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Long-Range Interactions in One- and
Two-Electron Rydberg Atoms

Christophe L. Vaillant

Abstract

We present calculations of long-range interactions in Rydberg atoms, with
a focus on the dipole-dipole interactions of strontium Rydberg states. The
growing use of Rydberg states in the field of cold atoms necessitates a more
detailed understanding of the effects of dipole-dipole interactions, which are
currently being investigated in a number of research groups worldwide.
Calculations of long-range interactions in Rydberg states of caesium, cal-
cium, rubidium, strontium and ytterbium are presented. By taking the one
active electron approximation we develop consistent models of these long-
range interactions, and construct a survey of the Rydberg state dipole-dipole
interactions and quadrupole-quadrupole interactions. We compare the inter-
actions between series and between atoms, highlighting the importance of
certain series for applications suggested in previous works.
In order to include two-electron effects in the description of dipole-dipole
interactions in divalent atoms, we use multichannel quantum defect theory
(MQDT) to develop models of the Rydberg series of strontium. We use an
empirical reactance matrix formalism, where the reactance matrix is fitted to
reproduce experimentally measured values of the bound state energy levels.
Models are found for all series of strontium with L ≤ 3. We extend the
MQDT formalism to the description of the natural radiative lifetimes of
strontium, where the perturbers are found to have a large quenching effect
on these lifetimes.
By incorporating the MQDT description of the Rydberg states of strontium
into the calculation of dipole-dipole interactions, we find a spin-forbidden
two-atom resonance in the 3D2 states of strontium. We consider a one-
dimensional lattice of strontium atoms, and find that the internal dynamics
of the Rydberg atoms demonstrates spin transport for large lattice spacings
and a separation of the spin and total angular momentum dynamics for
small lattice spacings. Spin-angular momentum separation (analogous to
spin-charge separation in condensed matter) in strontium Rydberg atoms
may have uses in the investigation of one-dimensional Fermi gases and their
description using Luttinger liquid theory.
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4.10 Landé gJ -factors for the 1,3D2 states . . . . . . . . . . . . . . . 94
4.11 Channel fractions for the 3D1,3 states . . . . . . . . . . . . . . 95
4.12 Channel fractions for the 1F3 states . . . . . . . . . . . . . . . 97
4.13 Channel fractions for the 3F3,4 states . . . . . . . . . . . . . . 98
4.14 Lu-Fano plot for the 3F3,4 states . . . . . . . . . . . . . . . . . 99
4.15 Lifetimes of the 1S0 and 1D2 Rydberg states . . . . . . . . . . 104
4.16 Channel partial widths of the 1S0 and 1D2 Rydberg states . . 105

5.1 Comparison of two-electron and one-electron calculations of C6 116

vi



List of Figures vii

5.2 Singlet and triplet contributions to C6 coefficients . . . . . . . 117
5.3 Förster defect for the 2 × n 3D2 → (n − 2) 1F3 + (n − 3) 3F2

channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4 Energy levels around the 2 × 30 3D2 pair state for the multi-

channel and single channel calculations . . . . . . . . . . . . . 120
5.5 State transfer probability for two levels . . . . . . . . . . . . . 122
5.6 State transfer in two atoms for four levels per atom . . . . . . 124
5.7 Potential curves for two atoms including only four single-atom

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.8 Spin waves propagating along a Rydberg spin chain . . . . . . 128
5.9 Potential curves around the 28 1F3 + 3× 30 3D2 state . . . . . 129
5.10 Beats between spin and angular momentum probabilities . . . 130
5.11 Beats between spin and angular momentum probabilities with

applied microwave field . . . . . . . . . . . . . . . . . . . . . . 133
5.12 Beats between spin and angular momentum probabilities with

fixed applied microwave field . . . . . . . . . . . . . . . . . . . 134



Declaration

The work in this thesis is based on research carried out at the Atomic and
Molecular Group, the Department of Physics, Durham, England. No part of
this thesis has been submitted elsewhere for any other degree or qualification
and it is all my own work unless referenced to the contrary in the text.

Copyright© 2014 by Christophe L. Vaillant.
“The copyright of this thesis rests with the author. No quotation from it
should be published without the author’s prior written consent and informa-
tion derived from it should be acknowledged”.

viii



Acknowledgements

There are many people without whom this thesis would have been either
non-existant or a much lower quality piece of writing, and this list is far from
exhaustive!
First and foremost, I would like to thank my two supervisors, Robert
Potvliege and Matt Jones. It is rare to have two supervisors who both con-
tribute so much to a project, and (although I may not have enjoyed receiving
some of the criticism at times) the comments and guidance provided by both
Matt and Robert were indispensable over the three and half years I spent
on this work. I would also like to give special thanks to Ifan Hughes for the
many discussions, the guidance and the banter, as well as Simon Gardiner
for the useful discussions and suggestions.
More generally, I have to thank the whole of the AtMol group for the good
company and the countless little suggestions and bits of support provided
over the years. In particular, thank you to David Szwer, Christoph Weiss,
David Holdaway, John Helm, Tom Billam, Tom Ogden, James Keavney,
Peter Mason and many others (I will have missed a lot of people, and I
can only apologize for that!) for providing useful tips and tricks that have
improved the way I work in large and small ways. A very big thank you to
David Paredes especially, for the rubber-duck debugging sessions, the sports,
the banter, the chocolate and everything else! Thank you as well to the whole
of team strontium (past and present), Danielle Boddy, Dan Saddler, James
Millen, Graham Lochead, Alistair Bounds and Liz Bridge, for discussions
and many enjoyable lunches!
On a more personal side, I would like to thank my two housemates, Scott
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Chapter 1

Introduction

1.1 General Introduction

Over one hundred years ago, Johannes Rydberg first derived the now famous

Rydberg formula [1]. At this time, the structure of the atom was completely

unknown, and the observation of transitions between atomic states repre-

sented a large step forward in the understanding of atoms (although at the

time the existence of atoms had not been confirmed). Highly excited atoms

(meaning atoms with large principal quantum number, n) are now known as

Rydberg atoms, in honour of Johannes Rydberg’s discovery.

Nowadays, Rydberg atoms are amongst the most widely understood regime

of excited atoms in terms of their structure [2]. Combined with the develop-

ment of laser cooling of atoms, experimental control of Rydberg atoms has

reached unprecedented levels, leading to increased interest in these atomic

states due to their unique properties. In particular, the physical properties

of the atomic states (for example lifetimes, polarizability and van der Waals

interactions) scale with principal quantum number, n, making highly excited

atoms interesting for applications such as quantum information processing

[3] and simulations of quantum many-body physics [4].

A number of experimental groups work in the field of cold Rydberg atoms,

making use of the highly-excited atoms for applications ranging from quan-

tum simulators [5] to the production of very high n and high l (where l is

1
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the orbital angular momentum quantum number) atom states resembling the

states of classical Bohr model [6]. Key to many of the uses of Rydberg atoms

is the presence of long-range interactions between the atoms. We discuss the

use of these interatomic forces in the next section.

1.1.1 Long-Range Interactions

The principal reason for the modern interest in Rydberg atoms is the mag-

nitude of their electric dipole-dipole interactions [7]. Resonant dipole-dipole

interactions (which have a functional form of R−3, where R is the inter-

atomic distance between two atoms) scale as n4, and induced dipole-dipole

interactions (usually known as van der Waals interactions) scale as n11 for

low orbital angular momentum states [2]. Resonant dipole-dipole interac-

tions occur for hydrogenic atoms (due to the degeneracies in l for hydrogen)

and for two atoms in dipole-coupled states, whereas induced dipole-dipole

interactions occur for other atoms with states not degenerate in l.

The large magnitude and tunability of these interactions over a wide range

of n is of great interest, for example for the implementation of quantum in-

formation gates where the interactions between the atoms can be selectively

switched on and off [3]. In particular, the strong dipole-dipole interactions

can shift the energy levels of the states being addressed by laser excitation off

resonance, creating what is known as the dipole blockade [8, 9]. By exploit-

ing this blockade effect, quantum gates can be engineered that manipulate

quantum bits (qubits) for non-classical computation [10]. The blockade effect

has also been applied to the study of quantum optics [11].

Another avenue of research involves the study of quantum many-body

physics, which is particularly challenging due to the large scaling of the

Hilbert spaces with particle number. The strong interactions in Rydberg

atoms enable the controlled creation of entangled many-body states, thus

giving a pathway to the study of entangled quantum many-body physics

[12]. The study of Rydberg lattices has also garnered attention due to the

systems being strongly interacting, a regime for which few models have ana-

lytic results and have implications in the study of magnetic materials [4]. The

dynamics of strongly interacting Rydberg gases have been shown to exhibit
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collective behaviour at high densities [13].

Related to the research on quantum many-body physics in Rydberg atoms,

the strong correlations between atoms mean that systems with Rydberg

atoms can be driven into new, exotic states of matter. The strong cor-

relations can be engineered in ground state atoms by a process known as

Rydberg dressing [14], whereby weakly laser-coupling Rydberg states to the

ground state atoms allows the interatomic potential to be tailored to the

needs of the experiment. The Rydberg dressing procedure involves contin-

uously coupling a cloud of atoms in ground or low-excited states, and by

appropriate choice of Rabi frequency and detuning the admixture of the Ry-

dberg character in the atomic cloud can in principle be controlled. Below a

critical radius, however, the Rydberg blockade effect prevents any admixture

of Rydberg character in the atomic state, allowing the potential to have a

sharp cut-off. By Rydberg-dressing a Bose-Einstein condensate (BEC), the

sharp cut-off in the potential has been shown to lead to a supersolid phase

of matter [15], where the superfluid phase-correlations in the gas also show

spatial correlations. Supersolids have been predicted in other systems for

many years, although the experimental verification of this phase of matter

in 4He has remained highly controversial [16, 17].

We have discussed the application of Rydberg atoms to the study of quantum

information technology and quantum many body physics. In the next sec-

tion, we examine the particular advantages of exciting the divalent element

strontium to Rydberg states for these studies.

1.1.2 Strontium Rydberg Atoms

Many experimental groups use alkali metals as the elements of choice for

exciting to Rydberg states. Rubidium and caesium are amongst the most

common, mainly due to the availability of diode laser systems in the wave-

length region of the principal transition (5, 62S1/2 → 5, 62P1/2,3/2 for rubidium

and caesium respectively) of these elements (which happily coincides with a

range of wavelengths used for reading optical disks). The first atoms to be

cooled were sodium atoms [18]. The alkaline-earth metals, however, have

been largely ignored by the cold Rydberg atom community beyond earlier
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studies of the structure of their Rydberg series [19]. Recently, the first ex-

perimental realisation of cold Rydberg atoms of strontium has been achieved

at Durham University [20], enabling more detailed studies of the strontium

Rydberg states [21, 22].

Part of the motivation for moving to alkaline-earth atoms is the existence of

separate singlet and triplet spin Rydberg series, where singlet-triplet tran-

sitions are dipole forbidden [23]. Various effects (some of which will be dis-

cussed in chapter 4) lead to mixing between states, thus weakly allowing

transitions between singlet and triplet states. These weak transitions mean

that the 5s5p 3P0 states are very long lived (and therefore the transition

linewidths are very narrow); the use of these states has therefore generated

interest to enter new regimes of many-body states, for example in optical

lattices [24]. These lines are also commonly exploited in atomic clocks to

achieve fractional uncertainties on time measurements reaching 10−18 [25].

Finally, the long lifetime of the 5s5p 3P0 state could be used to create

Rydberg-dressed BECs more easily than in alkali metal systems. Due to

competing processes in three-level atomic systems, the short lifetime of the

intermediate states in alkali metals means that the Rydberg dressing of a

BEC requires a very large detuning from the Rydberg state, which is experi-

mentally very challenging. The long lived 5s5p 3P0 state of strontium allows

for larger Rabi frequencies, hence reducing the detuning required for Rydberg

dressing [14, 26]. Rydberg dressing, however, has not been achieved exper-

imentally to date. The use of Rydberg dressing in atomic clocks has been

proposed as a method of spin-squeezing the measurements (spin-squeezing is

a method of reducing the quantum uncertainty on one physical variable at

the expense of the conjugate variable’s uncertainty) of the clock transition

frequency [26].

While it appears strontium Rydberg atoms are good candidates for observing

new physics experimentally, the theory efforts have been much less satisfac-

tory in recent years. In the alkali metal atoms, many different methods are

used for the calculation of Rydberg state wavefunctions (see for example [27–

29]), although the range of applicability of these methods in two-electron

atoms has never been conclusively studied. In strontium, the presence of



Chapter 1. Introduction 5

doubly-excited states can coincide in total energy, total angular momentum

and parity with singly-excited Rydberg states, causing a perturbation to

these Rydberg states. Effects of these doubly-excited “perturbers” include

energy shifts, quenching of the Rydberg state lifetimes (as the doubly-excited

states are very short lived) and allowing dipole-forbidden transitions [19, 30].

New numerical methods of calculating wavefunctions and matrix elements are

necessary for a theoretical study of the properties of strontium. Currently,

the only existing techniques that have been applied to the calculation of

strontium Rydberg states either employ a one-electron model (completely

ignoring the effects of the second electron and doubly excited states) [22]

or employ complex ab initio techniques [31]. To our knowledge, the two-

electron effects on the Rydberg states have not been comprehensively studied

for principal numbers greater than n = 10.

The aim of the work developed in this thesis is to explore the properties of

Rydberg states of strontium. We employ a range of techniques, including

one-electron approximations and multichannel quantum defect theory, which

ultimately allows us to explore the long-range interactions of strontium Ry-

dberg atoms. The work is an important step in improving the descriptions

of strontium Rydberg states, and paves the way for the realization of many

of the studies mentioned in section 1.1.1.

1.2 Structure of the Thesis

The layout of the thesis is as follows. In chapter 2, we briefly review the

theoretical background of the one-electron approximation for Rydberg atoms.

Towards the end of the chapter, the use of experimental energy levels as

input for a range of calculations will be detailed, with formulae and fits to

these formulae included for several atoms of interest throughout this thesis.

Finally, radiative lifetimes in Rydberg states of rubidium are calculated using

the discussed models, demonstrating the effectiveness of these models.

Following the development of the one-electron model, chapter 3 describes the

use of this model to develop the theory of long-range interactions in Rydberg

atoms, and to provide calculations of long-range interactions in a variety of
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atoms. The chapter will also include a discussion of the uncertainties in

these calculations. The calculations are the first of their kind in strontium,

calcium and ytterbium, and are also the most comprehensive calculations of

the long-range interactions in rubidium and caesium.

After the important initial survey of the theory of long-range interactions,

chapter 4 addresses the important question of the validity of the one-electron

model for strontium. We develop details of numerical descriptions of stron-

tium Rydberg states, making use of multichannel quantum defect theory

(MQDT), which has long been used in the description of multielectron atoms

[30]. The basics of the theory are reviewed, before presenting new MQDT

models for Rydberg states of strontium. Finally, at the end of the chap-

ter we show how these MQDT models can be used to numerically calculate

properties such as radiative lifetimes of strontium Rydberg states.

In chapter 5, the theory of long-range interactions from chapter 3 is com-

bined with MQDT formalism of chapter 4 and applied to the investigation of

two-electron effects on the interactions of Rydberg states of strontium. We

show that spin-forbidden interactions arise as a consequence of state-mixing,

and that an intercombination-induced Förster resonance (a resonance feature

caused by a near-degeneracy of two-atom states) arises in the 3D2 series. We

explore the application of this Förster resonance to a chain of Rydberg atoms,

and demonstrate the separation of the spin dynamics from the dynamics of

the total angular momentum, a situation that is analogous to spin-charge

separation in Luttinger liquids [32].

Finally, the last chapter concludes on these investigations.

1.3 Publications Arising from this Work

The following is a list of publications that are linked with the work presented

in this thesis, along with the references to the related chapters.

� Long-range Rydberg-Rydberg interactions in calcium, stron-

tium and ytterbium

C L Vaillant, M P A Jones and R M Potvliege, Journal of Physics B
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45, pp. 135004 (2012).

Basis for chapter 3.

� Multichannel Quantum Defect Theory Models of Rydberg

States of Strontium

C L Vaillant, M P A Jones and R M Potvliege, submitted to Journal

of Physics B (2014).

Pre-print reference arXiv:1402.5802.

Basis for chapter 4.

� Spin-Charge Separation in Spin Chains of Strontium Rydberg

Atoms

C L Vaillant, M P A Jones and R M Potvliege, in preparation (2014).

Basis for chapter 5.

Another related publication not included in this thesis is

� Cooperative Enhancement of Energy Transfer in a High-

Density Thermal Vapor

L Weller, R Bettles, C L Vaillant, M A Zentile, R M Potvliege, C S

Adams and I G Hughes, submitted to Physical Review Letters (2013).

Pre-print reference arXiv:1308.0129.

1.4 Atomic Units

Before proceeding to a description of Rydberg atoms, it is important to

include a discussion of atomic units. Atomic units are defined by setting

~ = me = e = a0 = 1, where ~ is Planck’s constant, me is the mass of the

electron, a0 is the Bohr radius and e is the elementary charge (where the

electron has a charge of −e). The resulting conversion factors are presented

in table 1.1. Energies are quoted in Hartree atomic units (not in Rydberg

atomic units, which differ by a factor of two).

Hartree atomic units are used throughout the thesis, unless otherwise stated.
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Chapter 2

Rydberg Atoms

2.1 Introduction

In the introductory chapter, a non-exhaustive list of applications for Rydberg

atoms was given as a motivation for the study of these highly excited states.

The physics of Rydberg atoms has been studied extensively for many years,

although the applications of Rydberg atoms has only begun to make an

impact in the field due to the invention of laser cooling [18]. Cold atoms are

not a requirement, however, for the theoretical and experimental study of the

properties of Rydberg states. The alkali metals, in particular, have numerous

works associated with them, with numerical techniques for the calculation of

their Rydberg states being well-established [2].

In this chapter, we provide a (somewhat) brief overview of Rydberg atoms

under the one-electron approximation. The goal is to develop the theoretical

techniques and descriptions that will later be extended to the case of two-

electron atoms. To know where we are going, we must know where we are

coming from.

2.2 Rydberg Atoms

Rydberg atoms are atoms with a single electron that is excited to high values

of principal quantum number n. At these large values of n, it is useful to

9
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+
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+

(a) (b)

Figure 2.1: Sketch of the one-electron model. Panel (a) shows a sketch of

hydrogen, with the cyan core being a proton. Panel (b) shows a sketch of a

multielectron model, with the beige core being the combination of the nucleus and

the other atomic electrons. The red dot for both denotes the valence electron, and

the dashed line indicates a classical electron orbit.

consider the valence electron interacting with a core. A sketch of the single

valence electron interacting with a core composed of the nucleus and the

other atomic electrons is shown in figure 2.1. If we consider the contribu-

tions to the potential felt by the valence electron, we can split this into the

attractive potential from the positive charge of the nucleus and the com-

plicated repulsive potential due to the effect of the core electrons. When

the valence electron is very far from the nucleus compared to the distance

between the core electrons, then the inner core can be approximated as a

polarizable charged cloud. The potential felt by the valence electron at large

radial distances is therefore the sum of the long-range Coulomb potential due

to the charge and the short range polarization term from the core electrons.

At shorter distances (∼ 1 a.u.) this breaks down due to the action of the

core electrons.

To accommodate the action of the core at small distances, we introduce the

quantum defect, δ. The quantum defect is a dimensionless state-dependent

quantity that depends on the principal quantum number, n, and the angu-

lar momentum quantum number, l, of the atomic state. The effect of the

quantum defect is to introduce an energy shift and a phase-shift in the os-

cillation of the wavefunction. The only remaining terms to be treated in the

potential are the Coulomb potential and the core-polarization terms. Denot-

ing the separation between the nucleus and the valence electron by r (with
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magnitude r), the potential experienced by the valence electron, V (r), is then

V (r) = −1

r
− αcore

r4
, (2.1)

where αcore is the core polarizability.

For very large r, the r−4 core-polarization term in (2.1) can be neglected.

This is known as the Coulomb approximation; this approximation will be

used throughout the rest of this thesis. It can be shown by perturbative

arguments that the core-polarization term leads to an energy dependence

in the quantum defect [34]. This implies that knowing the state-specific

quantum defect to a good accuracy is enough to account for most of the effect

of core-polarization, except for an r-dependent phase-shift for small r. For

Rydberg atoms, the details of the wavefunction for small r are unimportant,

as the amplitude of the wavefunction is small in this region.

In non-hydrogenic atoms (hydrogenic atoms are atoms with only one electron

interacting with the nucleus) the states with the same values of n but different

values of l are non-degenerate. By grouping together the states that have

the same value of l, the quantum defects for high n values are found to be

nearly constant. We call a collection of states with the same value of l (and

when spin is included, the same term symbol) and increasing values of n a

Rydberg series (in chapter 4 we will see that the concept of a series is more

tricky for multiple valence electrons). The energy levels for a Rydberg series,

En, of a one-electron atom can be written as

En = − 1

2ν2
= − 1

2[n− δ(n)]2
, (2.2)

where n is the principal quantum number, and ν = n− δ(n) is the effective

principal quantum number. For hydrogen, δ = 0 and n = ν, such that

the principal quantum number determines the energy of the atomic state.

The quantum defect, δ, therefore serves to characterize the departure from

hydrogenic behaviour.

Within a Rydberg series, the principal quantum number is an important label

for the states within the series. Many atomic properties depend on the value

of n, not just the energy. For hydrogen, the properties of the atom depend en-

tirely on the values of n and l (despite the degeneracy in l); in non-hydrogenic
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Quantity Scaling

Energy n−2

Energy spacing n−3

Expectation value of radius n2

Dipole matrix element n2

Radiative Lifetime n3

Polarizability* n7

van der Waals interaction* n11

Table 2.1: The scaling of different bound state properties of Rydberg atoms with

the principal quantum number, n [2]. The properties marked with an asterisk are

properties where this scaling is only true for non-hydrogenic atoms— in hydrogen,

the degeneracy in l modifies the n-dependence.

atoms the situation is more complicated, although clear dependences on n

are observed. Some of the scalings of Rydberg state properties are shown in

table 2.1.

The dependence of the state properties on n arises from the n-dependence

of the wavefunctions. In the next section, we examine the wavefunctions in

more detail in order to elucidate the role of the principal quantum number.

2.3 Wavefunctions

The wavefunctions in one-electron atoms can differ significantly between hy-

drogenic atoms and non-hydrogenic atoms. In particular, the quantum defect

vanishes for hydrogenic atoms, meaning that the states are degenerate in l

(ignoring effects such as the Lamb shift [23]), modifying greatly the behaviour

of properties such as the interatomic forces. Nevertheless, the study of hy-

drogenic wavefunctions yields insight into the properties of other Rydberg

atoms, as the wavefunctions are analytic. In this section we will first dis-

cuss the behaviour of wavefunctions for hydrogen (in particular looking at

the scaling with n) before examining the differences between hydrogen and

non-hydrogenic atoms.
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2.3.1 Hydrogen

The hydrogen atom is the simplest atom, and is one of the purest examples

of the quantum two-body problem. Hydrogen is also the only atom whose

wavefunctions can be calculated analytically. The wavefunctions and bound

state energies can be determined with the knowledge of the values of the

principal quantum number, n and the orbital angular momentum quantum

number, l. For this section we will ignore the effect of spin, which causes small

splittings of the energy levels due to the spin-orbit coupling; this splitting is

known as the fine structure splitting.

The time-independent Schrödinger equation for the internal motion of atomic

hydrogen is simply given by the equation[
−∇

2

2
− 1

r

]
ψnlm = Enlmψnlm, (2.3)

where l is the orbital angular momentum quantum number, m is the mag-

netic quantum number, r is the radial distance of the electron from the

nucleus (taken to be a point charge of infinite mass) and Enlm is the energy

for the state uniquely labelled by the quantum numbers n, l and m, with

wavefunction ψnlm. The eigenfunctions for (2.3) are given by [23]

ψnlm = −

[(
2

n

)3
(n− l − 1)!

2n[(n+ l)!]3

]1/2

e−r/2rlL2l+1
n+l (r)Ylm(θ, φ), (2.4)

where Ylm(θ, φ) is a spherical harmonic, θ and φ are angular coordinates

(using spherical polar coordinates) and L2l+1
n+l (r) is an associated Laguerre

polynomial given by [23]

L2l+1
n+l (r) =

n−l−1∑
k=0

(−1)k+1 [(n+ l)!]2

(n− l − 1− k)!(2l + 1 + k)!

rk

k!
. (2.5)

Using (2.4), the expectation value of the radial distance is then given by

〈r〉nlm = n2

{
1 +

1

2

[
1− l(l + 1)

n2

]}
. (2.6)

The n2 scaling of 〈r〉nlm, as noted in table 2.1, can thus be seen to arise

from a combination of the normalization of the atomic wavefunction in (2.4)

and the pre-factors appearing in the associated Laguerre polynomial in (2.5).

While the situation is different in non-hydrogenic atoms due to the presence

of the core electrons, the same scaling can be seen in the Rydberg states.
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2.3.2 Non-Hydrogenic Atoms

In non-hydrogenic atoms, the low-excited and ground states of the atom

involve the valence electron interacting heavily with the core electrons (in-

deed, symmetrization renders even the simple picture of a valence electron

and core electrons non-sensical), making these states very different from the

hydrogenic picture discussed above. For Rydberg states, however, the wave-

function of the valence electron is far more extended, and there is very little

overlap between the wavefunctions of the core electrons and the valence elec-

tron. The Coulomb potential in (2.1) dominates at large r, meaning that the

Coulomb approximation improves for higher values of n.

One cannot simply substitute n→ ν for the wavefunctions, as was done for

the energy levels. The wavefunctions are not eigenstates of the Coulomb

potential when the substitution n → ν is made. In fact, wavefunctions for

non-hydrogenic atoms are not analytic, meaning that the wavefunctions can

only be calculated numerically. Some numerical methods for one-electron

non-hydrogenic atoms will be discussed in section 2.4.1.

Despite the lack of analytic solutions for non-hydrogenic atoms, most dif-

ferences between hydrogenic and non-hydrogenic Rydberg state wavefunc-

tions are quite small. The first difference is that the wavefunctions are non-

degenerate in l, hence the scaling laws that are true in hydrogen are not

necessarily directly applicable to non-hydrogenic atoms. A good example is

the Stark shift, where electric fields shift the energy of the bare states. In

hydrogen, the shift is dominated by the linear term due to the degeneracy

in l [23]. In other atoms, however, the non-degeneracy in l implies that the

linear term is zero, making the quadratic Stark shift the dominant term.

The differences between the linear and quadratic terms also implies that the

n-scaling laws for the Stark shifts differ between hydrogen and other atoms

(as highlighted in table 2.1).

The second difference in the wavefunctions comes about due to a small ad-

mixture between the different solutions of the Schrödinger equation. This

admixture is the source of the phase-shift in the wavefunction, and is caused

by the interaction of the Rydberg electron with the core. The different solu-

tions of the Schrödinger equation will be discussed in section 2.4.1.
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2.4 Rydberg State Transitions

Many properties of atoms arise due to their interactions with electromagnetic

fields. Even when no external fields are applied, the atoms can still be

affected by interactions with electromagnetic radiation. The vacuum field,

for example, causes spontaneous emission from excited states to lower excited

states or the ground state [35]. The interaction of atoms with electromagnetic

fields depends crucially on transitions between different atomic states.

For Rydberg states, the interaction of the atom with electromagnetic fields

can be separated into two types of transitions: Rydberg state to Rydberg

state transitions, and Rydberg to low-excited state transitions. These two

different cases lead to different scalings with n, as the dominant coupling

terms behave in different ways. For example, we contrast the radiative life-

time of Rydberg states and the interaction of Rydberg atoms with static

electric fields. In the case of radiative lifetimes, the dominant contributions

are from Rydberg to low excited state transitions induced by the absorp-

tion of photons from the vacuum. The scaling of the lifetimes make Ryd-

berg atoms particularly well-suited to the storage and manipulation of qubit

states [36]. Electric fields, however, couple states that lie close together in

energy, meaning that the polarizability of Rydberg states is dominated by

Rydberg to Rydberg state transitions. The large polarizability of Rydberg

atoms makes them extremely sensitive to electric fields, and Rydberg atoms

have been used for sensitive electrometry [37].

Many radiative properties of atoms (i.e. the properties of the atoms inter-

acting with electromagnetic radiation), such as the natural lifetimes, depend

crucially on the dipole moment of particular transitions (especially if the

radiation is resonant with the transition). In an electromagnetic field, the

matrix element describing the transition probability between state a and

state b, with energy separation ω = Eb − Ea, is given by [23]

Mba = 〈b|eik.r ε̂ · ∇|a〉, (2.7)

where ω = |k|c (k points in the direction of propagation of the light) and

ε̂ is the polarization of the light. For the full time-dependent transition

probability it is necessary to integrate over all frequencies, while including the
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spectral function of the light, although the properties of atomic transitions

depend mostly on the matrix element in (2.7). A full derivation of various

quantities such as absorption widths that arise from atom-light interactions

can be found in [23].

Using a Maclaurin expansion of the exponential term in (2.7), such that

eik.r ≈ 1 + ik · r + O(k2r2), we note that, for optical transitions, k〈r〉 � 1,

and the exponential can be safely approximated to unity. This approximation

is known as the dipole approximation, and constitutes one of the most impor-

tant approximations in the study of atom-light interactions. There are many

situations where this approximation breaks down (for example in strong-field

physics [38]), although for Rydberg atoms interacting with visible light the

approximation is generally well justified.

By using the Heisenberg equation of motion,

dA

dt
=
∂A

∂t
− i[A,H], (2.8)

where A is an operator and H = −(∇2/2)− (1/r) is the unperturbed Hamil-

tonian of the system, and rewriting the ∇ term using p = mṙ = i~∇, the

matrix element in (2.7) can be written in its final form as

Mba = −ω〈b|ε · r|a〉. (2.9)

We thus see that the transitions induced by the absorption and emission of

light is proportional to the matrix element of the dipole operator, 〈b|D|a〉
(where D = er). The interaction with external electric fields also turns out

to be dependent on the dipole matrix element.

2.4.1 Calculation of Dipole Matrix Elements

The dipole matrix elements (which scale as n2) are crucial properties of

Rydberg transitions, whether the transition is to another Rydberg state or

to a low excited or ground state. Dipole matrix elements are key to many

of the calculations presented in this thesis, therefore it is worth examining

these matrix elements in some detail.

Two methods will be used: a semiclassical approximation, and the quan-

tum defect theory (QDT) method. The first makes use of semiclassical
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approximations to obtain a semianalytic expression for the dipole matrix

elements, which can be rapidly evaluated when precise values of the energy

levels of the two states are known. This semiclassical technique is partic-

ularly well-suited for the calculation of Rydberg-Rydberg state transitions.

The second method, QDT, makes use of the properties of the eigenfunctions

of the Coulomb equation, and accounts for the deviation from purely hydro-

genic wavefunctions by using the quantum defect. Thus, the wavefunctions

can be obtained numerically and applied to the calculation of the dipole

matrix elements. The QDT method is well-suited for Rydberg-Rydberg,

Rydberg-excited and Rydberg-ground state transitions, and is the most flex-

ible method of calculation for dipole matrix elements.

We note another common method of calculating Rydberg atom wavefunctions

involving the use of model potentials, where a suitable functional form of

the potential between the core and the valence electron is assumed and free

parameters are fitted to reproduce experimental energy levels. Depending on

the model potential, core polarization can be included [39]. This method can

usually only be applied over a limited range of n, however, and requires the

determination of the model potential parameters for each series of interest.

Both the semiclassical and QDT methods make use of the Coulomb approxi-

mation, which is the assumption that (for high enough n) the valence electron

moves through a purely Coulombic potential at large r. Starting from the

Schrödinger equation in (2.3), we separate the wavefunction into radial and

angular parts, such that ψnlm = Rnl(r)Ylm(r̂) (ignoring spin), where r̂ de-

notes the angular coordinates. Separating (2.3) into its radial and angular

parts, we obtain the Coulomb equation,[
− d2

dr2
+
l(l + 1)

r2
+

2µ

r

]
uE,l(r) = 2µEuE,l(r), (2.10)

where uE,l(r) = rRE,l(r). The substitution me → µ (where µ is the reduced

mass) has been made to make (2.10) valid for all one-electron atoms under the

Coulomb approximation. Note that as the full time-independent Schrödinger

equation is separable, the Ylm(r̂) functions are eigenfunctions of the angular

part of the full Schrödinger equation.

The dipole matrix elements are correspondingly split into angular and radial
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parts, such that

〈n′l′m′|r|nlm〉 = 〈l′m′|r̂|lm〉〈n′l′|r|nl〉, (2.11)

where r̂ denotes the angular coordinates of the vector r and r denotes the

radial coordinate. In (2.11) we have ignored the spin, although in reality the

spins and angular momenta all couple together. This will be incorporated

into the calculation of the radiative lifetimes in section 2.6, although all

single-atom angular matrix elements can be calculated analytically in terms

of Clebsch-Gordan coefficients and Wigner-6j symbols [40]. Appendix A

provides derivations of the angular matrix elements for various cases. We note

that for a closed subshell M
(shell)
L =

∑
imli = 0 and M

(shell)
S =

∑
imsi = 0,

leading directly to L(shell) = S(shell) = 0, thus implying that there is no angular

momentum contribution from the core (provided the subshell is closed).

The rest of this section is dedicated to the numerical calculations of the radial

dipole matrix elements (the right hand matrix element in (2.11)).

Semiclassical Approximation

For transitions between close-lying Rydberg states, the dipole matrix ele-

ments depend largely on the behaviour of the wavefunctions at large r. For

high n, the majority of the wavefunction is found in the classically allowed

region (where the kinetic energy is larger than the potential energy), there-

fore the dipole matrix elements between Rydberg states are particularly well

suited to semiclassical approximations.

We start by considering a wavefunction for (2.10) under a WKB approxima-

tion (an approximation where the wavefunction can be found using a series

solution; WKB stands for Wentzel, Kramers and Brillouin, the pioneers of

the technique) [41],

uE,l =

√
2

πν3k
cos

(∫ r

rmax

k(r′)dr′ +
π

4

)
, (2.12a)

uE,l =

√
2

πν3k
cos

(∫ r

rmin

k(r′)dr′ − π

4

)
. (2.12b)

where

k(r) =

[
2E +

2

r
−
(
l + 1

2

)2

r2

]1/2

(2.13)
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is the momentum of the valence electron, and ν is the effective principal

quantum number (as in (2.2)). The quantities rmin and rmax are classical

turning points (i.e. where the momentum becomes zero), such that the clas-

sically allowed region is within rmin ≤ r ≤ rmax. These turning points are

given by

rmin,max = ν2

1±

[
1−

(
l + 1

2

)2

ν2

]1/2
 . (2.14)

We note the modification of the quantity l(l+1)→ (l+1/2)2. This correction,

known as Langer’s correction [42], arises due to the nature of the application

of the WKB approximation in this context. As the WKB approximation can

only be applied in the classically allowed region of the Coulomb equation,

the effect of neglecting the classically forbidden region leads to an erroneous

phase for the wavefunction. This can be accounted for by the above modi-

fication of the quantity l(l + 1), which is equivalent to raising the potential

barrier.

As noted in [41], the lower turning point is likely to have a larger error associ-

ated with it due to the effect of the core. Hence, the use of the wavefunction

in (2.12b) would cause the whole spectrum to be shifted due to this error,

causing a much larger error in the results. As such, the wavefunction in

(2.12a) is used in the calculation of the radial dipole matrix elements, giving

[41]

〈νl|r|ν ′l′〉 =
1

π (νν ′)3/2

∫ rmax

rmin

rdr√
kνl(r)kν′l′(r)

cos [Φνl(r)− Φν′l′(r)] , (2.15)

where

Φνl(r) =

∫ r

rmax

kνl(r
′)dr′. (2.16)

We note that we have written 〈nl|r|n′l′〉 as 〈νl|r|ν ′l′〉 to distinguish the latter

from the hydrogenic case, following the conventions in the literature [28, 41,

43, 44].

At this point, it is convenient to rewrite (2.15). Following [43], we introduce
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the parameters

ε =

(
1− lc

νc

)1/2

, (2.17a)

lc =
l + l′ + 1

2
, (2.17b)

νc =
√
νν ′, (2.17c)

where ∆l = l′ − l. Here, ε is the eccentricity of the classical Kepler orbit of

the electron, and lc and νc are representative values of l and ν respectively.

The final results depend very weakly on the exact form chosen for lc and νc,

and different authors define these quantities differently [41, 43].

Historically, the calculation was most conveniently expressed as a series ex-

pansion, such that [28, 43, 44]

〈ν ′l′|r|νl〉 =
3

2
ν2
c

[
1−

(
lc
νc

)2
]1/2 ∞∑

p=0

γpgp(∆ν), (2.18)

where γ = ∆l lc/νc and ∆ν = ν − ν ′. The radial dipole matrix element

is then defined by the gp(∆ν) functions. Taking the first four terms in the

expansion in (2.18) is enough to converge the series for small values of the

angular momentum and high values of ν. Previously, the first four gp(∆ν)

functions were interpolated using tabulated values of the functions [28, 44],

although the values can also be expressed in terms of Anger functions [41, 43],

Js(x) =
1

π

∫ π

0

dθ cos (sθ − x sin θ) . (2.19)

The first four gp(∆ν) functions are thus given by [43]

g0(∆ν) =
1

3∆ν
[J∆ν−1(−∆ν)− J∆ν+1(−∆ν)] , (2.20a)

g1(∆ν) = − 1

3∆ν
[J∆ν−1(−∆ν) + J∆ν+1(−∆ν)] , (2.20b)

g2(∆ν) = g0(∆ν)− sin π∆ν

π∆ν
, (2.20c)

g3(∆ν) =
∆ν

2
g0(∆ν) + g1(∆ν). (2.20d)

For completeness, we also include the radial quadrupole matrix element ex-

pansions. The selection rules for quadrupole selections are ∆l = 0,±2;
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∆l = 0 transitions are treated separately to ∆l = ±2 transitions. For ∆l = 0

transitions we have the expansion [43]

〈ν ′l|r2|νl〉 =
5

2
ν4
c

[
1− 3l2c

5ν2
c

] 1∑
p=0

γ2pQ2p(∆ν), (2.21)

and for ∆l = ±2 transitions

〈ν ′l′|r2|νl〉 =
5

2
ν4
c

[
1− (lc + 1)2

ν2
c

]1/2 [
1− (lc + 2)2

ν2
c

]1/2 3∑
p=0

γpQp(∆ν).

(2.22)

The quadrupole expansion functions, Qp(∆ν), are given by

Q0(∆ν) = − 6

5(∆ν)2
g1(∆ν), (2.23a)

Q1(∆ν) = − 6

5∆ν
g0(∆ν) +

6

5

sin(π∆ν)

π(∆ν)2
, (2.23b)

Q2(∆ν) = −3

4

[
6

5∆ν
g1(∆ν) + g0(∆ν)

]
, (2.23c)

Q3(∆ν) =
1

2

[
∆ν

2
Q0(∆ν) +Q1(∆ν)

]
. (2.23d)

These expressions will be used in chapter 3 when evaluating the strength of

quadrupole-quadrupole interactions. We note that equations (2.23) do not

diverge at ∆ν → 0 as the various terms are generally sinusoidal functions

divided by polynomials; these types of functions converge to finite values (as

predicted by l’Hôpital’s rule).

The calculation of dipole matrix elements thus boils down to a simple integral

that can be calculated numerically very precisely, given the knowledge of ∆ν

and some quantum numbers. The value of ∆ν is fixed by the measured

energy levels (see equation (2.2)), which are crucial to the calculation of

dipole matrix elements calculated using the semiclassical approximation.

Figure 2.2 shows the four functions in (2.20). From the figure, it is clear that

the radial dipole matrix elements decrease rapidly with the value of ∆ν; this

decrease is particularly useful when deciding where to truncate large basis

sets of atomic states (as will be discussed in chapter 3).

The results of the radial dipole matrix elements calculated numerically using

(2.18) were compared to results from model potentials that had previously
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Figure 2.2: The g0(∆ν) (blue curve), g1(∆ν) (green curve), g2(∆ν) (red curve)

and g3(∆ν) (cyan curve) functions defined in (2.20).

been calculated for strontium (the same energy levels were used as those

output from the model potential) [22]. The difference between the two cal-

culations were below 1%, although for lower values of n (around n ∼ 10) the

difference increased sharply, as expected from the approximations. For high

values of n, this semiclassical method provides a semianalytic, and therefore

rapid, way of calculating Rydberg-to-Rydberg state transitions.

Quantum Defect Theory

For many situations, transitions between high lying Rydberg states are not

sufficient. The semiclassical method presented in the previous section breaks

down for n as low as 20, even though the Coulomb approximation can still be

valid down to much lower n. This is due to the neglect of the wavefunctions

in the classically-forbidden region, an approximation which quickly breaks

down when the two wavefunctions being calculated have significant overlap

in the classically-forbidden region.

Quantum defect theory (QDT) is a much more general way of calculating

radial matrix elements, by producing numerical wavefunctions for the valence

electron. As the wavefunctions need to be determined for calculations of

dipole matrix elements, QDT calculations are slower than the semiclassical
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method. QDT wavefunctions, however, are applicable to more calculations

than just calculations of dipole matrix elements.

QDT relies on finding numerical solutions to the Coulomb equation in (2.10)

using experimentally determined values of the energy E. In this section, we

define W = −1/ν2, which is the binding energy of the valence electron in

Rydberg units (2 Ry = 1 a.u.). Rydberg units are used in this section only, in

order to maintain consistency with [45–48] upon which this section is based.

As (2.10) is a second order differential equation, it has two linearly indepen-

dent solutions. We choose to write these solutions as the regular solution,

sW,l(r), and the irregular solution, cW,l(r) (so-called because the regular func-

tion is zero at the origin and the irregular solution diverges at the origin).

The turning points for (2.10) are given by [45]

rmin,max = ν2

{
1±

[
1− l (l + 1)

ν2

]1/2
}
, (2.24)

where we note that as there is no WKB approximation, (2.24) does not show

the Langer correction [42]. In terms of the regular and irregular Coulomb

functions, the wavefunction of the valence electron for r � a0 is given by [48]

uW,l(r) = sW,l(r) cosπν + cW,l(r) sinπν. (2.25)

Numerically, to find the solution with an exponentially decreasing large-r

behaviour, it is possible to use a Numerov integration method [47]. The

asymptotic r →∞ behaviour of the regular and irregular Coulomb functions,

sW,l(r) and cW,l(r), are given by [45]

sW,l(r) = (−1)l
√
A(W, l)

2
νl+1

[
− θ cos(πν)

Γ(l + ν + 1)
+
η

π
sin(πν)Γ(ν − l)

]
,

(2.26a)

cW,l(r) = (−1)l

√
1

2A(W, l)
νl+1

[
θ sin(πν)

Γ(l + ν + 1)
+
η

π
cos(πν)Γ(ν − l)

]
,

(2.26b)

where θ ∼ e−r/ν(2r/ν)ν , η ∼ er/ν(2r/ν)−ν and

A(W, l) =
l∏

p=0

(1 + p2W ). (2.27)
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Choosing a sufficiently large value of r from which to start the Numerov

integration, rstart (we choose rstart = 5n2, which was found to be a suitably

large value for the wavefunction to be extremely small), we evaluate the

wavefunction using (2.26) at rstart and rstart − dr, where dr is the step size.

The Numerov algorithm is then used to integrate inwards until the inner

turning point, rmin [47].

Below the inner turning point, the wavefunction becomes divergent if the

Numerov integration is integrated all the way to the origin, due to the pres-

ence of the irregular solution in (2.25). To solve this, we compute the sW,l(r)

and cW,l(r) functions using a series expansion in r [46]. The functions fW,l(r),

gW,l(r) and hW,l(r) (which are linear combinations of sW,l(r) and cW,l(r)) are

used as they have convenient forms for the series expansion. The functions

are related by

s(W, l, r) =

√
A(W, l)

2
f(W, l, r), (2.28a)

c(W, l, r) =

√
1

2A(W, l)
h(W, l, r), (2.28b)

h(W, l, r) = −g(W, l, r)− A(W, l)G(W, l)f(W, l, r), (2.28c)

where

G =
1

2π
<
[

d

d(ν + l + 1)
ln Γ(ν + l + 1)

+
d

d(ν − l)
ln Γ(ν − l)− 2 ln ν

]
,

(2.29)

with < denoting the real part.

Given a general expansion

f(W, l, r) =
∞∑
n=0

anr
n+l+1, (2.30)

the coefficients an can be found for both the regular and irregular functions,

f and g, and a recurrence relation used to rapidly generate the numerical

solution for many values of r. For the regular wavefunctions, the coefficients
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are [48]

a0 =
2l+1

(2l + 1)!
, (2.31a)

a1 = − a0

l + 1
, (2.31b)

n(n+ 2l + 1)an + 2an−1 +Wan−2 = 0. (2.31c)

For the irregular wavefunctions the expansions are more complicated, and

the function is given by[48]

g(W, l, r) =
1

2π

[
A(W, l)Y (W, l +

1

2
, r)

−Y (W,−l − 1

2
, r)

]
,

(2.32)

where the function Y (W,λ, r) has the expansion

Y (W,λ, r) = ln(r)f(W,λ− 1

2
, r) +

∞∑
n=0

bnr
n+λ+1/2, (2.33)

with coefficients

b0 =

[
ln 2− 2

d

d(2λ+ 1)
ln Γ(2λ+ 1)

]
a0, (2.34a)

b1 =

[
ln 2− 2

d

d(2λ+ 2)
ln Γ(2λ+ 2)

]
a1, (2.34b)

n(n+ 2λ)bn + 2bn−1 +Wbn−2 + 2nan =0. (2.34c)

Finally, once the sW,l(r) and cW,l(r) functions have been calculated, the total

wavefunction can be determined using (2.25). Near the origin the valence

electron penetrates the core; defining rcore as a length characterising the

extent of the core electron wavefunctions, we see that for r < rcore fewer

and fewer core electrons will contribute to the deformation of the valence

electron wavefunction (working in an independent electron framework). For

this reason, the quantum defect can be expected to go to zero for sufficiently

small values of r, hence the wavefunction will be regular at the origin [49].

We introduce a variation of the quantum defect of the form δ = δ(∞)(1 −
exp

[
−(r/rcore)

N
]
) for r < rcore, where δ(∞) is the value of the quantum

defect at large r, and N is an integer (we use N = 10, as this gave the
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best results for small values of n). For the value of rcore, Roothan-Hartree-

Fock wavefunctions [50] can be used to determine an expectation value for

the radial extent of the core electron orbitals. We find, however, that using

rcore = rmin produces results that do not differ significantly from using the

Roothan-Hartree-Fock results.

To test the QDT calculation of the dipole matrix elements, we compare the

oscillator strengths for various transitions with reference values [51] in table

2.2. The oscillator strength for a transition between state b and state a, fba,

is defined as [23]

fba =
2ωba

3
|〈nbLbSbJb|r|naLaSaJa〉|2, (2.35)

where ωba = Eb−Ea, and 〈nbLbSbJb|r|naLaSaJa〉 is the dipole matrix element

for the transition.

Initial State Final State QDT Value Reference Value % Difference

5 S1/2 5 P1/2 0.347 0.3456 0.5

5 S1/2 5 P3/2 0.703 0.7015 0.3

7 S1/2 8 P1/2 0.0189 0.0185 2.2

7 S1/2 8 P3/2 0.0436 0.0428 2.0

5 P1/2 7 D3/2 0.0163 0.01711 4.4

5 P3/2 7 D3/2 0.00176 0.00186 5.3

5 P3/2 7 D5/2 0.0157 0.01657 5.2

4 D3/2 5 P1/2 0.304 0.3324 8.5

4 D3/2 5 P3/2 0.0605 0.0654 7.5

4 D3/2 7 P1/2 0.0118 0.0077 54.4

4 D3/2 7 P3/2 0.00233 0.0015 51.7

5 D3/2 6 P3/2 0.0989 0.0975 1.4

5 D5/2 6 P3/2 0.594 0.5864 1.3

Table 2.2: Comparison between some oscillator strengths of transitions between

low-lying states of rubidium calculated using the QDT method (third column) and

reference values (fourth column) given in [51].

The comparison of the oscillator strengths in table 2.2 shows that the QDT

method works very well, even for low n states where we would not expect the

Coulomb approximation to be valid. The exception is for transitions involv-

ing the 4DJ states, where the percentage difference between the reference
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values and the calculated values can be as large as 50%, implying a very

poor description of the 4D states. This poor description is unsurprising, as

the effective principal quantum number (ν ≈ 2.7 [52]) is very close to the

value of the orbital angular momentum quantum number, a regime where

the Coulomb function description significantly breaks down [45].

For Rydberg states, we test the QDT method in section 2.6 using calculations

of the radiative lifetimes in rubidium.

2.5 Energy Levels

In section 2.4.1, two different methods of calculating numerical wavefunctions

were presented. Both methods, however, require the input of accurate bind-

ing energies for the relevant atomic states. In general, we use accurate values

of the energies that have been measured experimentally, or extrapolate from

fits to the quantum defects.

The quality of the available energy level data varies widely between atoms

and between series. Two of the most common types of measurements are

laser spectroscopy, where an energy level is determined by scanning the laser

frequency and noting the position of resonances [53], and microwave spec-

troscopy, where microwaves are used to excite transitions between Rydberg

states [54]. In general, laser spectroscopy gives a wider range of data but

is less accurate, whereas fits to the quantum defects provided by microwave

spectroscopy measurements are highly accurate and therefore more desirable.

Equation (2.2) relates the binding energy of the atomic state to the quantum

defect, δ, of the state. For large values of n, δ is approximately constant

or varies smoothly and slowly with n, making the quantum defect an excel-

lent quantity to extrapolate. The variation of the quantum defect can be

expressed using the well-known Rydberg-Ritz formula [2, 23]

δ = δ0 +
δ2

(n− δ0)2
+

δ4

(n− δ0)4
+ . . . , (2.36)

which constitutes an expansion of the quantum defect in a power series in

energy (c.f. (2.2)). In order to extrapolate from the (often limited) sets of ex-

perimental energy level data, the values of the quantum defects are extracted,
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and the δ0, δ2, δ4 . . . coefficients (also known as Rydberg-Ritz coefficients) are

used as free parameters in a fitting procedure.

For the cases where fits to (2.36) are not provided by the reference, we apply

a least-squares fitting procedure to obtain the Rydberg-Ritz coefficients. For

this fitting procedure the cost-function, χ2, is defined as

χ2 =
∑
i

[(δ(i)
exp − δ

(i)
theory)/α(i)

exp]2, (2.37)

where i labels the particular measurement in a data set, δ
(i)
exp is the experi-

mental measurement, δ
(i)
theory is the theory, and α

(i)
exp is the uncertainty on the

experimental value [55]. The χ2-function is a statistical measure of the de-

viation between theoretical values and the experimentally measured values,

and a normal distribution between calculated and measured data results in

a value of χ2
ν ∼ 1 (where χ2

ν = χ2/ν is the reduced χ2, and ν here is the

number of degrees of freedom). We thus minimize χ2 to find the best fit for

each series.

The uncertainties in the fit parameters (in this case the Rydberg-Ritz coeffi-

cients) are then found by plotting χ2 as a function of the fitting parameters

about the minimum. The uncertainty in each parameter (neglecting correla-

tions between the parameters) is then given by the difference in the parameter

that gives a corresponding change of χ2 → χ2 + 1. For the case of fits to

equation (2.36), correlations between the errors of different parameters were

found to be small, and are thus ignored.

Table 2.3 shows Rydberg-Ritz coefficients for rubidium and caesium. Results

from microwave spectroscopy are available for both atoms; indeed, due to

the usage of the caesium ground state hyperfine transition as a frequency

standard, certain energy levels of caesium are particularly well known [56].

In contrast, no microwave measurements of the energy levels of strontium

are available. Measurements from laser spectroscopy, however, exist for all

series of strontium for S, P, D and F states, over wide ranges of n [61–

70]. The highest accuracy measurements from references [61–65] are used to

obtain Rydberg-Ritz coefficients, which are provided in table 2.4. The data

fits (2.36) well for all series except the 3P2 and 1S0 series, where substantial

deviations are observed for higher values of n in the ranges quoted by the
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Series δ0 δ2 δ4 δ6 δ8 Ref.

Rb

ns1/2 3.1311804 (10) 0.1784 (6) [57]

np1/2 2.6548849 (10) 0.2900 (6) [57]

np3/2 2.6416737 (10) 0.2950 (7) [57]

nd3/2 1.34809171 (40) -0.60286 (26) [57]

nd5/2 1.34646572 (30) -0.59600 (18) [57]

nf5/2 0.0165192 (9) -0.085 (9) [58]

nf7/2 0.0165437 (7) -0.086 (7) [58]

Cs

ns1/2 4.0493527 0.238100 0.24688 0.06785 0.1135 [59]

np1/2 3.5914856 0.380223 -0.64771 20.9538 -84.108 [59]

np3/2 3.5589599 0.392469 -0.67431 22.3531 -92.289 [59]

nd3/2 2.4754562 0.009320 -0.43498 -0.76358 -18.0061 [59]

nd5/2 2.4663091 0.014964 -0.45828 -0.25489 -19.6900 [59]

nf5/2 0.03341424 (96) -0.198674 0.28953 -0.2601 [60]

Table 2.3: The Rydberg-Ritz coefficients for rubidium and caesium, with uncer-

tainties in the last digits given in brackets and references in the last column. All

parameters are taken from the quoted references. The quantum defects obtained

from these parameters are generally valid for n & 10 (although the absolute lower

bound will depend on the series and is not necessarily explored in the literature).

respective references. For the 1S0 series, this has been attributed to collisional

shifts with the buffer gas used in the experiment [62]. It should also be

noted that the 1,3D2 series show considerable configuration mixing, although

the series are well described by equation (2.36) for n ≥ 20. The issue of

configuration mixing will be covered more thoroughly in chapter 4.

Microwave spectroscopy measurements have been performed for limited se-

ries of calcium [71, 72] and ytterbium [73], and for some other series laser

spectroscopy measurements are available for calcium [65] and ytterbium

[74]. Despite these measurements, the list of measured series for calcium

and ytterbium is less exhaustive than those for the previously mentioned

elements. Additionally, both the 1D2 series of calcium and the 1F3 series

of ytterbium contain doubly excited perturbers that cause large deviations

from (2.36); Rydberg-Ritz coefficients for these series are thus not available.
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Perturbers will also be discussed in 4. The Rydberg-Ritz coefficients are

shown in table 2.4. Small perturbers also exist in certain series of calcium;

due to these perturbers, the term 9.08(9)× 10−4 [(n− δ0)−2 − 0.01676700]
−1

must be added to equation (2.36) for the 4snd 3D2 series, and 8.51(9) ×
10−4 [(n− δ0)−2 − 0.01685410]

−1
must be added for the 4snd 3D1 series of

calcium.

2.6 Radiative Lifetimes of Alkali Metals Ryd-

berg States

In sections 2.4.1 and 2.5, all the components required for the calculation

of dipole matrix elements were presented. Precision calculations of dipole

matrix elements are available for low values of n [51], although there are no

published precision calculations of dipole matrix elements (to the best of our

knowledge) for high values of n. We therefore use experimental values of the

natural radiative lifetimes, τ , of Rydberg states as a test of the calculations

of dipole matrix elements.

The general expression for the natural radiative lifetime of an excited atomic

state, a, is given by [23]

1

τa
=

4α3

3

∑
b

ω3
ba|〈nbLbSbJb|r|naLaSaJa〉|2, (2.38)

where b are dipole-coupled atomic states below a in energy, ωba = Eb − Ea
and |naLaSaJa〉 is the wavefunction for atomic state a. Here, and throughout

the rest of the thesis, L denotes a total orbital angular momentum, S denotes

total spin and J is the total angular momentum. The corresponding angular

momenta of individual electrons are denoted by lower case letters.

For one-electron atoms, the angular dipole matrix elements can be evaluated

(see appendix A) to give [27]

1

τa
=

4α3

3

∑
b

ω3
bamax(la, lb)(2J

′ + 1)

{
L 1 L′

J ′ S J

}2

|〈nblb|r|nala〉|2, (2.39)

where the symbol with curly brackets is a Wigner-6j symbol [40], and

〈nblb|r|nala〉 is the radial dipole matrix element between states a and b. Here,
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Series δ0 δ2 δ4 Fitted Range Ref.

Sr

5sns 1S0 3.26896 (2) -0.138 (7) 0.9 (6) 14 ≤ n ≤ 34 [62]

5snp 1P1 2.7295 (7) -4.67 (4) -157 (2) 10 ≤ n ≤ 29 [63]

5snd 1D2 2.3807 (2) -39.41 (6) -109 (2)×101 20 ≤ n ≤ 50 [62]

5snf 1F3 0.089 (1) -2.0 (2) 3 (2)×101 10 ≤ n ≤ 25 [63]

5sns 3S1 3.371 (2) 0.5 (2) -1 (2)×101 13 ≤ n ≤ 45 [64]

5snp 3P2 2.8719 (2) 0.446 (5) -1.9 (1) 8 ≤ n ≤ 18 [65]

5snp 3P1 2.8824 (2) 0.407 (5) -1.3 (1) 8 ≤ n ≤ 22 [65]

5snp 3P0 2.8866 (1) 0.44 (1) -1.9 (1) 8 ≤ n ≤ 15 [65]

5snd 3D3 2.63 (1) -42.3 (3) -18 (1) ×103 20 ≤ n ≤ 45 [64]

5snd 3D2 2.636 (5) -1 (2) -9.8 (9)×103 22 ≤ n ≤ 37 [61]

5snd 3D1 2.658 (6) 3 (2) -8.8 (7)×103 20 ≤ n ≤ 32 [64]

5snf 3F4 0.120 (1) -2.4 (2) 12 (2)×101 10 ≤ n ≤ 24 [63]

5snf 3F3 0.120 (1) -2.2 (2) 12 (2)×101 10 ≤ n ≤ 24 [63]

5snf 3F2 0.120 (1) -2.2 (2) 12 (2)×101 10 ≤ n ≤ 24 [63]

Ca

4sns 1S0 2.337930 (3) -3.96 (10) [71]

4snp 1P1 1.885584 (3) -0.114 (3) -23.8 (25) [71]

4snd 1D2 Highly perturbed series [71]

4snf 1F3 0.09864 (9) -1.29 (9) 36 [72]

4sns 3S1 2.440956 (3) 0.350 (3) [71]

4snp 3P2 1.9549 (8) 2.5 (1) -16 (1) ×101 12 ≤ n ≤ 60 [65]

4snp 3P1 1.964709 (3) 0.228 (3) [71]

4snd 3D2* 0.8859 (5) 0.13 (4) [71]

4snd 3D1* 0.8833 (5) -0.02 (4) [71]

Yb

6sns 1S0 4.27914 (4) -7.06 (6) 565 (25) [73]

6snp 1P1 3.95433 (5) -12.33 (6) 1729 (27) [73]

6snd 1D2 2.71363 (4) -2.01 (4) [73]

6snf 1F3 Highly perturbed series [74]

Table 2.4: The Rydberg-Ritz coefficients for strontium, calcium and ytterbium,

with uncertainties in the last digits given in brackets and references in the last

column. Parameters in italics are quoted from the reference. The series marked

with asterisks require modifications to the Rydberg-Ritz formula due to perturbers;

see the text for details. Italics denote coefficients taken from the quoted reference.
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we use QDT to calculate these radial dipole matrix elements, as the states

that need to be included cover a large range of n, rendering the semiclassical

approximation unsuitable.

When comparing theoretical Rydberg state lifetimes to experimental results,

it is important to also include the effect of blackbody radiation, as this can

affect the lifetimes significantly [2]. Many authors have investigated the in-

clusion of blackbody radiation, using various techniques ranging from asymp-

totic expressions [75] to quasiclassical calculations [76]. Here, we follow the

work of [77] and [27].

The average number of thermal photons with an energy of ω for a tempera-

ture T is given by

〈n(ω)〉 =
1

eω/kBT − 1
. (2.40)

Spontaneous emission in the absence of thermal photons is due to the cou-

pling of the excited atom to the vacuum field [35]. In the presence of thermal

photons, the natural width of the state, Γa = τ−1
a , depends on the sum of

the coupling to the thermal field and the coupling to the vacuum, such that

Γa =
∑
b

Γb

(
1 +

1

e|ωab|/kBT − 1

)
+
∑
c

Γc
e|ωac|/kBT − 1

, (2.41)

where b denotes a state lower in energy to the initial state a, c denotes a state

higher in energy, and Γb denotes the partial decay width to a single state b

(given by (2.39), neglecting the sum).

Figure 2.3 shows a comparison of theoretical (with and without blackbody

widths included) and experimental lifetimes [78, 79] for Rydberg states of

rubidium. In general the agreement is satisfactory, although the agreement

varies from series to series. The S state lifetimes show excellent agreement

with both sets of data, and the D states are in excellent agreement with the

data from [78]. The lifetimes from [79] for the D states, however, are slightly

lower; the source of this discrepancy is unknown. The P state lifetimes show

the largest deviation, with all three data sets being in disagreement with

each other for some states. The theoretical lifetimes are predicted to be

lower than both the experimentally measured data sets, which is probably a

consequence of the poor description of the 4D states (to which the Rydberg

P states couple strongly), as mentioned in section 2.4.1.
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Figure 2.3: Lifetimes for rubidium Rydberg states in microseconds, as a func-

tion of the principal quantum number, n. Solid lines represent calculations of

lifetimes based on QDT (see section 2.4.1) including the blackbody width for

T = 300 K, dashed lines are QDT calculations without blackbody widths, the

closed symbols are experimental data from [78] and the open symbols are experi-

mental data from [79].

Nevertheless, the overall agreement between the experimental values of the

lifetimes and the values calculated using QDT is very good, and highlights

the validity of the approximations made. The application of these numerical

techniques to other calculations is thus well-motivated.

2.7 Conclusions

In this chapter, we have seen a brief introduction to Rydberg atoms and

their properties. The scaling of the physical properties of the atoms with

the principal quantum number, n, provide a unique system for exploring

the rich dynamics of quantum many-body physics. For example, the van

der Waals interactions between Rydberg atoms scale as n11, giving rise to

strongly correlated phenomena [11, 15, 24].

The calculations of the properties of Rydberg atoms using a one-electron

model have been introduced in this chapter, where we have seen that many

properties of Rydberg atoms (such as radiative lifetimes, electric dipole po-
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larizabilities and van der Waals interactions) depend strongly on the dipole

matrix elements [23]. Two methods of calculations were presented for these

dipole matrix elements. The first method of calculation involved a semiclas-

sical approximation, valid only for transitions between close-lying Rydberg

states [28, 41, 43, 44]; these types of transitions are important for the calcu-

lations of long-range interactions covered in chapter 3. The second method

for calculating dipole matrix elements is known as quantum defect theory,

and involves the use of Coulomb functions for the generation of any Ryd-

berg atomic wavefunction [45–47]. QDT will be extended in chapter 4 to its

multichannel version, allowing calculations of divalent Rydberg states to be

explored.

Both the semiclassical and QDT methods rely heavily on the accurate knowl-

edge of energy levels. In order to obtain accurate energy levels we have re-

viewed the literature to find the best available spectroscopic measurements.

We described the variation of (single-channel) quantum defects (from which

energy levels can be easily generated) using the Rydberg-Ritz formula [2, 23];

for series with no available fits to this formula, we used a χ2-fitting procedure

to find the Rydberg-Ritz coefficients [55].

Finally, we have showed that the wavefunctions generated by QDT reproduce

the natural radiative lifetimes of the Rydberg states of rubidium. We briefly

described the calculation, including the effect of blackbody radiation on the

Rydberg state lifetimes [27, 77], and compared the results to experimental

measurements [78, 79]. Good agreement was found, except in the P states

where the description of the 4d state wavefunctions causes a significant error

in the calculated lifetimes.

In the next chapter we will make use of the one-electron model to explore

the long-range interactions between Rydberg states of different elements.



Chapter 3

Long-Range Interactions —

One-Electron Models

3.1 Introduction

In chapters 1 and 2, the importance of long-range interactions in the study

of Rydberg atoms was introduced in the context of cold atom physics. In

this chapter, we develop theoretical descriptions of long-range interactions in

Rydberg atoms using a one electron model.

The interactions between atoms play a key role in the study of cold atomic

gases. For example, the concept of the dipole blockade has seen widespread

use, where the strong dipole-dipole interactions between two Rydberg atoms

shift the excitation energy off-resonance with the excitation laser, thereby

preventing more than one excitation within a certain radius of the original

excitation [9]. The dipole blockade is used in areas such as quantum infor-

mation [3] and the implementation of two-qubit gates [80, 81], co-operative

nonlinear optics [11], and the study of strongly correlated systems [82–85].

Other examples emphasizing the importance of long-range interactions in

Rydberg gases include the formation of long-range molecules [86, 87] and the

formation of ultracold plasmas [88].

In order to fully control systems seeking to exploit the strong long-range

interactions of Rydberg atoms, detailed knowledge of these long-range in-

35
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teractions is required. The theory of long-range interactions has been well

established for some time [89, 90], although has been mostly applied to cal-

culations of interactions for ground state atoms of interest until recently

(see for example [39] for ground state alkali metal calculations of dispersion

coefficients). Due to the recent interest in Rydberg atoms, many calcula-

tions have since been performed for alkali metal atoms (principally rubid-

ium and caesium) [8, 91–95]. The studies include perturbative calculations

(both of dipole-dipole interactions and quadrupole-quadrupole interactions)

[8, 91, 93], and non-perturbative calculations of dipole-dipole interactions

[92, 94, 95]. Our calculations reported in [96] are the first perturbative cal-

culations of the long-range interactions between divalent Rydberg atoms, and

include the effect of fine structure as well as Zeeman degeneracy and angular

variations. We also compare the range of validity of the perturbative method

with non-perturbative calculations.

This chapter begins by reviewing the general theory of long-range, multipo-

lar interactions. This includes a derivation of the interaction Hamiltonian

for one- and two-electron systems used in the treatment of long-range inter-

actions, as well as detailing the perturbative treatment and the symmetries

emerging from this perturbative calculation; the non-perturbative treatment

is briefly mentioned. The rest of the chapter is dedicated to the behaviour

of dipole-dipole and quadrupole-quadrupole interactions in various atoms.

3.2 Theory of Multipolar Interactions

3.2.1 Interaction Hamiltonian

We begin by considering two LS-coupled multielectron atoms separated by

the internuclear vector R, each with a single electron excited to a Ryd-

berg state, where atom 1 is in state |n1L1S1J1M1〉 and atom 2 is in state

|n2L2S2J2M2〉. In this chapter, we assume these Rydberg states have a high

enough principal quantum number, n, such that the effects of configuration

interactions are negligible; for strontium, this assumption will be seen to be

valid for n & 30 in chapter 4. In particular, the one-electron treatment that
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will be presented in this chapter breaks down when applied to divalent atoms

in the vicinity of perturbers, and in series where effects such as singlet-triplet

mixing are important [61]. For the case of calcium and ytterbium, some se-

ries show perturbations from doubly excited states over a wide range of n

[74, 97], and for these states the one-electron calculations we present can only

be taken as estimates.

For large R (the separation between the two nuclei), we write the full Hamil-

tonian of the system (for both one and two-electron atoms) as

H = H0 +Hint(R), (3.1)

where H0 denotes the Hamiltonian of the two atom system with infinite

nuclear separation, and Hint(R) is the interaction Hamiltonian describing

the interactions of the two atoms. We proceed to treat the cases of one- and

two-electron long-range interaction Hamiltonians separately.

One-Electron Atoms

We first consider the simpler case of one-electron atoms. We consider atoms

1 and 2, separated by a vector R, with the electron of atom 1 at position r1

and the electron of atom 2 at position r2 (both with respect to their parent

atom). Figure 3.1 gives a sketch of the system of coordinates used. The bare

LS-coupled wavefunctions for the one electron atoms (the eigenfunctions of

the one-electron version of H0 in (3.1), H
(1e)
0 ) are then given by

ψ(1e)(r) =
∑

MS ,ML

CJMJ
LMLSMS

Rnl(r)Yl,m(r̂)χMS
, (3.2)

where CJMJ
j1mj1j2mj2

denotes a Clebsch-Gordan coefficient [40], and χMS
is a

spinor for the single electron. As we are only considering one-electron atoms

here, l = L, ml = ML, s = S and ms = MS. Taking the origin to be

at the nucleus of atom 1, the interaction Hamiltonian in (3.1) between the

one-electron atoms labelled 1 and 2 is given by

H
(1e)
int =

1

|r1 − r2 −R|
− 1

|r1 −R|
− 1

|r2 +R|
+

1

R
, (3.3)

where the first term represents the interaction between the two valence elec-

trons, the second and third terms represent the attraction of the valence



Chapter 3. Long-Range Interactions — One-Electron Models 38

electron of each atom with the nucleus of the other atom, and the final term

represents the repulsion between each nucleus.

Figure 3.1: Sketch of the coordinate system used in the description of the

electrostatic interactions between the electrons and the cores of the atoms in (3.3).

Provided there is no overlap between the charge clouds we can neglect ex-

change interactions [89] and expand the second and third terms of equation

(3.3) (corresponding to the attraction between the Rydberg electron of each

atom to the core of the opposite atom) in terms of Legendre functions [98,

p. 597], such that

H
(1e)
int =

1

|r1 − r2 −R|
− 1

R

+
∞∑
q1=0

4π

2q1 + 1

q1∑
m1=−q1

(−1)m1
rq11

Rq1+1
Yq1,−m1(r̂1)Yq1,m1(R̂)

+
∞∑
q2=0

4π

2q2 + 1

q2∑
m2=−q2

(−1)q2+m2
rq22

Rq2+1
Yq2,−m2(r̂2)Yq2,m2(R̂)

(3.4)

where q1 and q1 are orders of multipoles. We can write equation (3.4) as

H
(1e)
int = H(ee) +H(nucl) +H(pol), (3.5)

with

H(ee) =
1

|r1 − r2 −R|
, (3.6)

H(nucl) = − 1

R
, (3.7)

and

H(pol) =
∞∑
q1=0

4π

2q1 + 1

q1∑
m1=−q1

(−1)m1
rq11

Rq1+1
Y −m1
q1

(r̂1)Y m1
q1

(R̂)

+
∞∑
q2=0

4π

2q2 + 1

q2∑
m2=−q2

(−1)q2+m2
rq22

Rq2+1
Y −m2
q2

(r̂2)Y m2
q2

(R̂)

(3.8)
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corresponding to the valence electron interactions, the nuclear interactions,

and the polarization of each atom from the opposite nucleus respectively.

The purpose of expanding the terms in (3.3) will become more obvious in

section 3.3 when we introduce the multipolar expansion of H(ee).

Two-Electron Atoms

For a two electron Rydberg atom, we describe the atom as having one electron

in an extended outer Rydberg orbital with wavefunction φo, and another in

a compact inner orbital, with wavefunction φi. We label the two electrons

as electron a and electron b, with position vectors from the nucleus ra and

rb respectively, leading to the symmetrized eigenfunction of the two-electron

bare Hamiltonian H
(2e)
0 ,

ψ(2e)(ra, rb) =
∑

MS ,ML

∑
mlimlo

∑
msi ,mso

CJMJ
LMLSMS

CLML
limli lomlo

CSMS
simsisomso

×
[
φi(ra)χmsi (a)φo(rb)χmso (b)

+ (−1)Sφi(rb)χmsi (b)φo(ra)χmso (a)
]
,

(3.9)

where χms(a) and χms(b) are spinors for electrons a and b (i and o refer to the

inner and outer orbitals respectively). The coordinate system for the two-

electron atoms system is sketched in figure 3.2. Assuming the inner orbital

is in its lowest energy state (the 5s state in strontium, 4s in calcium and

6s in ytterbium), the lack of angular momentum of the inner orbital implies

li = mli = 0 and lo = L.

Figure 3.2: Sketch of the two-electron coordinate system used in the description

of the electrostatic interactions between the electrons and the cores of the atoms.
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Once again taking the origin to be the core of atom 1, the full interaction

between the two-electron atoms 1 and 2 is given by

H
(2e)
int =

∑
ε=a,b

∑
ε′=a,b

1

|rε1 − rε′2 −R|
−
∑
ε=a,b

(
2

|rε1 −R|
+

2

|rε2 +R|

)
+

4

R
,

(3.10)

where we note that the electrostatic interactions between the electrons be-

longing to the same atoms are implicitly accounted for in H0.

If the inner valence electron of each two-electron atom is in a compact orbital,

then the matrix elements of the first (double) sum in (3.10) associated with

transitions between the compact orbitals of either atom will be small com-

pared to the transitions between the Rydberg orbitals. These transitions will

effectively be treated in chapter 5, although in this chapter we will neglect

them as a first step. The matrix elements of the second sum in (3.10) associ-

ated with similar transitions between inner orbitals will also be small, hence

we effectively take the inner orbital to be part of the core. By only consid-

ering the Rydberg electron, the two-electron Hamiltonian in (3.10) reduces

to the one-electron Hamiltonian (3.3), which we will be using throughout

the rest of this chapter. We note that this approximation is generally not

applicable to ground state atoms or atoms in low excited states.

3.3 Multipolar Expansion

We use a two-centre multipolar expansion of the H(ee) term to obtain [89]

H(ee) =
∞∑

k1,k2=0

(−1)k2

Rk1+k2+1

√
(4π)3(2k1 + 2k2)!

(2k1 + 1)!(2k2 + 1)!(2k1 + 2k2 + 1)

×
k1+k2∑

p=−(k1+k2)

k1∑
p1=−k1

k2∑
p2=−k2

Ck1+k2,p
k1p1,k2p2

rk11 r
k2
2 Yk1,p1(r̂1)Yk2,p2(r̂2)Yk1+k2,p(R̂),

(3.11)

where k1 and k2 denote the order of the multipole, and hats denote angular

coordinates. Considering the k1 = k2 = 0 term, we see that this term

cancels the H(nucl) in (3.5). Similarly, the k1 = 1 . . .∞, k2 = 0 and k1 = 0,

k2 = 1 . . .∞ terms cancel outH(pol) in (3.5). The full interaction Hamiltonian
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therefore simplifies to the same expression as in (3.11), with the sums of k1

and k2 starting from 1. The lowest order non-zero term gives rise to dipole-

dipole interactions (k1 = k2 = 1), resulting in a matrix element proportional

to R−3.

The multipolar expansion and the assumptions made (including the neglect

of exchange interactions) to arrive to equation (3.11) all hinge on there being

no overlap between the charge clouds of the two atoms. The minimum value

of the separation for which this overlap can be neglected can be quantified

using a quantity known as the LeRoy radius, RLR, defined by [99]

RLR = 2
(
〈r2

1〉
1
2 + 〈r2

2〉
1
2

)
. (3.12)

When the separation between the two atoms falls below the LeRoy radius, all

of the approximations become invalid, as does the multipolar expansion; sim-

ilar multipolar expansions can be derived for the case of overlapping charge

clouds, although these become very complicated to calculate [89]. If neces-

sary, damping functions can be used to account for this overlap [100]; how-

ever, these damping functions will not be considered in this work.

The matrix elements of (3.11) are now much simpler to solve, as these now

involve multipolar matrix elements. The energy shifts due to the long-range

interactions can now be found either perturbatively or non-perturbatively.

A non-perturbative calculation involves the diagonalization of an effective

Hamiltonian matrix representing the energies and couplings of (3.1) projected

onto a basis of pairs of atoms; we refer to a pair of atoms in eigenstates of H0

at infinite internuclear separation as pair states. This effective Hamiltonian

matrix can be written as

Hpq = δpqE + V (k1k2)
pq (R), (3.13)

where the indices p and q run over all the basis pair states, E = E1 + E2

is the eigenenergy of H0 (the sum of the two atomic energies at infinite

separation), and V
(k1k2)
pq (R) are the matrix elements of (3.11). Denoting the

quantum numbers L1, S1, J1, L2, S2, and J2 by α, the interaction matrix

element V
(k1k2)
pq (R) for two atoms aligned with the z-axis can be written

V (k1k2)
pq (R) =

1

Rk1+k2+1
Dk1k2(αqM1q,M2q, αpM1pM2p; R̂ = ẑ)

×Rk1k2(n1pn2pαp;n1qn2qαq),
(3.14)
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where Dk1k2(αM1,M2, α
′M ′

1M
′
2; R̂) is an angular function given in appendix

A and Rk1k2(n1n2α, n
′
1n
′
2α
′) is given by

Rk1k2(n1n2α, n
′
1n
′
2α
′) =

∫ ∞
0

dr1un1L1S1J1(r1)rk11 un′
1L

′
1S

′
1J

′
1
(r1)

×
∫ ∞

0

dr2un2L2S2J2(r2)rk22 un′
2L

′
2S

′
2J

′
2
(r2).

(3.15)

Recall that unl(r) = rRnl(r) is the atomic reduced radial wavefunction.

Equation (3.15) can be calculated either using the semiclassical approxima-

tion or the quantum defect theory methods of chapter 1.

The matrix elements V
(k1k2)
pq (R) will also be used when calculating the long-

range interactions perturbatively in the next section.

3.3.1 Perturbative Expansions

Non-perturbative calculations provide exact (to within numerical error) po-

tential curves for a single term in (3.11). Perturbative calculations, however,

lead to a sum over powers of R−1; the coefficients associated with each power

of R−1 in the sum provide a numerical way of comparing interactions between

states, series and atoms. We write the sum over powers of R−1 as

∆E(int) =
∑
N

CN
RN

, (3.16)

where ∆E(int) is the energy shift caused by H(int)(R) and the CN coefficients

are state-dependent constant coefficients. We consider two atoms in the

same initial Rydberg state and apply perturbation theory to find the CN

coefficients. In general, the first and second order energy shifts associated

with a Hamiltonian H = H0 +H ′ are given by [23]

∆E(1) = 〈ψ(0)|H ′|ψ(0)〉 (3.17)

and

∆E(2) =
∑ 〈ψ(0)|H ′|ψ′〉〈ψ′|H ′|ψ(0)〉

E(0) − E ′
. (3.18)

Here, ψ(0) corresponds to the unperturbed wavefunction, E(0) is the unper-

turbed energy, and the sum in (3.18) is over all (unperturbed) states that are

not the initial state, with energy E ′ and wavefunction |ψ′〉. For clarity, we
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have ignored degeneracies in (3.17) and (3.18); the degeneracies will be in-

cluded at a later stage. Applying these expressions first to the dipole-dipole

term in (3.11) (k1 = k2 = 1), we see that ∆E(1) = 0 as the initial state cannot

be dipole-coupled to itself (noting the appearance of the dipole operator in

the multipole expansion).

Hence, the dominant term in (3.16) is the C6/R
6 term, arising in second

order from the dipole-dipole interactions. The next largest term is the C5/R
5,

arising from the first order quadrupole-quadrupole interactions. These two

terms will be the only ones considered, as the rest of the terms become

sufficiently small as to be neglected [90, 91]. The dipole-quadrupole term

(k1 = 1, k2 = 2) can become appreciable at distances very close to the LeRoy

radius; however, as the validity of the multipolar expansion is questionable

in this region, more advanced techniques would be required to calculate the

interactions. At larger distances, the dipole-quadrupole terms can be safely

ignored [91].

At infinite separation and in the absence of an external field, the two atoms

are degenerate in MJ . As such, applying degenerate perturbation theory, the

C5 and C6 coefficients are eigenvalues of (2J1+1)(2J2+1) by (2J1+1)(2J2+1)

matrices, which we call C5 and C6 respectively. The matrix elements, C(ij)
5

and C(ij)
6 are given by

C(ij)
5 (R̂) = D22(αM

(i)
1 ,M

(i)
2 , αM

(j)
1 M

(j)
2 ; R̂)R22(n1n2α;n1n2α) (3.19)

and

C(ij)
6 = −

∑
p

|R11(n1n2α;n1pn2pαp)|2

∆

×D11(αM
(i)
1 ,M

(i)
2 , αpM1pM2p; R̂)

×D11(αpM1p,M2p, αM
(j)
1 M

(j)
2 ; R̂)

(3.20)

where i and j each label a different possible value ofM1 andM2. In (3.20), the

sum is over all dipole-coupled states, p (where all the p subscripts associated

with a quantity refers to that quantity for state p), and ∆ = E − Ep (with

E being the eigenergy associated with H0 in (3.1)) is known as the Förster

defect, which is the energy difference between the initial pair state and the

intermediate pair state, p.
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Thus, finding the long-range interactions for a particular state amounts to

finding the eigenvalues of C5 and C6. The C5 and C6 coefficients scale with

principal quantum number as n8 and n11 respectively [101]; when comparing

the coefficients between states, it is common to factor out this dependence

to make a more direct comparison. The scaled coefficients are thus defined

by C̃5 = C5n
−8 and C̃6 = C6n

−11.

3.3.2 Symmetries

When applying degenerate perturbation theory to obtain equations (3.19)

and (3.20), the C5 and C6 coefficients were found to be eigenvalues of the

matrices C5 and C6. As the interaction between the atoms lifts the degeneracy

in MJ , the resulting eigenfunctions are linear combinations of pair states with

different values of M1 and M2. In this section we describe the emergence of

symmetries due to the coupling of the two atoms by the dipole-dipole and

quadrupole-quadrupole interactions. To simplify the discussion, we consider

the case where the internuclear axis is aligned with the z-axis, leading to

R̂ = ẑ.

To begin, we first consider the coupling of the angular momentum operators

J1 and J2, such that J1 + J2 = J , where J is the total angular momentum

operator of the atom pair. The projection of this total atom pair angular

momentum onto the internuclear axis is then given by Jz. The eigenvalues of

J 2 are ~2J (J + 1), and the eigenvalues are J are ~Ω, where Ω = M1 +M2.

Examining equation (3.11), we see that H
(1e)
int couples states with different

values of MJ (arising from the Clebsch-Gordan coefficient and the spherical

harmonics). The coupling, however, occurs in such a way that any addition

of one quantum of angular momentum to one atom is associated with the

removal of one quantum of angular momentum from the other atom. Con-

sequently, we see that Jz commutes with H
(1e)
int , making Ω a good quantum

number. However, J 2 does not generally commute with H
(1e)
int , meaning that

J is not always a good quantum number. The quantum number J can take

on values ranging from J1 + J2 to |J1 − J2|, and as there is no restriction in

H
(1e)
int on transitions with different values of J , the same values of J1 and J2

can lead to different values of J . The ensuing coupling, for both Ĥ(5) and
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Ĥ(6), mixes different values of J .

Nevertheless, for low L states it is generally possible to associate a given

state with an approximate value of J and an exact value of Ω. This coupling

scheme is different from Hund’s cases [102], and corresponds to the case

where the atomic spin and orbital angular momenta couple more strongly

to each other than the internuclear axis. Some authors use Hund’s case (c)

notation to describe the states (or case (a) when ignoring spin) [91, 92, 95];

however, we will describe the states by their quantum numbers J and Ω to

avoid ambiguity.

Series Ω J Notes Eigenvector
2S1/2, 2P1/2 0 0 a,b |1

2
,−1

2
〉

0 1 a,b |1
2
,−1

2
〉

1 1 a,b |1
2
, 1

2
〉

2P3/2, 2D3/2, 0 0 a,b 1
2

(
|3
2
,−3

2
〉 − | − 3

2
, 3

2
〉 − |1

2
,−1

2
〉+ | − 1

2
, 1

2
〉
)

0 1 a,b 1
2

(
|3
2
,−3

2
〉+ | − 3

2
, 3

2
〉 − |1

2
,−1

2
〉 − | − 1

2
, 1

2
〉
)

0 2 b 1
2

(
|3
2
,−3

2
〉 − | − 3

2
, 3

2
〉+ |1

2
,−1

2
〉 − | − 1

2
, 1

2
〉
)

0 3 b 1
2

(
|3
2
,−3

2
〉+ | − 3

2
, 3

2
〉+ |1

2
,−1

2
〉+ | − 1

2
, 1

2
〉
)

1 1 a,b |1
2
, 1

2
〉

1 2 b
(
|3
2
,−1

2
〉 − | − 1

2
, 3

2
〉
)
/
√

2

1 3 b
(
|3
2
,−1

2
〉+ | − 1

2
, 3

2
〉
)
/
√

2

2 2 b
(
|3
2
, 1

2
〉 − |1

2
, 3

2
〉
)
/
√

2

2 3 b
(
|3
2
, 1

2
〉+ |1

2
, 3

2
〉
)
/
√

2

3 3 b |3
2
, 3

2
〉

2D5/2 0 0 0.3440
(
|5
2
,−5

2
〉 − | − 5

2
, 5

2
〉
)
− 0.6158

(
|3
2
,−3

2
〉

−| − 3
2
, 3

2
〉
)

+ 0.0490
(
|1
2
,−1

2
〉 − | − 1

2
, 1

2
〉
)

0 1 0.2960
(
|5
2
,−5

2
〉+ | − 5

2
, 5

2
〉
)
− 0.6002

(
|3
2
,−3

2
〉

+| − 3
2
, 3

2
〉
)

+ 0.2283
(
|1
2
,−1

2
〉+ | − 1

2
, 1

2
〉
)

0 2 0.1366
(
|5
2
,−5

2
〉 − | − 5

2
, 5

2
〉
)

+ 0.0211
(
|3
2
,−3

2
〉

−| − 3
2
, 3

2
〉
)
− 0.6935

(
|1
2
,−1

2
〉 − | − 1

2
, 1

2
〉
)

0 3 0.3335
(
|5
2
,−5

2
〉+ | − 5

2
, 5

2
〉
)
− 0.071

(
|3
2
,−3

2
〉

+| − 3
2
, 3

2
〉
)
− 0.6195

(
|1
2
,−1

2
〉+ | − 1

2
, 1

2
〉
)

0 4 0.6025
(
|5
2
,−5

2
〉 − | − 5

2
, 5

2
〉
)

+ 0.3468
(
|3
2
,−3

2
〉

−| − 3
2
, 3

2
〉
)

+ 0.1292
(
|1
2
,−1

2
〉+ | − 1

2
, 1

2
〉
)

0 5 0.5488
(
|5
2
,−5

2
〉+ | − 5

2
, 5

2
〉
)

+ 0.3670
(
|3
2
,−3

2
〉
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+| − 3
2
, 3

2
〉
)

+ 0.2533
(
|1
2
,−1

2
〉+ | − 1

2
, 1

2
〉
)

1 1 0.6047
(
|5
2
,−3

2
〉+ | − 3

2
, 5

2
〉
)

−0.3531
(
|3
2
,−1

2
〉+ | − 1

2
, 3

2
〉
)
− 0.1391|1

2
,−1

2
〉

1 2 0.5420
(
|5
2
,−3

2
〉 − | − 3

2
, 5

2
〉
)

−0.4541
(
|3
2
,−1

2
〉 − | − 1

2
, 3

2
〉
)

1 3 0.2077
(
|5
2
,−3

2
〉+ | − 3

2
, 5

2
〉
)

+0.4864
(
|3
2
,−1

2
〉+ | − 1

2
, 3

2
〉
)
− 0.6638|1

2
,−1

2
〉

1 4 0.4541
(
|5
2
,−3

2
〉 − | − 3

2
, 5

2
〉
)

+0.5420
(
|3
2
,−1

2
〉 − | − 1

2
, 3

2
〉
)

1 5 0.3021
(
|5
2
,−3

2
〉+ | − 3

2
, 5

2
〉
)

+0.3725
(
|3
2
,−1

2
〉+ | − 1

2
, 3

2
〉
)

+ 0.7348|1
2
,−1

2
〉

2 2 0.0729
(
|5
2
,−1

2
〉 − | − 1

2
, 5

2
〉
)

−0.7033
(
|3
2
, 1

2
〉 − |1

2
, 3

2
〉
)

2 3 0.6932
(
|5
2
,−1

2
〉+ | − 1

2
, 5

2
〉
)

−0.1394
(
|3
2
, 1

2
〉+ |1

2
, 3

2
〉
)

2 4 0.7033
(
|5
2
,−1

2
〉 − | − 1

2
, 5

2
〉
)

−0.0729
(
|3
2
, 1

2
〉 − |1

2
, 3

2
〉
)

2 5 0.1394
(
|5
2
,−1

2
〉+ | − 1

2
, 5

2
〉
)

+0.6932
(
|3
2
, 1

2
〉+ |1

2
, 3

2
〉
)

3 3 0.3677
(
|5
2
, 1

2
〉+ |1

2
, 5

2
〉
)
− 0.8542|3

2
, 3

2
〉

3 4 b
(
|5
2
, 1

2
〉 − |1

2
, 5

2
〉
)
/
√

2

3 5 0.6040
(
|5
2
, 1

2
〉+ |1

2
, 5

2
〉
)

+ 0.5199|3
2
, 3

2
〉

4 4 b
(
|5
2
, 3

2
〉 − |3

2
, 5

2
〉
)
/
√

2

4 5 b
(
|5
2
, 3

2
〉+ |3

2
, 5

2
〉
)
/
√

2

5 5 b |5
2
, 5

2
〉

Table 3.1: The eigenvectors of the Ĥ(5) Hamiltonian in terms of the |M1,M2〉
Zeeman substates of the pair states, for the case where the interatomic axis is

aligned with the z-axis. It is assumed that L1 = L2, S1 = S2 and J1 = J2. Note

a: C5 = 0 for this state. Note b: The state specified in the right-hand column is

an eigenstate of Ĵ2
t as well as of Ĥ(5).

Of course, the eigenstates of the quadrupole-quadrupole interaction will be
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Series Ω J Notes Eigenvector

1S0, 3P0 0 0 a,b |0, 0〉
1P1, 3P1, 0 0 a,b (|1,−1〉+ | − 1, 1〉 − |0, 0〉) /

√
3

3D1 0 1 a,b (|1,−1〉 − | − 1, 1〉) /
√

2

0 2 b (|1,−1〉+ | − 1, 1〉) /
√

6 +
√

2/3 |0, 0〉
1 1 a,b (|1, 0〉 − |0, 1〉) /

√
2

1 2 b (|1, 0〉+ |0, 1〉) /
√

2

2 2 b |1, 1〉
1D2, 3P2, 0 0 0.4320 (|2,−2〉+ | − 2, 2〉)
3D2 −0.5593 (|1,−1〉+ | − 1, 1〉) + 0.0331 |0, 0〉

0 1 0.3717 (|2,−2〉 − | − 2, 2〉)
−0.6015 (|1,−1〉 − | − 1, 1〉)

0 2 0.2064 (|2,−2〉+ | − 2, 2〉)
+0.1316 (|1,−1〉+ | − 1, 1〉)− 0.9382 |0, 0〉

0 3 0.6015 (|2,−2〉 − | − 2, 2〉)
+0.3717 (|1,−1〉 − | − 1, 1〉)

0 4 0.5204 (|2,−2〉+ | − 2, 2〉)
+0.4121 (|1,−1〉+ | − 1, 1〉) + 0.3445 |0, 0〉

1 1 0.6971 (|2,−1〉 − | − 1, 2〉) + 0.1184 (|0, 1〉 − |1, 0〉)
1 2 0.6250 (|2,−1〉+ | − 1, 2〉)− 0.3307 (|0, 1〉+ |1, 0〉)
1 3 0.1184 (|2,−1〉 − | − 1, 2〉) + 0.6971 (|1, 0〉 − |0, 1〉)
1 4 0.3307 (|2,−1〉+ | − 1, 2〉) + 0.6250 (|1, 0〉+ |0, 1〉)
2 2 0.2810 (|2, 0〉+ |0, 2〉)− 0.9177 |1, 1〉
2 3 b (|2, 0〉 − |0, 2〉) /

√
2

2 4 0.6489 (|2, 0〉+ |0, 2〉) + 0.3974 |1, 1〉
3 3 b (|1, 2〉 − |2, 1〉) /

√
2

3 4 b (|1, 2〉+ |2, 1〉) /
√

2

4 4 b |2, 2〉

Table 3.2: The eigenvectors of the Ĥ(5) Hamiltonian in terms of the |M1,M2〉
Zeeman substates of the pair states, for the case where the interatomic axis is

aligned with the z-axis. It is assumed that L1 = L2, S1 = S2 and J1 = J2. The

eigenvectors listed in this table are the same as those given in Table 1 of Ref. [91].

Note a: C5 = 0 for this state. Note b: The state specified in the right-hand column

is an eigenstate of Ĵ2
t as well as of Ĥ(5).
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different from the eigenstates of the dipole-dipole interaction. If we take

Ĥ(5) = H0 +
∑
i,j

C(ij)
5 (R̂)

R5
|M (i)

1 M
(i)
2 〉〈M

(j)
1 M

(j)
2 |, (3.21)

and

Ĥ(6) = H0 +
∑
i,j

C(ij)
6 (R̂)

R6
|M (i)

1 M
(i)
2 〉〈M

(j)
1 M

(j)
2 |, (3.22)

then the eigenstates of both H(5) and H(6) are the ones we characterize by

the quantum numbers J and Ω. The eigenstates of H(5) do not depend on

n nor on the atomic species with the same value of J , as only the angular

parts of the matrix C5 affect these eigenstates (note that this is not true for

the eigenstates of H(6)).

The eigenvectors of H(5) for one- and two-electron atoms are given in tables

3.1 and 3.2 in terms of the values of M1 and M2 of the unperturbed eigen-

states of H0. The eigenvectors shown in table 3.1 have not been previously

published in full (although some symmetries are presented in [8] for H(6));

the eigenvectors in table 3.2 have been presented in [91] as the authors con-

sidered one-electron atoms while neglecting spin. The tables show that, for

low values of J1 and J2, the symmetries are generally fairly simple superpo-

sitions of the different values of M1 and M2. When the superpositions are

compared to those arising from the coupling of J1 and J2 (using Clebsch-

Gordan coefficients), J and Ω are found to be good quantum numbers and

provide a useful label of the states for values of J = J1 = J2 ≤ 1. At higher

values of J1 and J2, however, J becomes less good of a quantum number,

and the label is only approximate.

The eigenstates of H(6) are more complicated, as they vary according to the

contributions of the intermediate pair states that are summed over in (3.20).

This leads to an n- and atom-dependent variation of the eigenvectors. For

low values of J , however, similar symmetries are generally found as for the

case of the eigenstates of H(5).

Finally, we note that if the quadrupole-quadrupole and dipole-dipole inter-

actions are of similar magnitude for a certain range of values of R, the per-

turbation is H ′ = H(5) + H(6) and both interactions must be diagonalized

simultaneously.
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3.4 Uncertainties

When determining the uncertainties in the calculated values for C5 and C6,

there are three known sources of error. The first arises from the approxima-

tions made in the calculation, mainly from the truncation of the perturbative

sum in (3.20) (the full sum over an infinite set of states is unfeasible, as well

as unnecessary). The two other sources of error arise from the uncertainties

of the atomic energy levels and the calculation of the dipole and quadrupole

matrix elements. As the latter also depends on the energy levels, it is clear

that the uncertainty in the measurements of the energy levels will play a

large role in the total uncertainty.

When considering the truncation of the basis over which we sum in (3.20), it

is important to see which states dominate in their contributions to this sum.

The contribution of each intermediate pair state of 1S0 symmetry is shown

in figure 3.3 for the Sr 5s50p 1P1 state, which are demonstrative of the 1P1

states and has a C6 of 7.02×1019 a.u. for the J = 2, Ω = 0 state. We see that

the contribution to the C6 coefficient rapidly decreases as the values of n1p

and n2p move away from n1 = n2 = 50. As such, the summation converges

very rapidly, and taking a value of ∆n = |n1p±n| = |n2p±n| = 10 is enough

to converge the sum to about seven or eight significant figures.

The uncertainty in the dipole and quadrupole matrix elements can be split

into two: the uncertainty from the calculation (arising, for example, from the

Coulomb approximation), and the uncertainty from the values of the effective

principal quantum numbers (derived from energy levels) that are an input to

the calculation. We first consider the uncertainty in the calculations of the

matrix elements (the uncertainty arising from the energy level uncertainties

will shortly be considered as a whole). Unfortunately, the uncertainty con-

tribution from the calculation of the matrix elements is difficult to assess,

and can only be estimated by comparing with values calculated using a dif-

ferent method or by comparing to experiment. Using a model potential of

the form [22]

Vmodel = −1

r

[
1 + (Z − 1)e−αr +Bre−βr

]
, (3.23)

where α, β and B are coefficients that are fitted to reproduce experimental
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Figure 3.3: Contributions to the total value of C6 for the Sr 5s50p 1P1 state

from individual 1S0 states (left), with the corresponding values for the inverse of

the Förster defect (right).

energy levels and Z is the atomic number, we find that the dipole matrix

elements calculated using the semiclassical approximation method differ from

the ones calculated using the model potential by up to 1% (using the same

energy levels as input). The difference between the two calculations reduces

with increasing n. The model potential does not include the effect of core

polarization, and is therefore likely to be limited in its range of validity, thus

contributing significantly to the uncertainty of the matrix elements calculated

using this method. Nevertheless, the values of the dipole matrix elements

output by the model potential have previously given good results in the

calculation of Stark maps [22].

The semiclassical approximation will also have uncertainties from the

Coulomb approximation and the WKB approximation, although the uncer-

tainties from both will reduce with increasing n. To check the validity of

the semiclassical method it is useful to compare with experimental values

of other observables. Extracting the experimental value for the polarizabil-

ity of the Sr 5s56d 1D2 state from [22], the average value is found to be

αexp = (2.1±0.1)×1012 a.u. The average value for the same state calculated
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using the semiclassical approximation is αtheory = 2.06× 1012 a.u. The error

from the calculation of the dipole matrix elements can therefore not be more

than a few percent for high-n 1D2 states (the error includes both the error

in the matrix elements and the error in the energy level values).

Finally, the error from the energy levels used in the calculation can be as-

sessed more consistently. The uncertainty in the energy levels contributes

both to the calculation of the dipole and quadrupole matrix elements, but

also in the calculation of the C6 when determining the Förster defect. The

uncertainties in the C5 and C6 coefficients are evaluated using the functional

method [55], whereby a function depending on a parameter x, f(x), with

an uncertainty in the parameter αx, has an uncertainty in the value of that

function given by

αf = |f(x+ αx)− f(x)|. (3.24)

For uncorrelated multiparameter functions, the contributions to the uncer-

tainty from each parameter are added in quadrature. Thus, the uncertainties

in the matrix elements (3.19) and (3.20) arising from the uncertainties in the

energy levels are obtained by using (3.24), with the parameters given by the

Rydberg-Ritz fits to the quantum defects (see chapter 1).

The advantages of using the fits to the Rydberg-Ritz equation in tables 2.3

and 2.4 are two-fold: firstly, the random scatter on the experimental energy

values are smoothed out, and secondly a wide range of energy levels can

be extrapolated from the fits. Concerning the scatter of experimental data

points, the small variations in the values cause spurious cancellations in the

Förster defects (which can be extremely sensitive to the accuracy of the

energy levels). These cancellations lead to unphysical resonances in certain

individual states; in general, real Förster resonances (which are resonances

due to near-degeneracies of two pair states, usually associated with a change

of sign in the C6 coefficient) can be seen to affect a Rydberg series as a whole,

rather than affecting isolated states.

The uncertainties in the C6 coefficients mirror the uncertainties in the energy

levels. Those states that are dipole-coupled to series where the energy levels

are known by microwave spectroscopy have uncertainties much lower than

1%; in these cases, the uncertainties due to the dipole matrix elements can be
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Atom Available C6 coefficients Available C5 coefficients

Strontium 1S0
3S1

1P1
3P0,1,2

1D2
3D1,2,3

1P1
3P1,2

1D2
3D1,2,3

Calcium 1S0 (1P1) 3P1 (1D2) 1P1
3P1,2 (1D2) 3D1,2

Ytterbium 1S0
1P1 (1D2) 1P1

1D2

Table 3.3: Index of the coefficients tabulated in the supplementary data of

[96]. Results are normally given for 30 ≤ n ≤ 70. However, only estimates for

a reduced range of principal quantum numbers are given for the series indicated

between brackets, due to either a lack of spectroscopic data or the questionability

of a single active electron treatment for this calculation.

expected to dominate. In the cases where the dipole-coupled series’ energy

levels are known only by laser spectroscopy, the uncertainties rise sharply to

around 3% to 4%, which is the case for many of the strontium C6 coefficients.

The uncertainties in the C5 coefficients, however, are generally very low as

(3.19) only contains an implicit dependence on a single energy level. The

uncertainties in C5 are thus dominated by the uncertainty in the quadrupole

matrix elements calculations.

3.5 Long-Range Interactions

In this section, we discuss the results of the calculations detailed in section

3.2. The results for strontium, calcium and ytterbium are published as sup-

plementary material in reference [96], including the values of C5, C6, Cij5 and

Cij6 for the series listed in table 3.3. Due to high-lying doubly excited states

that perturb certain Rydberg series, some of the coefficients (indicated with

brackets in table 3.3) provide only an estimate of the interaction strength.

In addition, some results for rubidium and caesium will also be presented

for comparison. These results have never been published in full, although

certain values of the C6 are presented in [8]; coefficients calculated ignoring

spin have been published [91], and other calculations ignoring degeneracies

have also been presented [93].

In general, the C6 coefficients dominate the long-range interactions in the

regions where the energy shifts are appreciable. When these energy shifts
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become small at large R, the quadrupole-quadrupole interaction begins to

dominate. We define the long-range cross-over radius where the dipole-

dipole interaction and the quadrupole-quadrupole interaction become equal

as Rlong = |C6/C5|.

Some exceptions to the domination of the C6 over the C5 coefficients, however,

occur when the angular factors are such that one or more eigenstates have a

small value of the C6 coefficient. These eigenstates are known as Förster-zero

states [8], and result in the quadrupole-quadrupole interaction dominating.

An example of these Förster zero states is given in figure 3.4, where the

energy shift at cross-over radius Rlong is shown for different symmetries of

the 5snp 1P1 J = 2 states (the only states for which C5 6= 0 with 1P1

symmetry). The Förster zero state in figure 3.4 is the J = 2, Ω = 1 state,

where the C6 is small enough that Rlong occurs at small distances. At these

small distances the shift is quite large compared to states that do not have

a Förster zero, as seen in figure 3.4.

0 5 10 15 20
Rlong (µm)

10-5

10-4

10-3

10-2

10-1

100

101

C
6
/R

6
(2
π
×M

H
z)

Ω =0

Ω=1

Ω=2

Figure 3.4: The energy shifts due to the dipole-dipole interactions at the radius

where |C5/R
5| = |C6/R

6|, Rlong, for the 5snp 1P1 J = 2 state of strontium. The

value of n runs from 30 to 70 from left to right in the figure.

In the long-range region, the limit of the region where the C6 coefficient is

dominant and applicable is thus given by Rlong. In the short-range region,

however, another limit is reached: the limit where the perturbative expan-
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sion becomes invalid. This short-range limit occurs when the energy shift is

comparable to the Förster defect of the nearest pair state, ∆np, allowing us

to define the short-range limit Rshort = |C6/∆np|1/6. Usually, Rshort > RLR

(where the LeRoy radius is defined in (3.12)) such that the multipole expan-

sion is still valid.

1 5 10 15
R (µm)

10-4

100

104

∆
E
/2
π
(M

H
z)

Rshort

Rlong

Figure 3.5: A comparison between the perturbative and non-perturbative

regimes for the 5snp 1P1 J = 2 state of strontium, as well as the perturba-

tive dipole-dipole and quadrupole-quadrupole calculations. The green solid line

denotes C6/R
6, the red dashed line is the C5/R

5 and the black dash-dotted line

shows the non-perturbative calculation of the dipole-dipole interaction. Vertical

black dashed lines denote Rshort and Rlong, showing the limits of the validity of

the C6 coefficient. The grey region denotes the region below the LeRoy radius.

Figure 3.5 illustrates the various regimes discussed, with the short- and long-

range limits to the validity of the C6 coefficient marked. Around Rshort, a

clear departure is seen between the perturbative C6/R
6 calculation and the

non-perturbative calculation; in this region the interaction goes from being

an R−6 form to an R−3 interaction [8]. This resonant form of the interaction

for short distances constitutes a very small region, as the LeRoy radius is

quickly reached below this.

In the rest of this section we discuss the behaviour of the C5 and C6 coeffi-

cients, and compare the different interactions between the various Rydberg

series and atoms. We focus mainly on the behaviour of the C6 coefficients, as
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the C5 coefficients show much less structure and are usually only valid where

the energy shifts due to the interactions are too small to be of experimental

interest.

3.5.1 C5 coefficients

The expression for the C5 coefficients in (3.19) depends only on the

quadrupole matrix elements. The lack of explicit dependence on the en-

ergy means that the C5 coefficients vary very little between Rydberg series,

and even between atoms. The coefficients scale as n8 [91], and the sign can

change depending on the symmetry of the state.

The selection rules for the quadrupole matrix elements are [23]

∆J = 0,±1,±2 (J + J ′ ≥ 2). (3.25)

The result of this selection rule is that all C5 coefficients for J < 1 are

zero, regardless of the value of L, meaning that in the alkali metals the 2S1/2

and 2P1/2, and in the alkaline earth metals and ytterbium the 1S0 states,

have no quadrupole-quadrupole interactions to first order. In addition, some

symmetries of both the 1P1 states in the alkaline earth metals and ytterbium,

and 2P3/2 states in the alkali metals also have C5 = 0; these quadrupole zero

states are marked in tables 3.1 and 3.2.

For states with L > 1, the values of the C5 coefficients corresponding to

different symmetries arrange themselves symmetrically about zero for each

series. Differences between atoms arise mainly due to the differences in an-

gular momentum quantum numbers, and the C5 coefficients are otherwise

broadly similar. A typical value of C5 for a given n can be obtained using

C5 ∼ n8.

3.5.2 C6 coefficients

The C6 coefficients display a much greater variation in their values than the

C5 coefficients. The C6 coefficients depend on the atomic species, on the value

of the principal quantum number n and also on all the angular momentum

and spin quantum numbers describing the state.
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We begin the discussion of the C6 coefficients by examining the simplest

series, those with L = 0. Figure 3.6 shows the scaled C6 coefficients, meaning

the C6 coefficients with the n11 scaling taken out [91, 93], for five different

atoms. For rubidium and caesium, the stretched states (J1 = J2 = M1 = M2)

are used, although the coefficients for the different symmetries are equal to

within the error of the calculation.
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Figure 3.6: Scaled C6 coefficients for the S states of rubidium, caesium, calcium,

strontium and ytterbium. The error bars from the energy level uncertainties for

calcium and ytterbium have been multiplied by 200, and those for rubidium by

2000.

The large variation of the coefficients for the L = 0 series is apparent in fig-

ure 3.6. For the monovalent atoms rubidium and caesium, the dipole-dipole

interactions are repulsive for high n, with caesium having weaker interac-

tions. Calcium and ytterbium also have repulsive interactions; however, the

dipole-dipole interactions in ytterbium are weaker than the other repulsively

interacting atoms by an order of magnitude. The small magnitude of the

interactions in ytterbium may have a detrimental effect on the exploitation

of the dipole-dipole interactions for various schemes, for example Rydberg

dressing an optical lattice clock for the purpose of spin-squeezing [26], or for

any schemes seeking to exploit the Rydberg blockade effect.

The most interesting feature of figure 3.6, though, is the attractive interac-
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tions of the 1S0 series of strontium. Some proposals such as the preparation

of many-body entangled states [12] or non-linear self-focusing schemes [103]

make use of attractive interactions. The strontium 1S0 series, however, is the

first to exhibit isotropically attractive interactions. Based on energy levels

from [104–107], we have also estimated the interactions for the 1S0 states

of mercury, zinc and magnesium; only zinc was found to have attractive in-

teractions. Figure 3.6 also shows that while the 1S0 states are attractive

in strontium, the 3S1 states are strongly repulsive, providing the opportu-

nity for the selection of nearly isotropic attractive or repulsive interactions,

depending on the needs of the particular experiment.

Figure 3.7 shows a snapshot of the scaled C6 coefficients for n = 50 (where

available) in the divalent atoms. The figure shows a large variation of inter-

actions, ranging from attractive to repulsive interactions. The 3D2, 3P2 and
3P1 series of strontium all show very large interactions, which is due to the

action of Förster resonances. Förster resonances are accidental degeneracies

between two pair states, where the Förster defect becomes very small in the

process of a sign change. The case of the Förster resonance in the 3P1 of

strontium is shown in figure 3.8.

As the Förster resonance occurs when the Förster defect is very small, the

value of Rshort will be correspondingly large. Accordingly, the C6 is a much

less useful measure of the dipole-dipole interactions near a Förster reso-

nance as its range of applicability is very limited. In these situations, a

non-perturbative calculation is more suited, and usually also reveal the pres-

ence of avoided crossings, which can modify the interactions substantially and

even lead to the formation of long-range molecules [108]. Förster resonances

can also lead to state transfer due to the strong coupling and small energy

separation between pair states; this state transfer can also be observed in the

absence of a natural Förster resonance by applying an electric or magnetic

field [109, 110]. We will explore the uses of Förster resonances in more detail

in chapter 5.

Figure 3.9 shows a snapshot of the C6 coefficients at n = 50 for rubidium

and caesium. Förster resonances are found in the P3/2, D3/2 and D5/2 series

of rubidium, and in the P3/2 series of caesium.
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Figure 3.7: Scaled C6 coefficients for different states of calcium, strontium and

ytterbium at n = 50. Red crosses denote the stretched state, J = M , for the

corresponding symmetry, and grey markers denote estimated scaled coefficients at

n = 40 for states that do not have sufficient data for a full systematic calculation

over the whole series.
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Figure 3.8: Scaled C6 coefficients (blue circles) and the Förster defect (red line)

as a function of n for the 5snp 3P1 J = 2 Ω = 2 state of strontium.

As very few experimental values of the C6 coefficients have been published

for Rydberg atoms, it is difficult to make comparisons. Some published

values, however, have recently appeared for the D3/2 states of rubidium [111].

The numerical comparisons between the various calculated and observed C6

coefficients are shown in table 3.4. The theoretical values calculated in this

work and in [111] agree very well with each other, but the experimental

values lie below the theoretical values (this is not commented on in [111]).

The experimental values are derived from fits to experimental data points,

and the experimental data points of the measured shift as a function of R

are seen to deviate for small values of R. One reason for this discrepancy

is may be the measurements being performed at R < Rshort and modifying

the potential to R−3 (the points shown in [111] show a departure from the

R−6 dependence). The values for Rshort, however, are much smaller than the

values of R where the points in [111] were measured; the authors of the paper

suggest mechanical effects may underly this discrepancy [112]. Other possible

explanations for the discrepancies include the presence of stray electric or

magnetic fields, or a slight ellipticity in the polarization of the excitation

lasers. Both of these effects would mix in other eigenstates, such that the

interactions would be an average over several values of C6/R
6. As the points
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Figure 3.9: Scaled C6 coefficients for different states of rubidium and caesium

at n = 50. Red crosses denote the stretched state, J = M , for the corresponding

symmetry.

showing the departure from the R−6 dependence were included in the fit for

C6, the experimental values of C6 will be artificially lowered, resulting in the

discrepancy seen in table 3.4. The uncertainties in the theoretical values of

[111] are calculated by putting random perturbations in the dipole matrix

elements leading to the numerically calculated energy shifts and refitting the

C6 coefficients. Uncertainties in the present values will be similar to those

calculated in [111], as they are dominated by the uncertainties in the dipole

matrix elements.

Finally, we note the relative magnitude of the error bars between the divalent

atoms and the alkali metals are substantially different, as the energy levels

of the alkali metals are usually known to much better precision and accuracy

for a wider range of series. For these, the error contributed from the energy
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n Calculated [111] Calculated (present work) Observed [111]

53 16.9(1.7) 16.6 13.7(1.2)

62 766(15) 766 730(20)

82 8870(150) 8864 8500(300)

Table 3.4: Comparison between calculated and observed values of the C6 coef-

ficients for the stretched (J = MJ) 2 × n2D3/2 states of rubidium. All values are

in GHzµm6, where 1 GHzµm6 = 1.4448× 10−19 a.u.

levels will be negligible compared to the error from the dipole matrix element

calculations, which is not the case for strontium.

3.6 Angular Dependence

Thus far we have treated only the case where the angle between the internu-

clear axis and the z-axis, θ, is zero. In this section we discuss the effect of a

finite value for this angle.

For θ 6= 0, the C6 for the eigenstates will remain the same (recall that a

rotation is a unitary transformation). The eigenvectors, however, will vary

as a function of θ, meaning that the superposition of the different values

of M1 and M2 will change. If the polarization of the laser that initially

excites the atoms to the Rydberg state is well controlled, then the process of

exciting to a well defined value of M1 and M2 implies that a superposition

of different eigenstates will be set up. As the different energy eigenstates

are not degenerate for finite R, this means that the state of the atoms will

oscillate between the different eigenstates. In order to describe this situation,

we describe the variation of the interaction with angle θ in terms of the

expectation value of the C6 interaction, denoted as 〈C6〉 =
∑

iC
(i)
6 |ci(θ)|2

where i is the eigenstate label, C
(i)
6 is the C6 coefficient for a particular

eigenstate of the full Hamiltonian in (3.1), and ci is the state fraction for the

eigenstate in the superposition.

The angular variation is determined not only by the angular momentum

quantum numbers of the state, but also by the strength of the coupling to

the intermediate states and the quantum numbers of the intermediate state.



Chapter 3. Long-Range Interactions — One-Electron Models 62

Without needing to sum over the intermediate states, the angular variation

would be determined by the Wigner rotation matrices [40]. Instead, we

just vary θ in the angular matrix element of the multipole interaction (see

appendix A), and sum over all intermediate states, not just states where

|Ω| is conserved. Consequently, the angular variation of the interactions are

state- and atom-dependent.
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Figure 3.10: Angular variation of the expectation value of the scaled C6 coeffi-

cient for the 3S1 (a) and 1P1 (c) of strontium. The state compositions in terms of

energy eigenstates for the M1 = M2 = 1 states of the 3S1 and 1P1 are also shown

in panels (b) and (d) respectively. The lines in (b) and (d) are: J = 0 Ω = 0 (red

dash-dotted), J = 2 Ω = 0 (green dashed), J = 2 Ω = 1 + J = 2 Ω = −1 (blue

dotted), and J = 2 Ω = 2 + J = 2 Ω = −2 (black solid).

Figure 3.10 shows the angular variation of the 1P1 and 3S1 of strontium. The

cases of the 1P1 and 3S1 states are particularly interesting as all of the total

angular momentum is contributed either from orbital angular momentum

or spin angular momentum. The variation between the magnitude of C6 for
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different eigenstates leads to the angular dependence of the expectation value

of C6; as the 1P1 states show a greater difference between the different values

of C6 compared to the 3S1 states, the angular variation of the expectation

value is correspondingly greater. This is to be expected, as the differences

between the C6 values in the 3S1 states are due to spin-orbit coupling, which

has been shown to be small for strontium Rydberg states [113]. The angular

variation for the 3S1 states arise entirely from the fine structure splittings of

the 3P states.
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Figure 3.11: Angular variation of the expectation value of the scaled C6 co-

efficient for the 2P1/2 (a) and 2P3/2 (c) of rubidium. The state compositions in

terms of energy eigenstates for the stretched states of the 2P1/2 (b) and 2P3/2

(d) are also shown. The lines in (b) are: J = 1 Ω = 0 (red dash-dotted), and

J = 1 Ω = 1 (black solid). The lines in (d) are: J = 3 Ω = 0 (red dash-dotted),

J = 3 Ω = 2 + J = 3 Ω = −2 (green dashed), J = 3 Ω = 1 + J = 3 Ω = −1

(blue dotted), and J = 3 Ω = 3 + J = 3 Ω = −2 (black solid). The admixture of

the J 6= 3 states is not shown in the bottom right hand plot, but is very small.
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The angular variation in the strontium states can be compared to similar

states in rubidium; the 2P1/2 and 2P3/2 states of rubidium are shown in figure

3.11 (the 2S1/2 have no variation to within the error of the calculation). There

are two notable features of the expectation values, the first being the zero

crossings visible in both fine structure components of the P states. It should

be noted that as these are expectation values, the zero-crossings do not imply

zero interaction at the crossing. Instead, the wavefunction for each atom pair

(which is a superposition of the eigenstates) will collapse to one value of the

C6 coefficient corresponding to a particular eigenstate. Over a statistical

ensemble, however, the interaction would average to zero. The zero crossings

occur because the different values of the C6 coefficients have opposite signs

for different eigenstates, therefore not every symmetry or atom will have a

similar zero crossing. The second noteworthy feature of figure 3.11 is the

very large angular variation of the 2P3/2 states. This is due to the Förster

resonance discussed in section 3.5.2.

The eigenvectors in figure 3.11 reflect the changing projection of the J = 3

as the z-axis is rotated with respect to the internuclear axis. Some J = 1

states (not shown in figure 3.11) also contribute very small amounts to the

expectation value, which is due to the small mixing present between J states.

The mixing between J states increases with increasing angular momenta J1

and J2, for all atoms.

In the absence of an external field, the angular variation has no impact on the

C6 as long as the initial states of the atoms are well controlled. If, however,

the atoms are interacting during the excitation process, or if there is an

external field applied, the angular variation will lead to a superposition of

different eigenstates, implying that the different values of the C6 will need to

be averaged over the statistical ensemble of atoms. For some Rydberg states

(such as those with L = 0), the angular variation can be ignored, however

for others (particularly ones with Förster resonant intermediate states) the

angular variation must be taken into account.
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3.7 Conclusions

In this chapter we have given an overview of the theory of long-range interac-

tions in Rydberg atoms. In so doing, we have given details of the interaction

potential and derived the multipolar expansion used in the calculations pre-

sented. The energy shifts associated with the long-range interactions were

treated with both perturbative and non-perturbative methods. We have seen

that the non-perturbative methods give a more accurate view of the inter-

action, valid over a wider range of internuclear distances. The perturbative

methods, however, allowed a comparison between many states and even be-

tween several atoms.

Focusing on the perturbative calculations, degenerate perturbation theory

needed to be applied in the absence of an external field. We focused on

the dipole-dipole and quadrupole-quadrupole interactions, deriving the cor-

responding C6 and C5 coefficients respectively, where C5/R
5 and C6/R

6 are

the leading order interaction terms between two atoms initially in the same

Rydberg state. We also discussed the uncertainties involved in these calcula-

tions, including mainly the uncertainties due to the energy levels, as well as

the convergence of the calculations with the number of basis states included

when calculating C6 coefficients.

The eigenstates of the dipole-dipole and quadrupole-quadrupole interactions

were also discussed, as these are in general linear combinations of the pair

states that are degenerate in M1 and M2, the projections of the total an-

gular momentum of each atom onto the z-axis, at infinite internuclear sep-

aration. We have shown that the eigenstates approximately correspond to

states where the total angular momentum of each atom combine to form a

total angular momentum of the atom pair, J , with its projection onto the

internuclear axis Ω.

The perturbative and non-perturbative calculations were compared for the

dipole-dipole interaction, and the comparison used to put limits on the valid-

ity of the C6 in the case of small internuclear separations. The limits on the

validity of the C6 coefficients were also obtained by comparing the dominance

of the dipole-dipole interaction over the quadrupole-quadrupole interactions;

the latter become dominant at very large internuclear separation.
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A large number of C6 coefficients were calculated and compared across dif-

ferent series and atoms. Particular attention was paid to the L = 0 states,

where strontium was found to have isotropically attractive interactions that

have applications in many-body entangled states [12] and linear self-focusing

schemes [103]. In other series, several Förster resonances were found, which

correspond to near degeneracies between the pair states of interest and en-

ergetically close-lying dipole-coupled pair states.

Finally, we investigated the effects of varying the angle between the z-axis

and the internuclear axis. The main effect of the angular variation is to mix

M1 and M2 states differently, or conversely, mixing Ω states if one starts in

states with well defined values of M1 and M2.

The calculations of the dipole-dipole and quadrupole-quadrupole interactions

in the divalent atoms presented here are published in [96]. The values of the

C5 and C6 coefficients for rubidium and caesium have been partially discussed

in [8, 91, 93] and others, but have not been presented in a unified treatment

until now.



Chapter 4

Multichannel Quantum Defect

Theory

4.1 Introduction

Thus far all the calculations presented have used a one-active electron model.

This one-electron treatment has successfully been applied to calculations of

strontium Rydberg properties in the past [22, 114]; however, the limitations

of the application of such a one-electron model to two-electron atoms has

never been investigated, to the best of our knowledge. To go beyond the

simple one-electron description we must first take a step back and develop

the theory of two-electron Rydberg atoms.

The main effect that arises in two-electron atoms that causes a departure

from the typical one-electron Rydberg atom behaviour is the presence of

doubly excited states [2]. The overwhelming majority of these doubly ex-

cited states are autoionizing, meaning that they are quasi-bound states over

the ionization limit and hence ionize rapidly rather than decaying back to a

lower excited state. A few of the lowest-lying doubly excited states, however,

are below the ionization threshold; when these coincide in total angular mo-

mentum and parity with singly excited states nearby in energy, these doubly

excited states can cause energy shifts known as perturbations [30]. Addition-

ally, perturbations affect the wavefunctions of the bound states by mixing in

some of the doubly excited state wavefunctions, causing large departures in

67
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the expected behaviour of the Rydberg properties such as the radiative life-

times [30]. A consequence of these perturbed wavefunctions is the presence

of transitions that are normally dipole-disallowed; these intercombination

lines find many uses, for example as clock transitions [115], or generating

spin-squeezed states [26].

There are many ways to calculate two-electron effects, most of which involve

ab initio calculations where correlations between the electrons are treated

to various orders, using large basis sets and a variational procedure; ex-

amples include multiconfiguration Hartree-Fock (MCHF) calculations [116],

R-matrix calculations [117] or density functional theory [118]. These meth-

ods, however, are extremely complex, often with computer codes that can

be prohibitively complicated to use and adapt (see for example [119]). An

alternative is an empirical method known as multichannel quantum defect

theory (MQDT); this is an extension of the (single channel) quantum defect

theory that has already been mentioned in chapter 2. This can, and has,

been used extensively, both as an empirical method and in combination with

R-matrix methods to produce an ab initio calculation [19, 30].

MQDT has been used extensively in the description of two-electron effects in

the alkaline earth metals [19, 30, 120]. However, the empirical and ab initio

methods present different advantages and disadvantages. In the empirical

method, the required parameters are fitted to reproduce experimental en-

ergy levels, whereas the ab initio method calculates these parameters based

on a model potential of the singly-ionized ion, combined with the R-matrix

method. The empirical method allows a detailed analysis of the Rydberg

spectrum of the atom, with the energy levels reproduced to within the ac-

curacy of the measurements. The information gained from the empirical

method, however, is incomplete and relies heavily on previous spectroscopic

work. Additionally, the complexity of certain series (for example the D2 series

of strontium) requires a large number of parameters, which greatly compli-

cates the fitting procedure when no previous models are available. Many of

the issues present in the empirical method are resolved using ab initio meth-

ods, as the categorization of the perturbing states is unambiguous, and the

parameters that are generated do not rely on previous data [30]. These ab

initio methods, however, have never reached spectroscopic accuracy (at least
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not in any published results). The discrepancies between experiment and ab

initio values of energy levels are usually small compared to the binding en-

ergy; we note, however, that small deviations in the energy can occasionally

result in large changes to MQDT predictions.

In this chapter, we build on previous empirical and ab initio models of stron-

tium, and re-investigate the Rydberg series with the empirical method using

data that has been measured to much higher accuracy and precision. As the

new energy levels (published after the original empirical models [61, 120] of

strontium) have much smaller uncertainties, the new MQDT models are much

more tightly constrained, allowing us to update the view of the competing

couplings between various two-electron configurations of the bound states of

strontium. For certain series the data have not been updated; MQDT models

developed to describe these data, however, have been of poor quality, with

large deviations between the energy level values outputted by the MQDT

models and those measured experimentally.

The detailed analysis of the two-electron effects also allow us to extend the

calculation to investigate the radiative properties of the Rydberg states. Us-

ing numerical wavefunctions calculated using the methods described in sec-

tion 2.4.1 in conjunction with the channel fractions (which are essentially

the state coefficients in an expansion of the full wavefunction), two-electron

effects can be included in the calculation of dipole matrix elements and hence

in the calculation of radiative lifetimes and oscillator strengths. The calcu-

lations of the lifetimes allows the analysis of the effect of perturbers on the

physical properties of Rydberg states, and will pave the way for calculations

of long-range interactions in two-electron atoms.

This chapter begins with a review of MQDT, including the determination of

bound state energies and their wavefunctions using the parameters derived

from the theory. We go on to apply the theory to the Rydberg states of

strontium, and systematically develop MQDT models for each Rydberg series

where the energy levels are known; these models are found to agree very

well with experiment and with previous ab initio work (with some notable

exceptions). Finally, we use these models to numerically calculate radiative

lifetimes of the Rydberg states, providing a firm foundation from which we
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can go on to include two-electron effects in the calculation of long-range

interactions.

4.2 MQDT Formulation

4.2.1 Reactance Matrix Approach

In MQDT, a single-active electron interacts with the atomic core through an

effective interaction potential that depends on the state of the core. Different

configurations of the combined system comprising of the core and the active

electron are known as channels, and channels that coincide in parity and total

angular momentum can couple together [30, 34, 121]. This coupling between

channels is what gives rise to the admixture of doubly excited configurations

in singly excited Rydberg states, hence the determination of the coupling

strength of the channels is crucial to the description of two-electron effects

in Rydberg states. The properties of Rydberg states are mostly determined

by the Coulomb tail of the effective interaction potential between the active

electron and the core. For large radial distances, r, the radial wavefunction

of the active electron in a channel labelled i is given by φi(r), which satisfies

the Coulomb equation [45][
− d2

dr2
+
li(li + 1)

r2
+

2µ

r

]
φi = 2µεiφi, (4.1)

where µ is the reduced mass of the system, li is the orbital angular momentum

of the active electron in channel i and εi is the energy of the active electron

in that channel. The total energy of the state, expressed in wave numbers,

is given by

E = Ii +
εi
hc
, (4.2)

where Ii is the ionization threshold of channel i, h is Planck’s constant and

c is the speed of light.

The solution to (4.1) can be written as a linear combination of the regular

and irregular Coulomb functions s and c [34, 45], such that

φi(r) = [s(li, εi, r) cos θi + c(li, εi, r) sin θi] , r � a0. (4.3)
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Here, θi = πνi = π(n−δi) is the admixture between the regular and irregular

functions, and can be written in terms of an effective principal quantum

number for channel i, νi. This in turn can be written in terms of a channel

quantum defect, δi, which generally has a small energy dependence due to

core polarization.

The atomic eigenfunction, Ψ, can be written as a general superposition of

the channel wavefunctions, such that [34]

Ψ = A
∑
i

Aiφiχi, (4.4)

where Ai are channel coefficients, χi contain angular and spin terms for the

active electron and A signifies that the sum must be anti-symmetrized. We

note that we refer to A2
i as channel fractions, and these coefficients determine

the level of admixture of each channel in a bound state; the channel fractions

depend on the total energy. The index i runs over the N channels included

in the model.

While the bulk of the Rydberg wavefunction is determined by the Coulomb

tail of the effective interaction potential, the phase-shift θi and the interchan-

nel couplings entirely arise due to the short-range interactions between the

active electron and the core electrons. It is therefore possible to write the

total wavefunction Ψ in terms of the N uncoupled eigenfunctions of these

short-range interactions (which we call short-range channels), ψα, where α is

the index of the uncoupled eigenfunction, such that

Ψ =
∑
α

Bαψα. (4.5)

The Bα coefficients are similar to the Ai coefficients, but give the short-

range channel admixtures. This uncoupled basis is related to the long-range

channels in (4.3) by a unitary transformation, which, for sufficiently large r,

should be almost energy independent. We can thus write

ψα =

(
A
∑
i

Uiαs(li, εi, r)χi

)
cos(πµα)−

(
A
∑
i

Uiαc(li, εi, r)χi

)
sin(πµα),

(4.6)

where the Uiα are coefficients of a real unitary matrix, U, describing the

transformation between the long-range channels, φi, and the short range

uncoupled channels, ψα.
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We now combine equations (4.3), (4.4), (4.5) and (4.6), and equate the coef-

ficients of s(li, εi, r)χi and c(li, εi, r)χi to obtain

Aie
−iπνi =

∑
α

UiαBαe
iπµα (4.7a)

Bαe
iπµα =

∑
i

UiαAie
−iπνi . (4.7b)

We note that to obtain (4.7) we have split the sine and cosine terms into

complex exponentials. By requiring the Ai and Bα coefficients to be real,

4.7b can be split into real and imaginary parts, leading to the condition∑
i

UiαAi sin[π(νi + µα)] = 0, α = 1, . . . , N. (4.8)

The condition (4.8) only has non-trivial solutions if

det |Uiα sin[π(νi + µα)]| = 0. (4.9)

This determinant condition sets the basis for the MQDT calculation, as (4.9)

places a constraint on the possible values of the effective principal quantum

numbers. This form of the determinant equation has been widely used in

empirical MQDT modelling of the alkaline earths [19, 61, 97, 120]. Typically,

the U matrix is factorized into products of rotation matrices, which allows

the parametrization of interchannel couplings using mixing angles [19]. We

note, however, that the factorization of U is not unique, as the order of the

rotations is important. Additionally, the presence of the sine function in (4.9)

is less favourable for numerical algorithms. We can reformulate the condition

(4.9) by rewriting the equation in the form

cos(πµα)
∑
i

[Uiα tan(πνi) + tan(πµα)Uiα] cos(πνi)Ai = 0. (4.10)

This can then be written as∑
i

[Kiα + δiα tan(πνi)] ai = 0, (4.11)

where ai = Ai cos(πνi) and Kiα are the elements of the reactance matrix, K,

defined as

K = U†diag[tan(πµα)]U, (4.12)
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where diag[tan(πµα)] denotes a diagonal matrix with matrix elements

δiα tan(πµα). The determinant condition for a non-trivial solution of (4.11)

is given by

det |Kiα + δiα tan(πνi)| = 0. (4.13)

Using the K matrix, the values of the effective principal quantum numbers, νi,

are constrained. Until now, however, we have not imposed the final bound-

ary condition that Ψ → 0 as r → ∞. Imposing this boundary condition

introduces the additional constraint

E = Ii −
R̃

ν2
i

, i = 1, . . . , N, (4.14)

where R̃ = α2cMme[2h(me+M)]−1 (where me is the electron mass and M is

the total atomic mass) is the mass-corrected Rydberg constant and Ii denotes

the ionization threshold for channel i. A bound state is found at values of

νi where both conditions (4.13) and (4.14) are simultaneously satisfied for a

given K matrix.

Finally, the effect of core-polarization on the active electron causes energy

dependences in the K matrix [34]. Often, these energy dependences are small

enough that they can be ignored, although this is not true in general. In

order to account for these energy dependences, we introduce a linear energy-

dependent term to the diagonal elements of K,

Kii(E) = K
(0)
ii +K

(1)
ii

(Is − E)

Is
. (4.15)

This linear term is similar to the second term in a Rydberg-Ritz expansion

of quantum defects; the introduction of this term produces linear energy

dependences in the eigenquantum defects, µα, to the energy dependences of

quantum defects in the single-channel quantum defect theory.

MQDT models can be developed in one of the two ways mentioned in section

4.1: empirically or ab initio. In ab initio models the K matrix is calculated

using R-matrix methods in combination with a model potential for the singly

ionized ion [30]. Empirical models, such as the ones presented in section 4.3,

obtain the K matrix by fitting the matrix such that the bound state energies

predicted by the MQDT model coincides with the experimentally measured

bound state energies. In this work we develop empirical models for strontium

Rydberg states.
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4.2.2 Bound State Energies and Empirical K Matrices

Constructing and extracting channel fractions from an MQDT model requires

the extraction of bound state energies for a given K matrix. Bound states

occur at values of νi where equations (4.13) and (4.14) are simultaneously

satisfied. We note that, for a given K matrix, at a bound state the effective

principal quantum numbers of all channels are unique and coincide for equa-

tions (4.13) and (4.14); in between bound states, however, the two equations

predict different combinations of νi values (for models with more than two

channels). As such, it is important to ensure that the choice of νi values used

when obtaining the K is consistent. The method detailed below ensures a

self-consistent set of bound state energies for every value of K, allowing a

fitting procedure to obtain empirical MQDT models.

We start by choosing the effective principal quantum number of two channels.

The first, labelled νj, is used as the independent variable (related to the total

energy). The second, labelled νk, we use as the channel in which we search

for bound states. The choice of channels is arbitrary, and changing this

choice gives the same results. Using this choice, we rewrite equation (4.14)

such that other values of νi (excluding νk) can be formulated in terms of νj,

leading to

Fi(νj) =

[
Ii − Ij
R̃

+
1

ν2
j

]−1/2

. (4.16)

The values of νi are then

νi = Fi(νj), i 6= k. (4.17)

Equations (4.16) and (4.17) ensure that all values of νi other than νk are

unambiguously fixed before applying the determinant condition in (4.13).

In order to apply the determinant condition in (4.13), we define a function

Gk(K; νj) that is a rearrangement of (4.13) such that νk = Gk(K; νj). The

specific form of Gk(K; νj) depends on the number of channels and also on

the choice of which matrix elements of Kiα to set to zero in order to reduce

the number of fitting parameters (the zeros are usually chosen such that two

perturbing channels do not couple). For example, a two-channel model with
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a non-zero coupling parameter K12 = K21 results in

ν1 = G(ν2) =
1

π
tan−1

(
K2

12

K22 + tan πν2

)
−K11. (4.18)

As the bound state energy positions are determined when (4.13) and (4.14)

coincide, we can write a function Ξ(νj) that depends only on νj (which itself

can be written in terms of energy using (4.14)) such that

Ξ(νj) = Gk([Kiα]; νj)− Fk(νj). (4.19)

The bound state energies are then determined by zero crossings of the func-

tion Ξ(νj). Numerically, we find it advantageous to find the minimum of the

function Ξ(νj)
2 instead of finding the roots of Ξ(νj), as the tangent functions

in Ξ(νj) has repeating poles which can be interpreted by numerical root-

finding algorithms as a zero-crossing. We use a Brent’s method numerical

algorithm to find the minima of the Ξ(νj)
2 function [122], with the experimen-

tal value of νj used as an initial guess, with the upper and lower boundaries

a suitable fixed value above and below the initial guess respectively. Initial

guesses for n values greater than what is experimentally available can be

extrapolated using the fits to the Rydberg-Ritz equation given in table 2.4.

A given K matrix will produce a series of energy levels that can be extracted

using the above method. In order to find an empirical MQDT model, a least-

squares fitting procedure can be used to minimize the difference between

the energy levels predicted by a K matrix and the experimentally measured

energy levels, while taking into account the uncertainties [55]. The cost

function, χ2, is given by

χ2 =
∑
n

[(E(n)
exp − E

(n)
MQDT)/α(n)

exp]2, (4.20)

where E
(n)
exp and E

(n)
MQDT are the experimental and theoretical values of the

total energy respectively (for a given value of the principal quantum number

n), and α
(n)
exp is the uncertainty on the measured total energy. The standard

criterion for defining the quality of a fit is the reduced χ2, χ2
ν = χ2/ν, where

ν here is the number of degrees of freedom and should not be confused with

an effective principal quantum number, νi. A table giving acceptable values

of χ2
ν can be found on page 107 of [55] for different values of ν; a model is
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generally said to fit the data well when χ2
ν ≈ 1. We use a Nelder-Mead sim-

plex algorithm to find the optimal values for the Kiα matrix elements of the

reactance matrix [122]. The uncertainties in the parameters are estimated

by adding the error bar of each energy level measurement and re-optimizing.

The estimate of the uncertainty for each parameter is then given by the dif-

ference between the original parameter and the re-optimized parameter. This

procedure does not constitute a full calculation of the uncertainty, however,

due to the highly correlated nature of the large number of parameters in the

fit. A full determination of the uncertainties would be impractical.

4.2.3 Wave Functions and State Fractions

Once the bound state energy levels have been determined, an MQDT model

allows the extraction of the composition of the wavefunction by calculating

the Ai or Bα coefficients. Landé gJ -factors can be calculated directly from the

knowledge of these channel fractions; other observables, however, require the

full numerical wavefunction. These numerical wavefunctions are most easily

constructed by using the Ai coefficients, as some of the φi(r)χi functions can

be calculated using Coulomb functions (see section 2.4.1). We note, however,

that these Coulomb functions can only be calculated for νi > li [45]; in the

case of non-autoionizing doubly excited states, this condition is rarely met for

the cases of interest. The solution to this problem will be discussed in section

4.4, and involves fitting the unknown dipole matrix elements to lifetime and

oscillator strength data.

When the K matrix is known, the Ai coefficients can be extracted by using

equation (4.11). This equation on its own, however, has two problems: it does

not unambiguously determine the Ai coefficients, and it does not specify the

normalization, a normalization that has to be consistent with the definition

of the φi(r) functions. Following the normalization of the wavefunctions

constructed using Coulomb functions in section 2.4.1, the φi(r) functions are

normalized such that ∫ ∞
0

|φi(r)|2dr = 1. (4.21)

It has been shown in reference [123] that each individual channel should

normalise to ν3
i , so we adopt the normalization condition that

∑
iA

2
i ν

3
i = 1.
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By using this normalization condition together with (4.11), the values of the

Ai coefficients can be uniquely determined. Finally, we define the normalized

channel fractions to be Ãi = Aiν
3/2
i . Taking our earlier example of the two-

channel model in equation (4.18), the normalized channel fractions are given

by

Ã1 = ν
3/2
1

[
ν3

1 +
ν3

2(K11 + tan πν1)2

K2
12

(
cos πν1

cos πν2

)2
]−1/2

(4.22a)

Ã2 = −
(
ν2

ν1

)3/2
(K11 + tan πν1)

K12

cosπν1

cosπν2

Ã1. (4.22b)

4.2.4 Spin-orbit effects

In certain Rydberg series, the experimental energy level data have small

enough uncertainties to distinguish between fine structure components of

certain channels. Although these cases are rare in strontium, the ability

to fully separate out the different ionization limits allows the inclusion of

spin-orbit effects in the MQDT models.

The ionization limits have two fine-structure components each (except, of

course, for the 5s1/2 threshold). If these ionization limits are fully resolved in

the MQDT models because the energy level data have small uncertainties,

then the channels included in the model will converge to individual ionization

limits where the value of the total angular momentum of the inner electron is

well defined. This implies that each channel will be jj-coupled, as the orbital

angular momentum of each electron will couple more strongly to the spin of

that electron than to the orbital angular momentum of the other electron.

By resolving all the fine structure components of the ionization limits, the

spin-orbit effects can thus be included in the model. If the uncertainties in

the experimental data are too large, however, the spin-orbit effects will be

too small to be resolved by the model and the resulting MQDT model would

be indistinguishable from a model where the spin-orbit effects are neglected.

In general, the effects of spin-orbit coupling in the alkaline earth metals are

small [113].

Once a jj-coupled MQDT model has been obtained, standard recoupling

coefficients can be used to transform the jj-coupled Ãjji to the LS-coupled
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ÃLSi [40]. Using standard Racah algebra, we find that the transformation is

given by

Ā
(LS)
i =

∑
i′

δ
l
(i′)
1 l

(i)
1

δ
l
(i′)
2 l

(i)
2

δ
s
(i′)
1 s

(i)
1

δ
s
(i′)
2 s

(i)
2

×
√

(2j
(i′)
1 + 1)(2j

(i′)
2 + 1)(2L(i′) + 1)(2S(i′) + 1)

×


l
(i′)
1 s

(i′)
1 j

(i′)
1

l
(i′)
2 s

(i′)
2 j

(i′)
2

L(i′) S(i′) J (i′)

 Ā
(jj)
i′ .

(4.23)

4.3 Application to strontium: Bound state

energies

In this section we present comprehensive MQDT models for all L < 4 Ry-

dberg states of strontium below the first ionization limit (excluding certain

low lying states). The presented models are all empirical models based on the

most accurate measurements of the bound states available (a list of sources

can be found in [124] and [96]). We also compare these models with previous

empirical and ab initio work that has been done.

Before we delve into the specifics of each series, it is useful to take a step

back and take a look at the wider context of the perturbations in each series.

Figure 4.1 shows an overview of all the series and their interactions. Most

perturbers exist as states which can be uniquely identified as having predom-

inantly doubly excited character; there exist some states, however, that are

entirely mixed into the perturbed series (for example, the 4d6s configuration

in the 1D2 and 3D2 series), and thus do not appear as a single bound state.

The specific arrangement of the perturbers found in the various Rydberg

series can be understood by considering the ionic orbitals that the doubly

excited states are composed of. Strontium is a heavy alkaline earth metal,

therefore the 5p state of the ion is higher in energy than the 4d state, as

shown in figure 4.2. These two ionic states are the lowest in energy, there-

fore it can be expected that most perturbers below the 5s threshold will be

composed of the 5p and 4d states (otherwise the doubly excited states are

likely to be autoionizing). Figure 4.1 shows that most of the perturbers are
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composed of various permutations of the three lowest lying ionic states, in-

cluding the 6s state. Parity determines which series will be perturbed by

specific configurations, and total angular momentum further decides which

symmetries will perturb each series. The Pauli exclusion principle also plays

a role, as only even values of L+ S are allowed when both valence electrons

are in the same orbital [119]. It is found that perturbers with the same total

angular momentum but different values of the orbital angular momentum

to the perturbed series have a perturbation that is much less widespread

than those where the term symbols of the perturber are identical to the

perturbed series. The perturbers with the same term symbol as the series

being perturbed, however, are found to have dramatic effects, often causing

pronounced energy shifts over several states.

Spin-orbit effects are visible in series where the energy levels are highly accu-

rate (such as the singlet S series), although for most series the effects are too

small to be resolved; this is consistent with the calculations of [113]. In the

broader context of the alkaline earth metals, the perturbations in strontium

are stronger than those found in calcium (although similar perturbers exist

for both elements), yet weaker than those found in barium [19, 120]. Barium,

however, has many more perturbers, causing highly complicated perturba-

tions requiring models that can contain up to nine channels [19, 125].

The rest of this section is devoted to the analysis of the MQDT models. The

K matrices that were used to produce the results of this section are included

in appendix B.

4.3.1 5sns 1S0 States

The singlet S states are relatively well studied, with previous empiri-

cal [61, 120, 127] and ab initio [128, 129] models available. This series has

proved somewhat controversial, as the classification of the perturber found

at 37 160.234 cm−1 is highly ambiguous with some authors claiming the per-

turber is the 5p2 configuration [61, 124, 127] and others labelling the per-

turber as 4d2 [120, 128]. The reason for this was elucidated by [128, 130, 131],

where the authors used ab initio models to show that the perturber had al-

most equal admixtures of both 5p2 and 4d2 configurations, with only slightly
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Figure 4.1: An overview of the different singly and doubly excited series in

strontium, and the interactions between them. Solid bars denote energy levels in

cm−1 (the energy scale is non-linear, roughly following an n−3 scaling), with dashed

lines denoting the various ionization limits. Solid arrows denote a perturbation

of a singly excited series by the action of a perturber that exists as a measured

physical state, whereas dashed arrows denote a perturbation caused by a doubly

excited configuration that is completely mixed into the perturbed singly excited

Rydberg series. The darker grey columns denote continua.

more 4d2 character.

More recently published data [62, 124] for the experimental energy levels

of the 1S0 have pushed the level of uncertainty on these energy levels to

the 0.001 cm−1 level. Consequently, an additional perturbation can be seen

around the state at 44525.838 cm−1, labelled as the 4d2 3P0 state. The effect

of this perturber is very small, although the effect is enough to prevent a

good fit when using a two-channel model that ignores fine structure. This

was not the case in [61], where the uncertainties were much larger, thereby

permitting an adequate description of the series with only two channels.



Chapter 4. Multichannel Quantum Defect Theory 81

Figure 4.2: Energy levels for the Sr+ ion, relative to the first ionization limit

of strontium. Energies are to scale [126].

Based on the previous MQDT studies of the 1S0 states and the improved en-

ergy level measurements, we develop a three channel model that describes the

experimental data very well (χ2
ν = 0.38). The three channels are the 5sns 1S0,

the 4d3/2nd3/2 and the 4d5/2nd5/2. The resulting LS-coupled channel frac-

tions are shown in figure 4.3. Unfortunately, the perturber at 37 160.234 cm−1

could not be included, as the non-linear energy dependences in the K ma-

trix cause large deviations at low energy. We include all energy levels for

7 ≤ n ≤ 30 (substantial deviations in the single-channel quantum defects

predicted by the Rydberg-Ritz formula are evident above n = 30, as dis-

cussed in [62, 96]); we also include the perturber at 44 525.838 cm−1, but

not the perturber at 37 160.234 cm−1 due to this perturber lying too low in

energy.

The channel fractions show a clear perturbation at the low end of the series

due to the action of the lowest lying perturber, and another smaller pertur-

bation due to the perturber at 44 525.838 cm−1 (which is not included in the

figure). The high-lying perturbation is small, yet non-negligible, especially

when considering the radiative lifetimes of the states (as will be discussed in

section 4.4).

Regarding the issue of the classification of the state at 37 160.234 cm−1, we
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Figure 4.3: Channel fractions for the singlet S states in LS-coupling (shown in

(a)) and jj-coupling (shown in (b)). In (a) the white circles denote the 4dnd 3P0

and the grey circles denote the 4dnd 3P0 channels, and in (b) the white and

grey circles denote the 4d5/2nd5/2 and the 4d3/2nd3/2 channels respectively. The

vertical dashed lines denote the experimental bound states.

cannot make any definite claims as the state is not reproduced by the model,

although the lack of a channel with a 5pnp configuration heavily supports the

conclusions of [128, 130, 131]. Another three-channel model was attempted,

including the 5sns 1S0, 5pnp and 4dnd channels (the latter two channels

being taken to converge to the average of the 5p and 4d ionization limits re-

spectively). The resulting MQDT model reproduced the experimental energy

levels to within error, but the two perturbers were found to have switched,

with the lowest-lying perturber being described by the 4dnd channel and the

4d2 3P0 state being described by the 5pnp channel. Not only are these two

labels at odds with the ab initio MCHF and MQDT calculations, but the

lifetimes presented in section 4.4 were also found have large discrepancies

when the alternative MQDT model was used.

One way to see the effect of perturbations in a series is by plotting a so-

called Lu-Fano plot (named after their inventors). A Lu-Fano plot is a plot of

one channel’s effective principal quantum number against another channel’s,

usually modulo 1. The resulting plot effectively shows the energy variation of

the effective principal quantum number for a particular channel. Resonance
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Figure 4.4: Lu-Fano plot for the 1S0 states of strontium. Grey circles denote

the two 4d2 perturbers (1S0 and 3P0), while white circles denote the 5sns config-

urations. The black lines were produced using the MQDT given in appendix B.

A small resonance feature is observed at νd ∼ 2.6 (where the perturber appears);

this feature has been omitted in the figure for clarity.

features in Lu-Fano plots are typically associated with perturbers in the

series; a flat line would indicate no perturbers, and a tilted line indicates

an energy dependence in the quantum defect. The Lu-Fano plot for the 1S0

states is shown in figure 4.4. Figure 4.4 contains two resonances (although

the resonance associated with the 4d2 3P0 state is too small to be visible on

the scale), as is expected with two perturbers in the series.

Finally, we note that the model predicts both perturbers as being better

suited to a jj-coupling scheme classification, with the 37 160.234 cm−1 and

44 525.838 cm−1 states being labelled 4d3/2nd3/2 and 4d5/2nd5/2 respectively.

4.3.2 5sns 3S1 States

Compared to the corresponding singlet states, the 5sns 3S1 are very poorly

known, both from an experimental point of view and from the point of view

of the corresponding MQDT analyses. Only one previous ab initio study of

the 3S1 states has been carried out [128], and no empirical studies exist. The
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ab initio study found no perturbers for the series.

As doubly excited states with both valence electrons in the same orbital

are disallowed due to the Pauli exclusion principle [119], there exist two

candidate perturbers for the triplet S series that have the same parity and

total angular momentum: the 5p2 3P1 and the 4d2 3P1. We find no evidence

of the 4d2 3P1 perturber, either in a three-channel or in a two-channel model.

As such, we construct our MQDT model with the 5sns 3S1 and the 5pnp

channels (we take an arithmetic average of the fine structure components for

the latter channel, as the experimental uncertainties are too large to resolve

fine structure; consequently, we do not include the overall term symbol for

the second channel). We use energy levels for 7 ≤ n ≤ 23, with no perturbers

included; the data is sourced from [64, 124, 132].
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Figure 4.5: Channel fractions for the triplet S states. The white circles denote

the 5pnp perturber (assumed to be the 3P1 symmetry, as discussed in the text),

and the vertical dashed lines denote the experimental bound states.

Figure 4.5 shows the channel fractions for the 3S1. A very small admixture

of the 5pnp channel is found at the low end of the series, which is consistent

with the position of the 5p2 3P1 (which is much lower in energy and cannot be

reproduced by the model). Other than this small perturbation, the series is

essentially unperturbed; this agrees well with the ab initio calculations [128].

The Lu-Fano plot for the 3S1 states is given in figure 4.6, and shows a flat
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Figure 4.6: The Lu-Fano plot for the triplet S series of strontium. White circles

denote experimental measurements of bound states.

line with slight energy dependences. The lack of resonance features in the

plot is consistent with a lack of perturbers.

4.3.3 5snp 1P1 States

The singlet P states of strontium are commonly used as an example of the

success of MQDT. A lot of work has been done, and the series was the first

to be analysed in strontium [61, 133]. The series contains a single perturber,

the 4d5p 1P1 state (although at very low energy the 4d5p 3P1 also causes

small perturbations [129]). There exist several empirical models [61, 133]

and ab initio models [128, 129], all of which agree well with the experimental

observations. The 5snp 1P1 states are one of two series of states (the other

being the 5snf 1F3 states) where fine structure has been included in published

ab initio models [129].

We construct our MQDT model for the 1P1 states by choosing two channels,

the 5snp 1P1 channel and the 4dnp (choosing once again the arithmetic aver-

age of the fine structure components of the 4d ionization limits). We use data

ranging from n = 6 to n = 29 (including the perturber at 41 172.054 cm−1),

obtained from various sources (choosing the energy levels with the lowest
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uncertainty in the case of multiple measurements) [63, 124]. The model fits

the data very well, with χ2
ν = 0.8.

38000 40000 42000 44000 46000
Term Energy (cm−1 )

0.00

0.05

0.10

0.15

0.20

Ch
an

ne
l F

ra
ct
io
n 7

8

9

10

11

1.7 1.9 2.1 2.3 2.5 2.7
νd

0.0

0.2

0.4

0.6

0.8

1.0

ν s

Figure 4.7: Channel fractions (left) and a Lu-Fano plot (right) for the 5snp 1P1.

White circles on the left denote the 4dnp channel, with the state between the

labelled n = 7 and n = 8 states corresponding to the 4d5p 1P1 state. On the right

the white circles are experimental measurements, and the grey circle denotes the

state labelled as 4d5p 1P1.

The channel fractions and the Lu-Fano plot are shown in figure 4.7. Both the

channel fractions and the Lu-Fano plot show signs of a very wide perturbation

caused by the 4d5p 1P1 state. As a result of this wide perturbation, the

4d5p 1P1 state is mixed into the 5snp 1P1 series over a wide range of n, with

a maximum admixture of 18% found in the state labelled 4d5p 1P1, thus

confirming the previous label. The new experimental data does not reveal

any new information on the interactions between channels in this series, and

only serves to narrow the uncertainties on the K matrix that is obtained.

4.3.4 5snp 3P0,1,2 States

The triplet P states are much less well studied than their singlet counterparts,

due to the difficulty of accessing these states experimentally. The experi-

mental values for the energy levels are scarce and have large uncertainties,

with only one reference available for the high lying states [65] (although the
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n = 5, 6, 7 have been measured more precisely [124]).

For the MQDT models, the triplet P states are analysed in the same reference

that provides the experimental energy level values. The energy levels calcu-

lated using their MQDT models, however, show significant discrepancies with

the measured data, often differing by several standard deviations [65]. An ab

initio model also exists, although this model does not include the different

fine structure components. Both the empirical and ab initio models include

two channels, the 5snp 3P channel and the 4dnp 3P channel.

A two-channel MQDT model was attempted using the same channels as the

previous studies, including data provided in [65] and [124] (the 3P2 states

above n = 15 show large discrepancies in the expected behaviour of the

quantum defects and are excluded) for 6 ≤ n ≤ 15 and including the corre-

sponding symmetry of the 4d5p 3P perturbers. The two channels were found

to be insufficient to provide a good fit. We thus include a third channel

converging to the 4d ionization limit (both channels that converge to the 4d

ionization limits are taken to converge to the average of the fine structure

components), and find that the data fits to χ2
ν = 1.8, 0.2 and 0.2 for the

3P2, 3P1 and 3P0 respectively if the n = 13 level is excluded for all three

symmetries. Including the n = 13 level causes the χ2
ν value to go to 5.6, 3.2

and 7.9 for the 3P2, 3P1 and 3P0 symmetries.

The three-channel fit is adequate for this small number of data points; the

deviation of the n = 13 level for all three symmetries, however, remains

unexplained. A similar isolated discrepancy is not observed in [65], although

very few data points in that reference fit to within the uncertainty of the

experiment, therefore very little can be said about deviations.

Another difficulty is the labelling of the channels, two of which converge to

the same ionization limit. There is therefore no way to distinguish a priori

which channel is which, and the designation of one of the channels converging

to the 4d ionization limit is currently unknown. Multiconfiguration Hartree-

Fock calculations have shown that the low n singlet P states contained a

small amount of 4d4f, and the triplet states were not analysed. Based on

this, we hypothesize that the channels converging to the 4d limit are the

4dnp and 4dnf channel, the latter of which is too weak to be resolved in the
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singlet series. Another possibility to explain the presence of the 4dnf channel

is the presence of stray electric or magnetic fields, that can potentially cause

significant shifts in Rydberg states.
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Figure 4.8: Channel fractions (left) and Lu-Fano plots (right) for the 5snp 3P1.

On the left, white circles denote the (suggested) 4dnp channel and the grey circles

denote the (suggested) 4dnf. On the right, the white circles show the experimental

values, with the grey circle showing the perturber labelled as 4d5p 3P1.

The channel fractions and the Lu-Fano plot resulting from the 3P1 state

MQDT model (this series is typical of the three symmetries) are shown in

figure 4.8. The perturber at 37 302.731 cm−1 is well described by the model,

showing the second channel to be dominant in that state. The dominance of

the second channel allows us to identify the second channel as the 4d5p 3P1

channel and the third channel as the possible 4d4f 3P1. All three fine struc-

ture components have similar structure.

This empirical MQDT analysis of the triplet series remains inconclusive due

to the large uncertainties in the data. More work, both on the experimental

and on the theoretical side would be useful to resolve the issues present in

the interpretation of the model. The input of an ab initio calculation would

be particularly useful to confirm the presence of the 4d4f perturber in the

three series.
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4.3.5 5snd 1,3D2 States

By far the most challenging couple of Rydberg series in strontium are the sin-

glet and triplet D2 states. These states exhibit a breakdown in LS-coupling

around n = 16 due to the perturbing 4d6s configuration, and the singlet and

triplet series swap their labels at this value of n [61]. The combined action

of many perturbers in this series requires a large number of channels to fit

the energy level data. This large number of channels leads to a large number

of free parameters in the fitting procedure, which complicates the empirical

description of this series.

While the 1D2 and 3D2 series (which are inextricably linked by the interaction

with the perturbers) are highly complex, this complexity has stimulated a

lot of research into these states. The first empirical model used five channels

to describe the two series [61], including the 1D2 and 3D2 symmetries of the

5snd configuration, the 1D2 and 3D2 symmetries of the 4dns configuration,

and the 5pnp configuration (to an arithmetic average of the fine structure

components). The resulting model clearly showed the singlet-triplet switch at

n = 16, and the model was later successfully applied to Landé gJ factors later

on [134]. We note another empirical model exists which only includes three

channels for the 1D2 states and a separate two-channel model for the 3D2

states [70], but very large discrepancies can be seen between the experimental

and theoretical values. No ab initio models exist that include the singlet-

triplet mixing, although a four-channel model exists for the 1D2 states and a

two-channel model for the 3D2 states [128]. The channels that are included

are the 5snd, 4dns, 5pnp and 4dnd channels for the 1D2, and the 5snd and

4dns for the 3D2 states.

We follow the original empirical model of these states; by using more precise

energy levels, however, we find that the perturbation of the 4d2 3P2 level has

an effect that is resolvable in the experimental data, preventing a good fit

for five channels. We thus include six channels, which are detailed in table

4.1.

The resulting MQDT model for the 1,3D2 states fits with χ2 = 11.1 for

7 ≤ n ≤ 30. While this is not to within the experimental error, the fit is

still a large improvement over previous models (for comparison, the previous
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i LS jj Ionization Limit (cm−1) Channel fractions

1 5snd 1D2 5s1/2nd3/2 45932.1982 −
√

2
5A

(jj)
1 +

√
3
5A

(jj)
2

2 5snd 3D2 5s1/2nd5/2 45932.1982
√

3
5A

(jj)
1 +

√
2
5A

(jj)
2

3 4dns 1D2 4d5/2ns1/2 60768.43 −
√

2
5A

(jj)
3 +

√
3
5A

(jj)
4

4 4dns 3D2 4d3/2ns1/2 60488.09
√

3
5A

(jj)
3 +

√
2
5A

(jj)
4

5 5pnp 5pnp 70048.11 A
(jj)
5

6 4dnd 4dnd 60628.26 A
(jj)
6

Table 4.1: Summary of channels used in the six channel 1,3D2 model. The

first column shows the channel number, the second and third columns show the

channel labellings in LS and in jj-coupling respectively. The last column shows

the conversion from jj-coupling to LS-coupling for the channel fractions.

model fits with a χ2 = 36 to the older data [61], whereas refitting our model

to the same data produces χ2 = 1.4).

The difficulty in obtaining a good fit is as yet unexplained, although there

are multiple possibilities. Firstly, it is likely that the uncertainties quoted

in [62] are underestimated. The authors claim error bars of 0.001 cm−1;

their attempts to fit the series using a seven parameter fit to the Langer

formula, however, results in theoretical energy levels that often deviate from

the experimental levels by an order of magnitude larger than the experi-

mental uncertainties. Additionally, the energy levels above n = 34 show

deviations from the systematic trends expected in a Rydberg series, devi-

ations attributed to pressure broadening [62]. Such effects may still affect

states with lower n without being visible on the scale of the series of energy

levels. Secondly, there is a large discrepancy between the uncertainties in the

singlet states and the uncertainties in the triplet states, with differences of

up to two orders of magnitude. The discrepancy between the uncertainties

of the two series (which are fitted simultaneously) means that much greater

weight is given to the singlet states than the triplet, thereby complicating

the fitting procedure and possibly preventing a good fit to the same level of

accuracy as the singlet states.

Despite the lack of a fit to within the experimental uncertainty, the channel

fractions shown in figure 4.9 agree well with the previous empirical model.
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Figure 4.9: Channel fractions for the 1,3D2 states. Panels (a) and (c) show

the 5snd configurations, with the 1D2 states denoted by grey circles and the 3D2

denoted by white circles. Panels (b) and (d) show the perturber channel fractions.

The symbols are: 4dns 1D2 (grey circles); 4dns 3D2 (white circles); 5pnp 1D2 (grey

squared; these have been multiplied by 10 for clarity); 4dnd 3P2 (white squares).

Panels (a) and (b) show the 1D2 series, and panels (c) and (d) shows the 3D2

series.

The only new feature that was previously unresolved is the perturbation from

the 4d2 3P2 state (which is included in the fit). The state contains 92% of

the 4d2 channel (not shown in figure 4.9), confirming the labelling of this

configuration.

A comparison with the ab initio is impossible, as spin-orbit effects play a very

large role in this series, whereas these effects were neglected in the ab initio

study [128]. The more recently published results of the ab initio calculations

including spin-orbit effects make no mention of the 1,3D2 states [129, 135].
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The inclusion of the 5pnp channel may be a matter of some contention. While

this channel is included in the empirical model of [61], the labelling of the

perturber at 36 960.842 cm−1 (which is labelled as the 5p2 1D2 states in [61])

has been debated. Results from various MCHF calculations [130, 131] and

the ab initio MQDT models [128, 129] have all determined that the domi-

nant configuration of the state found at 36 960.842 cm−1 to be the 4d2 1D2

state, with a lower admixture of the 5p2 1D2 also found. The inclusion of

this channel in the empirical fitting, however, would require resolving the

fine structure of the 4d ionization limits for the 4d2 states, meaning that

two ionization limits would have two channels converging to them each due

to the 4d6s states. This would cause great difficulties due to the labelling

ambiguities that would arise. Additionally, the inclusion of such channels

would imply more free parameters to be fitted, which would be impossible

with the number of energy levels currently available. We thus only retain

the 5pnp channel in this model; the combined efforts of an ab initio and an

empirical model may be required to obtain a model that fully describes the
1,3D2 states.

Before we move on from this series, we take a first look into some of the

other physical properties of the 1,3D2 that can be calculated using MQDT;

notably, we can calculate Landé gJ -factors just from the knowledge of channel

fractions. As mentioned above, the 1,3D2 states of strontium have received

particular attention due to their complexity; as such, many different par-

allel investigations looked into the problem of the singlet-triplet mixing in

this series. After the first empirical model was established [61], the same

group made an experimental investigation of the response to magnetic fields

of the states and made a comparison with the predictions of their MQDT

model [120]. The predictions were very successful, demonstrating the pre-

dictive power of their MQDT model. We also note that it is possible to

incorporate Landé gJ -factors into the fitting procedure; this has been done

previously to aid in the fitting of particularly difficult series [19].

Landé gJ -factors can be calculated based solely on the knowledge of the

quantum numbers of the state and the channel fractions [23]. Specifically,
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the Landé formula, given by [23]

g
(i)
J = 1 +

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (4.24)

gives the gJ -factor for channel i. The total gJ -factor is therefore given by the

sum over these channels weighted by the channel fractions,

gJ =
∑
i

Ã2
i g

(i)
J . (4.25)

An initial analysis of the Landé gJ -factors showed a large discrepancy with

the experimental gJ -factors in [134]. This discrepancy was traced to a partic-

ular difficulty in the calculation of the channel fractions: the ionization limits

of the two 4d6s and the 4d2 channel are so close in energy that the label of

the particular channels can switch. At certain energies, several channels can

have avoided crossings in the Lu-Fano plot; this is a similar situation to de-

generacies in the eigenstates of an effective Hamiltonian. At these points, the

eigenvectors of the eigenstates are not uniquely defined, and become partic-

ularly difficult to treat. In MQDT, this is equivalent to the label of certain

channels becoming arbitrary at certain energies, allowing the calculated chan-

nel fractions to swap places. When the normalization is also imposed, the

channel fractions become particularly difficult to disentangle. For this rea-

son, using the gJ -factors in the fitting procedure was found to be impossible,

as the switching of channel labels in the numerical fitting procedure could

not be accounted for.

Despite the difficulties inherent in describing channels converging to near-

degenerate ionization limits, a combination of channel labels was found that

allowed the experimental gJ -factors from [134] to be reproduced. The result-

ing gJ -factors are shown in figure 4.10. We note that the experimental data

from [134] was normalized to the n = 12 point; as this point is subject to an

additional perturbation that was not included in the study of [61] and [134],

we renormalize the experimental data such that the n = 11 has a gJ -factor

of unity.



Chapter 4. Multichannel Quantum Defect Theory 94

10 12 14 16 18 20
Principal Quantum Number

0.95

1.00

1.05

1.10

1.15

g J
−f

ac
to

r

Figure 4.10: Landé gJ -factors for the 1,3D2 states. Circles with error bars are

experimental data points from [134] (after renormalization; see text for further

explanation), with white circles denoting triplet states and black circles denoting

singlet states. The solid and dashed lines are the prediction from our MQDT

model for the triplet and singlet states respectively.

4.3.6 5snd 3D1,3 States

In contrast to the 1,3D2 states, the 3D1,3 states are much less well studied.

Once again, the triplet series are difficult to access, which means that the

available energy level data have very large uncertainties. The experimen-

tally measured values of the 3D1,3 all come from a single source [64], which

also provides an empirical MQDT model of the 3D1,3 states. This empiri-

cal model once again shows significant discrepancies between the theory and

experiment, often differing by as many as seven standard deviations.

The ab initio model did investigate the 3D1,3 states with a two channel

model [128], including the 5snd and 4dns configurations (recall that this

model does not distinguish between fine structure components). Similar re-

sults to the empirical model of [64] were found in the ab initio model.

The discrepancies between the theoretical and experimental values of the
3D1,3 states in [64] motivated a reanalysis of the series. A two-channel model

containing the 5snd and 4dns configurations were found to be insufficient

to describe the series, therefore a three-channel model was used that con-
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tained an additional 4dnl channel (with the two perturbing channels taken

to converge to the arithmetic average of the two fine-structure components

of the 4d ionization limits). This unidentified 4dnl channel is most likely a

different symmetry of the 4d2 configuration that has not been experimentally

measured, based on the parity of the states and the arrangement of energy

levels of the Sr+ ion (see figure 4.2).

The MQDT models for the 3D1 and 3D1 states fit to χ2
ν = 0.5 and χ2

ν = 0.6

respectively, provided two outliers, the 5s16d 3D1 and the 5s22d 3D3, are

excluded. When including these outliers, the 3D1 and 3D1 models fit to

χ2
ν = 26.1 and χ2

ν = 2.0 respectively. The reason for this discrepancy is

unknown.

Concerning the identification of the two perturbing channels: as both chan-

nels converge to the same ionization limit, the labelling of these channels is

implicitly ambiguous. Based on previous work [64, 128], however, the 4dns

configuration is expected to have a large impact on the two series. This im-

plies that the largest perturber in these channels is likely to be the 4d6s state,

motivating the choice of the 4dns label for the white circles in figure 4.11.
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Figure 4.11: Channel fractions for the 3D1 (left) and 3D1 (right) states. White

circles are likely to denote 4dns channel fractions and the grey circles are thought

to denote 4dnd channel fractions (see the text for a discussion).

The uncertainties on the energy levels measured in [64] are very large. The
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unexpected appearance of a third channel converging to the 4d limit could

be due to the poor quality of the data. It is also possible, however, that

a third perturber was not found in the ab initio model due to the lack of

fine-structure in this model. More work, both experimental and theoretical,

would be required to improve the understanding of these two series.

Before concluding the D states, we note that the third channel (currently

thought to be due to the 4d2 perturber) can also be taken to converge to

the average of the 5p ionization limits. Such models give similar fits. We

choose the model presented here due to the high n values where the third

channel shows peaks in the channel fractions. Based on other series, the 5p2

perturbers tend to be either low-lying or autoionizing, whereas different sym-

metries of the 4d2 perturbers are generally more spread out in energy [124].

4.3.7 5snf 1,3F States

Very little work has been done on the singlet and triplet F states. A single ab

initio investigation is all that has been carried out in terms of MQDT mod-

els [135] (although the focus in this study is the autoionizing states, a small

investigation of the bound states is presented). No empirical model exists to

our knowledge, although MCHF calculations supplement the calculations of

low-n states of the singlet F series [136, 137].

For the singlet F series we construct a similar two-channel model to the
1P1 states, including the 5snf 1F3 and 4dnp 1F3 channels (with the latter

converging to the average of the fine structure components of the 4d limits).

We include experimental data for 4 ≤ n ≤ 20 (including the 4d5p 1F3 state

at 38 007.742 cm−1) from [124] and the less precise values from [63] for 20 ≤
n ≤ 29. The experimental energy level data for the 1F3 states are somewhat

well known in that the uncertainties are much smaller and more states are

measured compared to many of the triplet states of other L symmetry. The

quality of the experimental data, however, is not comparable to either the
1S0 or the 1D2 states.

The resulting model (with χ2
ν = 0.8) produces the channel fractions shown

in 4.12. Compared to the ab initio predictions, the channel fractions in 4.12
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Figure 4.12: Channel fractions for the 1F3 states. White circles denote the

4dnp 1F3 channel.

predict a higher admixture of the 4d5p 1F3 in the 5s4f 1F3, yet a lower

admixture in the state labelled 4d5p 1F3. The maximum admixture, con-

trary to the ab initio models, is found in the state labelled 5s6f 1F3. The

discrepancies between our empirical model and that of the ab initio models

remains unexplained. It is possible that the discrepancies arise due to impre-

cise knowledge of the energy levels; the single-channel quantum defects for

the 1F3 are of the order of 0.08, which is very small. These small quantum

defects may imply that the series is particularly sensitive to uncertainties in

the experimental measurements.

The ab initio model of [135] predicts that the 4d5p 1F3 and the 4d5p 3F3

both perturb the 1F3 series. This implies singlet-triplet mixing in the low-n

states of the F3, although this is not visible in our model. The lack of a

visible triplet perturbation is probably due to the effect being rather small

and being more important at lower energies where the empirical model is

not valid. While it may be reasonable to interpret the double-peaked feature

of the 4dnp configuration in figure 4.12 as being the two symmetries of the

4d5p perturbers, the state that is conventionally labelled as the 4d5p 3F3 is

much lower in energy and thus unlikely to have much effect on the 5s4f 1F3

state.
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Turning instead to the 3F2,3,4 states, no previous work (either empirical or

ab initio) exists to guide the study. A two-channel model was attempted

including the same configurations as in the 1F3 states; no satisfactory fit

was found. A third channel, the 4dnl, was therefore included, converging

to the same limit as the 4dnp; this three-channel model produces a fit with

χ2 = 0.62, 0.79 and 0.79 for the 3F2, 3F3 and 3F4 states respectively. All

available energy levels between 4 ≤ n ≤ 24 are used, with more accurate

levels from [124] for n < 19 and from [63] for the rest. The uncertainties in

the triplet F state energy level measurements are similar to those found for

the singlet F series.
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Figure 4.13: Channel fractions for the 3F3 (left) states and the 3F4 (right)

states. White circles denote the 4dnp 1F3 channel, and the grey circles denote the

channel tentatively assigned to the 4dnf configuration.

The two 4dnl channels are shown in figure 4.13, with the grey circles mainly

perturbing the series at high n and the white circles being larger at low n (not

shown in figure 4.13). The grey circles are consistent with what we might

expect from a 4d4f perturber as the 4f orbital is quite high in energy. The

4d4f perturber was found to have some effect on the 1F3 states by MCHF

calculations [137], although the effect is too small to be resolved in the singlet

series. The white circles are consistent with the low-lying 4d5p perturber.

While it may be expected that the additional perturbation from the 4dnl

channel may be a spurious effect arising from poorly known data, the Lu-Fano



Chapter 4. Multichannel Quantum Defect Theory 99

plot in figure 4.14 for the 3F3,4 reveals that this may not be the case. A sharp

turn in the experimental points around νd ≈ 2.7 for both series indicates

the possible start of a resonance feature, consistent with a perturbation.

No non-autoionizing doubly excited states have ever been measured above

45 000 cm−1 in strontium to our knowledge. The sharp turn in the two

Lu-Fano plots may also be due to stray fields.
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Figure 4.14: Lu-Fano plot for the 3F3 (left) and 3F4 (right) states. White

circles are experimental bound states from [63, 124]. Here, νd is relative to the

average 4d ionization limit, Id = 60 628.26 cm−1. The thick, black vertical lines

are narrow resonance features.

Two very narrow resonance features are also visible in figure 4.14. The feature

at higher energy for both the 3F3 and 3F4 series correspond to the peak in the

channel fractions shown with white circles. These features may be artefacts

of the poor quality of the energy levels.

4.4 Lifetimes and Oscillator Strengths

In principle, once the channel fractions for a specific series are known it

is possible to calculate wavefunctions numerically using these channel frac-

tions in combination with the techniques discussed in section 2.4.1. This

has never been done to our knowledge, and the main reason is because the

doubly excited states occur at low energy. A condition for applying Coulomb
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functions to calculate wavefunctions is that ν > l, which is rarely met for per-

turbers at low energy. Other factors, such as the uncertainties in the channel

fractions determined using experimental data with large uncertainties, can

contribute to erroneous calculations [138]. The discussion of the lifetimes cal-

culation presented in [138] focus mainly on low energy bound states, where

the Coulomb approximation becomes more dubious. Our aim is to calculate

Rydberg properties, and as such the Coulomb approximation is much better

motivated (see for example the lifetime calculations in rubidium from section

2.6). The uncertainties in our channel fractions may still be problematic; the

use of much more accurate energy level data, however, should have partially

mitigated this for high n.

In order to avoid the problems outlined above, previous efforts for lifetimes

calculations have tackled the issue by factoring out the ν−3
i dependence of

each channel’s width (or the ν3
i dependence of the lifetime). Using this

dependence, the widths of each state a, Γa, can be found by using

Γa =
∑
i

Ã2
iΓiν

−3
i , (4.26)

where Γi is the scaled channel width. The scaled channel widths can then be

fitted to a series of lifetimes, and the lifetimes of higher states can then be

extrapolated.

This technique was first applied to barium [139], although only one author has

investigated the lifetimes in strontium [70, 127]. The MQDT models used

in the strontium lifetimes investigation of [70, 127], however, were highly

flawed and large discrepancies are observed between the theoretical and ex-

perimental values of the energy levels. Additionally, the author has missed

a few measurements of the lifetimes, and the resulting fit does not extend

very high in n before a discrepancy is observed between experimental life-

time measurements not included in the studies of [70, 127] and the theoretical

predictions.

Other efforts to calculate lifetimes used ab initio methods; in particular,

the R-matrix method was applied to low-n states of strontium with great

success [31]. Unfortunately, these authors go no higher than n = 10 in their

investigation.
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In our approach, we attempt to combine various aspects of several of the

above studies. For the wavefunctions of the singly excited Rydberg states

(where the Coulomb approximation is valid) we use the QDT technique in

section 2.4.1. This technique is not generally applicable to the perturbers,

however, as the low-energy doubly excited states are too tightly bound to be

described by Coulomb functions. Instead, we use experimentally determined

values for the lifetimes and oscillator strengths of various series and transi-

tions to fit the required matrix elements of the doubly excited states. To do

this we assume that the doubly excited configurations have approximately

the same radial wavefunctions, regardless of symmetry (and ignoring possi-

ble energy dependences); the variations due to symmetry are accounted for

in the calculation of angular matrix elements, which can be separated from

the radial calculations and determined using standard angular momentum

algebra (see appendix A).

As discussed in chapter 1, the natural width of a state a, Γa, is given by

Γa =
4α2

3c

∑
b

ω3
ba|〈nbLbSbJb|r|naLaSaJa〉|2, (4.27)

where the sum over b is over dipole-coupled atomic states below a in energy,

and ωba = Eb − Ea. To apply this to two-electron atoms, we first introduce

channels into the summation in (4.27), such that

Γa =
4α2

3c

∑
b

ω3
ba

[∑
i,j

ÃiÃj〈n(j)
b L

(j)
b S

(j)
b J

(j)
b |r|n

(i)
a L

(i)
a S

(i)
a J

(i)
a 〉

]2

. (4.28)

To calculate the dipole matrix elements, we first label the inner electron as

electron 1 and the active electron (meaning the electron that undergoes the

transition) as electron 2. Equation (4.28) then becomes (using the results

from appendix A)

Γa =
4α2

3c

∑
b

ω3
ab

[∑
i,j

(−1)l
(i)
1,a+l2,max+S

(i)
a ÃiÃj

×
√
l
(i,j)
2,max(2L

(j)
b + 1)(2J

(j)
b + 1)(2L

(i)
a + 1)

×

{
J

(j)
b 1 J

(i)
a

L
(i)
a S

(i)
a L

(j)
b

}{
L

(j)
b 1 L

(i)
a

l
(i)
2a l

(i)
1a l

(j)
2b

}
R

(ij)
ba

]2

,

(4.29)
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where the curly brackets denote Wigner 6j symbols and

Rba =

∫ ∞
0

φ
(j)
b (r)φ(i)

a (r)rdr (4.30)

denotes a radial matrix element. The width can then be converted to an

oscillator strength using [140]

fab =
2Jb + 1

2Ja + 1

Γba
2ω2

baα
3
. (4.31)

As discussed above, the radial matrix elements for singly excited Rydberg

states are calculated using Coulomb functions (see section 2.4.1), and the

radial matrix elements for doubly excited states are left as free parameters

to be fitted to experimental lifetimes and oscillator strengths.

Finally, to take into account the effect of thermal radiation which couples

nearby Rydberg levels and thus modifies the lifetimes, we use equations (2.40)

and (2.41) as discussed in section 2.6. In the summation over states coupled

by the vacuum (denoted as states c in (2.41)), we include all dipole-coupled

states such that nc ≤ na+5. Changing this to nc ≤ na+10 changes the third

significant figure, which is within the error of both the experimental uncer-

tainty and the uncertainty on the calculation from the Coulomb functions.

Experimental values for Rydberg state lifetimes and oscillator strengths in

strontium are scant. Most lifetime measurements do not extend above n = 22

for any series, and when multiple measurements of the same level are available

the measurements are often in disagreement (see, for example, [31], where

many experimental values are quoted from different sources). For the 1S0

series, we use lifetime measurements from [141–143], and for the 1D2 series

the measurements used are from [141, 142, 144]; high-n lifetimes are also

included from [20, 145]. When calculating the various lifetimes, we include

all states for which there are experimental data points above n = 10; this

is to avoid errors from the numerical QDT radial wavefunction calculations,

which were found to have significant errors in rubidium for n ≤ 8 (see section

2.6).

The oscillator strength data used is also obtained from few sources, although

those sources cover a large number of Rydberg states. For the 5s2 1S0 →
5snp 1P1 and 5p5p 1P1 → 5snd 1D2 states we use data from [146–149]; we
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Transition Radial dipole matrix element

〈4d6s|r|4d5p〉 6.48(5)

〈5p2|r|4d5p〉 -3.10(8)

〈5p2|r|5s5p〉 -32(2)

〈4d2|r|4d5p〉 -12.7(4)

〈4d2|r|4d4f〉 28(3)

Table 4.2: Radial matrix elements (in atomic units) of the doubly excited states,

as obtained by fitting to the experimental lifetimes. Parameter sensitivities to the

uncertainties in the experimental data are shown in brackets, and are obtained by

reoptimizing the fitted parameters to the experimental data with their uncertain-

ties added.

note that reference [149] has measured gf -values (i.e. oscillator strengths

multiplied by the degeneracy factor, g = 2J + 1), and therefore need to be

divided by 2J + 1 to match our definition of the oscillator strength in (4.31).

As the channel fractions obtained from the MQDT models do not extend

to low n, the description of lifetimes and oscillator strengths would be very

poor if using only the channel fractions derived from MQDT alone. We

therefore include the eigenvectors of MCHF calculations to supplement our

own MQDT channel fractions, taking these eigenvectors for the lowest lying

states of each series (for n = 4, 5) [137].

The resulting radial matrix elements from the fitting to lifetimes and oscil-

lator strengths are shown in table 4.2. The fit gives a value of χ2
ν = 3.8;

however, the calculated value for the 5s15d 1D2 state is many standard devi-

ations from the experimental value, and when this is excluded the fit results

in χ2
ν = 1.5. The discrepancy for the 5s15d 1D2 level is most likely due to the

channel fractions, which may have a large error due to the extremely com-

plicated interplay between the many perturbers affecting the levels around

this energy.

The resulting lifetimes, calculated using the radial matrix elements shown in

table 4.2, are shown in figure 4.15 for the 1S0 and 1D2 states. The general

trend is well reproduced for both the 1S0 and 1D2 states, and can be seen

to have very good agreement over a large range of n, especially for the 1D2
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Figure 4.15: Panel (a): Lifetimes for the 1S0 states of strontium (blue lines

and circles) compared to the 2S1/2 states of rubidium (red dotted line and crosses).

Results of the calculation of the lifetimes based on a one-electron model are shown

as the dash-dotted blue line. Panel (b): Lifetimes for the 1D2 states of strontium,

with the theoretical values shown by the blue solid line and the experimental

points shown by blue circles. The inset shows the same as the rest of panel (b) on

a logarithmic plot, and extended to higher n.

states.

The lifetimes of the Rydberg states of two-electron atoms depend heavily on

the presence of perturbers [31, 144]. Comparing the lifetimes of strontium

(figure 4.15) and rubidium (figure 2.3), the lifetimes for strontium can be seen

to be about an order of magnitude smaller than the lifetimes of rubidium for

the same values of n. In order to understand the contributions that the

perturbers can have on the Rydberg series as a whole, it is useful to break

up the full natural width into the various contributions from each state’s

channel. We thus define the channel partial width of state a for channel i,

γ
(i)
a , to be

γ(i)
a =

4α3Ā2
i

3

∑
b

ω3
ab|〈ψb|d̂ |ψa〉|2. (4.32)

These channel partial widths are shown in figure 4.16. Figure 4.16 clearly

demonstrates the large effect of the perturbers on the Rydberg lifetimes.

In fact, the sum of the channel partial widths for the perturbing states are
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seen to dominate the total width for the 1D2 states. This explains the large

difference between the Rydberg state lifetimes of strontium and rubidium,

as the doubly excited perturbers are very short lived and quench the total

lifetime of each Rydberg state.
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Figure 4.16: Channel partial widths of the 1S0 (a) and 1D2 (b) Rydberg states.

For the 1S0 states in panel (a), the white bars denote the 5sns channel, the red bars

denote the 4dnd 3P0 channel and the yellow bars denote the 4dnd 1S0 channel’s

partial widths. For the 1D2 states in panel (b), the white bars denote the 5snd 1D2,

the red bars denote the 4dns 1D2, the blue bars denote the 5pnp 1D2 and the yellow

bars denote the sum of the three other channel partial widths, 5snd 3D2, 4dns 3D2,

and 4dnd 3P2.

While the effect of the perturbers may not be so large that all the physical

properties of Rydberg states are clearly affected, for certain properties, like

the lifetimes, the effect is crucial to the description of the Rydberg states.

In the case of the lifetimes, the ω3
ab term in equation (4.27) is the term that

causes the perturbers to dominate; as most perturbers are found at low-n,

the perturbers couple very strongly between themselves. For states with a

small admixture of the perturbers, the ω3
ab term ensures a strong coupling to

the low-lying perturbers of opposite parity in the decay channels, giving rise

to the quenching of the total Rydberg lifetimes. Thus, the sensitivity of the

physical property to the presence of perturbers depends mostly on the energy

dependence of this physical property. In the next chapter, the multichannel
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dipole matrix elements derived above will be used to investigate the effect of

perturbers on the long-range interaction between atoms in Rydberg states,

which is expected to be less influenced by perturbers due to the inverse

dependence on the Förster defect.

4.5 Conclusions

This chapter was dedicated to investigating the effects of the second electron

on the physical properties of Rydberg states of strontium. In particular,

the admixture of doubly excited states of the same energy, parity and total

angular momentum into the singly excited Rydberg states was studied for

all series of strontium with L ≤ 3.

In order to investigate two-electron effects, we have developed MQDT models

for the 1S0, 3S1, 1Po
1, 3Po

0,1,2, 1,3D2, 3D1,3, 1Fo
3 and 3Fo

2,3,4 series of strontium.

We began by reviewing and elaborating on the specific procedures involved

in obtaining MQDT models, choosing the specific formalism of the reactance

matrix, K, to describe the interactions between the different channels in each

series. Using the reactance matrix, we reviewed the process of extracting

bound state energy levels and channel fractions.

A review of the available empirical (models which have been fitted to repro-

duce experimental energy levels) and ab initio (models where the reactance

matrices are calculated with no input from experiment) models is presented

for each series before detailing the results obtained from our own analysis.

Most models agree well with the models obtained previously; modern exper-

imental data, however, has allowed a more rigorous analysis of certain series.

For example, for the 1S0 states we are able to resolve the fine structure com-

ponents of the 4d2 configuration, allowing us to investigate the effect of the

very small perturbation of the 4d2 3P0 state on the 1S0 Rydberg states. The

data for some series, for example the 3Po
0,1,2 or the 3Fo

2,3,4 states, were found

to be sparse and have large uncertainties. In these series, three channels

are required to describe the data to within error, although the third channel

(tentatively labelled as the 4dnf configuration) has yet to be confirmed. This

channel could be an artefact of the poor quality of the data. More experi-
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mental data would be useful to draw more meaningful conclusions from the

data.

The effect of perturbers on the Rydberg state lifetimes was investigated by

expanding the expression for the natural widths of atomic states in terms

of channels. By splitting up dipole matrix elements into radial and angu-

lar matrix elements, and calculating the angular part using standard Racah

algebra, we find that the singly excited state Rydberg wavefunctions can

be calculated using Coulomb functions. doubly excited state wavefunctions,

however, were much more complicated, and the radial dipole matrix elements

for these were left as parameters to be fitted to experimental values of the

lifetimes and oscillator strengths of Rydberg states.

The development of MQDT descriptions of two-electron effects allows us to

extend the formalism presented in chapter 3 to include multiple channels, as

will be presented in chapter 5.



Chapter 5

Spin-forbidden dipole-dipole

interactions in strontium

Rydberg atoms

5.1 Introduction

In chapter 4 we developed the necessary tools to describe the impact of

two-electron effects on the physical properties of Rydberg states. The one-

electron approximation was seen to break down in low-n Rydberg states

containing substantial configuration interaction, arising from the presence of

doubly excited perturbers. We now extend the discussion of Rydberg-state

long-range interactions presented in chapter 3 to include the effect of the

second valence electron in strontium.

The reasons for investigating the impact of two-electron effects on the long-

range interactions are two-fold. Firstly, this type of investigation is a useful

benchmark for determining the applicability of the one-electron model when

calculating Rydberg state properties of two-electron atoms, which has been

used in a range of calculations [22, 114]. For very high values of n, the one-

electron model is known to satisfactorily reproduce the experimental data

when calculating Stark maps [22, 114]. However, it is unclear under what

conditions it becomes important to take the second electron into account.

108
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The second reason for investigating these two-electron effects is more prac-

tical. Spin-orbit effects and the presence of perturbers leads to the weak

admixture of certain series, notably in the 1,3D2 states (as shown in the pre-

vious chapter). The weakly-allowed transitions between series with different

spins have already proved a key feature of many experiments such as optical

clocks [25, 26], and are at the heart of some proposals for simulating quantum

many-body physics [12, 24]. So far, however, the focus of these investigations

has remained on the 5s2 1S0 → 5s5p 3P0,1 transitions, where both the initial

and final states have very weak interactions. Rydberg dressing may enhance

the weak interactions [26]; however, the Rydberg dressing technique has yet

to be demonstrated. We propose to use the interactions between Rydberg

atoms of different spin states that are allowed via the singlet-triplet mixing

mechanism demonstrated in the previous chapter.

In this chapter we explore the effects of perturbers on the long-range inter-

actions. We apply the MQDT dipole matrix elements of chapter 4 and the

calculation of the C6 coefficients presented in chapter 3 to the exploration of

the impact of two-electron effects. We then proceed to explore the dynamics

of spin-forbidden transitions induced by the dipole-dipole interactions be-

tween atoms, examining specifically the case of atoms in a one-dimensional

lattice. Finally, we suggest possible links between these spin-forbidden transi-

tions and systems such as Fermi liquids [32] or molecular imaging techniques

known as Förster resonant energy transfer [150].

5.2 Theory of Dipole-Dipole Interactions in

Two-Electron Atoms

In chapter 3, we derived the interaction Hamiltonian for two one-electron

atoms separated by a distance R. We found that the two-electron version

of this Hamiltonian in (3.10) reduced to the one-electron case when terms

involving the inner orbital were neglected. The resulting one-electron two-

atom Hamiltonian could be expanded in terms of the multipolar expansion

given in (3.11). Here we will only consider the dipole-dipole interaction term,
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where the Hamiltonian is given by [90]

Hint = − 4π

3R3
r1r2 (Y1,1(r̂1)Y1,−1(r̂2) + Y1,−1(r̂1)Y1,1(r̂2) + 2Y1,0(r̂1)Y1,0(r̂2)) ,

(5.1)

where all the symbols are have the same meaning as those in chapter 3.

To calculate the matrix elements of (5.1), we must take into account the

multichannel nature of the wavefunctions. As such, we cannot use the same

formalism as in chapter 3, as we must factorize out certain angular parts to

perform the sum over channels. We therefore write the matrix elements as

Vij(R) =
∑
q

∑
q1

∑
q2

Ω
(ij)
12 (q, q1, q2)

R3
Ω

(ij)
1 Ω

(ij)
2 P

(ij)
1 P

(ij)
2 , (5.2)

where Ω1 and Ω2 are the corresponding single-atom angular dipole matrix

elements, and Ω
(ij)
12 is a coupling matrix element that depends on the total

angular momentum quantum numbers of each atom, J1 and J2, and their

projections on the z-axis, M1 and M2. The quantities P1 and P2 are single-

atom radial dipole matrix elements for atoms 1 and 2 transitioning from pair

state i to pair state j. The interaction between the two atoms can thus

be written in terms of single atom transitions and a simple coupling factor,

thereby simplifying the computational procedure.

So far, we have not applied any of the multichannel formalism. As discussed

in chapter 4, the presence of doubly excited states in the Rydberg series

requires the inclusion of multiple channels that couple together. Using the

MQDT formalism, the wavefunction of a state at a certain energy is given

as an expansion in terms of long-range scattering channels,

|ψ〉 =
∑
k

Ãk|φ(k)〉, (5.3)

where k is a channel index, |φ(k)〉 is the state vector of the long-range channels

(for electrons far from the core, these are given by Coulomb wavefunctions)

and Ãk is the normalized admixture coefficient of that channel in the total

state |ψ〉 (following the normalization procedure of section 4.2.3).

Taking into account the existence of cross-terms between channels, we see

that we cannot just sum expression (5.2) over the different channels. To

correctly describe these channels, we must include the sum over channels in
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the calculation of the dipole matrix elements. Recall from chapter 4 that we

write the multichannel dipole matrix element as

〈ψi|r|ψj〉 =
∑
k,l

ÃkÃl〈φ(k)|r|φ(l)〉, (5.4)

where l is the channel index for state j. We thus rewrite the dipole-dipole

interaction matrix element in (5.2) as

Vij(R) =
∑
q

∑
q1,q2

∑
k1,l1

∑
k2,l2

Ω
(ij)
12 (q, q1, q2)

R3

× Ãk1Ãk2Ãl1Ãl2Ω
(k1l1)
1 Ω

(k2l2)
2 P

(k1l1)
1 P

(k2l2)
2 .

(5.5)

Examining first the angular factors, for two electron atoms with the possibil-

ity of doubly excited states we consider the case where the electron a (active)

makes a dipole transition and electron p (passive) remains in the same state.

For a single-atom transition of atom α in the pair state i to the pair state j,

the angular dipole matrix element is given by [151]

Ω(ij)
α = (−1)S

(i)
α +l

(i)
α,p+l

(i)
α,a+J

(j)
α C

l
(j)
α,a

l
(i)
α,a010

×
√

(2l
(i)
α,a + 1)(2L

(i)
α + 1)(2L

(j)
α + 1)(2J

(i)
α + 1)

×

{
J

(j)
α 1 J

(i)
α

L
(i)
α S

(i)
α L

(j)
α

}{
L

(j)
α 1 L

(i)
α

l
(i)
α,a l

(i)
α,p l

(j)
α,a

}
,

(5.6)

as derived in appendix A. The coupling matrix element for the full two-atom

transition is then given by

Ω
(ij)
12 = (−1)1+q1+q2

√
24π

5
C2,q

1,q1,1,q2

× CJ
(j)
1 ,M

(j)
1

1,q1,J
(i)
1 ,M

(i)
1

C
J
(j)
2 ,M

(j)
2

1,q2,J
(i)
2 ,M

(i)
2

Y2,q(R̂).

(5.7)

As in the previous chapters, CJMJ
j1m1,j2m2

denotes a Clebsch-Gordan coefficient

and Y2,q is a spherical harmonic. It should be noted that the CJ(j),M(j)

1,q,J(i),M(i)

Clebsch-Gordan coefficient is part of the single-atom angular dipole matrix

element in appendix A, although we place the coefficients in the definition of

the coupling matrix element as these must be included in the sums over the

polarizations, q1 and q2.

For the radial dipole matrix elements P
(k1l1)
1 and P

(k2l2)
2 , their calculation de-

pends on whether the states are singly or doubly excited. We follow the same
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procedure as in chapter 4 for the calculation of these radial dipole matrix ele-

ments: the singly excited states are calculated using Coulomb functions, and

the doubly excited states matrix elements are taken from table 4.2.

5.2.1 Connection with Two-Electron Interaction Hamil-

tonian

In chapter 3, the full interaction Hamiltonian between a pair of two-electron

atoms was given by equation (3.10). We briefly draw the link between the

multichannel formalism presented in the preceding section and the terms in

(3.10).

Were we to apply the multipolar expansion in (3.11) to (3.10) we would find

four different multipolar expansions, corresponding to the interactions be-

tween the two pairs of valence electrons. Note that these would also cancel all

the nuclear polarization and nuclear-nuclear interaction terms, as discussed

in section 3.3. Considering only the dipole-dipole interactions, we write the

radial coordinate of the outer orbital for atom a as r
(o)
a , and the equivalent

for the inner orbital as r
(i)
a . For clarity, we also collect together all other

terms (including the sum over spherical harmonics) into the factor β (with

the superscripts i and o denoting the inner and outer orbital respectively).

The full two-electron interaction Hamiltonian therefore simplifies to

H
(2e)
int = β(ii)r

(i)
1 r

(i)
2 + β(io)r

(i)
1 r

(o)
2 + β(oi)r

(o)
1 r

(i)
2 + β(oo)r

(o)
1 r

(o)
2 . (5.8)

Equation (5.1) thus corresponds to taking the final term in (5.8).

The terms involving r
(i)
1 and r

(i)
2 cause transitions for the inner electron,

leaving the core in an excited state. For singly excited Rydberg states, an

excitation of the inner core would leave the atom in an autoionizing state.

The radial dipole matrix elements for these transitions (given in table 4.2)

are much smaller than the Rydberg-Rydberg transitions that dominate. Ad-

ditionally, the autoionizing states are very far in energy compared to nearby

dipole-coupled Rydberg states. The total coupling to autoionizing states will

thus be very small, and can be safely ignored.

For doubly excited states, the transitions induced by r
(i)
1 and r

(i)
2 are equiva-

lent to taking the inner electron as the active electron in the transition, just
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as we have done in chapter 4. Therefore, by applying the MQDT formalism,

we take into account the effect of r
(i)
1 and r

(i)
2 in (5.8) while neglecting the

coupling to states above the ionization threshold.

5.2.2 Effect of Interactions on Wavefunction

To obtain the energy shifts due to the dipole-dipole interactions we can use

the same perturbative and non-perturbative methods as in chapter 3, using

the multichannel calculations mentioned in the preceding section to obtain

the matrix elements of the dipole-dipole interaction. The effects of dipole-

dipole interactions, however, are not limited to the energy level shifts; in this

section we briefly examine the effect of interactions on the wavefunctions.

We once again turn to perturbation theory to determine the change in the

wavefunctions due to the dipole-dipole interaction. For clarity, we have omit-

ted the discussion of the effect of Zeeman degeneracies, however in practice

these degeneracies must be taken into account. Writing the initial state

vector as a perturbative series, we have

|ψ〉 = |ψ(0)〉+ |ψ(1)〉+ |ψ(2)〉+ . . . (5.9)

To find the new perturbed wavefunction, |ψ′〉, we can write the expansion

in (5.3) in terms of a new expansion with the same channels, but different

admixture coefficients,

|ψ′〉 =
∑
k

Ã′k|φ(k)〉, (5.10)

where the perturbed admixture coefficients are given by

Ã′k = 〈φ(k)|ψ〉

= 〈φ(k)|ψ(0)〉+ 〈φ(k)|ψ(1)〉+ 〈φ(k)|ψ(2)〉+ . . .
(5.11)

We thus define the zeroth, first and second order perturbative admixture

coefficients as

Ã
(0)
k = 〈φ(k)|ψ(0)〉 (5.12a)

Ã
(1)
k = 〈φ(k)|ψ(1)〉 (5.12b)

Ã
(2)
k = 〈φ(k)|ψ(2)〉. (5.12c)
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The first order term in (5.9) is given by

|ψ(1)〉 =
∑
j 6=ψ

〈j(0)|V |ψ(0)〉
E(0) − E(0)

j

|j(0)〉, (5.13)

where E(0) and E
(0)
j are the zeroth-order energies of the |ψ(0)〉 and the (unper-

turbed) intermediate |j(0)〉 states. Note that the sum over the intermediate

states is only over those states that are dipole-coupled to the |ψ(0)〉 state. The

sum over the intermediate states also includes an implicit sum over the rele-

vant MQDT channels for those states. The first-order admixture coefficient

is then given by [152]

Ã
(1)
k =

∑
j 6=ψ

〈j(0)|V |ψ(0)〉
E(0) − E(0)

j

〈φ(k)|j(0)〉

= 0,

(5.14)

as |φ(k)〉 and |j(0)〉 are orthogonal. Similarly, for the second order admixture

coefficient we find that only one term is non-zero, giving [152]

Ã
(2)
k = −Ã

(0)
k

2

∑
j

Vij(R)2

∆2
ij

. (5.15)

There are two important points to note about equation (5.15): the second

order term is directly proportional to the unperturbed channel fractions, and

the term is negative. The combination of these two points implies that the

admixture of a channel will decrease in the perturbative region, in proportion

to the amount of admixture of that channel at infinite separation.

The reason that the admixture of the channels always reduces is because the

coupling to other pair states causes the eigenstates to gain some admixture

of these intermediate dipole-coupled pair states. This is true of all atoms, of

course, however the result in (5.15) shows that the individual channels have

couplings with different R-variations. The different R-dependences of the

different channels implies that the admixture of doubly excited perturbers

in the Rydberg states is likely to become more prominent relative to the

dominant channel for smaller values of R (although both will decrease). This

in turn will affect the properties of the Rydberg states, for example the

natural radiative lifetimes.
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Despite the possible dramatic effects of the changing channel fractions with

R, the actual difference to the wavefunctions induced by the dipole-dipole

interactions is very small. Taking the example of the 16 1D2 state where the

state is composed of nearly equal parts singlet and triplet D character [61,

96] (and including the effect of Zeeman degeneracies), we find that in the

region where the perturbative treatment just starts to break down (R ∼ 2000

a.u.) the largest second order admixture coefficient is A(2) ∼ 0.01 in both

the 5snd 1D2 and 5snd 3D2 channels; the other coefficients are an order of

magnitude smaller. Thus the maximum change in the admixture of channels

due to the dipole-dipole interactions in the perturbative regime is less then

10% of the overall admixture coefficient. The ratio Vij(R)/∆ij will scale

considerably with n: the Vij(R) coefficients scale as n4 (as this is the product

of two dipole matrix elements), and ∆ij scales as n−3. Bearing in mind the

typical scaling of the admixture coefficients being ∼ n−3 (for series that are

not too highly perturbed by many perturbers), the second-order admixture

coefficients will scale as n11 (exactly like the C6 coefficients).

5.2.3 C6 Coefficients in Strontium D States

Due to the 1,3D2 states being the most highly perturbed Rydberg series in

strontium, the series is likely to show the largest effect on the dipole-dipole

interactions from the presence of perturbers and configuration mixing. We

thus calculate the C6 coefficients for these states, both to determine the

validity of the one-electron model used in chapter 3 and to see what impact

singlet-triplet transitions are likely to have on the interactions. For simplicity,

we restrict ourselves to the stretched states, such that J = MJ = 2.

The results of the C6 calculations for the 1D2 states are compared in figure 5.1

between the single-channel QDT and the MQDT methods. In the heavily

perturbed regions the difference between the two calculations can be quite

large, especially for states with heavy admixtures of perturbers. The largest

effect is seen in the n = 10 and n = 12 levels, however several states around

n = 16 also show significant differences between the calculations. The n = 10

level was found to have a larger natural width predicted by the MQDT cal-

culation than the experimental values (as seen in chapter 4), so it is possible
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that this state may be predicted to have too large an admixture of perturbers

by the MQDT model. For the n = 12 level, the perturbers have a significant

effect on the dipole matrix elements, causing the cancellations between levels

to result in very different values when comparing the two calculations. The

same intermediate pair states, however, contribute to the n = 12 state C6 in

both calculations. For the states around n = 16 the singlet-triplet mixing

has a large effect, and the differences in the C6 values for these states are

due to different intermediate pair states contributing to the total C6.
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Figure 5.1: Fractional difference between the C6 calculated using MQDT,

CMQDT
6 , and the C6 coefficient calculated using a single-channel quantum defect

theory model, CQDT
6 , for the 1D2 states of strontium.

For higher values of n, the reduction of the perturber channel fractions en-

sures a convergence between the two calculations. For n ≥ 30, the differences

between the single-channel QDT and MQDT calculations are of the order of

2% and reduce with n. This difference is within the uncertainties of the C6

coefficients calculated in chapter 4.3.

It is also useful to examine the contributions of the different intermediate

pair states that make up the total C6. Figure 5.2 shows the contributions

from intermediate pair states of singlet-singlet, singlet-triplet and triplet-

triplet symmetries for each value of C6, which gives a good representation

of the impact of singlet-triplet mixing on the dipole-dipole interactions. As

expected, the heavily perturbed regions of the 1D2 and 3D2 states around

n = 16 show the largest degree of singlet-triplet mixing, with significant
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contributions from pair states of the opposite symmetry.
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Figure 5.2: Scaled C6 coefficients for the stretched states of the 1D2 (left)

and 3D2 (right) states of strontium. Blue bars denote the contributions from the

singlet-singlet intermediate pair states, green bars denote the contributions from

the singlet-triplet states and red bars denote the contributions for the triplet-triplet

states.

Figure 5.2 shows an additional feature of interest: a resonance feature can be

seen in the singlet-triplet pair states contributing to the C6 around the 30 3D2

state. Investigating this more closely, we find a Förster resonance (a near

degeneracy between two pair states) in the 2×n 3D2 → (n−2) 1F3+(n−3) 3F2

reaction channel. The Förster defect, ∆ = Ei − Ej, is shown in figure 5.3,

demonstrating the zero-crossing on the denominator and hence the cause of

the Förster resonance.

The resonance is, to the best of our knowledge, a unique feature of the

strontium Rydberg states. While there exist many spin-changing Förster

resonances in systems with strong spin-orbit coupling (for example quan-

tum dots [153]), this is the first spin-changing resonance found in Rydberg

atoms. At avoided crossings, it is possible to diabatically transfer states

from one potential curve to another (for example in collisions), hence the

Förster resonance in this case would allow significant transfer between pair

states. Such state transfer has been previously observed around Förster res-
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Figure 5.3: Förster defect, ∆ = Ei − Ej , between pair states for the 2 ×
n 3D2 → (n−2) 1F3 + (n−3) 3F3 reaction channel. The shaded region denotes the

uncertainties.

onances induced with electric fields [109]. The Förster resonance found in

the 30 3D2 state is thus a route to an electronic “spin-flip” induced by the

the combined action of configuration mixing and dipole-dipole interactions.

In the next section we apply this “spin-flip” to a study of spin excitations in

a one-dimensional optical lattice.

5.3 Application of Spin Transfer to Optical

Lattices

In condensed matter physics, the dynamics of one-dimensional chains of

atoms is of critical importance to a large number of systems. In particular,

Luttinger liquids have garnered a lot of interest [32, 154]; Luttinger liquids

are a phenomenological model of low-energy one-dimensional excitations in

fermions. The Luttinger liquid model condenses all of the relevant physics

of one-dimensional excitations near a Fermi surface into two parameters,

thereby greatly simplifying the understanding of one-dimensional systems.

One of the key predictions of the one-dimensional Luttinger liquid model is

the possibility of exciting different modes of the liquid corresponding to sep-

arate charge and spin modes [32, 154]. These different modes have different
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dynamics (due to their different interactions), hence effectively separating

out the spin and the charge excitations. Phrased differently, despite there

being only one carrier for both charge and spin (either an electron or a hole),

new quasiparticles arise in the system that appear distinct from the original

charge and spin carrier. While we do not employ the Luttinger liquid model

in this work, we show that the Förster resonance found in section 5.2.3 can

lead to similar dynamics.

Cold atoms are increasingly being used to simulate condensed matter physics,

due to the increasing experimental precision and the ability to control many

degrees of freedom in cold atoms that cannot be manipulated in real crys-

tals [155]. In particular, optical lattices are increasingly popular methods

of investigating many-body dynamics in ultracold gases [156]. In this sec-

tion, we investigate the dynamics of state transfer induced by dipole-dipole

interactions. We focus on the spin-changing Förster resonance found in sec-

tion 5.2.3, where we investigate the dynamics of Rydberg atoms prepared in

a one-dimensional lattice. We begin with a general discussion of the dynam-

ics induced by dipole-dipole interactions, before investigating the case of the

lattice.

5.3.1 State Transfer Induced by Dipole-Dipole Inter-

actions

When a Rydberg state is prepared and brought into the vicinity of another

Rydberg atom, the interaction between the two atoms causes a shift in the

energy levels. The eigenstate of the Hamiltonian of the atoms at infinite

separation, however, is not the eigenstate of the Hamiltonian of the atoms

interacting with a fixed, finite separation. The presence of dipole-dipole

interactions will cause a small mixture of other pair states nearby in energy

to the initial pair state, which in turn will cause oscillations between the

states. As the dipole-dipole interaction is not time-dependent, the dynamics

of the two interacting atoms is simply described by unitary time evolution.

We consider the Förster resonance in the 2 × 30 3D2 pair state. Figure 5.4

shows a non-perturbative calculation of the relevant energy levels and their
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Figure 5.4: Energy levels in the vicinity of the 2×30 3D2 pair state of strontium

with Ω = 4 (corresponding to taking the values of MJ = 2 for the 30 3D2 states),

showing the avoided crossing with the Förster resonant state, 28 1F3 +27 3F3. The

panels (a) and (c) show the multichannel calculation with the singlet-triplet pair

states included, and panels (b) and (d) show the single channel calculation. Panels

(a) and (b) are an overview of the energy levels, whereas (c) and (d) are zoomed

in to show the avoided crossings. The red line overlaid on all the curves shows

the C6 perturbative result. The shaded areas denote the regions within the LeRoy

radius.

avoided crossings as a function of the interatomic distance. The difference

between the multichannel and the single channel calculations are also shown,

reinforcing the importance of including the multichannel formalism when

dealing with configuration-mixed states. The C6 calculation is also shown to

have a more limited range of applicability in the presence of avoided crossings,

which occur at relatively large distances in the case of Förster resonances

compared to other states in the 3D2 series (without going to much higher n).

The second-order shift induced by the dipole-dipole interaction arises mostly
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due to the coupling of the 2 × 30 3D2 with the 27 3F3 + 28 3F3, visible in

panels (a) and (b) of figure 5.4 as the downward curving state.

To describe the time evolution of the two interacting Rydberg atoms at a

fixed distance R, it is a relatively simple matter to numerically evolve the

states, as will be shown below. It is useful, however, to begin with a toy

model to gain physical insight into the behaviour of the dynamics.

Toy Model

The simplest case we can consider for two interacting atoms is the two-level

case. We consider two atoms initially prepared in one pair state with the

dipole-dipole interactions induced by a nearby dipole-coupled pair state. We

use the time-dependent Schrödinger equation,

i
d

dt
|Ψ〉 = H|Ψ〉, (5.16)

and we take H = H0 + V , where H0 denotes the Hamiltonian describing the

atom pair states at infinite separation. Expanding the state vector in (5.16)

in terms of the eigenstates of H0,

|Ψ〉 =
∑
i

ci(R, t)e
−iEit|ψi〉, (5.17)

we find the standard expression for the Schrödinger equation in the interac-

tion picture,
dci
dt

= −icj(R, t)Vij(R)e−i∆ijt, (5.18)

where ∆ij = Ei − Ej is the Förster defect, and Vij(R) is given in (5.2).

Considering two atoms fixed in space, and simplifying to a two level system

we find

dc1

dt
= −ic2(R, t)V12(R)e−i∆12t (5.19a)

dc2

dt
= −ic1(R, t)V12(R)ei∆12t. (5.19b)

By differentiating with respect to time and substituting, we find the second

order equation
d2c1

dt2
+ i∆12

dc1

dt
+ c1(R, t)V12(R) = 0. (5.20)
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The solution for this differential equation (assuming the boundary conditions

c1(R, 0) = 1, c2(R, 0) = 0) is

c1(R, t) =
Ω−∆12

2Ω
e−i(∆12+Ω)t/2

+
Ω + ∆12

2Ω
e−i(∆12−Ω)t/2,

(5.21)

where Ω2 = ∆2
12 + 4V12(R)2. This leads to an analogue of Rabi oscilla-

tions [157], where the probability of finding an atom in a dipole-coupled pair

state at time t is given by

|c2|2 =
4V12(R)2

Ω2
sin2

(
Ωt

2

)
. (5.22)
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Figure 5.5: Probability of state transfer for a two-level pair state system due to

dipole-dipole interactions, calculated using equation (5.22) with parameters for the

2× 30 3D2 → 28 1F3 + 27 3F3 reaction (left) and the 2× 30 3D2 → 28 3F3 + 27 3F3

(right).

The results of (5.22) are shown in figure 5.5 for the Förster resonant case

and the case of the largest contributing pair state to the C6 for the 30 3D2

state. The values of the C3 coefficients used to calculate V12(R) are given in

appendix C. Despite the larger value of V12(R) for the 28 3F3 + 27 3F3 shown

in the right-hand plot, the probability of transferring from the 2×30 3D2 pair

state to the 28 1F3 + 27 3F3 pair state is much higher. The Förster defect is
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shown to be much more important than the coupling strength in determining

the probability of state transfer. The spin-forbidden reaction, 2× 30 3D2 →
28 1F3 + 27 3F3, is thus dominant over the 2 × 30 3D2 → 28 3F3 + 27 3F3

transfer, despite the stronger coupling to the latter state.

Numerical Model

Despite the usefulness of equation (5.22) to gain physical insight into the

state transfer mechanism, there remain several flaws. The first issue is that

we have thus far ignored symmetrization; the off-diagonal couplings in the

Hamiltonian mean that we should consider the linear combination of the

28 1F3 + 27 3F3 and 27 3F3 + 28 1F3 states. The second issue is that a two-

level approximation will not necessarily be valid here, as the interference

between the 28 1F3 + 27 3F3 and 28 3F3 + 27 3F3 channels may substantially

alter the picture.

To resolve these issues, we change the expansion of the wavefunction in (5.16)

to eigenstates of the full Hamiltonian, H. To do this, we diagonalize the

matrix Hij = 〈φj|H|φi〉, such that D = U ·H ·UT , where D is a diagonal

matrix of eigenvalues, H is the matrix with Hij matrix elements, and U is a

unitary matrix containing the eigenvectors. The initial state vector, c (where

the vector is composed of the ci coefficients in (5.17)) can then be projected

into the eigenbasis, C, using C = U · c, and the state evolved in time using

|Ψ〉 =
∑
i

Ci(R, t)|φi〉 =
∑
i

e−iεitCi(R, 0)|φi〉, (5.23)

where |φi〉 are eigenstates of the full Hamiltonian and the εi are the cor-

responding eigenergies. The expression for the time evolution in (5.23) is

valid only because V is time independent. As such, the time evolution of

the eigenstates is completely determined by the exponential factor, e−iεit,

thus simplifying the procedure of solving equation (5.18). Instead, the diffi-

culty now lies in finding the eigenstates, φi, and their eigenvectors. After the

time evolution, the state vectors are projected back into the original basis by

applying c = UTC.

Numerically, the diagonalization of large matrices can be done with relative

ease, using packages such as the LAPACK and ATLAS libraries [158, 159].
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The computing time of these algorithms allow for much faster processing

than directly solving (5.18). The drawback of these algorithms, however, is

that the ordering of the eigenvalues and eigenvectors is not preserved as the

independent variable (in this case, R) is varied. As such, the states often

switch at true crossings of the potential curves (note that true crossings only

occur between states of different symmetry [160]). To overcome this, it is

necessary to track the eigenvectors and ensure their ordering is preserved.

The ordering can be checked by ensuring the eigenvectors, Ci(R), are or-

thogonal, such that Ci(R) ·Cj(R+dR) = δij. For small enough values of the

step size, dR, this is sufficient to give accurate tracking of the eigenvectors,

with the caveat that the algorithm must be started for large enough values

of R to ensure the correct eigenvector is chosen as the starting state.

We note that the state tracking procedure detailed above depends crucially

on the knowledge of the calculated eigenvectors. Unfortunately, many of the

eigenvalues of the Hamiltonian are degenerate when using double precision

arithmetic. The eigenvectors resulting from degenerate eigenvalues are in

general not uniquely defined, hence the orthogonality condition of the nu-

merical eigenvectors for different values of R is not met. We therefore use

quadruple precision arithmetic to enable the accurate tracking of the eigen-

states.
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Figure 5.6: Probability of transferring to the 28 1F3+27 3F3 state for a two atom

system with four levels per atom, calculated by time-evolution of the eigenstate

basis using (5.23).
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Figure 5.6 shows the results of the time evolution of the eigenstates from

(5.23). In the simulation we have included the 30 3D2, 28 1F3, 27 3F3 and

28 3F3 states. We have ignored the MJ sublevels, choosing the MJ = 2 for

all states included (which corresponds to taking the largest value of V12(R)).

The different MJ sublevels would make very little difference to the results

in figure 5.6, in principle, as the potential energy curves are unlikely to split

by large amounts between the different symmetries (which would only be

seen in the F states, as we initially chose the stretched states of the 30 3D2

atoms). We also ignore the 27 1F3 state; despite the potentially large effect

of the 27 1F3 + 28 3F3 pair state (as seen in figure 5.4), the dynamics in

terms of the spin angular momentum will largely be the same, and it is these

dynamics that we are interested in. The potential curves resulting from the

inclusion of these four levels are shown in figure 5.7. Comparing the curves

in figures 5.4 and 5.7, we see that the main behaviour of the eigenstates is

reproduced despite only including four energy levels per atom. While the

inclusion of more states would be interesting, the calculation times become

quickly prohibitive when adding states due to the increasing basis size when

considering more than two atoms, as will be seen in section 5.3.2.
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Figure 5.7: Potential curves around the 2×30 3D2 pair state (red line), including

only the MJ = 2 sub-levels of the 30 3D2, 28 1F3, 27 3F3 and 28 3F3 states. Black

solid lines denote the 28 1F3 + 27 3F3 pair state in the four-level calculation, and

the blue dashed lines are the results of the full non-perturbative calculation shown

in figure 5.4.
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The results in figure 5.6 confirm the conclusions of the toy model, namely

that the dynamics of the 2 × 30 3D2 → 28 1F3 + 27 3F3 reaction dominates

over the 2× 30 3D2 → 28 3F3 + 27 3F3 reaction. Interference effects, however,

are visible.

5.3.2 Spin Transport in Strontium Rydberg Lattices

In the preceding section, we demonstrated that two strontium atoms in the

30 3D2 state interacting via the dipole-dipole interaction can change state to

a spin-forbidden state, a transition enhanced by the near degeneracy of the

28 1F3 + 27 3F3 pair state to the original 2 × 30 3D2 state. This “ringing”

effect, however, would be difficult to measure experimentally, due to the

difficulty of preparing the initial states in the eigenstates of H0 and not of

the full Hamiltonian H (using the same definitions of H0 and H as chapter 3,

equation (3.1)).

A more interesting situation would be to investigate the propagation of a

spin excitation along a chain of atoms, where the atoms trapped in a Mott

insulator state [161] (i.e. a deep enough lattice trap that there would be a

single atom per lattice site, making the statistics of the atoms unimportant).

An interface between 1F3 states and 3D2 states would allow resonant hopping

of the states, leading to dynamics that are analogous to spin-hopping in

condensed matter systems [161].

The formalism used to calculate figure 5.6 can be generalized to N atoms.

The number of basis states required to describe N atoms with four levels

each is 4N , and as the time taken to diagonalize square matrices scales as the

cube of the number of basis states, adding a single atom means the procedure

takes 64 times the amount of time. Due to this severe exponential scaling,

we are limited in the number of atoms we can simulate, with N = 5 being

enough to take several days to calculate.

For a spin chain of atoms, the Hamiltonian can be written as

H =
∑
p

H
(p)
0 +

∑
p<q

∑
i,j

V ij
pq (Rpq) [|φpiφqi〉〈φpjφqj|+ |φqiφpi〉〈φqjφpj|] , (5.24)

where |φpiφqi〉 is the state vector of the pair of atoms at lattice sites p and
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q in the pair state i, Rpq = a|p − q| (with a being the spacing between

the lattice sites), H
(p)
0 is the single atom Hamiltonian such that H

(p)
0 |φpi〉 =

Ei|φpi〉 (where |φpi〉 is a single-atom state vector, with |φpiφqi〉 ≡ |φpi〉|φqi〉),
and V ij

pq is the dipole-dipole interaction between pair states i and j given in

(5.2), with R = Rpq. The values for V ij
pq can all be found in appendix C.

The (unsymmetrized) wavefunction in (5.18), |Ψ〉, can then be written as a

product of the N atom wavefunctions,

|Ψ〉 =
∑
i

ci(a, t)
N∏
p=1

|φpi〉. (5.25)

As before, this is projected onto the basis of eigenstates of H where the time

evolution is simple, before being projected back into the original basis. To

simplify the discussion, we introduce the following short-hand: 30 3D2 ≡ |0〉,
28 1F3 ≡ |1〉, 27 3F3 ≡ |2〉 and 28 3F3 ≡ |3〉. We then define the expectation

value of the spin and total angular momentum quantum numbers as being,

respectively,

〈S〉 =
∑
i

Si|ci(a, t)|2, (5.26a)

〈J〉 =
∑
i

Ji|ci(a, t)|2, (5.26b)

where Si and Ji are the spin and total angular momentum quantum numbers

for state i respectively.

The expectation value of the spin quantum number is shown in figure 5.8

for an initial state of |1000〉, with a lattice spacing of 775 nm (the spacing

given when employing a commonly used telecommunications laser at 1550

nm; see for example [162]). The propagation of the spin singlet state is

clearly visible along the chain, with a reflection from the final atom. The

spin wave is not absolutely perfect along the lattice as all the interactions

between the atoms are taken into account, not just the nearest-neighbours;

additionally, the second-order couplings (those that give rise to the C6/R
6

energy shifts) also induce state oscillations. The waves are seen to propagate

on short timescales; adding more atoms to the chain would lengthen the

travel time to reach the final atom, or alternatively the lattice spacing could

be increased.
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Figure 5.8: Expectation value of the spin in a four-atom spin chain, initially

prepared in the |1000〉 state (see the text for an explanation of the short-hand

notation) with lattice spacing of a = 775 nm.

We note that neither the spin nor the total angular momentum are good

quantum numbers. In the case of the spin, the coupling with the orbital

angular momentum and configuration mixing both contribute to the lack of

conservation. For the total angular momentum, it is the mixing between pair

states that are close in energy that transfers angular momentum to energy;

this is particularly true near avoided crossings. Neither the sum of the values

of S nor the sum of the values of J are constant in time.

Spin-Charge Separation

When calculating the potential curves for the N -atom case, the energy levels

can be seen to arrange themselves in bands. The minimum energy separation

between two energy levels for infinite lattice spacings is given by the Förster

defect of the Förster resonant states, which in this case is 513 MHz. The

calculated potential curves are shown in figure 5.9, where an avoided crossing

can be seen between the |1000〉 state and the |1120〉 state. The avoided
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crossing happens for N > 4, where the 4-atom case constitutes the minimum

number of atoms required.
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Figure 5.9: Potential curves for four atoms in a lattice, centred around the

|1000〉 state (shown in red).

The avoided crossing seen in figure 5.9 modifies the dynamics in that re-

gion dramatically. When two states have an avoided crossing, the resulting

eigenstate is a superposition of the two bare states; in the case depicted in

figure 5.9, this leads to an admixture of 3F3 character into the resonant dy-

namics. The result is that the spin and total angular momentum decouple,

and an analogy of spin-charge separation is observed (we use “charge” as an

analogy for total angular momentum, in a similar way to [163]). The sepa-

ration of the spin and angular momentum is shown in figure 5.10, where the

probability of being in a singlet state and the probability of being in a J = 3

state are no longer the same, despite starting from a 1F3 spin defect. The

effect is a maximum around the avoided crossing.

The system is reminiscent of one-dimensional Luttinger liquids, where the

onset of spin-charge separation arises from the different couplings of the spin

and charge modes. The simulation of spin-charge separation has previously

been proposed in a cold atom system by mapping spin and charge onto

internal atomic states and atomic mass density respectively, and then driving

transitions in the atoms using laser light [163]. The system in strontium,

however, does not need to be driven; the phenomenon of spin-charge beating
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Figure 5.10: Absolute difference between the probability of each atom being in

a singlet state and the probability of each atom being in a J = 3 state, |P (S =

0)−P (J = 3)|, as functions of time and lattice spacing, a. Each subplot represents

an atom in a chain of four atoms, initially prepared in a |1000〉 state.

should arise “simply” by preparing a one-dimensional lattice of strontium

Rydberg atoms.

External Field Control

Currently, the major disadvantage of the spin-charge separation observed in

the previous section is that the period of the oscillations is very small, mak-

ing the observation of the spin-charge separation experimentally challenging.

The period of the oscillations is set by the energy separation between the

|1000〉 and |1120〉 states, although other states can play a complicated role

in determining these oscillations. It is possible, however, to slow these oscil-

lations down by judicious application of magnetic and electric fields to shift

the energy of the states. The resulting smaller energy separations would thus

lead to longer oscillation periods. The ability to tune these energies would

also be a significant advantage for the experimental realization of the lattice,

as the lattice spacing is much more difficult to tune than an external field.

In order to tune the energy levels, three different types of fields could be

applied: a magnetic field, a static electric field or an AC electric field applied

in the form of microwaves. As mentioned above, the presence of the avoided
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crossing is entirely set by the Förster defect of the 2×30 3D2 → 28 1F3+27 3F3

reaction. By tuning this Förster defect, the avoided crossing can thus be

shifted in and out of resonance for a fixed value of the lattice spacing.

For the magnetic and static electric fields we assume the shifts will arise from

the linear Zeeman (∆EB = gJµBMJB, where ∆EB is the Zeeman shift, gJ is

the Landé factor, B is the magnetic field and µB is the Bohr magneton [23])

and quadratic Stark shifts (∆EE = −αE2/2, where ∆EE is the Stark shift, α

is the static polarizability of the state and E is the electric field [23]) respec-

tively. Writing the difference between the shifts of the 2 × 30 3D2 and the

28 1F3 + 27 3F3 as ∆B,E = 2∆EB,E(30 3D2)−∆EB,E(28 1F3)−∆EB,E(27 3F3),

we determine that the magnetic field required to compensate the Förster

defect is about 730 G. The static polarizabilities, calculated using the semi-

classical method of section 2.4.1, mean that electric fields shift the energy

levels in the opposite directions, hence the static electric fields can only in-

crease the Förster defect. The Landé gJ -factors and the static polarizabilities

of the relevant states are shown in table 5.1.

State Landé gJ -factor Static Polarizability

30 3D2 7/6 −7.31× 109 a.u.

28 1F3 1 2.00× 1010 a.u.

27 3F3 13/12 7.18× 1010 a.u.

Table 5.1: Landé gJ factors and static polarizabilities for the 2 × 30 3D2 →
28 1F3 + 27 3F3 resonance. The gJ -factors are determined using the Landé formula

in (4.24), and the polarizabilities are calculated using the semiclassical approxi-

mation of section 2.4.1.

A magnetic field of 730 G can be achieved, however this would be experimen-

tally very challenging in a cold atom experiment. By driving a transition with

microwaves off-resonantly, the light shift can be engineered to shift just the

30 3D2 level while introducing a minimum amount of additional admixture

of another atomic state.

For a single microwave transition where the states are far apart in energy,

a two-level description is sufficient to describe the effect of the coupling; we

also use the rotating-wave approximation, which we have checked is valid in
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this case [23, 157]. For a transition with frequency ω0, with detuning ∆mw,

and a Rabi frequency Ω, the light shift for large detuning is given by [157]

∆Elight ≈
Ω2

4∆mw

. (5.27)

The response of a two-level system irradiated with a monochromatic light

field is to oscillate between the two levels. The amplitude of these oscillations

is given by [157]

Pmax =
Ω2

Ω2 + ∆2
mw

. (5.28)

If we require that Pmax never go above a certain fraction, amax, in order to

not significantly populate unwanted states, then we can combine equations

(5.27) and (5.28) to obtain

Ω = 4∆Emw

√
|amax − 1|
amax

, (5.29a)

∆mw = 4∆Emw
|amax − 1|
amax

. (5.29b)

The conditions in (5.29) therefore enables the creation of any light shift (pro-

vided the detuning is large but not comparable to the transition frequency)

without admixture of another state that could destroy the dynamics of the

spin transport experiment. The specific transitions chosen for engineering

these light shifts will depend on the apparatus available to experimenters,

however we note the presence of the 30 1P1 state 34 GHz away from the

30 3D2 that could be suitable (the dipole moment of this transition is calcu-

lated to be -132 a.u.).

By targeted shifting of the 30 3D2 state, we find that the position of the

avoided crossing can be tuned. The resulting dynamics are shown in fig-

ure 5.11 as a function of time and light shift, and in figure 5.12 as a function

of time for a light shift of ∆Elight = 200MHz. The spin-charge separation is

shown to occur on time scales that are about an order of magnitude slower

than those in figure 5.10. The dynamics can be slowed down further by

increasing the lattice spacing, although the time scales will start to reach

a fixed limit and the contrast of the spin-charge separation is likely to de-

crease. Unfortunately the spin-charge separation becomes weaker from atom

to atom as the lattice spacing is increased, so it may be preferable to work at



Chapter 5. Spin-forbidden dipole-dipole interactions in
strontium Rydberg atoms 133

0 70 140 210
∆Elight (MHz)

0
5
10
15
20
25

Ti
m
e 
(n
s)

Atom 1

0 70 140 210
∆Elight (MHz)

Atom 2

0 70 140 210
∆Elight (MHz)

Atom 3

0 70 140 210
∆Elight (MHz)

Atom 4

0.0 0.5 1.0

Figure 5.11: Difference between the probability of each atom being in a singlet

state and the probability of each atom being in a J = 3 state, |P (S = 0)−P (J =

3)|, as functions of time and light shift due to the applied microwave field. Each

subplot represents an atom in a chain of four atoms, initially prepared in a |1000〉
state with a lattice spacing of a = 775 nm.

smaller lattice spacings for the experimental observation of the spin-charge

separation dynamics.

5.3.3 Outlook

In the preceding section we have elucidated some of the internal state dy-

namics of four atoms in a spin chain. These Rydberg lattice dynamics are

interesting, but a concrete link to other physical systems remains to be drawn.

Here we briefly discuss the potential implications of the work discussed in

this chapter, highlighting possible future directions for the research.

In condensed matter systems, a spin excitation (where the electromagnetic

field from the crystal splits the spin states, allowing well defined spin-up

and spin-down states) can propagate along a lattice, causing decoherence

in ferromagnets [161]. The quantized spin waves are known as magnons,

and their control has large implications in applied fields of physics such as

spintronics [164]. Luttinger liquids can also be linked to spin excitations, as

the Luttinger liquid paradigm can be applied to the case of interacting spins

in a chain [32]. Magnons are thus found to be a specific case of Luttinger
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Figure 5.12: Difference between the probability of each atom being in a singlet

state and the probability of each atom being in a J = 3 state, |P (S = 0)−P (J =

3)|, as functions of time with an applied microwave field causing a light shift of 200

MHz. Each subplot represents an atom in a chain of four atoms, initially prepared

in a |1000〉 state with a lattice spacing of a = 775 nm.

liquid theory, which is still a very active research field [154].

In our system, the crystal field could be thought of as arising from the inner

electron (giving rise to the splitting between singlet and triplet states), and

the propagation of spin could potentially provide a direct simulation of spin

waves in a cold atom system (where most cold atom spin wave simulations

involve mapping the spin onto other internal degrees of freedom). The ability

to tune the energy levels using microwaves also leads to the possibility of

linking the one-dimensional Rydberg lattice to Luttinger liquid formalism,

which could yield new insights into one-dimensional Fermi liquids. In order

to make the link with Luttinger liquids, the Hamiltonian of the four-atom

spin chain must be either mapped onto a similar system that has already

been solved, or the Hamiltonian must be solved analytically.

Other possible directions for the research include the study of Förster reso-
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nant systems. Förster resonances are commonly used in techniques such as

Förster resonant energy transfer (FRET), as used in quantum dot technol-

ogy [153] and in molecular imaging technology [150]. The understanding of

the dynamics of Förster resonances are crucial to experiments making use

of FRET, and the possibility of configuration-mixing in the internal states

of molecules could be detrimental to experiments when applying the FRET

technique. The dynamics of the Rydberg spin chains considered in this work

would therefore have to be applied to similar conditions than those found

in FRET experiments, in order to make the relevance of our results more

applicable to the wider community.

5.4 Conclusions

We have investigated the impact of two-electron effects on the dipole-dipole

interactions of strontium. We find the effect of perturbers to be negligible,

however the singlet-triplet mixing found in the 1,3D2 states can have a notice-

able impact, particularly in states with high admixture coefficients or in pair

states where there is a near degeneracy with another pair state (Förster res-

onances). The dipole-dipole interaction, however, does not have a significant

impact on the admixture of the perturbers.

We also identify the presence of a Förster resonance in the 3D2 states that

is due to a dipole-forbidden, spin-changing coupling in the 2 × n 3D2 →
(n−2) 1F3 +(n−3) 3F2 channel. We have studied the possibility of observing

a spin-changing transition due to the dipole-dipole interaction for the 30 3D2

state and conclude that the transition probability becomes high when the

interatomic spacing is of the order of 500 nm.

By extending the investigation to a chain of four atoms in a lattice, we have

calculated the expectation values of the spin and total angular momentum

quantum numbers as they evolve in time. We find spin waves and total

angular momentum waves that propagate through the lattice due to the

coupling to the 1F3 state in the atoms. We also find that the spin waves and

angular momentum waves can decouple due to the presence of an avoided

crossing in the potential curves, such that spin-charge separation (where the
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quantum number J is used as an analogue for charge) naturally arises in a

one-dimensional optical lattice of strontium Rydberg atoms. The spin-charge

separation phenomenon is similar to the case of Luttinger liquids, and is of

interest to the ultracold atom community [163]. For a fixed lattice spacing,

it is also possible to tune the avoided crossing using microwave fields, leading

to the possibility of controllably switching between spin transport and spin-

charge separation through a chain of Rydberg atoms.



Chapter 6

Conclusions

In this thesis, we have presented calculations relating to the physical prop-

erties of the Rydberg states of strontium, including the investigation of two-

electron effects. Specifically, the investigation of long-range interactions were

the focus of the calculations, to supplement the experimental efforts of the

strontium group in Durham [22, 145]. Long-range interactions lead to the

dipole blockade effect for high enough densities of Rydberg gases [9], an effect

which has uses in topics such as quantum optics [103], quantum entangle-

ment [80] and quantum information [3, 10], driving recent interest in Rydberg

atoms. Other motivations involving quantum many-body physics were also

detailed in the introduction chapter, where novel states of matter can be

created by exploiting the strong dipole-dipole interactions and the long life-

times of Rydberg states [82, 83]. Finally, a more technical motivation was

present: the investigation of the validity of the single active electron model

in two-electron Rydberg atoms, which has been previously applied with good

success [22, 114].

Chapter 2 was devoted to developing the single active electron model for the

various calculations of the physical properties of Rydberg atoms. Specifically,

different methods for calculating dipole matrix elements (which characterize

the strength of atomic transitions) were presented. For Rydberg state to Ry-

dberg state transitions, either the semiclassical approximation [28, 41, 43, 44]

or quantum defect theory [34, 45, 49, 165] can be used in the calculation of

the radial dipole matrix elements. Dipole matrix elements involving either

137
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a ground state or low-excited state to Rydberg state transition can be cal-

culated with quantum defect theory (the semiclassical approximation is not

valid for low-n). We apply these methods to the calculation of the natural

radiative lifetimes of rubidium (the most closely related one-electron atom

to strontium), and find excellent agreement between the calculations from

quantum defect theory and experimental values [78].

The calculation of long-range interactions was presented in the chapter 3,

which made use of the methods in chapter 1. Using the one active electron

model, we presented calculations of dipole-dipole and quadrupole-quadrupole

interactions in calcium, rubidium, strontium, caesium and ytterbium Ryd-

berg atoms. Two methods of calculation were presented, the perturbative

and non-perturbative methods; this chapter focused mainly on the perturba-

tive treatment, as this allowed a consistent survey of all the series in the three

atoms studied where energy levels were available. The main conclusions of

this chapter were that the details of the dipole-dipole interactions strongly

depended on the atom and the series being studied. Quadrupole-quadrupole

interactions were usually negligible compared to the dipole-dipole interac-

tions, except for cases where the dipole-dipole interactions were unusually

small (known as Förster zero states). A number of Förster resonances (near-

degeneracies between pair states causing resonances in the dipole-dipole in-

teractions) were found in strontium triplet states, as well as in both rubidium

and caesium; no Förster resonances were found in calcium and ytterbium.

Finally, the S states of strontium proved to be particularly interesting as the

singlet series were found to be the only series to have isotropically attractive

interactions. These isotropically attractive interactions may be critical for

self-focusing non-linear optics schemes [103] and generating quantum many

body entangled states [12].

The calculations of long-range interactions in chapter 3 were performed for

principal quantum numbers above n = 30, where the effects of the second

electron are expected to be small. The purpose of chapter 4 was to elucidate

the role of the second electron in determining various physical properties of

the Rydberg states of strontium. To investigate the effects of the second

electron, we employed multichannel quantum defect theory, the formalism of

which we review at the beginning of chapter 4. In particular, we derive the
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K matrix, known as the reactance matrix, and we show its use in numeri-

cal studies of Rydberg series perturbed by doubly excited states. By fitting

the reactance matrix such that the models reproduce the experimentally de-

termined bound state energy levels, a description of the perturbations in all

series of strontium for L ≤ 3 was found. These models were compared to pre-

vious work, and found that most of these agreed very well with these previous

studies [61, 128]. For certain series, the more recent experimental data used

revealed new information about the perturbations of the series, for example

in the 1S0 states where the small uncertainties allowed the identification of

different fine-structure components of the 4d2 perturbers. Finally, using the

new MQDT models developed in chapter 4, we incorporate the multichannel

formalism into the calculation of dipole matrix elements, which we use to

investigate the radiative lifetimes of perturbed Rydberg states of strontium.

The perturbations were found to have a large effect on the lifetimes, causing

a reduction of the 1D2 state lifetimes in strontium by an order of magnitude

compared to the 2D state lifetimes in rubidium, thereby emphasizing the

importance of including these two-electron effects in these calculations.

In the final chapter, we combine the two-electron MQDT formalism with the

description of dipole-dipole interactions derived in chapter 3. We focus on the

most heavily perturbed series, the 1,3D2 states, where the 4d6s configuration

causes singlet-triplet mixing of the Rydberg states. We find that the C6

coefficients describing the second-order dipole-dipole interactions change very

little for high-n (the changes are to within the error of the C6 coefficients

calculated in chapter 3), however for lower n larger deviations are found.

Interestingly, a Förster resonance is found in the 3D2 series which constitutes

a spin-forbidden transition. We investigate the possible dynamics of this

spin-forbidden transition, first limiting the number of atoms to only two

before extending this to four atoms. Oscillations between the states are

found, and when the spin and total angular momentum expectation values

are investigated, spin-charge separation is found to occur for smaller values

of the lattice spacing. At higher values of the lattice spacing, spin transport

is seen in the system; this is the first time a real spin wave has been predicted

in a lattice of cold atoms (usually, the spin is mapped to an internal state

of the atom [163]). In the context of one dimensional Fermi gases, the spin-
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charge separation is a hallmark feature of Luttinger liquids, a widely used

and investigated model for interacting 1D gases [154].

Finally, we wish to emphasize the context of the work in cold, Rydberg

atoms. The calculations of dipole matrix elements have been investigated for

more than fifty years, however many studies are incomplete. Alkali atoms,

which are widely used in the field of Rydberg atoms [3], can now be easily

described numerically, in large part thanks to advances in computational

resources. Alkaline-earth atoms, however, have yet to be explored in the

same detail as the alkali atoms. The work presented in this thesis is a step

towards the complete description of these alkaline-earth atoms. Alkaline-

earth atoms could present significant advantages over alkali atoms for certain

applications such as Rydberg dressing [26], and the use of these atoms in

the wider atomic physics community is slowly increasing (see for example

[166, 167]). It is hoped that as alkaline-earth atoms see more and more

widespread use, the work done in this thesis will prove a boon to the future

endeavours of researchers in the field.



Appendix A

Angular Factors

In the calculations of dipole matrix elements, it is convenient to split the

matrix elements of the dipole operator into angular and radial parts. Ex-

plicitly, the dipole matrix element between a state |nlLSJMJ〉 and another

state |n′l′L′S ′J ′MJ ′〉 can be written

〈n′L′S ′J ′MJ ′ |r|nLSJMJ〉 = 〈L′S ′J ′MJ ′ |r̂|LSJMJ〉〈n′l′|r|nl〉, (A.0.1)

where r̂ denotes the angular part of the position operator and r denotes the

radial part. We have also used the convention that upper case letters denote

the coupled atomic quantum numbers and the lower case letters denote the

electronic quantum numbers.

In this appendix, we derive the angular dipole matrix elements, 〈L′S ′J ′MJ ′ |r̂|LSJMJ〉,
used in various parts of the thesis. We write r in terms of its spherical com-

ponents, rp, where

rp = r

√
4π

3

1∑
p=−1

Y1,p, (A.0.2)

where Yk,p is a spherical harmonic. The expression for higher order multipoles

is more complicated.

141



Appendix A. Angular Factors 142

A.1 Single Atom Transitions for Singly Ex-

cited States

To derive the single atom angular dipole matrix element for singly excited

states, we must assume that all core electrons (whether there is a valence

electron included in the core or not) carry no orbital angular momentum.

We write our original state as |nllcLsscSJMJ〉, where upper case letters

denote coupled atomic angular momenta, lower case letters denote electronic

angular momenta and the subscript c denotes the angular momentum carried

by the core. The orbital part of the core angular momentum is lc = 0. Our

final state can be written as |n′l′lcL′sscSJ
′MJ ′〉; the spin part of the state is

unaffected by the dipole operator.

The dipole operator acts on the electronic orbital angular momentum of the

active electron. This means that the state vector written above must be

decoupled, such that [40]

|nllcLsscSJMJ〉 =
∑

ML,MS

CJMJ
LML,SMS

|nllcLML〉|sscSMS〉, (A.1.3)

where CJMJ
LML,SMS

is a Clebsch-Gordan coefficient. In (A.1.3) we have split

up the orbital and spin parts. When taking the matrix element of the op-

erator in (A.0.2), the spin part is unaffected; consequently, the spin part

can be factored out. Using the normalization of the states, we have that

〈sscSMS|sscSMS〉 = 1. Decoupling the states in (A.1.3) further, we find

|nllcLsscSJMJ〉 =
∑

ML,MS

CJMJ
LML,SMS

|nLML〉|sscSMS〉, (A.1.4)

where we have used the fact that CLML
lml,00 = δlLδmlML

and consequently omitted

the electronic orbital angular momentum labels. Applying the expression in

(A.1.4) and the equivalent expression for the final state vector, we find

Ω1e ≡ 〈n′l′lcL′sscSJ
′MJ ′|r̂|nllcLsscSJMJ〉 =∑

MLMS

∑
ML′MS′

CJMJ
LML,SMS

C
J ′MJ′
L′ML′ ,SMS

〈nLML|r̂|n′L′ML′〉. (A.1.5)

The matrix element 〈nLML|r̂|n′L′ML′〉 can be evaluated using the properties
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of spherical harmonics to give [40]

Ω1e =
∑
p

∑
MLMS

∑
ML′MS′

(−1)L+L′+2S−MJ−MJ′
√

(2J + 1)(2J ′ + 1)

×

(
L S J

ML MS −MJ

)(
L′ S J ′

ML′ MS −MJ ′

)√
4π

3

×

(
L 1 L′

0 0 0

)(
L 1 L′

ML p −ML′

)√
3(2L+ 1)(2L′ + 1)

4π
,

(A.1.6)

where the symbols in round brackets denote Wigner 3j symbols. Using stan-

dard summation rules for Wigner 3j symbols, we obtain [40, 168]

Ω1e =
∑
p

(−1)S−MJ−L−J
√

(2J + 1)(2L+ 1)CL′0
L0,10C

J ′MJ′
JMJ ,1p

×

{
J 1 J ′

L′ S L

}
.

(A.1.7)

Finally, we use explicit expressions for the first Clebsch-Gordan coefficient

and sum over the squares of the second Clebsch-Gordan in (A.1.7) to obtain

[40]

Ω2
1e = (2J ′ + 1)lmax

{
J 1 J ′

L′ S L

}
, (A.1.8)

as found in the literature (see for example [27]).

A.2 Single Atom Transitions for Doubly Ex-

cited States

For divalent atoms it is possible to have doubly excited states, as discussed

in chapter 4. The doubly excited states can undergo dipole transitions as

well, however the angular momentum is not only carried by the electron

undergoing the transition. The sharing of the angular momentum between

two electrons in strontium necessitates a more complicated expression than

that in equation (A.1.8).

In the derivation of (A.1.8) we assumed that the inner core carried no mo-

mentum. In the case of strontium, however, we describe the state with



Appendix A. Angular Factors 144

|n1n2l1l2Ls1s2SJMJ〉, where we take the electron labelled 2 as being the ac-

tive electron in the transition. Expanding this in a similar way to (A.1.3)

using Wigner 3j symbols we have

|n1n2l1l2LSJM〉 =
∑
MLMS

∑
ml1ml2

(−1)L+S−MJ+l1+l2−ML
√

(2L+ 1)(2J + 1)(
L S J

ML MS −MJ

)(
l1 l2 L

ml1 ml2 −ML

)
× |n1l1ml1n2l2ml2〉|SMS〉.

(A.2.9)

Taking the angular matrix element of the angular dipole operator for the

second electron, we find

Ω2e ≡
∑
p

√
4π

3
〈n1n2l1l

′
2L
′SJ ′M ′

J |Y1p|n1n2l1l2LSJMJ〉

=
∑
p

√
4π

3

∑
MLml1ml2

∑
M ′
L′m

′
l′2

∑
MS

(−1)ml1−MJ−M ′
J−ML−M ′

L−ml2−l1−1

×

(
l1 l2 L

ml1 ml2 −ML

)(
L S J

ML MS −MJ

)

×

(
l′1 l′2 L′

m′l′1
m′l′2

−M ′
L′

)(
L′ S ′ J ′

M ′
L′ M ′

S′ −M ′
J ′

)
×
√

(2L+ 1)(2J + 1)(2L′ + 1)(2J ′ + 1)〈n′2l′2m′l′2|Y1p|n2l2ml2〉.
(A.2.10)

By evaluating the matrix element 〈n′2l′2m′l′2|Y1p|n2l2ml2〉 in a similar way than

in (A.1.6) and applying sum rules for the Wigner 3j symbols we obtain

Ω2e =
∑
p

√
4π

3
〈n1n2l1l

′
2L
′SJ ′M ′

J |Y1p|n1n2l1l2LSJMJ〉

= (−1)l1+S+M ′
J

√
3

4π
(2l2 + 1)(2l′2 + 1)

(
l2 1 l′2

0 0 0

)
×
√

(2L+ 1)(2L′ + 1)(2J + 1)(2J ′ + 1)

×

(
J ′ 1 J

−MJ ′ p −MJ

){
J ′ 1 J

L S L′

}{
L′ 1 L

l2 l1 l′2

}
.

(A.2.11)
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Finally, we apply the same expressions for Clebsch-Gordan coefficients as in

(A.1.8) (after converting the Wigner 3j symbols) and take the root of the

sum of squares of the second Wigner 3j symbol in (A.2.11) to find the final

expression

Ω2e = (−1)l1+l2,max+S
√
l2,max(2L′ + 1)(2J ′ + 1)(2L+ 1)

×

{
J ′ 1 J

L S L′

}{
L′ 1 L

l2 l1 l′2

}
.

(A.2.12)

A.3 Two Atom Transitions for Singly Excited

States

In the calculation of dipole-dipole and quadrupole-quadrupole interactions, it

is useful to separate the calculation into the radial parts and the angular parts

in a similar way to the case of single atom transitions. The full interaction

Hamiltonian for multipolar interactions is given by equation (3.11), which

contains radial and angular parts. In equation (3.14), the angular parts are

separated from the interatomic distance and the radial parts, leaving us with

the angular coefficient

H
(angular)
int =

∞∑
k1,k2=1

(−1)k2

√
(4π)3(2k1 + 2k2)!

(2k1 + 1)!(2k2 + 1)!(2k1 + 2k2 + 1)

×
k1+k2∑

p=−(k1+k2)

k1∑
p1=−k1

k2∑
p2=−k2

Ck1+k2,p
k1p1,k2p2

Yk1,p1(r̂1)Yk2,p2(r̂2)Yk1+k2,p(R̂).

(A.3.13)

We follow the same procedure as for the dipole transitions, and decompose

the basis to obtain (assuming the inner core does not carry angular momen-

tum) equation (A.1.4). We note that once again (A.3.13) does not act on the

spin parts of the wavefunction.

When we do not sum over the values of p (as was the case in the single atom
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transition) we have the matrix elements of the spherical harmonics given by

〈L′S ′J ′M ′
J |Yk,p|LSJMJ〉

= (−1)lo+l′o+1

√
(2lo + 1)(2J + 1)(2k + 1)

4π

× C l′o0
lo0k0C

J ′M ′
J

JMJkp

{
J k J ′

l′o S lo

}
. (A.3.14)

Combining this matrix element with the full expression for the angular part of

the multipolar interaction in (A.3.13), we find the coefficients for the angular

part of the interaction to be

Dk1k2(α
′M ′

1M
′
2, αM1M2; R̂) = (−1)k2

×

√
4π(2k1 + 2k2)!(2L1 + 1)(2L2 + 1)

(2k1)!(2k2)!(2k1 + 2k2 + 1)

×
√

(2J1 + 1)(2J2 + 1)C
L′
10

L10,k10C
L′
20

L20,k20

×

{
J1 k1 J ′1

L′1 S L1

}{
J2 k2 J ′2

L′2 S L2

}

×
k1+k2∑

p=−(k1+k2)

k1∑
p1=−k1

k2∑
p2=−k2

Yk1+k2,p(R̂)

× Ck1+k2,p
k1p1,k2p2

C
J ′
1M

′
1

J1M1,k1p1
C
J ′
2M

′
2

J2M2,k2p2
. (A.3.15)

Recall that α and α′ denote the full set of quantum numbers needed to

describe the original and final states respectively, and R̂ is the angular part

of atom 2 relative to atom 1.



Appendix B

MQDT Models

In this appendix we present the tables of the MQDT models which were

used to calculate the data in chapter 4. The tables include the K reactance

matrix, as well as the ionization limits used in the model and the energy

dependences.

Channel 5sns 1S0 4d3/2nd3/2 4d5/2nd5/2

i 1 2 3

Ionization Limit (cm−1) 45932.1982 60488.09 60768.48

Ki1 1.054(2) -0.023(1) 0.370(3)

Ki2 -0.023(1) 2.9(3) 0.0

Ki3 0.370(3) 0.0 -0.66(1)

K
(1)
ii 0.83(3) -13(10) 0.51(7)

Table B.1: The three-channel MQDT parameters for the 1S0 series of strontium.

The energy dependence of the diagonals of the Kiα matrix are defined in (4.15).

Estimates of the uncertainties in the last digit are shown in brackets.
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Channel 5sns 3S1 5pnp

i 1 2

Ionization Limit (cm−1) 45932.1982 70048.11

Ki1 -34.2(4) -155(4)

Ki2 -155(4) -1470(40)

K
(1)
ii -19.14(2) -1408(4)

Table B.2: The two-channel MQDT parameters for the 3S1 series of strontium.

The energy dependence of the diagonals of the Kiα matrix are defined in (4.15).

Estimates of the uncertainties in the last digit are shown in brackets.

Channel 5snp 1P1 4dnp

i 1 2

Ionization Limit (cm−1) 45932.1982 60628.26

Ki1 10.842(4) 16.18(2)

Ki2 16.18(2) 22.56(3)

K
(1)
ii -0.39(1) 1.68(2)

Table B.3: The two-channel MQDT parameters for the 1P1 series of strontium.

The energy dependence of the diagonals of the Kiα matrix are defined in (4.15).

Estimates of the uncertainties in the last digit are shown in brackets.
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Channel 5snp 3P0 4dnp 3P0 4dnf

i 1 2 3

Ionization Limit (cm−1) 45932.1982 60628.26 60628.26

Ki1 -1.028(2) -0.1831(3) -0.1040(5)

Ki2 -0.1831(3) -0.617(2) 0

Ki3 -0.1040(5) 0 -0.6089(2)
dKii
dE -0.9854(5) 0.282(4) 0.1185(9)

Channel 5snp 3P1 4dnp 3P1 4dnf

Ki1 -1.063(2) -0.1887(1) -0.107(1)

Ki2 -0.1887(1) -0.57(1) 0

Ki3 -0.107(1) 0 -0.6047(3)
dKii
dE -1.013(2) 0.09(6) 0.083(2)

Channel 5snp 3P2 4dnp 3P2 4dnf

Ki1 -1.1067(9) -0.1716(1) -0.1273(4)

Ki2 -0.1716(1) -0.6052(7) 0

Ki3 -0.1273(4) 0 -0.6115(5)
dKii
dE -1.0243(9) 0.089(4) 0.086(1)

Table B.4: The three-channel MQDT parameters for the 3P0 (top), 3P1 (middle)

and 3P2 (bottom) series of strontium. The energy dependence of the diagonals of

the Kiα matrix are defined in (4.15). Estimates of the uncertainties in the last

digit are shown in brackets. The 5s13p states of all the triplet series are outliers

and have been neglected, as discussed in section 4.7.
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Channel 5snd 3D1 4dns 4dnd

i 1 2 3

Ionization Limit (cm−1) 45932.1982 60628.26 60628.26

Ki1 -1.55(1) 0.549(2) -0.0004(8)

Ki2 0.549(2) 1.451(1) 0

Ki3 -0.0004(8) 0 2.2(8)

K
(1)
ii -1.25(2) 1.2(1) -30(50)

Channel 5snd 3D3 4dns 3D3 5pnp

Ki1 -1.487(8) 0.43(2) 0.23(2)

Ki2 0.4(2) 1.21(1) 0

Ki3 0.2(2) 0 -0.5(2)

K
(1)
ii -1.10(1) 10(2) 7(2)

Table B.6: The three-channel MQDT parameters for the 3D1 (top) and 3D3

(bottom) series of the D states of strontium. The energy dependence of the diago-

nals of the Kiα matrix are defined in (4.15). Estimates of the uncertainties in the

last digit are shown in brackets. The 5s13d 3D1 and 5s22d 3D3 are outliers and

have been excluded, as discussed in section 4.3.6.

Channel 5snf 1F3 4dnp

i 1 2

Ionization Limit (cm−1) 45932.1982 60628.26

Ki1 0.383(4) 0.4522(6)

Ki2 0.4522(6) -0.683(5)

K
(1)
ii 0.333(6) -1.41(4)

Table B.7: The two-channel MQDT parameters for the 1F3 series of strontium.

The energy dependence of the channel quantum defects are defined in (4.15). Es-

timates of the uncertainties in the last digit are shown in brackets.
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Channel 5snf 3F2 4dnp 3F2 4dnf

i 1 2 3

Ionization Limit (cm−1) 45932.1982 60628.26 60628.26

Ki1 0.6489(2) -0.056(2) -0.006(1)

Ki2 -0.056(2) 1.15(6) 0

Ki3 -0.006(2) 0 2.44(2)

K
(1)
ii 0.4444(2) 3.77(6) -22.6(4)

Channel 5snf 3F3 4dnp 3F3 4dnf

Ki1 0.6505(9) -0.0512(9) -0.007(6)

Ki2 -0.0512(9) 1.1(2) 0

Ki3 -0.007(6) 0 3.0(2)

K
(1)
ii 0.449(1) 10(2) -33(5)

Channel 5snf 3F4 4dnp 3F4 4dnf

Ki1 0.662(8) -0.03(2) -0.011(3)

Ki2 -0.03(2) 1.11(5) 0

Ki3 -0.011(3) 0 2.68(8)

K
(1)
ii 0.47(1) 30(10) -24.4(5)

Table B.8: The three-channel MQDT parameters for the 3F2 (top), 3F3 (middle)

and 3F4 (bottom) series of strontium. The energy dependence of the diagonals of

the Kii matrix are defined in (4.15). Estimates of the uncertainties in the last

digit are shown in brackets.



Appendix C

C3 Coefficients for Spin

Transfer Calculations

To calculate the various dynamics arising from the 2×n 3D2 → (n−2) 1F3 +

(n − 3) 3F3 Förster resonance in a spin chain (as shown in chapter 5), the

couplings between the different states are required. We present the C3 coef-

ficients for the resonant couplings between the states of interest in table C.1;

note that we have taken MJ = 2 for all states, as discussed in chapter 5.
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Initial Pair State Final Pair State C3 coefficient (a.u.)

30 3D2 + 28 1F3 28 1F3 + 30 3D2 −3716.9

30 3D2 + 27 3F3 27 3F3 + 30 3D2 −124122

30 3D2 + 30 3D2 28 1F3 + 28 1F3 4397.9

30 3D2 + 30 3D2 27 3F3 + 27 3F3 146863

30 3D2 + 30 3D2 27 3F3 + 28 1F3 25414.3*

30 3D2 + 28 1F3 27 3F3 + 30 3D2 −21479

30 3D2 + 28 3F3 27 3F3 + 30 3D2 142154

30 3D2 + 28 3F3 28 1F3 + 30 3D2 24599.5

30 3D2 + 30 3D2 28 3F3 + 28 3F3 192636

30 3D2 + 30 3D2 27 3F3 + 28 3F3 −168200*

30 3D2 + 28 3F3 28 3F3 + 30 3D2 −162807

30 3D2 + 30 3D2 28 1F3 + 28 3F3 −29106.5*

Table C.1: C3 coefficients used in the calculations presented in chapter 5 when

determining the dynamics of spin transfer in chains of strontium Rydberg atoms.

All coefficients remain the same under interchange of the initial and final states,

and those states marked with asterisks are also symmetric when the ordering of

the final pair state is swapped.
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berg Molecules. Physical Review Letters, 88:133004, 2002. 44

[102] J Brown and A Carrington. Rotational Spectroscopy of Diatomic Molecules.
Cambridge University Press, 2003. 45

[103] S Sevincli, N Henkel, C Ates, and T Pohl. Nonlocal Nonlinear Optics in Cold
Rydberg Gases. Physical Review Letters, 107:153001, 2011. 57, 66, 137, 138

[104] M Rafiq, M A Kalyar, and M A Baig. Multi-photon excitation spectra of
the 3snl (l =0,1,2 and 3) Rydberg states of magnesium. Journal of Physics
B, 40:3181, 2007. 57

[105] M A Zia and M A Baig. Two-step laser optogalvanic spectroscopy of the odd-
parity Rydberg states of atomic mercury. The European Physical Journal
D, 28:323, 2004.

[106] A Nadeem, M Nawaz, S A Bhatti, and M A Baig. Multi-step laser excitation
of the highly excited states of zinc. Optics Communications, 259:834, 2006.

[107] M Kompitsas, C Baharis, and Z Pan. Rydberg states of zinc and measure-
ment of the dipole polarizability of the Zn+ ion. Journal of the Optical
Society of America B, 11:697, 1994. 57

[108] S M Farooqi, D Tong, S Krishnan, J Stanojevic, Y P Zhang, J R Ensher,
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