6, 83] and the references cited therein.

29
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The question is to prove the existence and uniqueness of such minimizer. Results
are already available in the literature [9, 10, 91, 92] but they do not cover yet a
wider class of vector equilibrium problems arising from random matrix theory,
among other things. Let us illustrate this by an example. In [52, 50, 53]
the two matrix model, which is a model of two coupled random matrices, is
investigated and the limiting mean eigenvalue distribution of one of the matrices
is characterized in terms of the following vector equilibrium problem. Minimize
the energy functional

⁄⁄

log 1
|x ≠ y|µ1

(dx)µ
1

(dy) ≠
⁄⁄

log 1
|x ≠ y|µ1

(dx)µ
2

(dy)

+
⁄⁄

log 1
|x ≠ y|µ2

(dx)µ
2

(dy) ≠
⁄⁄

log 1
|x ≠ y|µ2

(dx)µ
3

(dy)

+
⁄⁄

log 1
|x ≠ y|µ3

(dx)µ
3

(dy) +
⁄

V
1

(x)µ
1

(dx) +
⁄

V
3

(x)µ
3

(dx) (3.1.1)

over vectors of measures (µ
1

, µ
2

, µ
3

) where µ
1

and µ
3

are measures on R, µ
2

is a measure on the imaginary axis iR, and they have respective total masses
Îµ

1

Î = 1, Îµ
2

Î = 2/3 and Îµ
3

Î = 1/3. Moreover, µ
2

is constrained by a
measure ‡ appearing in the problem, that is ‡ ≠ µ

2

has to be a (positive)
measure. The external fields V

1

and V
3

in (3.1.1) are given continuous functions
on R and V

1

has polynomial growth at infinity, while V
3

has compact support.

The existence of a unique minimizer (µú
1

, µú
2

, µú
3

) plays a crucial role in the
two matrix model investigation. Indeed, an important step for its asymptotic
analysis is to normalize the associated Riemann-Hilbert problem at infinity, a
procedure which is possible because of the existence of such a minimizer, and
as a consequence the first component µú

1

turns out to be the limiting mean
eigenvalue distribution of one of the random matrices. Nevertheless, the proof
of existence and uniqueness presented in [52, 53] is rather complicated and
moreover incomplete since the lower semi-continuity of the energy functional
(3.1.1) was implicitly assumed but not proved. There are other random models
for which the existence of a unique minimizer for an associated vector equilibrium
problem has not clearly been established and which will be covered by this
work. Examples are non-intersecting squared Bessel paths models [42, 85] and
a Hermitian random matrix model with an external source [19].

In the recent paper [10], Beckermann et al. establish lower semi-continuity
and existence of minimizers for vector equilibrium problems in situations more
general than known before, but under an hypothesis of compactness (namely the
presence of strongly confining external fields, in case of unbounded sets) which
is not present in the example (3.1.1). It is the aim of this chapter to extend
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the methods of [10] so as to cover the above examples. We restrict to positive
definite interaction matrices, while the work [10] also includes semi-definite
interaction matrices.

3.2 Vector equilibrium problems on the complex
plane

For convenience, we now gather a few definitions commonly used in logarithmic
potential theory.

3.2.1 Notions from potential theory

For a measure µ on C, the logarithmic energy is defined by

I(µ) =
⁄⁄

log 1
|x ≠ y|µ(dx)µ(dy), (3.2.1)

and the logarithmic potential at x œ C by

Uµ(x) =
⁄

log 1
|x ≠ y|µ(dy), (3.2.2)

whenever these integrals make sense. Here and in the rest of the chapter, by
a measure we always mean a positive finite Borel measure. Moreover, for two
measures µ and ‹ on C, their mutual energy is given by

I(µ,‹ ) =
⁄⁄

log 1
|x ≠ y|µ(dx)‹(dy), (3.2.3)

so that I(µ) = I(µ, µ). These definitions are naturally extended to signed
measures.

For a closed subset � µ C and a positive number m > 0, we use M
m

(�)
to denote the set of measures µ having support supp(µ) µ � and total mass
ÎµÎ = m. Such a set M

m

(�) will always be equipped with its weak topology
(i.e., the topology coming from duality with the Banach space of bounded
continuous functions on �). The Cartesian product M

m1(�
1

)◊ · · ·◊M
m

d

(�
d

)
of such sets carries the product topology.

A closed subset � of C has positive capacity if there exists a measure with
support in � having finite logarithmic energy.
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3.2.2 The class of weakly admissible vector equilibrium
problems

Let us now precise the assumptions for vector equilibrium problems concerned
in this Section. Fix an integer d Ø 1.

Assumption 3.2.1. (Weak admissibility)

We make the following assumptions :

(a) C = (c
ij

) is a d ◊ d real symmetric positive definite matrix.

(b) � = ( �
1

, . . . , �
d

)t is a vector of closed subsets of C each having positive
capacity.

(c) V = (V
1

, . . . , V
d

)t is a vector of external fields where each V
i

: �
i

æ
Rfi {+Œ} is lower semi-continuous and finite on a set of positive capacity.

(d) m = (m
1

, . . . , m
d

)t is a vector of positive numbers such that

lim inf
|x|æŒ, xœ�

i

Q

aV
i

(x) ≠
1

d

ÿ

j=1

c
ij

m
j

2

log(1 + |x|2)

R

b > ≠Œ (3.2.4)

for every i = 1, . . . , d, provided �
i

is unbounded.

Given C, V , �, m satisfying Assumption 3.2.1, a weakly admissible vector
equilibrium problem asks for minimizing the functional

J
V

(µ
1

, . . . , µ
d

) =
ÿ

1Æi,jÆd

c
ij

I(µ
i

, µ
j

) +
d

ÿ

i=1

⁄

V
i

(x)µ
i

(dx) (3.2.5)

over vectors of measures (µ
1

, . . . , µ
d

) lying in M
m1(�

1

) ◊ · · · ◊ M
m

d

(�
d

), or
in a subset thereof. The terminology weakly admissible mainly refers to the
growth conditions (3.2.4), since it weakens all the growth assumptions presented
in the literature, see also Remark 3.2.4 below. Indeed, it is assumed in [91]
that the �

i

’s are compact sets, and both [10] and [92, Section VIII] require for
unbounded �

i

’s the stronger growth condition

lim
|x|æŒ, xœ�

i

V
i

(x)
log(1 + |x|2) = +Œ, i œ {1, . . . , d}, (3.2.6)

implying (3.2.4) for any m.

Moreover, note that there is no condition on the relative positions of the sets �
i

.
They could be disjoint (as assumed in [91, Proposition V.4.1] and [92, Theorem
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VIII.1.4] in case of attraction), but they could also overlap, even in case of
attraction (i.e. c

ij

< 0) between the measures on �
i

and �
j

. This feature is
also present in the work [10].

Example 3.2.2. (Two matrix model)

The vector equilibrium problem for the functional (3.1.1) has the input data

C =

S

U

1 ≠1/2 0
≠1/2 1 ≠1/2

0 ≠1/2 1

T

V , � =

Q

a

R
iR
R

R

b , V =

Q

a

V
1

0
V

3

R

b , m =

Q

a

1
2/3
1/3

R

b

which clearly satisfies the conditions (a), (b), and (c) of Assumption 3.2.1. Since
Cm =

!

2/3 0 0
"

t we have

V ≠ Cm log(1 + |x|2) =

Q

a

V
1

(x) ≠ 2

3

log(1 + |x|2)
0

V
3

(x)

R

b

which means that condition (d) is satisfied as well, since there exists positive
constants c

1

, c
2

and – such that V
1

(x) Ø c
1

|x|– ≠ c
2

, and V
3

has a compact
support. Thus the vector equilibrium problem is weakly admissible.

Example 3.2.3. (Banded Toeplitz matrices)

A banded Toeplitz matrix T
n

with p Ø 1 upper and q Ø 1 lower diagonals has
the form

!

T
n

"

jk

= a
j≠k

, j, k = 1, . . . , n, (3.2.7)

where a
p

a≠q

”= 0 and a
k

= 0 for k Ø p + 1 and k Æ ≠q ≠ 1. The limiting
eigenvalue distribution of the matrices T

n

as the size n tends to infinity was
characterized in [51] by means of a vector equilibrium problem with d = p+q ≠1
measures without external fields V

i

. The interaction matrix (which is tridiagonal)
and the vector of masses are

C =

S

W

W

W

W

W

W

W

W

W

W

U

1 ≠ 1

2

0 · · · · · · 0

≠ 1

2

1 ≠ 1

2

...

0 ≠ 1

2

1 . . . ...
... . . . . . . . . . 0
... . . . 1 ≠ 1

2

0 · · · · · · 0 ≠ 1

2

1

T

X

X

X

X

X

X

X

X

X

X

V

, m =

Q

c

c

c

c

c

c

c

c

c

c

c

a

1

q

...
q≠1

q

1
p≠1

p

...
1

p

R

d

d

d

d

d

d

d

d

d

d

d

b

.

The sets �
i

are curves in the complex plane, where �
q

is compact but the
others are unbounded. Note that all entries of Cm are zero except for

!

Cm

"

q

= 1 ≠ q≠1

2q

≠ p≠1

2p

Ø 0.
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Since �
q

is bounded, the conditions of Assumption 3.2.1 are satisfied even
though the external fields are all absent. The corresponding vector equilibrium
problem is weakly admissible.

See [40, 41] for extensions to rational Toeplitz matrices and block Toeplitz
matrices which lead to a number of interesting variations on the above vector
equilibrium problem.

Remark 3.2.4. (Scalar equilibrium problems)

In the scalar case d = 1 one may assume without loss of generality that
c

11

= m
1

= 1. Then the energy functional (3.2.5) with V
1

= V and µ
1

= µ
reduces to

⁄⁄

log 1
|x ≠ y|µ(dx)µ(dy) +

⁄

V (x)µ(dx)

which di�ers from the one in [92] by a factor 2 in the external field term. In the
setting of [92] the external field is associated with the weight w(x) = e≠ 1

2 V (x),
and then the equilibrium problem is called admissible if

lim
|x|æŒ

|x|w(x) = 0,

which means that the left-hand side of (3.2.4) is equal to +Œ. In [94] the scalar
equilibrium problem is called weakly admissible if

lim
|x|æŒ

|x|w(x) = “ > 0.

Observe that (3.2.4) is more general, since we do not require that the limit of
V (x) ≠ log(1 + |x|2) as |x| æ Œ exists.

3.2.3 Extension of the energy functional definition

Note that the energy functional (3.2.5) is not well defined for all measures
since logarithmic energies may take the values +Œ and ≠Œ (the latter cannot
happen for measures with compact support). One may restrict to measures
satisfying the condition

I(µ) < +Œ and
⁄

log(1 + |x|) dµ(x) < +Œ (3.2.8)

so that (3.2.5) is always well defined, as it is done in [10, 91]. But it is also
possible to extend naturally the definition of J

V

(µ
1

, . . . , µ
d

) to situations where
(3.2.8) is not satisfied.
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We extend the energy functional (3.2.5) by mapping the vector equilibrium
problem onto the Riemann sphere by means of inverse stereographic projection.
Namely, let

S =
Ó

(x
1

, x
2

, x
3

) œ R3 | x2

1

+ x2

2

+ (x
3

≠ 1

2

)2 = 1

4

Ô

(3.2.9)

be the sphere in R3 centered in (0, 0, 1/2) with radius 1/2 and T : Cfi{Œ }æ S
the homeomorphism defined by

T (x) =
3

Re(x)
1 + |x|2 ,

Im(x)
1 + |x|2 ,

|x|2
1 + |x|2

4

, x œ C (3.2.10)

and T (Œ) = (0, 0, 1). Then, the following metric relation holds, see [8, Lemma
3.4.2],

|T (x) ≠ T (y)| = |x ≠ y|


1 + |x|2


1 + |y|2
, x, y œ C, (3.2.11)

where | · | denotes the Euclidean norm.

For a measure µ on C we use Túµ to denote its push forward by T , that is, Túµ
is the measure on S characterized by

⁄

f(s)Túµ(ds) =
⁄

f
!

T (x)
"

µ(dx) (3.2.12)

for every Borel function f on S. If µ and ‹ are two measures on C satisfying
the condition (3.2.8), then (3.2.11), (3.2.12) easily yield

I
!

Túµ, Tú‹
"

= I(µ,‹ )+ 1
2Î‹Î

⁄

log(1+ |x|2)µ(dx)+ 1
2ÎµÎ

⁄

log(1+ |x|2)‹(dx).
(3.2.13)

As a consequence, we obtain for µ
i

’s which satisfy (3.2.8)

J
V

(µ
1

, . . . , µ
d

) =
ÿ

1Æi,jÆd

c
ij

I(Túµ
i

, Túµ
j

) +
d

ÿ

i=1

⁄

V
i

(x)Túµ
i

(dx) (3.2.14)

where the new external fields V
i

: T (�
i

) æ R fi {+Œ} are defined by

V
i

!

T (x)
"

= V
i

(x) ≠
1

d

ÿ

j=1

c
ij

m
j

2

log(1 + |x|2), x œ �
i

. (3.2.15)

The condition (3.2.4) thus states that the V
i

’s are bounded from below. In case
�

i

is unbounded, we extend the definition of V
i

by putting

V
i

(0, 0, 1) = lim inf
|x|æŒ, xœ�

i

Q

aV
i

(x) ≠
1

d

ÿ

j=1

c
ij

m
j

2

log(1 + |x|2)

R

b . (3.2.16)
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Then V
i

is a lower semi-continuous function defined on a closed subset of S.
Thus, (3.2.14) motivates the following definition.
Definition 3.2.5. We extend the definition of the energy functional (3.2.5) to
all vectors of measures in M

m1(�
1

) ◊ · · · ◊ M
m

d

(�
d

) by setting

J
V

(µ
1

, . . . , µ
d

) =
ÿ

1Æi,jÆd

c
ij

I(Túµ
i

, Túµ
j

) +
d

ÿ

i=1

⁄

V
i

(x)Túµ
i

(dx)

if I(Túµ
i

) < +Œ for every i = 1, . . . , d, (3.2.17)

where the V
i

’s are defined by (3.2.15) and (3.2.16), and

J
V

(µ
1

, . . . , µ
d

) = +Œ otherwise. (3.2.18)

The main result of this work is the following.
Theorem 3.2.6. Let C, �, V and m satisfy Assumption 3.2.1, and let J

V

be
the associated energy functional given by (3.2.17), (3.2.18) in Definition 3.2.5.
Then the following hold :

(a) The level set
Ó

(µ
1

, . . . , µ
d

) œ M
m1(�

1

) ◊ · · · ◊ M
m

d

(�
d

) | J
V

(µ
1

, . . . , µ
d

) Æ –
Ô

(3.2.19)
is compact for every – œ R. In particular J

V

is lower semi-continuous.

(b) J
V

is strictly convex on the set where it is finite.

The following is an immediate consequence of Theorem 3.2.6.
Corollary 3.2.7. The functional J

V

admits a unique minimizer on M
m1(�

1

)◊
· · · ◊ M

m

d

(�
d

), as well as on any closed convex subset of M
m1(�

1

) ◊ · · · ◊
M

m

d

(�
d

) that contains at least one element where J
V

is finite.

The case of upper constraints is also covered by Corollary 3.2.7. Indeed, given any
subset J µ {1, . . . , d} and (possibly unbounded) measures (‡

j

)
jœJ

, the subset
of vectors of measures (µ

1

, . . . , µ
d

) œ M
m1(�

1

) ◊ · · · ◊ M
m

d

(�
d

) satisfying
µ

j

Æ ‡
j

for j œ J is closed and convex.

A question of interest is whether the component of such minimizer satisfy the
condition (3.2.8) or not. If the answer is a�rmative, then by uniqueness the
minimizer coincide with the one of [10], at least when the V

i

’s satisfy the strong
growth condition (3.2.6). We relate this question to the regularity of logarithmic
potentials, see Remark 3.3.9.
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Remark 3.2.8. (Good rate function)

Note that the condition (a) of Theorem 3.2.6 is what is necessary to have a good
rate function in the theory of large deviations [43]. More precisely Theorem
3.2.6 yields that

(µ
1

, . . . , µ
d

) ‘æJ
V

(µ
1

, . . . , µ
d

) ≠ min J
V

(3.2.20)

is a good rate function on M
m1(�

1

)◊ · · ·◊M
m

d

(�
d

) as well as on every closed
subset of M

m1(�
1

) ◊ · · · ◊ M
m

d

(�
d

).

Whenever the minimizer of an energy functional J
V

describes the typical
limiting behavior in an interacting particle system, it would be interesting to
find out if there is indeed a large deviation principle associated with it. Some
results in this direction are obtained in [56] for Angelesco ensembles, see also [24].
However for the energy functional (3.1.1) that is relevant for the eigenvalues of
a random matrix in the two matrix model this remains an open problem.

The extension of the definition for J
V

leads us to consider vector equilibrium
problems on compact sets in higher dimensional spaces, for which we provide
a general treatment in the next Section. Theorem 3.2.6 will appear as a
consequence of this investigation, see Section 3.3.3.

3.3 Vector equilibrium problems on compacts in Rn

In this section, let d, n Ø 1 and K µ Rn be a compact set with positive capacity.
We now provide a general treatment for vector equilibrium problems involving
d measures on K.

We first consider in Section 3.3.1 vector equilibrium problems involving measures
with unit mass and no external field, for which we claim lower semi-continuity
and strict convexity, see Theorem 3.3.2. We then show how such result easily
extends to vector equilibrium problems with general masses and external fields,
see Theorem 3.3.4. The proof of Theorem 3.3.2, which is the main part of
Section 3.3, is given in Section 3.3.2. Finally, we come back to weakly admissible
vector equilibrium problems on C and provide a proof for Theorem 3.2.6 in
Section 3.3.3, as a corollary of Theorem 3.3.4.

3.3.1 Introduction

For measures on K, we again use the definitions (3.2.1)–(3.2.3) where | · | stands
for the Euclidean norm. This notation was already used in (3.2.13) for measures
on the sphere S µ R3.
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The following result is a consequence of [31, Theorem 2.5].

Proposition 3.3.1. Let µ and ‹ be measures on K having finite logarithmic
energy and same total mass ÎµÎ = Î‹Î. Then I(µ ≠ ‹) Ø 0 with equality if and
only if µ = ‹.

As a consequence of Proposition 3.3.1 and of the fact that K has finite diameter,
we obtain for any measures µ and ‹ supported in K having finite logarithmic
energy that I(µ,‹ ) is finite. Indeed one can assume ÎµÎ = Î‹Î = 1 without loss
of generality and then we have

I(µ,‹ ) =
⁄⁄

log 1
|x ≠ y|µ(dx)‹(dy) Ø log 1

diam K
> ≠Œ.

Moreover by Proposition 3.3.1

I(µ,‹ ) = 1
2

!

I(µ) + I(‹) ≠ I(µ ≠ ‹)
"

Æ 1
2

!

I(µ) + I(‹)
"

< +Œ. (3.3.1)

Given a d ◊ d symmetric positive definite matrix C = (c
ij

), we consider the
quadratic map defined for vectors of measures (µ

1

, . . . , µ
d

) on K by

J
0

(µ
1

, . . . , µ
d

) =

Y

]

[

ÿ

1Æi,jÆd

c
ij

I(µ
i

, µ
j

) if all I(µ
i

) < +Œ,

+Œ otherwise.
(3.3.2)

The central result of this section is the following.

Theorem 3.3.2. For any d ◊ d symmetric positive definite matrix C, the
functional J

0

defined in (3.3.2) is lower semi-continuous on M
1

(K)d and
strictly convex on the set where it is finite.

The proof of Theorem 3.3.2 is given in Section 3.3.2. We first show how Theorem
3.3.2 applies to vector equilibrium problems with external fields on K with the
following data.

Assumption 3.3.3.

(a) C = (c
ij

) is a d ◊ d real symmetric positive definite matrix.

(b) V = (V
1

, . . . , V
d

)t is a vector of external fields where each V
i

: �
i

æ
Rfi {+Œ} is lower semi-continuous and finite on a set of positive capacity.

(c) m = (m
1

, . . . , m
d

)t is a vector of positive numbers.
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A vector equilibrium problem asks to minimize the following energy functional

J
V

(µ
1

, . . . , µ
d

) = J
0

(µ
1

, . . . , µ
d

) +
d

ÿ

i=1

⁄

V
i

(x)µ
i

(dx), (3.3.3)

where J
0

is as in (3.3.2), over vectors of measures (µ
1

, . . . , µ
d

) lying in M
m1(K)◊

· · · ◊ M
m

d

(K) (or in some closed convex subset thereof). A consequence of
Theorem 3.3.2 is the following.

Theorem 3.3.4. If C, V and m satisfy Assumption 3.3.3, then the functional
J

V

defined in (3.3.3) is lower semi-continuous on the compact set M
m1(K) ◊

· · · ◊ M
m

d

(K) and strictly convex on the set where it is finite. Thus J
V

admits
a unique minimizer on M

m1(K) ◊ · · · ◊ M
m

d

(K), as well as on every closed
convex subset of M

m1(K) ◊ · · · ◊ M
m

d

(K) that contains at least one element
where J

V

is finite.

Proof of Theorem 3.3.4. Since V
i

is lower semi-continuous, there exists an
increasing sequence (V M

i

)
M

of continuous functions on K such that sup
M

V M

i

=
V

i

. By monotone convergence, the map

µ ‘æ
⁄

V
i

(x)µ(dx) = sup
M

⁄

V M

i

(x)µ(dx)

is lower semi-continuous on M
1

(K), being the supremum of a family of
continuous maps, and so is the linear map

(µ
1

, . . . , µ
d

) ‘æ
d

ÿ

i=1

⁄

V
i

(x)µ
i

(dx) (3.3.4)

on M
1

(K)d. Thus J
V

is lower semi-continuous on M
1

(K)d by Theorem 3.3.2.
Since (3.3.4) is a linear map in the µ

i

’s which is bounded from below, we also
find from Theorem 3.3.2 that J

V

is strictly convex on the part of M
1

(K)d

where it is finite, which proves the theorem in case all m
i

= 1.

For the case of general masses m
i

> 0, we note that if µ
i

= m
i

‹
i

for i = 1, . . . , d,
then

J
V

(µ
1

, . . . , µ
d

) =
ÿ

1Æi,jÆd

c
ij

m
i

m
j

I(‹
i

, ‹
j

) +
d

ÿ

i=1

m
i

⁄

V
i

(x)‹
i

(dx). (3.3.5)

The matrix (c
ij

m
i

m
j

)d

i,j=1

is symmetric positive definite which implies by what
we just proved that the right-hand side of (3.3.5) is lower semi-continuous on
M

1

(K)d and strictly convex on the set where it is finite. Then the same holds
for the left-hand side seen as a functional on M

m1(�
1

) ◊ · · · ◊ M
m

d

(�
d

), and
Theorem 3.3.4 follows.
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In the next subsection we prove Theorem 3.3.2.

3.3.2 Proof of Theorem 3.3.2

For µ = (µ
1

, . . . , µ
d

) œ M
1

(K)d, we also write J
0

(µ) = J
0

(µ
1

, . . . , µ
d

) for
convenience.

Proof of strict convexity Being a positive definite matrix, we note that C

admits a Cholesky decomposition

C = B

t

B (3.3.6)

where B = (b
ij

) is upper triangular and b
ii

> 0 for i = 1, . . . , d. The factorization
(3.3.6) implies that

J
0

(µ) =
d

ÿ

i=1

I

Q

a

d

ÿ

j=1

b
ij

µ
j

R

b (3.3.7)

whenever µ
1

, . . . , µ
d

have finite logarithmic energy.

We prove the following statement, which is similar to [10, Proposition 2.8].

Proposition 3.3.5.

(a) Let µ = (µ
1

, . . . , µ
d

), ‹ = (‹
1

, . . . , ‹
d

) be vectors of probability measures
on K having finite logarithmic energy. Then J

0

(µ ≠ ‹) Ø 0 with equality
if and only if µ = ‹.

(b) J
0

is strictly convex on
)

µ œ M
1

(K)d | J
0

(µ) < +Œ
*

.

Proof. (a) The Cholesky decomposition C = B

t

B yields (similar to (3.3.7))

J
0

(µ ≠ ‹) =
d

ÿ

i=1

I
1

d

ÿ

j=1

b
ij

(µ
j

≠ ‹
j

)
2

(3.3.8)

and, since for any 1 Æ i Æ d the signed measure
q

d

j=1

b
ij

(µ
j

≠‹
j

) has total mass
zero, each term in the right-hand side of (3.3.8) is non-negative by Proposition
3.3.1. Thus J

0

(µ ≠ ‹) Ø 0. Equality holds if and only if
q

d

j=1

b
ij

(µ
j

≠ ‹
j

) = 0
for every i = 1, . . . , d, and this means that µ = ‹ since B is invertible.

(b) Let µ, ‹ œ M
1

(K)d satisfy J
0

(µ), J
0

(‹) < +Œ. Then each component has
finite logarithmic energy, and we obtain by bilinearity of (µ,‹ ) ‘æ I(µ,‹ ) that

J
0

!

tµ + (1 ≠ t)‹
"

= tJ
0

(µ) + (1 ≠ t)J
0

(‹) ≠ t(1 ≠ t)J
0

(µ ≠ ‹)
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for every 0 < t < 1. Then part (b) follows from part (a).

Proof of lower semi-continuity The next proposition is the main step in
establishing lower semi-continuity of J

0

at the points where it is infinite. The
proof is inspired from the one of [10, Proposition 2.11].
Proposition 3.3.6. Let (µN )

N

=
!

(µN

1

, . . . , µN

d

)
"

N

be a sequence in M
1

(K)d

satisfying J
0

(µN ) < +Œ for all N . Assume there exists k œ {1, . . . , d} such
that

lim
NæŒ

I(µN

k

) = +Œ.

Then
lim

NæŒ
J

0

(µN ) = +Œ.

Proof. We may assume k = d without loss of generality. By (3.3.7) and the fact
that B is upper triangular, we have for every N ,

J
0

(µN ) =
d≠1

ÿ

i=1

I
1

d

ÿ

j=1

b
ij

µN

j

2

+ b2

dd

I(µN

d

). (3.3.9)

Note that the map µ ‘æ I(µ) is lower semi-continuous on M
1

(K). For compact
K µ R2 ƒ C this is proved in [91, Chapter 5, Theorem 2.1] for example, but
the proof applies without any modification to higher dimensions. Thus by
Proposition 3.3.5 (b) it has a unique minimizer Ê on M

1

(K). One can moreover
show that this minimizer has constant logarithmic potential UÊ on K up to
a set E of zero capacity (see [92, Theorem I.1.3 and Remark I.1.6]), and that
µ(E) = 0 for any measure µ on K having finite logarithmic energy (see [92,
Remark I.1.7]).

Then, Proposition 3.3.1 yields for i = 1, . . . , d,

I
1

d

ÿ

j=1

b
ij

µN

j

≠
!

d

ÿ

j=1

b
ij

"

Ê
2

Ø 0,

which implies for i = 1, . . . , d ≠ 1 that

I
1

d

ÿ

j=1

b
ij

µN

j

2

Ø 2
!

d

ÿ

j=1

b
ij

"

I
1

d

ÿ

j=1

b
ij

µN

j

, Ê
2

≠
!

d

ÿ

j=1

b
ij

"

2

I(Ê). (3.3.10)

Since UÊ = fl is constant on K \ E, it easily follows that I(Ê) = fl and

I
1

d

ÿ

j=1

b
ij

µN

j

, Ê
2

=
d

ÿ

j=1

b
ij

⁄

UÊ(x)µN

j

(dx) =
1

d

ÿ

j=1

b
ij

2

I(Ê),
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where the last equality holds since UÊ = I(Ê) on K \ E and µN

j

(E) = 0 for
every j = 1, . . . , d. Using this in (3.3.10) we find

I
1

d

ÿ

j=1

b
ij

µN

j

2

Ø
1

d

ÿ

j=1

b
ij

2

2

I(Ê). (3.3.11)

Summing (3.3.11) over i = 1, . . . , d ≠ 1 and using (3.3.9), we find that

J
0

(µN ) Ø
d≠1

ÿ

i=1

1

d

ÿ

j=1

b
ij

2

2

I(Ê) + b2

dd

I(µN

d

).

Thus if I(µN

d

) æ +Œ as N æ Œ we also have J
0

(µN ) æ +Œ which completes
the proof of Proposition 3.3.6.

The next proposition deals with lower semi-continuity of J
0

at points where it
is finite. We follow the lines of the proof of [10, Proposition 2.9] and simplify it
by considering a di�erent way to approximate measures.

Proposition 3.3.7. Let (µN )
N

=
!

(µN

1

, . . . , µN

d

)
"

N

be a sequence in M
1

(K)d

satisfying J
0

(µN ) < +Œ for all N . Assume (µN )
N

converges towards a limit
µ = (µ

1

, . . . , µ
d

) with J
0

(µ) < +Œ. Then

lim inf
NæŒ

J
0

(µN ) Ø J
0

(µ). (3.3.12)

Proof. We embed Rn into Rn+1 in the obvious way, namely if (e
1

, e
2

, . . . , e
n+1

)
is the standard orthonormal basis of Rn+1 then we identify Rn with the linear
span of e

1

, . . . , e
n

. In this way we also consider K µ Rn as a subset of Rn+1.

For r > 0, let ”
r

be the Dirac measure at the point re
n+1

= (0, 0, . . . , 0, r) œ
Rn+1. For a measure µ on Rn we then have that the convolution µ ú ”

r

yields a
measure on Rn+1 which is the translation of µ along re

n+1

. Then for each N ,
the quantity J

0

(µN ≠ µ

N ú ”
r

), where the convolution is taken componentwise,
makes sense and is non-negative by Proposition 3.3.5 (a). As a consequence we
have

J
0

(µN ) + J
0

(µN ú ”
r

) Ø 2
ÿ

1Æi,jÆd

c
ij

I
!

µN

i

ú ”
r

, µN

j

"

. (3.3.13)

Since the convolution with ”
r

is just a translation and the logarithmic kernel
log 1

|x≠y| is translation invariant, the two terms on the left-hand side of (3.3.13)
are the same. We thus obtain from (3.3.13)

J
0

(µN ) Ø
ÿ

1Æi,jÆd

c
ij

I
!

µN

i

ú ”
r

, µN

j

"

. (3.3.14)
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Next, we compute by using orthogonality between elements of Rn and e
n+1

that

I
!

µN

i

ú ”
r

, µN

j

"

=
⁄⁄

log 1
|x ≠ y|

!

µN

i

ú ”
r

"

(dx)µN

j

(dy)

=
⁄⁄

log 1
|x ≠ y + re

n+1

| µN

i

(dx)µN

j

(dy)

=
⁄⁄

log 1


|x ≠ y|2 + r2

µN

i

(dx)µN

j

(dy).

Since for fixed r > 0 the map (x, y) ‘æ log(1/


|x ≠ y|2 + r2) is continuous on
K ◊ K and (µN )

N

converges towards µ, we obtain

lim
NæŒ

I
!

µN

i

ú ”
r

, µN

j

"

=
⁄⁄

log 1


|x ≠ y|2 + r2

µ
i

(dx)µ
j

(dy),

for every i, j = 1, . . . , d, so that by (3.3.14),

lim inf
NæŒ

J
0

(µN ) Ø
ÿ

1Æi,jÆd

c
ij

⁄⁄

log 1


|x ≠ y|2 + r2

µ
i

(dx)µ
j

(dy). (3.3.15)

The inequality (3.3.15) holds for every r > 0. For every x, y œ K and 0 < r Æ 1,
we have the inequalities

1
2 log 1

(diam K)2 + 1 Æ log 1


|x ≠ y|2 + r2

Æ log 1
|x ≠ y| .

Thus, since the µ
i

’s have finite logarithmic energy by assumption, we obtain by
dominated convergence

lim
ræ 0

⁄⁄

log 1


|x ≠ y|2 + r2

µ
i

(dx)µ
j

(dy) = I(µ
i

, µ
j

). (3.3.16)

Letting r æ 0 in (3.3.15) and using (3.3.16) we obtain (3.3.12).

Proposition 3.3.8. J
0

is lower semi-continuous on M
1

(K)d.

Proof. Suppose (µN )
N

is a sequence in M
1

(K)d that converges to µ. In order
to prove that

lim inf
NæŒ

J
0

(µN ) Ø J
0

(µ) (3.3.17)

we may assume that J
0

(µN ) < +Œ for every N . If J
0

(µ) < +Œ, then (3.3.17)
follows from Proposition 3.3.7. If J

0

(µ) = +Œ then by the definition (3.3.2) we
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must have I(µ
k

) = +Œ for at least one k œ {1, . . . , d}. By lower semi-continuity
of µ ‘æ I(µ) on M

1

(K) it then follows that

lim
NæŒ

I(µN

k

) = +Œ,

and (3.3.17) follows from Proposition 3.3.6.

The proof of Theorem 3.3.2 is therefore complete.

3.3.3 Proof of Theorem 3.2.6

Equipped with Theorem 3.3.4, it is now easy to provide a proof for Theorem
3.2.6 as announced in Section 3.2.3.

Proof of Theorem 3.2.6. Given C, �, V and m satisfying Assumption 3.2.1,
introduce the vector of external fields V = (V

1

, . . . , V
d

)t where V
i

: S æ
R fi {+Œ} is defined in the following way. On T (�

i

) define V
i

from V
i

as in
(3.2.15) and, if �

i

is unbounded, extend the definition of V
i

to (0, 0, 1) using
(3.2.16). Then set V

i

= +Œ elsewhere. Each V
i

is then lower semi-continuous
and finite on a set of positive capacity.

(a) By construction the relation

J
V

(µ
1

, . . . , µ
d

) = JV(Túµ
1

, . . . , Túµ
d

) (3.3.18)

holds for all (µ
1

, . . . , µ
d

) œ M
m1(�

1

)◊ · · ·◊M
m

d

(�
d

), see Definition 3.2.5 and
(3.3.2)–(3.3.3). As a consequence, we have for all – œ R the relation between
the level sets of J

V

and JV

Tú ◊ · · · ◊ Tú
1Ó

µ œ M
m1(�

1

) ◊ · · · ◊ M
m

d

(�
d

) | J
V

(µ) Æ –
Ô2

=
Ó

µ œ M
m1(S) ◊ · · · ◊ M

m

d

(S) | JV(µ) Æ –
Ô

. (3.3.19)

Now we use Theorem 3.3.4 with C, V , m, which satisfy Assumption 3.3.3, and
K = S µ R3. The theorem gives that JV has compact level sets since JV is
lower semi-continuous on the compact M

m1(S) ◊ · · · ◊ M
m

d

(S). Since Tú is an
homeomorphism from M

1

(C) to {µ œ M
1

(S) | µ({(0, 0, 1)}) = 0} (see Lemma
2.2.1), so that part (a) follows from (3.3.19) because a measure having a Dirac
mass at (0, 0, 1) has necessarily infinite logarithmic energy.

(b) Theorem 3.3.4 moreover yields that JV is strictly convex where it is finite.
This clearly implies part (b) from (3.3.18) since Tú is a linear injection.
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Remark 3.3.9. A priori, the minimizer (µ
1

, . . . , µ
d

) of J
V

provided by
Corollary 3.2.7 could be such that

⁄

log(1 + |x|)µ
i

(dx) = +Œ for some i œ {1, . . . , d}. (3.3.20)

In fact (3.3.20) can only happen if the logarithmic potential UTúµ

i is infinite at
the north pole of S. Indeed, letting y æ Œ in (3.2.11), we obtain for any x œ C

|T (x) ≠ (0, 0, 1)| = 1


1 + |x|2

so that (3.2.12) yields the following equivalence for any measure µ on C
⁄

log(1 + |x|)µ(dx) = +Œ ≈∆ UTúµ(0, 0, 1) = +Œ.





Chapter 4

Large deviations for a
non-centered Wishart matrix

In this chapter, based on the joint work [70] with Arno Kuijlaars, we investigate
an additive perturbation of a complex Wishart random matrix and prove that
a large deviation principle holds for the spectral measures. The rate function is
associated to a vector equilibrium problem, which in our case is a quadratic map
involving the logarithmic energies, or Voiculescu’s entropies, of two measures in
the presence of an external field and an upper constraint. The proof is based on
a two type particles Coulomb gas representation for the eigenvalue distribution,
which gives a new insight on why such variational problems should describe
the limiting spectral distribution. This representation is available because
of a Nikishin structure satisfied by the weights of the multiple orthogonal
polynomials hidden in the background.

4.1 Introduction and statement of the results

4.1.1 Introduction

The study of the large deviations for the spectral measures of large random
matrices has started with the work [11] of Ben Arous and Guionnet, and
continued with many extensions, see e.g. [12, 72, 57, 24, 67], which now cover
all the so-called unitary invariant matrix models, and actually the larger class
of —-ensembles. The proof of such large deviation principles (LDPs) is based

47
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on the fact that an explicit and tractable expression is available for the joint
eigenvalue distributions, which is a consequence of the unitary invariance. A
common feature shared by these random matrix ensembles is that the rate
functions governing such LDPs, which are maps on the space of probability
measures, are given by the logarithmic energy functional

⁄⁄

log 1
|x ≠ y|µ(dx)µ(dy), (4.1.1)

plus a linear term in the probability measure. The latter functional (4.1.1) is
the main object of study in logarithmic potential theory, and has moreover been
interpreted up to a sign by Voiculescu as the free entropy, a free probability
equivalent of the Shannon’s entropy in classical probability [103], see also
[18, 72, 71].

More recently, much attention has been given to perturbed matrix models where
one has broken the unitary invariance by the addition, or multiplication, of
an external deterministic matrix, and also multi-matrix models. It is a highly
non-trivial problem to establish in full generality that a LDP still holds for such
matrix models, because of the complex dependence between the eigenvalues
and eigenvectors. By developing an appropriate non-commutative Itô calculus,
Cabanal-Duvillard and Guionnet obtained a LDP upper bound for the spectral
measures of a large class of matrix valued stochastic processes [29]. It has been
later extended to a full LDP by Guionnet and Zeitouni [65, 66], and a LDP for
perturbed or multi-matrix models actually follows by contraction principle. The
price to pay for such a level of generality is a quite complicated rate function,
but it is worth mentioning that it is known to reduce to the logarithmic energy
in the unitary invariant case (i.e null perturbation), see [30, Section 5.1].

In this chapter, we shall follow a di�erent path and explore the large deviations
of a perturbed matrix model through its connection to multiple orthogonal
polynomials (MOPs). Indeed, while the unitary invariant matrix models are
known to be related to orthogonal polynomials [79], it has been observed by
Bleher and Kuijlaars that perturbed matrix models benefit from a connection
with MOPs [21], in the sense that the average characteristic polynomial of the
random matrix is a MOP with respect to appropriate weights and multi-index.
Such relation also holds for multi-matrix models [52], see also [83] for a survey.
On the other hand, the limiting zero distribution of certain classes of MOPs can
be described in terms of the solution of a vector equilibrium problem [4, 91]:
given d Ø 1 and a d ◊ d real symmetric positive definite matrix C = [c

ij

],
minimize the functional given by

ÿ

1Æi,jÆd

c
ij

⁄⁄

log 1
|x ≠ y|µi

(dx)µ
j

(dy)
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plus linear terms in (µ
1

, . . . , µ
d

), when the vector of measures (µ
1

, . . . , µ
d

) runs
over M

m1(�
1

) ◊ · · · ◊ M
m

d

(�
d

), or in some subset thereof. Here M
m

(�)
stands for the set of Borel measures on � µ C with total mass m. For a general
treatment concerning vector equilibrium problems, see Chapter 3 and references
therein.

A natural question is then to seek if the functionals associated to vector
equilibrium problems should be involved as large deviations rate functions.
It is the aim of this chapter to answer a�rmatively for a particular example
that we present now.

4.1.2 Non-centered Wishart random matrix

The model we investigate here is a non-centered Wishart random matrix, which
is an additive perturbation of the usual Wishart model. Namely, let X = [X

ij

]
be a M ◊ N complex matrix filled with i.i.d (non-centered) complex Gaussian
random entries X

ij

≥ NC(A
ij

, 1/
Ô

N), where A = [A
ij

] is a given deterministic
M ◊ N complex matrix. One can equivalently endow the space M

M,N

(C) of
M ◊ N complex matrices with the probability distribution

dP
N

(X) = 1
Z

M,N

e≠N Tr

!

(X≠A)

ú
(X≠A)

"

dX, (4.1.2)

where Z
M,N

is a normalization constant and dX stands for the Lebesgue
measure on M

M,N

(C) ƒ R2MN . Without loss of generality, A can be chosen in
its singular value decomposition form. Note that, if U

N

(C) stands for the unitary
group of CN , P

N

is not invariant under the transformations X ‘æ UXV

ú for
given U œ U

M

(C), V œ U
N

(C), except if A = 0.

We are interested in the convergence and deviations of the spectral measure

µ̂N = 1
N

N

ÿ

i=1

”(x
i

), (4.1.3)

where the x
i

’s are the eigenvalues of the non-centered Wishart matrix X

ú
X (or

equivalently the squared singular values of X) with X drawn according to P
N

.
It is a random variable taking its values in M

1

(R
+

), that we equip with its
weak topology.

This matrix model has been extensively studied in the statistic and signal
processing literature (see e.g. [93] and references therein), and Dozier and
Silverstein described the limiting eigenvalue distribution for a large class of
perturbations A by means of a fixed point equation for its Cauchy-Stieltjes
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transform [47, 48]. Alternatively, the limiting eigenvalue distribution can be
characterized in terms of the rectangular free convolution introduced by Benaych-
Georges [13]. On the other hand, the non-centered Wishart matrix model does
not belong to the class of random matrices for which Guionnet and Zeitouni
were able to extend the LDP upper bound of Cabanal-Duvillard and Guionnet
into a full LDP for the spectral measures (µ̂N )

N

, and to prove such a LDP is
in fact still an open problem.

Here we shall restrict our investigation to a particular case and assume that
M = N + – where – is a non-negative integer, and consider for a > 0 the
particular type of perturbation

A =

S

W

W

W

U

Ô
a

. . . Ô
a

0

–

T

X

X

X

V

œ M
M,N

(C). (4.1.4)

As it is classical for many random matrix models, one can embed such a non-
centered Wishart matrix in a matrix valued stochastic process. Its squared
singular values then induce (up to a time change of variable) a process of N
non-intersecting squared Bessel paths conditioned to start at a > 0 and end at
the origin. Kuijlaars, Martínez-Finkelshtein and Wielonsky studied the particle
system of a fixed-time marginal and established a determinantal point process
structure related to MOPs [85], a so-called MOP ensemble [82]. Moreover,
the limiting zero distribution of the MOPs involved in this particle system
has been characterized by a vector equilibrium problem in [86]. Combining
these results, it is likely (see also [85, Appendix]) that the spectral measure µ̂N

converges almost surely as N æ Œ to a limiting distribution µú which is the
first component of the unique minimizer (µú, ‹ú) of the functional

⁄⁄

log 1
|x ≠ y|µ(dx)µ(dy) ≠

⁄⁄

log 1
|x ≠ y|µ(dx)‹(dy)

+
⁄⁄

log 1
|x ≠ y|‹(dx)‹(dy) +

⁄

1

x ≠ 2
Ô

ax
2

µ(dx) (4.1.5)

when the vector of measures (µ,‹ ) runs over M
1

(R
+

) ◊ M‡

1/2

(R≠), where we
introduced the set of constrained measures

M‡

1/2

(R≠) =
;

‹ œ M
1/2

(R≠) : ‹(dx) π dx,
‹(dx)

dx
Æ

Ô
a

fi
|x|≠1/2

<

. (4.1.6)

Here we use the notation

R≠ = (≠Œ, 0], R
+

= [0, +Œ).
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Note that the functional (4.1.5) is actually not well-defined for all (µ,‹ ) œ
M

1

(R
+

) ◊ M‡

1/2

(R≠), since the logarithmic energy (4.1.1) can take the values
+Œ and ≠Œ as well. We actually describe later an appropriate way to extend
(4.1.5) to the whole set M

1

(R
+

) ◊ M‡

1/2

(R≠), which is possible because it lies
in the class of weakly admissible vector equilibrium problems introduced in
Chapter 3.

4.1.3 Statement of the result

The aim of this chapter is to show that such a functional (4.1.5), once properly
extended, is involved as a rate function governing a LDP for the spectral
measures (µ̂N )

N

. More precisely, our main result is the following.

Theorem 4.1.1. The sequence of measures (µ̂N )
N

satisfies a LDP on M
1

(R
+

)
in the scale N2 with good rate function

inf
‹œM‡

1/2(R≠)

J ( · , ‹) ≠ min J ,

where J is a well-defined extension of (4.1.5) introduced in Section 4.3.1.
Namely,

(a) The level set
Ó

µ œ M
1

(R
+

) : inf
‹œM‡

1/2(R≠)

J (µ,‹ ) Æ “
Ô

is compact for any “ œ R.

(b) J admits a unique minimizer (µú, ‹ú) on M
1

(R
+

) ◊ M‡

1/2

(R≠).

(c) For any closed set F µ M
1

(R
+

),

lim sup
NæŒ

1
N2

logP
N

1

µ̂N œ F
2

Æ ≠ inf
(µ,‹)œF◊M‡

1/2(R≠)

Ó

J (µ,‹ )≠J (µú, ‹ú)
Ô

.

(d) For any open set O µ M
1

(R
+

),

lim inf
NæŒ

1
N2

logP
N

1

µ̂N œ O
2

Ø ≠ inf
(µ,‹)œO◊M‡

1/2(R≠)

Ó

J (µ,‹ )≠J (µú, ‹ú)
Ô

.

As a direct consequence of Theorem 4.1.1 (b), (c) and the Borel-Cantelli Lemma,
we obtain the almost sure convergence of µ̂N towards µú in the weak topology of
M

1

(R
+

). Namely, if P denotes the measure induced by the product probability
space

o

N

!

M
M,N

(C),P
N

"

, we have
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Corollary 4.1.2.

P
1

µ̂N converges as N æ Œ to µú in the weak topology of M
1

(R
+

)
2

= 1.

4.1.4 Generalizations and variations

We now describe a few other particle systems for which one can use the same
approach as presented here to obtain a similar LDP statement.

More general potentials

The following generalization of the density distribution (4.1.2) has been
introduced by Desrosiers and Forrester in [44]

1
Z

M,N

e≠N Tr

!

V (XúX)≠Re(XúA)

"

dX, (4.1.7)

where V : R
+

æ R is a continuous function which is extended to Hermitian
matrices by functional calculus. Indeed, by choosing V (x) = x we recover the
non-centered Wishart matrix model. Now, if we take A as in (4.1.4) and we
assume that V satisfies the growth condition

lim inf
xæ+Œ

V (x) ≠ 2
Ô

ax

2 log(x) > 1,

then one can follow the methods developed in this chapter without substantial
change to show an analogue of Theorem 4.1.1 and Corollary 4.1.2, where J is
replaced by a well-defined extension over M

1

(R
+

) ◊ M‡

1/2

(R≠) as described in
Chapter 3 of the functional

⁄⁄

log 1
|x ≠ y|µ(dx)µ(dy) ≠

⁄⁄

log 1
|x ≠ y|µ(dx)‹(dy)

+
⁄⁄

log 1
|x ≠ y|‹(dx)‹(dy) +

⁄

1

V (x) ≠ 2
Ô

ax
2

µ(dx).

Rescaling the parameter –

Observe that in our setting we have M/N æ 1 as N æ Œ. A natural question
would be to investigate the case where one performs the rescaling – ‘æ –N , so
that M/N æ 1 + – as N æ Œ with – Ø 0. It turns out that the approach
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we develop below is still well-suited for this case, but requires more involved
asymptotic estimates for Bessel functions and its zeros than the ones we use
in this paper. These asymptotic estimates are actually provided by [1, (9.7.7)]
and [1, (9.5.22)], and they would lead to statements similar to Theorem 4.1.1
and Corollary 4.1.2, where J is replaced by a well-defined extension of

⁄⁄

log 1
|x ≠ y|µ(dx)µ(dy) ≠

⁄⁄

log 1
|x ≠ y|µ(dx)‹(dy)

+
⁄⁄

log 1
|x ≠ y|‹(dx)‹(dy)

+
⁄

1

x ≠ – log(x) ≠


4ax + –2 + – log
1

– +


4ax + –2

22

µ(dx)

where the space M‡

1/2

(R≠) is now defined by

M‡

1/2

(R≠) =
I

‹ œ M
1/2

1

(≠Œ, ≠ –

2

4a

]
2

: ‹(dx) π dx,
‹(dx)

dx
Æ



4a|x| ≠ –2

2fi|x|

J

.

This is also the functional obtained in [86] when describing the limiting zero
distribution of the associated MOPs. Nevertheless, in this setting the proof
becomes more technical, and we chose to restrict ourselves to the non-rescaled
model for the sake of clarity.

Non-intersecting Bessel paths with one positive starting and ending point

In [42], Delvaux, Kuijlaars, Román and Zhang investigated a system of N
non-intersecting squared Bessel paths conditioned to start from a > 0 at time
t = 0 and to end at b > 0 when t = 1. It is actually not known if such model is
related to a random matrix ensemble. We note that at fixed time 0 < t < 1,
it is easy to express the particle distribution as the marginal distribution of a
Coulomb gas involving three di�erent type particles by combining [42, Section
2.5] with the computations we present in Section 4.2. As a consequence, if we
introduce the functional J to be the well-defined extension of
⁄⁄

log 1
|x ≠ y|µ(dx)µ(dy) ≠

⁄⁄

log 1
|x ≠ y|µ(dx)‹(dy) (4.1.8)

≠
⁄⁄

log 1
|x ≠ y|µ(dx)÷(dy) +

⁄⁄

log 1
|x ≠ y|‹(dx)‹(dy)

+
⁄⁄

log 1
|x ≠ y|÷(dx)÷(dy) +

⁄

A

x

t(1 ≠ t) ≠ 2
Ô

ax

t
≠ 2

Ô
bx

1 ≠ t

B

µ(dx)
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where µ œ M
1

(R
+

), and ‹,÷ œ M
1/2

(R≠) satisfy

‹(dx)
dx

Æ
Ô

a

fit
|x|≠1/2,

÷(dx)
dx

Æ
Ô

b

fi(1 ≠ t) |x|≠1/2,

then a LDP similar to the one of the non-centered Wishart matrix holds where
the rate function is given by J ≠ min J after taking the infimum over all
constrained measures ‹ and ÷. Indeed, there is no interaction between the
particles associated to ‹ and ÷, and then both ‹ and ÷ interact with µ exactly in
the same way that ‹ interacts with µ in the non-centered Wishart matrix model,
so that a LDP can be established with no extra work from the ingredients of
the proof we present below.

4.1.5 Open problems

There are other matrix models for which it is established that the limiting
mean spectral distribution is characterized in terms of the solution of a
vector equilibrium problem, thanks to their connection with MOPs and a
Riemann-Hilbert asymptotic analysis. Examples can be found in the Hermitian
matrix model with an external source [19] and the two-matrix model [53, 50].
Nevertheless, it is not clear to the author how to strengthen such convergence
results to get LDPs.

Another question would be to see if the rate function introduced by Cabanal-
Duvillard and Guionnet in [29] reduces for such matrix models to the functional
of a vector equilibrium problem. On a more general ground, it would be of
interest to find a free probabilistic interpretation for vector equilibrium problems.

4.1.6 Strategy of the proof

In Section 4.2, we show that the joint eigenvalue distribution of the non-centered
Wishart matrix is the marginal distribution of a 2D Coulomb gas with two
type particles. The first type of particles are living on R

+

and are exactly the
eigenvalues of our matrix model. The second type of particles are abstract
ones and live on a N -dependent discrete subset of R≠. They moreover attract
the first type of particles, expressing the e�ect of the perturbation. This
provides an insight as to why a functional like (4.1.5) should be involved as a
rate function. To prove such statement, we first describe in Section 4.2.1 the
eigenvalue distribution as a MOP ensemble, and then make use of the Nikishin
structure satisfied by the weights associated to the polynomials in Section 4.2.2.
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In Section 4.3, we investigate the generalized particle system of the whole
Coulomb gas for which we state a LDP, see Theorem 4.3.4. Theorem 4.1.1
then follows by contraction principle, as described by Corollary 4.3.5. We give
a proper definition for the rate function in Section 4.3.1. From the discrete
character of the particles on R≠, a discussion provided in Section 4.3.2 explains
why the constraint set M‡

1/2

(R≠) naturally appears in the variational problem.

In Section 4.4, we provide a proof of Theorem 4.3.4. The two main di�culties
are the absence of confining potential acting on the particles living on R≠,
and the possible contact of the two di�erent type of particles at the origin.
Concerning the lack of confining potential, we follow the approach developed
in Chapter 2 and perform a well-adapted compactification procedure. For the
contact at the origin, we isolate the induced singularity and use the discrete
character of the particles on R≠ to control it, see the proof of Proposition 4.4.1
and particularly Lemma 4.4.4.

Remark 4.1.3. From now, we will assume that N is even to simplify the
notations and the presentation, but our proof easily adapts to the general case
by replacing N/2 by ÁN/2Ë or ÂN/2Ê, and also 1/2 by ÁN/2Ë/N or ÂN/2Ê/N ,
where it is necessary.

4.2 A 2D Coulomb gas of two type particles

In this section we show that the joint eigenvalue distribution is the marginal
distribution of a Coulomb gas having two types of particles. Such a
representation follows from a particular type of MOP ensemble structure satisfied
by the eigenvalues that we describe now.

4.2.1 Multiple orthogonal polynomial ensemble

We first show that the eigenvalues form a MOP ensemble in the sense of [83],
a particular type of Borodin’s biorthogonal ensemble [25]; see Section 5.1 for
further information. For that, introduce the Vandermonde determinant

�
N

(x) = det
#

xi≠1

j

$

N

i,j=1

=
Ÿ

1Æi<jÆN

!

x
j

≠ x
i

"

. (4.2.1)

For – Ø 0 and a > 0, consider moreover the weight function

w
–,N

(x) = x–/2I
–

!

2N
Ô

ax
"

e≠Nx, x œ R
+

, (4.2.2)
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where we introduced the modified Bessel function of the first kind

I
–

(x) =
Œ

ÿ

k=0

1
k!�(k + – + 1)

1x

2

2

2k+–

. (4.2.3)

We mention that these weights have been introduced and studied by Coussement
and Van Assche [35, 36]. We now prove the following.

Lemma 4.2.1. The joint probability density for the eigenvalues x =
(x

1

, . . . , x
N

) œ RN

+

of X

ú
X, when X is drawn according to (4.1.2), is a

(N/2, N/2)-MOP ensemble with weights w
–,N

and w
–+1,N

, that is given by

1
Z

N

�
N

(x) det

S

W

W

W

U

Ó

xi≠1

j

w
–,N

(x
j

)
Ô

N/2,N

i,j=1

Ó

xi≠1

j

w
–+1,N

(x
j

)
Ô

N/2,N

i,j=1

T

X

X

X

V

(4.2.4)

where Z
N

is a new normalization constant.

Proof. We perform a singular value decomposition of X, that is we write
X = U

1

X

diag

U

2

for unitaries U

1

œ U
M

(C) and U

2

œ U
N

(C) with

X

diag

=

S

W

W

W

U

Ô
x

1

. . . Ô
x

N

0

–

T

X

X

X

V

,

and note that

Tr
!

(X ≠ A)ú(X ≠ A)
"

= Tr(Xú
X) ≠ Tr(XA

ú + AX

ú) + Na (4.2.5)

=
N

ÿ

i=1

x
i

≠ Tr
!

X

diag

U

2

A

ú
U

ú
1

+ (X
diag

U

2

A

ú
U

ú
1

)ú"

+ Na.

By integrating over the unitary groups, it follows from the Weyl integration
formula [2, Section 4.1] and (4.2.5), that the probability density for the x

i

’s
induced by P

N

is given by

1
Z

N

�2

N

(x)
N

Ÿ

i=1

x–

i

e≠Nx

i

⁄

U
M

(C)

⁄

U
N

(C)

eNTr

!

XdiagUAúVú
+(XdiagUAúVú

)

ú
"

dU dV,

(4.2.6)
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where dU (resp. dV) stands for the Haar measure of U
N

(C) (resp. U
M

(C))
and Z

N

is a new normalization constant. Note that one can assume the x
i

’s to
be distinct since this holds almost surely. Consider

B =

S

W

W

W

U

Ô
b

1

. . . Ô
b

N

0

–

T

X

X

X

V

œ M
M,N

(C)

with a Æ b
1

< · · · < b
N

Æ a + 1. Then we have the following Harish-Chandra-
Itzykson-Zuber type formula for the matrix integral [106, Section 3.2]

⁄

U
M

(C)

⁄

U
N

(C)

eNTr

!

XdiagUBúVú
+(XdiagUBúVú

)

ú
"

dU dV =

c
N

A

N

Ÿ

i=1

1
(b

i

x
i

)–/2

B det
Ë

I
–

!

2N


b
i

x
j

"

È

N

i,j=1

�
N

(x)�
N

(b) , (4.2.7)

where c
N

is a positive number which does not depend on x nor b. By continuity
of the left-hand side of (4.2.7) in the b

i

’s, we then obtain that (4.2.6) is
proportional to

lim
b

N

æa

· · · lim
b1æa

;

�
N

(x)
�

N

(b) det
Ë

x–/2

j

I
–

!

2N


b
i

x
j

"

e≠Nx

j

È

N

i,j=1

<

,

and thus to

�
N

(x) det
5

ˆi≠1

ˆbi≠1

Ó

x–/2

j

I
–

!

2N


bx
j

"

e≠Nx

j

Ô

-

-

-

b=a

6

N

i,j=1

(4.2.8)

by l’Hôpital Theorem. Finally, using for x > 0 the relations [105, P79]

d
dx

I
–

(x) = I
–+1

(x) + –

x
I

–

(x), d
dx

I
–+1

(x) = I
–

(x) ≠ – + 1
x

I
–+1

(x),

it is easily shown inductively that the linear space spanned by the functions

x ‘æ ˆi≠1

ˆbi≠1

Ó

x–/2I
–

!

2N
Ô

bx
"

e≠Nx

Ô

-

-

-

b=a

, i = 1, . . . , N,

matches with the one spanned by

x ‘æ xi≠1w
–,N

(x), x ‘æ xi≠1w
–+1,N

(x), i = 1, . . . , N/2.

This ends the proof of Lemma 4.2.1.
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Remark 4.2.2. Although the parameter – associated to the matrix model is a
non-negative integer, the distribution (4.2.4) still makes sense for non-negative
real –. In fact, in the proofs we provide later, it will not matter whether – is
an integer or not. Thus, if one considers the measures µ̂N (4.1.3) associated to
x

i

’s drawn according to (4.2.4) with real – Ø 0, the LDP from Theorem 4.1.1
continues to hold.

4.2.2 Nikishin system

We now describe a property satisfied by the weights w
–,N

and w
–+1,N

, a so-
called Nikishin structure, and obtain as a consequence an exact Coulomb gas
representation for the eigenvalues, see Proposition 4.2.4. The reader curious
about Nikishin systems should have a look at [91] (where they are called MT
systems).

More precisely, it turns out that the ratio of the weights is (almost) the Cauchy
transform of some measure, a fact which has already been observed [35, Theorem
1]. We now make this result slightly more precise with an alternative simple
proof. Consider the sequence

0 < j
–,0

< j
–,1

< j
–,2

< · · ·

of the positive zeros of the Bessel function of the first kind J
–

, a rotated version
of I

–

, i.e
J

–

(x) = eifi–/2I
–

(≠ix), x œ R
+

, (4.2.9)
and introduce for each N the sequence of negative numbers

a
k,N

= ≠
3

j
–,k

2
Ô

aN

4

2

, k Ø 0. (4.2.10)

We then set for convenience

A
N

=
Ó

a
k,N

: k Ø 0
Ô

(4.2.11)

and consider the associated normalized counting measure

‡
N

= 1
N

ÿ

uœA
N

”(u). (4.2.12)

The weights w
–,N

and w
–+1,N

then satisfy the following relation.

Lemma 4.2.3. For all – Ø 0 and a > 0,

w
–+1,N

w
–,N

(x) = xÔ
a

⁄

‡
N

(du)
x ≠ u

, x œ R
+

.
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Proof. Up to a change of variable, this relation is nothing else than the Mittag-
Le�er expansion

I
–+1

I
–

(x) = 2x
Œ

ÿ

k=0

1
x2 + j2

–,k

which is itself provided by [58, P61] together with the relation (4.2.9).

Lemma 4.2.3 is in fact the key to express the eigenvalue density (4.2.4) as
the marginal distribution of a two type particles Coulomb gas. Namely, if we
introduce a Vandermonde-like product for (x, u) œ RN

+

◊ RN/2

≠

�
N,N/2

(x, u) =
N

Ÿ

i=1

N/2

Ÿ

j=1

!

x
i

≠ u
j

"

=
N

Ÿ

i=1

N/2

Ÿ

j=1

-

-x
i

≠ u
j

-

-, (4.2.13)

then the following Proposition holds.

Proposition 4.2.4. The probability density (4.2.4) admits the following
representation

1
Z

N

⁄

RN/2
≠

�2

N

(x)�2

N/2

(u)
�

N,N/2

(x, u)

N

Ÿ

i=1

w
–,N

(x
i

)
N/2

Ÿ

i=1

|u
i

|‡
N

(du
i

) (4.2.14)

where Z
N

is a new normalization constant.

The proof we present now is inspired from the proof of [35, Theorem 2].

Proof. Recall that the density (4.2.4) is proportional to

�
N

(x) det

S

W

W

W

U

Ó

xi≠1

j

w
–,N

(x
j

)
Ô

N/2,N

i,j=1

Ó

xi≠1

j

w
–+1,N

(x
j

)
Ô

N/2,N

i,j=1

T

X

X

X

V

. (4.2.15)

We first perform the factorization

det

S

W

W

W
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Ó
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j
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j

)
Ô
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Ó
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w
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j
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Ô
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X
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X
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S

W
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Ó

xi≠1

j

Ô
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i,j=1

Ó

xi≠1

j

w
–+1,N

w
–,N

(x
j
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Ô

N/2,N
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T

X

X

X

V

N

Ÿ

i=1

w
–,N

(x
i

)

(4.2.16)
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and then use Lemma 4.2.3 to obtain

det

S

W

W

W

U

Ó

xi≠1

j

Ô

N/2,N

i,j=1

Ó

xi≠1

j

w
–+1,N

w
–,N

(x
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Ô
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T
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X

V

= (
Ô
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⁄

RN/2
≠
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Ô
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I
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j
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Ÿ
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‡
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(du
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). (4.2.17)

Provided with the identity

xi

x ≠ u
= ui

x ≠ u
+

i≠1

ÿ

k=0

xkui≠k+1,

the multilinearity of the determinant gives
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Ô
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. (4.2.18)

Now, the well-known identity for mixed Cauchy-Vandermonde determinant, see
e.g. [35, Lemma 3], yields

det

S

W
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Ó

xi≠1
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Ô
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�

N
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�

N,N/2

(x, u) , (4.2.19)

where the sign only depends on N . Combining (4.2.15)–(4.2.19), we obtain that
(4.2.4) is proportional to

⁄

RN/2
≠

�2

N

(x)�
N/2

(u)
�

N,N/2

(x, u)

N

Ÿ

i=1

w
–,N

(x
i

)
N/2

Ÿ

i=1

ui

i

‡
N

(du
i

). (4.2.20)
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By summing the integrand of (4.2.20) over all possible permutations of the uÕ
i

s
and using the definition (4.2.1) of the Vandermonde determinant, we obtain
that (4.2.20) is proportional to

⁄

RN/2
≠

�2

N

(x)�2

N/2

(u)
�

N,N/2

(x, u)

N

Ÿ

i=1

w
–,N

(x
i

)
N/2

Ÿ

i=1

|u
i

|‡
N

(du
i

).

Since for every (x, u) œ RN

+

◊ AN/2

N

the quantity

�2

N/2

(x)�2

N/2

(u)
�

N,N/2

(x, u)

N

Ÿ

i=1

w
–,N

(x
i

)
N/2

Ÿ

i=1

|u
i

|

is non-negative (and not identically zero), the new normalization constant Z
N

has to be positive. The proof of Proposition 4.2.4 is therefore complete.

In the next section, we perform a large deviations investigation for the whole
Coulomb gas system.

4.3 A LDP for the generalized particle system

On the basis of the preceding analysis, we investigate in this section the
probability distribution on RN

+

◊ RN/2

≠

1
Z

N

�2

N

(x) �2

N/2

(u)
�

N,N/2

(x, u)

N

Ÿ

i=1

e≠NV

N

(x

i

)dx
i

N/2

Ÿ

i=1

|u
i

|‡
N

(du
i

) (4.3.1)

where, with w
–,N

defined in (4.2.2), we introduced for convenience

V
N

(x) = ≠ 1
N

log w
–,N

(x), x œ R
+

. (4.3.2)

The measure ‡
N

has been defined in (4.2.12), and Z
N

is a normalization
constant.

Consider the empirical measure for the second type particles

‹̂N = 1
N

N/2

ÿ

i=1

”(u
i

) (4.3.3)

where the u
i

’s are distributed according to (4.3.1) and note that the random
vector of measures (µ̂N , ‹̂N ) takes values in M

1

(R
+

)◊M
1/2

(R≠), that we equip
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with the product topology. Our aim is to establish a LDP for
!

(µ̂N , ‹̂N )
"

N

,
from which follows a LDP for (µ̂N )

N

by contraction principle.

We first introduce the rate function in Section 4.3.1. Then, because of the
discrete character of the second type particles, we introduce in Section 4.3.2 a
convenient closed subspace of M

1/2

(R≠) where the ‹̂N ’s actually live. Finally,
we state the LDP for (µ̂N , ‹̂N )

N

in Section 4.3.3, see Theorem 4.3.4, and provide
a proof for Theorem 4.1.1. The proof of Theorem 4.3.4 is deferred to Section
4.4.

4.3.1 The rate function

Our first task is to extend properly the definition of the functional (4.1.5) to
M

1

(R
+

)◊M
1/2

(R≠). A general method to do so has been presented in Chapter
3 and we apply it to our particular case now.

Compactification procedure

Let S be the circle of R2 centered in (0, 1/2) of radius 1/2 and T : R æ S the
associated inverse stereographic projection, namely the map defined by

T (x) =
3

x

1 + x2

,
x2

1 + x2

4

, x œ R.

It is known that T is an homeomorphism from R onto S \ {(0, 1)}, so that (S, T )
is a one point compactification of R. For a measure µ on R, we denote by Túµ
its push-forward by T , that is the measure on S characterized by

⁄

S
f(z)Túµ(dz) =

⁄

R
f

!

T (x)
"

µ(dx) (4.3.4)

for every Borel function f on S. We denote the two half-circles

S± =
Ó

T (x) : x œ R±
Ô

fi
)

(0, 1)
*

. (4.3.5)

Since T is an homeomorphism from R
+

(resp. R≠) to S
+

\ {(0, 1)} (resp.
S≠ \ {(0, 1)}), Lemma 2.2.1 yields that Tú is a homeomorphism from M

1

(R
+

)
to

)

µ œ M
1

(S
+

) : µ({(0, 1)}) = 0
*

,

and also from M
1/2

(R≠) to
)

µ œ M
1/2

(S≠) : µ({(0, 1)}) = 0
*

.
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Equipped with such a transformation Tú, we are now able to provide a proper
definition for the functional (4.1.5).

Definition of the rate function

Introduce the lower semi-continuous function V : S
+

æ R fi {+Œ} by

V
!

T (x)
"

= x ≠ 2
Ô

ax ≠ 3
4 log(1 + x2), x œ R

+

, (4.3.6)

and
V((0, 1)) = lim inf

xæŒ V
!

T (x)
"

= +Œ. (4.3.7)

We naturally extend the definition of the logarithmic energy (4.1.1) to measures
on S µ R2 (where | · | stands for the Euclidean norm) and define the functional
J on M

1

(R
+

) ◊ M
1/2

(R≠) by

J (µ,‹ ) =
⁄⁄

log 1
|z ≠ w|Túµ(dz)Túµ(dw) ≠

⁄⁄

log 1
|z ≠ ›|Túµ(dz)Tú‹(d›)

+
⁄⁄

log 1
|› ≠ ’|Tú‹(d›)Tú‹(d’) +

⁄

V(z)Túµ(dz) (4.3.8)

when both Túµ and Tú‹ have finite logarithmic energy, and set J (µ,‹ ) = +Œ
otherwise.

Then, the following Proposition is a consequence of Theorem 3.2.6.

Proposition 4.3.1.

(a) The level set
Ó

(µ,‹ ) œ M
1

(R
+

) ◊ M
1/2

(R≠) : J (µ,‹ ) Æ “
Ô

is compact for all “ œ R.

(b) J is strictly convex on the set where it is finite.

Because of the discrete character of the u
i

’s, we need to discuss now several
constraint issues.
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4.3.2 Discreteness and constraint

In this section we use the discrete character of the particles on R≠ to build
a closed subset E(R≠) of M

1/2

(R≠) such that ‹̂N œ E(R≠) for all N . This
will provide an explanation on why the measures on R≠ are restricted to the
set M‡

1/2

(R≠) in the minimization problem (4.1.5), and moreover will be of
important use to control the possible contact at the origin of the di�erent type
particles during the proof of Theorem 4.3.4, see Lemma 4.4.4.

We say that a measure ‹ œ M
1/2

(R≠) is constrained by a Borel measure ⁄ on
R≠, that we note ‹ Æ ⁄, if the signed measure ⁄ ≠ ‹ is in a fact a (positive)
measure. Introduce the set of constrained measures

M⁄

1/2

(R≠) =
Ó

‹ œ M
1/2

(R≠) : ‹ Æ ⁄
Ô

(4.3.9)

and note it is closed. Indeed, if (‹
N

)
N

is a sequence in M⁄

1/2

(R≠) with weak
limit ‹, then (⁄ ≠ ‹

N

)
N

converges in the vague topology (i.e the topology
coming from duality with the Banach space of compactly supported continuous
functions on R) towards ⁄ ≠ ‹, which is hence not signed.

Since the random variables u
i

’s take values in A
N

, see (4.2.11), we have almost
surely

‹̂N = 1
N

N/2

ÿ

i=1

”(u
i

) Æ 1
N

ÿ

uœA
N

”(u) = ‡
N

and thus almost surely ‹N œ M‡

N

1/2

(R≠) for any N . Consider the measure ‡
on R≠ having for density

‡(dx)
dx

=
Ô

a

fi
|x|≠1/2. (4.3.10)

and note that the Radon-Nikodym theorem yields that the definition of
M‡

1/2

(R≠) presented in this section matches with (4.1.6). It is in fact the
limiting distribution of the constraints ‡

N

.

Lemma 4.3.2. The sequence (‡
N

)
N

converges towards ‡ in the vague topology.

Proof. Since for any b Æ 0 we clearly have lim
NæŒ ‡

N

({b}) = ‡({b}) = 0, it is
enough to show that for all b < 0, lim

NæŒ ‡
N

([b, 0]) = ‡([b, 0]), that is

lim
NæŒ

1
N

˘
Ó

k : a
k,N

Ø b
Ô

=
Ô

a

fi

⁄

0

b

|x|≠1/2dx.
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By change of variables, it is equivalent to prove that for all b > 0

lim
NæŒ

1
N

˘
Ó

k : j
–,k

N
Æ b

Ô

= 1
fi

⁄

b

0

dx = b

fi
.

Fix Á > 0 and let k(N) be the integer part of (b+Á)N

fi

. The McMahon asymptotic
formula [1, formula 9.5.12] yields

lim
kæŒ

j
–,k

k
= fi, (4.3.11)

and thus
lim

NæŒ
j

–,k(N)

N
= b + Á.

As a consequence, we obtain the upper bound

lim sup
NæŒ

1
N

˘
Ó

k : j
–,k

N
Æ b

Ô

Æ lim
NæŒ

k(N)
N

= b + Á

fi
.

Similarly, changing Á by ≠Á in the definition of k(N) yields the lower bound

lim inf
NæŒ

1
N

˘
Ó

k : j
–,k

N
Æ b

Ô

Ø b ≠ Á

fi
,

and Lemma 4.3.2 follows by letting Á æ 0.

We now introduce the subset E(R≠) of M
1/2

(R≠) of the measures which are
either constrained by ‡

N

, for some N , or by ‡. Namely,

E(R≠) =
Œ
€

N=1

M‡

N

1/2

(R≠)
€

M‡

1/2

(R≠) . (4.3.12)

By construction ‹̂N œ E(R≠), for any N , and moreover

Lemma 4.3.3. E(R≠) is a closed subset of M
1/2

(R≠).

Proof. Let (‹
j

)
j

be a sequence in E(R≠) with weak limit ‹, and let us show
that ‹ œ E(R≠). Since the sets M‡

1/2

(R≠) and M‡

N

1/2

(R≠) are closed for all N ,
one may assume that ‹

j

Æ ‡
N

j

, with lim
jæŒ N

j

= +Œ. One then obtains by
Lemma 4.3.2 that ‹ Æ ‡, and thus ‹ œ E(R≠).

Concerning the measure on S≠, see (4.3.5), we similarly set

E(S≠) =
Œ
€

N=1

MTú‡

N

1/2

(S≠)
€

MTú‡

1/2

(S≠), (4.3.13)
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so that Tú‹̂N œ E(S≠) for any N . Moreover, note that since ‹({(0, 1)}) = 0 for
any ‹ œ E(S≠), it follows that Tú is an homeomorphism from E(R≠) to E(S≠),
and E(S≠) is seen to be a closed subset of M

1/2

(S≠) from Lemma 4.3.3.

4.3.3 LDP for the generalized particle system

We are now in a position to state the LDP for (µ̂N , ‹̂N )
N

. Let us precise that
we equip E(R≠) with the topology induced by M

1/2

(R≠) and M
1

(R
+

) ◊ E(R≠)
carries the product one. Then the following LDP holds.

Theorem 4.3.4. The sequence (µ̂N , ‹̂N )
N

satisfies a LDP on M
1

(R
+

)◊E(R≠)
in the scale N2 with good rate function J ≠ min J . More precisely,

(a) The level set
Ó

(µ,‹ ) œ M
1

(R
+

) ◊ E(R≠) : J (µ,‹ ) Æ “
Ô

is compact for any “ œ R.

(b) J admits a unique minimizer (µú, ‹ú) on M
1

(R
+

) ◊ E(R≠).

(c) For any closed set F µ M
1

(R
+

) ◊ E(R≠),

lim sup
NæŒ

1
N2

logP
N

1

(µ̂N , ‹̂N ) œ F
2

Æ ≠ inf
(µ,‹)œF

Ó

J (µ,‹ ) ≠ J (µú, ‹ú)
Ô

.

(d) For any open set O µ M
1

(R
+

) ◊ E(R≠),

lim inf
NæŒ

1
N2

logP
N

1

(µ̂N , ‹̂N ) œ O
2

Ø ≠ inf
(µ,‹)œO

Ó

J (µ,‹ ) ≠ J (µú, ‹ú)
Ô

.

A direct consequence of Theorem 4.3.4 is Theorem 4.1.1.

Corollary 4.3.5. Theorem 4.1.1 holds true.

Proof. Theorem 4.1.1 follows by contraction principle (see [43, Theorem 4.2.1])
along the projection M

1

(R
+

) ◊ E(R≠) æ M
1

(R
+

) and the fact that J (µ,‹ ) =
+Œ as soon as ‹ œ E(R≠) \ M‡

1/2

(R≠).
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4.4 Proof of Theorem 4.3.4

We first observe that Theorem 4.3.4 (a), (b) easily follow from Proposition 4.3.1.

Proof of Theorem 4.3.4 (a), (b). Since E(R≠) is a closed subset of M
1/2

(R≠)
(see Lemma 4.3.3), Theorem 4.3.4 (a) follows from Proposition 4.3.1 (a). The
existence of a minimizer for J on M

1/2

(R≠) ◊ E(R≠) is a consequence of
Theorem 4.3.4 (a). Since the set M‡

1/2

(R≠) is convex, and J (µ,‹ ) = +Œ as
soon as ‹ œ E(R≠) \ M‡

1/2

(R≠), the minimizer is unique by Proposition 4.3.1
(b).

Concerning the proof of Theorem 4.3.4 (c), (d), it is usually pretty standard
to establish LDP upper and lower bounds by proving a weak LDP and an
exponential tightness property (see [43] for a general presentation on LDPs).
However, because of the lack of confining potential acting on the particles on R≠,
it is not clear to the authors how to prove directly that the sequence (µ̂N , ‹̂N )

N

is exponentially tight. Instead, we follow the strategy developed in Chapter 2 :
we first prove in Section 4.4.1 a weak LDP upper bound for (Túµ̂N , Tú‹̂N )

N

,
the push-forward of (µ̂N , ‹̂N )

N

by the inverse stereographic projection T . We
then establish a LDP lower bound for (µ̂N , ‹̂N )

N

in Section 4.4.2, and show in
Section 4.4.3 that it is enough to obtain Theorem 4.3.4 (c), (d).

4.4.1 A weak LDP upper bound for (Túµ̂N , Tú‹̂N)N

Consider the functional J on M
1

(S
+

) ◊ E(S≠) defined by

J(µ,‹ ) =
⁄⁄

log 1
|z ≠ w|µ(dz)µ(dw) ≠

⁄⁄

log 1
|z ≠ ›|µ(dz)‹(d›)

+
⁄⁄

log 1
|› ≠ ’|‹(d›)‹(d’) +

⁄

V(z)µ(dz) (4.4.1)

if both µ and ‹ have finite logarithmic energy, and set J(µ,‹ ) = +Œ otherwise.
We recall that V has been introduced in (4.3.6)–(4.3.7) and E(S≠) in (4.3.13).
Note that, with J defined in (4.3.8), the following relation holds

J (µ,‹ ) = J(Túµ, Tú‹), (µ,‹ ) œ M
1

(R
+

) ◊ E(R≠). (4.4.2)

Now, choose a metric compatible with the topology of M
1

(S
+

) ◊ E(S≠) and
write B

”

(µ,‹ ) for the open ball of radius ” > 0 centered at (µ,‹ ). The aim of this
section is to establish the following weak LDP upper bound for (Tú‹̂N , Tú‹̂N ).
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Proposition 4.4.1. For any (µ,‹ ) œ M
1

(S
+

) ◊ E(S≠)

lim sup
”æ0

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
N

1

!

Túµ̂N , Tú‹̂N

"

œ B
”

(µ,‹ )
2Ô

Æ ≠J(µ,‹ ).

(4.4.3)

Concerning the proof, we first describe in Section 4.4.1 the induced distribution
for the particles

!

T (x
i

)
"

N

i=1

and
!

T (u
i

)
"

N/2

i=1

on SN

+

◊ SN/2

≠ . Then, we show
(4.4.3) in Section 4.4.1, where the main di�culty is to control the singularity
created by the fact that the di�erent type particles may meet at the origin when
N æ Œ. To do so, we will use a few technical lemmas, for which the proofs are
deferred to Section 4.4.1 for convenience.

The induced distribution for the particles on S

Introduce the random variables on S

z
i

= T (x
i

), i = 1, . . . , N, ›
i

= T (u
i

), i = 1, . . . , N/2, (4.4.4)

where the x
i

’s and the u
i

’s are distributed according to (4.3.1). Thus

Túµ̂N = 1
N

N

ÿ

i=1

”(z
i

), Tú‹̂N = 1
N

N/2

ÿ

i=1

”(›
i

). (4.4.5)

We set the measures ⁄ = Tú(1R+(x)dx) on S
+

and ÷
N

= Tú‡
N

on S≠, with ‡
N

introduced in (4.2.12). From V
N

introduced in (4.3.2), we also construct the
lower semi-continuous function V

N

: S
+

æ R fi {+Œ} by

V
N

!

T (x)
"

= V
N

(x) ≠ 3
4 log(1 + x2), x œ R

+

, (4.4.6)

and
V

N

((0, 1)) = lim inf
xæŒ V

N

!

T (x)
"

= +Œ, (4.4.7)

where the latter equality follows from the asymptotic behavior [1, formula 9.7.1]

I
–

(x) = ex

Ô
2fix

1

1 + O
!

x≠1

"

2

as x æ +Œ. (4.4.8)

Then the following holds.
Lemma 4.4.2. The joint distribution of (z, ›) = (z

1

, . . . , z
N

, ›
1

, . . . , ›
N/2

) is
given by

1
Z

N

-

-

-

-

-

�2

N

(z)�2

N/2

(›)
�

N,N/2

(z, ›)

-

-

-

-

-

N

Ÿ

i=1

(1 ≠ |z
i

|2)e≠NV
N

(z

i

)⁄(dz
i

)
N/2

Ÿ

i=1

|›
i

|


1 ≠ |›
i

|2÷
N

(d›
i

)

where Z
N

has been introduced in (4.3.1).
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Proof. From the metric relation (3.2.11) we obtain

�2

N

(x) =
-

-�2

N

!

T (x)
"

-

-

N

Ÿ

i=1

!

1 + x2

i

"

N≠1

�2

N/2

(u) =
-

-�2

N/2

!

T (u)
"

-

-

N/2

Ÿ

i=1

!

1 + u2

i

"

N/2≠1

�
N,N/2

(x, u) =
-

-�
N,N/2

!

T (x), T (u)
"

-

-

N

Ÿ

i=1

!

1 + x2

i

"

N/4

N/2

Ÿ

i=1

!

1 + u2

i

"

N/2

.

Thus, with V
N

defined in (4.4.6), this yields

�2

N

(x)�2

N/2

(u)
�

N,N/2

(x, u)

N

Ÿ

i=1

e≠NV

N

(x

i

)

N/2

Ÿ

i=1

|u
i

|

=
-

-

-

-

-

�2

N

!

T (x)
"

�2

N/2

!

T (u)
"

�
N,N/2

!

T (x), T (u)
"

-

-

-

-

-

N

Ÿ

i=1

e≠NV
N

(T (x

i

))

1 + x2

i

N/2

Ÿ

i=1

|u
i

|
1 + u2

i

. (4.4.9)

We moreover obtain from (3.2.11) the identities
1

1 + x2

= 1 ≠ |T (x)|2,
|x|

1 + x2

= |T (x)|


1 ≠ |T (x)|2, x œ R, (4.4.10)

and then from (4.4.9)

�2

N

(x)�2

N/2

(u)
�

N,N/2

(x, u)

N

Ÿ

i=1

e≠NV

N

(x

i

)

N/2

Ÿ

i=1

|u
i

|

=
-

-

-

-

-

�2

N

!

T (x)
"

�2

N/2

!

T (u)
"

�
N,N/2

!

T (x), T (u)
"

-

-

-

-

-

N

Ÿ

i=1

!

1≠|T (x
i

)|2
"

e≠NV
N

(T (x

i

))

2
N/2

Ÿ

i=1

|T (u
i

)|


1 ≠ |T (u
i

)|2.

(4.4.11)

Lemma 4.4.2 then follows from (4.4.11) by performing the change of variables
z

i

= T (x
i

) for i = 1, . . . , N and ›
i

= T (u
i

) for i = 1, . . . , N/2.

Core of the proof for Proposition 4.4.1

Provided with Lemma 4.4.2, we now establish Proposition 4.4.1, up to the
proofs of few lemmas which are deferred to the next section.
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Proof of Proposition 4.4.1. We obtain from (4.4.5) and Lemma 4.4.2

Z
N

P
N

1

(Túµ̂N , Tú‹̂N ) œ B
”

(µ,‹ )
2

=
⁄

)

(z,›) : (Túµ̂

N

,Tú‹̂

N

)œB
”

(µ,‹)

*

-

-

-

-

-

�2

N

(z)�2

N/2

(›)
�

N,N/2

(z, ›)

-

-

-

-

-

N

Ÿ

i=1

e≠NV
N

(z

i

)

◊
N

Ÿ

i=1

(1 ≠ |z
i

|2)⁄(dz
i

)
N/2

Ÿ

i=1

|›
i

|


1 ≠ |›
i

|2÷
N

(d›
i

). (4.4.12)

We write
-

-

-

-

-

�2

N

(z)�2

N/2

(›)
�

N,N/2

(z, ›)

-

-

-

-

-

N

Ÿ

i=1

e≠NV
N

(z

i

)

= exp
A

≠
I

ÿ

1Æi”=jÆN

log 1
|z

i

≠ z
j

| +
ÿ

1Æi”=jÆN/2

log 1
|›

i

≠ ›
j

|

+
N

ÿ

i=1

N/2

ÿ

j=1

1

2V
N

(z
i

) + log |z
i

≠ ›
j

|
2

JB

= exp
A

≠ N2

I

⁄⁄

z ”=w

log 1
|z ≠ w|Túµ̂N (dz)Túµ̂N (dw) (4.4.13)

+
⁄⁄

› ”=’

log 1
|› ≠ ’|Tú‹̂N (d›)Tú‹̂N (d’)

+
⁄⁄

1

2V
N

(z) + log |z ≠ ›|
2

Túµ̂N (dz)Tú‹̂N (d›)
JB

.

Note that, since Túµ̂N ¢ Túµ̂N

)

(z, w) œ S
+

◊S
+

: z = w
*

= 1/N almost surely,
for any M > 0 we have almost surely

⁄⁄

z ”=w

log 1
|z ≠ w|Túµ̂N (dz)Túµ̂N (dw)

Ø
⁄⁄

min
1

log 1
|z ≠ w| , M

2

Túµ̂N (dz)TúµN (dw) ≠ M

N
(4.4.14)
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and similarly
⁄⁄

› ”=’

log 1
|› ≠ ’|Tú‹̂N (d›)Tú‹N (d’)

Ø
⁄⁄

min
1

log 1
|› ≠ ’| , M

2

Tú‹̂N (d›)Tú‹̂N (d’) ≠ M

2N
. (4.4.15)

To make the control of the singularity at the origin easier, we write for any
M > 0

⁄⁄

1

2V
N

(z) + log |z ≠ ›|
2

Túµ̂N (dz)Tú‹̂N (d›)

=
⁄⁄

1

2V
N

(z) + log |z ≠ ›| ≠ log |›|
2

Túµ̂N (dz)Tú‹̂N (d›)

+
⁄

log |›| Tú‹̂N (d›)

Ø
⁄⁄

min
1

2V
N

(z) + log |z ≠ ›| ≠ log |›|, M
2

Túµ̂N (dz)Tú‹̂N (d›) (4.4.16)

+
⁄

log |›| Tú‹̂N (d›).

Note that the latter step makes sense since Tú‹̂N can not have a mass point at
(0, 0). Such a decomposition is motivated by the following lemma.

Lemma 4.4.3. For any N œ N fi{Œ} , the map

(z,› ) ‘æ 2V
N

(z) + log |z ≠ ›| ≠ log |›| (4.4.17)

is bounded from below on S
+

◊ S≠, where we denote VŒ = V.

Now, if we introduce for any M > 0 and (µ,‹ ) œ M
1

(S
+

) ◊ E(S≠)

JM

N

(µ,‹ ) =
⁄⁄

min
1

log 1
|z ≠ w| , M

2

µ(dx)µ(dy) (4.4.18)

+
⁄⁄

min
1

2V
N

(z) + log |z ≠ ›| ≠ log |›|, M
2

µ(dz)‹(d›)

+
⁄⁄

min
1

log 1
|› ≠ ’| , M

2

‹(d›)‹(d’) +
⁄

log |›| ‹(d›),
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we obtain from (4.4.12)–(4.4.16) that

Z
N

P
N

1

(Túµ̂N , Tú‹̂N ) œ B
”

(µ,‹ )
2

Æ C
N

exp
Ó

≠ N2 inf
B

”

(µ,‹)

JM

N

Ô

, (4.4.19)

where we set

C
N

= e3MN/2

⁄

SN

+ ◊SN/2
≠

N

Ÿ

i=1

(1 ≠ |z
i

|2)⁄(dz
i

)
N/2

Ÿ

i=1

|›
i

|


1 ≠ |›
i

|2 ÷
N

(d›
i

).

Note that by construction JM

N

is bounded from above, but may take the value
≠Œ for some (µ,‹ ) œ M

1

(S
+

)◊M
1/2

(S≠). Our choice to restrict M
1/2

(S≠) to
E(S≠) is motivated by the following key lemma, which yields in particular that
JM

N

is well defined and has each of its components bounded on M
1

(S
+

)◊E(S≠).

Lemma 4.4.4. The functional

‹ ‘æ
⁄

log |›| ‹(d›)

is continuous, and thus bounded, on E(S≠).

We observe that

Lemma 4.4.5.

lim sup
NæŒ

1
N2

log C
N

Æ 0. (4.4.20)

As a consequence, we obtain from (4.4.19)

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
1

!

Túµ̂N , Tú‹̂N

"

œ B
”

(µ,‹ )
2Ô

Æ ≠ lim inf
NæŒ

inf
B

”

(µ,‹)

JM

N

.

(4.4.21)
Now, introduce for any M > 0 and (µ,‹ ) œ M

1

(S
+

) ◊ E(S≠)

JM (µ,‹ ) =
⁄⁄

min
1

log 1
|z ≠ w| , M

2

µ(dx)µ(dy) (4.4.22)

+
⁄⁄

min
1

2V(z) + log |z ≠ ›| ≠ log |›|, M
2

µ(dz)‹(d›)

+
⁄⁄

min
1

log 1
|› ≠ ’| , M

2

‹(d›)‹(d’) +
⁄

log |›| ‹(d›)

since the following holds
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Lemma 4.4.6.

lim inf
NæŒ

inf
B

”

(µ,‹)

JM

N

Ø inf
B

”

(µ,‹)

JM . (4.4.23)

It thus follows from (4.4.21) that

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
1

!

Túµ̂N , Tú‹̂N

"

œ B
”

(µ,‹ )
2Ô

Æ ≠ inf
B

”

(µ,‹)

JM . (4.4.24)

Note that for any M > 0, the function

(z, w) ‘æ min
1

log 1
|z ≠ w| , M

2

is continuous on S ◊ S, so that the functional

µ ‘æ
⁄⁄

min
1

log 1
|z ≠ w| , M

2

µ(dz)µ(dw)

is continuous on M
1

(S
+

), as well on E(S≠). Lemma 4.4.3 moreover yields for
any M > 0 the continuity of

(µ,‹ ) ‘æ
⁄⁄

min
1

2V(z) + log |z ≠ ›| ≠ log |›|, M
2

µ(dz)‹(d›).

Thus, this shows with Lemma 4.4.4 that JM defined in (4.4.22) is continuous
on M

1

(S
+

) ◊ E(R≠), and we obtain by letting ” æ 0 in (4.4.24) that

lim sup
”æ0

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
1

!

Túµ̂N , Tú‹̂N

"

œ B
”

(µ,‹ )
2Ô

Æ ≠JM (µ,‹ ).

(4.4.25)
Letting M æ +Œ in (4.4.25), the monotone convergence theorem yields

lim sup
”æ0

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
1

!

Túµ̂N , Tú‹̂N

"

œ B
”

(µ,‹ )
2Ô

Æ ≠
I

⁄⁄

log 1
|z ≠ w|µ(dz)µ(dw) (4.4.26)

+
⁄⁄

1

2V(z) + log |z ≠ ›| ≠ log |›|
2

µ(dz)‹(d›)

+
⁄⁄

log 1
|› ≠ ’|‹(d›)‹(d’) +

⁄

log |›| ‹(d›)
J

.
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Finally, in order to obtain Proposition 4.4.1 from (4.4.26), it is su�cient to
show that, with J defined in (4.4.1),

J(µ,‹ ) =
⁄⁄

log 1
|z ≠ w|µ(dz)µ(dw) (4.4.27)

+
⁄⁄

1

2V(z) + log |z ≠ ›| ≠ log |›|
2

µ(dz)‹(d›)

+
⁄⁄

log 1
|› ≠ ’|‹(d›)‹(d’) +

⁄

log |›| ‹(d›)

for all (µ,‹ ) œ M
1

(S
+

) ◊ E(S≠). Note that if µ or ‹ has infinite logarithmic
energy, then Lemmas 4.4.3 and 4.4.4 yield that the right-hand side of (4.4.27)
is +Œ. If both µ and ‹ have finite logarithmic energy, then (3.3.1) provides

⁄⁄

log 1
|z ≠ ›|µ(dz)‹(d›) < +Œ.

Thus, since V is bounded from below,
⁄⁄

1

2V(z) + log |z ≠ ›| ≠ log |›|
2

µ(dz)‹(d›) +
⁄

log |›| ‹(d›)

=
⁄

V(z)µ(dz) ≠
⁄⁄

log 1
|z ≠ ›|µ(dz)‹(d›),

which proves (4.4.27). The proof of Proposition 4.4.1 is therefore complete, up
to the proofs of the lemmas.

Proofs of Lemmas 4.4.3, 4.4.4, 4.4.5, and 4.4.6

Proof of Lemma 4.4.3. We have the inequality

|z ≠ ›| Ø |›|


1 ≠ |z|2, z œ S
+

, › œ S≠. (4.4.28)

Indeed, (4.4.28) trivially holds if z = (0, 1). Since for any z œ S the Pythagorean
theorem yields |z ≠ (0, 1)| =



1 ≠ |z|2, (4.4.28) moreover holds when › = (0, 1).
If none of z or › is (0, 1), then there exist x œ R

+

and u œ R≠ such that
|z≠›| = |T (x)≠T (u)|. Inequality (4.4.28) then follows from the metric relations
(3.2.11), (4.4.10) and the inequality |x ≠ u| Ø |u| when (x, u) œ R

+

◊ R≠.

As a consequence of the inequality (4.4.28), we obtain for any (z,› ) œ S
+

◊ S≠
and N œ N fi{Œ}

2V
N

(z) + log |z ≠ ›| ≠ log |›| Ø 2V
N

(z) + 1
2 log(1 ≠ |z|2). (4.4.29)
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Now, from the the metric relations (4.4.10) we obtain

inf
zœS+

1

2VŒ(z) + 1
2 log(1 ≠ |z|2)

2

= 2 inf
xœR+

1

x ≠ 2
Ô

ax ≠ log(1 + x2)
2

> ≠Œ,

(4.4.30)
and similarly for any N œ N,

inf
zœS+

1

2V
N

(z) + 1
2 log(1 ≠ |z|2)

2

= 2 inf
xœR+

1

V
N

(x) ≠ log(1 + x2)
2

> ≠Œ,

(4.4.31)
where the latter inequality follows from the definition (4.3.2) of V

N

and the
asymptotic behavior (4.4.8) of the Bessel function. Lemma 4.4.3 then follows
from (4.4.29)–(4.4.31).

Proof of Lemma 4.4.4. Since Tú is an homeomorphism from E(R≠) to E(S≠),
we obtain with the metric relation (3.2.11) that for any ‹ œ E(S≠)

⁄

S≠

log |›| ‹(d›) =
⁄

R≠

log |T (u)| Tú≠1‹(du)

=
⁄

R≠

log
A

|u|


1 + |u|2

B

Tú≠1‹(du)

=
⁄

|u|Æ1

log |u| Tú≠1‹(du) + F (‹),

where F is a continuous function on E(S≠). Lemma 4.4.4 is thus equivalent to
the continuity on E(R≠) of the functional

‹ ‘æ
⁄

|u|Æ1

log |u| ‹(du), (4.4.32)

which is itself equivalent to the uniformly integrability of u ‘æ 1|u|Æ 1

log |u|
with respect to the measures of E(R≠), namely to

lim
Áæ0

sup
‹œE(R≠)

⁄

|u|Æ Á

-

-

1|u|Æ 1

log |u|
-

- ‹(du) = 0. (4.4.33)

Since for any Á > 0 and any ‹ œ E(R≠)
⁄

|u|Æ Á

-

-

1|u|Æ 1

log |u|
-

- ‹(du) Æ 1
| log(Á)|

⁄

|u|Æ 1

log2 |u| ‹(du),

it is enough to show that

sup
‹œE(R≠)

⁄

|u|Æ 1

log |u|2 ‹(du) < +Œ (4.4.34)
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in order to obtain (4.4.33). By definition (4.3.12) of E(R≠) we have

sup
‹œE(R≠)

⁄

|u|Æ 1

log2 |u| ‹(du) (4.4.35)

Æ max
I

sup
N

⁄

|u|Æ 1

log2 |u| ‡
N

(du) ,

⁄

|u|Æ 1

log2 |u| ‡(du)
J

.

First, it follows from the definition (4.3.10) of ‡ that
⁄

|u|Æ 1

log2 |u| ‡(du) =
Ô

a

fi

⁄

1

0

x1/2 log2(x)dx < +Œ. (4.4.36)

Then, the definition (4.2.12) of ‡
N

gives
⁄

|u|Æ 1

log2 |u| ‡
N

(du) = 1
N

ÿ

kØ0 :

j

–,k

2Ô
aN

Æ 1

log2

3

j
–,k

2
Ô

aN

4

2

. (4.4.37)

It is a consequence of the McMahon expansion formula [1, formula 9.5.12] that

lim
kæŒ

!

j
–,k+1

≠ j
–,k

"

= fi, (4.4.38)

and this provides the existence of C > 0 independent of N satisfying

1
N

ÿ
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Ô
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2
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j
–,0

2
Ô

aN

4

2

+ C
1 j

–,k

2
Ô

aN
≠ j

–,k≠1

2
Ô

aN

2

ÿ

k>0 :

j

–,k

2Ô
aN

Æ 1

log2

3

j
–,k

2
Ô

aN

4

2

Æ C

⁄

1

0

log2(x2)dx < +Œ. (4.4.39)

Indeed, the latter inequality follows by splitting the integration domain and from
the fact that x ‘æ log2(x2) is non-negative and decreasing on [0, 1]. Combining
(4.4.35)–(4.4.37) and (4.4.39) we obtain (4.4.34), which completes the proof of
Lemma 4.4.4.
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Proof of Lemma 4.4.5. From the metric relations (4.4.10) we obtain

C
N

= e3N/2

⁄

SN

+ ◊SN/2
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Ÿ

i=1
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i
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Ÿ
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i

)
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A

⁄
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B

N

A

⁄
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|›|
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(d›)
B
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= e3N/2

A

⁄
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B

N

A

⁄
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|u|
1 + u2

‡
N

(du)
B

N/2

. (4.4.40)

Since the definition (4.2.12) of ‡
N

yields
⁄

R≠

|u|
1 + u2

‡
N

(du) Æ
⁄

R≠

1
|u| ‡

N

(du) = 4aN
Œ

ÿ

k=0

1
j2

–,k

,

then Lemma 4.4.5 follows from (4.4.40) and the identity [105, Section 15.51]
Œ

ÿ

k=0

1
j2

–,k

= 1
4(1 + –) < +Œ.

Proof of Lemma 4.4.6. We write

lim inf
NæŒ

inf
B

”

(µ,‹)

JM

N

Ø inf
B

”

(µ,‹)

JM + lim inf
NæŒ

inf
B

”

(µ,‹)

!

JM

N

≠ JM

"

(4.4.41)

and note that, from the definitions (4.4.18) and (4.4.22) of JM

N

and JM

respectively, we have

inf
B

”

(µ,‹)

!

JM

N

≠ JM

"

Ø 1
2 inf

(z,›)œS+◊S≠

Ó

min
1

2V
N

(z) + log |z ≠ ›| ≠ log |›|, M
2

≠ min
1

2V(z) + log |z ≠ ›| ≠ log |›|, M
2Ô

.

(4.4.42)

The inequality (4.4.29) and the fast growth of V(z) and V
N

(z) as z æ (0, 1),
which follows from the definitions (4.3.6)–(4.3.7), (4.4.6)–(4.4.7) and the



78 Large deviations for a non-centered Wishart matrix

asymptotic behavior (4.4.8), provide the existence of a neighborhood NŒ µ S
+

of (0, 1) such that for all N

min
1

2V
N

(z) + log |z ≠ ›| ≠ log |›|, M
2

(4.4.43)

= min
1

2V(z) + log |z ≠ ›| ≠ log |›|, M
2

= M, (z,› ) œ NŒ ◊ S≠.

Next, we claim the existence of a subset N
0

µ S
+

satisfying N
0

fi NŒ = S
+

and

min
1

2V
N

(z) + log |z ≠ ›| ≠ log |›|, M
2

(4.4.44)

Ø min
1

2V(z) + log |z ≠ ›| ≠ log |›|, M
2

, (z,› ) œ N
0

◊ S≠,

for any N su�ciently large, so that Lemma 4.4.6 would follow by combining
(4.4.41)–(4.4.44).

To show this it is enough to prove that for any L > 0 there exists N
L

Ø 0 such
that for all N Ø N

L

V
N

(x) ≠ x + 2
Ô

ax Ø 0, x œ [0, L],

or equivalently (see the definitions (4.3.2) and (4.2.2))

y–I
–

(y)e≠y Æ (2N
Ô

a )–, y œ [0, 2N
Ô

aL]. (4.4.45)

Indeed, if we choose N
0

= T ([0, L]) with L large enough so that N
0

fi NŒ = S
+

,
then (4.4.44) would hold for any N Ø N

L

as a consequence of (4.4.45). Given
L > 0, if – = 0 then (4.4.45) holds because I

0

(0) = 1 and y ‘æ I
0

(y)e≠y is
decreasing on R

+

. If – > 0, it is then easy to see from the asymptotic behavior
y–I

–

(y)e≠y = (2fi)≠1/2y–≠1/2(1 + O(y≠1)) as y æ +Œ, provided by (4.4.8),
that (4.4.45) is satisfied for any N large enough. This completes the proof of
Lemma 4.4.6.

We now provide a proof for the announced LDP lower bound.

4.4.2 A LDP lower bound for (µ̂N , ‹̂N)N

The aim of this section is to establish the following.
Proposition 4.4.7. For any open set O µ M

1

(R
+

) ◊ E(R≠)

lim inf
NæŒ

1
N2

log
Ó

Z
N

P
N

1

!

µ̂N , ‹̂N

"

œ O
2Ô

Ø ≠ inf
(µ,‹ )œO

J (µ,‹ ).
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Proof. Note that it is su�cient to show that for all (µ,‹ ) œ O

lim inf
NæŒ

1
N2

log
Ó

Z
N

P
N

1

!

µ̂N , ‹̂N

"

œ O
2Ô

Ø ≠ J(µ,‹ ). (4.4.46)

We first prove in two steps that (4.4.46) holds if µ and ‹ satisfy the following :

Assumption 4.4.8.

(1) µ and ‹ have compact support.

(2) Supp(µ) µ R
+

\ {0} and Supp(‹) µ R≠ \ {0}.

(3) With ‡ as in (4.3.10), there exists 0 < Á < 1 such that ‹ Æ (1 ≠ Á)‡.

(4) Túµ and Tú‹ have finite logarithmic energy.

We then extend in a last step (4.4.46) to all (µ,‹ ) œ O by mean of an
approximation procedure. This approach is similar to the strategy developed in
[11, Section 3.2], see also [64, Section 3.4].

Step 1 (Discretization) Given (µ,‹ ) œ O satisfying Assumption 4.4.8, our
first step consists to build discrete approximations of (µ,‹ ). To this aim, we
note that µ and ‹ have no atom as a consequence of Assumption 4.4.8 (d) and
consider

x(N)

1

= min
Ó

x œ R
+

: µ
!

[0, x]
"

= 1
N

Ô

, (4.4.47)

x(N)

i+1

= min
Ó

x Ø x(N)

i

: µ
!

[x(N)

i

, x]
"

= 1
N

Ô

, i = 1, . . . , N ≠ 1, (4.4.48)

and similarly

y(N)

1

= min
Ó

y œ R≠ : ‹
!

(≠Œ, y]
"

= 1
N

Ô

, (4.4.49)

y(N)

i+1

= min
Ó

y Ø y(N)

i

: ‹
!

[y(N)

i

, y]
"

= 1
N

Ô

, i = 1, . . . , N/2 ≠ 1. (4.4.50)

Since µ and ‹ moreover have compact supports, the following weak convergence
follows easily

lim
NæŒ

1
N

N

ÿ

i=1

”(x(N)

i

) = µ and lim
NæŒ

1
N

N/2

ÿ

i=1

”(y(N)

i

) = ‹. (4.4.51)



80 Large deviations for a non-centered Wishart matrix

Because the u
i

’s are distributed on the discrete set A
N

(4.2.11), we also set

u(N)

i

= max
Ó

u œ A
N

: u < y(N)

i

Ô

, i = 1, . . . , N/2, (4.4.52)

and moreover introduce

‹(N) = 1
N

N/2

ÿ

i=1

”(u(N)

i

). (4.4.53)

We now show that, for any N large enough, the u(N)

i

’s lie in the convex hull
co(Supp(‹)) and the following interlacing property holds

y(N)

i

< u(N)

i+1

< y(N)

i+1

, i = 1, . . . , N/2 ≠ 1. (4.4.54)

Indeed, with Á as in Assumption 4.4.8 (3), (4.4.38) yields k
Á

such that

sup
kØk

Á

!

j
–,k+1

≠ j
–,k

"

Æ fi(1 + Á)

and, since 0 /œ Supp(‹) by assumption, there exists N
Á

such that

sup
k<k

Á

‹
!

[a
k+1,N

, a
k,N

]
"

= 0, N Ø N
Á

.

Thus, recalling the definition (4.2.10) of the a
k,N

’s, we obtain for any N Ø N
Á

sup
kØ0

‹
!

[a
k+1,N

, a
k,N

]
"

= sup
kØk

Á

‹
!

[a
k+1,N

, a
k,N

]
"

Æ (1 ≠ Á) sup
kØk

Á

‡
!

[a
k+1,N

, a
k,N

]
"

= (1 ≠ Á) 1
fiN

sup
kØk

Á

(j
–,k+1

≠ j
–,k

"

Æ (1 ≠ Á2) 1
N

.

The latter inequality implies that there exists an element of A
N

in each
(y(N)

i

, y(N)

i+1

) provided N is large enough, so that (4.4.54) follows from the
definition (4.4.52) of the u

i

’s, and moreover that all the u
i

’s are in co(Supp(‹)).

Note that (4.4.54) yields ‹(N) Æ ‡
N

, and thus ‹(N) œ E(R≠) for all N . Moreover,
by combining (4.4.54) with (4.4.51), we obtain the weak convergence of (‹(N))

N

towards ‹. As the result of the discretization step, we have shown the existence
of ”

0

> 0 and N
0

such that for all 0 < ” Æ ”
0

and N Ø N
0

I

1 1
N

N

ÿ

i=1

”(x
i

), ‹(N)

2

: x œ RN

+

,
Nmax

i=1

|x
i

≠ x(N)

i

| Æ ”

J

µ O. (4.4.55)
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Step 2. (Lower bound) We now prove (4.4.46) when (µ,‹ ) satisfies
Assumption 4.4.8. As a consequence of (4.4.55) we obtain for any 0 < ” Æ ”

0

Z
N

P
N

1

!

µ̂N , ‹̂N

"

œ O
2

Ø
⁄

)

xœRN

+ : max

i

|x
i

≠x

(N)
i

|Æ”

*

�2

N

(x) �2

N/2

!

u

(N)

"

�
N,N/2

!

x, u

(N)

"

N/2

Ÿ

i=1

|u(N)

i

|
N

Ÿ

i=1

e≠NV

N

(x

i

)dx
i

.

(4.4.56)

For a Borel measure ⁄ on R with compact support, introduce its logarithmic
potential

U⁄(x) =
⁄

log 1
|x ≠ u|⁄(du)

which is continuous on R \ Supp(⁄) and note that

�
N,N/2

!

x, u

(N)

"

=
N

Ÿ

i=1

exp
Ó

≠ N U‹

(N)
(x

i

)
Ô

. (4.4.57)

We also set for x œ R
+

W
N

(x) = V
N

(x) ≠ U‹

(N)
(x), (4.4.58)

W (x) = x ≠ 2
Ô

ax ≠ U‹(x) (4.4.59)

and obtain from (4.4.56)–(4.4.59)

Z
N

P
N

1

!

µ̂N , ‹̂N

"

œ O
2

Ø exp
Ó

≠ N2 max
xœco(Supp(µ))

|W
N

(x) ≠ W (x)|
Ô

�2

N/2

!

u

(N)

"

|a
0,N

|N/2 (4.4.60)

◊
⁄

)

xœRN

+ : max

i

|x
i

≠x

(N)
i

|Æ”

*

�2

N

(x)
N

Ÿ

i=1

e≠NW (x

i

)dx
i

.

By using the change of variables x
i

‘æ x
i

+ x(N)

i

for i = 1, . . . , N , and the fact
that |x(N)

i

≠ x(N)

j

+ x
i

≠ x
j

| Ø max
)

|x(N)

i

≠ x(N)

j

| , |x
i

≠ x
j

|
*

as soon as x
i

Ø x
j
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and x(N)

i

Ø x(N)

j

, we find

⁄

)

xœRN

+ : max

i

|x
i

≠x

(N)
i

|Æ”

*

�2

N

(x)
N

Ÿ

i=1

e≠NW (x

i

)dx
i

Ø
⁄

[0,”]

N

�2

N

!

x + x

(N)

"

N

Ÿ

i=1

e≠NW (x

i

+x

(N)
i

)dx
i

Ø
Ÿ

i+1<j

!

x(N)

j

≠ x(N)

i

"

2

N≠1

Ÿ

i=1

!

x(N)

i+1

≠ x(N)

i

"

N

Ÿ

i=1

e≠NW (x

(N)
i

) (4.4.61)

◊
⁄

)

xœ[0,”]

N

: x1<··· <x

N

*

N≠1

Ÿ

i=1

(x
i+1

≠ x
i

)
N

Ÿ

i=1

e≠N |W (x

i

+x

(N)
i

)≠W (x

(N)
i

)|dx
i

.

Since the x(N)

i

’s lie in the compact set co(Supp(µ)) and W is continuous there,
we obtain

lim
”æ0

lim sup
NæŒ

max
1ÆiÆN

max
xœ[0,”]

|W (x + x(N)

i

) ≠ W (x(N)

i

)| = 0 (4.4.62)

and also, using moreover (4.4.51),

lim
NæŒ

1
N

N

ÿ

i=1

W
!

x(N)

i

"

=
⁄

W (x)µ(dx). (4.4.63)

Using the change of variables u
1

= x
1

and u
i+1

= x
i+1

≠ x
i

for i = 1, . . . , N ≠ 1,
it follows

⁄

)

xœ[0,”]

N

: x1<··· <x

N

*

dx
1

N≠1

Ÿ

i=1

(x
i+1

≠ x
i

)dx
i+1

Ø
⁄

[0, ”/N ]

N

du
1

N

Ÿ

i=2

u
i

du
i

= 1
2N≠1

3

”

N

4

2N≠1

. (4.4.64)
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We thus obtain from (4.4.61)–(4.4.64)

lim inf
”æ0

lim inf
NæŒ

1
N2

log
⁄

)

xœRN

+ : max

i

|x
i

≠x

(N)
i

|Æ”

*

�2

N

(x)
N

Ÿ

i=1

e≠NW (x

i

)dx
i

Ø lim inf
NæŒ

1
N2

Q

a

ÿ

i+1<j

log
!

x(N)

j

≠ x(N)

i

"

2 +
N≠1

ÿ

i=1

log
!

x(N)

i+1

≠ x(N)

i

"

R

b (4.4.65)

≠
⁄

W (x)µ(dx).

Next, we have
lim

NæŒ
max

xœco(Supp(µ))

|W
N

(x) ≠ W (x)| = 0. (4.4.66)

Indeed, the asymptotic behavior (4.4.8) yields the uniform convergence of V
N

(x)
towards x ≠ 2

Ô
ax as N æ Œ on every compact subset of R

+

\ {0}, and in
particular on co(Supp(µ)). It is thus enough to show the uniform convergence
of U‹

(N) to U‹ on co(Supp(µ)) to obtain (4.4.66). For any x œ Supp(µ), the
map y ‘æ log |x ≠ y| is continuous and bounded on co(Supp(‹)), so that the
pointwise convergence of U‹

(N) to U‹ on co(Supp(µ)) follows from from the
weak convergence of ‹(N) to ‹. Since for all N the map U‹

(N) is continuous and
decreasing on the compact co(Supp(µ)), and that U‹ is moreover continuous
there, the pointwise convergence extends to the uniform convergence by Dini’s
theorem.

We thus obtain from (4.4.65)–(4.4.66) by taking the limit N æ Œ and then
” æ 0 in (4.4.60) that

lim inf
NæŒ

1
N2

log
Ó

Z
N

P
N

1

!

µ̂N , ‹̂N

"

œ O
2Ô

Ø lim inf
NæŒ

1
N2

Q

a

ÿ

i+1<j

log
!

x(N)

j

≠ x(N)

i

"

2 +
N≠1

ÿ

i=1

log
!

x(N)

i+1

≠ x(N)

i

"

R

b (4.4.67)

+ lim inf
NæŒ

1
N2

ÿ

i<j

log
!

u(N)

j

≠ u(N)

i

"

2 ≠
⁄

W (x)µ(dx).
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Now, note that because x ‘æ log(x) increases on R
+

the definition (4.4.47)–
(4.4.48) of the x(N)

i

’s yields

1
N2

ÿ

i+1<j

log
!

x(N)

j

≠ x(N)

i

"

2 + 1
N2

N≠1

ÿ

i=1

log
!

x(N)

i+1

≠ x(N)

i

"

= 2
ÿ

1ÆiÆjÆN≠1

log
!

x(N)

j+1

≠ x(N)

i

"

⁄⁄

[x

(N)
i

,x

(N)
i+1]◊[x

(N)
j

,x

(N)
j+1]

1

x<y

µ(dx)µ(dy)

Ø 2
⁄⁄

x

(N)
1 Æ x < y Æ x

(N)
N

log(y ≠ x)µ(dx)µ(dy) (4.4.68)

and then that

2 lim
NæŒ

⁄⁄

x

(N)
1 Æ x < y Æ x

(N)
N

log(y ≠ x)µ(dx)µ(dy)

=
⁄⁄

log |x ≠ y|µ(dx)µ(dy). (4.4.69)

The interlacing property (4.4.54) yields

u(N)

j

≠ u(N)

i

Ø y(N)

j≠1

≠ y(N)

i

for i + 1 < j,

and thus

ÿ

i<j

log
!

u(N)

j

≠ u(N)

i

"

2 Ø
N/2≠1

ÿ

i=1

log
!

u(N)

i+1

≠ u(N)

i

"

2 +
ÿ

i+1<j

log
!

y(N)

j≠1

≠ y(N)

i

"

2

.

(4.4.70)
Since

min
1ÆiÆN/2

!

u(N)

i+1

≠ u(N)

i

"

Ø inf
kØ0

!

a
k,N

≠ a
k+1,N

"

Ø j
–,0

2aN2

inf
kØ0

!

j
–,k+1

≠ j
–,k

"

,

we obtain from (4.4.38) and (4.4.70)

lim inf
NæŒ

1
N2

ÿ

i<j

log
!

u(N)

j

≠ u(N)

i

"

2 Ø lim inf
NæŒ

1
N2

ÿ

i+1<j

log
!

y(N)

j≠1

≠ y(N)

i

"

2

.

(4.4.71)
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Moreover, because for 1 Æ i Æ N/2 ≠ 1

y(N)

i+1

≠ y(N)

i

Ø 2| max(Supp(‹))|1/2

!

|y(N)

i

|1/2 ≠ |y(N)

i+1

|1/2

"

= fiÔ
a

| max(Supp(‹))|1/2 ‡
!

[y(N)

i

, y(N)

i+1

]
"

Ø fiÔ
a

| max(Supp(‹))|1/2 ‹
!

[y(N)

i

, y(N)

i+1

]
"

= fiÔ
aN

| max(Supp(‹))|1/2,

we obtain from (4.4.71)

lim inf
NæŒ

1
N2

ÿ

i<j

log
!

u(N)

j

≠ u(N)

i

"

2 Ø lim inf
NæŒ

1
N2

ÿ

i+2<j

log
!

y(N)

j≠1

≠ y(N)

i

"

2

.

(4.4.72)
Next, similarly than in (4.4.68)–(4.4.69), we obtain from the definition (4.4.49)–
(4.4.50) of the y(N)

i

’s that

lim inf
NæŒ

1
N2

ÿ

i+2<j

log
!

y(N)

j≠1

≠ y(N)

i

"

2

= 2 lim inf
NæŒ

ÿ

i+2<j

log
!

y(N)

j≠1

≠ y(N)

i

"

⁄⁄

[y

N

i

,y

(N)
i+1 ]◊[y

(N)
j≠2,y

(N)
j≠1]

1

u<v

‹(du)‹(dv)

Ø 2 lim inf
NæŒ

⁄⁄

y

(N)
1 Æx<yÆy

(N)
N/2≠1

log(y ≠ x)‹(dx)‹(dy)

=
⁄⁄

log |x ≠ y|‹(dx)‹(dy). (4.4.73)

From (4.4.67)–(4.4.69) and (4.4.72)–(4.4.73) it follows

lim inf
NæŒ

1
N2

log
Ó

Z
N

P
N

1

!

µ̂N , ‹̂N

"

œ O
2Ô

Ø ≠
I

⁄⁄

log 1
|x ≠ y|µ(dx)µ(dy) +

⁄

W (x)µ(dx) (4.4.74)

+
⁄⁄

log 1
|x ≠ y|‹(dx)‹(dy)

J

.
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Since both V and U‹ are bounded and continuous functions on the compact
Supp(µ), by (4.4.59)

⁄

W (x)µ(dx) =
⁄

1

x ≠ 2
Ô

ax
2

µ(dx) ≠
⁄

U‹(x)µ(dx)

=
⁄

1

x ≠ 2
Ô

ax
2

µ(dx) ≠
⁄⁄

log 1
|x ≠ y|µ(dx)‹(dy),

and thus

lim inf
NæŒ

1
N2

log
Ó

Z
N

P
N

1

!

µ̂N , ‹̂N

"

œ O
2Ô

Ø ≠
I

⁄⁄

log 1
|x ≠ y|µ(dx)µ(dy) ≠

⁄⁄

log 1
|x ≠ y|µ(dx)‹(dy) (4.4.75)

+
⁄⁄

log 1
|x ≠ y|‹(dx)‹(dy) +

⁄

1

x ≠ 2
Ô

ax
2

µ(dx)
J

.

Since by assumption the measures µ, ‹ have compact supports and Túµ, Tú‹
have finite logarithmic energies, then µ, ‹ also have finite logarithmic energies
and clearly

⁄

log(1 + x2)µ(dx) < +Œ,

⁄

log(1 + x2)‹(dx) < +Œ.

Thus, one can use the relation (3.2.13) and obtain that the right-hand side of
(4.4.75) equals J (µ,‹ ), see (4.3.8), which proves (4.4.46).

Step 3. (Approximation) First note that (4.4.46) trivially holds as soon as
J (µ,‹ ) = +Œ. It is thus enough to show (4.4.46) when both Túµ and Tú‹ have
finite logarithmic energy, and one can moreover assume that ‹ Æ ‡. For such
(µ,‹ ), we now construct a sequence (µ

k

, ‹
k

)
k

of M
1

(R
+

) ◊ E(R≠) where each
(µ

k

, ‹
k

) satisfies Assumption 4.4.8, such that we have the weak convergences

lim
kæŒ

µ
k

= µ, lim
kæŒ

‹
k

= ‹,

and which moreover satisfies

lim
kæŒ

J (µ
k

, ‹
k

) = J (µ,‹ ). (4.4.76)
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This, combined with the two first steps of the proof, shows that (4.4.46) actually
holds for all (µ,‹ ) œ O, and thus complete the proof of Proposition 4.4.7.

For any k large enough, let µ
k

œ M
1

(R
+

) be the normalized restriction of µ to
[k≠1, k], so that Supp(µ

k

) µ R
+

\ {0} is compact. The monotone convergence
theorem yields that (µ

k

)
k

converges to µ as k æ Œ. To approximate ‹, we have
to stay in the class of constrained measures M‡

1/2

(R≠), and thus to proceed a
bit more carefully. To this aim, choose two sequences (a

k

)
k

and (b
k

)
k

satisfying
a

k

< b
k

< 0 and

1) a
k

decreases to inf(Supp(‹)) as k æ Œ,

2) b
k

increases to max(Supp(‹)) as k æ Œ,

3) for any k large enough,

‹
!

[a
k

, b
k

]
"

Ø (1 ≠ k≠1). (4.4.77)

Since ‹ Æ ‡, the Radon-Nikodym theorem yields f œ L1(R≠) such that

‹(dx) = f(x)dx, f(x) Æ
Ô

a

fi
|x|≠1/2, x œ R≠. (4.4.78)

We then set the probability measure

‹
k

(dx) =
3

(1 ≠ k≠1)4

‹([a
k

, b
k

])

4

f
!

(1 ≠ k≠1)4x
"

1

[a

k

,b

k

]

!

(1 ≠ k≠1)4x
"

dx, (4.4.79)

whose support Supp(‹
k

) µ R≠ \ {0} is compact. (‹
k

)
k

is easily seen to converge
to ‹ as k æ Œ using monotone convergence. Moreover, it follows from (4.4.77)–
(4.4.78) and the definition (4.4.79) that

‹
k

Æ (1 ≠ k≠1)‡.

The fact that Túµ
k

and Tú‹
k

have finite logarithmic energy for k large enough,
and thus that (µ

k

, ‹
k

) satisfies Assumption 4.4.8, will be a consequence of
(4.4.81)–(4.4.82), see below.

We now prove that the sequence (µ
k

, ‹
k

)
k

satisfies (4.4.76). Recall that
J (µ,‹ ) = J(Túµ, Tú‹) where J is as in (4.4.27), namely

J (µ
k

, ‹
k

) =
⁄⁄

log 1
|z ≠ w|Túµ

k

(dz)Túµ
k

(dw) (4.4.80)

+
⁄⁄

1

2V(z) + log |z ≠ ›| ≠ log |›|
2

Túµ
k

(dz)Tú‹
k

(d›)

+
⁄⁄

log 1
|› ≠ ’|Tú‹

k

(d›)Tú‹
k

(d’) +
⁄

log |›| Tú‹
k

(d›).
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First, since S is compact, we obtain by monotone convergence

lim
kæŒ

⁄⁄

log 1
|z ≠ w|Túµ

k

(dz)Túµ
k

(dw)

= lim
kæŒ

⁄

k

k

≠1

⁄

k

k

≠1
log 1

|T (x) ≠ T (y)|µ(dx)µ(dy)

=
⁄⁄

log 1
|T (x) ≠ T (y)|µ(dx)µ(dy)

=
⁄⁄

log 1
|z ≠ w|Túµ(dz)Túµ(dw). (4.4.81)

Similarly, but using moreover the metric relation (3.2.11), the change of variables
u ‘æ u/(1 ≠ k≠1)4 and the inequality |u ≠ v| Æ

Ô
1 + u2

Ô
1 + v2,

lim
kæŒ

⁄⁄

log 1
|› ≠ ’|Tú‹

k

(d›)Tú‹
k

(d’)

= lim
kæŒ

⁄⁄

log
Ô

1 + u2

Ô
1 + v2

|u ≠ v| ‹
k

(du)‹
k
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= lim
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⁄

b

k

a

k

⁄

b

k

a

k

log


(1 ≠ k≠1)8 + u2



(1 ≠ k≠1)8 + v2

|u ≠ v| ‹(du)‹(dv)

=
⁄⁄

log
Ô

1 + u2

Ô
1 + v2

|u ≠ v| ‹(du)‹(dv)

=
⁄⁄

log 1
|› ≠ ’|Tú‹(d›)Tú‹(d’). (4.4.82)
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The same arguments moreover combined with the inequality |x ≠ u| Ø |u| for
(x, u) œ R

+

◊ R≠ yield

lim
kæŒ

⁄⁄

1

2V(z) + log |z ≠ ›| ≠ log |›|
2

Túµ
k

(dz)Tú‹
k

(d›)

= lim
kæŒ

⁄⁄

Ó

2
!

x ≠ 2
Ô

ax ≠ log(1 + x2)
"

+ log |x ≠ u| ≠ log |u|
Ô

µ
k

(dx)‹
k

(du)

= lim
kæŒ

⁄

k

k

≠1

⁄

b

k

a

k

Ó

2
!

x ≠ 2
Ô

ax ≠ log(1 + x2)
"

+ log |(1 ≠ k≠1)4x ≠ u| ≠ log |u|
Ô

µ(dx)‹(du)

=
⁄⁄

Ó

2
!

x ≠ 2
Ô

ax ≠ log(1 + x2)
"

+ log |x ≠ u| ≠ log |u|
Ô

µ(dx)‹(du)

=
⁄⁄

1

2V(z) + log |z ≠ ›| ≠ log |›|
2

Túµ(dz)Tú‹(d›) (4.4.83)

After that, the continuity of Tú on E(S≠) and Lemma 4.4.4 provide

lim
kæŒ

⁄

log |›| Tú‹
k

(d›) =
⁄

log |›| Tú‹(d›). (4.4.84)

Finally, (4.4.76) follows from (4.4.80)–(4.4.84), which completes the proof of
Proposition 4.4.7.

4.4.3 Proof of Theorem 4.3.4 (c), (d)

We are now in position the prove Theorem 4.3.4 (c), (d). The following proof
follows closely Section 2.2.3.

Proof of Theorem 4.3.4 (c), (d). It is enough to show that for any closed set
F µ M

1

(R
+

) ◊ E(R≠),

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
N

1

(µ̂N , ‹̂N ) œ F
2Ô

Æ ≠ inf
(µ,‹)œF

J (µ,‹ ), (4.4.85)

and for any open set O µ M
1

(R
+

) ◊ E(R≠),

lim inf
NæŒ

1
N2

log
Ó

Z
N

P
N

1

(µ̂N , ‹̂N ) œ O
2Ô

Ø ≠ inf
(µ,‹)œO

J (µ,‹ ). (4.4.86)
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Indeed, by taking F = O = M
1

(R
+

) ◊ E(R≠) in (4.4.85) and (4.4.86), one
obtains

lim
NæŒ

1
N2

log Z
N

= ≠ inf
(µ,‹)œM1(R+)◊E(R≠)

J (µ,‹ ) = ≠J (µú, ‹ú),

the latter quantity being finite.

Since (4.4.86) has been established in Proposition 4.4.7, we just have to show
(4.4.85). We note for convenience TúB =

)

(Túµ, Tú‹) : (µ,‹ ) œ B
*

when
B µ M

1

(R
+

) ◊ E(R≠). For any closed set F µ M
1

(R
+

) ◊ E(R≠) we have

P
N

1

(µ̂N , ‹̂N ) œ F
2

Æ P
N

1

(Túµ̂N , Tú‹̂N ) œ clo(TúF)
2

, (4.4.87)

where clo(TúF) stands for the closure of TúF in M
1

(S
+

) ◊ E(S≠). Then, since
M

1

(S
+

) ◊ E(S≠) is compact so is clo(TúF
"

and, by extracting a finite covering
of clo(TúF) from an appropriate covering by balls in a similar fashion than in
Section 2.2.3, we obtain from Proposition 4.4.1 that

lim sup
NæŒ

1
N2

log
Ó

Z
N

P
N

1

(Túµ̂N , Tú‹̂N ) œ clo(TúF)
2Ô

Æ ≠ inf
(µ,‹)œ clo(TúF)

J(µ,‹ ).

(4.4.88)
If (µ,‹ ) œ clo(TúF) is such that µ({(0, 1)}) = 0, then (µ,‹ ) œ TúF .
Indeed, let

!

(Tú÷
N

, Tú⁄
N

)
"

N

be a sequence in TúF with limit (µ,‹ ) satisfying
µ({(0, 1)}) = 0. Since Tú is an homeomorphism from M

1

(R
+

) (resp. E(R≠))
to

)

µ œ M
1

(S
+

) : µ({(0, 1)}) = 0
*

(resp. E(S≠)), this provides (÷,⁄ ) œ
M

1

(R
+

) ◊ E(R≠) such that (µ,‹ ) = (Tú÷, Tú⁄) and moreover the convergence
of

!

(÷
N

, ⁄
N

)
"

N

towards (÷,⁄ ). Since F is closed necessarily (µ,‹ ) œ TúF .

As a consequence, because J(µ,‹ ) = +Œ as soon as µ({(0, 1)}) > 0, we obtain
from the relation (4.4.2)

inf
µœ clo(TúF)

J(µ,‹ ) = inf
µœTúF

J(µ,‹ ) = inf
µœF

J (µ,‹ ). (4.4.89)

Finally, (4.4.85) follows from (4.4.87)–(4.4.89). The proof of Theorem 4.3.4 is
therefore complete.



Chapter 5

Zeros of average chacteristic
polynomials

Based on the work [68], in this chapter we investigate the average characteristic
polynomial E

#

r

N

i=1

(z≠x
i

)
$

where the x
i

’s are real random variables which form
a determinantal point process associated to a bounded projection operator. For
a subclass of point processes, which contains Orthogonal Polynomial Ensembles
and Multiple Orthogonal Polynomial Ensembles, we provide a su�cient condition
for its limiting zero distribution to match with the limiting distribution of the
random variables, almost surely, as N goes to infinity. Moreover, such a
condition turns out to be su�cient to strengthen the mean convergence to the
almost sure one for the moments of the empirical measure associated to the
determinantal point process, a fact of independent interest. As an application,
we obtain from a theorem of Kuijlaars and Van Assche a unified way to describe
the almost sure convergence for classical Orthogonal Polynomial Ensembles. As
another application, we obtain from Voiculescu’s theorems the limiting zero
distribution for multiple Hermite and multiple Laguerre polynomials, expressed
in terms of free convolutions of classical distributions with atomic measures.
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5.1 Introduction and statement of the results

5.1.1 Introduction

For any N Ø 1, let x
1

, . . . , x
N

be a collection of real random variables
which forms a determinantal point process associated with a rank N bounded
projection operator. This means there exists for each N a Borel measure µ

N

on R and a µ
N

¢ µ
N

-square integrable function K
N

: R ◊ R æ R such that the
joint probability distribution on RN of x

1

, . . . , x
N

reads

1
N ! det

Ë

K
N

(x
i

, x
j

)
È

N

i,j=1

N

Ÿ

i=1

µ
N

(dx
i

), (5.1.1)

together with the fact that the operator acting on L2(µ
N

) by

fi
N

: f(x) ‘æ
⁄

K
N

(x, y)f(y)µ
N

(dy) (5.1.2)

is a (non-necessarily orthogonal) projection on an N -dimensional subspace of
L2(µ

N

). Strictly speaking, this is not a standard way to introduce determinantal
point processes, but it is easy to obtain from the standard references on the
subject [2, 73, 75, 97] that a determinantal point process (in the usual sense)
with a kernel satisfying the latter conditions induces such random variables, and
vice versa. To these random variables, we associate their average characteristic
polynomial,

‰
N

(z) = E
C

N

Ÿ

i=1

(z ≠ x
i

)
D

, z œ C, (5.1.3)

where the expectation E refers to (5.1.1), and we ask the following question:
What is a su�cient condition so that the asymptotic distribution of the zeros
of ‰

N

and the limiting distribution of the random variables x
i

’s coincide as
N æ Œ ? More precisely, if one denotes by z

1

, . . . , z
N

the (non-necessarily real
nor distinct) zeros of ‰

N

and introduces the zero counting probability measure

‹
N

= 1
N

N

ÿ

i=1

”
z

i

, (5.1.4)

the purpose of this chapter is to investigate the relation between the weak
convergence of ‹

N

and the almost sure weak convergence of the empirical
measure of the determinantal point process, namely

µ̂N = 1
N

N

ÿ

i=1

”
x

i

. (5.1.5)
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Let us first observe that if x
1

, . . . , x
N

are i.i.d real random variables, say, with
law µ

N

and (finite) mean m
N

, then this relation is trivial. Indeed, note that
‹

N

= ”
m

N

since the Vieta’s formulas yield ‰
N

(z) = (z ≠ m
N

)N . Thus ‹
N

and
almost surely µ̂N converge towards the same limiting probability distribution
as N æ Œ if and only if m

N

converges to some real number m and µ̂N almost
surely converges weakly towards ”

m

. If µ
N

has no atoms, then the x
i

’s form
a determinantal point process, with kernel K

N

(x, y) = ”
xy

(the Kronecker’s
delta) and reference measure µ

N

, that is associated to the trivial projection on
the 0-dimensional subspace of L2(µ

N

). We emphasize this trivial case does not
satisfy our hypotheses and will not be further discussed.

The situation is much more interesting in the case of non-trivial determinantal
point processes. It is for example known that the eigenvalues of an N◊N random
matrix drawn from the Gaussian Unitary Ensemble (GUE) is a determinantal
point process, and that ‰

N

is the N -th monic (i.e. with leading coe�cient one)
Hermite polynomial. After an appropriate rescaling, the zero distribution ‹

N

converges weakly towards the semi-circle distribution as N æ Œ, and so is
almost surely the spectral measure µ̂N , although the numerous proofs of these
two facts seem quite independent.

In this chapter we provide a su�cient condition so that, as N æ Œ, the
convergence of the moments of ‹

N

is equivalent to the almost sure convergence
of the moments of µ̂N for a large class of determinantal point processes, see
Theorem 5.1.3. We will actually show that condition implies the simultaneous
moment convergence of ‹

N

and of the mean distribution E
#

µ̂N

$

, defined by
E

#

µ̂N

$

(A) = E
#

µ̂N (A)
$

for any Borel set A µ R, and moreover forces the
moments of µ̂N to concentrate around their means at a rate N1+‘, see Theorem
5.1.8. At this level of generality, the latter concentration result is new and
may be of independent interest. To do so, we develop a moment method for
determinantal point processes, involving weighted lattice paths, see Section
5.2.2.

Besides the theoretical aspect, and as we shall illustrate in Section 5.3 and 5.4,
such a statement provides two useful practical consequences. On the one hand,
the almost sure convergence investigation for such determinantal point processes
is thus reducible to the asymptotic analysis for the zeros of polynomials, for
which analytic tools have been developed in special cases. On the other hand,
one can use the probabilistic background of the random models to obtain a
description of the limiting zero distribution of average characteristic polynomials,
which in particular cases happen to be special functions of interest in other
areas of mathematics.

Before stating our results, let us first introduce and discuss what is already
known for two important classes of point processes that will be covered by our
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results.

5.1.2 Orthogonal Polynomial Ensembles

Examples of Orthogonal Polynomial (OP) Ensembles are provided by eigenvalue
distributions of unitary invariant Hermitian random matrices, including the
GUE, Wishart and Jacobi matrix models; they also arise from non-intersecting
di�usion processes starting and ending at the origin. In the latter examples, µ

N

has a density with respect to the Lebesgue measure. They moreover play a key
role in the resolution of several problems from asymptotic combinatorics, such
as the problem of the longest increasing subsequence of a random permutation,
the shape distribution of large Young diagrams, the random tilings of an Aztec
diamond (resp. hexagone) with dominos (resp. rhombuses). This time µ

N

is a discrete measure. For further information, see [79, 76, 77] and references
therein.

The joint distribution of real random variables x
1

, . . . , x
N

drawn from an OP
Ensemble can be written as

1
Z

N

Ÿ

1Æi<jÆN

-

-x
j

≠ x
i

-

-

2

N

Ÿ

i=1

µ
N

(dx
i

),

where Z
N

is a positive normalization constant and µ
N

is a measure on R
having all its moments. One can rewrite that distribution in the form (5.1.1)
by introducing the symmetric kernel

K
N

(x, y) =
N≠1

ÿ

k=0

P
k,N

(x)P
k,N

(y), (5.1.6)

where P
k,N

is the k-th orthonormal polynomial for µ
N

. This is the kernel
associated with the orthogonal projection onto the subspace of L2(µ

N

) of
polynomials having degree at most N ≠ 1.

An important observation, provided by a classical integral representation for
OPs attributed to Heine, see e.g. [38, Proposition 3.8], is that the average
characteristic polynomial ‰

N

associated to an OP Ensemble equals the N -th
monic OP with respect to µ

N

. Since OPs are known to have real zeros, ‹
N

is
thus supported on R.

As we shall recall in Section 5.2, the mean distribution E
#

µ̂N

$

of a determinantal
point process equals 1

N

K
N

(x, x)µ
N

(dx). Quite remarkably, it turns out that
when K

N

has the form (5.1.6), the convergence of the mean distribution has been
investigated in the approximation theory literature, where it is referred as the
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weak convergence of the Christo�el-Darboux kernel. Using the determinantal
point processes terminology, Nevai [90] and Van Assche [98] actually proved that
the simultaneous weak convergence of E

#

µ̂N

$

and ‹
N

holds for OP Ensembles
as soon as a growth condition on the recurrence coe�cients of the P

k,N

’s is
satisfied (a definition for the recurrence coe�cients of OPs is provided in Section
5.3). Nevertheless, their proofs involve the Gaussian quadrature associated to
OPs, an argument which does not seem to be generalizable to more general
determinantal point processes. More recently, and in the case where the supports
of the measures µ

N

are uniformly bounded, Simon [95] proved the simultaneous
moment convergence of E

#

µ̂N

$

and ‹
N

by means of elegant operator-theoretic
arguments, which have been of inspiration for this work.

Concerning the almost sure convergence, after ordering the x
i

’s and z
i

’s,
Dette and Imhof [45] were able to obtain in the case of the GUE, that is
the OP Ensemble associated to µ

N

(dx) = e≠Nx

2
/2dx, an upper bound for

P(maxN

i=1

|x
i

≠ z
i

| > Á), from which the almost sure simultaneous convergence
of µ̂N and ‹

N

follows. They established that the same picture holds for
the Wishart matrices, that is for µ

N

(dx) = xN–e≠Nx

1

[0,+Œ)

(x)dx where
– Ø 0. Dette and Nagel [46] also worked out the Jacobi case, namely
µ

N

(dx) = (1 ≠ x)N–(1 + x)N—

1

[≠1,1]

(x)dx, where –, —> ≠1. Their results
moreover cover the associated —-Ensembles. In both works, the proofs strongly
use the explicit tridiagonal matrix representation for these random matrix
models, which is unfortunately not available for more general unitary invariant
Hermitian random matrix models nor determinantal point processes.

Let us now describe a larger class of determinantal point process that will be
also covered by our results.

5.1.3 Multiple Orthogonal Polynomial Ensembles

Firstly introduced by Bleher and Kuijlaars [21] to describe the eigenvalue
distribution of an additive perturbation of the GUE, breaking the unitary
invariance, Multiple Orthogonal Polynomial (MOP) Ensembles show up in
several perturbed matrix models [19, 22, 44], in multi-matrix models [84, 52, 53]
as well, and in non-intersecting di�usion processes with arbitrary prescribed
starting points and ending at the origin [85]. For general presentations, see
[82, 83] and the references therein.
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The joint distribution of real random variables x
1

, . . . , x
N

distributed according
to a MOP Ensemble has the following form

1
Zn,N

Ÿ

1Æi<jÆN

!

x
j

≠ x
i

"

det

S

W

W

W

W

U

Ó

xi≠1

j

w
1,N

(x
j

)
Ô

n1, N

i,j=1

...
Ó

xi≠1

j

w
r,N

(x
j

)
Ô

n

r

, N

i,j=1

T

X

X

X

X

V

N

Ÿ

i=1

µ
N

(dx
i

), (5.1.7)

where µ
N

is a measure on R having all its moments, Zn,N

is a normalization
constant and the weights w

1,N

, . . . , w
r,N

œ L2(µ
N

) are such that (5.1.7) is
indeed a probability distribution. The multi-index n = (n

1

, . . . , n
r

) œ Nr

depends on N and satisfies
q

r

i=1

n
i

= N , where throughout this paper we
denote N = {0, 1, 2, . . .}. Note that we recover OP Ensembles by taking r = 1.

It turns out, see Section 5.4.5, that there exists a sequence (P
k,N

)
kœN of monic

polynomials with deg P
k,N

= k, and a sequence (Q
k,N

)
kœN of (non-necessarily

polynomial) L2(µ
N

)-functions which are biorthogonal, that is
⁄

P
k,N

(x)Q
m,N

(x)µ
N

(dx) = ”
km

, k, m œ N, (5.1.8)

such that we can rewrite (5.1.7) in the form (5.1.1) with the kernel

K
N

(x, y) =
N≠1

ÿ

k=0

P
k,N

(x)Q
k,N

(y). (5.1.9)

Kuijlaars [82, Proposition 2.2] established that the average characteristic
polynomial ‰

N

associated to (5.1.7) is the n-th (type II) MOP associated
with the weights w

i,N

, 1 Æ i Æ r, and the measure µ
N

, see Definition 5.4.1.

The simultaneous convergence of the empirical measure µ̂N and the zero
distribution ‹

N

of the associated MOPs is expected for several MOP Ensembles.
It is for example the case for non-intersecting squared Bessel paths with positive
starting point and ending at the origin. Indeed, for this MOP Ensemble E

#

µ̂N

$

converges towards a limiting measure described in terms of the solution of a
vector equilibrium problem, see [85, Theorem 2.4 and Appendix], and the limit
of ‹

N

benefits from the same description [86]. The same situation holds in the
two-matrix model with quartic/quadratic potentials, by combining the works
[52] and [50]. The non-intersecting squared Bessel paths model turns out to
be equivalent to the non-centered complex Wishart matrix model presented in
Chapter 4, so that the almost sure convergence of µ̂N towards the solution of
the vector equilibrium problem follows from the large deviation principle we
established. For the two matrix model, to prove a large deviation upper bound
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involving a rate function associated to a vector equilibrium problem is still an
open problem, see [54] for further discussion. For these two determinantal point
processes, the almost sure simultaneous convergence of µ̂N and ‹

N

will be a
consequence of what follows, see Remark 5.1.9.

It is now time to describe the general setting for which our results hold.

5.1.4 Statement of the results

Consider a collection of real random variables x
1

, . . . , x
N

which forms a
determinantal point process associated with a rank N bounded projection
operator fi

N

on L2(µ
N

), with kernel K
N

. Under these only assumptions, K
N

is defined µ
N

¢ µ
N

-almost everywhere, which is not su�cient to characterize
a determinantal point process, i.e. (5.1.1) is not well defined. We then follow
[73, Remark 5] and generalize their approach in the following way. The spectral
decomposition for compact operators [96, Theorem I.4] provides two biorthogonal
families (P

k,N

)N≠1

k=0

and (Q
k,N

)N≠1

k=0

of L2(µ
N

), namely which satisfy
⁄

P
k,N

(x)Q
m,N

(x)µ
N

(dx) = ”
km

, 0 Æ k, m Æ N ≠ 1, (5.1.10)

such that the following equality holds in L2(µ
N

¢ µ
N

)

K
N

(x, y) =
N≠1

ÿ

k=0

P
k,N

(x)Q
k,N

(y). (5.1.11)

We take the right hand-side of (5.1.11) as our definition for K
N

. Note that
although the P

k,N

’s and Q
k,N

’s are still only defined µ
N

-almost everywhere,
the probability distribution (5.1.1) now reads

1
N ! det

Ë

P
k≠1,N

(x
i

)
È

N

i,k=1

det
Ë

Q
k≠1,N

(x
i

)
È

N

i,k=1

N

Ÿ

i=1

µ
N

(dx
i

) (5.1.12)

and is properly defined. Thus, our class of determinantal point processes
matches with the Biorthogonal Ensembles introduced by Borodin [25], where
we emphasize that the P

k,N

’s and the Q
k,N

’s are L2(µ
N

)-functions.

Now, given a sequence of such determinantal point processes indexed by N (the
number of particles),

I

1

P
k,N

2

N≠1

k=0

,
1

Q
k,N

2

N≠1

k=0

, µ
N

J

NØ1

, (5.1.13)

we assume moreover the following structural assumption to hold.
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Assumption 5.1.1.

(a) For each N , the two families (P
k,N

)N≠1

k=0

and (Q
k,N

)N≠1

k=0

can be completed
in two infinite biorthogonal families

!

P
k,N

"

kœN and
!

Q
k,N

"

kœN of L2(µ
N

),
that is which satisfy

⁄

P
k,N

(x)Q
m,N

(x)µ
N

(dx) = ”
km

, k, m œ N. (5.1.14)

(b) There exists a sequence (q
N

)
NØ1

of integers having sub-power growth,
that is for every n Ø 1,

q
N

= o(N1/n) as N æ Œ, (5.1.15)

such that for all k œ N,

xP
k,N

(x) œ Span
1

P
m,N

(x)
2

k+q
N

m=0

.

Remark 5.1.2. OP and MOP Ensembles both satisfy Assumption 5.1.1 (with
q

N

= 1 for all N Ø 1). A class of determinantal point processes which satisfy
this assumption but for which q

N

may grow is provided by mixed-type MOP
Ensembles, originally introduced by Daems and Kuijlaars to describe non-
intersecting Brownian bridges with arbitrary starting and ending points [37].
Delvaux showed that the average characteristic polynomial ‰

N

is in this case a
mixture of MOPs [40].

Let P be the probability measure associated to the product probability space
o

N

(RN ,P
N

), where (RN ,P
N

) is the probability space induced by (5.1.12).
The central theorem of this chapter is the following.

Theorem 5.1.3. Assume there exists Á > 0 such that for every n Ø 1,

max
k,m œN : | k

N

≠1|Æ Á, | m

N

≠1|Æ Á

-

-

-

-

⁄

xP
k,N

(x)Q
m,N

(x)µ
N

(dx)
-

-

-

-

= o(N1/n) (5.1.16)

as N æ Œ. Then, for all ¸ œ N,

lim
NæŒ

-

-

-

-

⁄

x¸µ̂N (dx) ≠
⁄

x¸‹
N

(dx)
-

-

-

-

= 0, P-almost surely. (5.1.17)

In practice, the sub-power growth condition (5.1.16) may be interpreted as the
condition that a strong enough normalization for the x

i

’s has been performed.
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Remark 5.1.4. Assumption 5.1.1 (a) and (b) provide together for each N the
unique decomposition

xP
k,N

(x) =
k+q

N

ÿ

m=0

ÈxP
k,N

, Q
m,N

Í
L

2
(µ

N

)

P
m,N

(x), k œ N. (5.1.18)

Thus (5.1.16) is a growth condition for the coe�cients lying in a specific window
of the infinite matrix (i.e. operator on ¸2(N)) associated to the operator
f(x) ‘æ xf(x) acting on Span(P

k,N

)
kœN.

As announced in the introduction, let us now provide more precise statements
concerning the concrete uses of Theorem 5.1.3. Having in mind that probability
measures on R with compact support are characterized by their moments, the
following consequence of Theorem 5.1.3 may be of use to obtain almost sure
convergence results.

Corollary 5.1.5. Under the assumption of Theorem 5.1.3, if there exists a
probability measure µú on R characterized by its moments such that for all
¸ œ N,

lim
NæŒ

⁄

x¸‹
N

(dx) =
⁄

x¸µú(dx),

then P-almost surely µ̂N converges weakly towards µú as N æ Œ.

As an example of application, we will obtain from a result of Kuijlaars and Van
Assche a unified way to describe the almost sure convergence of classical OP
Ensembles in Section 5.3, see Theorem 5.3.1.

Similarly, when one is interested in the limiting zero distribution of ‰
N

, the
following corollary will be of help.

Corollary 5.1.6. Under the assumption of Theorem 5.1.3, if

(a) for all N large enough ‰
N

has real zeros,

(b) there exists a probability measure µú on R characterized by its moments
such that for all ¸ œ N,

lim
NæŒ

E
5

⁄

x¸µ̂N (dx)
6

=
⁄

x¸µú(dx), (5.1.19)

then ‹
N

converges weakly towards µú as N æ Œ.
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As an example of application, we will obtain in Section 5.4 a description for the
limiting zero distribution of multiple Hermite and multiple Laguerre polynomials,
see Theorems 5.4.5 and 5.4.6. At the best knowledge of the author, this is the
first time that a description of these zero limiting distributions is provided in
such a level of generality.

Remark 5.1.7. Although it is not hard to see from our proofs that Theorem
5.1.3 continues to hold for determinantal point processes on C (with the
introduction of complex conjugations where needed), Corollaries 5.1.5 and
5.1.6 are not true in the complex setting. Indeed, consider the eigenvalues of an
N ◊ N unitary matrix distributed according to the Haar measure, which are
known to form an OP Ensemble on the unit circle with respect to its uniform
measure. We have ‰

N

(z) = zN , and thus ‹
N

= ”
0

for all N , but the spectral
measure µ̂N is known to converge towards the uniform distribution on the unit
circle as N æ Œ.

On the road to establish Theorem 5.1.3, we prove the following inequality which
basically allows to extend the mean convergence of the moments of µ̂N to the
almost sure one.

Theorem 5.1.8. Under the assumptions of Theorem 5.1.3, for every 0 < – < 1
and any ¸ œ N, there exists C

–,¸

independent of N such that for all ” > 0,

P
A

-

-

-

-

⁄

x¸µ̂N (dx) ≠ E
5

⁄

x¸µ̂N (dx)
6

-

-

-

-

> ”

B

Æ C
–,¸

”2N1+–

. (5.1.20)

If moreover q
N

and the left-hand side of (5.1.16) are bounded (seen as sequences
of the parameter N), then (5.1.20) also holds for – = 1.

Remark 5.1.9. Having in mind real OP and MOP Ensembles, let us stress
that our results combine nicely with a Deift-Zhou steepest descent analysis.
Indeed, it is known for such ensembles that one can represent K

N

in terms of
the solution of a Riemann-Hilbert problem, see [38] (resp. [82]) for OP (resp.
MOP) Ensembles. This, in principle, allows to use the Deift-Zhou steepest
descent method, which yields a precise asymptotic description of K

N

, and
related quantities. In particular, the ÈxP

k,N

, Q
m,N

Í
L

2
(µ

N

)

’s, which turn out
to be the recurrence coe�cients of OPs and MOPs, see Sections 5.3 and 5.4,
can be expressed in terms of the solution of the Riemann-Hilbert problem (see
[38, (3.31)], resp. [102, Section 5]) and a control of their growth would follow
from that steepest descent analysis. Such an asymptotic analysis also typically
provides the locally uniform convergence and tail estimates for K

N

as N æ Œ,
from which would follow (5.1.19), and where the limiting measure µú has in
general compact support. In most cases, the zeros of ‰

N

are real; this is always
true for OPs and also for important subclasses of MOPs, like Angelesco or
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AT systems. Thus, if one assumes the latter to be true, the combination of a
successful Deift-Zhou steepest descent analysis together with Corollary 5.1.6 and
Theorem 5.1.8 would provide the almost sure weak convergence of the empirical
measure µ̂N , and moreover the weak convergence of the zero distribution ‹

N

of
the (M)OPs towards µú, without extra e�ort. For example, the determinantal
point processes associated to the non-intersecting squared Bessel paths and the
two-matrix model with quartic/quadratic potential discussed in Section 5.1.3
both satisfy the latter; the asymptotics of the recurrence coe�cients are actually
explicitly described in [86, (1.11)] and [50, Theorem 5.2] respectively. An other
example of MOP Ensemble where the recurrence coe�cients are explicit is
provided by [14], in relation with the six-vertex model.

The rest of this chapter is structured as follows. In Section 5.2, we establish
Theorems 5.1.3 and 5.1.8. In Section 5.3, by combining Corollary 5.1.5 and a
result concerning the zero convergence of OPs obtained by Kuijlaars and Van
Assche, we provide a unified description for the almost sure convergence of
classical OP Ensembles. In Section 5.4, after a quick introduction to MOPs, we
use Corollary 5.1.6 and Voiculescu’s theorems in order to identify the limiting
zero distribution of the multiple Hermite and multiple Laguerre polynomials in
terms of free convolutions, and moreover derive algebraic equations for their
Cauchy-Stieltjes transform.

5.2 Proof of the main theorems

In a first step to establish Theorems 5.1.3 and 5.1.8, we express all the quantities
of interest in terms of traces of appropriate operators.

5.2.1 Step 1 : Tracial representations

Consider a determinantal point process associated to the rank N bounded
projector fi

N

acting on L2(µ
N

) with kernel K
N

given by (5.1.11), so that

Im(fi
N

) = Span
1

P
k,N

2

N≠1

k=0

, Ker(fi
N

)‹ = Span
1

Q
k,N

2

N≠1

k=0

.
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The usual definition of a determinantal point process, see e.g. [75], provides for
any n Ø 1 and any Borel function f : Rn æ R the identity

E
C

ÿ

i1 ”= ··· ” = i

n

f(x
i1 , . . . , x

i

n

)
D

=
⁄

f(x
1

, . . . , x
n

) det
Ë

K
N

(x
i

, x
j

)
È

n

i,j=1

n

Ÿ

i=1

µ
N

(dx
i

), (5.2.1)

where the summation concerns all pairwise distinct indices taken from
{1, . . . , N}.

Let M be the operator acting on L2(µ
N

) by

Mf(x) = xf(x). (5.2.2)

Then the following holds.

Lemma 5.2.1. For any ¸ œ N,

E
5

⁄

x¸µ̂N (dx)
6

= 1
N

Tr
!

fi
N

M ¸fi
N

"

.

Proof. By using (5.2.1) with n = 1, (5.1.11) and the biorthogonality relations
(5.1.10), we obtain

E
C

N

ÿ

i=1

x¸

i

D

=
N≠1

ÿ

k=0

⁄

x¸P
k,N

(x)Q
k,N

(x)µ
N

(dx)

=
N≠1

ÿ

k=0

È(fi
N

M ¸fi
N

)P
k,N

, Q
k,N

Í
L

2
(µ

N

)

= Tr
!

fi
N

M ¸fi
N

"

.

We also represent the variance of the moments in a similar fashion.

Lemma 5.2.2. For any ¸ œ N,

Var

5

⁄

x¸µ̂N (dx)
6

= 1
N2

1

Tr
!

fi
N

M2¸fi
N

"

≠ Tr
!

fi
N

M ¸fi
N

M ¸fi
N

"

2

.
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Proof. We write

Var

C

N

ÿ

i=1

x¸

i

D

= E
C

N

ÿ

i=1

x2¸

i

D

+ E
C

ÿ

i ”= j

x¸

i

x¸

j

D

≠
A

E
C

N

ÿ

i=1

x¸

i

DB

2

in order to obtain, thanks to (5.2.1) with n = 2 and Lemma 5.2.1,

Var

C

N

ÿ

i=1

x¸

i

D

= Tr
!

fi
N

M2¸fi
N

"

≠
⁄⁄

x¸y¸K
N

(x, y)K
N

(y, x)µ
N

(dx)µ
N

(dy).

Finally, observe that
⁄⁄

x¸y¸K
N

(x, y)K
N

(y, x)µ
N

(dx)µ
N

(dy)

=
N≠1

ÿ

k=0

⁄

x¸

3

⁄

K
N

(x, y)y¸P
k,N

(y)µ
N

(dy)
4

Q
k,N

(x)µ
N

(dx)

=
N≠1

ÿ

k=0

Èfi
N

M ¸fi
N

M ¸fi
N

P
k,N

, Q
k,N

Í
L

2
(µ

N

)

= Tr
!

fi
N

M ¸fi
N

M ¸fi
N

"

to complete the proof.

We now check that the average characteristic polynomial ‰
N

equals the
characteristic polynomial of the operator fi

N

Mfi
N

acting on Im(fi
N

).

Proposition 5.2.3. If det stands for the determinant of endomorphisms of
Im(fi

N

), then
‰

N

(z) = det
!

z ≠ fi
N

Mfi
N

"

, z œ C.

Proof. On the one hand, Vieta’s formulas provide

E
C

N

Ÿ

i=1

(z ≠ x
i

)
D

= zN +
N

ÿ

n=1

1
n! (≠1)nzN≠n E

S

U

ÿ

i1 ”= ··· ” = i

n

x
i1 · · · x

i

n

T

V

and (5.2.1) provides for any 1 Æ n Æ N

E

S

U

ÿ

i1 ”= ··· ” = i

n

x
i1 · · · x

i

n

T

V =
⁄

det
Ë

x
j

K(x
i

, x
j

)
È

n

i,j=1

n

Ÿ

i=1

µ
N

(dx
i

).
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On the other hand, since fi
N

Mfi
N

is an integral operator acting on Im(fi
N

)
with kernel (x, y) ‘æ yK

N

(x, y), the Fredholm’s expansion, see e.g. [60], reads

det
!

z≠fi
N

Mfi
N

"

= zN +
N

ÿ

n=1

1
n! (≠1)nzN≠n

⁄

det
Ë

x
j

K
N

(x
i

, x
j

)
È

n

i,j=1

n

Ÿ

i=1

µ
N

(dx
i

),

from which Proposition 5.2.3 follows.

The next immediate corollary will be of important use in what follows.

Corollary 5.2.4. For any ¸ œ N,
⁄

x¸‹
N

(dx) = 1
N

Tr
!

(fi
N

Mfi
N

)¸

"

.

The second step is to rewrite the traces in terms of weighted lattice paths.

5.2.2 Step 2 : Lattice paths representations

We introduce for each N the oriented graph G
N

= (V
N

, E
N

) having V
N

= N2

for vertices and for edges

E
N

=
Ó

(n, k) æ (n + 1, m), n, k œ N, 0 Æ m Æ k + q
N

Ô

.

To each edge is associated a weight

w
N

1

(n, k) æ (n + 1, m)
2

= ÈxP
k,N

, Q
m,N

Í
L

2
(µ

N

)

,

and the weight of a finite length oriented path “ on G
N

is defined as the product
of the weights of the edges contained in “, namely

w
N

(“) =
Ÿ

eœE
N

: eµ“

w
N

(e). (5.2.3)

Then the following holds.

Lemma 5.2.5. For any ¸ œ N,

E
5

⁄

x¸µ̂N (dx)
6

= 1
N

N≠1

ÿ

k=0

ÿ

“:(0,k)æ(¸,k)

w
N

(“), (5.2.4)

where the rightmost summation concerns all the oriented paths on G
N

starting
from (0, k) and ending at (¸, k).
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Proof. It follows inductively on ¸ from (5.1.18) and the definition (5.2.3) that

(fi
N

M ¸fi
N

)P
k,N

=
N≠1

ÿ

m=0

Q

a

ÿ

“:(0,k)æ(¸,m)

w
N

(“)

R

b P
m,N

, ¸, k œ N. (5.2.5)

Thus, we obtain from the biorthogonality relations (5.1.10)

Tr
!

fi
N

M ¸fi
N

"

=
N≠1

ÿ

k=0

È(fi
N

M ¸fi
N

)P
k,N

, Q
k,N

Í
L

2
(µ

N

)

=
N≠1

ÿ

k=0

ÿ

“:(0,k)æ(¸,k)

w
N

(“), (5.2.6)

and Lemma 5.2.5 follows from Lemma 5.2.1.

Next, we introduce

D
N

=
Ó

(n, m) œ N2 : m Ø N
Ô

(5.2.7)

and obtain a similar representation for the moments of ‹
N

.
Lemma 5.2.6. For any ¸ œ N,

⁄

x¸‹
N

(dx) = 1
N

N≠1

ÿ

k=0

ÿ

“:(0,k)æ(¸,k), “flD

N

=ÿ
w

N

(“). (5.2.8)

Proof. Similarly than for (5.2.5), we have

( fi
N

M · · · fi
N

M
¸ ˚˙ ˝

¸

fi
N

)P
k,N

=
N≠1

ÿ

m=0

Q

a

ÿ

“:(0,k)æ(¸,m), “flD

N

=ÿ
w

N

(“)

R

b P
m,N

, ¸, k œ N.

(5.2.9)
Since fi2

N

= fi
N

, this yields

Tr
!

(fi
N

Mfi
N

)¸

"

=
N≠1

ÿ

k=0

È( fi
N

M · · · fi
N

M
¸ ˚˙ ˝

¸

fi
N

)P
k,N

, Q
k,N

Í
L

2
(µ

N

)

=
N≠1

ÿ

k=0

ÿ

“:(0,k)æ(¸,k), “flD

N

=ÿ
w

N

(“) (5.2.10)
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and thus Lemma 5.2.6, because of Corollary 5.2.4.

If we denote by “(m) the ordinate of a path “ at abscissa m, then we can
represent the variance of the moments of µ̂N in a similar fashion.

Lemma 5.2.7. For any ¸ œ N,

Var

5

⁄

x¸µ̂N (dx)
6

= 1
N2

N≠1

ÿ

k=0

ÿ

“:(0,k)æ(2¸,k), “(¸)ØN

w
N

(“). (5.2.11)

Proof. We have already shown in (5.2.6) that

Tr
!

fi
N

M2¸fi
N

"

=
N≠1

ÿ

k=0

ÿ

“:(0,k)æ(2¸,k)

w
N

(“). (5.2.12)

Since

(fi
N

M ¸fi
N

M ¸fi
N

)P
k,N

=
N≠1

ÿ

m=0

Q

a

ÿ

“:(0,k)æ(¸,m), “(¸)<N

w
N

(“)

R

b P
m,N

, ¸, k œ N,

we moreover obtain

Tr
!

fi
N

M ¸fi
N

M ¸fi
N

"

=
N≠1

ÿ

k=0

ÿ

“:(0,k)æ(2¸,k), “(¸)<N

w
N

(“). (5.2.13)

Lemma 5.2.7 is then a consequence of Lemma 5.2.2 and (5.2.12)–(5.2.13).

We are now in position to complete the proofs of Theorems 5.1.3 and 5.1.8.

5.2.3 Step 3 : Upper bounds and conclusions

Let us first provide a proof for Theorem 5.1.3 assuming that Theorem 5.1.8
holds.

Proof of Theorem 5.1.3. It is enough to prove that for any given ¸ œ N

lim
NæŒ

-

-

-

-

E
5

⁄

x¸µ̂N (dx)
6

≠
⁄

x¸‹
N

(dx)
-

-

-

-

= 0, (5.2.14)
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since (5.1.17) would then follow from Theorem 5.1.8 and the Borel-Cantelli
lemma. As a consequence of Lemmas 5.2.5 and 5.2.6, we obtain

E
5

⁄

x¸µ̂N (dx)
6

≠
⁄

x¸‹
N

(dx) = 1
N

N≠1

ÿ

k=0

ÿ

“:(0,k)æ(¸,k), “flD

N

”=ÿ
w

N

(“).

(5.2.15)
Since by following an edge of G

N

one increases the ordinate by at most q
N

, the
rightmost sum of (5.2.15) will bring null contribution if k is strictly less that
N ≠ q

N

¸. Observe moreover that the vertices explored by any path “ going
from (0, k) to (¸, k) for some N ≠ q

N

¸ Æ k Æ N ≠ 1 such that “ fl D
N

”= ÿ form
a subset of

Ó

(n, m) œ N2 : 0 Æ n Æ ¸, N ≠ q
N

¸ Æ m < N + q
N

¸
Ô

.

As a consequence, if one roughly bounds from above the number of such paths
by (2q

N

¸)¸, one obtains from (5.2.15) that

-

-

-

-

E
5

⁄

x¸µ̂N (dx)
6

≠
⁄

x¸‹
N

(dx)
-

-

-

-

Æ (2q
N

¸)¸

N
max

k,mœN: | k

N

≠1|Æ q
N

¸

N

, | m

N

≠1|Æ q
N

¸

N

-

-ÈxP
k,N

, Q
m,N

Í
L

2
(µ

N

)

-

-

¸

. (5.2.16)

It then follows from (5.2.16) together with the growth assumptions (5.1.15)
and (5.1.16) that (5.2.14) holds, and the proof of Theorem 5.1.3 is therefore
complete up to the proof of Theorem 5.1.8.

We now prove Theorem 5.1.8 by using similar arguments than in the proof of
Theorem 5.1.3.

Proof of Theorem 5.1.8. Again, because following an edge of G
N

increases the
ordinate of at most q

N

, the rightmost sum of (5.2.11) brings zero contribution
except when k Ø N ≠ q

N

¸. Observe also that the vertices explored by any path
“ going from (0, k) to (2¸, k) for some N ≠ q

N

¸ Æ k Æ N ≠ 1 and satisfying
“(¸) Ø N form a subset of

Ó

(n, m) œ N2 : 0 Æ n Æ 2¸, N ≠ 2q
N

¸ Æ m < N + 2q
N

¸
Ô

.
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As a consequence, we obtain from Lemma 5.2.7 the (rough) upper-bound

Var

5

⁄

x¸µ̂N (dx)
6

Æ (4q
N

¸)2¸

N2

max
k,mœN: | k

N

≠1|Æ 2q
N

¸

N

, | m

N

≠1|Æ 2q
N

¸

N

-

-ÈxP
k,N

, Q
m,N

Í
L

2
(µ

N

)

-

-

2¸

.

(5.2.17)

Using the sub-power growth/boundedness assumptions on q
N

and on the
left-hand side of (5.1.16), Theorem 5.1.8 then follows from (5.2.17) and the
Chebyshev inequality.

5.3 Applications to OP Ensembles

Consider a sequence of real OP Ensembles, introduced in Section 5.1.2, namely
a sequence of determinantal point processes of the type (5.1.13) where the
measures µ

N

on R have infinite support, all their moments, and where P
k,N

=
Q

k,N

stands for the k-th orthonormal polynomial with respect to µ
N

. We recall
that it satisfies Assumption 5.1.1 with q

N

= 1 and that ‰
N

and P
N,N

have
the same zeros. For every N , the celebrated three term recurrence relation for
orthonormal polynomials reads

xP
k,N

(x) = a
k+1,N

P
k+1,N

(x) + b
k,N

P
k,N

(x) + a
k,N

P
k≠1,N

(x), k Ø 1,

xP
0,N

(x) = a
1,N

P
1,N

(x) + b
0,N

P
0,N

(x), (5.3.1)

where a
k,N

> 0 and b
k,N

œ R are called the recurrence coe�cients. By
comparing (5.3.1) with the (unique) decomposition (5.1.18), one understands
that the hypothesis (5.1.16) of Theorem 5.1.3 transposes to a sub-power growth
condition as N æ Œ for

max
kœN : | k

N

≠1|Æ Á

|a
k,N

| , max
kœN : | k

N

≠1|Æ Á

|b
k,N

| . (5.3.2)

Here we shall combine our results with the work [87], where Kuijlaars and Van
Assche obtain an explicit formula for the limiting zero distribution of general
OPs for which the recurrence coe�cients converge to some limit. More precisely,
let us use the notation lim

k/Næs

c
k,N

= c(s) when, for every sequences (k
n

)
nœN
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and (N
n

)
nœN such that k

n

, N
n

æ Œ and k
n

/N
n

æ s as n æ Œ, we have
lim

næŒ c
k

n

,N

n

= c(s). Let us also introduce the equilibrium measure of the
interval [–,— ],

w
[–,—]

(dx) =

Y

_

]

_

[

1
fi

1

[–,—]

(x)dx


(— ≠ x)(x ≠ –)
for – < — ,

”
–

if – = —.

(5.3.3)

Then the following holds.

Theorem 5.3.1. Assume there exists Á > 0 and two continuous functions a(s),
b(s) on [0, 1 + Á) such that

lim
k/Næs

a
k,N

= a(s), lim
k/Næs

b
k,N

= b(s), s œ [0, 1 + Á). (5.3.4)

Then, P-almost surely, the empirical measure µ̂N associated to the sequence of
OP Ensembles converges weakly towards the probability measure

⁄

1

0

w#

b(s)≠2a(s) , b(s)+2a(s)

$(dx)ds. (5.3.5)

The latter measure is defined in the obvious way, that is it evaluates any bounded
and continuous function f on R to

⁄

1

0

3

⁄

f(x)w#

b(s)≠2a(s) , b(s)+2a(s)

$(dx)
4

ds.

As we shall observe below on several examples, all the OP Ensembles associated
to classical OPs satisfy the conditions of Theorem 5.3.1, and one can recover the
classical limiting distributions (semi-circle law, Marchenko-Pastur law, arcsine
law ...) from the formula (5.3.5). It is in that sense we claimed Theorem 5.3.1
provides a unified way to describe the almost sure convergence for classical OP
Ensembles.

Proof of Theorem 5.3.1. [87, Theorem 1.4] provides the weak convergence of ‹
N

towards (5.3.5). Let us show that ‹
N

moreover converges to (5.3.5) in moments.
Indeed, one can see from (5.3.1) that the spectral radius fl

N

of fi
N

Mfi
N

, which
is the one of the matrix

Ë

ÈxP
k,N

, P
m,N

Í
L

2
(µ

N

)

È

N≠1

k,m=0

,

satisfies
fl

N

Æ 2 sup
kÆN

|a
k,N

| + sup
kÆN

|b
k,N

|.
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Then, (5.3.4) yields sup
N

fl
N

< +Œ, and Proposition 5.2.3 implies that the
supports of the ‹

N

’s are uniformly bounded, from which the convergence in
moments of ‹

N

follows. Since (5.3.4) moreover provides that the sequences
(5.3.2) are bounded, and because (5.3.5) has compact support, Theorem 5.3.1
follows from Corollary 5.1.5.

We now provide a (non-exhaustive) list of recurrence coe�cients for several
rescaled classical OPs, from which one can check that Theorem 5.3.1 applies.
The following formulas are easily obtained from the OP literature, see e.g. [78,
Section 9], and obvious change of variables.

Orthogonal polynomial µ
N

(dx) Parameters

1 Hermite e≠Nx

2
/2dx none

2 Laguerre xN–e≠Nx

1

[0,+Œ)

(x)dx – > ≠1

3 Jacobi (1 ≠ x)N–(1 + x)N—

1

[≠1,1]

(x)dx –, —> 0

4 Charlier
q

xœN
(N–)

x

x!

”
x/N

– > 0

5 Meixner
q

xœN
!

N—+x≠1

x

"

–x”
x/N

– œ (0, 1), — > 0

OP Ensemble (a
k,N

)2 b
k,N

1 GUE k

N

0

2 Wishart k

N

( k

N

+ –) 2k+1

N

+ –

3 Random projections 4

k

N

(

k

N

+–)(

k

N

+—)(

k

N

+–+—)

(2

k

N

+–+—)

2
((2

k

N

+–+—)

2≠ 1
N

2 )

—

2≠–

2

(2

k

N

+–+—)(2

k+1
N

+–+—)

4 Longest increasing subsequence – k

N

– + k

N

5 Random Young diagrams 1

(1≠–)

2
k

N

( k

N

+ — ≠ 1

N

) 1

1≠–

( k

N

+ –( k

N

+ —))

Note that these recurrence coe�cients may still satisfy (5.3.4) if one lets the
parameters –,— depend on N in an appropriate way; e.g. letting – or — going
to zero as N æ Œ.

For more details concerning these OP Ensembles, we refer to [33] for the
connection between the product of random projections and Jacobi polynomials,
to [77] for the problem of the longest increasing subsequence and Charlier
polynomials, and to [76, 27] for the random Young diagrams and Meixner
polynomials.
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It is finally easy to recover from Theorem 5.3.1 and the latter list of recurrence
coe�cients the almost sure convergence results for classical OP Ensembles. See
also [87] for further computational examples. Let us finally mention that the
results established by Ledoux in [88] have similitudes with Theorem 5.3.1.

Remark 5.3.2. One can also generalize Theorem 5.3.1 to the case where the
recurrence coe�cients are asymptotically periodic, i.e. when there exists m Ø 1,
Á > 0 and continuous functions a

1

, . . . , a
m

and b
1

, . . . , b
m

on [0, 1 + Á) such that
for every 1 Æ r Æ m,

lim
km/Næs

a
km+r,N

= a
r

(s), lim
km/Næs

b
km+r,N

= b
r

(s), s œ [0, 1 + Á).

Indeed, Van Assche described in [101] the limiting zero distributions of the
associated orthogonal polynomials in a similar fashion than (5.3.5), but where
now these distributions can have a support with (at most) m connected
components. An analogue of Theorem 5.3.1 in that setting follows from the
same proof than Theorem 5.3.1; we chose to restrict to the case m = 1 for the
sake of the presentation.

For a concrete example, the OP ensemble associated with the orthogonalization
measure µ

N

(dx) = e≠N(x

4
+tx

2
)dx, introduced by Bressin, Itzykson and Zuber

for the purpose of counting graphs embedded into surfaces [16], leads to such
asymptotically periodic recurrence coe�cients with m = 2, provided the real
parameter t is larger than a certain critical value [20].

5.4 Application to multiple orthogonal polynomials

MOPs have been introduced in the context of the Hermite-Padé approximation
of Stieltjes functions, which was itself first motivated by number theory after
Hermite’s proof of the transcendence of e, or Apéry’s proof of the irrationality
of ’(2) and ’(3), see [99] for a survey. For our purpose here, we will focus on
the so-called type II MOPs, for which the zeros are of important interest since
they are the poles of the rational approximants provided by the Hermite-Padé
theory. These polynomials generalize orthogonal polynomials in the sense that
we consider more than one measure of orthogonalization, and a class of classical
MOPs such as multiple versions of the Hermite, Laguerre, Jacobi, Charlier,
Meixner, etc, polynomials emerged [34, 5, 7]. They are already the subject
of many works where they are studied as special functions; we refer to the
monograph [74] for further information.

It turns out that even for the multiple Hermite or multiple Laguerre polynomials,
no general description of the limiting zero distribution seems yet available in
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the literature. Our purpose in this section is to obtain such descriptions as a
combination of our results with ingredients taken from free probability theory.

Let us first introduce MOPs.

5.4.1 Multiple orthogonal polynomials

Let µ be a Borel measure on R with infinite support and having all its moments.
Consider r Ø 1 pairwise distinct functions w

1

, . . . , w
r

in L2(µ).

Definition 5.4.1. Given a multi-index n = (n
1

, . . . , n
r

) œ Nr, the n-th (type
II) MOP associated to the weights w

1

, . . . , w
r

and the measure µ is the unique
monic polynomial Pn of degree n

1

+ · · · + n
r

which satisfies the orthogonality
relations

⁄

xkPn(x)w
1

(x)µ(dx) = 0, 0 Æ k Æ n
1

≠ 1,

...
... (5.4.1)

⁄

xkPn(x)w
r

(x)µ(dx) = 0, 0 Æ k Æ n
r

≠ 1.

Note that the existence/uniqueness of the n-th MOP is not automatic, and
depends on whether the system of linear equations (5.4.1) admits a unique
solution. We say that a multi-index n is normal if it is indeed the case. Since
by taking r = 1 we clearly recover OPs, we shall assume r Ø 2 in what follows.

Let (n(N))
NœN = (n(N)

1

, . . . , n(N)

r

)
NœN be a sequence of normal multi-indices

which satisfies the following path-like structure.

(a) For every N œ N,
N

ÿ

i=1

n(N)

i

= N.

(b) For every N œ N and 1 Æ i Æ r,

n(N+1)

i

Ø n(N)

i

.

(c) There exists R œ N such that for any N œ N and 1 Æ i Æ r,

n(N+R)

i

Ø n(N)

i

+ 1. (5.4.2)



Application to multiple orthogonal polynomials 113

(d) For every 1 Æ i Æ r, there exist q
1

, . . . , q
r

œ (0, 1) such that

lim
NæŒ

n(N)

i

N
= q

i

. (5.4.3)

We then write for convenience

P
N

(x) = Pn(N)(x), N œ N, (5.4.4)

and observe that P
N

has degree N . A question of interest is then to describe
the weak convergence of the zero counting probability measure ‹

N

of P
N

as
N æ Œ, defined as in (5.1.4) with z

1

, . . . , z
N

the zeros of P
N

(x), maybe up to
a rescaling of the zeros. Before showing how our results answer that question in
the case of the multiple Hermite and multiple Laguerre polynomials, we first
need to introduce a few ingredients from free probability theory.

5.4.2 Elements of free probability

Free probability deals with non-commutative random variables which are
independent in an algebraic sense. It has been introduced by Voiculescu for
the purpose of solving operator algebra problems. We now just provide the few
elements of free probability needed for the purpose of this work, and refer to
[104, 2] for comprehensive introductions.

For a probability measure ⁄ on R with compact support, let K
⁄

be the inverse,
for the composition of formal series, of the Cauchy-Stieltjes transform

G
⁄

(z) =
⁄

⁄(dx)
z ≠ x

(5.4.5)

=
Œ

ÿ

k=0

3

⁄

xk⁄(dx)
4

z≠k≠1,

and set the R-transform of ⁄ by

R
⁄

(z) = K
⁄

(z) ≠ 1
z

. (5.4.6)

Definition 5.4.2. Let ⁄ and ÷ be two probability measures on R with compact
support. The free additive convolution of ⁄ and ÷, denoted by ⁄ � ÷, is the
unique probability measure (on R with compact support) which satisfies

R
⁄�÷

(z) = R
⁄

(z) + R
÷

(z). (5.4.7)
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Consider a probability measure ⁄ on [0, +Œ) with compact support di�erent
from ”

0

. If ‰
⁄

is the inverse for the composition of formal series of

1
z

G
⁄

3

1
z

4

≠ 1 =
Œ

ÿ

k=1

3

⁄

xk⁄(dx)
4

zk, (5.4.8)

we then define the S-transform of ⁄ by

S
⁄

(z) = 1 + z

z
‰

⁄

(z). (5.4.9)

Definition 5.4.3. Let ⁄ and ÷ be two probability measures on [0, +Œ) with
compact support and both di�erent from ”

0

. The free multiplicative convolution
of ⁄ and ÷, denoted ⁄ ⇥ ÷, is the unique probability measure (on [0, +Œ) with
compact support and di�erent from ”

0

) which satisfies

S
⁄⇥÷

(z) = S
⁄

(z)S
÷

(z). (5.4.10)

For this work, the importance of the free additive and multiplicative convolutions
relies on the following results due to Voiculescu, extracted from [2], which
describe the limiting eigenvalue distribution of perturbed GUE and Wishart
matrices. A random matrix X

N

is distributed according to GUE(N) if it is
drawn from the space H

N

(C) of N ◊ N Hermitian matrices according to the
probability distribution

1
Z

N

exp
Ó

≠ NTr(X2

N

)/2
Ô

dX

N

, (5.4.11)

where dX

N

stands for the Lebesgue measure on H
N

(C) ƒ RN

2 and Z
N

is a
normalization constant. It is said to be distributed according to Wishart

–

(N),
where – > ≠1 if a real parameter, if the probability distribution reads instead

1
Z

N

det(X
N

)N– exp
Ó

≠ NTr(X
N

)
Ô

1

)

X
N

Ø 0

*dX

N

, (5.4.12)

where X

N

Ø 0 means that X

N

is positive semi-definite. The semi-circle
distribution is defined by

µ
SC

(dx) = 1
2fi



4 ≠ x2

1

[≠2,2]

(x)dx, (5.4.13)

and the (rescaled) Marchenko-Pastur distribution of parameter fl > 0 by

µ
MP(fl)

(dx) = max(1 ≠ 1
fl

, 0)”
0

+ 1
2fix



(fl
+

≠ x)(x ≠ fl≠) 1

[fl≠, fl+]

(x)dx,

(5.4.14)
where fl± = (1 ± Ô

fl )2/fl. Then the following holds.
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Theorem 5.4.4. Consider a sequence of uniformly bounded deterministic
matrices (A

N

)
N

, were A

N

is an N ◊ N Hermitian matrix, and assume there
exists a probability measure ⁄ on R with compact support such that for all ¸ œ N,

lim
NæŒ

1
N

Tr
!

A

N

"

¸ =
⁄

x¸⁄(dx).

(a) If (X
N

)
N

is a sequence of independent random matrices with X

N

distributed according to GUE(N), then for all ¸ œ N,

lim
NæŒ

1
N

E
Ë

Tr
!

X

N

+ A

N

"

¸

È

=
⁄

x¸µ
SC

� ⁄(dx).

(b) If (X
N

)
N

is a sequence of independent random matrices with X

N

distributed according to Wishart
–

(N), and if the A

N

’s are moreover
positive semi-definite with ⁄ ”= ”

0

, then for all ¸ œ N,

lim
NæŒ

1
N

E
Ë

Tr
!

A

1/2

N

X

N

A

1/2

N

"

¸

È

=
⁄

x¸µ
MP(

1
1+–

)

⇥ ⁄(dx).

We are now in position to state the results of this section.

5.4.3 Multiple Hermite polynomials

Recall that if H
N

stands for the N -th Hermite polynomial, that is the OP
associated to µ(dx) = e≠x

2
/2dx, then the zero counting probability distribution

‹
N

of its rescaled version H
N

(
Ô

Nx) is known to converge weakly towards the
semi-circle distribution (5.4.13).

Given r Ø 2 pairwise distinct real numbers a
1

, . . . , a
r

, consider the measure and
the weights given by

µ(dx) = e≠x

2
/2dx, w

j

(x) = ea

j

x, 1 Æ j Æ r.

The associated MOPs are called multiple Hermite polynomials. For a sequence
of multi-indices (n(N))

N

satisfying the path-like structure described in Section
5.4.1, denote by H(a1 , ... , a

r

)

N

the associated MOP as in (5.4.4). We shall prove
the following.

Theorem 5.4.5. Let ‹
N

be the zero probability distribution of the rescaled
multiple Hermite polynomial

H(

Ô
Na1 , ... ,

Ô
Na

r

)

N

!

Ô
Nx

"

.
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Then ‹
N

converges weakly as N æ Œ towards

µ
SC

�
1

r

ÿ

j=1

q
j

”
a

j

2

.

Although we introduced the R-transform of a probability measure as a formal
series, it is actually possible to define it as a proper analytic function, provided
one restricts oneself to appropriate subdomains of the complex plane, and
equality (5.4.7) continues to hold, see [15, Section 5]. Then, since R

µSC(z) = z
and the Cauchy-Stieltjes transform of

q

r

i=1

q
i

”
a

i

is explicit, one can obtain
from (5.4.7) that the Cauchy-Stiejles transform G of µ

SC

�
!

q

r

j=1

q
j

”
a

j

"

is an
algebraic function, by performing similar manipulations than in the proof of
[17, Lemma 1] and concluding by analytic continuation. More precisely, one
obtains that G satisfies the algebraic equation

P
!

z, G(z)
"

= 0, z œ C, (5.4.15)

where the bivariate polynomial P (z, w) is given by

P (z, w) = w
r

Ÿ

i=1

(z ≠ w ≠ a
i

) ≠
r

ÿ

i=1

q
i

r

Ÿ

j=1, j ”=i

(z ≠ w ≠ a
i

). (5.4.16)

Probability measures for which the Cauchy-Stieltjes transform is algebraic have
interesting regularity properties, see [3, Section 2.8], and are moreover suitable
for numerical evaluation, see e.g. [55].

We now turn to multiple Laguerre polynomials, for which we provide a similar
analysis.

5.4.4 Multiple Laguerre polynomials

If L(–)

N

stands for the N -th Laguerre polynomial of parameter – > ≠1, that is
the OP associated to µ(dx) = x–e≠x

1

[0,+Œ)

(x)dx, then it is known that the
zero probability distribution ‹

N

of L(N–)

N

(Nx) converges weakly as N æ Œ
towards the Marchenko-Pastur distribution (5.4.14) of parameter 1/(1 + –).

There exist two di�erent definitions for the multiple Laguerre polynomials in
the literature, see [74, Section 23.4]. We consider here the so-called multiple
Laguerre polynomials of the second kind, which are defined as follows. Given
r Ø 2 pairwise distinct positive numbers a

1

, . . . , a
r

and – Ø 0, consider

µ(dx) = x–e≠x

1

[0,+Œ)

(x)dx, w
j

(x) = e(1≠a

j

)x, 1 Æ j Æ r,



Application to multiple orthogonal polynomials 117

and, given a sequence of multi-indices (n(N))
N

satisfying the path-like structure
described previously, let L(– ; a1 , ... , a

r

)

N

be the associated MOP as in (5.4.4).
Theorem 5.4.6. Let ‹

N

be the zero probability distribution of the rescaled
multiple Laguerre polynomial

L(N– ; Na1 , ... , Na

r

)

N

(x).

Then ‹
N

converges weakly as N æ Œ towards

µ
MP(

1
1+–

)

⇥
1

r

ÿ

j=1

q
j

”
1/a

j

2

.

As it was the case for the R-transform, the S-transform can be defined as an
analytic function, and (5.4.10) also holds on subdomains of the complex plane,
see [15, Section 6]. Then, because S

µMP(fl)(z) = fl/(1 + flz), one can also obtain
from (5.4.10), taking care of the definition domains, that the Cauchy-Stieltjes
transform G of µ

MP(

1
1+–

)

⇥
!

q

r

j=1

q
j

”
1/a

j

"

satisfies the algebraic equation

P
!

z, G(z)
"

= 0, z œ C, (5.4.17)

where P (z, w) is given by

P (z, w) = w
r

Ÿ

i=1

1

z ≠ zw

a
i

+ –

a
i

2

≠
r

ÿ

i=1

q
i

r

Ÿ

j=1, j ”=i

1

z ≠ zw

a
i

+ –

a
i

2

. (5.4.18)

5.4.5 Proofs

Before providing proofs for Theorems 5.4.5 and 5.4.6, we first precise a few
points concerning MOP Ensembles, that we introduced in Section 5.1.3.

A sequence of measures (µ
N

)
N

, weights w
j,N

œ L2(µ
N

), 1 Æ j Æ r, and a path-
like sequence of multi-indices (n(N))

N

induce a sequence of MOP Ensembles.
Namely, for each N one can associate random variables x

1

, . . . , x
N

distributed
according to (5.1.7) where we chose for the multi-index n = n

(N). For the monic
polynomial P

k,N

of degree k appearing in the kernel (5.1.9), one can choose
the n

(k)-th (type II) MOP associated with µ
N

and the w
j,N

’s. The associated
biorthogonal functions Q

k,N

’s can then be constructed from the type I MOPs,
see [74, Theorem 23.1.6], and Assumption 5.1.1 is satisfied with q

N

= 1. We
moreover recall that the average characteristic polynomial ‰

N

equals P
N,N

.

In order to obtain growth estimates for the ÈxP
k,N

, Q
m,N

Í
L

2
(µ

N

)

’s, we now
describe a connection with the so-called nearest neighbors recurrence coe�cients,
which are in practice easier to compute.
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Nearest neighbors recurrence coe�cients

Van Assche [100] established for general MOPs, says associated to a measure µ
and weights w

i

’s, that for every normal multi-index n there exist real numbers
(a(d)

n )
1ÆdÆr

and (b(d)

n )
1ÆdÆr

satisfying

xPn(x) = Pn+e1 + a(1)

n Pn(x) +
r

ÿ

d=1

b(d)

n Pn≠e
d

(x),

... (5.4.19)

xPn(x) = Pn+e
r

+ a(r)

n Pn(x) +
r

ÿ

d=1

b(d)

n Pn≠e
d

(x),

where
e

d

= ( 0, . . . , 0
¸ ˚˙ ˝

d≠1

, 1, 0, . . . , 0) œ Nr, 1 Æ d Æ r.

Note that this provides

Pn+e
i

(x) ≠ Pn+e
j

(x) = (a(j)

n ≠ a(i)

n )Pn(x), 1 Æ i, j Æ r. (5.4.20)

With the path-like sequence of multi-indices (n(k))
kœN and allowing the w

i

’s
and µ to depend on a parameter N , we write for convenience

a(d)

k,N

= a(d)

n(k)
, N

, b(d)

k,N

= b(d)

n(k)
, N

, 1 Æ d Æ r.

Then the following holds.

Lemma 5.4.7. If there exists Á > 0 such that for every 1 Æ d Æ r the sequences
I

max
kœN : | k

N

≠1| Æ Á

rmax
j=1

-

-a(d)

n(k)≠e
j

,N

-

-

J

NØ1

,

I

max
kœN : | k

N

≠1| Æ Á

-

-b(d)

k,N

-

-

J

NØ1

,

(5.4.21)
are bounded, then so is the sequence

I

max
k,mœN : | k

N

≠1|Æ Á, | m

N

≠1|Æ Á

-

-ÈxP
k,N

, Q
m,N

Í
L

2
(µ

N

)

-

-

J

NØ1

.

Proof. First, as a consequence of (5.4.2) and [74, (23.1.7)], we have

ÈxP
k,N

, Q
m,N

Í
L

2
(µ

N

)

= 0, m < k ≠ R. (5.4.22)
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Define the sequence (i
k

)
kœN taking its values in {1, . . . , r} by

n

(k+1) = n

(k) + e

i

k

, m œ N.

For a fixed k, which may be chosen as large as we want, (5.4.19) yields

xP
k,N

(x) = P
k+1,N

(x) + a(i

k

)

k,N

P
k,N

(x) +
r

ÿ

d=1

b(d)

k,N

Pn(k)≠e
d

,N

(x). (5.4.23)

Then, since (5.4.20) provides for any 1 Æ d Æ r and m large enough

Pn(m)≠e
d

,N

(x) = P
m≠1,N

(x) +
!

a(d)

n(m≠1)≠e
d

,N

≠ a(i

m≠1)

n(m≠1)≠e
d

,N

"

Pn(m≠1)≠e
d

,N

(x),

we obtain inductively with (5.4.23) that

xP
k,N

(x) = P
k+1,N

(x) + a(i

k

)

k,N

P
k,N

(x) +
1

r

ÿ

d=1

b(d)

k,N

2

P
k≠1,N

(x)

+
k≠2

ÿ

m=k≠R

A

r

ÿ

d=1

b(d)

k,N

k≠1

Ÿ

l=m+1

!

a(d)

n(l)≠e
d

,N

≠ a(i

l

)

n(l)≠e
d

,N

"

B

P
m,N

(x) + R
k,N

(x),

(5.4.24)

where R
k,N

is a polynomial of degree at most k ≠ R ≠ 1. By comparing
(5.4.24) with the (unique) decomposition (5.1.18) and (5.4.22), we obtain explicit
formulas for the ÈxP

k,N

, Q
m,N

Í’s in terms of the nearest neighbor recurrence
coe�cients, from which Lemma 5.4.7 easily follows.

Proof of Theorem 5.4.5

Proof. Associate to the multi-indices (n(N))
NœN the (uniformly bounded)

sequence (A
N

)
NœN of diagonal matrices

A

N

= diag
!

a
1

, . . . , a
1

¸ ˚˙ ˝

n

(N)
1

, . . . , a
r

, . . . , a
r

¸ ˚˙ ˝

n

(N)
r

"

œ H
N

(C).

On the one hand, let (X
N

)
N

be a sequence of independent random matrices,
with X

N

distributed according to GUE(N). If µ̂N stands for the empirical
measure associated to the eigenvalues of Y

N

= X

N

+ A

N

, then Theorem 5.4.4
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(a) and (5.4.3) provide for any ¸ œ N

lim
NæŒ

E
5

⁄

x¸µ̂N (dx)
6

= lim
NæŒ

1
N

E
Ë

Tr
!

X

N

+ A

N

"

¸

È

=
⁄

x¸µ
SC

�
1

r

ÿ

j=1

q
j

”
a

j

2

(dx). (5.4.25)

On the other hand, observe from (5.4.11) that the random matrix Y

N

is
distributed on H

N

(C) according to

1
Z Õ

N

exp
Ó

≠ NTr
!

Y

2

N

≠ 2A

N

Y

N

"

/2
Ô

dY

N

, (5.4.26)

where Z Õ
N

is a new normalization constant. By performing a spectral
decomposition in (5.4.26), integrating out the eigenvectors and using a confluent
version of the Harish-Chandra-Itzykson-Zuber formula, Bleher and Kuijlaars
[21] obtained that the random eigenvalues of Y

N

form a MOP Ensemble, see
(5.1.7), associated to the N -dependent weights and measure

µ
N

(dx) = e≠Nx

2
/2dx, w

j,N

(x) = eNa

j

x, 1 Æ j Æ r, (5.4.27)

and the multi-index n

(N). The average characteristic polynomial ‰
N

for that
MOP Ensemble then equals the associated n

(N)-th MOP, which is seen from
a change of variable to be H(

Ô
Na1 , ... ,

Ô
Na

r

)

N

!

Ô
Nx

"

, up to a multiplicative
constant. The weights in (5.4.27) form an AT system, from which it follows
that any multi-index is normal, and that ‰

N

has real zeros, cf. [74, Chapter 23].
One moreover obtains from [100, Section 5.2] and a change of variables explicit
formulas for the nearest neighbors recurrence coe�cients associated to (5.4.27),

a(d)

n,N

= a
d

, b(d)

n,N

= n
d

N
, n = (n

1

, . . . , n
r

).

Thus, Theorem 5.4.5 follows from (5.4.25), Lemma 5.4.7 and Corollary 5.1.6.

Proof of Theorem 5.4.6

Proof. The proof follows the same spirit as the proof of Theorem 5.4.5. Introduce
the sequence of (uniformly bounded) diagonal matrices

A

N

= diag
!

1/a
1

, . . . , 1/a
1

¸ ˚˙ ˝

n

(N)
1

, . . . , 1/a
r

, . . . , 1/a
r

¸ ˚˙ ˝

n

(N)
r

"

,
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and let (X
N

)
N

be a sequence of independent random matrices, where X

N

is
distributed according to Wishart

–

(N). With µ̂N the empirical measure of the
eigenvalues of Y

N

= A

1/2

N

X

N

A

1/2

N

, Theorem 5.4.4 (b) and (5.4.3) then provide
for all ¸ œ N

lim
NæŒ

E
5

⁄

x¸µ̂N (dx)
6

=
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x¸µ
MP(

1
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⇥
1
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”
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j

2

(dx). (5.4.28)

Now, observe from (5.4.12) that Y

N

is distributed on H
N

(C) according to

1
Z Õ

N

det(Y
N

)N– exp
Ó

≠ NTr
!

A

≠1

N

Y

N

"

Ô

1

)

Y
N

Ø 0

*dY

N

, (5.4.29)

where Z Õ
N

is a new normalization constant. Similarly than for the Hermite case,
the eigenvalues of Y

N

form a MOP Ensemble associated to

µ
N

(dx) = xN–e≠Nxdx, w
j,N

(x) = eN(1≠a

j

)x, 1 Æ j Æ r, (5.4.30)

and the multi-index n

(N), see [22]. The average characteristic polynomial ‰
N

is
then the n

(N)-th MOP associated to (5.4.30), which is L(N– ; Na1 , ... , Na

r

)

N

!

x
"

up
to a multiplicative constant. The weights in (5.4.30) form an AT system so that
any multi-index is normal and ‰

N

has real zeros. If we denotes |n| = n
1

+· · ·+n
r

for n œ Nr, then one obtains from [100, Section 5.4] that the nearest neighbors
recurrence coe�cients for (5.4.27) read

a(d)

n,N

= n
d

(|n| + N–)
N2a

d

, b(d)

n,N

= |n| + N– + 1
Na

d

+
r

ÿ

j=1

n
j

Na
j

, n = (n
1

, . . . , n
r

).

Theorem 5.4.6 finally follows from (5.4.28), Lemma 5.4.7 and Corollary 5.1.6.

Remark 5.4.8. Having in mind the proofs of Theorems 5.4.5 and 5.4.6, it would
be of interest to find out if there exists a matrix model for the multiple version
of the Jacobi polynomials, the Jacobi-Piñeiro polynomials, which are related in
a limiting case to the rational approximations of ’(k) and polylogarithms [74,
Section 23.3.2], and then if it would be possible to describe its limiting zero
distribution thanks to free convolutions.





Chapter 6

Conclusion and open
problems

In this PhD thesis we investigated the global asymptotic behavior of several
determinantal point processes. Our contributions mainly concerned the almost
sure convergence and the large deviations of their empirical measure µ̂N , and
also the almost sure simultaneous convergence of the empirical measure and
the distribution ‹

N

of the zeros of their average characteristic polynomial.

More precisely,

• We developed a compactification argument in order to deal with the
exponential tightness and the large deviation upper bound for the empirical
measure µ̂N associated with particle systems in a weakly confining
potential, that is a potential so that the asymptotic distribution for
the particles may have unbounded support.

• We found a natural way to give a meaning to vector equilibrium problems
with weakly confining potentials, and established a general statement
concerning the existence and uniqueness of their solutions.

• With the example of a particular non-centered Wishart matrix model, we
have shown that a vector equilibrium problem can be involved as a large
deviation rate function for the empirical measure µ̂N of a particle system.

• For a large class of determinantal point processes, we were able to provide
a su�cient condition for the almost sure simultaneous convergence of µ̂N

and ‹
N

.

123



124 Conclusion and open problems

Besides the questions raised in Section 4.1.5 and Remark 5.4.8, several other
questions related to this PhD remain unanswered, and we believe a few of them
deserve to be shared; this is the purpose of the last part of this thesis.

Compactness of the support of equilibrium measures

We saw in Chapter 2 that the unique minimizer of the functional (2.1.5)–
(2.1.6) has compact support when the potential satisfies the strong growth
condition (2.1.4), and may not have compact support if it only satisfies the
weak growth condition (2.1.7), see Example 2.1.3. As pointed out by Alain
Rouault (personal communication), there exist potentials satisfying only the
weak growth assumption (2.1.7) for which the equilibrium measure has compact
support. To find a su�cient and necessary condition on the potential so that
the equilibrium measure has compact support is an open problem.

In the case of vector equilibrium problems (see Chapter 3), even with strongly
confining potentials and the extra assumption that the measures integrate the
logarithm at infinity (that is the setting of [10]), it is actually not clear how to
show that the equilibrium measures have compact support, or not (Bernhard
Beckermann, personal communication).

Nikishin structure for other random matrix models

The key to establish the LDP with a vector equilibrium problem involved as a
rate function for the non-centered Wishart matrix presented in Chapter 4 was
to rewrite the eigenvalue distribution as the marginal distribution of a Coulomb
gas having two types of particles, see proposition 4.2.4. This has been possible
because the associated determinantal point process forms a MOP Ensemble with
two weights, and that these two weights satisfy a Nikishin structure, see Lemma
4.2.3. It is natural to wonder if such a setup appears in other determinantal
point processes.

Arno Kuijlaars observed a similar structure arises in an additive perturbation
of unitary invariant Hermitian matrix models studied in [19] (personal
communication). Indeed, one can show that the two weights are in this case
given by

w
1,N

(x) = cosh(aNx), w
2,N

(x) = sinh(aNx), x œ R,

where a > 0 is some parameter related to the perturbation. A statement similar
to Lemma 4.2.3 holds for w

2,N

/w
1,N

, where the discrete measure ‡
N

is now
supported on the imaginary axis iR (i.e. where the zeros of w

1,N

live). This
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allows us to prove a statement similar to Proposition 4.2.4 but, since (4.2.13)
does not hold anymore, there is no absolute value at the denominator of (4.2.14).
Equivalently, a two-type particles Coulomb gas representation holds, up to the
multiplication of a phase factor depending on x, u and N . It is likely that
in the case where the distribution of the unitary invariant matrix is moreover
invariant under the symmetry X ‘æ ≠X, this phase factor would disappear “fast
enough” as N æ Œ (in the sense that µ̂N would be exponentially equivalent,
see [43, Section 4.2.2], to the empirical measure associated with the two-type
particles Coulomb gas with the phase factor being identically one), but no proof
came out yet. In this case a LDP for µ̂N could be proved by following the same
lines as in the proof of Theorem 4.1.1. Our intuition is strengthened by the fact
that the vector equilibrium problem associated with that two-type particles
Coulomb gas is the same than the one obtained in [19] with di�erent methods.

An even more challenging problem would be to see if a similar approach would
work for the two-matrix model studied in [52]. Indeed, a weakly admissible
vector equilibrium involving three measures with Nikishin type interactions is
known to describe the limiting eigenvalue distribution. Here, to obtain an exact
Coulomb gas representation for finite N seems to be too optimistic, but one
still can hope that an exponential equivalence with the associated three-type
particles Coulomb gas holds, although nothing has been established so far.

A moment/cumulant method for determinantal point processes

At the center of Chapter 5, an important fact is that we have been able to
provide identities for the two first cumulants

E
C

N

ÿ

i=1

x¸

i

D

, Var

C

N

ÿ

i=1

x¸

i

D

,

in terms of weighted lattice paths, where the weights only depend on the
recurrence coe�cients ÈxP

k,N

, Q
m,N

Í
L

2
(µ

N

)

associated with the determinantal
point process. It is rather easy to provide (more complicated) formulas for
all the cumulants in terms of such weighted lattice paths, but to understand
which are the dominant (group of) paths as N æ Œ is an interesting challenge.
Indeed, a better understanding of the combinatorial structure which survives
as N æ Œ would potentially lead to su�cient conditions on the recurrence
coe�cients for a large class of determinantal point processes in order to have
concentration inequalities for

q

N

i=1

x¸

i

(by the Laplace transform method for
concentration inequalities, as in [28]) and its (Gaussian) fluctuations.
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