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Abstract We study the problem of the existence of filtered multiplicative bases of a
restricted enveloping algebra u(L), where L is a finite-dimensional and p-nilpotent
restricted Lie algebra over a field of positive characteristic p.
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1 Introduction and Results

Let A be a finite-dimensional associative algebra over a field F. Denote by rad(A)

the Jacobson radical of A and let B be an F-basis of A. Then B is called a filtered
multiplicative basis (f.m. basis) of A if the following properties hold:

(i) for every b 1, b 2 ∈ B either b 1b 2 = 0 or b 1b 2 ∈ B;
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(ii) B ∩ rad(A) is an F-basis of rad(A).

Filtered multiplicative bases arise in the theory of representation of associative
algebras and were introduced by H. Kupisch in [10]. In their celebrated paper [4]
R. Bautista, P. Gabriel, A. Roiter and L. Salmeron proved that if A has finite
representation type (that is, there are only finitely many isomorphism classes of
finite-dimensional indecomposable A-modules) over an algebraically closed field F,
then A has an f.m. basis.

In [9] an analogous statement was proposed for finitely spaced modules over an
aggregate. (Such modules give rise to a matrix problem in which the allowed column
transformations are determined by the module structure, the row transformations
are arbitrary, and the number of canonical matrices is finite). This statement was
subsequently proved in [14].

The problem of existence of an f.m. basis in a group algebra was posed in [4] and
has been considered by several authors: see e.g. [2, 3, 5–7, 11]. In particular, it is still
an open problem whether a group algebra KG has an f.m. basis in the case when F
is a field of odd characteristic p and G is a nonabelian p-group.

Apparently, not much is known about the same problem in the setting of restricted
enveloping algebras. The present paper represents a contribution in this direction.
In particular, because of the analogy with the theory of finite p-groups, we confine
our attention to the class Fp of finite-dimensional and p-nilpotent restricted Lie
algebras over a field of positive characteristic p. Note that under this assumption,
the aforementioned result in [4] can be applied only in very special cases. Indeed, for
L ∈ Fp, from [8] it follows that u(L) has finite representation type if and only if L is
cyclic, that is, there exists an element which generates L as a restricted subalgebra.

Our main results are the following three theorems.

Theorem 1 Let L ∈ Fp be an abelian restricted Lie algebra over a field F. Then u(L)

has a filtered multiplicative basis if and only if L decomposes as a direct sum of cyclic
restricted subalgebras. In particular, if F is a perfect field, then u(L) has a filtered
multiplicative basis.

A restricted Lie algebra L ∈ Fp is called powerful (see e.g. [15]) if p = 2 and L′ ⊆
L[p]2

or p > 2 and L′ ⊆ L[p]. Here L[p]i
denotes the restricted subalgebra generated

by the elements x[p]i
, x ∈ L.

Theorem 2 Let L ∈ Fp be a nonabelian restricted Lie algebra over a field F. If L is
powerful then u(L) does not have a filtered multiplicative basis.

Theorem 3 Let L ∈ Fp be a restricted Lie algebra over a field F. If L has nilpotency
class 2 and p > 2 then u(L) does not have a filtered multiplicative basis.

An example showing that Theorem 3 fails in characteristic 2 is also provided. Fi-
nally, we remark that for odd p no example of noncommutative restricted enveloping
algebra having an f.m. basis seems to be known.
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2 Preliminaries

Let A be a finite-dimensional associative algebra over a field F. If B is an f.m. basis
of A then the following simple properties hold (see [5]):

(F-I) B ∩ rad(A)n is an F-basis of rad(A)n for every n ≥ 1;
(F-II) if u, v ∈ B\ rad(A)k and u ≡ v (mod rad(A)k) then u = v.

Let L be a restricted Lie algebra over a field F of characteristic p > 0 with a p-
map [p]. We denote by ω(L) the augmentation ideal of u(L), that is, the associative
ideal generated by L in u(L). In [13], the dimension subalgebras of L were defined
as the restricted ideals of L given by

Dm(L) = L ∩ ω(L)m (m ≥ 1).

These subalgebras can be explicitly described as Dm(L) = ∑
ip j≥m γi(L)[p] j

, where

γi(L)[p] j
is the restricted subalgebra of L generated by the set of pj-th powers of the

i-th term of the lower central series of L. Note that D2(L) coincides with the Frattini
restricted subalgebra �(L) of L (cf. [12]).

It is well-known that if L is finite-dimensional and p-nilpotent then ω(L) is
nilpotent. Clearly, in this case ω(L) coincides with rad(u(L)) and u(L) = F · 1 ⊕
ω(L). Consequently, if u(L) has an f.m. basis B, then we can assume without loss
of generality that 1 ∈ B. For each x ∈ L, the largest subscript m such that x ∈ Dm(L)

is called the height of x and is denoted by ν(x). The combination of Theorems 2.1 and
2.3 from [13] gives the following.

Lemma 1 Let L ∈ Fp be a restricted Lie algebra over a field F, and let {xi}i∈I be an
ordered basis of L chosen such that

Dm(L) = spanF{xi | ν(xi) ≥ m} (m ≥ 1).

Then for each positive integer n the following statements hold:

(i) ω(L)n = spanF{x | ν(x) ≥ n}, where x = xα1
i1 · · · xαl

il ,

ν(x) = ∑l
j=1 α jν(xi j), i1 < · · · < il and 0 ≤ α j ≤ p − 1.

(ii) The set { y | ν(y) = n } is an F-basis of ω(L)n modulo ω(L)n+1.

For a subset S of L we shall denote by 〈S〉p the restricted subalgebra generated by
S. Moreover, if z ∈ L is p-nilpotent, the minimal positive integer n such that z[p]n = 0
is called the exponent of z and denoted by e(z).

3 Proofs

Proof of the Theorem 1 Assume first that L = ⊕n
i=1〈xi〉p. Then, by the PBW Theo-

rem for restricted Lie algebras (see [16], Chapter 2, Theorem 5.1), we see that u(L)

is isomorphic to the truncated polynomial algebra

F[X1, . . . , Xn]/(X pe(x1)

1 , . . . , X pe(xn)

n ).

Consequently the algebra u(L) has an f.m. basis.
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Conversely, suppose that u(L) has an f.m. basis B1 with 1 ∈ B1 and put B =
B1\{1}. Let n = dimF L/L[p] and B\ω(L)2 = {b 1, . . . , b n}. By Lemma 1, one has
bi = xi + hi, where xi ∈ L\L[p] and hi ∈ ω(L)2 for every i = 1, . . . , n. From [12] it
follows at once that {x1, . . . , xn} is a minimal set of generators of L as a restricted
subalgebra. We shall prove by induction on e = max{i| L[p]i �= 0} that L has a cyclic
decomposition. If e = 1, then L = ⊕n

i=1〈xi〉p.
Now let e > 1 and suppose that L does not decompose as a direct sum of restricted

subalgebras. Since L = ∑n
i=1〈xi〉p and the p-map is p-semilinear, note that L[p]e

is
just the vector subspace generated by the pe-th powers of the generators xi having
exponent e + 1. Therefore, without loss of generality we can assume that

e + 1 = e(x1) = · · · = e(xm) ≥ e(xs), (m + 1 ≤ s ≤ n)

and {x[p]e

1 , . . . , x[p]e

m } is an F-linearly independent set with

spanF{x[p]e

1 , . . . , x[p]e

m } = L[p]e
.

In turn, we can reindex the elements xm+1, . . . , xn so that there exists a maximal
m ≤ k < n such that

H = 〈x1, . . . , xm, . . . , xk〉p =
k⊕

i=1

〈yi〉p

for suitable y1, . . . , yk in L with yi = xi for i = 1, . . . , m. Consequently, for every
s > k there exists a minimal number fs such that

xp fs

s =
k∑

i=1

e(yi)−1∑

j=0

μ
(s)
i, j y[p] j

i (μ
(s)
i, j ∈ F). (1)

Denote by J the associative ideal of u(L) generated by the elements b pe

1 , . . . , b pe

m .
Clearly J ⊆ ω(L)pe ⊆ L[p]e

u(L). Suppose by contradiction that J �= L[p]e
u(L). If r is

the maximal positive integer such that
(
L[p]e

u(L) ∩ ω(L)r) \J �= ∅,

then there exists v = xpe

i xa1
1 · · · xan

n ∈ ω(L)r \ J such that

v ≡ b pe

i b a1
1 · · · b an

n (mod ω(L)r+1).

Consequently

v − b pe

i b a1
1 · · · b an

n ∈ (
L[p]e

u(L) ∩ ω(L)r+1) \J,

contradicting the definition of r. Therefore J = L[p]e
u(L), which implies that

u(L)/J ∼= u(L/L[p]e
). Moreover, it is easily seen that B1 ∩ J is an F-basis of J, hence

the elements bi + J with bi /∈ J form an f.m. basis of u(L)/J. Consequently, by
induction we have that L = L/L[p]e

is a direct sum of restricted subalgebras.
As the images of y1, . . . , yk are F-linearly independent in L/�(L), from [12] it

follows that there exists a restricted subalgebra P of L with L[p]e ⊆ P such that

L = H/L[p]e ⊕ P/L[p]e
.
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As a consequence, for every s > k we have xs ≡ vs + ws (mod L[p]e
) with vs ∈ H and

ws ∈ P and, moreover, it follows from Eq. 1 that w
[p] fs

s ∈ L[p]e
. One has

vs =
k∑

i=1

e(yi)−1∑

j=0

k(s)
i, j y[p] j

i , (k(s)
i, j ∈ F). (2)

Since x[p] fs

s ≡ v
[p] fs

s (mod L[p]e
), we conclude that μ

(s)
i, j ∈ F p fs provided j < e. We

claim that for every 1 ≤ i ≤ k the coefficient μ
(s)
i,e is also in F p fs . Indeed, write

ws =
∑

b∈B

λb b (for suitable λb ∈ F).

Then, as B is a filtered multiplicative basis of u(L), it follows that

wp fs

s =
∑

b∈C

μ
p fs

b b p fs
(3)

where C is a subset of B and the μb ’s are nonzero elements of F. Moreover, since
w

[p] fs

s ∈ L[p]e
we have

wp fs

s =
m∑

i=1

αib
pe

i . (4)

As B is a filtered F-basis of u(L), by comparing Eqs. 3 and 4 we conclude that for

every i = 1, 2, . . . , m there exists βi ∈ F such that αi = β
p fs

i . At this stage, since b pe

i =
x[p]e

i for every i = 1, 2, . . . , m, the relations (1) and (2) allow to conclude that for
every 1 ≤ i ≤ k one has

μ
(s)
i,e =

(
k(s)

i,e

)p fs

+ β
p fs

i ∈ F p fs
,

as desired (here βm+1, . . . , βk = 0).

Now, by Eq. 1 and the above discussion we have xp fs

s = zp fs for some z ∈ H.
Therefore (xs − z)p fs = 0 and then the minimality of fs forces 〈xs − z〉p ∩ H = 0.
This contradicts the definition of k, yielding the claim.

Finally, if F is perfect, then L decomposes as a direct sum of cyclic restricted
subalgebras (see e.g. [1], Chapter 4, Theorem in Section 3.1). The proof is done. ��

Unlike group algebras, a commutative restricted enveloping algebra need not
have an f.m. basis. Indeed, we have the following

Example Let F be a field of positive characteristic p containing an element α which
is not a p-th root in F. Consider the abelian restricted Lie algebra

Lα = Fx + Fy + Fz

with x[p] = αz, y[p] = z, and z[p] = 0. Suppose that u(Lα) has an f.m. basis. By
Theorem 1, Lα is a direct sum of cyclic restricted subalgebras. Since L[p]

α �= 0 and
L[p]2

α = 0, we have Lα = 〈a〉p ⊕ 〈b〉p with e(a) = 2 and e(b) = 1.
Let b = k1x + k2 y + k3z, ki ∈ F. Since α /∈ F p, we get 0 = b [p] = (kp

1 α + kp
2 )z, so

k1 = k2 = 0 and 0 �= a[p] ∈ Fz = 〈b〉p, a contradiction.
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Lemma 2 Let A be a finite-dimensional nilpotent noncommutative associative algebra
over a field F. Suppose that A has a minimal set of generators {u1, . . . , un} such that:

(i) [ui, u j] ∈ A3 for every i, j = 1, . . . , n;
(ii) uiu j /∈ A3 for every i, j = 1, . . . , n;

(iii) spanF{uiu j | 1 ≤ i < j ≤ n} ∩ spanF{u2
i | i = 1, . . . , n} ⊆ A3.

Then A has no f.m. basis.

Proof By contradiction, assume that there exists an f.m. basis B of A. Clearly, we
have dimF A/A2 = n and, by property (F-I), B\ω(L)2 is a minimal set of generators
of A as an associative algebra. Write B\A2 = {b 1, . . . , b n}. Obviously

b k ≡
n∑

i=1

αkiui (mod A2), (αki ∈ F)

and the determinant of the matrix M = (aki) is not zero. Now

brb s ≡
n∑

i=1

αriαsiu2
i +

n∑

i, j=1
i< j

(αriαsj + αrjαsi)uiu j

−
n∑

i, j=1
i< j

αrjαsi[ui, u j] (mod A3).

By assumption (i) of the statement we have that [ui, u j] ≡ 0 (mod A3), so

brb s ≡
n∑

i=1

αriαsiu2
i

+
n∑

i, j=1
i< j

(αriαsj + αrjαsi)uiu j ≡ b sbr (mod A3). (5)

Suppose brb s ∈ A3 for some r, s. Because of Eq. 5 and the assumptions (ii) and (iii)
of the statement we have αriαsi = 0 and αriαsj + αsiαrj = 0 for every i, j. It follows that
αriαsj − αsiαrj = 0. Consequently, all of the order two minors formed by the k-th and
s-th lines of the matrix M are zero, which is impossible because det M �= 0. Hence
brb s, b sbr /∈ ω(L)3 and brb s ≡ b sbr (mod ω(L)3) for every r, s. By property
(F-II) of the f.m. bases we conclude that brb s = b sbr. Thus A is a commutative
algebra, a contradiction. ��

Proof of the Theorem 2 Let S be a minimal set of generators of L as a restricted Lie
algebra. Then, as L is powerful, by Lemma 1 we conclude that S is a minimal set of
the nilpotent associative algebra ω(L) satisfying the hypotheses of Lemma 2, and the
claim follows. ��

Proof of the Theorem 3 Suppose, by contradiction, that u(L) has an f.m. basis B1

with 1 ∈ B1, so that B = B1\{1} is an f.m. basis of ω(L) = rad(u(L)). Put n =
dimF D1(L)/D2(L) and write B\ω(L)2 = {b 1, . . . , b n}. Consider an F-basis B of
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L as in the statement of Lemma 1 and let u1, . . . , un be the elements of B having
height 1. Thus, by Lemma 1(ii), the set {u j + ω(L)2| j = 1, . . . , n} forms an F-basis of
ω(L)/ω(L)2. Then, for every k = 1, . . . , n there exist αk1, . . . , αkn ∈ F such that

b k ≡
n∑

i=1

αkiui (mod ω(L)2), (k = 1, . . . , n).

Set ūk = ∑n
i=1 αkiui. Clearly, {ū1, . . . , ūn} is an F-linearly independent set which

generates L as a restricted subalgebra.
Now, if L is powerful then, by Theorem 2, u(L) cannot have any f.m. basis, a

contradiction. Therefore L′ � L[p] and so there exist 1 ≤ r < s ≤ n such that the
element crs = [ūr, ūs] is not in L[p]. Since L is nilpotent of class 2, we have that

D2(L) = L′ + L[p] ⊃ L[p] = D3(L),

hence crs has height two. Furthermore, one has

b 2
s ≡ ū2

s (mod ω(L)3); b sbr ≡ ūrūs − crs (mod ω(L)3).

Since L is nilpotent of class 2, it follows that

brb 2
s ≡ ūrū2

s (mod ω(L)4);
b surb s ≡ ūrū2

s − ūscrs (mod ω(L)4);
b 2

s br ≡ ūrū2
s − [ūr, ū2

s ] = ūrū2
s − 2ūscrs (mod ω(L)4).

Therefore the elements

v1 = brb 2
s , v2 = b 2

s br and v3 = b sbrb s

are F-linearly dependent modulo ω(L)4. In view of property (F-I),

(B ∩ ω(L)3)\ω(L)4

is an F-basis for ω(L)3 modulo ω(L)4. Consequently, it follows that either vi ∈ ω(L)4

for some i ∈ {1, 2, 3} or v j ≡ vk(mod ω(L)4) for some j, k ∈ {1, 2, 3}. In each case we
have a contradiction to Lemma 1, and the proof is complete. ��

We remark that the previous result fails without the assumption on the charac-
teristic of the ground field. Indeed, let F be a field of characteristic 2 and consider
the restricted Lie algebra L = Fa + Fb + Fc with [a, b ] = c, [a, c] = [b , c] = 0, and
a[2] = b [2] = c[2] = 0. Then it is straightforward to show that

{1, a, b , ab , ab + c, ac, bc, abc}
is an f.m. basis of u(L).

Acknowledgement The authors are grateful to the referee for pointing out a problem in the
original proof of Theorem 1.
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