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Abstract. Ideally, a validation and assimilation scheme used extensively with all operational geophysical models to
should maintain the physical principles embodied in theimprove model predictions and performance based on avail-
model and be able to evaluate and assimilate lower dimenable observations. Most modern data assimilation techniques
sional features (e.g., discontinuities) contained within a bulkfall into two main categories: empirical methods, and meth-
simulation, even when these features are not directly ob-ods based on statistical estimation thedfslégard 1997).
served or represented by model variables. We present suchimpirical methods, like dynamic relaxation (a.k.a. nudging,
scheme and suggest its potential to resolve or alleviate someoke and Anthes1976 are most useful with new data and
outstanding problems that stem from making and applyingdata sets for which error estimates and/or the error covari-
required, yet often non-physical, assumptions and proceance structure are not known or available, as is the case for
dures in common operational data assimilation. As proof ofour application. Although implemented differently, it can be
concept, we use a sea-ice model with remotely sensed obseshown that all assimilation methods based on statistical esti-
vations of leads in a one-step assimilation cycle. Using themation theory (hereafter, statistical data assimilation) can be
new scheme in a sixteen day simulation experiment introregarded as an extension of optimal interpolation (Ol) and are
duces model skill (against persistence) several days earlienmathematically based on optimization algorithms, most com-
than in the control run, improves the overall model skill and monly the least square minimization principle. The equiva-
delays its drop off at later stages of the simulation. The po-lency of statistical data assimilation methods, including Ol,
tential and requirements to extend this scheme to differenBayesian data assimilation, Kalman Filtering (KF) and vari-
applications, and to both empirical and statistical multivari- ational techniques, is shown, for exampleKialnay (2003.

ate and full cycle data assimilation schemes, are discussed.Current and future data assimilation systems must cope with
some known issues that stem from constraints, limitations,
and errors in both the models and the observations assimi-
lated, namely:

1 Introduction
i. During initialization, if the analyzed field, based on the

Data assimilation deals with the optimal combination of ob- data, does not match a realizable model state, noise is
servations and a model forecast, or background field, into an  generated when the model integrates forward in time
analysis field that forms the basis for the next foredaatdy, and this noise can severely impair forecast skill, and
1992. Originating in meteorology, data assimilation is now may lead to “the rejection problemDa@ley, 1992.

ii. Assimilation systems do not have a simple, quantitative
Correspondence tdS. Levy way of representing lower dimensional features con-
m (gad@nwra.com) tained within a bulk simulation as these features are not
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directly defined by either observations or model vari- data to precondition model variables or material properties
ables. Assimilation methods that ignore these featureghat allow internal model physics to generate future model
often force observed data onto models in a non-physicaktates that agree better with observed data. The new scheme
way. Such features occur frequently in geophysical ap-is tested with a sea ice modebchreyer et al.2008 de-
plications and are associated with discontinuities andscribed in Sec2.3and AppendiXA) and RADARSAT Geo-
other important physical and dynamical processes orphysical Processor System (RGRSyok, 1998 data, in a
multiple scales. physically-based nudging context for one assimilation cycle.
_ We employ a fuzzy verification metric dfevy et al.(20089
i The ob_served dat_a that are assimilated d_o_ not matchomd standard skill scores bfurphy (1988 to evaluate model
the Ya”ables predicted by the_ model,_ requiring param- . tormance. We show that implementing the new assimila-
eterlz_at|ons that are not consistent with the data or the'tpion scheme introduces model skill (against persistence) sev-
physics. eral days earlier than in the control run, improves the over-
These issues arise when the validation and assimilatiorall model skill, and delays its drop off at later stages of the
schemes do not maintain the physical principles embodied irsimulation. We conclude with some thoughts about extend-
the model and are unable to evaluate and assimilate lower ding this method to a full assimilation cycle and to statistical-
mensional features (e.g., discontinuities) contained within aestimation data assimilation systems.
bulk simulation that are not directly observed or represented
by model variables. Under these circumstances, assimila- ) o o
tion can lead to the violation of physical principles and the 2 Physically-based assimilation and validation
loss of information contained in the lower dimensional fea- Lo .
2.1 Data assimilation algorithm
tures. Conversely, models that resolve such features and the

associated physics well, yet imprecisely, are often penalize&angard practice in data assimilation is to subtract model
by traditional schemes, leading to (perceived or real) poOfegtimates of state variables interpolated to observation loca-
model performance and forecasting skill scores. This loss otions, from observed values (the background field), to pro-
information can become deleterious in model improvementsyce innovations (or observation increments). Objective
when observations are sparse, fuzzy, or irregular. analysis of these innovations onto the model grid is then used

The aforementioned issues have been reported in differeny{y jnjtialization of the model. The algorithm for validation

applications of data assimilation. For example, in an assim— .4 assimilation proposed and tested here assumes an ade-

ilation experiment with a sea-ice modelndsay and Zhang  q,ate measure for model validation and verification exists,
(2009 fillustrate that some fields in the model no longer eyen for lower dimensional features. In it, feature extraction

strictly adhere to the physical principles of the model when ;4 assessment (see Se2t@and2.4) take the place of ob-

data assimilation is accomplished through nudging (dynamiGective analysis for lower dimensional features. We use the

relaxation). They also note that similar inconsistencies arisquzzy verification metric, R, of.evy et al.(2008, Eq. B1)
when variables that originate from independent datasets argg 5 henchmark for assessment. ’ '

assimilated independentlpai et al.(2009, in another sea-  Ap ynderlying principle for our assimilation algorithm is

ice model simulation using optimal interpolation, show that y, ,se data to precondition model variables or material prop-
the assimilated data degrade the solution at later stages b@ies that allow internal model physics to generate future
cause the underlying physical assumptions in the model arg,,qe| states that agree better with observed data. That is,
compromised. An ensemble Kalman filter (EnKF) assimila- o model state is updated, as needed, through a physical in-

tion in a wildfire model byMandel et al(2008 resulted in 1 ation based on decision criteria from a fuzzy verification
nonphysical states especially far away from the data. Wheqe.g” AppendixB). Similar to four-dimensional (4-D) data

discontinuous processes are modeled the problems of initialysgimilation, this procedure produces results that are con-
ization can be exacerbated as showrMokicevic and Bao  gigtent with internal model physics and dynamics and thus
(1999 in a meteorological variational (ADVAR) data assim- ,ids forcing unrealizable model states. Furthermore, in
ilation system. In that study, the linearization errors assO-heory, this scheme should work equally well for resolving

ciated with discontinuous convective parameterizations Werey assimilating lower dimensional features without the need
non-negligible and affected the assimilation results both 10~ ransform them into model variables. This is important be-

cally and globally. cause in most models the lower dimensional information is

This paper considers a new paradigm for assessing mode|y¢ resolved or used. Computationally, this scheme is sig-
performance and for comparing model results with observay,ificantly more efficient than 4-D assimilation and could be
tional data. The resultant assimilation and validation SChem‘?egarded as a simplified 4-D assimilation, especially suited
is compatible with state of the science methods and is capablg,, incorporating lower dimensional information.
of handling lower dimensional features in a bulk simulation.

This scheme addresses issues (i), (i), and (iii) above. The

underlying principle for our assimilation algorithm is to use

Geosci. Model Dev., 3, 66%77, 2010 www.geosci-model-dev.net/3/669/2010/
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2.2 Lower-dimensional features in sea ice
observational data

We choose to test the new assimilation scheme in a sea-ic
environment where lower dimensional features in the form
of Linear Kinematic Features (LKF&wok, 2001 are abun-
dant and observable. LKFs represent discontinuities in the
sea ice (e.g., leads or ridgeSoon et al. 2007). Although

not directly measured or resolved by observing systems ot
most models, LKFs can be related to model resolvable phys-
ical or material properties. LKFs persist sufficiently to allow
simplified testing of our scheme that adjusts model variables
at initialization. A general assimilation scheme would call

(Initialization\ ’
model input

Model [m}

compone+ts T

eature-extraction

671
Data:
(RGPS)

eature-extraction

Leads Leads
Verification
acCeptal
Yes skill score?
|No

for the model state to be updated regularly based on the dat
and their agreement with the model output, rather than just
initially. The adjustments can be implemented at set inter-
vals (i.e., in a continuous data assimilation), or only when
agreement or skill score falls below a certain threshold. ThiSFig. 1. Schematic of the validation and assimilation algorithm illus-
validation and assimilation technique is schematically de-rated for the general case and (in parentheses) lower dimensional
picted in Fig.1 for both the general case and the ice modelfeatures and the sea ice model and data tested. The implementa-
implementation tested. The data we use come from theion and testing on lower dimensional features involve the assimila-
RADARSAT Geophysical Processor System (RGPS), whichtion of RGPS data processed to show regions of high deformation.
was developed by the Polar Remote Sensing Group at the J&he model state may be updated by changing material properties
Propulsion Laboratory (JPL) to extract sea ice motion datapased on agreement of onver dimen_siorlal features and fuzzy met-
from SAR imagery Kwok et al, 1990. At an initial time, a rics scorgs. For gxamp!e, if the d.ata |nd|cates.the presgnce/absence
set of points forming a regular grid is located in the SAR data®f LKFS in a region, a jump in displacement is determined to ac-
sets. Then, in the images resulting from subsequent satef:-ount for the observed RGPS deformation of the cell.

lite passes (approximately every 3-days), the original points

are found again using area-based and feature-based tracking. i ) .

This procedure provides displacements for each point. If théC€. Once the existence of leads is taken into account, the
set of points in the original configuration is viewed as the remaining motion of the ice has small deformations and is
vertices of square cells, then the motion of the points deter@ppropriately described as elastic. Several features were de-
mines the deformation of the cells. With this interpretation, Signed into the model. First, the model was constructed
grid quantities such as the divergence, shear, and vorticityl© transition from observed brittle failure under tension, to
can be calculated using the nodal displacements. compressive brittle failure under moderate compression, and

The RGPS deformation products are based on the assumi2 @ Plastic-like faulting under large confinemesthulson

tion that the displacements and velocities are smooth func2004- The various modes of failure occur in the model, de-

tions of the spatial coordinates. However, if the dominantP€nding on the stress state in the material. Where the tran-
form of deformation of multiyear ice is in the opening, clos- SItions occur in stress space depends on the material param-
ing, and shearing of linear features or leads, then the dis&t€rs and can be adjusted based on empirical data. Second,

placements and velocities can be discontinuousCdon et the model can handle multiple cracks at a point, and there-

al. (2007 we discuss the kinematics associated with strong’®re can predict crack branching. Third, the numerical imple-
entation of the model is accomplished similarly to standard

discontinuities that describe possible jumps in displacemenfn - > O
or velocity. Specifically, we determine a jump in displace- plasticity models. Thus, in principle, modular codes that call

ment and the orientation of this jump that account best for the Subroutine to implement the constitutive model can substi-
observed deformation of an RGPS cell. We use this treatmerit/t€ the elastic-decohesion model if it proves worthwhile. A

of the data for feature extraction and subsequent assimilatiofin@! @spect of the model is the ability to build in pre-existing
of the information. planes of weakness that may be due to pre-existing, partially

frozen leads, for example. It is this feature that we exploit
in order to initialize simulations using observed data. More
information about this model can be found in Appendix

Improve model/ Derive
innovations for re-initialization

2.3 Sea-ice model and simulations

The sea-ice simulations we perform to demonstrate our The equation of motion for the ice is the balance of mo-
scheme use an elastic-decohesive constitutive model for thmmentum equation that includes, in addition to the internal
sea ice $chreyer et a]2006. The model was developed for forces determined by the constitutive model, drag forces
predicting the initiation and opening of leads in the Arctic from the wind and ocean currents, and Coriolis forces. Six

www.geosci-model-dev.net/3/669/2010/ Geosci. Model Dev., 3, 6682010
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hour wind fields from NCEP reanalysis are used to determinerable 1. Model parameters.
the wind drag and the ocean currents are updated daily using
output from an ocean model (MITgciarshall et al, 1997

run independently from the ice simulation. Quantity Symbol Value
The momentum equation is solved using the material- initial ice density ) 917 kgni3
point method $ulsky et al. 2007). With the material-point initial ice thickness ho 3m
method (MPM), a set of material points is identified in the . . 3
body of fluid or solid that is tracked throughout the defor- a!r density o ra 1.20kgm
mation process. Each material point has a mass, position, i drag coefficient ‘a 0.0012
velocity and stress, as well as material parameters and inter- ~ sea water density Pw 1026 kg nr3
nal variables as needed for constitutive models or thermo-  water drag coefficient  cw 0.00536
dynamics. These material points provide a Lagrangian de-  coriolis parameter fe 1.460x10~4
scription of the material that is not subject to mesh tangling ice shear modulus G 3.6765¢10P N/m2
because no connectivity is assumed between the points. This ) )
Lagrangian frame naturally models convection and transport 1€ bulk modulus K 11.905¢16° N/m
since the trajectory and history of each material point is fol-  ice tensile strength Tnf 25kPa
lowed. Each point carries material properties without error, ice shear strength Tef 15kPa
and history variables can be integrated along the trajectory. ice compressive strength f; 125kPa
However, computing gradients for solution of the momen- ce opening parameter 1 400m
tum equation is complicated in this representation since the decohesi ; In(l— 5
neighbors of a given point are not knovanpriori, and can econesive _p_ara_me e« N (Tst/ Tsm)®)
shear magnification Tsm 60.0

change during a simulation. To keep the computational work
linear in the number of material points, a second discretiza-
tion is used for solving the momentum equations. This repre-

sentation of the solution is often a regular, background mesh dob . _ . h ic th I
that covers the computational domain. and observation point-wise, rather we want a metric that tells

Run explicitly, the time step in MPM is governed by the us the simulation is satisfactory if we get the leads roughly

" . right. That is what our assessment is meant to accomplish.
CFL condition based on the background mesh size and the ) .
9 Levy et al. (2008 define two metrics to evaluate model

elastic wave speed. This step size is comparable to the stelguccess in representing lower dimensional features. The
size used in sub-cycling the elastic-viscous-plastic mode P 9 ) y

(Hunke and Lipscomt2004), making MPM with the elastic- trgat featurgs thrpugh a frequency distribution at predeter-
decohesive model competitive in terms of computational ef__mmed spatial regions of the domain. We use one, the RMS

ficiency with the best available algorithms for ice dynamics index of agreement, in a general skill scokéugphy, 1989:
(Sulsky et al.2007). f—Ar  Af— Ay

A
SS= = : @)
Ap—Ar 1—A4A,

2.4 Assessment . .
WhereA is a measure of accuracy and subscripts f, r, and p

A core idea in our validation scheme is the ability to assesgienote forecast, reference, and perfect, respectively. The ref-
model performance using fuzzy verification models. Con-€réence state used_here is that of persistence. The measure of
sider, for example, the importance of resolving lower dimen-accuracy we consider — the RMS Indext@vy et al.(2008
sional features in sea-ice for climate models. In the winter,S€€ Appendi8) — can take a value between 0 (no agree-
the leads or discontinuities in sea ice are regions where th8'€nt) and 1 (perfect agreemeny,). As we deal with lower
relatively warmer ocean is exposed to the cold atmospheredimensional features for which no climatology (and hence
New ice forms rapidly in these regions and as it forms, brinen© error correlation qurmaﬂon) exists, persistence Servgs gs
is ejected into the upper ocean. This denser water sinks antl€ reference. Any skill score value greater than zero indi-
contributes to the conveyor-belt circulation. If forces changeC@t€s prediction skill over persistence, and can be directly
and leads close, the thinner ice in the leads can be force§Onverted to a percentage improvement in skill.

up into ridges or down into keels, increasing the amount

qf ice that can be §tored in a given area. Thus, leads and  ap illustrative example

ridges (the linear kinematic features in the model and ob-

servations) are crucial for global climate models. However,3.1 Experimental design

their exact location is not important. Thus, our climate pre-

dictions would probably be fairly accurate if we predict leads We conduct two simulations with the sea-ice model: a con-
of approximately the right size and in roughly the right loca- trol run, and an experimental run. The control and exper-
tion. Thus we do not want a metric that compares modelimental simulations are of ice behavior in a 831.60Gkm

Geosci. Model Dev., 3, 66%77, 2010 www.geosci-model-dev.net/3/669/2010/
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10 ice thickness uniformly to 3 m. The experimental simulation
is further initialized as determined through a kinematic anal-
ysis of the RGPS data over one d&yopn et al. 2007, Pe-
L _ terson and Sulsky2011). Specifically, we determine a jump
A TR I in displacement and the orientation of this jump that account
/\ / ; = i best for the observed deformation of an RGPS cell. Material
kill inviated I ] points within that cell are initialized to have this initial jump
15 R » at the observed orientation. The effect of this initialization is
e I to reduce the strength of the ice anisotropically, and to pre-
S — dispose it to continue deforming with this oriented opening
Day provided the forcing is consistent with this deformation.
We run accuracy assessment daily and consider the model
— kil (Control) Skill (Experimental) response and the impact of the one-step assimilation on sim-
ulating LKFs. The assessment consists of determining the
Fig. 2. Skill score (against persistence of observed field shown ingccuraciests and A, against the daily observations for both
insert) evolutipn of the pontrol and experimental simulations. A 1- yna experimental and control runs using the RMS index of
step DA algprlthm was implemented on day 54 (23 February 2004)Levy et al.(2008 see AppendiB), and substituting them in
to the experimental run, whereby the ice model state was updated b; . .
e general skill score formulation, Eq. (1) above. We score

changing material properties based on agreement of lower dimen- . . . . .

sional features deduced from RGPS data processed to show regiorrlge dlfferent simulations using the RMS Index against the

of high deformation (insert). Days are Julian days of 2004. LKFs interpreted from the RGPS observations of the Beau-
fort Sea. We consider the agreement in (1) the existence of
100 kmx 100 km grid cells containing LKFs in the domain;

region of the Beaufort Sea over a time interval of 16 daysf”lnd (2) the existence of 100kn100km grid cells contain-

from day 54 (23 February, insert in Fig) through day 70 ing LKFs at the observed orientation using four cardinal ori-

9 entations in the domain. We thus score M=5 features at N=1,
(11 Mar_ch) pf 2004. Th? background_mesh_ size in the MF.)Mthe entire simulated/observed domain (the Beaufort Sea), in
calculation is 10 km, with four material points per cell ini-

tially. Model parameters include the elastic moduli, ice den-Eq' ®1). Here We assume _that a.” weights; anda; equal

) _ . one. Frequencies are defined in terms of cell counts, and
sity, Coriolis parameter, drag coefcients and the parameters . o .
; . : . Cells with missing data are excluded from the statistics. The
in the decohesive model that set the failure strength of ice in

. : impact of the one-step assimilation on simulating LKFs is
tensiont,s and sheatss, the length scale over which deco- P P 9

. . shown in terms of a skill score in Fi@, and visually in
hesion occurgg, and two parameters that describe the shape_. ¢ y

of the failure surface in stress spageandtsm (Schreyer et eF'g' 3.
al., 2006 and AppendixA). Values of the parameters used
for the simulations are given in Table During this same
period in 2004, RADARSAT SAR observations processedq ren shows the evolution of the skill score with respect to
through the RADARSAT Geophysical Processor System atpersistence for both the control and experimental simulations

10-km r_esol_utlon are av_allgblfa da_lly for_vall_dat|on (middle {5, the duration of the simulations from day 55 (24 February
column in Fig.3) and assimilation (insertin Fig). 2004), the first day after assimilation of RGPS data (in figure
The simulations use the elastic-decohesive constitutivensert) in the experimental run, through day 70 (11 March
model described above. Six hour wind fields from NCEP 2004), the last day of the simulations. The impact of the
reanalysis are used to determine the wind drag and the oceashe step assimilation is evident throughout the entire 16-
currents and are updated daily. Both the control and the exday simulation, although it is most dramatic during the first
perimental runs use the same boundary conditions. Boundweek. For visual assessment of the impact that the assim-
aries are either land boundaries, in which case the displacetation has on the LKF field throughout the domain, Fy.
ment of the ice is zero, or open boundaries in the Beauforprovides snapshots of that field as simulated in the control
Sea. In the latter case, displacements of boundary points argnd experimental runs, side by side with the observed field at
specified according to their observed values obtained fronkey time steps of the 16-day simulation.
the RGPS data. As the lower dimensional information assimilated in our
Initial values of all model variables and parameters aretested assimilation scheme is used to nudge the model
also the same, except that the experimental simulation goethrough preconditioning of the simulated field towards the
through a one-step assimilation during day 54, where infor-observed field at a future time step, a positive skill score with
mation on the pattern of leads from RGPS at 10-km resolu+espect to persistence is achieved only on 25 February (top
tion is used to predispose the model. Initialization includespanel in Fig.3; day 56 in Fig.2). This reflects the time it
setting the initial velocity and stress to zero, and the initial takes for the model physics to consistently respond to the

Skill score
o
w

3.2 Results

www.geosci-model-dev.net/3/669/2010/ Geosci. Model Dev., 3, 6682010
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Fig. 3. Comparisons of the experimental (left column) and control (right column) simulations with LKFs interpreted from the RADARSAT
Geophysical Processor System (RGPS) data (center column) on (from top to bottom) 25 February 2004 (day 56, first day of positive skill
score for experimental run), 28 February (day 59, first day of positive skill score for control run), 4 March (day 63) and 10 March (day 69).
The RGPS data were processed assuming that all deformation should be accounted for by shearing, opening and closing of a discontinuity
which passes through the cell cent€obn et al. 2007).
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preconditioning, as well as the relatively strong persistenceghe model spin up time and the overall higher model skill,
and slow evolution of the lead (LKF) field. The skill score the assimilation improves model skill significantly during the
of the experimental run peaks at 0.6 (60% improvement oveffirst six days. Thus, the new scheme holds the potential of
persistence; 100% improvement over the control run scoregomparable improvements for the assimilation of lower di-
on day 58 (27 February), and remains positive for the resimensional features with similar persistence when infrequent
of the simulation, and above 0.5 through day 66 (7 March).observations exist.

In an adaptive assimilation cycle, one may consider another |, the sea-ice system tested, the properties needing phys-
cycle on day 67. The true impact of the assimilation on thejc| adjustments are relatively clear and nudging is a natural
model performance is measured relative to the control run;mplementation choice that is capable of a robust response
One day following the assimilation, on day 55 (24 Febru-q the adjustments. However, the same principle of phys-
ary), the skill score of the experimental simulation is over jca|ly hased adjustments holds in the general case of other
100% higher than that of the control run skill score, evengegphysical models and systems, the variables and lower di-
prior to either simulation showing skill relative to persis- mengjonal features they resolve or represent, as well as in
tence. Atits peak on day 58, the experimental run skill scoréyther modes of implementation. Meteorological examples
exhibits an improvement of 100% over the control run's skill. jncjude forecasting precipitation and tropical cyclone trajec-
The control run gains skill relative to persistence on day 59gyies (e.g.,Kurihara and Ross1993. Thus, this scheme
(28 February; Fig. 3), when it is 80% lower than the skill of ¢oy|d be extended to a generalized multivariate data assim-
the experimental run. The control run skill relative to persis-jjation and fuzzy verification system that would be physi-
tence remains positive for the rest of the simulation, peaksajly hased and capable of extracting lower dimensional in-
at 0.35 on days 63 (4 March in Fig. 3) and 64, but never exormation from observations and bulk simulations at differ-
ceeds the score of 0.5, and, as the skill of both simulationg,nt scales and for different geophysical (e.g., atmospheric,
slowly decline at the end of the simulation (e.g., 10 March gceanic, coupled) models containing continuous and lower

at the bottom of Fig3), it remains consistently at least 10% |eye| features of significance (e.g., fronts, organized convec-
lower than that of the experimental simulation. tion).

4 Conclusions
An algorithm for model validation and data assimilation that Appendix A
maintains the physical principles embodied in the model and
can evaluate and assimilate lower dimensional features (e.gF0r the purposes of modeling sea ice, a 2-D, plane-stress de-
discontinuities) contained within a bulk simulation is intro- Scription of failure has been formulated assuming cracks oc-
duced and demonstrated with a sea-ice model and with recur in the plane. The envelope of failure points in stress space
motely sensed observations of leads in a one step assimilds described by a failure functiow;, (o, n) where F,, <0 im-
tion cycle. An underlying principle of the new algorithm is Plies no failure,F, =0 implies evolving failure and, >0 is
to use data as a guideline for the model by preconditioninghot allowed. This function is analogous to a plastic yield
model variables or material properties in a way that leadsfunction in plasticity theories. The subscripton F), indi-
internal model physics to generate future model states thagates a separate failure function for each potential crack ori-
are in better agreement with the observed state. Similar t&ntation, and?, depends on the stressand the unit normal
four dimensional data assimilation, this procedure produced) to the crack surface. To consider all possible failure direc-
results that are consistent with internal model physics andions, a general failure functiofi is defined ag” =max, F;,.
dynamics and thus avoids forcing unrealizable model states, Many classical failure criteria, such as the Rankine, Tresca
largely resolving the problem of initialization. Furthermore, and Mohr-Coulomb criteria, are expressed in terms of the
as tested here, this scheme works well for resolving and astraction on the failure surface (i.e., crack surface). The
similating lower dimensional features, which do not match elastic-decohesion model extends these classic criteria by
the model variables and are not directly measured by the obadding two new features: (1) a modification of the Rank-
serving system, without the need to transform these featureie criterion for brittle failure to allow for the possibility that
into model variables. Computationally, this scheme is signif-a compressive stress component may lower the resistance of
icantly more efficient than four-dimensional assimilation and the material to brittle failure, and (2) a transition from brittle
could be regarded as a simplified 4-D assimilation. to ductile failure within one criterion. If a local basis con-
We have tested the new scheme in a sixteen day simulatiosisting ofn, the unit normal to the crack, angda unit vector
experiment. In this system, model skill (against persistence}angent to the crack, is introduced, then the traction on the
is initiated three days earlier than the skill in the control run failure surface has normal componept=n-o -n and tan-
with no assimilation, and is consistently higher than the latergential component; =t-o -n. The remaining component
throughout the simulation. In addition to this shortening of of stress in this basis (within the plane of the ice sheet) is the
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. 2-D Decohesion Function _ . the crack is at an angle to the direction of maximum princi-
$ M‘ $ $ $ > Pincipal Dirsction pal stress, with two orientations of the crack possible. Of the
< ——> Normal to fracture . . .
] i RT;x - two, the orientation that preserves the sense of local rotation
S [w=26r, is chosen. The transition from brittle to ductile failure occurs
5 fo=121, at a point along the failure envelope determined by the ratio

of f to 7sf, and thus is a material property.
r This failure envelope describes the model for lead initi-
> ation in the ice. Once the beginning of a crack has been
> identified, the evolution of the lead is required. The term
; decohesioror cohesive crachknodel refers to the reduction
A of the traction on the crack as the crack opens. This behavior

is in contrast to Griffith’s modelGriffith, 1921) where the

o1 % traction is assumed to change discontinuously and instanta-
neously from a positive value to zero. Decohesion is included

Fig. Al. Failure envelope in principal stress space for the in the model by introducing a softening parameter, analogous
elastic-decohesive model. to equivalent plastic strain in plasticity models, that drives
the traction to zero as a crack continues to open. A dimen-
sionless parametey,, in Eq. (A1), starts with a value unity
for undamaged material and reduces to zeng,athe normal
component of the jump in displacement, increases from zero.
The crack is considered completely open whgnreaches
the material-dependent valug, at which point the traction
on the crack surface has been reduced to zero and a free sur-
face is thus formed.

The displacement discontinuity evolves according to a

tangential stressy; =t-o -t. The brittle decohesion function
is defined as follows

xx>0

Ox<0" (AD)

B, = T—"—fn [<—?2n>+1}, where (x) E{
Tnf I

Material parameters arey;, the tensile or normal failure

stress and?, which denotes the failure stress in uniaxial com-

pression. For the moment, tallg= 1. The new criterion for normal flow rule

brittle failure isB,, =0. The McCauley bracket-() is used

to activate the normal component of stregsonly if it is i :d,aF i Z@E' (A3)

negative. If the term involvingy; were absent then failure ATy 07

would occur when the normal traction on the surface reacheshe displacement discontinuity is regularized into an effec-

the thrEShOldl'nf, which is the Rankine criterion. With the tive decohesion Strain, ana]ogous to p|astic Strain,

oy term, this criterion is analogous to the Rankine criterion

in that failure occurs in the direction of maximum principal éan=1tn/L  ém=i/2L  ég=0 (Ad)

stress, but the critical value of the normal traction component, ;o a 7 is a measure of the cell size in numerical simula-

is potentially reduced whes is compressive. The criterion

I for fail i ; ditis thi tions. (The value oL is chosen so that the physically correct
allows for failure even Ifz, Is negative, and it Is this aspect energy is dissipated during fracture.) The stress is a func-

of the m(t)’d_ell that;l(ljows_lcompresswifbrllttle fallu_re.l ded b tion of the elastic straie—¢e/. Thus, as a specimen of ice
Next, brittle and ductile aspects of failure are included by g |554ed, we typically begin withi < O; the stress is inside

defining the failure function as the failure envelope. We assume each loading step is elas-

2 R tic, giving a trial stress state. If the trial stress is outside the
F=maxf,,  F,= T—; +ef P —1. (A2)  failure envelope £ > 0) then a jump in displacement is in-
sm troduced to bring? back to zero. This procedure is identical

The additional material parameteg,, is the failure stress  to standard solution procedures for plasticity. The result is
in shear when the material is under large compressipas( that as a crack opens we predict the amount of both the nor-
—o00). The parametel, is derived from the condition that mal and tangential opening. Once a free surface has formed,
under pure sheaml{, = —1), the failure stress i, the fail- the jump in displacement can continue to grow if the crack
ure stress under pure shearrdf — oo and f — oo thenthe  surfaces continue to separate, and the traction on the surface
criterion F = 0 reduces to the pure shear criterion of Tresca.remains zero.

FigureA shows a sketch of the decohesion failure envelope At each loading step we find the critical directionfor

in stress space. The solid line represents the failure envelopehich F is largest. As a crack with a particular orientation
F =0. Along this solid line, the blue arrows indicate the di- begins to open, the softening makes it likely that this orien-
rection of maximum principal stress and the red arrows indi-tation will remain the critical direction. However, it is pos-
cate the normal to the crack surface. Under brittle failure thesible that a changing stress state will make another direction
normal to the crack is in the direction of maximum principal critical, in which case a second crack can form intersecting
stress. Under ductile and mixed-mode failure the normal tathe first. In this manner, the model accommodates multiple
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