
Verifying Transactional Requirements

of Web Service Compositions
Using Temporal Logic Templates

Scott Bourne, Claudia Szabo, and Quan Z. Sheng

School of Computer Science
The University of Adelaide, SA 5005, Australia

{scott.bourne,claudia.szabo,michael.sheng}@adelaide.edu.au

Abstract. Ensuring reliability in Web service compositions is of
crucial interest as services are composed and executed in long-running,
distributed mediums that cannot guarantee reliable communications.
Towards this, transactional behavior has been proposed to handle and
undo the effects of faults of individual components. Despite significant
research interest, challenges remain in providing an easy-to-use, formal
approach to verify transactional behavior of Web service compositions
before costly development. In this paper, we propose the use of temporal
logic templates to specify component-level and composition-level trans-
actional requirements over a Web service composition. These templates
are specified using a simple format, configured according to scope and
cardinality, and automatically translated into temporal logic. To verify
design conformance to a set of implemented templates, we employ model
checking. We propose an algorithm to address state space explosion
by reducing the models into semantically equivalent Kripke structures.
Our approach facilitates the implementation of expressive transactional
behavior onto existing complex services, as demonstrated in our experi-
mental study.

1 Introduction

Service-oriented architectures and Web services have been the focus of active
research in the past decade [1–3]. Despite significant interest in techniques for
designing, deploying, and ensuring reliability of Web services, many existing ser-
vices experience severe issues such as timeout, dependability and unexpected
behavior [4]. Market pressures that require ad-hoc deployment without proper
quality assurance contribute to this issue. An important challenge remains veri-
fying the correctness of a Web service composition with respect to fault-handling
logic at design-time. This will permit developers to identify design flaws before
costly development and improve the quality of the service composition [2, 3, 5].

Transactional behavior can be used to contain, handle, and undo the effects of
faults in the execution of a Web service composition [3, 5, 6]. Requirements for
transactional behavior need to be drawn from application-specific business logic
that dictate which faults are acceptable, retriable, or recoverable. For example,

X. Lin et al. (Eds.): WISE 2013, Part I, LNCS 8180, pp. 243–256, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



244 S. Bourne, C. Szabo, and Q.Z. Sheng

a service to retrieve customer details can be retried safely, but services to com-
mit payment or place orders may require recovery or replacement upon failure.
Business logic can also dictate requirements at the composition-level, such as
compensatory processes to rollback all execution effects [7].

A formal yet practical process of specifying transactional behavior and re-
quirements, followed by the verification of the Web service composition design
can significantly reduce development and maintenance cost, and also increase
credibility and reliability in the deployed service. Previous approaches have pro-
posed the detailed specification of failure models [5], composition risk levels
[7], or the definition of vital components for the successful completion of Web
services [3]. These approaches offer significant improvements towards the verifi-
cation of transactional requirements, but tend to lead to state space explosion
when verified [8] or restrict the transactional requirements that can be verified.
A method to specify transactional requirements that, to the best of our knowl-
edge, is yet to be explored, is the adaptation of temporal logic patterns [9–11].
These are frequently used structures of temporal logic properties [12], that can
be implemented to specify sophisticated requirements. This allows users to take
advantage of the expressive power of temporal logic, while reducing the effort
and error-prone nature of pure manual specification.

In this paper, we propose a modeling approach for the design of transactional
Web service compositions that allows users to specify transactional requirements
formally using temporal logic templates and verify conformance at design time.
Our earlier work has proposed a novel model that separates the service behavior
into operational and control behaviors, allowing for flexible design, development,
and verification of complex Web services [2]. The operational behavior contains
the underlying business logic of the system, while the control behavior main-
tains the transactional state and guides the execution of the service. A set of
pre-defined messages enable conversations between operational and control be-
havior that trigger the execution of components, indicate faults, specify recovery
operations, and signal completion, among other operations [13]. We extend our
previous work by enabling the control and operational behaviors to be verified
against transactional requirements drawn from the business logic specified by
the user with temporal logic templates. The main contributions of our work are:

– A set of temporal logic templates to formally specify component-level and
composition-level transactional requirements derived from business logic to
facilitate the verification of composite Web services.

– A service verification approach based on model checking that utilizes tem-
poral logic properties obtained from implemented templates to verify trans-
actional requirements, while addressing state space explosion with model
reduction measures.

– A prototype implementation that facilitates our verification approach over
Web service composition designs as control and operational behavior models.

The remainder of the paper is organized as follows. Section 2 presents an
overview of the control and operational behavior approach for Web service mod-
eling. Section 3 outlines our approach for capturing transactional requirements



Verifying Transactional Requirements with Temporal Logic Templates 245

with temporal logic templates. Section 4 describes how a design can be verified
against these requirements in our approach. Section 5 reports the prototype im-
plementation and experimental study. Finally, Section 6 contrasts our work with
related work and Section 7 concludes this paper and discusses future directions.

2 Background

To specify transactional Web service compositions at design-time, we adapt the
modeling method proposed in our previous work [2], based on the separation
of Web service behavior into control and operational behaviors. The control
behavior is an application-independent model that maintains the transactional
state of the composition, while the operational behavior contains the application-
dependent flow of business tasks. The execution and recovery operations of the
service are directed by the control behavior, according to events reported from
the operational behavior. Using these models, this design provides a detailed
view of the functional and transactional behavior of a composition, moreover,
each perspective to be designed and modified independently.

The control and operational behavior models are expressed as a 5-tuple B =
〈S,L, T , s0,F〉 where S is a finite set of state names, s0 is the initial state,
F ⊆ S is a set of final states, and L is a set of event-condition-action labels.
T ⊆ S × L × S is the transition relation where each t ∈ T consists of a source
and target state, and a transition label. We can express these models using
statecharts, as shown in the online payment composition in Figure 1. The control
behavior model contains the transactional states of the composition, while the
operational behavior contains the flow of business tasks of the process.

[Condition]

Action

Sync

[Fail]

[Fail]

[Success]

[Success]

Recover

[Fault]

Recover

[Syncreq | 
Fault | timeout]

Sync
[Syncreq]

[Syncreq]
Sync

Control Behavior

Operational Behavior

[cannot retry]

[response:ERROR]

[response:ERROR]

PUT Customer 
Details

PUT Card 
Data

Card 
Authorization

Process Single
Sale

Financial
Institution

Commit 
Payment

Payment
Failed

Not 
Activated

Activated

Suspended

Done

Rollback

Aborted

Compensated

Fig. 1. The control and operational behaviors of a basic online payment composition

To enable communication between the behavior models, we use a set of inter-
behavior messages. These allow the control behavior to direct execution, and the
operational behavior to report events and status. The messages are classified as
initiation messages that are sent from the control behavior, and outcome mes-
sages that are responses from the operational behavior. The initiation messages



246 S. Bourne, C. Szabo, and Q.Z. Sheng

include Sync to initiate or resume execution of the service, Recover to trigger re-
covery operations, Delay to force a response from an operational behavior state,
and Ping to test the liveness of a state. The outcome messages include Success
to indicate the successful commit of the service, Fail to signal an abort, Fault
to indicate the presence of a fault that requires recovery, Ack to report the live-
ness of a state, and Syncreq to request a Sync message to retry a component or
resume execution following the recovery. These inter-behavior messages enable
us to specify transactional behavior over the design. For example, in the online
payment example in Figure 1, a Sync message could be used to trigger the pro-
cess from PUT Customer Data, and a Success or Fail message could be sent
from Commit Payment and Payment Failed respectively.

Our previous work [13] proposes a method to ensure well-formed inter-behavior
conversations that avoid deadlock, incomplete execution, and prevent inconsis-
tency between the behavior models. However, these properties are insufficient for
the designer to ensure that the transactional behavior of the model conforms to
their expectations, as the design cannot be verified against application-dependent
requirements, such as the success of critical components prior to commit, or ac-
ceptable alternative operations given a failed component.

3 Temporal Logic Templates

A developer must have confidence that a potentially long-running composition of
distributed and heterogeneous Web services will conform to a set of transactional
requirements for containing and handling faults. These requirements could apply
to failures of individual components, e.g., required recovery operations to undo
the component’s effect, or to the scope of the composition, such as components
critical for success, or relaxed atomicity conditions for failure. It is crucial to
specify these requirements formally, and identify and resolve any compliance
issues prior to Web service development.

We propose to formally specify transactional requirements with temporal logic
templates that are filled by a Web service designer to specify transactional re-
quirements. This approach adapts previous work in temporal logic patterns [9],
which simplify property specification by identifying common structural patterns.
In contrast, our work constructs templates specialized for transactional require-
ments, which allow detailed business logic to be defined to this domain. Similar
to temporal logic patterns, templates do not require expert knowledge in tem-
poral logic to use, reducing human error and effort. The templates use Linear
Temporal Logic (LTL) and Computational Tree Logic (CTL) [12], which specify
properties of a system over two different timeline representations. We employ
both languages since the properties they can specify are not equivalent [14].

Each template is defined with fields for description, design prerequisites, re-
quired variables, scope, cardinality, temporal logic and an example use. The Scope
field allows the user to limit when the transactional requirement should be ap-
plied, while the Cardinality field reduces template ambiguity by allowing users to
customize the relationship between variables. Since transactional requirements



Verifying Transactional Requirements with Temporal Logic Templates 247

can apply to the behavior of the whole composition, or to specific components,
we group our templates into two categories. Component-level templates specify
requirements specific to components, and composition-level templates apply to
the transactional behavior of the entire composition. The separation of control
and operational behaviors in our design model means the components of interest
to component-level templates are the operational behavior states. In contrast,
the composition-level templates utilize control behavior states, as they present a
transactional view of the composition. The descriptions of the component-level
and composition-level templates are shown in Table 1 and 3 respectively. The
full specifications of all our templates are omitted for space, but considerators
and readers are referred to the author’s website for the full list1. A formal proof
of completeness for our template set is difficult to obtain, but in this paper we
provide a foundation of examples that can be extended easily.

Table 1. Names and descriptions of the component-level temporal logic templates

Template Signature Description
CompensateFailure

<Component,Recovery,

Card,Scope>

Specifies a component and a condition. The failure of
the component requires the condition to be satisfied in
the future, to recover from the failure.

CompensateSuccess

<Component,Recovery,

Card,Scope>

Specifies a component and a condition. When the com-
position must be undone, the condition must be satis-
fied to undo the effect of the component.

Alternative

<Component,Recovery,

Card,Scope>

Following the failure of a component, one or several al-
ternative operations, expressed as a condition, are con-
sidered acceptable replacements.

NonRetriable

<Component,Scope>

Following failure of a component, retrial is either not
possible, or the user is not interested in it.

RetriablePivot

<Component,Scope>

A component that may be retried, but not undone. Fol-
lowing its success, the service must commit.

NonRetriablePivot

<Component,Scope>

A component that may not be retried or undone, and
leads to commit or abort depending on success.

3.1 Component-Level Templates

Component-level templates specify transactional requirements for handling fail-
ures of individual components in a Web service composition. For example, a
component-level transactional requirement of the online payment composition
could specify that Card Authorization cannot be retried without first reat-
tempting PUT Card Data. Other common transactional requirements applied to
components include compensatable, retriable, pivot, replaceable, or similar labels
[3, 5–7]. However, using templates to specify these requirements, instead of ap-
plying labels to components, is a more expressive method, as it allows scope and

1 www.adelaide.edu.au/directory/scott.bourne?dsn=directory.file;field=

data;id=24812;m=view

www.adelaide.edu.au/directory/scott.bourne?dsn=directory.file;field=data;id=24812;m=view
www.adelaide.edu.au/directory/scott.bourne?dsn=directory.file;field=data;id=24812;m=view


248 S. Bourne, C. Szabo, and Q.Z. Sheng

other options to be adjusted, and enables complex requirements to be specified,
such as satisfactory recovery conditions for specific failures.

We propose six component-level templates, as shown in Table 1. Compensate
Failure, CompensateSuccess, and Alternative, require both the component
and the compensatory or alternative operations as variables. The Card attribute
specifies the cardinality relationship between these variables. Templates Non

Retriable, RetriablePivotand NonRetriablePivot contain only a single com-
ponent and specify how that component may be treated following failure or
success. All templates contain a variable to define the Scope of the requirement.

Table 2 contains a complete specification of the CompensateFailure template.
The template is implemented by specifying an operational behavior state as the
component, and a boolean Recovery condition that when satisfied, reflects satis-
factory failure recovery. The cardinality field allows the user to specify whether
Recovery only applies to a single failure, or to several failures of the same compo-
nent. The Scope can be global (G), or a function over a condition P . Cardinality
and scope determine the LTL property to be used. As shown in the example, the
LTL property of cardinality 1:1 and global scope can be informally translated as:
it is always the case that if there is a FAULT message sent from the component,
the component will not be executed until its Recovery operation is performed;
nevertheless, a fault of the component will always be followed by Recovery. This
template can be implemented as shown by the example row, which specifies the
required fault handling at Card Authorization in the online payment design.

3.2 Composition-Level Templates

Composition-level templates differ from component-level templates by specify-
ing requirements over the entire composition, such as preconditions, triggers,
or reachability conditions for entering control behavior states. For example, in
the online payment design, the success of Card Authorization and Commit

Payment could be preconditions for commit. Our templates can capture these
requirements by using control behavior states.

The proposed set of composition-level temporal logic templates is shown in Ta-
ble 3.ControlStateCritical,ControlStateTrigger,ControlStateReachable,
and ControlStateUnreachableallowusers to specify pre-conditions, triggers and
reachability conditions for entering control behavior states. Compensation and
ConditionalCompensationallow users to verify that the compensation actions of
the composition meet requirements. The underlying properties of these compen-
sation templates partially overlap some component-level templates, but the Web
service designer can determine which template type is appropriate. For example,
if one operation undoes the effect of several components, it would be simpler to
implement a single composition-level template. Conversely, if several components
each have a corresponding rollback operation, verifying each relationship individ-
ually through component-level templates is preferable.

Table 4 shows the full template specification of ControlStateCritical,which
specifies a precondition for entering a control behavior state. To express this
property in temporal logic, LTL with past-time operators is applied [12]. The O



Verifying Transactional Requirements with Temporal Logic Templates 249

Table 2. Template specification for CompensateFailure

Name CompensateFailure <Component,Recovery,Card,Scope>

Type Component-level

Variables

Component
An operational behavior state that requires recovery
upon failure.

Recovery
A condition that undoes the effect of the failure.
This can be a single component or a set of compo-
nents structured with ∧ and ∨ operators.

Card One of the cardinality options below.
Scope One of the scope options below.

Description
The failure of Component leaves an impact an effect, which must
be compensated by Recovery becoming true in the future.

Prerequisite
A Faultmessage originating fromComponent in the operational
behavior is necessary for this requirement to be verified.

Cardinality
1:1 Recovery undoes one failure of Component.
Many:1 Recovery can undo many failures of Component.

Scope

G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .
Before P Recover must precede the satisfaction of P .

LTL

1:1

G
G(Component.FAULT → ((¬(Activated∧

Component) ∪ Recovery)∧ F (Recovery))

P
F (P ) → G(Component.FAULT → ((¬(Activated∧

Component) ∪Recovery) ∧ F (Recovery))

¬P
G(¬P ) →

G(Component.FAULT → ((¬(Activated∧
Component) ∪Recovery) ∧ F (Recovery))

Before
P

G(Component.FAULT → (((¬(Activated∧
Component) ∧ ¬P ) ∪ Recovery)∧ F (Recovery))

Many:1

G G(Component.FAULT → F (Recovery))

P F (P ) → G(Component.FAULT → F (Recovery))

¬P G(¬P ) → G(Component.FAULT → F (Recovery))

Before
P

G(Component.FAULT →
((¬P ∪Recovery) ∧ F (Recovery)))

Example
CompensateFailure

<Card Authorization,PUT Card Data,1:1,G>

operator is used to specify a property that must have occurred previously, while
the H operator defines a property that must hold in all previous states. The
example specifies the critical condition for entering the Done state.



250 S. Bourne, C. Szabo, and Q.Z. Sheng

Table 3. Names and descriptions of the composition-level temporal logic templates

Template Signature Description

ControlStateCritical

<ControlState,Condition,Scope>

A condition required for entering a con-
trol behavior state.

ControlStateTrigger

<ControlState,Condition,Scope>

A condition that must trigger a control
behavior state in the future.

ControlStateReachable

<ControlState,Condition,Scope>

A condition that indicates a control be-
havior is reachable.

ControlStateUnreachable

<ControlState,Condition,Scope>

A condition that indicates a control state
should not be reachable in the future.

Compensation

<CompCondition>

Specifies a condition that must be met
during any compensation process.

ConditionalCompensation

<ExecCondition,CompCondition>

Given a condition that can be satisfied
during successful execution, specifies a
second condition for compensation.

4 Proposed Verification Approach

We apply model checking [14] to verify that a Web service composition designed
using our control and operational behavior model conforms to a set of transac-
tional requirements specified with temporal logic templates. Model checking is
a method to formally verify a system against a set of properties by exhaustively
exploring the system state space. If a contradiction is found, a stack trace demon-
strating the violation is produced. We employ NuSMV [15] for model checking,
since it provides support for properties specified in LTL and CTL.

To address the state explosion problem inherent in model checking [14], we
automatically reduce the state space of the control and operational behavior
model as much as possible, by removing states and messages not relevant to
the requirements being verified. To this end, we generate a Kripke structure [16]
based on the temporal relations between the variables specified in the templates.
Template variables can be defined as V ⊆ Sco ∪ Sop ∪ M where Sco and Sop

are control and operational behavior states and M is the set of inter-behavior
messages. The Kripke structure will capture all instances of elements from V in
the design, and the transition relation between those instances.

A Kripke structure is a finite-state system model defined as K = 〈Sk, I, Tk,L〉,
where Sk is a finite set of states, I ⊆ Sk is the set of initial states, Tk ⊆ Sk×Sk is
the transition function, and L is the labelling function that assigns atomic propo-
sitions to each state. The atomic propositions are the unique set of properties
that hold at a given state. We identify a set of three atomic propositions for each
state in the Kripke structure; i) the control behavior state; ii) the operational
behavior state; and iii) the most recent inter-behavior message, represented as
a pair (sop,m) of related operational behavior state and message type. Since we
aim to reduce the model to the properties we wish to verify, the Kripke structure
only contains the states with atomic propositions with elements from V .



Verifying Transactional Requirements with Temporal Logic Templates 251

Table 4. Template specification for ControlStateCritical

Name ControlStateCritical<ControlState,Condition,Scope>

Type Composition-level

Variables

ControlState
The control behavior state this critical condition
applies to.

Condition
The precondition for entering this control be-
havior state. This can be a single component or
a set structured with ∧ and ∨ operators.

Scope One of the scope options below.

Description
Condition denotes the precondition for entering Control-
State. When ControlState is entered, Condition must have
been met previously on the execution path.

Scope

G The template applies in all executions.
P Applies during the satisfaction of a condition P .
¬P Applies during the negation of a condition P .
Before P ControlState is entered before P is met.

LTL

G G(ControlState→ O(Condition))
P F (P ) → G(ControlState→ O(Condition))
¬P G(¬P ) → G(ControlState→ O(Condition))
Before P G(ControlState→ (O(Condition) ∧ H(¬P )))

Example
ControlStateCritical

<Done,Card Authorization,Commit Payment,G>

To build the Kripke structure, the control and operational behavior model
must be exhaustively traversed, so the Kripke states can be created and linked as
elements from V are encountered. Due to space constraints, we omit the detailed
algorithm, but provide a description of the verification process. The control and
operational behavior are explored with a depth-first traversal, starting from the
control behavior state Not Activated and the operational behavior yet to be
initialized. From this state, the control behavior activates and explores each
possible way to trigger operations in the operational behavior through inter-
behavior messages. The traversal explores every possible execution path within
the operational behavior, and every reachable inter-behavior message. When
an element from V is encountered, a Kripke state with the atomic properties
currently true in the traversal is either created, or a transition to an existing
Kripke state containing those properties is added. The traversal handles cycles
in the model by backtracking when an exiting Kripke state is linked to, a set of
atomic properties are revisited since the last addition to the Kripke structure,
or the control behavior terminates through Done, Abort or Compensated. The
Kripke structure is complete once the traversal returns to Not Activated.

Figure 2 shows a Kripke structure of the design in Section 2 and the example
template inputs of Tables 2 and 4, such that V = {Card Authorization, PUT

Card Data, Commit Payment, Done}. Each state is labeled with three atomic
propositions as described above. While a Kripke structure of all reachable atomic



252 S. Bourne, C. Szabo, and Q.Z. Sheng

Activated
PUT Card Data
(PUT Customer 
Details, Sync)

Activated
Card Authorization

(PUT Customer
Details, Sync)

Suspended
Card Authorization

(Card 
Authorizarion, Fault)

Rollback
PUT Card Data

(PUT Card
Data, Recover)

Rollback
PUT Card Data

(PUT Card
Data, Syncreq)

Activated
Commit Payment
(PUT Customer
Details, Sync)

Activated
Card Authorization

(Card
Authorization, Sync)

Done
Commit Payment

(Commit
Payment, Success)

Control Behavior State
Operational Behavior State
(Inter-Behavior Message)

Atomic Propositions

Activated
Commit Payment

(Card
Authorization, Sync)

Fig. 2. An example Kripke structure generated from the online payment composition

propositions of the model of Figure 1 would contain 31 states, the reduction
measures minimize this structure to 11, creating less model checking overhead.

5 System Implementation and Experiments

We have implemented our verification approach in a prototype tool, with an
interface for specifying control and operational behaviors as shown in Figure 3.
The prototype reduces the model to the Kripke structure, and writes it to an
SMV (Symbolic Model Verifier) file with the temporal logic representations of the
implemented templates. NuSMV uses this file to exhaustively verify the model
against the set of temporal properties, and lists the properties found to be true,
plus any violating state sequences. To further help the designer, our future work
will interpret these sequences to diagnose design flaws within the control and
operational behavior.

Fig. 3. Specifying a Web service composition as control and operational behaviors

We demonstrate our proposed approach with an extension to the online pay-
ment example of Section 2. This design uses the PayLane Web service API2, and

2 http://devzone.paylane.com



Verifying Transactional Requirements with Temporal Logic Templates 253

GET 
Customer 

Data

PUT Card 
Data

PUT Account
Data

Resale

MultiSale
Card

MultiSale Direct
Deposit

Check Sales

Sale OK

High Fraud
Score

Create Report

Decline Sale

GET Sale
Result

Refund

Request
Processed

Non-
Refundable

Operational Behavior

[fraud_score > 0.3]

[ERROR]

[ERROR]

[OK]

[OK]

Fig. 4. The operational behavior model of the complex online payment composition

extends the online payment example from Section 2 by incorporating multiple
payment options, namely, card charge and direct debit. While the control
behavior model remains the same as the earlier example, the operational be-
havior and inter-behavior messages of the complex online payment design are
shown in Figure 4 and Table 5 respectively. The composition enables users to
pay by credit card or direct deposit, either by entering new data or retrieving
details from a previous transaction. When a card payment is processed, a fraud

score is returned to indicate the likeliness of fraud being committed. In cases
where this score is above a given threshold, a report of the transaction is made.
When a direct deposit is made, the result of the transaction is not immediately
available and must be checked. The design also contains a compensatory process
that determines whether to process a refund based on retrieved sales details.

Table 5. Inter-behavior messages specified over the online payment design

Message Source Target Guard
Sync Activated GET Customer Data [no message]

Sync Activated PUT Card Data [Resale.SYNCREQ]

Sync Activated PUT Account Data [Resale.SYNCREQ]

Syncreq Resale Activated -

Delay Activated MultiSale Card -

Fault MultiSale Card Activated -

Fault Check Sales Activated -

Success Sale OK Activated -

Success Request Processed Rollback -

Fail Decline Sale Rollback -

Fail Create Report Rollback -

Recover GET Sale Result Rollback [Sale OK.SUCCESS]

Recover High Fault Score Rollback [MultiSale Card.FAULT]

Recover Decline Sale Rollback [FAULT]

We identify seven critical transactional requirements to be verified over this
design, as shown in Table 6. Requirement TR1 specifies that when a committed
sale needs to be undone, a refund should be processed, excepting non-refundable



254 S. Bourne, C. Szabo, and Q.Z. Sheng

Table 6. Requirements implemented with temporal logic templates and verified

ID Requirement Result

TR1
CompensateSuccess

<Sale OK, Refund | Non-Refundable, 1:1, G >
Passed

TR2
Alternative

<Resale, PUT Account Data | PUT Card Data, 1:1, G>
Passed

TR3 RetriablePivot <Check Sales, G> Passed

TR4
ControlStateCritical

<Aborted, Create Report, High Fraud Score>
Passed

TR5
ControlStateTrigger <Done, Sale OK & (MultiSale Card |

MultiSale Direct Deposit | Resale), G >
Passed

TR6 ControlStateReachable <Done, Resale.SYNCREQ, G> Passed

TR7 ControlStateReachable <Done, MultiSale.DELAY, G> Failed

sales. TR2 requires that the failure of historical transaction data sales should lead
to card or account data being updated before the sale is retried. Requirement
TR3 asserts that the result of direct deposit sales should be requested until one
is obtained, which then leads to commit or abort. In the event that a high fraud

score is detected, requirement TR4 specifies that a report must be generated
before the composition aborts. TR5 requires that the composition should always
commit following the successful processing of card or direct deposit payment.
Requirement TR6 specifies that commit should be reachable following the failure
of resale, while TR7 requires that commit should be reachable even if the response
of MultiSale Card is delayed. NuSMV took 0.03 seconds to verify these require-
ments and determined that the design violates TR7, since Done is unreachable
following a Delay message to MultiSale Card. To satisfy TR7, the design must
be refined to enable MultiSale Card to be retried or replaced following a delay.
The remaining requirements were satisfied for all states in the design.

6 Related Work

Ensuring and verifying transactional requirements in Web service composition
has been an area of increasing research interest in recent years. Bhiri et al. [5]
and Montagut et al. [6] present Web service composition methods to ensure fail-
ure atomicity properties defined as an Accepted Termination States (ATS) [17]
model. While an ATS model allows detailed specifications of failure atomicity, it
is an exhaustive method that increases exponentially in size as the composition
grows, whereas our template set allows requirements to be flexibly defined only
to components the designer wishes to verify. Montagut et al. [8] limit the ATS
model to zones of the composition where transactional requirements are con-
sidered critical. Despite this, all valid termination state combinations must be
exhaustively defined, while in our approach the designer can determine the level
of requirement detail. The FACTS framework [3] enables users to verify that



Verifying Transactional Requirements with Temporal Logic Templates 255

the transactional behavior and exception handling of a design model supports
components specified critical for success. Our composition-level templates en-
ables more detailed composition-level requirements with the definition of critical
preconditions, triggers, and reachability conditions for commit, abort, and other
transactional states. Another approach proposed by El Haddad et al. [7] uses risk
levels provided by the user to specify whether the resulting composition should
be compensatable, but reduces user control over the transactional behavior of
their composition. In contrast, our approach allows compensatory activities to
be explicitly specified and verified against business requirements.

Our use of templates draws inspiration from existing work in business rule
compliance with temporal logic patterns. Dwyer et al. [9] defined a set of pat-
terns in LTL and CTL with various scope options, based on commonly recurring
temporal logic property structures found across surveyed specifications. This ini-
tial pattern set has been adapted and expanded in subsequent research. Smith et
al. [10] extended this set into templates, allowing them to be customized accord-
ing to cardinality and other fine-grained options. Elgammal et al. [11] produced
an expanded pattern set with a framework that enables atomic patterns to be
composed together, and includes a set of basic composite patterns. Since our fo-
cus is on transactional requirements instead of general compliance, we produce a
set of temporal logic templates highly specialized and more appropriate towards
that use. Furthermore, our template set applies to a specific design model with
control and operational models, which allows our templates to specify require-
ments at the component-level and composition-level, increasing granularity and
expressiveness at no additional computational cost. Finally, Yu et al. [18] apply
temporal logic patterns towards verifying Web service compositions. However,
their work analyzes WS-BPEL schemas for conformance to general functional
properties, while our approach can be applied prior to any development.

7 Conclusion

The verification of transactional requirements of Web service compositions using
information derived from business logic remains an important challenge despite
increasing research interest in recent years. Identifying and resolving compliance
issues to transactional requirements early in development is desirable. Further-
more, the formal specification of transactional requirements is error-prone and
an approach to hide the specification complexities from the Web service designer
will increase the reliability of the design. In this paper, we propose a set of tem-
poral logic templates to formally verify component-level and composition-level
transactional requirements of Web service compositions at design time. Each
template is defined by the Web service designer according to a specification that
contains a description, variables, and scope and cardinality variants. The im-
plemented templates are automatically translated into temporal logic properties
that are verified using a model checker. The proposed approach has been suc-
cessfully implemented and verified with several example scenarios. Our future
work includes supporting parallel workflow patterns, enabling more sophisticated
guard conditions, and scalability tests with increasingly complex scenarios.



256 S. Bourne, C. Szabo, and Q.Z. Sheng

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. IEEE Computer 40(11) (2007)

2. Sheng, Q., Maamar, Z., Yahyaoui, H., Bentahar, J., Boukadi, K.: Separating Oper-
ational and Control Behaviors: A New Approach to Web Services Modeling. IEEE
Internet Computing (3), 68–76 (2010)

3. Liu, A., Li, Q., Huang, L., Xiao, M.: FACTS: A Framework for Fault-tolerant
Composition of Transactional Web Services. IEEE Transactions on Services Com-
puting 3(1), 46–59 (2010)

4. Domingue, J., Fensel, D.: Toward a Service Web: Integrating the Semantic Web
and Service Orientation. IEEE Intelligent Systems 23(1), 86–88 (2009)

5. Bhiri, S., Perrin, O., Godart, C.: Ensuring Required Failure Atomicity of Compos-
ite Web Services. In: Proceedings of the 14th International Conference on World
Wide Web, pp. 138–147. ACM (2005)

6. Montagut, F., Molva, R., Golega, S.: Automating the Composition of Transactional
Web Services. International Journal of Web Services Research (IJWSR) 5(1) (2008)

7. El Hadad, J., Manouvrier, M., Rukoz, M.: TQoS: Transactional and QoS-Aware
Selection Algorithm for Automatic Web Service Composition. IEEE Transactions
on Services Computing 3(1), 73–85 (2010)

8. Montagut, F., Molva, R., Tecumseh Golega, S.: The Pervasive Workflow: A Decen-
tralized Workflow System Supporting Long-Running Transactions. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C: Applications and Reviews (2008)

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for
Finite-State Verification. In: Proceedings of the 1999 International Conference on
Software Engineering, pp. 411–420. IEEE (1999)

10. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: PROPEL: an Approach
Supporting Property Elucidation. In: Proceedings of the 24th International Con-
ference on Software Engineering, pp. 11–21. ACM (2002)

11. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: Root-Cause
Analysis of Design-Time Compliance Violations on the Basis of Property Patterns.
In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS,
vol. 6470, pp. 17–31. Springer, Heidelberg (2010)

12. Emerson, E.: Temporal and Modal Logic. In: Handbook of Theoretical Computer
Science, vol. 2, pp. 995–1072 (1990)

13. Bourne, S., Szabo, C., Sheng, Q.Z.: Ensuring Well-Formed Conversations Between
Control and Operational Behaviors of Web Services. In: Liu, C., Ludwig, H.,
Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 507–515. Springer,
Heidelberg (2012)

14. Baier, C., Katoen, J.P., et al.: Principles of Model Checking. MIT Press (2008)
15. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,

Sebastiani, R., Tacchella, A.: NuSMV 2: An Opensource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

16. Kripke, S.: Semantical Considerations on Modal Logic. Acta Philosophica Fen-
nica 16, 83–94 (1963)

17. Kim, W.: Modern Database Systems: The Object Model, Interoperability, and
Beyond. ACM Press/Addison-Wesley Publishing Co. (1995)

18. Yu, J., Manh, T.P., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern Based Prop-
erty Specification and Verification for Service Composition. In: Aberer, K., Peng,
Z., Rundensteiner, E.A., Zhang, Y., Li, X. (eds.) WISE 2006. LNCS, vol. 4255,
pp. 156–168. Springer, Heidelberg (2006)


	Verifying Transactional Requirements
of Web Service Compositions
Using Temporal Logic Templates

	1
Introduction
	2
Background
	3
Temporal Logic Templates
	3.1
Component-Level Templates
	3.2
Composition-Level Templates

	4
Proposed Verification Approach
	5
System Implementation and Experiments
	6
Related Work
	7
Conclusion
	References




