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ABSTRACT

The prediction of nuclear structure and reaction observables based on nuclear Hamil-

tonians including two- and three-nucleon (NN+3N) interactions derived from chiral effec-

tive field theory constitutes a challenging task for ab-initio nuclear theory. In particular,

the consistent inclusion of 3N interactions requires formal extensions of the many-body

methods and, at the same time, causes a significant increase of the computational cost.

This work presents the necessary steps for the inclusion and the subsequent application

of 3N interactions in different ab-initio nuclear structure and reaction approaches.

The first part is dedicated to the preparation of the chiral nuclear forces before they

enter the many-body methods. It addresses the similarity renormalization group (SRG) as

a tool to soften the initial chiral interactions and its generalization to consistently include

3N interactions. Moreover, the technically important 3N matrix-element management in

a convenient basis for the subsequent many-body methods including an efficient storage

scheme is discussed. In addition, a possibility to derive approximative schemes for 3N

interactions using normal ordering is presented.

In the second part the SRG-evolved chiral NN+3N Hamiltonians are applied in nuclear

structure calculations using the importance truncated no-core shell model (IT-NCSM) as

well as coupled-cluster theory. The impact of SRG-induced and chiral 3N interactions on

ground-state energies and low-energy spectra of different p-shell nuclei is studied, includ-

ing a sensitivity analysis concerning uncertainties of the chiral interactions in the 12C and
10B spectra. Furthermore, the first ab-initio study of even oxygen isotopes with explicit

3N interactions is presented, and by means of the normal-ordered two-body approxima-

tion the ground-state energy systematics of selected closed-shell nuclei throughout the

calcium, nickel, and tin isotopic chains are obtained in qualitative agreement with exper-

iment.

The third part of this work focuses on 3N interactions in ab-initio nuclear scattering

approaches. This includes a detailed discussion of the inclusion of 3N interactions in the

no-core shell model combined with the resonating-group method (NCSM/RGM) with em-

phasis on the ability to treat targets beyond the lightest nuclei. The extended formalism is

then applied to nucleon-4He scattering, where the 3N interaction overall improves scatter-

ing phase shifts, differential cross sections and analyzing powers. Finally, the no-core shell

model with continuum approach, which constitutes a unified ab-initio approach to bound

and scattering states resulting from the combination of the NCSM and the NCSM/RGM, is

generalized to 3N interactions and applied to the neutron-8Be system to study the impact

of the continuum on the 9Be energy levels. The results demonstrate the importance of the

consistent treatment of continuum states.
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ZUSAMMENFASSUNG

Ab-initio Vorhersagen von Kernstruktur- und Kernreaktionsobservablen, basierend auf

Zwei- und Drei-Nukleonen (NN+3N) Wechselwirkungen hergeleitet aus chiraler effektiver

Feldtheorie, stellen eine Herausforderung dar. Insbesondere die Berücksichtigung von 3N

Wechselwirkungen verlangt formale Erweiterungen der Vielteilchenmethoden und erhöht

den Rechenaufwand signifikant. Die vorliegende Arbeit befasst sich mit der Einbeziehung

von 3N Wechselwirkungen in ab-initio Kernstruktur- und Kernreaktionsmethoden.

Der erste Teil der Arbeit diskutiert vorbereitende Schritte zur Einbeziehung der chi-

ralen 3N Wechselwirkungen. Diese umfassen die technisch wichtige Handhabung von 3N

Wechselwirkungsmatrixelementen in geeigneten Basen, sowie ein zugehöriges, effizientes

Speicherschema. Desweiteren wird die Similarity Renormalization Group (SRG) Trans-

formation zur Milderung der starken kurzreichweitigen Korrelationen mit konsistenter

Berücksichtigung der 3N Wechselwirkungen diskutiert. Außerdem werden Näherungen

der 3N Wechselwirkung im Rahmen des Formalismus der Normalordnung vorgestellt.

Der zweite Teil behandelt die Anwendung der SRG-transformierten chiralen NN+3N

Wechselwirkungen in Kernstrukturrechnungen mit Hilfe des Importance-Trunkierten No-

Core Schalenmodells (IT-NCSM), sowie der Coupled-Cluster Theorie. Die Effekte von SRG-

induzierten sowie von chiralen 3N Wechselwirkungen auf Grundzustands- und Anregungs-

energien von Atomkernen der p-Schale, inklusive der Studie von Unsicherheiten der chi-

ralen Wechselwirkungen in 12C und 10B Spektren, werden untersucht. Darüberhinaus wer-

den erste ab-intio Berechnungen für Sauerstoffisotope gerader Massenzahl mit expliziten

3N Wechselwirkungen vorgestellt. Desweiteren zeigt die Systematik der Grundzustand-

senergien für ausgewählte Atomkerne mit Schalenabschlüssen der Kalzium-, Nickel- und

Zinn-Isotopenketten mit Berücksichtigung chiraler 3N Wechselwirkungen im Rahmen der

Normalordnungsnäherung qualitative Übereinstimmung mit experimentellen Daten.

Im dritten Teil werden ab-initio Vorhersagen nuklearer Streuprozesse insbesondere

mit Streuzentren jenseits der leichtesten Atomkerne behandelt. Die Einbeziehung von

3N Wechselwirkungen in die Kombination aus No-Core Schalenmodell und der Resonat-

ing Group Method (NCSM/RGM) wird im Detail diskutiert. Die anschließende Unter-

suchung von Nukleon-4He Streuung zeigt eine Verbesserung der Übereinstimmung von

Streuphasen, differentiellen Wirkungsquerschnitten und Analysierstärken mit experimen-

tellen Daten durch die 3N Wechselwirkung. Schließlich wird der Formalismus des No-

Core Schalenmodells mit Kontinuum, eine Kombination von NCSM und NCSM/RGM, zur

Berücksichtigung von 3N Wechselwirkungen erweitert. Die Anwendung auf Neutron-8Be

demonstriert den Einfluss der konsistenten Beschreibung von Kontinuumszuständen an-

hand der 9Be Energieniveaus.
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INTRODUCTION

The scientific picture of atoms has been revolutionized in the early 20th century by

a number of seminal experiments. Among these is the discovery of the atomic nucleus

by scattering α particles off gold atoms by Ernest Rutherford in 1910 [1, 2]. Moreover, in

1919 he succeeded to accomplish the first man-made nuclear reaction by disintegrating

nitrogen into protons and oxygen by bombardment with α particles [2]. In 1932 James

Chadwick proved the existence of neutrons [3, 4, 5] that, together with the protons, build

the atomic nucleus. Furthermore, it was realized that properties of atomic nuclei and nu-

clear reactions are crucial for the formation of the chemical elements in stars leading to

the theory of nucleosynthesis in 1957 [6].

The quest for a fundamental understanding of nuclear properties and nuclear reac-

tions and their potential consequences for astrophysics motivates the development of a

universal theoretical framework for the description of nuclear systems. A crucial ingre-

dient to the description of atomic nuclei built of nucleons, i.e. protons and neutrons, as

quantum many-body system is the nuclear interaction. A seminal step towards the the-

oretical description of the nuclear interaction was the idea of Yukawa in 1935 to identify

pions as mediators of the interaction between the nucleons [7]. Inspired by this approach

a number of nuclear potentials also involving exchanges of heavier mesons have been de-

veloped and are successfully applied even until today [8, 9, 10].

However, over the past decade a paradigm shift to exploit a link to low-energy Quan-

tum Chromodynamics (QCD) occurred. The latter is the underlying theory of nuclear

physics describing the strong interaction between quarks and gluons as the fundamen-

tal degrees of freedom. The fact that QCD is confining for energies relevant in nuclear

structure and low-energy reactions causes the failure of perturbative approaches to low-

energy QCD [11, 12]. Therefore, one resorts to effective theories valid for the energies of

interest in nuclear physics and with a firm inherent link to low-energy QCD. Currently,

the most systematic approach in this respect is the so-called chiral effective field theory

(EFT) that employs nucleons and pions as relevant degrees of freedom and additionally

respects the symmetries of QCD, in particular the spontaneously broken chiral symme-

try [13, 14, 15]. As a result it provides a systematic expansion of the nuclear two-, three-

and multi-nucleon interactions and also current operators consistently in the framework

of chiral perturbation theory [16, 17, 18].

Theoretical nuclear physics is then confronted with the challenge to exploit this link

to low-energy QCD via chiral EFT Hamiltonians to arrive at rigorous and quantitative pre-

dictions of structural properties as well as of scattering and reaction observables of nuclei.

Additionally, this is important to constrain, validate, and ideally also to optimize the chiral
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Introduction

nuclear forces on the basis of direct comparisons to experimental data. Accordingly, versa-

tile methods to solve the many-body Schrödinger equation starting from a given Hamilto-

nian without any conceptual or uncontrolled approximations are essential. Such methods

are typically referred to as ab-initio approaches. It follows from the definition above that

one prerequisite to classify a method as ’ab initio’ is the possibility to estimate and improve

on the remaining uncertainties. Pioneering ab-initio calculations beyond the 4He nucleus

used the Green’s function Monte Carlo approach [19, 20, 21], and since then ab-initio nu-

clear theory has made great progress. While the typical limit for ab-initio studies was lo-

cated in mid-p-shell nuclei about ten yeas ago [22, 23, 24, 25, 26], in recent years active de-

velopments towards ab-initio methods applicable to medium-mass or even heavy nuclei

and also to nuclear reactions have either extended existing many-body methods as, e.g.,

the importance-truncated extension of the no-core shell model [27, 28] or coupled-cluster

theory [29], or have brought about new ab-initio methods. Among the latter are, e.g., self-

consistent Green’s function methods [30, 31], the (multi-reference) in-medium similarity

renormalization group [32, 33, 34] or the nuclear lattice effective field theory [35, 36].

Precise results from various ab-initio methods have shown that for calculations us-

ing only two-nucleon (NN) interactions, often discrepancies to experimental data remain,

even in the domain of light nuclei [24]. These issues have been traced back to the lack

of three-nucleon (3N) interactions in the nuclear Hamiltonian. Prominent examples are

the ground-state of 10B [37], the nucleon-deuteron analyzing power [38], or the position

of the neutron drip line in the oxygen isotopic chain [34]. Furthermore, in order to exploit

the connection to the underlying physics of low-energy QCD using the nuclear forces de-

rived via chiral EFT it is indispensable to consistently include the chiral 3N interactions

at all stages of the calculations. It is a clear advantage of the chiral EFT that NN, 3N, and

also multi-nucleon forces emerge consistently within the same framework. Hence, there

is no principle choice about which 3N interaction to adopt along with which two-nucleon

interaction as it is the case, e.g., for the combination of the more phenomenological Ar-

gonne V18 [8] or CD Bonn [9] NN interactions with the Tucson Melbourne or Urbana IX

3N interaction models [39].

However, the inclusion of 3N interactions into the different ab-initio techniques poses

a supreme challenge. On the one hand the many-body methods need to be adapted to

incorporate 3N interactions, on the other hand the computational cost typically increases

significantly. Nuclear structure calculations of p-shell nuclei with explicit 3N interactions

are currently possible with the Green’s function Monte Carlo approach [24], the no-core

shell model [40, 41] and its importance-truncated extension [42, 43, 44], coupled-cluster

theory [45, 46], and nuclear lattice effective field theory [36] (for nuclei build of α-clusters),

where only the latter four can use the non-local chiral EFT Hamiltonians. For ab-initio pre-

dictions of nuclear reactions the inclusion of explicit chiral 3N interactions into scattering

processes involving more than four nucleons has been achieved only recently in the no-

core shell model combined with the resonating group method [47, 48] and the no-core

shell model with continuum [49, 50] approaches, and has been developed as part of this

work [51]. The self-consistent Green’s function as well as the (multi-reference) in-medium
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similarity renormalization group resort to an approximate treatment of 3N interactions,

which is of course also vitally important provided a solid validation of the accuracy of the

used approximation.

In this work we apply the currently most advanced chiral NN+3N Hamiltonians avail-

able in terms of matrix elements in ab-initio nuclear structure throughout the p shell using

the importance-truncated no-core shell model (IT-NCSM) and for ground-state energies

up to heavy nuclei in the tin isotopic chain with the coupled-cluster (CC) method. Further-

more, we investigate effects of the chiral 3N interactions in ab-initio nucleon-nucleus scat-

tering in the no-core shell model combined with the resonating group method and finally

in the recently proposed no-core shell model with continuum that represents an ab-initio

approach treating bound and scattering states on equal footing. For clarity we split this

work into three main parts: Part I covers the chiral nuclear forces with focus on the neces-

sary techniques to prepare the chiral Hamiltonians before they can enter the many-body

calculations. This includes innovative strategies for the matrix-element handling of the

3N interactions, and the discussion of consistent similarity renormalization group (SRG)

transformations [52] of the chiral NN+3N Hamiltonians, which is necessary to soften of

the interactions to facilitate calculations with improved model-space convergence. Part II

is dedicated to the application of the SRG-evolved chiral NN+3N Hamiltonians to ab-initio

nuclear structure calculations with particular attention to the effects of SRG-induced and

chiral 3N interactions on ground-state energies and excitation spectra, where we employ

the IT-NCSM and CC approaches. The techniques presented in Part I permit to perform

calculations for p-shell nuclei including 3N interactions in unprecedentedly large model

spaces and precise enough to carry out first sensitivity analyses with respect to uncertain-

ties of the chiral 3N interactions in spectra of p-shell nuclei. Furthermore, in combination

with the so-called normal-ordered two-body approximation, which we prove to be accu-

rate, we extend ab-initio studies to ground-state energies of selected nuclei with closed

sub-shells up to 132Sn, and explore the predictions of current ab-initio methods using chi-

ral NN+3N Hamiltonians for the domain of heavy nuclei including a comprehensive un-

certainty analysis. In Part III we concentrate on the ab-initio treatment of nuclear reac-

tions with special emphasis on the inclusion of chiral 3N interactions. We present in detail

the formalism to include 3N interactions into the no-core shell model combined with the

resonating group method (NCSM/RGM) for nucleon-nucleus reactions. This paves the

way for validations of the chiral NN+3N Hamiltonians also in context of scattering ob-

servables. After a brief discussion of R-matrix theory we apply the extended formalism

to nucleon-4He scattering. Finally, we investigate 3N force effects in neutron-8Be scat-

tering using the no-core shell model with continuum (NCSMC) approach that is able to

describe bound and scattering states on equal footing. The former developments for the

NCSM/RGM are crucial for the inclusion of 3N interactions into the NCSMC. If continuum

effects are important this method exhibits a superior model-space convergence compared

to both, the (IT-)NCSM and the NCSM/RGM approach.

Finally, we provide a brief summary and outlook on remaining challenges and future

directions. In the appendices we discuss another promising many-body method based on
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Padé-resumed high-order degenerate perturbation theory, so far applied with NN interac-

tions only.

For a more detailed overview of the contents of the three parts please see their respec-

tive introductions on pages 3, 49, and 127.
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Chiral Nuclear Forces





INTRODUCTION TO PART I

Chiral effective field theory currently provides the most systematic approach to nuclear

forces based on low-energy QCD. It derives two-, three- and multi-nucleon interactions

consistently within the same framework in a hierarchic manner and allows for predictions

of nuclear structure and reaction observables rooted in QCD [17, 18].

Most many-body methods, in particular those we apply throughout this work, require

matrix elements of the nuclear interaction with respect to a convenient basis. The most ad-

vanced chiral Hamiltonian available in terms of matrix elements suitable for calculations

of finite nuclei consists of two-nucleon (NN) interactions up to next-to-next-to-next-to-

leading order (N3LO) and three-nucleon (3N) interactions at next-to-next-to-leading or-

der (N2LO) of chiral perturbation theory. However, before these matrix elements enter the

different many-body methods, typically a number of manipulations are necessary in order

to cast them into a more convenient form. While such procedures for NN interactions are

used routinely, the 3N interactions pose a number of additional challenges, whose resolu-

tions are crucial for the proper inclusion of the 3N interaction at all stages of the calcula-

tions. In this first part we address all relevant preparatory steps concerning the chiral 3N

interactions for their applications in different nuclear structure and reaction scenarios in

the Parts II and III.

We start with a brief summary of the basic concepts of chiral effective field theory and

introduce the NN interaction at N3LO and 3N interaction at N2LO used throughout this

thesis. In particular we discuss how the low-energy constants of the chiral 3N interactions

are constrained by experiment.

Section 2 is dedicated to different aspects of the 3N matrix-element management. This

includes the discussion of 3N matrix elements in the so-called Jacobi HO basis that build

our starting point. Then we discuss how we arrive at 3N matrix elements in the m-scheme

that are convenient for the calculations later on. As the number of 3N m-scheme matrix

elements quickly becomes prohibitive we introduce the so-called J T -coupled matrix ele-

ment scheme and give details about this scheme including its computational realization.

Afterwards, we discuss how approximative schemes of the 3N interaction can be derived

using the procedure of normal ordering.

It is a well-known fact that realistic nuclear interactions induce significant correlations

in the eigenstates of atomic nuclei that need to be tamed in order to facilitate the con-

vergence of many-body calculations. Different methods to achieve this exist and for the

scope of this work we adopt the similarity renormalization group (SRG). In Section 3 we

discuss the foundations of the SRG approach and focus on the consistent inclusion of 3N

interactions in its framework.
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SECTION 1

Chiral Effective Field Theory

A decisive input when aiming at the microscopic description and prediction of prop-

erties of the structure or collisions of nuclear many-body systems is the interaction be-

tween the constituents. In the context of atomic nuclei these constituents are protons and

neutrons. However, they themselves consist of quarks and gluons, which are the funda-

mental degrees of freedom of the strong interaction within the Standard Model of parti-

cle physics. The underlying theory of the strong interaction is quantum chromodynamics

(QCD), which has been formulated in the 1980s and is nowadays generally accepted for the

description of interacting quarks and gluons. As a result, one should in principle be able

to deduce nuclear properties and processes or at least the interaction between nucleons

directly from QCD. However, this poses a formidable task hardly feasible in a comprehen-

sive manner, as we discuss in the following. Afterwards, we present the basic concepts and

steps towards the derivation of nuclear interactions in a systematic fashion within the so-

called chiral effective field theory (EFT) approach, while maintaining the key features of

low-energy QCD.

Since QCD is a field theory, it is formulated in terms of a Lagrangian density which is

given by

!QCD = q̄ (iγµ"µ−$ )q − 1
4%µν ,a%µνa , (1.1)

where we denote with q and$ the quark fields and the quark-mass matrix, respectively.

Moreover, the covariant derivative is given by

"µ = ∂µ− i g s
λa

2
&µ,a , (1.2)

with the Gell-Mann matrices λa and the gluon fields&ν ,a . The Gluon field-strength tensor

can be expressed as

%µν ,a = ∂µ&ν ,a − ∂ν&µ,a + g s f abc&µ,b&ν ,c , (1.3)

5



1 Chiral Effective Field Theory

with the SU (3) structure constants f abc . The quantity describing the strength of the cou-

pling of quarks and gluons is denoted by g s . This coupling varies as function of momen-

tum transfer and accordingly with energy: it has been found to be strong for low momen-

tum transfers or low energies and is responsible for the confinement of quarks and gluons

into colorless hadrons, whereas it becomes weak for high momentum transfers, i.e., at high

energies, which is also referred to as asymptotic freedom [11, 12, 53]. This behavior leads to

the fact that a perturbative treatment of QCD is meaningful at high energies only, which is

opposite, e.g., to the running coupling of quantum electrodynamics. The relevant energy

range of typical nuclear properties and processes we are interested in corresponds to the

low-energy regime of QCD, i.e., the coupling constant is large and in particular g s ≈ 1. Con-

sequently, a perturbative expansion of nuclear processes in terms of Feynman diagrams,

which is equivalent to a power series in terms of the coupling constant, is non-convergent.

Nevertheless, there are ongoing attempts to non-perturbatively extract information about

nuclear systems directly from QCD treated numerically using a discretization over an Eu-

clidean space-time grid, generally referred to as lattice QCD (LQCD) [54, 55]. The idea

is to obtain, e.g., low-lying hadron masses and binding energies of light nuclei from the

evaluation of the Feynman path-integral formalism on the lattice using Monte Carlo tech-

niques [56, 57], and first attempts to derive the nuclear interaction [58, 59]. Besides statis-

tical errors, LQCD encounters also systematic errors due to the finite volume of the lattice,

due to the finite lattice spacing which is typically about 0.1 fm, and from the complication

that the small physical up and down quark masses nowadays often cannot be simulated

on the lattice [60]. Hence, the final results need to be obtained from extrapolations to

infinite volume, to vanishing lattice spacing and to the physical quark masses. The reduc-

tion of these errors is directly linked to the available computational resources, which are

exploited at their limits for the presently completed calculations. Although more sophis-

ticated LQCD approaches are subject to current research [54, 55, 57] and supercomputers

are approaching exa-scale computing capabilities, the expensive LQCD calculations can-

not be done for the variety of nuclei and nuclear properties of interest in the foreseeable

future. Nevertheless, LQCD is a valuable tool to cross-check issues of particular impor-

tance in few-nucleon systems [54], but for the description of nuclei and nuclear collisions

beyond the few-body domain, which is the task we focus on in this thesis, we have to resort

to an alternative approach that we cover in the remainder of this section and that delivers

the nuclear interactions we apply throughout this work.

The intention is to develop an effective field theory valid in the low-energy regime of

QCD, namely the regime where nuclear processes take place and can be considered as

interactions between nucleons rather than resolving the complex dynamics of quarks and

gluons. In a first step one needs to determine the relevant degrees of freedom that should

be taken into account. At energy scales well below the pion mass it is possible to consider

nucleons as degrees of freedom only, which results in the so-called pion-less effective field

theory (see, e.g., [61]). However, if the nucleon energies are close to or above the pion

mass, which is the case for the energies of interest for the different applications throughout

this work, it becomes necessary to include the pions as explicit degrees of freedom. Thus,
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one adopts nucleons and pions as relevant degrees of freedom, which is in line with the

idea proposed in 1935 by Yukawa to describe the nucleon-nucleon interaction in terms of

pion exchanges [7]. However, at the same time it is crucial to maintain a firm link to the

underlying theory, i.e., QCD. This is possible by formulating the most general Lagrangian

that reflects all symmetries of QCD but with nucleons and pions as the effective degrees

of freedom, as discussed in the seminal papers [62, 13, 14, 15] by Weinberg. It was realized

that in particular the so-called chiral symmetry plays an important role. This is a symmetry

of the QCD Lagrangian in the limit of vanishing quark masses that can be rewritten in

terms of left- and right-handed quark fields as

!QCD, 0 = q̄Liγµ"µqL + q̄R iγµ"µqR − 1
4%µν ,a%µνa , (1.4)

where qR =
1
2 (1+ γ5)q and qL =

1
2 (1− γ5)q . One can show that this Lagrangian obeys the

chiral symmetry, i.e., SU (2)R × SU (2)L symmetry, which corresponds to invariance under

the unitary transformations

qR =

!

u R

d R

"

−→ e−i Θ⃗R τ⃗
2

!

u R

d R

"

(1.5)

qL =

!

u L

d L

"

−→ e−i Θ⃗L τ⃗
2

!

u L

d L

"

. (1.6)

Here, the quarks are restricted to up and down quarks, and the τ⃗ denotes a vector con-

taining the representation of the isospin operators as Pauli matrices. As consequence

of this symmetry, Noethers theorem [63] predicts the existence of six conserved current

densities, which can be divided into three vector and three axial-vector current densities.

The three vector current densities can be assigned to isospin symmetry of the Lagrangian

!QCD, 0, which is in accordance with the observation of approximately mass-degenerate

isospin multipletts, e.g., the ρ± and ρ0 mesons. On the contrary, a signature of the con-

served axial vector current densities cannot be identified in the hadron spectrum. This is

evidence for a spontaneous breaking of the chiral symmetry, that is, the ground state of

the system does not reflect the symmetry of the Lagrangian describing the system. Then,

the Goldstone theorem postulates for each spontaneously broken symmetry a massless

pseudo-scalar boson, also referred to as Goldstone boson [64, 65]. The Goldstone bosons

assigned with the spontaneous breaking of the chiral symmetry of Lagrangian (1.4) are the

pions π± and π0. Of course, physical pions are not massless but acquire a mass of ap-

proximately 140 MeV/c 2. This is due to occurrence of the non-zero quark masses in the

QCD Lagrangian which causes the explicit breaking of the chiral symmetry, i.e., the La-

grangian (1.1) is not invariant under the transformations (1.5) and (1.6). However, the up-

und down-quark masses are small compared to typical hadron masses which are larger

than 700 MeV/c 2. Therefore, chiral symmetry is formally broken explicitly but can still be

interpreted as approximate symmetry of low-energy QCD, whose spontaneous breaking

reasons the small mass of the pions in comparison to other hadrons which are no Gold-
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1 Chiral Effective Field Theory
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Figure 1.1 – Diagrams contributing to the nuclear interactions from chiral EFT at different orders
of the expansion parameter Q

Λχ
. Solid lines represent nucleons and dashed lines denote pions.

Figure adapted from [66].

stone bosons.1 We note that also the isospin symmetry is broken due to the difference

of the non-vanishing masses of the up and down quarks, which results in the small mass

differences between the pions and likewise between neutrons and protons.

Having identified the important (broken) symmetries of QCD, one is left with the con-

struction of the most general Lagrangian with nucleons and pions as effective degrees of

freedom consistent with these symmetries, in particular with the (spontaneously) broken

chiral symmetry. This has been accomplished first by Weinberg in Refs. [13, 14]. The effec-

tive Lagrangian may be written as

!eff =!ππ+!πN +!N N +!ππN +!πN N +!N N N + . . . , (1.7)

where each Lagrangian including pions contains an infinite number of terms. They are

typically ordered in terms of the so-called interaction index ∆i for vertex i

∆i = d i +
n i

2
− 2, (1.8)

where d i denotes the number of derivatives, and n i the number of nucleon fields. It can be

shown that ∆i ≥ 0 holds, because for NN contact interactions there are at least 4 nucleon

fields. Nucleon-pion interactions enter with one derivative due to the Goldstone boson

nature of the pion and there are at least two nucleon fields, and pion-pion interactions

have at least two derivatives [17]. However, each of the Lagrangians ordered with increas-

1If one also allows strange quarks in the QCD Lagrangian in the chiral limit, one finds eight Goldstone
bosons, which are identified with the pions, kaons and eta particles [17].
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ing interaction index ∆i still contains infinitely many terms. Hence, one needs a measure

of the importance of the individual diagrams contributing to scattering matrix elements.

This can be achieved by an expansion in powers of Q
Λχ

with a generic momentum Q of the

order of the pion mass and the so-called chiral-symmetry breakdown scaleΛχ ∼mρ , which

makes Q
Λχ

a small quantity. The ordering of terms according to this expansion is accom-

plished using the so-called Weinberg power counting, which determines the exponent of

the expansion parameter by

ν =−4+ 2A + 2L+
∑

i

∆i (1.9)

with i summed over all vertices of a connected diagram. In addition, A denotes the num-

ber of nucleons and L the number of loops. For a specific exponent ν , the number of di-

agrams contributing to the nuclear interaction is finite, and, furthermore, the importance

of contributions with larger ν should decrease. A diagrammatic representation of the con-

tributions to the nuclear interaction ordered in terms of powers ν is shown in Figure 1.1.

Leading-order (LO) diagrams correspond to
$ Q
Λχ

%ν=0, next-to-leading-order (NLO) contri-

butions have ν = 2, because all contributions for ν = 1 vanish by parity or time-reversal

symmetry arguments. Then, next-to-next-to-leading-order diagrams (N2LO) have ν = 3

and next-to-next-to-next-to-leading-order contributions (N3LO) correspond to ν = 4. In

particular, Figure 1.1 illustrates the expected hierarchy of nuclear forces, that is NN in-

teractions should be more important than three-nucleon (3N) interactions, which in turn

should be more important than four-nucleon (4N) forces, and so on. This is of course

a consequence of the Weinberg power-counting scheme (1.9): diagrams without loops

and with vanishing interaction indices and including two nucleons can contribute at ν =

0, while three-nucleon forces may contribute first at ν = 2, as is evident from plugging

A = 3 into Eq. (1.9). However, it has been shown that the 3N contributions at NLO van-

ish [15]. Hence, the leading 3N interactions contribute at N2LO only, and, therefore, their

effects should be small compared to the NN interaction. Evaluation of the power-counting

scheme for A = 4 reveals that leading 4N forces start contributing at N3LO.

Additionally, we note that chiral EFT provides a systematic expansion of electromag-

netic and weak meson-exchange current operators consistently within the same frame-

work [67, 68]. Although, we do not further investigate these current operators in this work

it will be interesting to see their impact in calculations, e.g., of radii and electromagnetic

transitions in future studies. Results from GFMC calculations using the Argonne V18 po-

tential along with chiral meson-exchange currents can be found in Ref. [10].

Altogether, chiral effective field theory provides nuclear forces in a hierarchic manner

by means of a systematic expansion in powers of Q
Λχ

, which are in addition solidly rooted in

QCD through the consistency with its symmetries, in particular the chiral symmetry and

its spontaneous breaking. Furthermore, NN, 3N, and multi-nucleon forces are treated on

equal footing since the theory naturally predicts the 3N forces that should be used along

with the chiral NN interaction. Nowadays, chiral NN forces are routinely used in differ-

ent approaches for studies of many-nucleon systems. On the other hand, considerations
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1 Chiral Effective Field Theory

of chiral 3N interactions in context of different many-body approaches have become ac-

cessible over the past few years only. This is due to the fact that matrix elements of the

nuclear interaction with respect to harmonic-oscillator (HO) bases are necessary, whose

computation in large enough sets and their handling in the many-body calculations is sig-

nificantly more demanding than for NN interactions. Currently, partial-wave decomposed

momentum-basis matrix elements of the chiral NN interaction are available up to N3LO

and up to N2LO for the 3N interaction which can then be transformed into the HO basis.

We have developed the required techniques to handle also large sets of 3N matrix ele-

ments, which is the focus of Section 2. Prior to this, in the following two subsections, we

discuss further general aspects of the chiral NN interaction at N3LO and the 3N interac-

tions at N2LO which we apply and study throughout this thesis.

1.1 The Chiral Nucleon-Nucleon Force up to N3LO

As can be seen from Figure 1.1 the NN interactions are given by NN contact terms and

pion-exchange contributions. The LO contributions are given by two momentum-indepen-

dent contact interactions and a one-pion-exchange (OPE) diagram. Due to the OPE con-

tribution the tensor force appears already at LO, which is known to be essential, e.g., for

the correct description of the deuteron. The contact interactions come with a so-called

low-energy constant (LEC) each, which incorporate the short-range behavior of the in-

teractions which may be mediated by heavy mesons that have been ’integrated out’ by

choosing pions as only degrees of freedom. Thus, these unknown constants are fitted to

experimental data in particular to nucleon-nucleon scattering phase shifts to fix the short-

range behavior of the nuclear potential. Contact terms can contribute only in LO, NLO

and N3LO due to parity symmetry. Altogether, 24 such contact terms enter up to N3LO

with according LECs, and play a crucial role for the renormalization of the chiral EFT [17].

The NLO contributions yield lots of spin-isospin structures that are known to be important

from more phenomenological realistic interactions. At N2LO, seven contact terms, and the

∆i = 3 pion-pion vertices are present, which are due to intermediate contributions of the

∆(1232)-isobar that also has been integrated out. Hence, these kind of vertices have also

LECs attached which can be determined from NN or πN scattering data. Finally, at N3LO

quadratic spin-orbit forces contribute and 15 new contact terms with according LECs are

encountered. It was found that in particular these contact terms, i.e., NN interactions up

to fourth order are mandatory to fit the NN scattering phase shifts with comparable quality

as the more phenomenological realistic interactions, i.e., to obtain χ2/datum ≈ 1 [69, 70].

The pion-exchange contributions depend on the axial-vector coupling constant g A = 1.29,

and the pion-decay constant Fπ = 92.4MeV, and eight additional LECs. The first chiral

NN potential at N3LO has been developed by Entem and Machleidt, which is also the NN

interaction we will use in all applications throughout this work [71] . The details of the

fitting procedure including a detailed discussion of the nucleon-nucleon phase shifts is

described in Ref. [71]. We note that this NN potential includes charge dependence, which

is important for the accurate fit of np, nn and pp phase shifts [71]. Moreover, in practical
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1.2 The Three-Nucleon Force at N2LO

applications of this potential it needs to be multiplied with a regulator function to avoid

diverging integrals. This regulator function is chosen as [71]

f NN(p ′,p ) = e−
$

p ′
Λ

%2n
−
$

p
Λ

%2n

, (1.10)

with p and p ′ as magnitude of the initial and final relative nucleon momenta, respectively.

The parameter n is chosen such that the order of powers
$Q
Λ

%ν generated by the exponen-

tials are beyond N3LO. The cutoff momentum for the NN interaction we use throughout

this work is Λ= 500MeV/c .

1.2 The Three-Nucleon Force at N2LO

As already mentioned above, the leading 3N interaction within the framework of chiral

EFT appears at N2LO. It is evident from the power-counting scheme (1.9) that at this order

only diagrams without loops but with one vertex with interaction index ∆i = 1 contribute.

The corresponding diagrams, which first have been derived by van Kolck [16], can be seen

in Fig. 1.1. We discuss them from left to right: the first contribution is a two-pion exchange

(2PE) diagram, which resembles the Fujita-Miyazawa term that provided a first estimate

of three-body force effects already in 1957 [72], of course disconnected from the chiral EFT

efforts over the past two decades. Mathematically, the 2PE diagram is given by

V̂2PE=
∑

i ̸=j ̸=k

1

2

&
g A

2Fπ

'2 ( ˆ⃗σi · q⃗i )( ˆ⃗σj · q⃗j )

(q⃗ 2
i +M 2

π)(q⃗
2
j +M 2

π)
F̂
αβ

i j k τ̂
α
i τ̂
β
j (1.11)

F̂
αβ

i j k = δ
αβ

(

−
4c1M 2

π

F 2
π

+
2c3

F 2
π

q⃗i · q⃗j

)

+
∑

γ

c4

F 2
π

εαβγτ̂
γ
k
ˆ⃗σk · [q⃗i × q⃗j ] ,

with ˆ⃗σ and ˆ⃗τ as spin and isospin operators, respectively. Note that we adopt the notation

of Ref. [73] in the mathematical expressions, which are matrix elements with respect to the

nucleon momenta but operators with respect to spin and isospin. The momenta q⃗i = p⃗ ′i −
p⃗i are the momentum transfers of nucleon i with p⃗i and p⃗ ′i as initial and final momenta.

In the 2PE no new LECs are encountered, because the constants c1, c3 and c4, or ci for

short, are already present in the πN vertices of NN interaction and are fixed during the

fitting procedure of the NN interaction. However, we note that quite different values for

the ci constants can be obtained from different fits, which motivates a sensitivity study

of 3N force effects on different LEC combinations. We will present such studies based on

nuclear spectra of p-shell nuclei in Section 7. The second diagram is given by the two-

nucleon contact one-pion exchange (OPE) term by the expression

V̂OPE =−
∑

i ̸=j ̸=k

g A

8F 2
π

cD

F 2
πΛχ

ˆ⃗σj · q⃗j

q⃗ 2
j +M 2

π

( ˆ⃗τi · ˆ⃗τj )( ˆ⃗σi · q⃗j ) (1.12)

accompanied with the new LEC cD arising from the two-nucleon contact. The three-

nucleon contact diagram completes the 3N interaction at this order and contributes an-
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1 Chiral Effective Field Theory

Figure 1.2 – Shown are trajectories in the cD -c E -parameter space reproducing the binding ener-
gies of 3H and 3He and their average. In addition, the vertical dotted black lines denote the
parameter range of cD for which the β-decay half-life of 3H is reproduced. The intersections of
the dotted and solid black lines define the values for LECs cD and c E of the 3N interaction at
N2LO. Plot taken from [76].

other LEC, cE , and reads mathematically

V̂cont =
1

2

∑

j ̸=k

cE

F 4
πΛχ

( ˆ⃗τj · ˆ⃗τk ) . (1.13)

We note that throughout this thesis we use 3N interactions that have been regularized

by means of a regulator function formulated in terms of the momentum transfer of the

nucleons

f 3N(p⃗ ′i − p⃗i ) = e
−
(p⃗ ′

i
−p⃗

i
)4

Λ4
3N , (1.14)

which leads to a local interaction as introduced in Ref. [74], where we denote the cutoff

momentum of the 3N interaction as Λ3N. Again, the power of the exponent has been cho-

sen such that the order at which the calculations are conducted is smaller than the powers

formally generated by the exponential. Finally, we note that we adopt a charge-symmetric

3N interaction in all applications throughout this thesis, accordingly we use an average

pion mass of Mπ = 138MeV [74]. Chiral 3N forces including charge-symmetry-breaking

effects can be found in Ref. [75].

Of course, as before for the NN interaction, the LECs cD and cE need to be fixed from

experimental data. Various set-ups to tie down these parameters can be found in the liter-

ature, e.g., using the binding energies of 3H and 4He [77], or the neutron-deuteron doublet

scattering length [73] or a fit to properties of light nuclei [78]. Throughout this work, we

adopt the values cD = −0.2 and cE = −0.205 for the 3N interaction with the momentum

cutoff Λ3N = 500MeV/c , which is the cutoff consistent with the one used in the adopted
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1.2 The Three-Nucleon Force at N2LO

NN interaction. These values have been determined in Ref. [76] by exploiting the fact that

the constant cD emerges also in electro-weak chiral meson-exchange currents offering the

possibility to use the β-decay half-life of 3H computed by ab-initio calculations as con-

straint. Their procedure is illustrated in Figure 1.2: the red dashed and blue dash-dotted

lines are trajectories in the cD-cE -parameter space that yield the experimental binding en-

ergies of 3H and 3He, respectively. The average of both lines is drawn as black solid line

which represents those parameter values that give the correct average binding energy of

nuclei made of three nucleons. In addition, the vertical dotted lines denote the range in

cD for which one achieves the correct β-decay half-life of 3H up to ±0.54%. The center of

this interval is at cD = −0.2 which, with help of the black solid line, pins down cE . In this

way, both new LECs accompanying the 3N interaction are fixed entirely by data from 3N

systems, which is the most consistent approach.

At first glance, it may seem most consistent to apply the same cutoff momentum Λ3N in

the 3N interaction as in the NN interaction. However, full consistency between the N3LO

NN and the N2LO 3N interactions is questionable already due to their different chiral or-

ders, and the different functional forms of the used regular functions. When aiming at

sensitivity studies of nuclear observables with respect to changing the cutoff momentum

Λ3N and in this way the strength of the 3N interaction, it is valuable to determine further

pairs of parameters cD and cE in A = 3 or 4 systems for different cutoff momenta Λ3N (see

Section 7). Further reasons why the corresponding 3N interactions are of great practical

interest will become clear later in Section 6.3. Hence, we keep the cutoff momentum of the

NN interaction at Λ = 500MeV/c , but lower the cutoff momentum Λ3N of the 3N interac-

tion and refit the LEC cE such that the obtained Hamiltonian reproduces the 4He binding

energy. For convenience we keep cD =−0.2, which warrants the reproduction of the triton

β-decay half-life according to the findings in Ref. [76], namely the fact that the β-decay

constant of triton is rather insensitive to the presence of 3N forces. We accomplish the

fit of the 4He binding energy utilizing matrix elements of the 3N interaction in a Jacobi

HO basis within the no-core shell model (NCSM) with help of the MANYEFF code [79]

provided by Petr Navrátil. We conduct the calculations for a sequence of model-space

sizes up to Nmax = 20 and extrapolate to infinite model-space size. We discuss the de-

tails of the HO Jacobi basis and the NCSM in Sections 2.1 and 4.1, respectively. We apply

this procedure for 3N interactions with cutoff momenta Λ3N = 350MeV/c , 400MeV/c and

450MeV/c . The resulting LECs and also their values for the standard 3N interaction with

Λ3N = 500MeV/c are summarized in Table 1.1. In addition, we show the convergence pat-

tern of the 4He ground-state energy with respect to the model-space size for the three cases

in Figure 1.3 including the exponential function which we have fitted to energies obtained

in three largest model spaces indicated by switching to the solid line, respectively. In all

three cases the energies at Nmax = 20 are sufficiently well converged so that the extrapola-

tion is robust and contributes only a small correction to the energy obtained in the largest

model space. The extrapolated energies can be seen from Table 1.1, where we also include

the extrapolated energies for triton based on extrapolations from NCSM calculations at

Nmax = 36, 38 and 40. For the 3N interactions fitted to the 4He ground-state energies we
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Figure 1.3 – Convergence pattern of the 4He ground-state energy which was used to fit the LEC
c E for cutoff momenta Λ3N = 350, 400 and 450MeV/c of the 3N interaction at N2LO as function of
the NCSM model-space size. The solid line represents the extrapolation including the energies
obtained from three largest model-spaces. The HO frequency is ħhΩ= 36MeV.

find deviations from the experimental triton energy of about 200 keV with Λ3N = 350 and

400MeV/c , and of about 150keV with Λ3N = 450MeV/c . In this way, we obtain alternative

3N interactions that are fixed by properties of three- and four-nucleon systems. Thus, their

application in heavier systems remains completely predictive. We study and compare the

properties of these different 3N interactions in particular in Sections 6.3, 7, and 9.

Finally, we note that the derivation of the Cartesian momentum operators of the sub-

leading 3N interaction at N3LO is complete [82, 83]. They have been included in neu-

tron and nuclear matter calculations which directly build on momentum-space matrix

elements [84]. However, for applications to finite nuclei within the scope of the many-

body methods discussed in Part II partial-wave decomposed matrix elements are needed.

Because of the many different operator structures involved in the 3N interaction at N3LO

this poses a formidable task, which cannot be accomplished manually, as done before in

Ref. [74] for the five operator structures of the leading 3N interaction. Therefore, develop-

ments towards an automatized partial-wave decomposition of the N3LO 3N interaction as

proposed in Ref. [85] are currently under way. The method relies on the numerical integra-

Table 1.1 – In the first three rows we quote the fitted LEC c E to the ground-state energy of 4He
for different cutoff momenta Λ3N of the N2LO 3N interaction and using the NN potential at
N3LO described in Section 1.1, which determines the LECs ci of the 3N interaction. The last
two columns show the energies of 4He and 3H from extrapolations to infinite model-space size.
The used HO frequency is ħhΩ= 36MeV. In the fourth row we quote the LEC combinations we use
for Λ3N = 500MeV/c taken from Ref. [76], and the last row containes the experimental energies
from Refs. [80, 81]. For further details see text.

Λ3N [MeV/c ] cD cE E (4He), Nmax=∞[MeV] E (3H), Nmax=∞[MeV]
350 -0.2 0.205 -28.2944 -8.276
400 -0.2 0.098 -28.2956 -8.283
450 -0.2 -0.016 -28.2920 -8.324
500 -0.2 -0.205 -28.50 -8.473
exp. -28.2956 -8.482
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1.2 The Three-Nucleon Force at N2LO

tion of five-dimensional angular integrals and will eventually yield partial-wave decom-

posed 3N matrix elements on a four-dimensional Jacobi momentum grid. This requires

a substantial amount of computing time and, therefore, has led to the joint efforts within

the Low-Energy Nuclear Physics Collaboration (LENPIC) [86] we are part of. Once partial-

wave decomposed matrix elements of these beyond-leading order 3N interactions become

available, our machinery to use them in nuclear structure or reaction theory is completely

developed and can be used immediately, because all input formats will be identical to

the 3N interactions at N2LO. We discuss the necessary manipulations on the level of ma-

trix elements to incorporate 3N interactions consistently in nuclear structure and reaction

calculations in the remaining sections of Part I of this thesis.
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SECTION 2

Three-Nucleon Force Matrix Elements

For an efficient description of finite nuclei with many-body methods that rely on a

basis expansion of the Hamiltonian eigenstates it is mandatory to have access to matrix

elements of the interaction with respect to basis states that are well-suited for the descrip-

tion of a localized system. This is in particular true for all many-body methods we discuss

in Part II of this thesis. A basis composed of harmonic-oscillator (HO) eigenstates has

proven to be suitable due to localized basis wave functions and the possibility to apply

many analytic relations. In this section, we discuss the necessary procedure to transform

the input matrix elements, given with respect intrinsic Jacobi HO states, into matrix ele-

ments that are convenient as input for the different many-body methods discussed later

on. For NN interactions these steps are well-established and can be found, e.g., in Ref. [87].

Here, we focus on the treatment of 3N interaction matrix elements. As already mentioned

above, our starting point are matrix elements of the 3N interaction with respect to antisym-

metrized Jacobi HO 3N states, which are generated by Petr Navrátil’s MANYEFF code [79]

and are discussed in Section 2.1. Afterwards, in Section 2.2, we discuss the transformation

into matrix elements with respect to angular-momentum and isospin coupled m-scheme

states, which we refer to as J T -coupled scheme in the following. This J T -coupled scheme

turns out to be key for an efficient inclusion of 3N matrix elements in many-body methods

beyond the lightest nuclei. We briefly review our implementation and discuss the stor-

age scheme tailored for an efficient on-the-fly decoupling of the matrix elements into the

m-scheme, including our first attempts to evaluate this decoupling on graphics process-

ing units, which is investigated in an ongoing collaboration with computer scientists [88].

Note that part of this discussion resulted in the publication [44]. In the last subsection

we introduce the formalism of the so-called normal-ordering technique, which allows to

approximate the 3N interaction by means of zero-, one-, and two-body interactions when-

ever the computational cost to include 3N interactions explicitly becomes prohibitive. A

benchmark of this approximation is discussed in Section 8.
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2 Three-Nucleon Force Matrix Elements

2.1 Matrix Elements in the HO Jacobi Basis

The 3N interaction matrix elements serving as input have been derived in Ref. [74], where

the partial-wave decomposition has been performed manually with help of the partial-

wave Jacobi HO basis states, which are given by

|N1N2;α〉= |N1N2; [(L1S1)J1, (L2
1
2 )J2]J12; (T1

1
2 )T12〉 , (2.1)

and are antisymmetric with respect to particle exchange 1↔ 2 only, such that (−1)L 1+S1+T1 =

−1. In addition, we have introduced the partial-wave index αwhich summarizes all orbital

quantum numbers. Here, we adopt the notation of Ref. [44] which is similar to Ref. [74].

The quantum numbers N1 and L1 are the HO radial and orbital angular momentum quan-

tum number, respectively, corresponding to an HO formulated in terms of the Jacobi co-

ordinate

ξ⃗1 =
11
2
(r⃗a − r⃗b ) (2.2)

and the corresponding Jacobi momentum

π⃗1 =
11
2
(p⃗a − p⃗b ) , (2.3)

with r⃗i and p⃗i being single-particle coordinates and momenta. Analogously, the N2 and

L2 are the respective radial and the orbital angular momentum quantum numbers with

respect to the Jacobi coordinate

ξ⃗2 =
*

2
3

$ 1
2 (r⃗a + r⃗b )− r⃗c

%

(2.4)

and corresponding Jacobi momentum

π⃗2 =
*

2
3

$ 1
2 (p⃗a + p⃗b )− p⃗c

%

. (2.5)

The orbital angular momentum ˆ⃗L1 couples with the total spin of the first two nucleons ˆ⃗S1

to ˆ⃗J1; the orbital angular momentum ˆ⃗L2 couples with the spin of the third nucleon to ˆ⃗J2. In

addition, the angular momenta ˆ⃗J1 and ˆ⃗J2 couple to the total angular momentum ˆ⃗J12, and

analogously the coupled isospin of the first two nucleons ˆ⃗T1 and the isospin of the third

nucleon couple to the total isospin ˆ⃗T12. The projection quantum numbers of the total an-

gular momentum M J12 and of the total isospin MT12 are suppressed for brevity. We note

our general rule to denote quantum numbers characterizing more than one nucleons as

capital letters while single-particle quantum numbers are denoted by lower-case letters.

The states (2.1) are particularly well adapted to the translational invariant interactions be-

cause they are defined in the center-of-mass frame, i.e., they include intrinsic degrees of

freedom of the 3N system only. Consequently, center-of-mass contaminations, which are

an issue in certain applications, are ruled out by construction as long as one works with

such states directly. We come back to this issue in context of the description of various
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2.1 Matrix Elements in the HO Jacobi Basis

many-body methods in Section 4.

To arrive at completely antisymmetrized Jacobi HO states |E12i J π12T12〉a , i.e., to fully anti-

symmetrize the partial-wave HO Jacobi states (2.1), we have to perform the transformation

|E12i J π12T12〉a =
∑

N ′1N ′2α
′

δE12,2N ′1+L 1+2N ′2+L 2δJ π12,J ′π
′

12
δT12,T ′12

C i
N ′1N ′2α

′ |N ′1N ′2α
′〉 . (2.6)

The principal HO quantum number of the antisymmetrized Jacobi HO state is given by

E12 = 2N1 + L1 + 2N2 + L2. The remaining good quantum numbers are the total angular

momentum and parity J π12 of the relative motion as well as the total isospin T12. The in-

dex i does not correspond to a physically meaningful quantity, it labels different antisym-

metrized Jacobi states for given quantum numbers E12, J π12 and T12. The expansion coef-

ficients are determined by the overlap of the antisymmetrized and non-antisymmetrized

Jacobi HO states

C i
N1N2α

= 〈N1N2;α|E12i J12T12〉a , (2.7)

which are the so-called coefficients of fractional parentage (CFP) [74, 77, 89]. The CFPs

are determined by diagonalization of the matrix obtained by representing the antisym-

metrizer &̂ in the non-antisymmetrized Jacobi basis states |N1N2;α〉. Due to the fact that

E12, J π12 and T12 are good quantum numbers in both representations these quantum num-

bers define a block structure of the matrix, so that the diagonalization can be carried out

separately for each block. The eigenvectors of the antisymmetrizer with eigenvalue 1 de-

fine the fully antisymmetric Jacobi states |E12i J π12T12〉. For each (E12, J π12,T12) block multiple

eigenvectors with eigenvalue 1 may exist, hence, they span a degenerate subspace with

the index i as degeneracy index. In addition, we note that the CFPs are identical for all

HO frequencies, i.e., in practice they need to be computed and stored to disk only once for

a specific frequency. Altogether, this antisymmetrization procedure by means of CFPs is

efficient and numerically easy to handle at least for the case of three-body states discussed

here.

With help of Eqs. (2.1) and (2.6) we can express 3N interaction matrix elements with

respect to antisymmetrized Jacobi HO states as

a 〈E
′
12i ′ J π12T12| V̂ 3N |E12i J π12T12〉a
= 3

∑

N1 L 1

∑

N2L 2

∑

α

∑

N ′1L′1

∑

N ′2L′2

∑

α′

C i
N1N2α

C i ′

N ′1N ′2α
′ 〈N ′1N ′2;α′| V̂ 3N

1 |N1N2;α〉 , (2.8)

where the fact that the 3N interaction can be written as sum of three terms V̂ 3N = V̂ 3N
1 +

V̂ 3N
2 + V̂ 3N

3 has been exploited [74]. The different V̂ 3N
i are related by particle permutations

and yield identical contributions in terms of matrix elements with respect to fully antisym-

metrized states leading to the factor 3 in Eq. (2.8). The matrix elements on the left-hand

side build our starting point and are generated by the MANYEFF code of Petr Navrátil.

This code computes matrix elements in the partial-wave Jacobi HO basis |N1N2;α〉 of the

chiral 3N interactions shown in Eqs.(1.11)-(1.13) as described in Ref. [74], and performs
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2 Three-Nucleon Force Matrix Elements

the transformation (2.8). For three-nucleon systems the obtained matrix elements can be

used directly in calculations within the no-core shell model (NCSM) based on Jacobi coor-

dinate HO states, as we briefly discuss in Section 4.1. However, for all applications of the

3N interaction discussed later we rely on matrix elements with respect to three-body Slater

determinants |n a l a ja ma mta ;nb lb jb mb mtb ;n c l c jc mc mtc 〉a of HO single-particle states, typ-

ically called m-scheme states. The transformation of the antisymmetrized Jacobi matrix

elements (2.8) into matrix elements with respect to m-scheme states is a computationally

demanding step which will be the focus of the next subsection.

2.2 Three-Nucleon Matrix Elements in the m-Scheme

For the application of 3N interactions in the variety of many-body methods discussed in

Part II of this thesis we have to prepare its matrix elements with respect to three-body

Slater determinants of HO single-particle states, the so called m-scheme states

|abc 〉a = |n a l a ja ma mta ;nb lb jb mb mtb ;n c l c jc mc mtc 〉a . (2.9)

Here, n a is the radial and l a the orbital angular momentum quantum number of the spher-

ical HO, respectively. The orbital angular momentum ˆ⃗l a couples with the spin to the angu-

lar momentum ˆ⃗ja with projection quantum number ma . The projection-quantum number

of the isospin is mta . In addition, on the left-hand side we have introduced the short hand

for the set of single-particle quantum numbers a = {n a l a ja ma mta } including all projec-

tion quantum numbers. Many of the first NCSM calculations including 3N interactions

explicitly were performed using the modus of computing and storing 3N m-scheme ma-

trix elements before the actual many-body calculations, which subsequently reads in these

matrix elements sets [78, 90, 91]. As we discuss in more detail in Section 2.2.3 and also in

Refs. [44, 42] the memory requirements for their storage in fast memory during the many-

body calculation quickly becomes prohibitive and, thus, limits the accessible model-space

sizes. To overcome this complication we resort to a different strategy, namely to precom-

pute matrix elements with respect to so-called J T -coupled states. The transformation into

the J T -coupled scheme is discussed in Section 2.2.1. We will see that this reduces the

memory needs significantly while the computationally demanding pieces are still part of

the pre-computation step. Of course, most many-body methods still require m-scheme

matrix elements so that an efficient on-the-fly decoupling of the matrix elements is neces-

sary. To accomplish this we have developed an adapted storage scheme for the J T -coupled

matrix elements, which we discuss in Section 2.2.2. Finally, we elaborate on the computa-

tional details of the 3N matrix element handling in Section 2.2.3.

2.2.1 Transformation of Jacobi Matrix Elements into the JT -Coupled Scheme

As we have motivated above, we aim at the transformation of 3N matrix elements with

respect to antisymmetrized Jacobi states |E12i J π12T12〉a into matrix elements with respect

to J T -coupled states composed of single-particle states. The corresponding J T -coupled
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2.2 Three-Nucleon Matrix Elements in the m-Scheme

basis states are given by

|ā b̄ c̄ ; Jab J ;Tab T 〉a = |n a l a nb lb n c l c ; [(ja jb )Jab , jc ]J ; [( 12
1
2 )Tab , 1

2 ]T 〉a , (2.10)

where we have omitted the projection quantum numbers of the total angular momentum

J and isospin T for brevity. In addition, we have introduced the notation ā = {n a l a ja }
as short-hand for the set of single-particle quantum numbers without their projections.

Since the states (2.10) are composed of single-particle states that depend on single-particle

coordinates, they also include the description of the center of mass. Therefore, as start-

ing point for the transformation we need to augment the partial-wave HO Jacobi state

|N1N2;α〉 with an explicit center-of-mass degree of freedom by means of the HO states

|NcmLcmMcm〉, which after angular-momentum coupling reads

|N1N2;α;NcmLcm; J 〉= { |N1N2;α〉⊗ |NcmLcm〉} J , (2.11)

where we couple the center-of-mass orbital angular momentum ˆ⃗Lcm and ˆ⃗J12 to ˆ⃗J . After-

wards, we can proceed by investigating the key element of the transformation, namely the

overlap of the J T -coupled states (2.10) with the Jacobi states (2.11), which we refer to as T

coefficients

T āb̄ c̄ Ja b J
N1N2αNcmL cm

= T
n a l a ja nb lb jb n c l c jc Ja b J

N1L 1S1 J1N2L 2 J12 J12NcmL cm
= 〈N1N2;α;NcmLcm; J |ā b̄ c̄ ; Jab J ;Tab T 〉 . (2.12)

We skip the detailed derivation of the T coefficients here because we have discussed it in a

comprehensive manner in Refs. [92, 93]. Instead, we quote the final expression

T
n a l a ja nb lb jb n c l c jc Ja b J

N1L 1S1 J1N2L 2 J12 J12NcmL cm

=
∑

!

∑

L

∑

Λ

∑

S12

∑

L 12

∑

L a b

δ(2n a+l a+2nb+lb+2n c+l c ),(2Ncm+L cm+2N1+L 1+2N2+L 2)

×(−1)l c+Λ+L a b+L+S12+L 1+J ĵa ĵb ĵc Ĵab Ĵ Ĵ1 Ĵ2Ŝ1Ŝ2
12L̂2

ab !̂
2Λ̂2

×〈〈4 ! ,N1L1; Lab |nb lb ,n a l a 〉〉1〈〈NcmLcm,N2L2;Λ|4 ! ,n c l c 〉〉2

×

⎧

⎨

⎩

l a lb Lab

1
2

1
2 S1

ja jb Jab

⎫

⎬

⎭

⎧

⎨

⎩

Lab l c L

S1
1
2 S12

Jab jc J

⎫

⎬

⎭

⎧

⎨

⎩

L1 L2 L12

S1 S2 S12

J1 J2 J12

⎫

⎬

⎭

×

1

l c ! Λ

L1 L Lab

21

Lcm L2 Λ

L1 L L12

21

Lcm L12 L

S12 J J12

2

, (2.13)

where we use the notation x̂ =
1

2x + 1, and briefly outline the general strategy for its

derivation: as evident from our discussion above, the T coefficients need to accomplish

the change of the underlying coordinate system from Jacobi into single-particle coordi-

nates. Because we are working with HO basis states this can be done with help of two

Harmonic-Oscillator Brackets (HOBs) which we denote by 〈〈. . . | . . .〉〉d and we follow the

conventions of Kamuntavicius [94]. More detailed discussion on the HOBs may be found

also in [92]. For the derivation of the T coefficients the most important property is their
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2 Three-Nucleon Force Matrix Elements

requirement of coupled orbital angular momenta, which leads to the necessity of various

angular momentum re-couplings which manifest themselves by the occurring 6j - and 9j -

symbols. From Eq. (2.13) it is evident that the T coefficients are independent of the isospin

quantum numbers, however they are defined only for Tab = T1 and T = T12 as these are good

quantum numbers in both bases. The remaining quantum numbers the T coefficients de-

pend on are listed as upper and lower indices.

Having the expansion coefficients (2.12) we can tie up the pieces to arrive at the final

transformation equation. We start with the targeted matrix elements of the 3N interaction

with respect to antisymmetric J T -coupled states, i.e.,

a 〈ā b̄ c̄ ; Jab J ;Tab T | V̂ 3N |ā ′b̄ ′c̄ ′; J ′ab J ′;T ′ab T ′〉a

= 6〈ā b̄ c̄ ; Jab J ;Tab T |&̂ V̂ 3N&̂ |ā ′b̄ ′c̄ ′; J ′ab J ′;T ′ab T ′〉 , (2.14)

where we made use of the projection property of the antisymmetrization operator for

three-body states

|ā b̄ c̄ ; Jab J ;Tab T 〉a =
1

6&̂ |ā b̄ c̄ ; Jab J ;Tab T 〉 , (2.15)

which requires the factor
1

6. Next, we express the antisymmetrizer as projector explicitly

with help of the antisymmetric Jacobi states augmented by a center-of-mass HO state in

analogy to Eq. (2.11) as

&̂ =
∑

E12i J π12T12

∑

NcmL cm

∑

J

|E12i J π12T12;NcmLcm; J 〉a a 〈E12i J π12T12;NcmLcm; J | . (2.16)

This relation holds because the center-of-mass part is always symmetric with respect to

particle transpositions. If we plug this expression for the antisymmetrizer in Eq. (2.15) and

insert another identity in the non-antisymmetrized states (2.11)

1̂=
∑

N1N2

∑

α

∑

NcmL cm

∑

J

|N1N2;α;NcmLcm; J 〉〈N1N2;α;NcmLcm; J | (2.17)

we can identify again the CFPs C i
N1N2α

from the overlap

〈N1N2;α;NcmLcm; J |E ′12i ′ J ′π
′

12 T ′12;N ′cmL′cm; J ′〉a

=C i
N1N2α

δ2N1+L 1+2N2+L 2,E12δJ π12,J ′π
′

12
δT12,T ′12

δNcm,N ′cm
δL cm,L′cm

δJ ,J ′ . (2.18)

Altogether, plugging Eq. (2.16) in Eq. (2.14) and using the identity (2.17) twice leads to the
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2.2 Three-Nucleon Matrix Elements in the m-Scheme

final transformation formula

a 〈ā b̄ c̄ ; Jab J ;Tab T | V̂ 3N |ā ′b̄ ′c̄ ′; J ′ab J ;T ′ab T 〉a

= 6
∑

N1N2α

∑

N ′1N ′2α
′

∑

i ,i ′

∑

NcmL cm

δTa b ,T1δT ′a b ,T ′1
δT,T12δT,T ′12

δJ12,J ′12

× T
n a l a ja nb lb jb n c l c jc Ja b J

N1L 1S1 J1N2L 2 J12 J12NcmL cm
T

n ′a l ′a j ′a n ′b l ′b j ′b n ′c l ′c j ′c J ′a b J

N ′1L′1S ′1 J ′1N ′2L′2 J ′12 J ′12NcmL cm

×C i
N1N2α

C i ′

N ′1N ′2α
′ a 〈E12i J π12T12| V̂ 3N |E ′12i ′ J ′π

′

12 T ′12〉a , (2.19)

where we also exploited the fact that the interaction does not connect different total angu-

lar momenta or isospins.

In fact, the isospin quantum numbers are not affected by the change of the underly-

ing coordinate system, which is reflected in the formula by the corresponding Kronecker

deltas. The advantage of using the J T -coupled scheme instead of matrix elements with re-

spect to the m-scheme states (2.9) can be identified immediately in the final result (2.19):

the number of coupled matrix elements that we need to compute and store is much re-

duced compared to the m-scheme case, because we can directly exploit the basic sym-

metries of the interaction such as its rotational invariance, i.e., different total angular mo-

mentum quantum numbers are not connected, and the matrix elements are independent

of M J . Likewise different total isospin quantum numbers are not connected and the matrix

elements are independent of MT , which is an approximation applied already in the matrix

elements we start from. We study the memory needs of the J T -coupled matrix elements

in more detail in Section 2.2.3.

Nevertheless, as we have mentioned already, most many-body methods rely on m-

scheme matrix elements and accordingly an efficient angular-momentum decoupling dur-

ing the many-body calculation is mandatory. We discuss this step in the next subsection.

However, the key point of using the J T -coupled matrix-element scheme is the fact that

the computationally most demanding steps are included in the pre-computation step and,

thus, do not bother the many-body calculation. This is fulfilled due to the large number of

T coefficients that need to be handled in the transformation (2.19), and also the computa-

tion of the T coefficients (2.13) is rather involved.

2.2.2 The Decoupling into m-Scheme Matrix Elements

After having computed the J T -coupled matrix elements using the formula derived above,

we can utilize them in different many-body methods. The strategy is to store the matrix

elements in fast memory and to retrieve the m-scheme matrix elements by an explicit de-

coupling. This decoupling is straightforwardly achieved and involves Clebsch-Gordan co-
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2 Three-Nucleon Force Matrix Elements

efficients only

a 〈abc | V̂ 3N |a ′b ′c ′〉a =
∑

Ja b J ′a b

∑

J

∑

Ta b T ′a b

∑

T

×

!

ja jb

ma mb

3
3
3
3
3

Jab

Mab

"!

Jab jc

Mab mc

3
3
3
3
3

J

M

"!
1
2

1
2

mta mtb

3
3
3
3
3

Tab

MTa b

"!

Tab
1
2

MTa b mtc

3
3
3
3
3

T

MT

"

×

!

j ′a j ′b
m ′

a m ′
b

3
3
3
3
3

J ′ab

M ′
ab

"!

J ′ab j ′c
M ′

ab m ′
c

3
3
3
3
3

J

M

"!
1
2

1
2

m ′
ta

m ′
tb

3
3
3
3
3

T ′ab

M ′
T ′a b

⎞

⎟
⎠

⎛

⎜
⎝

T ′ab
1
2

M ′
T ′a b

m ′
tc

3
3
3
3
3

T

MT

"

×a 〈ā b̄ c̄ ; Jab J ;Tab T | V̂ 3N |ā ′b̄ ′c̄ ′; J ′ab J ;T ′ab T 〉a . (2.20)

All projection quantum numbers that do not appear on the left-hand side are determined

by the properties of the Clebsch-Gordan coefficients. Since the Clebsch-Gordan coeffi-

cients can be easily precached it is obvious that this decoupling can be included as inter-

mediate step during the many-body calculation. However, we have developed further op-

timizations of this decoupling by introducing an adapted storage scheme that is tailored to

guarantee a highly efficient decoupling procedure. Also, we have shown in a collaborative

project with computer scientists that this decoupling can be ported efficiently to graphics-

processing units. We discuss the details together with other computational aspects in the

next subsection.

2.2.3 Computational Aspects of the 3N Matrix-Element Handling

After the discussion of the formal steps towards the access to 3N m-scheme matrix ele-

ments while storing J T -coupled matrix elements in fast memory, we now elaborate on

some computational aspects and the implementation of the different steps in practice.

We start with a discussion of the memory requirements for the different matrix ele-

ment schemes introduced in the previous subsections. In Figure 2.1 we show the mem-

ory needed for the 3N interaction matrix elements with respect to antisymmetrized Jacobi

states (purple squares), the J T -coupled states (red triangles), and the m-scheme states

(blue discs), respectively, as function of the maximum total energy quantum number E3max

of the three-body states. The latter is given by 2N1+L1+2N2+L2 for the antisymmetric Ja-

cobi states and by ea+eb+ec with ei = 2n i+l i in the J T -coupled scheme and the m-scheme.

It is evident that the memory need depends on the extent of basic symmetries of the in-

teraction reflected in the chosen three-body basis. The least memory is required to store

the matrix elements with respect to the antisymmetrized Jacobi basis which takes advan-

tage of all symmetries present, namely Hermeticity, rotational invariance (by means of the

couplings to total ˆ⃗J and ˆ⃗T ), antisymmetry and translational invariance since the center-

of-mass part is completely omitted in this basis. The latter is included in the J T -coupled

scheme and, as a consequence, two orders of magnitude more memory is needed for their

storage beyond E3max = 12. This further increases when matrix elements in the m-scheme

basis are considered, because here not even the rotational symmetry is exploited. How-
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Figure 2.1 – Required memory to store the antisymmetrized Jacobi ( ), m -scheme (•) and J T -
coupled scheme (▲) matrix elements of V̂ 3N as well as the T coefficients ( ) of Eq. (2.13) as func-
tion of the maximum three-body energy quantum number E3max. Single-precision storage of the
floating point numbers is assumed. The shaded area denotes the range of a 32-64 GB threshold
that represents the typical available memory per node in current state-of-the-art supercomput-
ers. (published in [44])

ever, we note that still all basic symmetries, i.e., antisymmetry, the fact that the sum of

single-particle projection quantum numbers needs to be equal in the bra and ket states

as well as time-reversal symmetry are considered. The different memory demands are

crucial for practical applications and set the limits for current ab-initio nuclear structure

calculations.

Many NCSM calculations including 3N interactions [78, 90, 91] originally followed the

strategy to compute and store the set of m-scheme matrix elements before solving the

many-body Hamiltonian eigenvalue problem. This defines a limit of accessible model-

space sizes. For instance, an Nmax = 8 model space for a mid-p-shell nucleus requests 3N

matrix elements up to E3max = 11, requiring the storage of about 33 GB matrix elements in

single precision [95]. This is definitely borderline, because the memory per node typically

available at current supercomputers is between 32 and 64 GB, shown as shaded area in

Figure 2.1. But to converge NCSM-type calculations it is typically necessary to investigate

model spaces with Nmax = 12 or beyond. Therefore, we have introduced the J T -coupled

matrix-element scheme. As already emphasized, this reduces the necessary storage up to

three orders of magnitude, e.g., for the example of an Nmax = 8 calculation in the mid-p-

shell the J T -coupled matrix elements at E3max = 11 need 0.4 GB in single precision only.

Thus, the J T -coupled scheme enables NCSM calculations for p-shell nuclei including 3N

interactions for much larger model spaces and, thus, is key to obtain results that are con-

verged or close to convergence with respect to model-space sizes. This applies as well to

other nuclear structure methods, e.g., the coupled-cluster method [96, 97], the in-medium

similarity renormalization group [32, 34] or the Gorkov-Green’s function approach [30],
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2 Three-Nucleon Force Matrix Elements

and to nuclear reaction approaches as, e.g., the no-core shell model resonating group

method [51] and the no-core shell model with continuum (see Part III), which have all

adopted our storage scheme.

During the calculations of the J T -coupled 3N matrix elements the most critical ob-

jects are the T coefficients (2.13). Each T coefficient involves sums over products of two

HOBs, three 9j -symbols and three 6j -symbols. We precompute all HOBs and angular-

momentum coupling coefficients that are needed for the calculation of T coefficients up

to E3max. Already from the large number of indices the T coefficients depend on, one may

anticipate that the number of relevant coefficients is large. The memory demand of these

coefficients is also included in Figure 2.1 as green diamonds and is approximately identical

to that of the J T -coupled matrix elements. For an efficient realization of the transforma-

tion (2.19) it is necessary to fit all precomputed T coefficients in memory. For increasing

E3max this becomes more and more problematic, in particular due to the fact that besides

the T coefficients also the antisymmetrized Jacobi matrix elements, the CFPs and of course

the resulting J T -coupled matrix elements need to be stored. However, exploiting the fact

that the computation of a given J T -coupled matrix element requires T coefficients de-

pending on ā b̄ c̄ and ā ′b̄ ′c̄ ′ only, we split the transformation in different (ā b̄ c̄ , ā ′b̄ ′c̄ ′)-blocks

and thus circumvent memory limitations. In a post-processing step we join the matrix el-

ements of all different blocks into a common file. This discussion clarifies that an on-the-

fly evaluation of the transformation (2.19) during the many-body calculation itself is not

favorable, because the cached T coefficients would not lead to further memory savings,

since the breakdown into different (ā b̄ c̄ , ā ′b̄ ′c̄ ′)-blocks is hardly feasible efficiently at this

stage. A complete on-the-fly evaluation of J T -coupled matrix elements, i.e., without pre-

computed T coefficients, would significantly increase the computing time. Therefore, the

precomputation of J T -coupled matrix elements currently seems to be the optimal com-

promise.

Next, we focus on the optimized storage scheme of the J T -coupled 3N matrix elements

tailored to facilitate a cache-optimized and, thus, efficient on-the-fly decoupling (2.20)

into the m-scheme during the many-body calculation. We store all matrix elements as

a single flat vector without further indices, i.e., the quantum numbers of the matrix ele-

ments are encoded by their sequence. The six outermost loops run over the orbital single-

particle quantum numbers ā , b̄ , c̄ , ā ′, b̄ ′ and c̄ ′. At this stage we exploit antisymmetry,

parity symmetry and Hermeticity. The combination of these indices mark the beginning

of a region of J T -coupled matrix elements in memory that may contribute to m-scheme

matrix elements with single-particle quantum numbers a ,b ,c ,a ′ ,b ′,c ′ due to the fact that

the orbital quantum numbers remain invariant during the decoupling. Hence, we do

the bookkeeping of these positions with help of an auxiliary array for later usage in the

angular-momentum decoupling. The inner loops that complete the definition of the stor-

age scheme run over the coupled angular momenta and isospin quantum numbers of the

J T -coupled matrix elements. We evaluate them in the specific order Jab , J ′ab , J , Tab , T ′ab

and T . We constrain the loop bounds by the simple triangular conditions dictated by the

single-particle quantum numbers, however, here we do not exploit antisymmetry for iden-
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Figure 2.2 – Illustration of the storage scheme of the J T -coupled matrix elements in a matrix
form. For further details and explanations see text. Figure published in [88] and modified to
match notations.

tical single-particle orbitals in order to maintain a fixed stride for the innermost segment

of the three isospin loops. An illustration of the storage scheme in terms of a matrix form

is shown in Figure 2.2. To obtain a specific m-scheme matrix element, at first we jump to

the beginning of the corresponding (ā b̄ c̄ , ā ′b̄ ′c̄ ′)-block in the matrix-element vector with

help of the book-keeping array mentioned above. By evaluating the decoupling loops in

the same sequence as in the storage scheme we can evaluate the decoupling loops as a

linear sweep over the storage vector of the J T -coupled matrix elements with additional

weighting by the appropriate Clebsch-Gordan coefficients as shown in Eq. (2.20). The

three isospin loops are rolled out explicitly for improved performance. In this way, the

intermediate decoupling step relevant in the many-body calculations is accomplished in

a simple and cache-efficient manner. The J T -coupled matrix elements with the storage

scheme described here have already been adopted and proven to be efficient in different

many-body methods for the inclusion of 3N interactions [33, 34, 51, 30, 95, 98, 46]. We note

that we use an analogous scheme for the management of the NN matrix elements, too.

In collaboration with computer scientists we worked towards porting the decoupling

of J T -coupled matrix elements onto graphics processing units (GPUs) to exploit their large

number of cores by using a CUDA implementation [88]. The idea is to send requests for

chunks of m-scheme matrix elements by specifying sets of indices {a ,b ,c ,a ′ ,b ′,c ′} to the

GPU, which computes the requested matrix elements using the algorithm described above

and sends them back to the CPU. In order to accomplish this efficiently, the bookkeeping
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2 Three-Nucleon Force Matrix Elements

Figure 2.3 – Achieved speedup in the decoupling of J T -coupled matrix elements into the m -
scheme by the evaluation on a single GPU relative to the execution on a single CPU using eight
OpenMP threads. The test was performed on a GPU node on the Dirac cluster at NERSC 2, the
GPU consists of 448 parallel CUDA cores and 3 GB memory. For further details see text. (pub-
lished in [88])

array, the cached Clebsch-Gordan coefficients, and the J T -coupled matrix elements are

stored on the accelerator card. Hence, the available memory on the GPU sets the limit for

an efficient application. Each m-scheme matrix element is computed by a separate thread

on the GPU, which can clearly be done independently and is well-suited for parallel exe-

cution. However, the performance is limited by the communication between the GPU and

CPU. A first test of the speedup through the use of one GPU compared to a single CPU

with eight OpenMP threads as function of the chunk size is shown in Figure 2.3 for a spe-

cific test case using a particular range of single-particle indices. The speedup increases as

function of chunk sizes and reaches a factor of ten for chunk sizes of about 105 matrix ele-

ments. These results are promising and are under further investigations. For the first tests

a stand-alone implementation concentrated just on the calculation of m-scheme matrix

elements is used. One of the crucial next steps is the efficient inclusion of the preparation

and retrieval of the chunks of m-scheme matrix elements into the many-body calculation,

which is under investigation at the moment for the Many-Fermion Dynamics for nuclear

structure code, which is a large-scale NCSM code [99, 100, 101]. For further details about

the first GPU implementation we refer the interested reader to Ref. [88].

We end this section with a comment on the implementation of the transformation (2.19).

Besides the already mentioned implementation of the transformation having the T coeffi-

cients in fast memory and evaluating the loops explicitly as efficiently as possible, a closer

look at the transformation formula reveals the possibility to evaluate it in terms of ma-

trix multiplications. Of course, this is not surprising: in spite of all complicated objects

2https://www.nersc.gov
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contained Eq. (2.19), it is nevertheless nothing else than a simple basis transformation. In

matrix form Eq. (2.19) reads

V 3N
J T = 3!

∑

l cm

T⊤(lcm)V
3N

J a cobi T (lcm) . (2.21)

A first implementation in this spirit using multi-threaded BLAS routines to accomplish the

matrix multiplications reveals the opportunity of huge savings of computing time com-

pared to our conventional implementation with the optimized evaluation of the loops in

Eq. (2.19). Test calculations show that this computational scheme allows the calculation of

J T -coupled matrix elements with maximum three-body energy E3max = 14 in one hour on

a standard node, which reduces the computational burden of the production of 3N matrix

elements in the J T -coupled scheme significantly.

2.3 The Normal-Ordered Two-Body Approximation

In the previous subsections we have shown that our realization of the J T -coupled scheme

reduces the memory requirements of 3N matrix elements and facilitates many-body cal-

culations with much larger E3max truncations, which is usually key to provide converged

results. Nevertheless, the explicit inclusion of the 3N interaction into the solution of the

many-body Schrödinger equation still requires the generalization of the many-body frame-

work, which is often a highly non-trivial task. Prime examples are the coupled-cluster

theory with explicit 3N interactions as discussed briefly in Section 4.3 and in detail in

Refs. [96, 45] or the no-core shell model combined with the resonating group method,

which is the focus of Section 11 of this work. Even if the formal extensions are straightfor-

ward, the computational cost typically increases by orders of magnitude due to the explicit

treatment of 3N interactions and, hence, may forbid calculations that are routinely done

at the two-body level. In spite of the benefit from the J T -coupled scheme compared to

the use of m-scheme matrix elements, for large E3max ≥ 16 the memory needs again tend

to become prohibitive as evident from Figure 2.1.

This predicament, namely the need for 3N interactions versus the immense compu-

tational costs, might motivate the development of controlled approximation schemes for

the 3N interaction. Of course, the quantitative assessment of the quality of the approxima-

tion in terms of a benchmark against calculations including the 3N interaction explicitly

is indispensable prior to its application. In the following subsection, we briefly recapitu-

late the basic formalism of normal ordering and highlight how it can be used to deduce a

rigorous and improvable approximation scheme to the 3N interaction. The details about

the practical computation of normal-ordered matrix elements by merging the normal or-

dering with the transformation into the J T -coupled matrix element scheme is the focus

of Section 2.3.2. A comprehensive benchmark of the normal-ordering scheme in terms of

ab-initio calculations of ground-state energies in light and medium-mass nuclei follows in

Section 8 in Part II of this work.
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2 Three-Nucleon Force Matrix Elements

2.3.1 Formalism

Normal ordering with respect to a reference state |Φ0〉 is a well-known tool in quantum

many-body and field theory [102]. For the scope of single-reference normal ordering we

are aiming at in this work, a string of operators in second quantization is said to be in nor-

mal order if all particle creation and hole annihilation operators are to the left of all particle

annihilation and hole creation operators. Here, we refer to the occupied and unoccupied

single-particle states in the reference Slater determinant as hole states and particle states,

respectively. For convenience we assume HO single-particle states in the following, how-

ever, all formulas are valid for arbitrary orthonormal bases, e.g., Hartree-Fock bases. We

denote the quantum numbers of particle states by a ,b , . . ., quantum numbers of hole states

by i , j , . . ., and those of generic states by q ,r, . . .. From this definition follows that the stan-

dard operator expressions given in second quantization, e.g., for the 3N interaction

V̂ 3N =
1

36

∑

pqr s t u

a 〈pqr | V̂ 3N |s t u 〉a â †
p â †

q â †
r â u â t â s , (2.22)

are typically already in normal order with respect to the vacuum as reference state. To cast

such operators into normal order with respect to the reference state |Φ0〉 we can make use

of a variant of Wick’s theorem [102], given by

Â B̂Ĉ . . .= {Â B̂Ĉ . . . } |Φ0〉+
∑

all contractions

{Â B̂Ĉ . . .} |Φ0〉 , (2.23)

where Â B̂Ĉ . . . denote a generic string of operators and {Â B̂Ĉ . . .} |Φ0〉 denotes the same string

in normal order with respect to the reference state |Φ0〉 defined by

{Â B̂Ĉ . . .} |Φ0〉 = sgn (6 )D̂ F̂ Â . . . (2.24)

with sgn(6 ) as signature of the permutation 6 necessary to accomplish the re-ordering

of the operator string. In addition, a so-called contraction is denoted by the bracket con-

necting the two involved operators, see second term of Eq. (2.23). Wick’s theorem for the

special case of two operators yields

Â B̂ = Â B̂ − {Â B̂} |Φ0〉 , (2.25)

and a normal ordered product of operators involving contractions is evaluated as

{Â B̂ . . . F̂ . . . Ĥ . . .} |Φ0〉 = sgn(6 )F̂ Ĥ{Â B̂ . . .} |Φ0〉 , (2.26)

and accordingly for more contractions. Inserting in Eq. (2.25) all possible combinations of

hole-hole, particle-particle and particle-hole operators reveals that only two non-vanishing
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2.3 The Normal-Ordered Two-Body Approximation

contractions remain, namely

î
†

ĵ =δi j and â b̂
†
= δab . (2.27)

This will help to simplify the expressions in the following.

Applying Wick’s theorem (2.23) to the 3N interaction operator (2.22) yields a sum of

four contributions that differ by their number of contractions

ˆV 3N =
1

36

∑

pqr s t u

a 〈pqr | V̂ 3N |s t u 〉a {â †
p â †

q â †
r â u â t â s } |Φ0〉

+
1

36

∑

pqr s t u

a 〈pqr | V̂ 3N |s t u 〉a
∑

single contractions

{â †
p â †

q â †
r â u â t â s } |Φ0〉

+
1

36

∑

pqr s t u

a 〈pqr | V̂ 3N |s t u 〉a
∑

double contractions

{â †
p â †

q â †
r â u â t â s } |Φ0〉

+
1

36

∑

pqr s t u

a 〈pqr | V̂ 3N |s t u 〉a
∑

triple contractions

{â †
p â †

q â †
r â u â t â s } |Φ0〉 . (2.28)

Further evaluation of the contractions using Eq. (2.27) and collecting identical terms leads

to the decomposition

V̂ 3N =
1

36

∑

pqr s t u

a 〈pqr | V̂ 3N |s t u 〉a {â †
p â †

q â †
r â u â t â s } |Φ0〉

+
1

4

∑

i pqr s

a 〈pqi | V̂ 3N |s t i 〉a {â †
p â †

q â t â s } |Φ0〉

+
1

2

∑

i j p s

a 〈pi j | V̂ 3N |s i j 〉a {â †
p â s } |Φ0〉

+
1

6

∑

i j k

a 〈i j k | V̂ 3N |i j k 〉a , (2.29)

where we kept the order of the terms, i.e., the three-body operator originates from the

term without contractions, the two-body operator follows from the contributions with one

contractions, and the one- and zero-body body operators are from the doubly and triply

contracted terms, respectively. The important detail of the contributions at lower parti-

cle ranks is that part of the summations now run over hole states only, which build for a

given reference state a significantly reduced subset of all single-particle states. Now, we

can rewrite the 3N interaction operator as sum of a zero-body (0B), one-body (1B), two-

body (2B) and the residual three-body (3B) part as

V̂ 3N = V̂ 3N
0B + V̂ 3N

1B + V̂ 3N
2B + V̂ 3N

3B . (2.30)

So far, we have obtained an operator identity of the original 3N interaction operator on the
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left-hand side in terms of a sum of operators normal ordered with respect to the reference

state |Φ0〉 on the right-hand side. Evidently, part of the information originally contained

entirely in the three-body operator V̂ 3N has been demoted to lower particle ranks by means

of the normal ordering with help of information about the many-body system under con-

sideration encoded in the reference state. Thus, Eq. (2.30) brings us into the position to

define different approximations of the 3N interaction, namely, the normal-ordered n-body

(NOnB) approximations with n ∈ {0,1,2}, where (n + 1)-body operators are discarded. We

benchmark these different approximations in detail in Section 8, and eventually use the

NO2B approximation in different applications in Section 9.

For both, the benchmark aspects and the applications of the NO2B approximated in-

teractions in many-body calculations we have to convert the truncated normal-ordered

operator

V̂ 3N
NO2B = V̂ 3N

0B + V̂ 3N
1B + V̂ 3N

2B (2.31)

back into vacuum normal order. This is achieved by reversed application of Wick’s theorem

for the operators {â †
p â †

q â t â s } |Φ0〉 and {â †
p â s } |Φ0〉, i.e., using

{â †
p â †

q â t â s } |Φ0〉 = â †
p â †

q â t â s + â †
p â s â †

q â r − â †
p â r â †

q â s − â †
q â s â †

p â r

+ â †
q â r â †

p â s + â †
q â s â †

p â r − â †
q â r â †

p â s , (2.32)

{â †
p â s } |Φ0〉 = â †

p â s − â †
p â s . (2.33)

Finally, we arrive at the normal-ordered 3N interaction operator at the NO2B approxima-

tion converted back in vacuum normal order given by

V̂ 3N
NO2B = v −

1

2

∑

pq

vpq â †
p âq +

1

4

∑

pqr s

vpqr s â †
p â †

q â s â r (2.34)

with the definitions

v =
1

6

∑

i j k

a 〈i j k | V̂ 3N |i j k 〉a (2.35)

vpq =
∑

i j

a 〈pi j | V̂ 3N |qi j 〉a (2.36)

vpqr s =
∑

i

a 〈pqi | V̂ 3N |r s i 〉a . (2.37)

Whenever we perform a many-body calculation using the NO2B approximation we use

the operator (2.34) instead of explicitly including the original 3N interaction. Thus, we are

technically left with a calculation at the two-body interaction level where the only addi-

tional complication is the treatment of the 0B- and 1B-part contributions in Eq. (2.34).
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Obviously, this avoids the extension of the many-body framework to explicit 3N inter-

actions, which was one of the reasons to resort to approximative schemes as motivated

above. Nevertheless, we need to provide matrix elements of the 0B, 1B and 2B operators

in Eq. (2.34) which internally requires the availability of 3N matrix elements. We present a

new technique to efficiently provide 3N matrix elements in NO2B approximation for large

E3max in the following subsection.

2.3.2 Normal-ordering Directly in the JT -Coupled Scheme

The simplest way to produce matrix elements of V̂ 3N
NO2B is the direct use of 3N m-scheme

matrix elements as they are contained in Eqs. (2.35)-(2.37). But storing m-scheme 3N ma-

trix elements becomes prohibitive already at relatively low E3max. This can be overcome by

using the J T -coupled scheme in combination with the on-the-fly decoupling (2.20) during

the calculation of matrix elements of V̂ 3N
NO2B. However, in the following we discuss a more

elegant approach which is the key to obtain normal-ordered 3N matrix elements beyond

E3max = 16. First, we realize that Eqs. (2.35)-(2.37) can be reformulated in terms of J T -

coupled matrix elements. For the derivation we assume a closed-shell nucleus consistent

with the single-reference normal ordering discussed here. As a consequence all single-

particle states of a given j -orbital in the reference state are fully occupied. By expressing

the 3N m-scheme matrix elements in the 0B contribution in terms of matrix elements in

the J T -coupled scheme we obtain

v =
∑

ī j̄ k̄

∑

Ji j

∑

J

∑

mti

∑

mt j

∑

mtk

∑

Ti j MTi j

∑

T ′i j MT ′i j

∑

T MT

×

!
1
2

1
2

mti mt j

3
3
3
3
3

Ti j

MTi j

"!
1
2

1
2

mti mt j

3
3
3
3
3

T ′i j

MT ′i j

⎞

⎠

!

Ti j
1
2

MTi j mtk

3
3
3
3
3

T

MT

"!

T ′i j
1
2

M ′
Ti j

mtk

3
3
3
3
3

T

MT

"

× (2J + 1)a 〈ī j̄ k̄ ; Ji j J ;Ti j T | V̂ 3N |ī j̄ k̄ ; J ′i j J ;T ′i j T 〉a . (2.38)

We note that the Clebsch-Gordan coefficients involving angular momenta have been elim-

inated by their orthogonality relations due to the assumption of closed j -shells. This is not

possible for the isospins in the general case of N ̸=Z nuclei, however their Clebsch-Gordan

coefficients help to collapse the summations with respect to MTi j and MT ′i j
.

We go on with the matrix elements of the 1B operator in Eq. (2.34) which includes the
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matrix elements (2.36) and again introduce J T -coupled matrix elements

〈p |−
1

2

∑

r s

vr s â †
r â s |q 〉=−

1

2
vpq

=−
1

2

∑

ī j̄

∑

Ji j

∑

J

∑

mti

∑

mt j

∑

Ti j MTi j

∑

T ′i j MT ′i j

∑

T MT

×

!
1
2

1
2

mtp mti

3
3
3
3
3

Tp i

MTpi

"!
1
2

1
2

mtp mti

3
3
3
3
3

T ′p i

M ′
Tpi

"!

Tp i
1
2

MTpi mt j

3
3
3
3
3

T

MT

"!

T ′p i
1
2

M ′
Tpi

mt j

3
3
3
3
3

T

MT

"

×
2J + 1

2jp + 1 a 〈p̄ ī j̄ ; Jp i J ;Tp i T | V̂ 3N |q̄ ī j̄ ; J ′p i J ;T ′p i T 〉a . (2.39)

Finally, we come to the matrix elements of the 2B part that we compute with respect to

angular- and isospin-coupled two-body states as

a 〈p̄ q̄ ; Jpq Tpq MTpq |
1

4

∑

t u v w

vt u v w â †
t â †

u â w â v |r̄ s̄ ; Jpq Tpq MTpq 〉a

=
∑

mp

∑

mq

∑

mr

∑

ms

!

jp jq

mp mq

3
3
3
3
3

Jpq

M Jpq

"!

jr js

mr ms

3
3
3
3
3

Jpq

M Jpq

"!
1
2

1
2

mtp mtq

3
3
3
3
3

Tpq

MTpq

"!
1
2

1
2

mtr mts

3
3
3
3
3

Tpq

MTpq

"

×
∑

i

a 〈pqi | V̂ 3N |r s i 〉a

=
∑

J

∑

T

∑

MT

∑

ī

∑

mti

!

Tpq
1
2

MTpq mti

3
3
3
3
3

T

MT

"!

Tpq
1
2

MTpq mti

3
3
3
3
3

T

MT

"

×
2J + 1

2Jpq + 1 a 〈p̄ q̄ ; Jpq Tpq ī ; J T | V̂ 3N |r̄ s̄ ; Jpq Tpq ī ; J T 〉a . (2.40)

Again we stress that further simplifications of the isospin Clebsch-Gordan coefficients are

not possible for N ̸= Z nuclei, and we emphasize that these formulas remain valid also

for Hartree-Fock reference states and Hartree-Fock bases used to compute the matrix ele-

ments (2.38) to (2.40).

Altogether, using Eqs. (2.38)-(2.40) we are able to compute the necessary matrix ele-

ments of the 3N interaction in NO2B approximation directly from the J T -coupled ma-

trix elements. However, as pointed out before it becomes practically challenging to store

the complete set of J T -coupled 3N matrix elements beyond E3max = 16. As evident from

Eqs. (2.38)-(2.40), for a given truncation E3max only a subset of 3N matrix elements is needed

because the summations over ī , j̄ and k̄ run over hole states, i.e., occupied orbitals in the

reference state, only. In order to take full advantage of this we have merged our codes for

the computation of the J T -coupled matrix elements starting from the antisymmetrized

Jacobi matrix elements with the production code of the normal-ordered matrix elements

using Eqs. (2.38)-(2.40). In addition, we exploit the fact that identical J T -coupled 3N ma-

trix elements contribute to normal-ordered matrix elements of different reference states,

e.g., of different nuclei, we start from. Therefore, we apply the following modus operandi:

first we define a set of nuclei or, more generally, reference states we want to investigate.

34



2.3 The Normal-Ordered Two-Body Approximation

Next, we identify all J T -coupled matrix elements that contribute to the normal-ordered

matrix elements for all reference states under investigation, but without actually comput-

ing them during this process. In the next step we loop through the vector of J T -coupled

3N matrix elements and precompute the subset we have identified before. In this way

J T -coupled matrix elements contributing to normal-ordered matrix elements of different

reference states are computed only once. Finally, we compute the normal-ordered matrix

elements according to Eqs. (2.38)-(2.40) using the precached J T -coupled matrix elements.

To make each of the steps most efficient we use an OpenMP parallelization at each stage

of the calculation. In practice an additional complication arises if J T -coupled matrix ele-

ments that differ from our standard storage scheme by the ordering of the single-particle

orbitals are requested, since we choose a particular order to exploit antisymmetry. In these

cases additional angular-momentum recouplings involving 6j -symbols may be necessary

which, however, can be done very efficiently. The details about these recouplings can be

found in Ref. [96]. Finally, another look at Figure 2.1 reveals that the T -coefficients, i.e.,

the transformation coefficients between the antisymmetrized HO Jacobi and J T -coupled

scheme states, which we precache during the calculation of the 3N matrix elements need

the same amount of memory as the J T -coupled 3N matrix elements themselves. Thus,

the available memory may again become critical. The key to overcome is at the heart of

our storage scheme of the 3N matrix elements, namely the existence of the (ā b̄ c̄ , ā ′b̄ ′c̄ ′)-

blocks: for the computation of a given J T -coupled matrix elements only T -coefficients

involving the specific quantum numbers (ā b̄ c̄ ) and (ā ′b̄ ′c̄ ′) enter. Therefore, we split the

calculation of normal-ordered matrix elements into different runs, each covering the con-

tributions from different sets of (ā b̄ c̄ , ā ′b̄ ′c̄ ′)-blocks of J T -coupled 3N matrix elements.

In a post-processing step we accumulate the contributions of all sets. In this way, we

can decrease the memory needs per run simply by decreasing the number considered

(ā b̄ c̄ , ā ′b̄ ′c̄ ′)-blocks per run. Therefore, we can easily access normal-ordered 3N matrix

elements at the NO2B approximation level for truncations E3max ≥ 16 in an efficient man-

ner while avoiding severe memory bottlenecks. The production of NO2B matrix-elements

sets with large E3max is limited only by the available computing time. However, one should

always check how far this E3max limit needs to be extended in practice, because other trun-

cations of the many-body method may have artificial effects on the convergence pattern

with respect to E3max. We will discuss this point in more detail in Section 9, where we

present ab-initio calculations for heavy nuclei.
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SECTION 3

The Similarity Renormalization Group

With the advent of nuclear forces rooted in QCD via chiral effective field theory and

the technology to efficiently process the NN and 3N matrix elements, we would like to in-

clude those forces directly into many-body methods to solve the Schrödinger equation.

However, nuclear interactions induce strong correlations in the exact many-body eigen-

states, originating from the strong short-range repulsion at small inter-nucleon distances,

which can be accounted for in huge many-body model spaces only. In comparison to

traditional, more phenomenological NN potentials such as, e.g., the Argonne V18 poten-

tial [8], the chiral interactions already have a softer character due to the momentum-space

cutoff. Nevertheless it is hardly feasible to converge, for instance, NCSM-type calculations

beyond the very light nuclei, as we will also see in Part II of this work. Therefore, we have

to insert an intermediate step before we can actually apply the chiral nuclear forces, that

is, we need to soften the initial nuclear forces and, thus, tame the strong short-range cor-

relations. This will lead to improved convergence properties in the subsequent solution of

the Hamiltonian eigenvalue problem.

In this work, we concentrate on the Similarity Renormalization Group (SRG)[52, 103,

104, 105, 106, 107] as tool to soften the initial interactions. As we will see, the method

yields a softened nuclear interaction independent of the many-body model space or nu-

cleus under consideration, i.e., the resulting interactions remain universal and may enter

identically in various many-body methods. Furthermore, the inclusion of 3N interactions

into the SRG framework can be achieved in a consistent way. In the first subsection we

introduce the general formalism of the SRG, and consider the treatment of 3N interactions

in the formalism in more detail in Section 3.2. Finally, we discuss the frequency conver-

sion of HO matrix elements, which can be used, e.g., to convert SRG-transformed matrix

elements to a lower HO frequency than the one used for the transformation. In practice

this is relevant to cure shortcomings of the SRG model space.
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3 The Similarity Renormalization Group

3.1 General Formalism

The basic concepts of the SRG are based on a unitary transformation of the Hamiltonian

Ĥ = Ĥα=0, given by

Ĥα = Û †
α Ĥα=0 Ûα , (3.1)

where α is a continuous parameter the unitary-transformation operator Ûα depends on.

The transformed Hamiltonian is denoted by Ĥα. By differentiating the transformed Hamil-

tonian with respect to the flow parameter and using Û †
αÛα = 1̂ we obtain the renormaliza-

tion group flow equation

d

dα
Ĥα = [η̂α,Ĥα] , (3.2)

where we have introduced a commutator on the right-hand side and defined the generator

η̂α = [−Û †
α

d

dα
Ûα,Ĥα] (3.3)

that explicitly depends on the parameter α also referred to as flow parameter in the follow-

ing. Following exactly the same steps one obtains the flow equations for all other observ-

ables Ô of interest

Ôα = Û †
αÔα=0 Ûα ⇒

d

dα
Ôα = [η̂α,Ôα] . (3.4)

Thus, we have obtained first-order differential equations for the evolved Hamiltonian and

observables with the initial conditions Ĥα=0 = Ĥ and Ôα=0 = Ô. Additionally, we have the

differential equation

d

dα
Ûα =−Ûαη̂α (3.5)

with the initial condition Ûα=0 = 1̂. For the applications in this work, we avoid the deter-

mination of the explicit form of the unitary operator Ûα, but instead we aim at the direct

solution of the flow equation (3.2) for the evolved Hamiltonian. If one is interested in the

consistent evolution of different operators Ô [108, 109], one needs to solve Eqs. (3.2) and

(3.4) simultaneously, because the generator η̂α typically depends on the evolved Hamilto-

nian Ĥα itself, as we will see in the following. In this case it may be more convenient to

solve Eq. (3.5) for Ûα and to apply it explicitly according to Eq. (3.4).

Evidently, the physics behind the SRG transformation is governed by the generator η̂α
which fully determines the evolved Hamiltonian and operators. The only constraint for

the choice of an appropriate generator is that is needs to be antihermitian, which follows

from

η̂α+ η̂
†
α =−

d

dα

$

ÛαÛ †
α

%

=
d

dα
1̂= 0. (3.6)
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3.1 General Formalism

Hence, one is very flexible to tune the generator. This freedom has been exploited and led

to studies of various generators in the literature [110, 111, 112]. The generator we adopt in

the following was proposed by Szpigel and Perry in Ref. [104] and was first applied in the

context of nuclear theory by Bogner et al. in Ref. [52]. It is defined as the commutator of

the intrinsic kinetic energy T̂int = T̂ − T̂cm with the transformed Hamiltonian

η̂α =
:2µ

ħh2

;2
[T̂int,Ĥα] , (3.7)

with the reduced nucleon mass µ = mN

2 and a prefactor that gives the flow-parameter the

unit [length4]. From this definition it follows that a possible fix point of the SRG flow is

defined by a transformed Hamiltonian that commutes with the intrinsic kinetic energy,

because in this case the generator vanishes. If we think about the flow equation repre-

sented in the relative momentum eigenstates, it follows that the Hamiltonian matrix is

transformed into a band-diagonal form if it approaches this fix point. This reflects the

behavior we are aiming at, namely the decoupling of high- and low-momentum or en-

ergy components of the model space, because this coupling in the initial Hamiltonian has

its origin in the strong correlations generated by the short-range repulsion. Stated dif-

ferently, the generator (3.7) defines a continuous unitary transformation that tames the

short-range correlations and consequently leads to improved convergence behavior with

respect to the model-space size in many-body calculations. We show that this is indeed

the case during the discussion in the next subsection and throughout Part II. Here, we

stress that the choice of the generator is disconnected from the investigated nuclei or the

many-body method, it is based on the general idea to decouple high- and low-momentum

degrees of freedom only. Clearly, this is of practical importance since we can use the same

interaction in different many-body approaches allowing, e.g., for cross-checks based on

the identical inputs. This is an advantage compared to, e.g., the Okubo-Lee-Suzuki (OLS)

renormalization scheme [113, 114], which is so far the only other method capable of ex-

plicitly including 3N interactions, see, e.g., Ref. [77].

So far, all equations and derivations we have discussed are operator relations valid in

an A-body Hilbert space or a Fock space and, thus, are independent of the basis. A pe-

culiarity is that the SRG flow induces irreducible higher-order many-body contributions

to the evolved operators, which is also known from other renormalization schemes, e.g.,

the OLS method or the unitary correlation operator method (UCOM) [115, 103]. To un-

derstand this in the context of the SRG transformation we can assume, for instance, an

initial irreducible two-body interaction, e.g., written in second quantization. Plugging this

into the commutators on the right-hand side of the flow equation (3.2) reveals that an in-

finitesimal step in the flow parameter induces irreducible operator contributions beyond

the two-body level. Hence, at any finite value of α irreducible contributions to all particle

numbers are generated and the evolved Hamiltonian can be decomposed using a cluster

expansion [115, 103]

Ĥα = Ĥ [1]α + Ĥ [2]α + Ĥ [3]α + Ĥ [4]α + . . . (3.8)
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3 The Similarity Renormalization Group

with the irreducible k -body operators Ĥ
[k ]
α . However, in practice it is not feasible to solve

the flow equation and account for irreducible A-body interactions as formally required.

We have to truncate the cluster expansion at the k -body level with k < A. We discuss why

this is necessary and how it is achieved below. Formally, this truncation may pose a po-

tential problem: the unitarity of the transformation is violated. As long as no induced

contributions are omitted the eigenvalues of the Hamiltonian in A-body space are invari-

ant under SRG transformations. But due to the truncation of (3.8) the eigenvalues are not

necessarily invariant and instead depend on the SRG flow parameter if the neglected n-

body operators with n > k yield relevant contributions. As a consequence, we can study

the dependence of eigenvalues of the transformed Hamiltonians on systematic variations

of the SRG flow parameter as a diagnostic tool to assess the significance of the induced but

discarded multi-nucleon forces. We will come back to this in Part II and in particular in

Section 6.

For the solution of the flow equation (3.2) for the evolved Hamiltonian we represent the

operator equation (3.2) in a convenient basis in k -body space. Obviously, the k -body basis

is not capable to represent n-body operators with n > k , i.e., these induced n-body contri-

butions cannot be extracted. Hence, the choice of a k -body basis implies the truncation

of the cluster expansion at the k -body level. The matrix elements after the SRG evolution

contain all operator contributions up to the k -body level. However, to maintain a universal

interaction for later applications in many-body calculations it is necessary to separate the

contributions of each individual k -body operator in terms of matrix elements. This can

be accomplished by successive subtraction of the lower-body contributions represented

in k -body space from the k -body matrix elements resulting from the SRG evolution, i.e.,

a 〈α1 . . .αk |Ĥ [k ]α |β1 . . .βk 〉a = a 〈α1 . . .αk |Ĥα|β1 . . .βk 〉a −
k−1∑

i=1
a 〈α1 . . .αk |Ĥ [i ]α |β1 . . .βk 〉a . (3.9)

The SRG evolution in two-body space, i.e., neglecting all induced three- and multi-

nucleon contributions, has become a standard tool to soften the nuclear interactions over

the past years [52, 103, 116], therefore, we skip its discussion here. Instead, throughout

this work, we investigate the SRG evolution in three-body space, i.e., we truncate the clus-

ter expansion at the 3N interaction level and thus can include consistently the induced and

initial 3N contributions and have the opportunity to distinguish their effects in many-body

calculations later on. We discuss the details of the SRG evolution in three-body space in

the next subsection. In this case, the subtraction procedure shown in Eq. (3.9) simplifies to

a single step, namely the subtraction of the evolved irreducible NN interaction represented

in three-body space from the SRG transformed NN+3N Hamiltonian. In addition, we note

that first attempts to account for SRG-induced four-body contributions are currently on-

going and first results are presented in Refs. [117, 118] including a detailed analysis of the

subtraction procedure (3.9) which is more involved in the four-body case.
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3.2 Consistent Evolution of NN+3N Forces in Three-Body Space

3.2 Consistent Evolution of NN+3N Forces in Three-Body Space

As indicated already above, the solution of the SRG flow equation is de facto accomplished

using a basis representation. We may choose any basis that is computationally convenient.

Our initial Hamiltonian consists of the intrinsic kinetic energy, a NN interaction V̂ NN and

a 3N interaction V̂ 3N

Ĥα=0 = T̂int+ V̂ NN+ V̂ 3N . (3.10)

For consistency it is required to include also the 3N interaction in the evolution and to

account for the SRG-induced 3N contributions. Accordingly, we need to perform the SRG

evolution using a convenient 3N basis. Remembering our discussions in Section 2, it is

obvious that the antisymmetrized HO Jacobi basis states |E12i J12T12〉a are the most conve-

nient set. Thus, we represent the flow equation in this basis by inserting corresponding

identities on the right-hand side of Eq. (3.2) and obtain

d

dα
〈E12i J π12T12|Ĥα |E

′
12i ′ J π12T12〉=

:2µ2

ħh2

;2
E ′′12≤ESRG( J12 )∑

E ′′12i ′′

E ′′′12≤ESRG ( J12 )∑

E ′′′12i ′′′

<

(3.11)

〈E12i J12T12| T̂int |E
′′
12i ′′ J12T12〉〈E ′′12i ′′ J12T12|Ĥα |E

′′′
12i ′′′ J12T12〉〈E ′′′12i ′′′ J12T12|Ĥα |E

′
12i ′ J12T12〉

−2〈E12i J12T12|Ĥα |E
′′
12i ′′ J12T12〉〈E ′′12i ′′ J12T12| T̂int |E

′′′
12i ′′′ J12T12〉〈E ′′′12i ′′′ J12T12|Ĥα |E

′
12i ′ J12T12〉

+〈E12i J12T12|Ĥα |E
′′
12i ′′ J12T12〉〈E ′′12i ′′ J12T12|Ĥα |E

′′′
12i ′′′ J12T12〉〈E ′′′12i ′′′ J12T12| T̂int |E

′
12i ′ J12T12〉

=

.

We exploit the fact that the Hamiltonian and the generator do not connect Jacobi basis

states with different quantum numbers J π12 and T12. Thus, the evolution equation can be

solved independently for each channel characterized by (J π12T12). For each channel we

have to solve a set of coupled first-order differential equations for the matrix elements

a 〈E12i J π12T12|Ĥα |E ′12i ′ J π12T12〉a . An important detail in Eq. (3.11) is the truncation of the for-

mally infinite sums over the antisymmetrized HO Jacobi states by defining a maximum

energy quantum number ESRG(J12) that we choose to depend on the total relative angular

momentum J12. We typically use a larger SRG model space for small J12, which are ex-

pected to contain the most important contributions, and use a somewhat smaller model

space for larger J12. We refer to this truncated space as SRG model space. Of course the

convergence of this truncation needs to be checked explicitly, which we do in ab-initio

many-body calculations of light to medium-mass nuclei in Section 5 and for medium-

mass to heavy nuclei in Section 9.

Technically, we use a standard Runge-Kutta solver with adaptive step-size control to

evolve the Hamiltonian up to a certain flow-parameter α by means of Eq. (3.11). The adap-

tive step size is crucial to resolve the significant changes at the beginning of the flow with

high precision, while it is adequate to increase the step size for larger values of α. The SRG

transformation in three-body space can still be performed very efficiently due to the fact

that the right-hand side of the flow equation can be expressed by matrix multiplications

which can be implemented using cache-optimized, parallelized BLAS routines [119]. For
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Figure 3.1 – Matrix plot of the absolute values of the intrinsic kinetic-energy matrix elements

a 〈E ′12i ′ J12T12| T̂int |E12i J12T12〉a that build a fix point of the SRG flow. The used HO frequency is
ħhΩ= 20MeV.

instance, the triton-channel (J π12T ) = ( 12
+ 1

2 )matrix elements can be transformed for a typi-

cal value of α= 0.08fm4 with the typical model model-space truncation ESRG(
1
2 ) = 40 in less

than one hour on a standard compute node.

Having the SRG transformation in three-body space under control, we are in the posi-

tion to define the following three types of Hamiltonians emerging from different trunca-

tions of the SRG transformation: we refer to the NN+3N-full Hamiltonian when the ini-

tial Hamiltonian contains NN and 3N interactions and the SRG transformation is done

in a three-body basis. Thus, the 3N contributions of this Hamiltonian stem from SRG-

induced contributions and the transformed initial 3N interaction. Additionally, we define

the NN+3N-induced Hamiltonian, where the initial Hamiltonian contains an NN interac-

tion only, but the SRG transformation is done in three-body space as shown in Eq. (3.11).

Accordingly, this Hamiltonian accounts for the induced 3N contributions originating from

the initial NN interaction. These contributions are neglected in the NN-only Hamiltonian

which results from an SRG transformation in two-body space and the initial Hamiltonian

contains a NN force only. In all three Hamiltonians four- and multi-nucleon contributions

are neglected and can, thus, be assessed only indirectly via the sensitivity of observables,

e.g., the energy eigenvalues, to variations of the flow parameter α.

To confirm that the SRG transformation does as intended and behaves as described

in the formal part above, it is crucial to investigate a number of cross-checks. Therefore,

we show in Figure 3.1 a matrix plot of the absolute value of matrix elements of the intrin-

sic kinetic energy which is the fix point of the SRG flow. The color code is defined in the

legend where absolute values larger than 1 MeV are represented by white colors. It can

be seen that non-vanishing matrix elements exist only on the diagonal and in super- and

sub-diagonal (E12, E ′12) blocks. This means, we expect the transformed Hamilton matrix
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Figure 3.2 – Upper panels: Matrix plots of the absolute values of the SRG transformed interaction
matrix elements a 〈E ′12i ′ J12T12| Ĥα− T̂int |E12i J12T12〉a for the triton channel ( J πT = 1

2

+ 1
2
) up to en-

ergy quantum number E12 = 32 for the NN+3N-full Hamiltonian for increasing SRG flow param-
eter α. Lower panels: Convergence of the triton ground-state energy as function of the NCSM
model space for the flow parameter corresponding to the upper matrix plot, respectively. (pub-
lished in [44])
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3 The Similarity Renormalization Group

to converge towards this form with increasing flow parameter. To confirm this, we show

in Figure 3.2 matrix plots of the evolved interactions for different flow parameters in the

triton channel, i.e., (J π12T12) = (
1
2
+ 1

2 ) using the same color code as before. Panel (a) shows

the bare interaction, i.e., α = 0fm4, where we can identify the strong coupling between

low- and high-lying energetic states originating from the short-range repulsion. One ma-

jor goal of the SRG is to decouple these low and high energy (or similarly momentum)

regimes by suppressing far off-diagonal matrix elements. From Figure 3.2 it is evident that

this is indeed accomplished since the matrix evolves into a more band-diagonal form with

increasing flow parameter. As argued above, a connected objective of the SRG transforma-

tion is to obtain an improved convergence behavior with respect to model-space sizes of

the subsequent many-body calculations. To investigate this we show the corresponding

ground-state energies of the triton as function of the model-space size of NCSM calcula-

tions as lower panels in Figure 3.2. We find a dramatic improvement of the model-space

convergence with increasing flow parameter compared to the bare interaction. Whereas

for the bare interaction a Nmax = 28 model space is necessary to reach sufficient conver-

gence, for the α= 0.08fm4 Hamiltonian we need only Nmax = 12. This improvement on the

convergence is key for the results we study in Part II in various many-body methods and

reflects the taming of the strong correlations in the exact many-body eigenstates. Further-

more, the converged energies are identical for all flow parameters confirming the unitarity

of the transformation, which is exact here, since all induced interactions relevant for the

triton are retained due to the SRG evolution in the three-body space. This may change

when we use these SRG transformed interactions in calculations for heavier nuclei as we

discuss in detail in Section 6.

3.3 The Frequency-Conversion Technique

In this section we deal with a rather technical but important detail when performing the

SRG transformation in the HO basis with a fixed frequency Ω. For variations of the HO

frequency in the many-body calculations the SRG transformation is done for each fre-

quency separately, which may seem as a disadvantage of performing the SRG transforma-

tion in HO space instead of using, e.g., a momentum-space representation [103, 120] and

transforming the SRG transformed matrix elements into the HO basis with convenient fre-

quency afterwards. Another, more formal argument, which indicates that using an inap-

propriate HO frequency during the SRG evolution might be problematic, is that the energy

range covered by the SRG model space is given by the product ESRG(J12) ·ħhΩ, i.e., for a given

truncation ESRG(J12) the energy range is smaller for low frequencies Ω. If this is the case, the

subsequent many-body calculations may exhibit an artificial frequency dependence due

to an insufficient coverage of the relevant energies or momenta of the interaction.

However, there is a simple workaround that avoids this complication: we perform the

SRG evolution for a sufficiently large parent frequency Ω̃ that guarantees the proper rep-

resentation of the Hamiltonian. Afterwards, we convert the matrix elements with respect

to the parent frequency ΩSRG into matrix elements with the targeted frequency Ω used in
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the many-body calculation. This can be accomplished by means of a basis transformation

for which the overlaps of two antisymmetrized HO Jacobi basis states are necessary. These

are given by

〈E12i J π12T12|E ′12i ′ J π12T12〉

=
∑

N1N2

∑

Ñ1Ñ2

∑

α

δE12,2N1+L 1+2N2+L 2δẼ12,2Ñ1+L 1+2Ñ2+L 2
C i

N1N2α
C ĩ

Ñ1Ñ2α

ˆ

dπ1π
2
1RN1L 1(π1)R̃Ñ1L 1

(π1)

ˆ

dπ2π
2
2RN2L 2(π2)R̃Ñ2L 2

(π2) , (3.12)

where the radial HO wave functions corresponding to the parent frequency are denoted

by R̃Ñi L i
and those with respect to the target frequency by RNi L i . In addition, the C i

N1N2α
are

the CFPs as defined in Eq. (2.7).

Of course, also this transformation can be performed only within a finite model space

and we use a truncation consistent with the SRG model space. However, due to the fact

that both the SRG-transformed Hamiltonian matrix and the transformation matrices given

by the overlaps (3.12) are band-diagonal, only matrix elements from limited energy regions

are mixed. Accordingly, we find the 3N matrix elements which enter the subsequent many-

body calculations up to a given E3max < ESRG(J12) in practice not affected by this truncation,

since E3max is usually much smaller than the limits for the energy quantum numbers used

in the SRG transformation.

We come back to this frequency-conversion technique in Section 5, where we also test

different SRG model spaces. Further details on this topic can also be found in Refs. [44,

118].
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INTRODUCTION TO PART II

The inclusion of chiral 3N interactions into ab-initio nuclear structure calculations is

vital for predictions of nuclear properties and to confront chiral NN+3N Hamiltonians with

the wealth of experimental data. Over the past five years ab-initio nuclear theory with

chiral 3N interactions has seen significant progress in the domain of light nuclei but also

for the medium-mass regime, for which a number of new nuclear structure approaches

have emerged. The inclusion of explicit 3N interactions often requires formal extensions

and additionally the computational cost is significantly increased. Therefore, also approx-

imate treatments of the 3N interactions are of importance, in particular in the medium

mass regime. The discussion in the second part of this work builds on the SRG-evolved

chiral NN+3N Hamiltonians and include them in different contexts in ab-initio calcula-

tions throughout the p-shell for ground states and nuclear spectra, and for binding ener-

gies up to the heavy-mass regime. We use different types of SRG-evolved Hamiltonians to

allow for the discussion of effects of SRG-induced 3N interactions and of effects caused by

the initial chiral 3N interactions.

We start with the description of the ab-initio nuclear structure methods applied through-

out this part with emphasis on their extension to include 3N interactions. This includes

the discussion of the no-core shell model (NCSM) and its importance truncated exten-

sion (IT-NCSM) as well as coupled-cluster (CC) theory for ground-state energies. Note

that another promising approach, namely Padé-resumed degenerate perturbation theory

at high-orders, is discussed in Appendix A.

In Section 5 we investigate the consequences of the finite HO model space that is used

during the SRG transformation for ground-state energies and excitation spectra. This is

necessary to exclude for the remaining studies artificial effects from the model-space trun-

cations used during the SRG transformation.

In Section 6, we apply the SRG-evolved chiral NN+3N interactions in ab-initio studies

throughout the p-shell for the discussion of 3N-force effects on binding energies and nu-

clear spectra. We encounter significant effects of SRG-induced multi-nucleon interactions

and discuss a possibility to circumvent these.

In Section 7 we study excitation spectra with 3N interactions and perform a first sen-

sitivity analysis in the 12C and 10B excitation spectra with respect to uncertainties of the

chiral Hamiltonian encoded by variations of the low-energy constants or the cutoff mo-

mentum of the chiral 3N interaction.

Then, we validate the normal-ordered two-body approximation introduced in Sec-

tion 2.3 by several benchmark calculations in the p-shell but also for selected closed-shell

medium-mass nuclei up to 56Ni. The excellent quality of this approximation gives con-
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fidence in ab-initio predictions of ground-state energies also for heavy-mass nuclei. We

present first ab-initio studies for the even oxygen isotopes including the neutron-rich iso-

topes at the neutron drip line using the IT-NCSM and ab-initio calculations for selected

closed-shell nuclei up to 132Sn using the coupled-cluster approach in Section 9. For the

latter we pay special attention to a careful analysis of the uncertainties and discuss how

most of them can be eliminated.
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SECTION 4

Many-Body Methods and their
Extension to 3N Interactions

Before starting the investigation of the effects of 3N interactions in nuclei throughout

the light-, medium-, and also heavy-mass regime, we briefly introduce different ab-initio

nuclear structure methods which we apply in the following sections. In particular, we em-

phasize for each method how and at what level of complication the generalization to an ex-

plicit inclusion of 3N interactions is realized. We start with the no-core shell model, which

is a standard tool for the ’exact’ solution of the Schrödinger equation by means of convert-

ing it into a large-scale matrix-eigenvalue problem [121]. From the eigenvectors one can

compute any observable of interest. The applicability of this approach is limited by the

dimension of the many-body matrix. In Section 4.2, we discuss the importance-truncated

no-core shell model which also aims at the solution of the matrix-eigenvalue problem of

the Hamiltonian, but using an a priori importance measure of the individual many-body

basis states. The strategy is to reduce the model-space dimension from the outset by ex-

cluding basis states that are assumed to be less relevant. We will see that this extends the

applicability compared to the conventional no-core shell model in terms of model-space

size and nucleon number. In Section 4.3 we discuss the generalities of coupled-cluster the-

ory with focus on the coupled cluster with singly- and doubly-excited clusters, and men-

tion briefly triples corrections. This approach has been developed further in the nuclear

physics context over the recent years [97], and is particularly successful for nuclei with

closed sub-shells. Instead of a large-scale matrix eigenvalue problem, one needs to solve a

set of coupled nonlinear so-called amplitude equations, whose number scales more gently

compared to the above mentioned matrix dimension. In this work we apply the coupled-

cluster framework for studies of ground-state energies for medium-mass and heavy nu-

clei. Finally, we discuss the possibility to extract ground- and excited-state energies from

high-order degenerate many-body perturbation theory in combination with Padé approx-

imants that yields excellent agreement with results from the exact no-core shell model.

However, so far we did not apply 3N interactions in this approach and, therefore, present
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4 Many-Body Methods and their Extension to 3N Interactions

Hamiltonian included interactions

NN-only
SRG-transformed chiral NN interaction
no 3N interaction

NN+3N-induced
SRG-transformed chiral NN
+ SRG-induced 3N interactions

NN+3N-full
SRG-transformed chiral NN and 3N
+ SRG-induced 3N interactions

Table 4.1 – Definition of the different types of Hamiltonians used throughout Parts II and III. For
further details see Section 3.

it in Appendix A.

The nuclear Hamiltonian used in these methods and during the rest of Part II of this

work has the general form

Ĥ = T̂int+ V̂ NN+ V̂ 3N , (4.1)

where T̂int = T̂ − T̂cm is the intrinsic kinetic energy operator, where T̂cm denotes the center-

of-mass kinetic energy. For the NN interaction we typically adopt the SRG-evolved chiral

N3LO potential by Entem and Machleidt as described in Section 1.1. If we conduct a cal-

culation at the NN-only level, the V̂ 3N term in the Hamiltonian is not present. For calcu-

lations with the NN+3N-induced or NN+3N-full Hamiltonian, the term V̂ 3N corresponds

to the SRG-induced 3N interaction or the SRG-induced plus SRG-transformed initial chi-

ral 3N interaction, respectively. For later reference we summarize the different types of

Hamiltonians that result after the SRG transformation in Table 4.1.

4.1 The No-Core Shell Model

The no-core shell model (NCSM) is an established and powerful ab-initio method aiming

at the exact solution of the time-independent Schrödinger equation for a few energeti-

cally low-lying eigenstates [121, 41]. The method is based upon representing the A-body

Hamilton operator eigenvalue problem Ĥ |Ψν 〉= Eν |Ψν 〉, with energy eigenvalue Eν and cor-

responding eigenstate |Ψν 〉, in an A-body model space$ spanned by harmonic oscillator

(HO) eigenstates { |Φi 〉}. Moreover, ν represents a collective index summarizing the good

quantum numbers total angular momentum I , its projection M I , parity π, and of course

the energy eigenvalue Eν , i.e., ν = {Eν I πM I }.
Multiplication of the Schrödinger equation from the left by a basis state 〈Φi | we obtain

the matrix-eigenvalue problem of the Hamiltonian matrix

⎛

⎜
⎜
⎜
⎝

H11 H12 · · ·
H21 H22 · · ·

...
...

...

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

C
(ν )
1

C
(ν )
2
...

⎞

⎟
⎟
⎟
⎠

= Eν

⎛

⎜
⎜
⎜
⎝

C
(ν )
1

C
(ν )
2
...

⎞

⎟
⎟
⎟
⎠

, (4.2)
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4.1 The No-Core Shell Model

with Hi j = 〈Φi |Ĥ |Φj 〉 and the C
(ν )
i are the expansion coefficients of the eigenstate in terms

of the A-body HO basis states given by

|Ψν 〉=
∑

i
|φi 〉∈$

|Φi 〉〈Φi |Ψν 〉=
∑

i
|φi 〉∈$

C
(ν )
i |Φi 〉 . (4.3)

Of course, in practice the model space needs to be truncated at a manageable finite size,

which determines the number of unknown coefficients C
(ν )
i and the dimension of the ma-

trix in Eq. (4.2). A defining element of the NCSM is its model-space truncation allow-

ing only HO basis states |Φi 〉 whose excitation energy is at most NmaxħhΩ above the HO

minimum-energy configuration. We illustrate this in Figure 4.1 for 12C. Practical calcula-

tions are done for a series of model spaces with increasing Nmax and the convergence of the

investigated observables with respect to this model-space truncation parameter is stud-

ied. Frequently, convergence cannot be reached due to computational limitations, and

various extrapolation techniques are applied to obtain results for infinite model space,

i.e., Nmax → ∞. In case of absolute energies one benefits from the fact that the NCSM

obeys the Ritz variational principle, and typically decreasing exponentials are chosen for

the extrapolations [122, 123, 124, 44]. The variational character is maintained also when

SRG transformed interactions are used, in contrast to Hamiltonians obtained from, e.g.,

Okubo-Lee-Suzuki transformations [114, 113]. Another advantage of the NCSM is its free-

dom to formulate the HO basis states |Φi 〉 either based on single-particle coordinates in

terms of Slater determinants or using antisymmetrized Jacobi states. The latter are partic-

ularly suited to describe translational-invariant systems such as nuclei, because they sep-

arate the center-of-mass degree of freedom from the outset and render spurious center-

of-mass contaminations impossible. We have used this variant already in Section 3.2 to

obtain the triton ground-state energies shown in Figure 3.2. A crucial part is the antisym-

metrization of the Jacobi basis states accomplished by diagonalizing the A-body antisym-

metrization operator in a model space of non-antisymmetrized Jacobi states [79]. Then,

eigenvectors with eigenvalue 1 define the antisymmetrized states as expansion in the non-

antisymmetrized Jacobi states. We have encountered this procedure for the specific case

of three-nucleon states before in the transformation of 3N matrix elements in Section 2.

However, the setup of the matrix representation of the antisymmetrizer and its full diago-

nalization becomes computationally demanding with increasing nucleon number. Hence,

the NCSM with antisymmetrized Jacobi basis states is usually not applied beyond nuclei

with A = 5 [79]. Instead, one resorts to the second, equivalent formulation employing

many-body Slater determinant (SD) states of l s -coupled HO single-particle states. In this

case the antisymmetrization is trivially accomplished explicitly by the antisymmetrizer.

The unique properties of the HO together with the Nmax-truncation scheme generate the

advantage that the obtained eigenstates can be written as direct product of the intrinsic

|Ψν ,int〉 and the center-of-mass |Ψν ,cm〉 parts of the state, i.e.,

|Ψν 〉= |Ψν ,int〉⊗ |Ψν ,cm〉 (4.4)
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(ei − e0i) ≤ Nmax

Figure 4.1 – Illustration of the Nmax-truncation scheme exemplarily for 12C. The red and blue dots
represent respectively the occupied proton and neutron single-particle states which form the
unperturbed HO Slater determinant. Their energy quantum numbers are denoted by e0i , quan-
tum numbers of unoccupied state by ei . The dashed lines indicate the single-particle energy
shells. The NCSM model space includes all possible Slater determinants with excitation energy
up to NmaxħhΩ. All nucleons may contribute to the excitation energy — there exists no core of
inert nucleons.

holds for any value of Nmax. We stress that this is not the case for other single-particle

bases or different model-space truncation schemes. Property (4.4) is important to guaran-

tee a proper description of the intrinsic states and observables of nuclei, without center-

of-mass contaminations. In practice one uses the so-called Lawson method [125] to avoid

solutions with excitations of the center-of-mass part by adding to the intrinsic Hamilto-

nian Ĥint a HO Hamiltonian Ĥcm in terms of the center-of-mass position ξ⃗0 and momen-

tum π⃗0 with additional energy shift leading to vanishing zero-point energy, i.e.,

Ĥcm =
1

2m A
ˆ⃗π2

0+
m AΩ2

2
ˆ⃗ξ2

0 −
3

2
ħhΩ . (4.5)

In this way one can avoid redundant states that differ only by their center-of-mass part,

which we are not interested in for the description of the intrinsic properties of nuclei. In all

calculations the Hamiltonian is replaced by Ĥβ = Ĥint +β Ĥcm. The parameter β is chosen

such that no states with non-zero center-of-mass energies are encountered when solving

the matrix eigenvalue problem for a set of targeted low-energy eigenstates.

A convenient property of the NCSM is that the inclusion of 3N interactions into its gen-

eral framework is straightforward and requires no additional formal developments. This is

due to the fact that the whole approach is formulated in terms of A-body states. The matrix

elements of the 3N interaction (and also of the NN interaction) enter only during the setup

of the A-body Hamilton matrix, i.e., when computing the Hamiltonian matrix elements

Hi j . The inclusion of 3N interactions during the evaluation of such matrix elements with

respect to SDs can be achieved easily, e.g., using Slater-Condon rules [126, 127]. Neverthe-

less, pioneering NCSM calculations with 3N interactions were particularly demanding, be-

cause they stored in memory the precomputed set of 3N matrix elements in the m-scheme
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4.2 The Importance Truncated No-Core Shell Model

[78, 91, 90, 128, 89]. This implies a severe limitation to small model spaces due to the vast

memory requirements of the 3N matrix elements discussed in Section 2.2.3. However, the

benefit from our development of the J T -coupled 3N matrix-element scheme in combina-

tion with the efficient on-the-fly decoupling leads to a major breakthrough in this respect

and, thus, allows to proceed to larger model spaces. Consequently, our scheme has been

adopted in various NCSM codes, e.g., in the Many-Fermion Dynamics for nuclear struc-

ture (MFDn) code [99, 100, 101].

To obtain the set of low-lying eigenvalues and eigenvectors of the sparse Hamilton ma-

trix, typically an iterative Lanczos algorithm is used [129, 130]. Each iteration requires a

matrix-vector multiplication involving the the sparse Hamiltonian matrix (4.2). The inclu-

sion of 3N interactions leads to an increased computational cost of these iterations be-

cause, compared to calculations with NN interactions, the Hamiltonian matrix becomes

more dense, with one to two orders of magnitude more nonzero matrix elements [95].

Since the large-scale Hamiltonian matrix easily requires tens of TB memory if one ap-

proaches the model-space sizes that are necessary to converge the results, it is evident

that a suitable distribution of the sparse matrix across a large number of compute nodes

is mandatory. For details about this issue see, e.g., Ref. [95].

After all, the limitations of the NCSM are set by the model-space dimension, which

grows factorially with Nmax and nucleon number A. Diagonalizations for 109-dimensional

model spaces are routinely feasible today, however, going beyond dimensions of 1010 re-

mains prohibitive at this moment. We discuss a method to overcome this limitation by a

reduction of the model-space sizes based upon a selection of the relevant basis states in

the next subsection.

Finally, we mention that the long-range behavior of the HO wave functions that serve as

many-body basis is problematic for the description of states of loosely bound systems such

as halo nuclei or even scattering processes, which require the treatment of continuum

effects. To account for this different extensions of the NCSM exist, and we cover this topic

in Part III.

4.2 The Importance Truncated No-Core Shell Model

In the previous subsection we have discussed the NCSM as a method aiming at the exact

solution of the large-scale Hamiltonian matrix eigenvalue problem with its advantages to

provide access to all observables of interest through the eigenstates. The only drawback

are the limitations due to the factorial increase of the model-space size with nucleon num-

ber A and truncation parameter Nmax which hinders the study of nuclei beyond the p-shell

or to reach results close to convergence even for p-shell nuclei. Correspondingly, the aim

for developments of alternative ab-initio methods must be to preserve the advantages of

the NCSM as far as possible and to extend the range of accessible nuclei. If one sticks to

the general approach to directly solve the matrix-eigenvalue problem of the Hamiltonian,

a variant of the NCSM that requires a somehow reduced model-space size needs to be

found. For the scope of this work we focus on the so-called importance-truncated no-core
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Figure 4.2 – Comparison of NCSM (+) to IT-NCSM (•) 16O ground-state energies obtained with
SRG-evolved NN-only Hamiltonian as function of the model-space size Nmax. The IT-NCSM
energies coincide with those obtained within the NCSM and extend the accessible model spaces
significantly beyond the NCSM regime, see also Ref. [27].

shell model (IT-NCSM) [42, 28, 27].

As already indicated, the general framework of the NCSM and IT-NCSM is the same.

In particular, the IT-NCSM also employs A-body Slater determinants of single-particle HO

states for a basis representation of the Hamiltonian, and the obtained matrix is diago-

nalized using a Lanczos algorithm targeting the low-energy eigenstates. However, the IT-

NCSM model space is reduced to those configurations that are important for the descrip-

tion of the eigenstates of interest. In general, the selection of these most relevant config-

urations poses of course a formidable task. However, one can exploit the fact that we typ-

ically target the low-energy eigenstates of the Hamiltonian only, and the experience that

for these states many of the amplitudes C
(ν )
i in expansion (4.3) are negligible. Of course,

the size of the amplitudes depends strongly on the targeted states. Nevertheless, we can

obtain a variational approximation of the states if we drop these less relevant configura-

tions beforehand. This is exactly the procedure implemented in the IT-NCSM with the

aid of an a priori importance measure for the individual basis configurations. However,

we emphasize that a crucial part of the IT-NCSM formalism is the a posteriori recovery

of contributions from the omitted configurations. Before we deal with the details of this

method, we show in Figure 4.2 a proof-of-principle calculation of the ground-state energy

of 16O as function of Nmax obtained in the IT-NCSM and NCSM, where the latter is feasible.

Both methods use identical inputs including an SRG-evolved NN interaction at flow pa-

rameter α = 0.04fm4, and the HO frequency ħhΩ = 20MeV is used. The NCSM calculations

shown as black crosses are feasible up to Nmax = 8, while Nmax = 10 would require the treat-

ment of a 1010-dimensional model space beyond present computational limits. Evidently,

from the energies obtained within the NCSM it is hardly possible to provide a robust ex-

trapolation Nmax →∞. The IT-NCSM energies are shown as blue discs and are on top of

those obtained with the NCSM, which clearly demonstrates the reliability of the IT. At the

same time the IT-NCSM delivers the ground-state energies up to Nmax = 18 model spaces

and thus is able to reach convergence with respect to the model-space size. This allows for
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4.2 The Importance Truncated No-Core Shell Model

stable extrapolations to the infinite model-space limit. Obviously, the IT-NCSM is able to

treat significantly larger Nmax compared to the NCSM, and, therefore, facilitates ab-initio

nuclear structure beyond the domain of NCSM while the results are in excellent agreement

where both methods are applicable. More detailed benchmarks of the IT-NCSM versus

NCSM also including different observables can be found in Refs. [28, 44].

The general procedure of the IT-NCSM is the following: one starts from a set of ini-

tial approximations of the M targeted eigenstates, which are the reference states |Ψ(m )ref 〉.
Usually we employ states obtained from previous NCSM calculations in a conveniently

accessible small model space$ref, i.e.,

|Ψ(m )ref 〉=
∑

i
|Φi 〉∈$ref

C
(m )
ref,i |Φi 〉 . (4.6)

Based on these reference states we sample the relevance of basis states outside the refer-

ence space using an a priori importance measure given by

κ(m )i =−
〈Φi |Ĥ |Ψ

(m )
ref 〉

∆εi
, (4.7)

where the denominator is given by the excitation energy of |Φi 〉 relative to the unperturbed

Slater determinant. This measure is guided by the first-order state correction of multi-

configurational perturbation theory [131, 132]. This importance measure is computed for

all basis states |Φi 〉 /∈ $ref and we construct the so-called importance-truncated model

space $IT(κmin) by retaining the states contained in $ref and all basis states that fulfill

|κ(m )i | ≥ κmin for at least one of the reference states. All other basis states are discarded.

Since the importance measure (4.7) is linked to the perturbative state correction at first

order, it opts for the description of the eigenstates and is, therefore, suitable for all observ-

ables, i.e., not only the energy. Moreover, it gives consideration to a number of different

aspects: first of all it suppresses high-energy basis states due to the energy denominator

which is consistent with the effect of the underlying Nmax-truncation scheme. In addi-

tion, information about the full Hamiltonian, the targeted states carried by the reference

states, and the many-body basis states enters via the matrix element in the numerator. Al-

together, it is a state-specific, adaptive and physics-guided measure. Clearly, a variation of

the threshold κmin allows for tuning the dimension of the model-space$IT(κmin) in which

the eigenvalue problem needs to be solved. A variation of the threshold provides an addi-

tional assessment of the discarded states and is used for a subsequent extrapolation of the

results to vanishing threshold as we will discuss in more detail below.

During an NCSM calculation one is typically interested in an Nmax-sequence, because

the convergence with respect to this parameter needs to be monitored. It turns out that

steps Nmax → Nmax+ 2 yielding the next same-parity model space can be efficiently com-

bined with the IT scheme. The typical modus operandi is as follows: we begin with eigen-

states of the Hamiltonian obtained from the Nmax model space, and keep those configu-

rations with expansion coefficients |C (m )i |≥Cmin to define the reference model space$ref.
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Figure 4.3 – 16O ground-state energy dependencies on the importance threshold κmin obtained
with the NN-only Hamiltonian at α = 0.04fm4 and ħhΩ = 20MeV. The left-hand panels show the
κmin dependence for different thresholds Cmin = 10−4 (•), 2 · 10−4 ( ), 3 · 10−4 (▲), 5 · 10−4 ( ). The
right-hand panels show the simple threshold extrapolation at Cmin = 2 · 10−4 using a third-order
polynomial as solid black lines, and the shaded area corresponds to the uncertainty obtained
as explained in the text. Red bars mark results from the full-NCSM code ANTOINE [133] where
accessible. (published in [44])

This means not the complete decomposition of the eigenstates is used to construct the

reference space, but their renormalized projections on$ref. However, in practice the pa-

rameter Cmin is chosen small enough not to affect the observables as discussed below. In

the next step, the reference configurations are used to construct the importance-truncated

model space$IT(κmin), where all states of the reference model space are kept and all con-

figurations of the full Nmax+ 2 space not contained in$ref are subject to the importance

selection. The latter is performed for the smallest value of a sequence of κmin thresh-

olds yielding the largest model space. The next-smaller model space with larger κmin is

constructed by eliminating configurations based on the perviously computed importance

measures. The eigenvectors obtained in the largest model space are then the starting point

for the next step in Nmax. This procedure has the important formal property that the full

NCSM results obtained in the complete Nmax spaces are recovered if (κmin,Cmin)→ 0.

Having obtained the eigenvalues Em (κmin) and the corresponding eigenstates for a fixed

Nmax but for a series of importance thresholds κmin, a crucial final step of the IT-NCSM

protocol is the assessment of contributions from discarded configurations. Although their
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Figure 4.4 – Threshold extrapolation from left to right for the 12C ground-state energy, angular
momentum and expectation value of the center-of-mass Hamiltonian (4.5), and excitation en-
ergy of first 2+ state based on the extrapolation protocol described in the text. The results in
the upper and lower panels are obtained with the NN-only and NN+3N-full Hamiltonian us-
ing Cmin = 2 · 10−4 and Cmin = 3 · 10−4, respectively. The remaining parameters are α = 0.04fm4,
ħhΩ= 20MeV. (published in [44]

amplitudes have been estimated to be very small, they will have an effect on the many-

body observables. These effects are recovered by means of extrapolations of the observ-

ables to (κmin,Cmin)→ 0. Usually, the IT-NCSM calculations are conducted for a sequence

of κmin values in the interval [3 ·10−5,10 ·10−5]with a fixed Cmin which is chosen low enough

to not influence the results. Then, a polynomial Pn (κmin), typically of third order, is fitted

to the data set and provides the κmin → 0 extrapolated result. Additional fits with polyno-

mials of orders n +1 and n −1 as well as further nth-order polynomials but with the lowest

and the lowest two κmin values dropped are produced. The additional extrapolations for

κmin → 0 define the uncertainty for the threshold extrapolation of the given observable,

and the procedure is repeated for each individual observable of interest. This is discussed

in the following for ground-state energies in context of Figure 4.3, and additionally for

excitation energies, angular momentum and the expectation value of the center-of-mass

Hamiltonian (4.5) in Figure 4.4, where the respective uncertainties are depicted as shaded

bands.

We start with investigating the impact of different thresholds Cmin shown in the left-

hand panels of Figure 4.3. For this demonstration we use the NN-only Hamiltonian for SRG

flow parameter α= 0.04fm4, and the upper and lower panels depict the results at Nmax = 8

and 12, respectively, which are obtained using the sequential update scheme described

above starting from a full NCSM vector at Nmax = 4 as initial reference state. The differ-

ent plot markers represent data sets with different Cmin resulting from different IT-NCSM

runs as function of the importance threshold κmin, and the grey lines the respective ex-
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Figure 4.5 – 16O Ground-state energy as function of the importance threshold κmin for different
families of energy sets obtained from Eq. (4.9) as function of λ. Shown as black curves with gray
bands are the obtained extrapolations with uncertainties, respectively, received from the simul-
taneous fit as described in the text. The results are obtained using the SRG-transformed chi-
ral NN-only (left-hand panel) and NN+3N-full (right-hand panel) Hamiltonian at α = 0.04fm4,
ħhΩ= 20MeV, Cmin = 2 · 10−4 and Nmax = 12. (published in [44])

trapolations to vanishing threshold κmin. Basically, the results throughout the whole range

Cmin = 10−4 to 5 · 10−4, for Nmax = 8 and 12 are on top of each other, i.e., the dependence

on the reference threshold Cmin is negligible as long it is below 5 · 10−4. Typically we use

Cmin = 2 ·10−4. The right panels of Figure 4.3 illustrate the threshold extrapolation κmin→ 0

using the protocol discussed above. First of all, we note that the energies decrease with in-

creasing model-space size, i.e., with decreasing κmin. This is of course expected due to the

variational character of the calculation. The extrapolation using a third-order polynomial

is depicted as black curve, and the shaded area represents the uncertainty estimate. In the

Nmax = 8 case the exact result, marked as red bar, is available from an independent NCSM

calculation using the ANTOINE code [133]. We find excellent agreement within the small

shaded uncertainty band. The extrapolation for Nmax = 12 yields slightly larger uncertain-

ties but the extrapolation is still well under control.

Further examples for the extrapolation procedure are depicted in Figure 4.4, involving

from left to right the 12C ground-state energy, the corresponding angular momentum and

expectation value of the center-of-mass Hamiltonian Ĥcm, and the excitation energy of

the first 2+ state. The upper panels show the results as function of the importance thresh-

old for the NN-only Hamiltonian, and the lower panels for the NN+3N-full Hamiltonian,

i.e., including the initial chiral 3N interaction, at Nmax = 12. The energies obtained in a

full NCSM calculations with the ANTOINE code are again marked as red bars where avail-

able. The discussion for the ground-state energy of 12C is analogous to the one above for
16O. Nevertheless, note that the inclusion of the initial 3N interaction does not harm the

robustness of the extrapolation. Interestingly, the excitation energies are almost insensi-

tive to κmin for both Hamiltonians. This means the pattern of the κmin dependence for

the ground- and excited state is very similar and, therefore, cancels when computing the

excitation energy. Hence, excitation energies are subject to much reduced extrapolation
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uncertainties compared to absolute energies. Note again the excellent agreement of the

excitation energy with the available exact result for the NN-only Hamiltonian. The third

column shows the analysis for the angular momentum which is computed via the expec-

tation value of ˆ⃗I 2 with respect to the eigenvectors corresponding to the individual values

of κmin. Recall that individual Slater determinants do not have a good angular momentum

quantum number and in the NCSM only a suitable superposition generates the value of

the angular momentum. The importance truncation affects this superposition, however,

from the extrapolations for the ground-state angular momentum we see that the threshold

extrapolation yields good agreement with the exact result, although the uncertainty band

does not include the I = 0 point for the NN+3N-full Hamiltonian. Finally, we investigate

the extrapolation of the expectation value of the auxiliary center-of-mass Hamiltonian,

i.e., a measure for the center-of-mass contaminations of the eigenstate, in the third col-

umn. A full NCSM calculation using the Lawson method would yield a vanishing expec-

tation value due to the exact factorization (4.4) in Nmax-truncated model spaces. The IT

technique clearly introduces additional truncations, and the factorization is not perfect.

However, the κmin-dependence reveals small deviations from the vanishing expectation

value only, and its extrapolation yields it acceptably close to zero.

For the special case of absolute energies we can exploit the second-order energy cor-

rection arising from the excluded model-space configurations to stabilize the threshold

extrapolation. This correction is given by

∆
(m )
excl(κmin) =−

∑

i
|Φi 〉/∈$ (κmin)

|〈Φi |Ĥ |Ψ
(m )
ref 〉|

2

∆εi
(4.8)

and can be accumulated at essentially no additional cost, because the necessary matrix

elements are identical to those computed during the importance selection. Of course,

this correction, besides being of lowest order, is pretty crude because the contributions

of configurations contained in $ (κmin) which are not in $ref are not considered. But it

has the practically important property to vanish if we approach κmin → 0 which can be

used as constraint for the extrapolation: we generate a family of energy curves by adding

the energy correction (4.8) multiplied by different auxiliary parameters λ to the eigenvalue

obtained from the diagonalization, i.e.,

E
(m )
λ (κmin) = E (m )(κmin)+λ∆

(m )
excl(κmin) . (4.9)

The values of λ are chosen such that the individual curves approach their common value

at κmin = 0 from larger and lower values symmetrically as shown exemplarily in Figure 4.5.

The additional constraint E
(m )
λ (κmin = 0) = E

(m )
0 (κmin = 0) for all λ stabilizes the simultane-

ous fit of the generated family of data sets. In this case, the uncertainty band is obtained

by augmenting the different extrapolation variants discussed above by additionally drop-

ping the largest or lowest λ set from the simultaneous extrapolation. As evident from Fig-

ure 4.5 for the example of the ground-state energy of 16O the uncertainty band obtained
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with this extrapolation method is significantly reduced compared to the simpler extrapo-

lations shown in Figure 4.3.

Altogether, the different extrapolation techniques allow to assess the systematic un-

certainties of the IT compared to the full NCSM results. These uncertainties will be rep-

resented by error bars in all plots showing IT-NCSM results for a given Nmax throughout

this work. Of course, the IT-NCSM uses in addition the same extrapolation techniques to

infinite model spaces as the NCSM.

The extension of the IT-NCSM formalism to include explicit 3N interactions is anal-

ogous to the NCSM and, hence, requires no formal developments. Thus, the discussion

in the previous section about the increased computational demand due to a more dense

many-body Hamiltonian matrix and the benefit through the J T -coupled scheme for the

3N interaction matrix elements applies here, too. However, we stress that it is the interplay

between advances in the many-body method due to the IT technique and the progress on

the computational side that is key for extending NCSM-type ab-initio nuclear structure

calculations beyond the p-shell: the IT technique allows for the efficient extension of the

NCSM to make large Nmax model spaces tractable and the J T -coupled 3N matrix elements

permits the proper inclusion of the necessary 3N matrix elements at large E3max.

In the remainder of this work we apply the IT-NCSM framework mainly for studies

throughout the p-shell but also for the investigation of even oxygen isotopes. In addition,

it also delivers input vectors relevant for our investigation of nuclear reactions with target

nuclei heavier than 4He discussed in Part III. For studies of nuclei in the medium-mass

regime and beyond we use a different method, namely coupled-cluster theory, which we

discuss in the following subsection.

4.3 Coupled-Cluster Theory for Ground-States

In this section we focus on a brief overview of coupled-cluster (CC) theory, which is an-

other ab-initio approach to the solution of the Schrödinger equation for the ground state.

After its successful application in quantum chemistry [134], coupled-cluster has been sub-

ject to significant developments also in the nuclear-structure context over the past several

years [97], and has been found to be most efficient for nuclei with closed sub-shells.

The general ansatz of the CC approach is the parametrization of the ground state |Ψν0〉
(we omit the label ν0 for brevity in the following) by applying the so-called wave operator

e T̂ to a single Slater-determinant reference state |Φ0〉, i.e.,

|Ψ〉= e T̂ |Φ0〉 , (4.10)

where the operator

T̂ =

A∑

m=1

T̂m (4.11)
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consists of m-particle-m-hole excitation operators given by

T̂m =
1

(m !)2

∑

a 1...a m

∑

i 1...i m

t a 1...a m

i 1...i m
{â †

a 1
â †

a 2
. . . â †

a m
â i m

. . . â i 2
â i 1
} |Φ0〉 . (4.12)

Each particular excitation contributes with an amplitude t a 1...a m

i 1...i m
. We adopt the same no-

tation as in Section 2.3, i.e., a ,b , . . . denote single-particle quantum numbers of particle

states, i.e., unoccupied states in |Φ0〉, and indices i , j , . . . represent of hole states, i.e., occu-

pied states in the reference state. In addition, {. . .} |Φ0〉 denotes normal ordering with respect

to |Φ0〉. Note that the amplitudes are antisymmetric under transpositions among their up-

per and lower indices, respectively, such that different permutations of the m particle or

hole indices yield identical contributions to T̂m , and the pre-factor in Eq. (4.12) corrects

for such redundancies. Obviously, the objective is to determine the amplitudes t a 1...a m

i 1...i m
of

the excitation operators, which are the unknowns in this approach. The truncation of the

sum over particle states defines the model space of the CC calculation, and is specified by a

maximum single-particle energy of the underlying HO single-particle basis emax. Note that

also in the case of a Hartree-Fock reference state and single-particle basis still the under-

lying HO basis is consistently truncated by emax. The number of unknown amplitudes in

Eq. (4.12) can be shown to increase polynomially with nucleon number and model-space

size [97], i.e., it scales more gently than the matrix dimension in NCSM-type approaches.

Typically, CC theory is formulated directly using the normal-ordering technique of the

complete Hamiltonian. Formally, the result resembles Eq. (2.30), i.e., the Hamiltonian is

rewritten as sum of a normal-ordered zero-, one-, two- and three-body parts Ĥ0B, Ĥ1B, Ĥ2B,

and Ĥ3B, respectively. Assuming the inclusion of an initial 3N interaction it reads

Ĥ = Ĥ0B+ Ĥ1B+ Ĥ2B+ Ĥ3B . (4.13)

The difference to Eq. (2.30) is that the different terms now contain also contributions of

the one-body part and the NN interaction of the original Hamiltonian (4.1). The normal-

ordered three-body part is identical to Eq. (2.30), i.e., Ĥ3B = V̂ 3N
3B . We proceed by plugging

Eq. (4.13) and the CC ansatz for the eigenstate (4.10) in the time-independent Schrödinger

equation and arrive at

$

Ĥ0B+ Ĥ1B+ Ĥ2B+ Ĥ3B
%

e T̂ |Φ0〉= E e T̂ |Φ0〉 . (4.14)

We multiply by e−T̂ from the left to eliminate the wave operator on the right-hand side and

subtract the so-called reference energy

Eref = 〈Φ0|Ĥ |Φ0〉= 〈Φ0|Ĥ0B |Φ0〉 . (4.15)

Hence, we obtain

e−T̂ $Ĥ1B+ Ĥ2B+ Ĥ3B
%

e T̂ |Φ0〉=∆E |Φ0〉 . (4.16)
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To arrive at this expression we introduced the CC correlation energy ∆E = E − Eref. For the

further discussion it is convenient to define the so-called effective Hamiltonian via

;̂ = e−T̂ $Ĥ1B+ Ĥ2B+ Ĥ3B
%

e T̂ . (4.17)

Having converted the Schrödinger equation into the eigenvalue problem of the effec-

tive Hamiltonian (4.16), we still need conditional equations for the CC amplitudes and the

correlation energy. Due to the increasing computational cost and the complexity of these

equations in the context of nuclear structure, the cluster operator T̂ is approximated at

the level of singly and doubly excited clusters leading to the coupled-cluster method at

the singles and doubles level (CCSD), i.e., T̂ ≈ T̂CCSD = T̂1+ T̂2. The equations determining

the corresponding amplitudes {t a
i , t ab

i j } are obtained by projecting Eq. (4.16) onto the ref-

erence state |Φ0〉, and onto one-particle-one-hole |Φ a
0,i 〉 and two-particle-two-hole |Φ ab

0,i j 〉
excitations of the reference state. Thus, we obtain

〈Φ0|;̂ |Φ0〉=∆ECCSD , (4.18)

〈Φ a
0,i |;̂ |Φ0〉= 0 ∀ a , i , (4.19)

〈Φ ab
0,i j |;̂ |Φ0〉= 0 ∀ a ,b , i , j . (4.20)

Note that the amplitude equations (4.19) and (4.20) are decoupled from the energy equa-

tion (4.18) due to the multiplication by e−T̂ from the left in Eq. (4.16). Therefore, the solu-

tion of the coupled and nonlinear Eqs. (4.19) and (4.20) for the amplitudes {t a
i , t ab

i j }, typ-

ically in an iterative fashion, completely determines the eigenstate (4.10) in terms of the

amplitudes. Inserting these amplitudes in Eq. (4.18) yields the CCSD energy ∆ECCSD, and

together with the reference energy Eref the total energy E .

All formally as well as computationally demanding pieces are still implicit in the equa-

tions above. First the effective Hamiltonian ;̂ needs to be manipulated and simplified

to allow for an efficient implementation of the matrix elements of the operator structures

that enter Eqs. (4.18)-(4.20). Detailed discussions on these steps for CCSD for NN and

NN+3N interactions within the NO2B approximation can be found in Refs. [135] and [45],

respectively. Pioneering CCSD calculations including the Ĥ3B contribution explicitly can

be found in Ref. [45], while a systematic application to medium-mass nuclei can be found

in Refs. [46, 136], and a comprehensive dissertation on this topic including formal details

in Ref. [96].

At this point we take the opportunity to distinguish different possible types of calcula-

tions depending on which operator contributions of the Hamiltonian are being included

on the left-hand side of Eq. (4.16). Therefore, we split the effective Hamiltonian into a part

relevant for CCSD at the NO2B level, ;̂NO2B ,and the part corresponding to the normal-

ordered three-body part, ;̂3B, defined as

;̂NO2B = e−T̂ $Ĥ1B+ Ĥ2B)e
T̂ and ;̂3B = e−T̂ Ĥ3Be T̂ . (4.21)
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If all operators shown in Eq. (4.16) are included, the CC calculations are conducted in-

cluding the complete 3N interaction, i.e., ;̂ = ;̂NO2B + ;̂3B and the normal-ordered 3N

interaction is kept explicitly. If instead the Ĥ3B contribution is discarded in Eq. (4.16), the

CC theory is formulated at the level of the NO2B approximation introduced in Eq. (2.31).

That is, 3N interaction effects are only partly included through contributions at the lower-

particle ranks in normal ordering. The NN interaction is of course fully accounted for at

the NO2B level. It follows from this discussion that a CC formalism required for a calcu-

lation at the NN-only level and at the NN+3N level with NO2B approximation is identical.

The only difference occurs in the content of the operators Ĥ0B, Ĥ1B and Ĥ2B.

As before for the NCSM-type approaches, we add a brief discussion that highlights the

efforts that become necessary for the inclusion of 3N interactions in the CCSD approach.

We have seen above it is natural to include the 3N interaction at the NO2B approximation

level in the CCSD framework. In this case the necessary NO2B matrix elements are pro-

vided by a preparatory step discussed in Section 2.3.2, and, therefore, do not burden the

CCSD calculation. On the contrary, significantly more work, including formal develop-

ments and the derivation and implementation of new formulas, becomes necessary when

aiming at the complete inclusion of 3N interaction, i.e., explicitly retaining the Ĥ3B part.

This can be seen as follows: the first step beyond the energy and amplitude equations

in their generic form, shown in Eqs. (4.18)-(4.20) above, is the evaluation of the effec-

tive Hamiltonians ;̂NO2B and ;̂3B. In general, expressions like in Eq. (4.21) can be evalu-

ated using the non-terminating Baker-Campbell-Hausdorff commutator expansion. For-

tunately, for the special case of T̂ being an excitation operator, the commutator expansion

terminates, which can be proven by means of Wick’s theorem (cf. Eq. (2.23)) for the eval-

uation of the emerging commutators [102]. For CCSD calculations at the NN-only or the

NO2B level, the expansion of ;̂NO2B terminates after the four-fold commutator, caused by

the Hamiltonian being a two-body operator. Instead, the explicit inclusion of the com-

plete 3N interaction requires the evaluation of ;̂3B for which the commutator expansion

terminates only after the six-fold commutator. Consequently, significantly more operator

structures appear, whose contributions to the energy and amplitude equations need to

be accounted for, which leads to a significantly larger expense of the CCSD calculations.

Altogether, the inclusion of explicit 3N interactions in the CCSD framework in compari-

son to NCSM-type approaches is clearly more sophisticated, in particular, because formal

generalizations of the CCSD framework to include explicit 3N interactions are required.

In many practical cases it is necessary to go beyond CCSD in order to obtain an accu-

rate description of nuclear properties, i.e., one needs to account for effects of triply excited

clusters [98, 137, 138]. However, the full treatment of the T̂3 operator in the cluster operator

via the CCSDT approach, is prohibitively expensive. Therefore, one resorts to approxima-

tive schemes, through a non-iterative treatment of the connected triply excited clusters

a posteriori, also referred to as triples corrections, that one adds on top of the CCSD en-

ergies [98]. The two approaches we employ in this respect, mainly relevant for our dis-

cussions in Section 9, are the completely-renormalized coupled-cluster(2,3) [CR-CC(2,3)]

approach [139, 140, 141], and the ΛCCSD(T) method [135, 142]. The former has proven

65



4 Many-Body Methods and their Extension to 3N Interactions

to produce the best approximations to a full CCSDT calculation for several benchmark

cases in quantum chemistry [143], and the latter can be obtained as approximation to CR-

CC(2,3) [98]. Both methods are highly sophisticated and require besides the solution of the

amplitude equations discussed above also so-called Λ equations which determine ampli-

tudes of de-excitation operators that generate the left eigenstate of the non-Hermitian ef-

fective Hamiltonian. We do not go into further details here, but refer the interested reader

to Refs. [96, 98] about the inclusion of explicit 3N interaction into ΛCCSD(T), and refer-

ences therein.
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SECTION 5

The Role of the SRG Model Space

Before we start discussing the effects of the chiral NN+3N Hamiltonians on different

nuclear observables, we need to cover one more technical point, namely the impact of the

model-space truncations used during the SRG evolution. As we have discussed in Sec-

tion 3.2, the consistent inclusion of 3N interactions into the SRG framework is achieved by

representing the flow equation (3.2) in the antisymmetrized three-body Jacobi HO basis,

leading to first-order differential equations for the Hamiltonian matrix elements. Since in

practice only finite-dimensional matrices can be handled we have introduced a trunca-

tion of the SRG model space by specifying a maximum relative energy quantum number

ESRG(J12) which may vary for the different angular momenta J12. A crucial part of such a

truncation is the validation of its accuracy, which is discussed in this section. The findings

presented in this section are also included in the publication [44].

From the physics perspective, 3N channels (J π12T12) with large relative angular momenta

J12 should be less important for the description of low-energy properties of light nuclei,

whereas small angular momenta should be crucial. This motivates the angular-momentum

dependent model-space truncation ESRG(J12). We employ SRG model-space truncations

that are largest for small angular momenta and then decrease with increasing relative an-

gular momentum. Note that such truncation schemes are convenient also from a practical

point of view, since the basis dimension for fixed ESRG grows with increasing J12. To test the

convergence with respect to the SRG model-space size, we define three different choices

of ESRG(J12), the so-called ’ramps’. They are sketched in Figure 5.1: the overall largest SRG

model space studied here will be our default choice and is denoted as ’ramp& ’ repre-

sented by the blue solid line. It employs ESRG = 40 for J12 ≤ 5
2 and is then reduced in steps of

4 until we reach ESRG(J12) = 24 for J12 ≥ 13
2 . For ’ramp&slope’, shown as red-dashed line, the

model-space reduction starts already at J12 =
5
2 and employs ESRG = 24 for J12 ≥ 11

2 , i.e., the

slope is shifted to smaller J12. Consequently, comparing results obtained with ramp& to

those from ramp&slope tests the convergence and relevance of channels beyond the low-

est J12. In contrast, the convergence of channels with small angular momenta is checked

by comparing results obtained with ramp & and ramp &low that is identical to ramp &
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Figure 5.1 – Illustration of the angular momentum dependent SRG model-space truncation
ESRG( J12). Plotted are the ramps & , &slope, and &low. For further explanations see text. (pub-
lished in [44])

for J12 ≥ 7
2 but uses the smaller ESRG = 36 for J12 ≤ 5

2 , as indicated by the green-dotted

line. We stress that these SRG model spaces are adapted for applications in light nuclei as

mentioned above. For medium-mass or even heavy nuclei much larger SRG model spaces

may be necessary, in particular if single-particle shells with large angular momenta be-

come relevant. Therefore, we critically reinvestigate the SRG model space and revise the

convergence tests when we aim at the description of nuclei beyond 24O in Section 9.

Because it is difficult to decide on convergence based on deviations in the different

resulting 3N matrix elements, we address this issue directly in the nuclear-structure ob-

servables we are interested in. All results presented throughout this section are obtained

using the chiral NN+3N-full Hamiltonian, as it is defined in Table 4.1, using the standard

3N interaction with cutoff of Λ3N = 500MeV/c described in Section 1.2. In all cases we

evolve the Hamiltonian up to an SRG flow-parameter α = 0.08fm4. We begin with the in-

vestigation of ground-state energies in the following subsection and investigate excitation

energies in Section 5.2.

5.1 Effects on Absolute Energies

We start with the investigation of the impact of the different SRG model spaces on ground-

state energies for 4He and 16O. Figure 5.2 shows their dependence on the IT-NCSM model-

space size Nmax for the two HO frequencies ħhΩ = 16 and 20MeV. For 4He at frequency

ħhΩ= 20MeV we find essentially no dependence of the ground-state energy on the different

SRG model spaces. The same holds for 16O, where we again find negligible deviations.

This changes for the ground-state energies obtained at ħhΩ = 16MeV. The 4He ground-

state energies obtained with ramp & and &slope remain on top of each other, but ramp

&low exhibits a deviation of 0.4%. This means the 4He ground-state energy is sensitive to

the smaller model-space size for the smallest relative angular momenta. For the heavier

nucleus 16O the deviations become larger and, in addition, also sensitive to ramp &slope,

i.e., short-comings of the SRG model space for the larger angular momenta are revealed.
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Figure 5.2 – Ground-state energies of 4He (left-hand panels) and 16O (right-hand panels) as func-
tion of the IT-NCSM model-space size Nmax obtained with the NN+3N-full Hamiltonian at HO
frequency ħhΩ = 16MeV (upper panels) and 20MeV (lower panels). The different curves denote
results obtained with ramp& (•), ramp&slope ( ) and ramp&low (▲) as SRG model-space trun-
cations. (published in [44])

In conclusion we find that for HO frequencies ħhΩ= 20MeV and larger the SRG model space

of ramp& is sufficiently large to obtain accurate results. This is not the case for the lower

frequency ħhΩ = 16MeV, which may be related to an insufficient coverage of the relevant

energy-range defined by ESRG ·ħhΩSRG.

To remedy such SRG model-space truncation artifacts at small HO frequencies we can

use the frequency-conversion technique introduced in Section 3.3. That is, we choose a

sufficiently large parent frequency ħhΩSRG to perform the SRG evolution, and afterwards we

convert the matrix elements with help of Eq. (3.12) to the smaller frequencies ħhΩ at which

we perform the many-body calculations. We discuss the impact of this procedure in con-

text of Figure 5.3: the left panel shows again the 16O ground-state energies obtained with

the three different SRG model spaces, where the SRG transformation and the IT-NCSM cal-

culation use the same HO frequency, i.e., ΩSRG =Ω. In contrast, for the results shown in the

right panel the SRG is always performed at ħhΩSRG = 24MeV and the matrix elements are

subsequently converted to the frequencies used in the IT-NCSM calculations. The upper

panels contain the absolute energies, and the lower panels show the energy differences

relative to our default ramp & . Obviously, the frequency-conversion technique is able
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Figure 5.3 – Comparison of the 16O ground-state energy as function the oscillator frequency ob-
tained without frequency conversion, meaning ħhΩSRG = ħhΩ (left-hand panels), to energies ob-
tained when the SRG transformation is performed at fixed ħhΩSRG = 24MeV and the subsequent
frequency conversion (right-hand panels). Results are shown for the three different SRG model
space truncations& (•),&slope ( ), and&low (▲). The upper panels show the absolute energies,
and in the lower panels the deviations from energies obtained with ramp & are plotted. The
NN+3N-full Hamiltonian is used with parameters Nmax = 8 and α= 0.08fm4. (published in [44])

to cure the problems with the SRG model space completely, since for all frequencies no

difference between the energies obtained from different ramps exists. This is particularly

impressive for the smallest frequency ħhΩ= 12MeV, where drastic deviations caused by the

different SRG model spaces are apparent. At such small frequencies significant contri-

butions of the initial Hamiltonian relevant for the binding energy are not accounted for by

the SRG transformation, while they are included when using a sufficiently larger frequency

with identical SRG model-space truncation ESRG(J12). It is evident from this discussion that

the frequency-conversion technique is key for proper calculations with 3N interactions at

small frequencies. This can be particularly relevant, e.g., to reliably study expectation val-

ues of long-range operators.

For absolute energies we conclude that the SRG model-space truncation & is suffi-

cient for the light nuclei considered here at HO frequencies ħhΩ ≥ 20MeV, and for smaller

frequencies in combination with the frequency-conversion technique. For medium-mass

nuclei one may expect that this analysis needs to be repeated, as is done in Section 9.

5.2 Effects on Excitation Energies

For excitation energies we find much less impact of the three different SRG model-space

truncations compared to the absolute energies. In Figure 5.4 we show two 12C spectra in-
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The IT-NCSM calculations are conducted with the NN+3N-full Hamiltonian at SRG flow param-
eter α= 0.08fm4. (published in [44])

cluding the first eight low-energy positive-parity states for frequency ħhΩ = 16MeV in the

left panel and for ħhΩ= 20MeV in the right panel. In addition, the results obtained with the

three different ramps are superimposed using different line styles in each panel, respec-

tively. The resulting excitation energies are practically on top of each other, in particular

also for the smaller frequency ħhΩ = 16MeV. Note that no frequency conversion has been

used, i.e., ħhΩ = ħhΩSRG. Apparently, possible shortcomings covering the relevant energy

range of the Hamiltonian during the SRG evolution lead to overall identical energy shifts

of all states, which cancel out when nuclear spectra are considered. Consequently, we can

establish our default ramp& as sufficient to obtain SRG-transformed Hamiltonians which

can serve for quantitative analyses of nuclear spectra of light nuclei even at low frequen-

cies.
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SECTION 6

Chiral 3N Forces in Ab-Initio Nuclear
Structure of p-Shell Nuclei

In this section we aim at ab-initio predictions for a variety of p-shell nuclei starting

from SRG-evolved chiral NN+3N Hamiltonians. The discussion is guided by IT-NCSM cal-

culations using the chiral NN interaction at N3LO as described in Section 1.1 along with

the chiral 3N interaction at N2LO introduced in Section 1.2 exploiting the J T -coupled

matrix-element scheme. If not stated otherwise, we use the momentum-scale cutoff Λ3N =

500MeV/c for the chiral 3N force, which is included explicitly without any further approx-

imation. We soften the Hamiltonian by means of the SRG evolution described in Section 3

and use the SRG model space ’ramp & ’, which we validated for p-shell nuclei in the pre-

vious section. All IT-NCSM results for a given model-space truncation Nmax are obtained

by extrapolations to vanishing importance threshold using the protocol described in Sec-

tion 4.2, and the provided uncertainties are shown as error bars in all subsequent plots.

Thus, for now all preparatory steps have been clarified in the previous sections and

we concentrate on consequences of the chiral Hamiltonians for nuclear structure observ-

ables. We start to explore the effects of 3N interactions on ground-state energies for a

variety of p-shell nuclei in comparison to experiment and, in particular, disentangle the

effects of SRG-induced and initial 3N interactions in the first subsection. We find that dis-

carded SRG-induced contributions beyond the three-body level, which are negligible for

the lightest nuclei, become significant in the upper p-shell and beyond, and we trace back

their origin in Section 6.1.1. We clarify the relevance of SRG-induced forces for low-energy

excitations with help of energy spectra in Section 6.2. Finally, we discuss the option to cir-

cumvent significant SRG-induced multi-nucleon contributions by lowering the cutoff mo-

mentum Λ3N of the initial 3N interactions in Section 6.3. The different aspects discussed

in this section have resulted in the publications [42, 44, 43].
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Figure 6.1 – 4He (upper panels) and 6Li (lower panels) ground-state energies obtained in the IT-
NCSM as function of the model-space size Nmax for different SRG flow parameters α = 0.04 (•),
0.05 ( ), 0.0625 (▲), 0.08 ( ), 0.16fm4 (★). Uncertainties of the IT threshold extrapolation are in-
dicated as error bars (mostly hidden by the plot markers). The horizontal bars mark the ex-
ponentially extrapolated energies at infinite model space (see text), and the black dashed lines
represent the experimental energies [144]. (published in [42])

6.1 Description of Ground-State Energies throughout the p -Shell

We begin our investigations with the ground-state energies of 4He and 6Li obtained with

the NN-only, NN+3N-induced and NN+3N-full Hamiltonians. They are depicted in Fig-

ure 6.1 as function of the IT-NCSM model-space size and for the set of SRG flow param-

eters α = 0.04, 0.05, 0.0625, 0.08 and 0.16fm4. First of all, we notice systematically for all

three Hamiltonians and both nuclei the improved rate of convergence with respect to the

model-space size Nmax with increasing SRG flow parameter. Hence, the SRG works as de-

sired in this respect, that is, with the IT-NCSM calculations up to Nmax = 12 we can reach

convergence for soft the interactions and achieve energies close to convergence already

at moderate model-space sizes. However, note that the use of SRG-transformed Hamil-

tonians is mandatory, because calculations at α = 0, i.e., for the initial Hamiltonian, lack

convergence in spite of the large model-spaces we can handle. The improved convergence

behavior offers the possibility for stable extrapolations to infinite model-space size to sim-

plify the interpretation of the results. Therefore, we use a simple extrapolation by fitting
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the exponential E∞+ a e−bNmax to the energies from the three or four largest model spaces

and mark the average for E∞ as horizontal bars in Figure 6.1. The extrapolated energies

obtained with the NN-only Hamiltonian shown in the left panel of Figure 6.1, exhibit a siz-

able dependence on the SRG flow parameter and scatter around the experimental result.

This is well known from different applications of SRG-transformed NN-only Hamiltoni-

ans in nuclear-structure calculations [52, 145, 40], and is caused by the omission of the

SRG-induced 3N interactions which we can confirm by including them explicitly. This is

achieved by performing the SRG transformation consistently in three-body space, which

leads to the NN+3N-induced Hamiltonian. The corresponding IT-NCSM results using this

Hamiltonian are shown in the middle panel of Figure 6.1. The extrapolated energies for all

flow parameters are on top of each other and the inclusion of the repulsive SRG-induced

3N interactions yields them at larger values compared to the NN-only results for both nu-

clei, respectively. The energies are independent of the flow parameter, meaning that SRG-

induced four- and multi-nucleon interactions originating from the initial NN interaction

are negligible, and the NN+3N-induced Hamiltonian is unitarily equivalent to the initial

NN Hamiltonian. The same is true once the initial 3N interaction is accounted for using

the NN+3N-full Hamiltonian, as shown in the right panel of Figure 6.1. The ground-state

energies remain α-independent and the attractive initial 3N forces yields 4He slightly over-

bound, and 6Li in good agreement with experiment. The vanishing flow-parameter de-

pendence again points towards the irrelevance of SRG-induced four- and multi-nucleon

contributions for nuclei in the lower p-shell. These results and conclusions are also in ex-

cellent agreement with the full-NCSM calculations of Refs. [145, 40] using a comparably

SRG-transformed Hamiltonian starting from the identical initial Hamiltonian.

We repeat an analogous analysis for nuclei in the upper p-shell. Therefore, we present

first accurate ab-initio calculations of the ground-state energies of 12C and 16O includ-

ing chiral 3N interactions up to Nmax = 12 model space in Figure 6.2. The overall conclu-

sion from the calculations at the NN-only and NN+3N-induced level is very similar to the

light-nuclei domain: the extrapolated ground-state energies of 12C and 16O at the NN-only

level show an even stronger dependence on the SRG flow parameter α. To resolve this we

include SRG-induced 3N interactions for both nuclei, and achieve flow-parameter inde-

pendent energies, which are underbound compared to experiment. We find the NN+3N-

induced ground-state energies in good agreement with coupled-cluster ΛCCSD(T) calcu-

lations by Hagen et al. using the unitarily equivalent initial NN interaction without soft-

ening [135]. However, when we proceed to include the initial chiral 3N interaction into

the IT-NCSM calculations we find evidence for a non-negligible SRG flow-parameter de-

pendence shown in the right panel of Figure 6.2. Thus, the observed pattern indicates the

presence of significant SRG-induced four- and multi-nucleon contributions which have

been omitted and, thus, lead to the observed flow-parameter dependence. We emphasize

that it is mandatory to have well-converged results which are independent of all many-

body truncations to be able to draw conclusions from the observed flow-parameter de-

pendence. This is indeed the case for the presented IT-NCSM calculations due to the large

accessible Nmax, which is the only truncation involved in case of NCSM-type calculations.
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Figure 6.2 – IT-NCSM ground-states energies of 12C (upper panels) and 16O (lower panels) as func-
tion of Nmax for the three types of Hamiltonians and for the set of SRG flow-parameters given in
Figure 6.1. Experimental energies are taken from [144]. (published in [42])

This is more complicated for other many-body methods [34, 51, 33, 46, 136]

For a more direct comparison of the flow-parameter dependencies we plot in Figure 6.3

the ground-state energies of 4He and 16O as function of α. Hence, flow-parameter inde-

pendent results occur in this format as horizontal lines. The results obtained at the NN-

only level, shown as blue discs, in the range α = 0.04 to 0.16fm4 show a flow-parameter

dependence of 0.7 MeV for 4He and 25 MeV for 16O due to the spoiled unitarity of the SRG

transformation. This is cured for both nuclei by the inclusion of SRG-induced 3N contri-

butions which remedies the α dependence leading to nearly horizontal lines represented

by the green diamonds. Whereas the flow-parameter dependence remains absent for 4He

after the inclusion of the initial 3N interaction, we encounter for the spread α = 0.04 -

0.08fm4 a flow-parameter dependence of about 10 MeV in 16O originating from induced

but discarded four- and multi-nucleon contributions. This means the discarded induced

beyond-3N interactions reach approximately half the size of the total contribution from

the initial 3N interaction and, thus, the hierarchy of the chiral nuclear forces may not be

preserved by the SRG. Consequently, these omitted contributions degrade the predictive

power of the results, since the recovery of the α = 0 result is a highly non-trivial, hardly

feasible task. Altogether, based on these results we can state that part of the overbinding
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observed for the NN+3N-full Hamiltonian is due to discarded SRG-induced contributions.

However, we cannot assess possible deficiencies of the initial chiral Hamiltonian, since we

cannot exclude that the complete overbinding originates from discarded multi-nucleon

interactions.

To investigate the emergence of SRG-induced four- and multi-nucleon forces more sys-

tematically over the mass range covered here, we present additional ground-state energy

calculations of 8Be, 10Be 14C for the NN+3N-induced and NN+3N-full Hamiltonians in Fig-

ure 6.4. The observations are similar to those discussed above. Calculations starting from

an NN+3N-induced Hamiltonian do not lead to an SRG flow-parameter dependence in the

ground-state energies. For calculations with the NN+3N-full Hamiltonian the 8Be ground-

state energy remains α independent, while a slight dependence becomes visible for 10Be.

Then starting from mass number A ≈ 10 the flow-parameter dependence in the NN+3N-

full results starts to increase with increasing mass number and is clearly present for 14C.

In Table 6.1 we summarize the extrapolated ground-state energies for the considered

nuclei for the set of flow-parameters α = 0.04, 0.0625 and 0.08fm4, which is the range we

will typically investigate in further applications. The numbers given are the average of

the simple extrapolations involving the last three or four data points and we quote as a

rough uncertainty estimate the difference between the extrapolated energies. Typically,

these uncertainties are somewhat smaller for increasing α due to more stable extrapola-

tions caused by the improved rate of convergence. Note that the uncertainties from the

extrapolations to vanishing importance threshold (cf. Section 4.2) are not taken into ac-

count for the extrapolations.

We can further confirm the presence of the flow parameter dependence also beyond

the p-shell with coupled-cluster calculations at the singles and doubles level (CCSD). In

Figure 6.5 we show the ground-state energies of 16O, 24O, 40Ca, and 48Ca as function of the

CCSD model-space truncation parameter emax, which we published in Ref. [43]. We note

that the presented calculations are conducted using a underlying HO basis and using the

77



6 Chiral 3N Forces in Ab-Initio Nuclear Structure of p-Shell Nuclei

-7.5
-7

-6.5
-6

-5.5
-5

-4.5

E
/A
[M

eV
]

NN+3N-induced

exp.

8Be

exp.
-7

-6.5
-6

-5.5
-5

-4.5
-4 NN+3N-induced

10Be

exp.

-8.5
-8

-7.5
-7

-6.5
-6

-5.5 NN+3N-induced

14C

2 4 6 8 10 12 14 16 18
Nmax

exp.
-7.5

-7
-6.5

-6
-5.5

-5
-4.5

E
/A
[M

eV
]

NN+3N-full

8Be

2 4 6 8 10 12 14 16 18
Nmax

exp.
-7

-6.5
-6

-5.5
-5

-4.5
-4 NN+3N-full

10Be

2 4 6 8 10 12 14 16 18
Nmax

exp.

-8.5
-8

-7.5
-7

-6.5
-6

-5.5 NN+3N-full

14C

Figure 6.4 – IT-NCSM ground-state energies per nucleon for 8Be, 10Be, and 14C as function Nmax
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els). The different data sets correspond to results for SRG flow parameters α = 0.04 (•), 0.08 ( ),
and 0.16fm4 (★). The HO frequency ħhΩ = 20MeV is used. The horizontal dashed lines denote
experimental energies [144]. (published in [44])

Table 6.1 – IT-NCSM ground-state energies in MeV of various p-shell nuclei for the three types of
Hamiltonians at SRG flow parameters α = 0.04, 0.0625, and 0.08fm4 extrapolated to the infinite
model-space limit using the simple exponential ansatz E (Nmax) = E∞ + a e−b Nmax with {E∞, a ,b}
as fit parameters. The quoted energies are the average for E∞ from extrapolations based on
either the three or four largest Nmax spaces. As rough uncertainties we quote the difference
between the energies obtained from the two extrapolations. Note that uncertainties from the IT
threshold extrapolation are not accounted for in the extrapolations to Nmax→∞. These are, e.g.,
for 8Be at Nmax = 12 on the order of 100keV and reach about 400keV for 16O. In the last row we
quote the experimental energies [144].

Ĥ α[fm4] 4He 6Li 8Be 10Be 12C 14C 16O

NN-only 0.04 -27.90(1) -31.2(1) - - -96.2(1) - -156.1(3)
NN-only 0.0625 -28.25(1) -31.8(1) - - -101.4(3) - -164.9(7)
NN-only 0.08 -28.38(1) -32.2(1) - - -103.7(1) - -170.2(4)
3N-ind. 0.04 -25.32(1) -27.7(3) -48.5(1) -52.5(3) -76.6(1) -91.5(2) -119.6(5)
3N-ind. 0.0625 -25.34(1) -27.6(2) - - -77.2(1) - -119.7(5)
3N-ind. 0.08 -25.34(1) -27.6(1) -48.2(4) -52.9(2) -77.4(1) -91.6(1) -119.5(1)
3N-full 0.04 -28.45(1) -31.8(3) -55.9(3) -65.0(3) -95.6(4) -117.3(6) -142.2(2)
3N-full 0.0625 -28.45(1) -31.8(1) - - -96.8(2) - -145.6(2)
3N-full 0.08 -28.46(1) -31.8(1) -56.1(4) -65.6(1) -97.6(1) -119.2(1) -147.8(1)
exp. [144] -28.30 -32.0 -56.5 -65.0 -92.3 -105.3 -127.6
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lines denote the experimental energies [144]. (published in [43])
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NN+3N-full Hamiltonian at the normal-ordered two-body approximation (cf. Section 2.3),

which we can safely anticipate here to be a very accurate approximation as we confirm in

Section 8. For 16O, where we can compare the CCSD to IT-NCSM results, and also for

the medium-mass nuclei the observed pattern is consistent: the energies resulting from

the NN-only Hamiltonian exhibit a strong dependence on the SRG flow parameter which

becomes negligible once the SRG-induced 3N interactions are included. But the α depen-

dence returns once the initial chiral 3N interaction is included. For completeness we state

that also triples corrections, which are discarded here, would not alter this conclusion.

In summary, α dependence of the ground-state energies obtained with the standard

NN+3N-full Hamiltonian can be clearly identified for nuclei with A " 10, and unfortunately

sophisticates the assessment of the untransformed Hamiltonian. Thus, conclusions about

the initial chiral 3N interactions may be difficult.s

6.1.1 The Origin of SRG-Induced Multi-Nucleon Interactions

Since we have identified the chiral 3N interaction as the origin of sizable α dependence of

ground-state energies in nuclei beyond the mid-p-shell, we now disentangle the role of the

individual parts of the chiral 3N interaction for the emergence of beyond-3N SRG-induced

interactions. The findings discussed in the following are part of our publications [42, 44].

The chiral 3N interaction at N2LO consists of a two-pion exchange (TPE), a one-pion

exchange two-nucleon contact (OPE) and of a three-nucleon contact contribution, each

of them accompanied by low-energy constants (LECs). We can switch off individual con-

tributions to the 3N interactions in the initial Hamiltonian and study the consequences

for the α dependence of the ground-state energies. Of course, if one or more LECs are

changed, it is necessary to refit the remaining LECs and we adopt the procedure discussed

in detail in Section 1.2. That is, we refit cE to the 4He binding energy at the bare interac-

tion level and keep cD = −0.2, which warrants the reproduction of the triton β-decay half

life. The only exception is the case cE = 0, where we instead use cD to refit the 4He binding

energy. We emphasize that the 3N interactions are still fixed entirely in three- and four-

body systems, and, thus are predictive for the 16O ground-state energy we consider in the

following. We quote all sets of LECs in Table 6.2.

Our results for the 16O ground-state energy obtained with the different Hamiltonians

are shown in Figure 6.6 for α = 0.04, 0.08 and 0.16fm4 including the exponential extrap-

olations to infinite model-space sizes indicated by the solid curves. As reference for the

analysis we also include the results for the standard Hamiltonian exhibiting the strong

flow-parameter dependence in panel (a). In panels (b) and (c) we show the results ob-

tained when switching off the OPE terms (cD = 0), or the 3N contact terms (cE = 0), respec-

tively. In both cases we observe small overall shifts of the energies, but almost no change

of the flow-parameter dependence compared to the standard Hamiltonian. Therefore,

these two terms can be ruled out as sources of significant SRG-induced many-body forces.

In panel (d) we show the results with switched-off TPE contributions (ci = 0), where the

flow-parameter dependence of the extrapolated energies has collapsed and vanishes com-
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Figure 6.6 – IT-NCSM ground-state energy of 16O obtained with the NN+3N-full Hamiltonian as
function of Nmax for SRG flow parameters α = 0.04 (•), α = 0.08 ( ), α = 0.16fm4 (★). Panel (a)
shows results for the standard Hamiltonian. In addition, we show results for cD = 0 in (b), c E = 0

in (c), all ci = 0 in (d), c1 = 0 in (e), c3 = 0 in (f), and c4 = 0 in (g). For further details see text.
(published in [44])

pletely. We conclude that solely the long-range TPE terms of the leading chiral 3N interac-

tions are the key drivers of induced many-body forces during the SRG flow. The operator

structure of the TPE diagram, see Eq. (1.11), is rather complicated and contains tensor-

and spin-orbit-type terms. Bearing in mind that tensor interactions in the NN force are

the origin of significant induced 3N interactions (see Ref. [103]), our findings above may

not be unexpected. However, we can proceed further with our analysis and try to answer

the question which operator structure within the TPE term is most relevant for the flow-

parameter dependence. As before, we accomplish this by setting individual LECs, now the

individual ci , to zero. The results are shown in panels (e)-(f) of Figure 6.6. We find only mi-

Table 6.2 – Sets of LECs of the chiral 3N interaction at N2LO for the standard Hamiltonian and
different variants used for the analysis of the origin of SRG-induced beyond-3N contributions as
described in the text. All individual sets are refitted by means of NCSM calculations at the bare
Hamiltonian level to reproduce the 4He binding energy. We used the identical fitting procedure
presented in Section 1.2.

LEC types c1 [GeV−1] c3 [GeV−1] c4 [GeV−1] cD c E

standard -0.81 -3.2 5.4 -0.2 -0.205
ci = 0 0 0 0 -0.2 0.444
cD = 0 -0.81 -3.2 5.4 0 -0.205
c E = 0 -0.81 -3.2 5.4 1.238 0
c1 = 0 0 -3.2 5.4 -0.2 -0.207
c3 = 0 -0.81 0 5.4 -0.2 -0.228
c4 = 0 -0.81 -3.2 0 -0.2 0.141
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nor effects on the flow-parameter dependence by switching off the c1 or c4 contributions.

In contrast, a vanishing c3 leads to ground-state energies that are almost independent of

α. Thus, we identify the operator structure corresponding to c3 as the main driver of the

SRG-induced four- and multi-nucleon many-body forces originating from the chiral 3N

interaction at N2LO. The uniqueness of c3 in this respect remains rather unclear based on

comparisons of the different contributing operator structures. Also the contributions to

the 4He binding energy, which we identify indirectly via the necessary change of LEC cE to

recover the experimental energy, is of similar size for c3 and c4, and only for c1 quite small.

Nevertheless, our findings about the critical role of c3 may provide important informa-

tion for the construction of next-generation chiral forces or optimized interactions using

automated fitting algorithm as, such as POUNDERS in the recently proposed N2LOopt in-

teraction [146]. Furthermore, they might be taken into account for future developments of

alternative SRG generators that are designed to suppress sizable many-body contributions

from the outset.

6.2 Nuclear Spectra with Chiral 3N Interactions

After having observed a sizable SRG flow-parameter dependence of absolute energies in

the upper p-shell, in this subsection we concentrate on its impact on excitation energies.

We start our investigation with the excitation energies of the first 3+ and 0+ states of 6Li

shown in the upper panels of Figure 6.7 as function of Nmax from left to right for the NN-

only, NN+3N-induced and NN+3N-full Hamiltonian, respectively. We plot the excitation

energies for the same set of flow parameters as previously for absolute energies using the

identical plot-marker scheme. Obviously, we find much reduced flow-parameter depen-

dence compared to our results for the absolute energies discussed above. At the NN-only

level the converged results for Nmax ≥ 12 for both excited states of 6Li, show a very small

α dependence, where the largest deviation is generated by the α = 0.16fm4 Hamiltonian.

As a consequence, despite the significant flow-parameter dependence of the absolute 6Li

energies, the flow-parameter dependence is strongly reduced for the excitation energies.

Therefore, the latter are less sensitive to SRG-induced many-body interactions. This is

confirmed by including the 3N-induced contributions explicitly, as shown in the upper-

middle panel of Figure 6.7. Both excitation energies are converged with respect to the

model-space size at Nmax = 12, and independent of α as expected in this case, because

already the absolute energies are α independent. The slight differences between the con-

verged NN-only and NN+3N-induced excitation energies result from the small α depen-

dence of the NN-only energies. Finally, we include also the initial chiral 3N interaction

yielding the results in the right panel. Again, the converged excitation energies become

independent of the flow parameter and may be compared to experiment. Compared to

the NN+3N-induced Hamiltonian, the 3+ state is pushed towards its experimental value

due to the initial 3N interaction, but the opposite is the case for the 0+ state. Already from

this example it is clear that the chiral 3N interaction will not simultaneously improve all

excitation energies compared to experiment.
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Figure 6.7 – Excitation energies of the first two excited states of 6Li (upper panels) and the first
excited 2+ state in 12C (lower panels) as function of the model-space size for the three differ-
ent Hamiltonians obtained in the IT-NCSM for the SRG flow parameters α = 0.04 (•), 0.05 ( ),
0.0625 (▲), 0.08 ( ), and 0.16fm4 (★). The horizontal dashed lines denote experimental ener-
gies [144].

Moreover, we note the rather different pattern of the flow-parameter dependence for

the two excited states of 6Li before they reach convergence. The difference between the

α = 0.04 and 0.16fm4 excitation energies at Nmax = 4 is roughly twice as large for the 0+

state than for the 3+ state at the NN-only level and even larger in the NN+3N-full case.

This shows that the SRG parameter dependence of excitation energies needs to be studied

state by state in particular if they are not yet close to convergence.

The lower panels of Figure 6.7 show the excitation energy of the first excited state of
12C again for the three types of Hamiltonians up to Nmax = 8. Because of the increased

computational cost for these calculations, we consider only a subset of flow parameters.

For all three Hamiltonians the excitation energy of the first 2+ state seems to be converged

at Nmax = 8. Concerning the flow-parameter dependence, the situation is similar to 6Li:

although we observe a significant α dependence for the 12C ground-state energy, both, the

NN-only and NN+3N-full Hamiltonian results reveal that the SRG-induced multi-nucleon

interactions are much less relevant for the excitation energy. As expected the NN+3N-
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induced results are completely independent of α and the α-dependence of the NN+3N-full

energies remains negligible, too. In conclusion these findings provide the possibility of in-

vestigations of nuclear spectra throughout the p-shell including explicit chiral 3N interac-

tions and to distinguish effects from SRG-induced 3N interactions from those generated

by initial 3N forces.

We emphasize that spectra obtained in the (IT-)NCSM often depend on the used HO

frequency ħhΩ. Such dependencies are due to a lack of convergence with respect to model-

space size, because converged results should be independent of the chosen basis, i.e., of

ħhΩ. Examples for a direct comparison of spectra obtained at different HO frequencies are

shown in Figures 5.4 or 6.11. For the spectra of 6Li, 10B and 12C discussed in the following

and also for the spectra shown in Section 7 we choose the HO frequency for which the

majority of investigated excited states seem to be most stable with respect to increasing

Nmax.

The three top panels of Figure 6.8 show the spectra of 6Li up to Nmax = 12 including

the first four positive parity states for the three Hamiltonians with two flow parameters

α = 0.08 (solid bars) and 0.04fm4 (dashed bars). We have already discussed the first two

excited states above. The discussion of the 2+ state follows essentially the same lines. With

the NN+3N-induced Hamiltonian we find it practically α independent and in good agree-

ment with experiment at Nmax = 12, however it is not yet fully converged with respect to

model-space size. The same holds for this state computed with the NN+3N-full Hamilto-

nian. From its Nmax-convergence pattern one might anticipate that its excitation energy

will continue to decrease and to further approach the experimental value. Altogether, the

only state whose description compared to experiment is clearly improved by the initial 3N

interaction is the 3+ state.

In the second row of Figure 6.8 we depict the four lowest positive parity eigenstates

of 10B for the three types of Hamiltonians (see columns headings) and again for the two

α values at ħhΩ = 16MeV. In the spectrum obtained with the NN-only Hamiltonian the

ground-state of 10B is a 1+ state contrary to the experimentally found 3+ ground state. Also

the inclusion of SRG-induced 3N interactions, which yields the unitarily equivalent de-

scription based on the chiral NN interaction, cannot cure this problem. Only by including

the initial 3N interaction we obtain the correct ground state, as shown in the right panel.

This has been first discussed with chiral 3N interactions in Ref. [78] using the NCSM, and

we can confirm it via the IT-NCSM. Furthermore, this is a well-known example for the ne-

cessity of including the initial 3N interaction, as also confirmed in ab-initio Green’s func-

tion Monte-Carlo calculations [24]. Another interesting detail is the presence of rather α

independent and seemingly relatively well-converged excitation energy of a 2+ state ob-

tained with the NN+3N-induced Hamiltonian that is shifted by about 2 MeV upwards in

energy by the initial chiral 3N interaction towards its experimentally known excitation en-

ergy of about 3.6 MeV [148], (not shown in Figure 6.8, but cf. Figure 7.3). Therefore, despite

some remaining flow-parameter dependence at Nmax = 8, the spectrum of 10B has been

improved significantly by the initial chiral 3N interaction.

Finally, we investigate the low-lying positive-parity spectrum of 12C shown in the lower
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Figure 6.8 – Low-lying positive-parity excitation spectra of 6Li (top panels), 10B (middle panels)
and 12C (bottom panels) as function of model-space size for the three types of Hamiltonians
(see column headings) and for SRG flow parameters α = 0.04 ( ) and 0.08fm4 ( ) obtained
from the IT-NCSM. Note that uncertainties from the importance-threshold extrapolation using
the protocol described in Section 4.2 are hidden by the plot markers. In the right columns we
show in addition the experimental energies taken from Refs. [147, 148, 149].
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three panels of Figure 6.8. We note that our results agree well with the spectra obtained

in Ref. [78] using the Okuko-Lee-Suzuki transformed chiral 3N interaction, and most of

the states seem to be well converged at Nmax = 8. The sole exception is the first excited

0+ state that is a candidate for the famous Hoyle state [150, 151], which is known to be

a α-particle-cluster state [152, 153]. Therefore, huge model spaces would be required to

converge this state using a basis of Slater determinants of HO single-particle states [154].

From a comparison of the left-hand to the middle panel it is evident that the inclusion of

the SRG-induced 3N interactions leads to an overall compression of the 12C spectrum and

to a reduced SRG flow-parameter dependence for all states at Nmax = 8. In contrast, the

inclusion of the initial chiral 3N interaction leads to shifts of individual levels resulting in

changed level orderings. These improve, e.g., the agreement of the first 2+ and 4+ states

with experiment. On the downside the first 1+ state needs to be mentioned whose excita-

tion energy is reduced significantly resulting in noticeable disagreement with experiment.

This state is clearly most sensitive to the inclusion of the initial 3N interaction, and hence

lends itself for more detailed investigations of the role of details, e.g., the LECs, of the chiral

3N interaction. In addition, the stability of the 12C spectrum with respect to Nmax conver-

gence and flow parameter variations makes it an ideal candidate for such case studies. We

come back to this in Section 7, including also the sensitive ground state of 10B.

6.3 Chiral 3N Interactions with Reduced Cutoff

We now return to absolute energies and discuss options to reduce the SRG flow-parameter

dependence that we have analyzed in Section 6.1. Motivated by the vanishing of the flow-

parameter dependence when switching off the TPE 3N interaction, we study ground-state

energies for Hamiltonians with different lowered cutoff momenta Λ3N of the 3N interac-

tion. In this way we decrease far off-diagonal 3N matrix elements, which are significantly

affected by the prediagonalization in the SRG flow, from the outset. We have discussed the

construction of these reduced-cutoff 3N interactions already in Section 1.2: after reducing

the cutoff of the initial 3N interaction we keep cD = −0.2 and refit cE to the 4He ground-

state energy, while the ci ’s keep their original values dictated by the N3LO NN force. For
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the details of the fitting procedure see Section 1.2, and for the obtained LECs see Table 1.1.

In this way we have obtained additional 3N interactions with cutoff momenta of 350, 400

and 450MeV/c .

We discuss the obtained 16O ground-state energy using the different 3N interactions in

the NN+3N-full Hamiltonian as function of model-space size and for a range of SRG flow-

parameters from α = 0.04 to 0.08fm4 in context of Figure 6.9. The left panel shows for ref-

erence the 16O ground-state energy obtained with the standard 3N interaction regularized

with Λ3N = 500MeV/c , where we have diagnosed the significant missing contributions of

SRG induced four- and multi-nucleon interactions through the sizable α dependence. The

remaining panels show the IT-NCSM results using the reduced-cutoff 3N interactions. The

pattern of the flow-parameter dependence of the Nmax-extrapolated ground-state energies

is obvious: the more we reduce the cutoff of the initial chiral 3N interaction the more the

flow-parameter dependence, and accordingly the relevance of beyond-3N SRG-induced

contributions, is suppressed. For Λ3N = 400MeV/c the flow-parameter dependence varies

only by 2%. At Λ3N = 350MeV/c the extrapolated ground-state energies are identical for all

α parameters. Based on this finding, we can sharpen our conclusions of Section 6.1.1: the

high-momentum components of the TPE contributions, and mostly those coming with

LEC c3, are the origin of SRG-induced beyond-3N interactions.

Furthermore, in Figure 6.9 we observe that for decreasing Λ3N and accordingly de-

creasing relevance of missing SRG-induced repulsive beyond-3N contributions the 16O

ground-state energy approaches its experimental value. We stress that the ground-state

energies in case of vanishing α dependence are completely predictive since the LECs of

the reduced-cutoff 3N interaction have been fixed entirely in the three- and four-body sys-

tem. Therefore, the good agreement with experiment, e.g., with the 3N interaction using

Λ3N = 400MeV/c is remarkable. We confirm this trend in Figure 6.10 also for the heav-
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ier nuclei 24O, 40Ca, and 48Ca computed in the CCSD approach, where we have used the

normal-ordered two-body approximation introduced in Section 2.3. Here we anticipate

already the good accuracy of this approximation, which we verify in detail in Section 8.

Results obtained with the standard 3N interaction are shown as filled symbols and those

obtained employing the Λ3N = 400MeV/c cutoff are represented by the open symbols. Even

over of this mass-range we find a significantly reduced flow-parameter dependence and in

addition ground-state energies in good agreement with experiment. This is a first hint to-

wards the predictive power of the chiral interactions in this medium-mass regime. We val-

idate the 3N interaction with Λ3N = 400MeV/c throughout the remaining sections of Part II.

Moreover, we note that this interaction has also been adopted already by other groups and

has triggered a number of publications, e.g., Refs. [34, 30, 33, 31, 155, 29].

We close our discussion of the reduced-cutoff 3N interactions here with another critical

test in light nuclei. One consequence of lowering the cutoff Λ3N too far is the elimination of

interaction components that are crucial for the proper description of certain nuclear prop-

erties. We concentrate on energies here because this is the main observable studied in this

work. One crucial cross-check is, e.g., the ground-state of 10B as we have discussed already

above. Therefore, we present in Figure 6.11 the 10B spectrum including the first three ex-

cited states computed with the NN+3N-full Hamiltonian using Λ3N = 400MeV/c as func-

tion of the model-space size Nmax, and for the two HO frequencies ħhΩ = 16MeV (dashed

bars) and ħhΩ = 20MeV (solid bars). For ħhΩ = 16MeV the 1+ state seems to be the ground-

state of 10B, which is in contradiction to experiment. The spectrum is not fully converged

as evident from the strong influence of the change of the HO frequency to ħhΩ = 20MeV.

In this case the 1+ state at Nmax = 8 remains an excited state, however, due to the still sig-

nificant decrease of its excitation energy from Nmax = 6 to 8 and the overall convergence
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pattern with respect to Nmax we again expect the 1+ state to become the ground state once

convergence is reached, i.e., beyond Nmax = 10. On the other hand, a comparison to Fig-

ure 6.8 shows that the remaining excited states are rather insensitive to the change of Λ3N.

As second test we study the helium isotopic chain using IT-NCSM calculations up to

Nmax = 14 model spaces, which is sufficient to obtain robust extrapolations to infinite

model-space size in all isotopes as evident from the Nmax sequences shown for the NN+3N-

induced and NN+3N-full Hamiltonians in the left- and right-hand panel of Figure 6.12, re-

spectively. In the middle panel of Figure 6.12 we show the Nmax-extrapolated ground-state

energies of 3He to 8He based on the four largest model spaces for the NN+3N-induced

Hamiltonian (green diamonds) and the two NN+3N-full Hamiltonians withΛ3N = 500MeV/c

(red boxes) and Λ3N = 400MeV/c (violet crosses) after SRG evolution up to α = 0.08fm4.

With the NN+3N-induced Hamiltonian, which is unitarily equivalent to the initial chiral

NN Hamiltonian, we find a severe underbinding for all helium isotopes. The inclusion

of the initial 3N interaction with Λ3N = 400MeV/c provides attractive contributions, how-

ever, they remain too weak and the isospin-dependence is at variance with experiment. In

contrast, the NN+3N-full Hamiltonian with the Λ3N = 500MeV/c yields 3He, 4He, 5He and
6He in good agreement with experiment. For 7He and 8He roughly 1 MeV underbinding

is still present, but we find 8He bound with respect to 6He in agreement with experiment.

Altogether, we can conclude that the chiral NN interaction at N3LO fails to reproduce the

experimentally observed binding-energy systematics in the helium isotopic chain, but it is

correctly described using the standard chiral 3N interaction with Λ3N = 500MeV/c cutoff.

However, the reduced-cutoff 3N interaction seems to be too weak and fails in this respect.

Finally, we emphasize that for the description of the halo nuclei 6He and 8He and the un-

bound isotopes 5He and 7He also a proper description of the continuum may be relevant.
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The formal developments to extend the NCSM in this direction are discussed in Part III

of this thesis. However, given the robustness of the extrapolations shown in the left- and

right-hand panels of Figure 6.12 we do not expect an altered general conclusion here.

In summary, in this section we have identified sizable SRG-induced beyond-3N inter-

actions, which become relevant in studies of absolute energies beyond A " 10, observed via

strong flow-parameter dependencies. This effect is significantly reduced for excitation en-

ergies due to cancellations and, therefore, reliable predictions of relative energies are pos-

sible. To address this issue for absolute energies, we have investigated 3N interactions with

reduced momentum cutoffs and have identified these as possibility to circumvent strong

α dependencies also for absolute energies. Furthermore, we briefly highlighted that the

3N interaction with Λ3N = 400MeV/c , in spite of deficiencies in light nuclei, yields ground-

state energies in remarkably good agreement with experiment even in calcium isotopes.

We expand on this in more detail in the dedicated Section 9, where we apply these interac-

tions throughout the oxygen isotopic chain and in medium-mass and heavy nuclei up to
132Sn.
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SECTION 7

Sensitivity Analysis for Chiral
Three-Nucleon Forces

So far we have discussed the developments allowing for the application of 3N interac-

tions derived from chiral effective field theory, and investigated effects of the chiral NN+3N

Hamiltonians on nuclear structure observables in the upper p-shell with particular focus

on 3N interactions. The possibility to accurately study nuclear spectra in this mass region,

which is due to the strongly reduced SRG flow-parameter dependence of excitation en-

ergies discussed in the previous section, we are in the position to close the circle and to

provide feedback about uncertainties of, e.g., the low-energy constants (LECs) of the chi-

ral interactions based on ab-initio predictions of nuclear structure properties. We proceed

along these lines and study the sensitivity of nuclear structure observables to variations of

the LECs and the cutoff momentum of the chiral 3N interaction at N2LO. Such sensitivity

analyses are important to consistently propagate possible uncertainties in the chiral EFT

inputs into nuclear observables and to provide error bands obtained directly for the rel-

evant quantities. In this way we can provide direct feedback for future constructions or

improvements of the chiral nuclear interactions.

We undertake first steps in this direction by a sensitivity study with respect to varia-

tions in the LECs present in the leading chiral 3N interaction. Its operator structures have

been discussed in Eqs. (1.11), (1.12) and (1.13). The two-pion exchange contribution de-

pends on LECs c1, c3 and c4, the one-pion exchange two-nucleon contact on cD , and the

three-nucleon contact term on cE . Due to the fact that the ci constants appear already in

contributions to the N3LO NN force these are determined already during the fitting proce-

dure of the NN interaction. We list different sets of possible values for these ci constants in

Table 7.1. The first row shows the LECs of the NN interaction we use throughout this work.

This table reveals sizable variations among the individual ci constants, which might have

consequences for the nuclear spectroscopy. However, we stress that we keep the LECs in

the NN interaction at their original values, and concentrate on the effects of LEC variations

in the 3N interaction only. Recall that otherwise a complete refit of NN scattering phase
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shifts for each parameter set would be necessary.

Another motivation for the variation of the LECs in the 3N interaction has been pointed

out in Refs. [82, 160]: selected TPE diagrams that contribute to the 3N interaction at N3LO

can be included simply by using the following shifted LECs c̄ i in the N2LO operator struc-

tures

c̄1 = c1−
g 2

A Mπ

64πF 2
π

= (−0.81− 0.13)GeV−1 , (7.1)

c̄3 = c3+
g 4

A Mπ

16πF 2
π

= (−3.20+ 0.89)GeV−1 , (7.2)

c̄4 = c4−
g 4

A Mπ

16πF 2
π

= ( 5.40− 0.89)GeV−1 , (7.3)

where the first number corresponds to the original values ci dictated by the NN interac-

tion [71], respectively. We adopt these shifts of the LECs for our sensitivity studies in nu-

clear spectra throughout this section, where we also distinguish between shifting all ci

constants simultaneously or shifting them individually. Of course, each time we have to

refit the remaining LECs cD and cE to properties of light nuclei, and we make use of the

fitting procedure described in Section 1.2, which we used before for the construction of

the reduced-cutoff 3N interactions. For completeness, we provide the used LECs for the

sensitivity studies in Table 7.2.

We begin the sensitivity study with the low-energy positive-parity spectrum of 12C,

which we discussed already in the previous section for the standard NN+3N Hamiltonian

in Figure 6.8 and found the excitation energies robust with respect to changes of the SRG

flow-parameter. In addition, we have identified the first 1+ state as very sensitive to the

inclusion of the initial chiral 3N interaction. Hence, this state may serve as an ideal candi-

date for our sensitivity studies. In Figure 7.1 we depict the 12C spectrum obtained with the

IT-NCSM at Nmax = 8 with ħhΩ= 16MeV and SRG flow-parameter α= 0.08fm4. The first col-

umn shows the spectrum resulting from the NN+3N-induced Hamiltonian, i.e., without an

initial 3N interaction. As can be seen from the second column, the inclusion of the initial

chiral 3N interaction causes several level crossings and the first excited 1+ and 4+ states

are affected most. The next column shows the results when we adopt the shifted LECs c̄ i

Table 7.1 – Possible sets of the LECs ci obtained from different fit procedures. The constants
quoted in the first line correspond to the NN interaction used throughout this work. Note that
each individual set of LECs can have in addition sizable errors from the depending on the re-
spective fit procedure. For details we refer to the respective references given below.

c1 [GeV−1] c3 [GeV−1] c4 [GeV−1]

Entem et al. – Ref. [71] -0.81 -3.20 5.40
Rentmeester et al. – Ref. [156] -0.76 -4.78 3.96
Büttiker et al. – Ref. [157] -0.81 -4.70 3.40
Fettes et al. – Ref. [158] -1.23 -5.94 3.47
Entem et al. – Ref. [70] -0.81 -3.40 3.40
Bernard et al. – Ref. [159] -0.93 -5.29 3.63
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Figure 7.1 – IT-NCSM excitation spectrum of 12C obtained for different Hamiltonians specified in
the column headings and differing in the values of LECs ci . The details are explained in the text.
The IT-NCSM model space is truncated at Nmax = 8, the HO frequency is ħhΩ = 16MeV and the
SRG flow-parameter α = 0.08fm4. Experimental energies are taken from Ref. [149]. (published
in [161])

of Eqs. (7.1)-(7.3), i.e., in effect here we include selected N3LO TPE contributions as argued

above. We find most of the excitation energies rather insensitive. However, a prominent

exception is the first 1+ state, whose excitation energy is increased significantly. We inves-

tigate the question if this effect is due to a single LEC or if it is a cumulative effect of all

three shifted LECs with help of the spectra shown in columns four to six, where in each

column only a single ci has been shifted while the remaining LECs are kept at their orig-

inal values. Comparing the spectra of the columns labeled ’c1 shifted’ and ’c4 shifted’ to

the original NN+3N-full spectrum shown in the second column reveals that the shifts of

LECs c1 and c4 do not change the spectrum at all — not even the first 1+ state. This is dif-

ferent for the individual shift of c3, where we observe a significant change of the first 1+

excitation energy by about the same amount as for the simultaneous shift of all ci s shown

in column three. An interesting detail is that although the sensitivity of all other states are

rather small, the pattern observed in columns four to six for the first 1+, the first 0+ and

the second and third 2+ states is identical, which is a (slight) increase of their excitation

energy for the c3 shift. Similarly the first 2+ and first 4+ states react with a slight decrease of

their excitation energy. In conclusion, we find the LEC c3 playing an important role for the
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Figure 7.2 – IT-NCSM excitation spectrum of 12C obtained for different Hamiltonians specified in
the column headings and differing in the values of LEC cD or the 3N cutoff Λ3N. The details are
explained in the text. Remaining parameters are identical to Figure 7.1. (published in [161])

excitation energy of the first 1+ state in 12C, while the excitation energies of other states

are only slightly affected by c3 and are essentially independent of c1 and c4. To confirm

the important role of c3 we depict in the next-to-last column the spectrum obtained with

c3 = 0. The corresponding value for the refitted cE can be found in Table 6.2. We find again

a dramatic change of the excitation energy of the first 1+ state. Also most of the high-lying

states are affected, while the first 2+ and 4+ energies remain unaltered.

In the same way we can extend our sensitivity analysis to the LEC cD attached to the

OPE diagram of the leading chiral 3N interaction and the 3N cutoff Λ3N. The refitted values

for cE are listed in Tables 7.2 and 6.2, respectively. The corresponding spectra are shown in

Figure 7.2 starting again with the NN+3N-induced spectrum for reference. Columns two to

four depict the spectrum for the increasing LEC cD = −1, −0.2 (corresponding to the stan-

dard NN+3N-full Hamiltonian) and +1, respectively. Again the largest effect is observed

for the excitation energy of the first excited 1+ state, while the remaining energies stay es-

sentially unaffected. The discussion is very similar for the sensitivities with respect to the

variations of Λ3N shown in columns five to seven. The only significant change is observed

for the first 1+ excitation energies while all other energies show only minor changes. At this

point we briefly summarize: we clearly identified c3 as the most important LEC for the 12C

spectrum, and the first 1+ state in 12C shows by far the largest sensitivity to details of the
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Figure 7.3 – Identical to Figure 7.1 but for nucleus 10B. For further details see text. Experimental
energies are taken from Ref. [148].

3N interaction, in particular to c3, cD and Λ3N.

Another prime example of an excitation energy of a 1+ state strongly controlled by

3N forces is contained in the 10B spectrum as we have discussed already in the previous

section. Accordingly, we repeat the sensitivity study presented above for the low-energy

positive-parity spectrum of 10B. One should keep in mind that the 10B spectrum, and in

particular the energy difference between the first 1+ and 3+ states, is not yet fully con-

verged at Nmax = 8 as evident from Figure 6.11, and, connected to this, a slight dependence

on the SRG flow parameter remains, see Figure 6.8. Consequently, differences of excita-

tion energies observed in the following may also incorporate effects of different rates of

convergence for the individual Hamiltonians. Nevertheless, we carry out the sensitivity

analysis for 10B using the fixed model-space parameters Nmax = 8 and ħhΩ = 16MeV and

at α = 0.08fm4. The comparison of the first two columns of Figure 7.3 demonstrates the

sensitivity of the excitation energy of the first 1+ state to the inclusion of initial 3N in-

teractions. Analogously to the study of 12C above, column three depicts the spectrum

where we adopted the shifted LECs c̄ i and the spectra for the individual shifts are shown in

columns four to six. Bearing in mind the convergence issue mentioned above, the signifi-

cant changes in the spectrum obtained with c̄ i are limited to the first 1+ state and perhaps

the first 2+ state. Analogously to 12C we find c3 responsible for these effects while shifts of

c1 and c4 do not change the excitation energies of these states. Interestingly, the individual
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Figure 7.4 – Identical to Figure 7.2 but for nucleus 10B. For further details see text. Experimental
energies are taken from Ref. [148].

shift of c3 yields the 1+ state degenerate with the 3+ ground state. The next-to-last column

confirms the important role of c3 by setting it to zero. This yields the wrong ground-state

spin of 10B, but interestingly the correct ordering of the first 0+ and second 1+ states. In ad-

dition, we briefly discuss the sensitivity of the 10B spectrum to variations of cD and the 3N

momentum cutoff Λ3N in context of Figure 7.4. The spectrum is generally very insensitive

to the variation of cD from −1 to +1, where the largest change is again observed in the first

1+ excitation energy. For the increase of the chiral 3N cutoff momentum from 400MeV/c

to 500MeV/c many excitation energies in the spectrum increase, while only the excitation

energies of the second 1+ and the first 4+ remain almost constant. Of course, as before

we find that the reduced-cutoff 3N interactions do not produce the correct ground-state

spin of 10B, whereas Λ3N = 450MeV/c yields almost degenerate 3+ and 1+ states. Also the

level ordering of the second 1+ and first 0+ state depends on the cutoff momentum and is

not correct for the larger cutoffs. However, note that the 10B spectrum may also change to

some extent due to a lack of convergence as suggested from Figure 6.8.

For our concluding remarks we focus on the excitation energy of the first 1+ state in
12C and the energy difference between the first 3+ and 1+ states in 10B, which have shown

clear sensitivities to the varied parameters. We found that an increase of c3 is lowering

the excitation energy of the first 1+ state (and likewise for the first 2+ state) of 10B, i.e., its

agreement with experiment (righter-most column) becomes worse. In contrast, for 12C
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tions (▲), and the Λ3N variations ( ). For further explanations see text. (published in [161])

the increase of c3 increases the excitation energy of the first 1+ state and leads to a better

description of the experimental value. This hints at a potential problem to describe both

1+ excitation energies starting from one Hamiltonian. To obtain a better overview of the

effects on the respective 1+ excitation energies we present a correlation plot showing the

excitation energy of the 1+ state of 12C as function of the energy difference between the 3+

and 1+ state in Figure 7.5 for all kinds of variations discussed above. In addition we mark

the experimental point by the black cross. Strikingly, all excitation energies fall on a single

line which is well separated from the experimental point. This may be interpreted as indi-

cation that the initial Hamiltonian needs to be augmented by further operator structures

to improve on this. Such operator structures may enter from sub-leading 3N interactions,

i.e., more generally from higher orders in the chiral power counting, or, alternatively from

taking the ∆(1232) degree of freedom explicitly into account [162]. One should note that

Table 7.2 – List of different LEC combinations for the N2LO chiral 3N interaction as applied for
the sensitivity studies. All of them reproduce the triton β-decay half-life and the 4He binding
energy, when combined with the N3LO NN interaction of Ref. [71].

c1 [GeV−1] c3 [GeV−1] c4 [GeV−1] cD cE

standard 3N -0.81 -3.20 5.40 -0.2 -0.205
ci -shift -0.94 -2.31 4.51 -0.2 -0.085
c1-shift -0.94 -3.2 5.4 -0.2 -0.247
c3-shift -0.81 -5.94 5.4 -0.2 -0.2
c4-shift -0.81 -3.20 4.51 -0.2 -0.13
cD = 1 -0.81 -3.40 3.40 1.0 -0.038
cD =−1 -0.81 -3.40 3.40 -1.0 -0.386
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7 Sensitivity Analysis for Chiral Three-Nucleon Forces

we did not change the NN interaction in the sensitivity study presented here. First results

along these lines will be presented in Ref. [118] and do not resolve this issue.

Altogether, we have presented first steps towards rigorous sensitivity studies and a con-

sistent propagation of uncertainties from chiral effective field theory to the nuclear struc-

ture observables of interest. By varying the LECs of the leading chiral 3N interaction we

confirm the important role of the LEC c3 for the description of the first 1+ states in 12C and
10B, which in the latter case is important to obtain the correct ground-state spin. Moreover,

c3 is also known to be important for the accurate fit of nucleon-nucleon phase-shift data

as stated in Ref. [71]. In conclusion, careful attention should be paid to the determination

of c3 and it might be interesting to repeat such sensitivity studies for next-generation chiral

interactions.
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SECTION 8

Benchmark of the Normal-Ordered
Two-Body Approximation

So far, we have focussed on the application of the full 3N interaction in the IT-NCSM

framework without any further approximations. The aim of the applications of 3N forces

in the remaining discussions of Part II is to study chiral nuclear Hamiltonians beyond the

p-shell up into the heavy-mass regime including the tin isotopic chain with emphasis on

the importance of 3N-force contributions. However, the explicit inclusion of 3N interac-

tions comes with a significantly increased computational cost and, furthermore, often-

times significant formal developments of the many-body methods are required (cf. Sec-

tions 4 and 11). Therefore, it is favorable to exploit controlled and reliable approximation

schemes for the 3N interaction that are sufficiently accurate. One such approximation

scheme can be defined with help of the normal ordering of the 3N interaction with respect

to a nucleus-specific reference state. As a result, the 3N interaction can be rewritten as a

sum of zero-, one-, two-, and three-body operators

V̂ 3N = V̂ 3N
0B + V̂ 3N

1B + V̂ 3N
2B + V̂ 3N

3B , (8.1)

where information contained in the reference state, i.e., information about the many-body

system, is used to demote parts of the vacuum-normal-ordered three-body force V̂ 3N to

lower particle ranks. With help of the operator identity (8.1) we can define the different

NOnB approximations where (n+1)-body operators on the right-hand side of Eq. (8.1) are

discarded. We have discussed the general formalism of this recipe in Section 2.3, includ-

ing the discussion how to obtain the required matrix elements for the case of the NO2B

approximation in particular for large model spaces. Throughout this section, we study

the anatomy of the different NOnB approximations and focus on the benchmark of the

NO2B approximation by comparison to calculations using the full 3N interaction explic-

itly, thus, quantifying the quality of this approximation. We note that the SRG evolution is

still performed consistently at the 3N level and only afterwards the NO2B approximation
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Figure 8.1 – Benchmark of the NO2B approximation for ground-state energies of 4He (left-hand
panels) and 16O (right-hand panels) as function of the IT-NCSM model-space size and for SRG
flow parameters α= 0.04 (•), α = 0.05 ( ), α= 0.0625 (▲), α= 0.08fm4 ( ) for the NN+3N-induced
(upper panels) and NN+3N-full (lower panels) Hamiltonians, respectively. Filled symbols rep-
resent results obtained with the full 3N interaction, open symbols correspond to results using
the NO2B approximation. Beyond the largest Nmax the extrapolations to infinite model-space
size is shown. For further explanations see text. (published in [43])

of the 3N interactions is applied. The reference states we use in the following are either the

unperturbed HO Slater determinants for the IT-NCSM calculations, or the Hartree-Fock

ground-state Slater determinant for CCSD. That is, we study the single-reference NO2B

approximation as introduced in Section 2.3. A discussion of multi-reference normal or-

dering can be found in Refs. [163, 164]. The results presented in the following have been

published in Refs. [43, 46].

We begin with a comparison of the ground-state energies of 4He and 16O obtained with

and without using the NO2B approximation. In Figure 8.1 these energies are shown as

function of the IT-NCSM model-space size Nmax and for different SRG flow parameters,

where the filled symbols represent the ground-state energies obtained with the full 3N in-

teraction, whereas for the energies shown as open symbols the NO2B approximation is

used. In addition, the lines beyond the data points of the largest model spaces depict the

exponential extrapolations to Nmax = ∞. The upper left panel shows the results for 4He

obtained with the NN+3N-induced Hamiltonian which shows the largest difference be-

tween the calculation using the NO2B approximation and the full 3N interaction on the
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order of 2%. In addition, we see that the NO2B approximation leads to a dependence on

the SRG flow parameter which is absent in the full calculation. For the NN+3N-induced

Hamiltonian the NO2B approximation leads to approximately 0.6 MeV more binding for

α = 0.04fm4 whereas for α = 0.08fm4 only 0.4 MeV more binding is encountered. Also in

case of the NN+3N-full Hamiltonian we observe an α dependence triggered by the NO2B

approximation. However, note that the pattern of the flow-parameter dependence is in-

verted compared to the NN+3N-induced case and for α = 0.04fm4 the results obtained

with the full 3N interaction and with the NO2B approximation are essentially identical.

The largest difference is found here for α = 0.08fm4 and amounts to about 0.3 MeV, which

is on the order of 1%.

The right panels of Figure 8.1 show the analogous analysis for 16O. Again we observe

a slightly altered α dependence in the results obtained with the NO2B approximation. In

contrast to 4He, the deviations of the results with NO2B approximations from the exact

results are below 1% for 16O. In the NN+3N-induced case the NO2B approximation yields

up to 1 MeV more binding for the smaller α parameters. For the NN+3N-full Hamiltonian

the NO2B approximation gives about 1MeV less binding for α= 0.04fm4 and a 1 MeV larger

binding energy for α= 0.08fm4 compared to the exact result. In summary, up to this point

we have found very good agreement of the ground-state energies obtained with the NO2B

approximation with the exact results. The largest deviations are at the level of 2% for 4He,

and they decrease below the 1% level for 16O.

For a more systematic analysis also of the NOnB approximations we investigate their

anatomy by the following procedure: we compute the ground state using the exact NN+3N

Hamiltonian without approximation and use it to compute the expectation value of the 3N

interactions resulting from the different NOnB approximations. We perform this analysis

within the IT-NCSM at fixed Nmax for the NN+3N-induced and NN+3N-full Hamiltonians,

for two SRG flow parameters and for the ground states of 4He, 16O and 40Ca, respectively.

The results are shown in Figure 8.2 in form of bar charts. Apparently, the systematics of

the expectation values for 4He is different compared to 16O and 40Ca, while the latter are

rather similar. A second general observation is that the patterns for a given Hamiltonian

are largely insensitive to the different SRG parameters. For 4He using the NN+3N-induced

Hamiltonian we obtain continuously increasing expectation values when we go step by

step from the NO0B approximation to the exact result. The 0B, 1B, 2B and 3B contribu-

tions are all repulsive and the individual contributions of the 1B and 2B part is compa-

rable to the contribution of the 3B part. This changes when we consider the NN+3N-full

Hamiltonian, where the contribution of the 3B part becomes smaller compared to the 2B

contribution and, accordingly, the NO2B approximation becomes more accurate. Also the

pattern is completely different to the one observed for the NN+3N-induced Hamiltonian,

because of different signs of the single nB contributions. In particular, the 0B contribution

is rather small and attractive. This is completely different for 16O and 40Ca, where the 0B

contribution is largest, repulsive and overestimates the exact result. This pattern is rather

similar for both nuclei, even when switching from the NN+3N-induced to the NN+3N-full

Hamiltonian, where we find the opposite sign for the 2B contribution. Finally, and most
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importantly for practical applications, the contribution of the 3B part is very small, and

the expectation value of the exact 3N interaction is in good agreement with the expecta-

tion value of the NO2B operator. Note that this agreement is significantly improved com-

pared to the 4He results. In summary, we cannot identify a clear hierarchy in the different

NOnB approximations, which is at variance with the findings for 4He in Ref. [45]. Instead,

the individual contributions depend on the Hamiltonian, the SRG flow-parameter and the

nucleus under consideration. Nevertheless, overall we can state that the NO2B approxi-

mation works very well in particular for heavier nuclei, where the deviation from the exact

result is smaller than 1%.

These findings clearly motivate to use the NO2B approximation in ab-initio studies be-

yond p-shell nuclei entering the medium-mass regime. The many-body method of choice

in this mass regime is coupled-cluster theory, which we have briefly introduced in Sec-

tion 4.3. To make sure that the quality of the NO2B approximation is equally accurate for

this many-body method and the medium-mass regime, we need to perform CC calcula-

tions with explicit 3N interactions. This is a non-trivial task on its own as already em-

phasized in Section 4.3. First CCSD calculations with explicit 3N interactions have been

reported in Ref. [45] for 4He, and independently this task has been accomplished by Sven

Binder, who in particular managed to facilitate first CCSD and Λ-CCSD(T) calculations

with explicit 3N interactions in the medium-mass regime [96, 46, 98]. Due to this, we can
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explicitly benchmark the NO2B approximation in closed-shell nuclei for various values of

α, the two types of Hamiltonians, and also for different HO frequencies. The calculations

are conducted up to a maximum single-particle energy quantum number 2n + l ≤ emax,

and we consider the range emax = 4 to 12. For each parameter set a Hartree-Fock calcula-

tion is performed to optimize the single-particle basis and to stabilize the iterations for the

solution of the CC equations (4.18) - (4.20). As already mentioned in Section 4.3, the CC

approach in principle requires 3N matrix elements up to E3max = 3 · emax, which is clearly

prohibitive for emax = 12 (cf. Section 2.2.3). Therefore, we use the truncation E3max = 12

for the benchmark of the NO2B approximation. For further technical details about the CC

calculations with explicit 3N interactions we refer to Ref. [96].

In Figure 8.3, we present CCSD ground-state energies of 24O, 40Ca, 48Ca and 56Ni as

function of the model-space truncation emax computed using the NO2B approximation

shown as open symbols in comparison to the results of CCSD calculations explicitly in-

cluding the exact 3N interaction (CCSD3B) denoted as filled symbols. The calculations are

conducted at the optimal frequency for the respective nucleus (we discuss the frequency

dependence in context of Figure 8.4 below). The left columns show the results obtained

with the NN+3N-induced Hamiltonian, and in the right column we show the ground-state

energies for the NN+3N-full Hamiltonian, where we use the reduced-cutoff 3N interaction

with Λ3N = 400MeV/c , since this choice reduces the SRG flow-parameter dependence sig-

nificantly as discussed in Section 6.3. As evident from Figure 8.3, all CCSD calculations are

converged or are very close to convergence with respect to emax. This encourages more

systematic studies of chiral Hamiltonians in comparison to experimental results, which

are shown as horizontal lines and, overall, reveal remarkable agreement with the CCSD

results. However, a number of technical points need to be clarified in order to be able to

quantify the remaining uncertainties of the calculations, related to , e.g., the SRG model

space, the 3N matrix element truncation E3max, and to triples corrections to the CCSD cal-

culations. Therefore, we postpone these discussions into the next section and concentrate

here exclusively on the benchmark aspect of the NO2B approximation.

Indeed, Figure 8.3 demonstrates the quality of the NO2B approximation: for all result-

ing ground-state energies regardless of the nucleus, Hamiltonian, emax, or SRG flow param-

eter the NO2B approximation proves to be very accurate. The deviations from the CCSD3B

energies are below 1% for all cases, e.g., for 56Ni the largest deviation is about 4 MeV. In

addition, we confirm the accuracy of the NO2B approximation in Figure 8.4, where we

show the dependence of the ground-state energies for the same set of nuclei on the used

HO frequency ħhΩ, again for the NN+3N-induced and NN+3N-full Hamiltonians obtained

from CCSD3B as filled symbols and from CCSD with NO2B approximation as open sym-

bols. We find the HO frequency irrelevant for the quality of the NO2B approximation as

the deviations from the CCSD3B results are almost constant across the frequency range.

Moreover, we find the effect of the residual 3B contributions, i.e., the step towards the ex-

act treatment of the 3N interaction, always repulsive. Thus, it has the same sign as the

total contribution of the SRG-induced plus initial 3N interactions. We have published the

quantitative results for these studies with and without NO2B approximation in Ref. [43]. In
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Figure 8.3 – Ground-state energies of 24O, 40Ca, 48Ca and 56Ni as function of the model-space trun-
cation emax obtained from CCSD in Hartree-Fock basis with explicit chiral 3N interaction (filled
symbols) in comparison to CCSD calculations using the NO2B approximation (open symbols)
for SRG flow parameters α = 0.02 (•), α = 0.04 ( ), α = 0.08fm4 (▲), and at the optimal HO fre-
quency. Results for the NN+3N-induced and the NN+3N-full(Λ3N = 400MeV/c ) Hamiltonian are
shown in the left- and right-hand columns, respectively. Dashed lines mark the experimental
energies [144]. (published in [46])
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for SRG flow parameters α = 0.02 (•), α = 0.04 ( ), α = 0.08fm4 (▲). Results for the NN+3N-
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conclusion, we found the NO2B approximation to be extremely accurate even in medium-

mass nuclei, and for a variety of combinations of the parameters emax, ħhΩ and α, and for

both, the NN+3N-induced and NN+3N-full Hamiltonian. In the next section we build on

these findings and systematically analyze all remaining uncertainties in CC calculations

with 3N interactions and proceed to even heavier closed-shell nuclei.

A further aspect of the validation of the NO2B approximation is its effect on the non-

iterative triples corrections that are typically added on top of the CCSD energies (cf. Sec-

tion 4.3 and Ref. [98]). Such investigations require the inclusion of explicit 3N interactions

in the triples corrections, which has been worked out by Sven Binder [96]. The main con-

clusion, relevant for the remaining studies in this work, is that contributions of the normal-

ordered 3B part to the triples correction are in general negligible. However, if the size of

the total triples correction becomes comparable to the effect of the NO2B approximation

on the CCSD energy as it is found for soft interactions, the normal-ordered 3B part should

be explicitly included at the level of CCSD. For further details we refer to the detailed dis-

cussions in Refs. [96, 98].
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SECTION 9

Ab-Initio Studies from Oxygen to
Heavy Tin Isotopes

In this section we apply chiral NN+3N Hamiltonians in ab-initio calculations to study

nuclei beyond the p-shell with particular focus on features triggered by the inclusion of

3N interactions. This discussion benefits from our previous developments of the reduced-

cutoff 3N interactions that lead to suppressed contributions of SRG-induced four- and

multi-nucleon interactions to ground-state energies, see Section 6.3. We start with the

investigation of even isotopes throughout the oxygen chain and pay special attention to

the neutron-rich isotopes and the position of the drip line, which has been shown before

in more approximate calculations to be sensitive to the inclusion of 3N interactions [165].

Furthermore, the NO2B approximation, which we found to be extremely accurate in the

previous section, facilitates investigations of still heavier nuclei at moderate computa-

tional cost. This allows for the extension of our studies well beyond the oxygen chain,

towards nuclei with closed sub-shells in the calcium, nickel, and even tin isotopic chains

using the coupled-cluster approach. We present the corresponding results in Section 9.2

including a detailed analysis of the theoretical uncertainties from the different truncations.

9.1 Even Oxygen Isotopes with Chiral NN+3N Interactions

As first systematic application of the chiral NN+3N Hamiltonians beyond p-shell nuclei we

consider the even oxygen isotopes starting from 12O up to the neutron drip line including

the neutron-rich isotopes 24O and 26O. The oxygen isotopic chain has attracted significant

attention over the past years [165, 30, 166], since it was found that shell-model calcula-

tions fail to predict the position of its neutron drip line correctly with NN interactions,

and that 3N interactions resolve this issue [165]. However, so far all previous calculations

had to resort to (uncontrolled) approximative treatments of the 3N interactions. The cal-

culations presented in the following constitute the first ab-initio study of all even oxygen

isotopes including chiral 3N interactions and have been published in Ref. [34]. Moreover,
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Figure 9.1 – IT-NCSM ground-state energies of even oxygen isotopes for the NN+3N-induced
Hamiltonian (left-hand panel) and the NN+3N-full Hamiltonian (right-hand panel) as function
of Nmax. The solid lines represent extrapolations to infinite model-space size. The SRG flow pa-
rameter is α = 0.08fm4, and we work at the optimal frequency ħhΩ for each nucleus and use the
frequency conversion for ħhΩ < 20MeV. The errors bars from the IT-NCSM threshold extrapola-
tion are smaller than the plot markers. For further details see text. (published in [34])

concerning the IT-NCSM, the isotope 26O is the heaviest nucleus studied so far with full

3N interactions.

In Figure 9.1 we present IT-NCSM ground-state energies of even oxygen isotopes rang-

ing from 12O to 26O for the NN+3N-induced (left-hand panel) and NN+3N-full Hamilto-

nian (right-hand panel), both SRG-evolved to α= 0.08fm4 and for model-space sizes up to

Nmax = 12. In addition, the solid curves denote the corresponding extrapolations to the in-

finite model-space limit based on the energies obtained in the three largest model spaces.

Except for 26O, the rate of convergence is very similar for all nuclei and for both Hamil-

tonians, and the Nmax = 12 energies are close enough to convergence to allow for stable

extrapolations using simple exponentials. Because it is known experimentally, that 26O is

unbound with respect to 24O, i.e., its ground-state is a resonance, the reduced rate of con-

vergence for the 26O energy compared to the other considered oxygen isotopes is expected.

This is due to the fact that the localized HO basis states are not well suited for the descrip-

tion of continuum effects, and we try to compensate this issue to some extent by using the

smaller HO frequency ħhΩ= 14MeV for this nucleus. The proper description of continuum

states would require an extended formalism that we cover in Part III of this work. Never-

theless, also the 26O ground-state energy does come close enough to convergence to allow

for a stable extrapolation to Nmax→∞.

We plot the extrapolated IT-NCSM ground-state energies in Figure 9.2 as red discs over

the nucleon number A, and include experimental ground-state energies as black bars. For

the NN+3N-induced Hamiltonian, which is unitarily equivalent to the initial chiral NN in-

teraction, we observe a significant underbinding of all oxygen isotopes. In addition, we
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Figure 9.2 – Ground-state energies of even oxygen isotopes for the NN+3N-induced (left-hand
panel) and the NN+3N-full (right-hand panel) Hamiltonian with Λ3N = 400MeV/c at α= 0.08fm4.
The IT-NCSM energies (•) have been extrapolated to infinite model space. The CCSD (▲),
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(published in [34])

find 26O clearly bound by about 3MeV with respect to 24O from extrapolations based on

either the three or four largest model spaces using simple exponentials (cf. Section 6). Al-

together, we are in the position to confirm by means of ab-initio calculations that the ini-

tial chiral NN interaction does not reproduce the experimental ground-state energies in

the oxygen chain and, in particular, fails to produce the correct drip line position. This is

different for the results obtained with the NN+3N-full Hamiltonian using Λ3N = 400MeV/c

shown in the right-hand panel of Figure 9.2. We find remarkable agreement with experi-

ment for all even oxygen isotopes. The sole exception is 12O, where we find a larger devi-

ation from experiment. Concerning the neutron drip line the extrapolated energies based

on the results from the three or four largest model spaces yield 26O unbound with respect

to 24O by about 2 MeV and, thus, predict the drip line in accordance with experiment.

However, we note that the uncertainties from the threshold extrapolation of the IT-NCSM,

which reach about 0.4 MeV for 26O, are not taken into account by the simple exponential

extrapolation used here. Also effects of the continuum could in principle contribute fur-

ther corrections.

Another important role of the quasi-exact IT-NCSM energies for s d -shell nuclei is to

provide benchmark points for the validation of approximate or alternative ab-initio meth-

ods. In Figure 9.2 we include ground-state energies obtained from CCSD and ΛCCSD(T)

calculations using a Hartree-Fock (HF) single-particle basis for oxygen isotopes with closed

sub-shells, and energies obtained from the ab-initio multi-reference in-medium SRG (MR-

IM-SRG) recently proposed by Heiko Hergert et al. [34] for all even isotopes. For both

methods the energies are computed using the NO2B approximation for the 3N interac-

tion with E3max = 14, which is sufficient to obtain accurate results in this mass range as
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9 Ab-Initio Studies from Oxygen to Heavy Tin Isotopes

discussed in the following subsection. Furthermore, the CC and MR-IM-SRG calculations

are performed at model-space truncations emax = 14 that lead to well-converged energies

as shown in Ref. [34]. Nevertheless, the underlying basis for both methods is still the HO

basis and, therefore, not ideally suited for the description of continuum effects. For all

isotopes we find very good agreement between the three different many-body methods,

regardless of the used Hamiltonian. The smaller computational cost of the MR-IM-SRG

approach compared to the IT-NCSM, allowed for the more detailed study of the oxygen

drip line including variations of the SRG flow parameter and the sensitivity to the cutoff

momentum Λ3N of the 3N interaction that has been presented in Ref. [34]. The drip-line

position has been found to be robust against different combinations of SRG flow param-

eters and Λ3N = 350, 400 and 450MeV/c , and to be predicted correctly at 24O in spite of a

uncertainty of the MR-IM-SRG method of 1% [33]. In combination these findings confirm

the position of the neutron drip line at 24O as previously suggested, e.g., by shell-model

calculations [165].

By comparison to the results obtained with the NN+3N-induced Hamiltonian we con-

clude that the inclusion of the initial chiral 3N interaction is vital for studies of ground-

state energy systematics throughout isotopic chains and has crucial effects on neutron-

rich isotopes. Thus, the investigation of 3N force effects in (neutron-rich) medium-mass

and heavy nuclei is desirable.

9.2 Closed-Shell Nuclei up to 132Sn with Chiral 3N Interactions

Over the past few years the ab-initio description of nuclei has been subject to vital progress

resulting in the development of several many-body methods suitable for calculations in

the medium-mass domain [33, 27, 169, 31]. One of these is CC theory which we adopt

in the following for the ab-initio description of medium-mass and heavy nuclei, such as

neutron-rich tin isotopes. One important milestone is evidently the benchmark of the

NO2B approximation and its validation as very accurate approximation presented in Sec-

tion 8. We focus on ground-state energies of closed-shell nuclei spanning the range from

the oxygen chain across the calcium and nickel isotopes up to the tin isotopic chain. We

consider the NN+3N-induced and NN+3N-full Hamiltonians to be able to distinguish be-

tween effects caused by SRG-induced forces and effects originating from the initial chi-

ral 3N interactions. The coupled-cluster calculations are performed using a HO single-

particle basis which has been optimized via the HF method. Moreover, the Hartree-Fock

ground state is used as reference state |Φ0〉 to obtain the normal-ordered 3N matrix el-

ements in the NO2B approximation. The latter is important to include the contributions

from matrix elements with large E3max for which the storage of complete sets of J T -coupled

3N matrix elements becomes inconvenient or prohibitive (cf. Sections 2.2.3 and 2.3).

For a proper ab-initio description of medium-mass and heavy nuclei a careful error

analysis is mandatory to provide reliable conclusions. Therefore, we commit ourselves to

an analysis of uncertainties resulting from all involved truncations and highlight in par-

ticular the technical developments necessary to reduce or eliminate these uncertainties.
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Figure 9.3 – Illustration of different SRG model-space truncations used to investigate correspond-
ing uncertainties. See text for the detailed discussion.

Eventually, we deal with the question of whether present ab-initio techniques can reliably

access the heavy mass regime. The results discussed in the following have been published

in Ref. [136].

9.2.1 The SRG Model-Space — Revisited for Heavy Nuclei

To start the uncertainty analysis we come back to the investigation of the sufficiency of the

finite SRG model space, which we investigated in Section 5 for light nuclei only. We trun-

cate the SRG model space by specifying a maximum Jacobi HO energy quantum number

ESRG(J12) that we vary as function of the angular momentum (ramps). If the SRG transfor-

mation is performed at low frequencies the relevant momentum range of the initial Hamil-

tonian may not be covered sufficiently. In the domain of light nuclei this has been the case

for frequencies ħhΩ< 20MeV, and we have remedied this issue by means of the frequency-

conversion technique introduced in Section 3.3. In Figure 9.4, we show CCSD ground-state

energies obtained without and with frequency conversion as solid and open symbols, re-

spectively. We investigate the NN+3N-induced and NN+3N-full Hamiltonians for the set

of SRG flow parameters α = 0.02, 0.04, and 0.08fm4, and the parent frequency for the SRG

transformation of ħhΩSRG = 36MeV. Already for 40Ca we observe a slight increase of the

ground-state energies at frequency ħhΩ = 24MeV similarly for both types of Hamiltonians.

With increasing mass of the nuclei this effect is enhanced and also promoted to larger fre-

quencies, i.e., it shifts the frequency minimum to larger frequencies. For 78Ni the artificial

increase at ħhΩ= 24MeV amounts to more than 100 MeV compared to the results obtained

with frequency conversion, and even slight effects at ħhΩ = 32MeV can be observed. All

remaining results presented in this section are obtained using the frequency-conversion

technique, so that we can exclude artificial behaviors at low frequencies caused by the SRG

transformation model-space truncation.
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approximation is used. (published in [136])

Next, we study the dependence of the energies on the SRG model-space truncation

ESRG(J12), i.e., on the different ramps. For clarity we illustrate the different truncations

used in the following in Figure 9.3. The ramp labeled & , defined by ESRG(J12 ≤ 5
2 ) = 40,

ESRG(J12 ≥ 13
2 ) = 24 with a linear decrease in steps of four in between, has been used as de-

fault for the previous studies in the p-shell and also throughout the oxygen isotopic chain.

Due to the fact that with increasing nucleon number more single-particle orbitals with rel-

atively large single-particle angular momenta are occupied in the reference state, one may

anticipate that large relative angular momenta during the SRG transformation in three-

body space become more and more important, and hence the SRG model-space trunca-

tion& might be too small to maintain accurate results. To check this explicitly we employ

the significantly larger SRG model space= with ESRG(J12 ≤ 7
2 ) = 40, ESRG(J12 =

9
2 ) = 38 and

ESRG(J12 ≥ 11
2 ) = 36 to study the deviations from the ground-state energies obtained from

Hamiltonians evolved within model-space truncation & . These energetic deviations per

nucleon are plotted in Figure 9.5 for the set of closed-shell nuclei ranging from 16O to 132Sn.

Up to 40Ca the results obtained with both model-space truncations are basically identi-

cal, i.e., in particular for the discussion of the oxygen isotopes in the previous subsection

the SRG model-space truncation& is sufficient. Starting from 48Ca, with increasing mass

number the deviations become significantly larger. For 56Ni, which is the heaviest nucleus

we studied in the previous section, the deviations amount to about 0.4 MeV per nucleon

for the NN+3N-full Hamiltonian, which might be still acceptable. However, the deviations
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Figure 9.6 – Differences of CCSD ground-state energies per nucleon corresponding to ramp> , ",
? and@ relative to the largest SRG model space= for the NN+3N-full Hamiltonian. CCSD uses
a HF basis, and the remaining parameters are emax = 12, ħhΩ= 24MeV, E3max = 14, and α= 0.08fm4,
and the NO2B approximation is used. (published in [136])

grow to more than 7 MeV per nucleon in the tin isotopes, i.e., the SRG model space& dra-

matically fails when we aim at accurate descriptions of nuclei in this mass region. This

clearly underlines the importance of the proper investigation of the involved truncations

present during the preparation of the Hamiltonian, in particular, if one enters the heavy-

mass regime.

This implies of course the necessity to ensure that the larger SRG model space = is

sufficient in this respect. We study this in context of Figure 9.6, where we depict the dif-

ference relative to the ramp = of the ground-state energies per nucleon obtained with

four different SRG model spaces which are also illustrated in Figure 9.3. We start to as-

sess the large relative angular momentum part of the SRG model space by introducing the

auxiliary ramp > which is identical to = for J12 ≤ 5
2 and J12 ≥ 11

2 but for the intermedi-

ate J12 uses E=SRG(J12)− 2, i.e., the slope is shifted to smaller J12. In addition, we employ

ramp " identical to= up to J12 =
11
2 but uses E=SRG(J12)− 2 for larger J12. For both auxiliary

ramps we conduct CCSD calculations and plot the deviations of the ground-state ener-

gies for ramp > and ramp " from the largest ramp = in Figure 9.6 as green and orange

bars, respectively. The deviations are negligible for both ramps throughout the oxygen,

calcium and nickel isotopic chains. In the latter they are largest for 78Ni for ramp " but

remain below 20 keV per nucleon. Throughout the tin isotopic chain the deviations con-

tinuously increase but stay below 20 keV per nucleon for ramp > , and below 50 keV per

nucleon even up to 132Sn. Given the accuracy we aim at in this mass regime these are

only minor deviations, and we conclude that the large-J12 part of the Hamiltonian is cov-
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9.2 Closed-Shell Nuclei up to 132Sn with Chiral 3N Interactions

ered sufficiently well by our largest ramp = . We proceed with the analogous check for

the small-J12 part of the SRG model space, again defining two auxiliary ramps. We choose

ramps ? and @ to be identical for J12 ≥ 7
2 , but for small angular momenta ramp @ is de-

fined to be smaller by E@SRG(J12 ≤ 5
2 ) = E ?SRG(J12)− 2. For computational convenience we use

here smaller SRG model spaces for large relative angular momenta, since we have inves-

tigated their influence already above. Accordingly, we observe large deviations (around

250 keV per nucleon for the heaviest nuclei) of the CCSD ground-state energies obtained

with ramps ? and @ from the largest ramp = . However, since we are now after probing

the small angular-momentum part of the SRG model space we are interested in the dif-

ference between ramps ? and @ , i.e., the difference between the light-blue and blue bars

in Figure 9.6. Up to 88Sr these bars are basically on top of each other, and also for the

heavy tin isotopes this difference remains clearly below 20 keV per nucleon. In this way we

have demonstrated that the SRG model space for partial waves with small relative angular

momenta is sufficiently covered by ramp ? , and consequently also by means of ramp= .

Altogether, this confirms the convergence with respect to the SRG model-space size also in

the heavy tin isotopes when using ramp= , which we apply as standard for all calculations

presented in the remainder of this section.

9.2.2 Coupled-Cluster Model-Space Convergence

Next, we discuss the convergence of the coupled-cluster calculations with respect to their

model-space truncations. First we study the convergence pattern concerning the under-

lying HO single-particle basis shown in Figure 9.7 for 48Ni, 68Ni, 100Sn and 132Sn obtained

with the NN+3N-full Hamiltonian at SRG flow parameters 0.04 and 0.08fm4. Shown are

CC ground-state energies including triples corrections at the level of ΛCCSD(T) and CR-

CC(2,3) as open and filled symbols, respectively. Again, we observe an improved conver-

gence for the softer interactions. This facilitates to obtain for all nuclei energies reasonably

close to convergence for emax = 12. However, note that one might expect contributions of

about 0.5MeV per nucleon from larger model spaces for the heaviest tin isotope 132Sn.

The second model-space truncation we need to assess is the contribution of beyond-

doubly excited clusters. Therefore, we mark in Figure 9.7 the energies obtained at the

level of CCSD with emax = 12 as arrows that serve as reference to compare the contribu-

tions of the two triples correction methods. Overall, we find the usual pattern that the

size of the triples correction is larger for the Hamiltonian with smaller SRG flow param-

eter [46]. In addition, we note that the ΛCCSD(T) results are systematically below those

obtained from the CR-CC(2,3) method. This complies with findings from quantum chem-

istry, where ΛCCSD(T) typically overestimates the exact triples correction, while the ap-

proximative triples correction obtained via CR-CC(2,3) rather accurately reproduces the

full CCSDT results [143]. In the following, we use the size of the CR-CC(2,3) triples contri-

butions also as estimate of the convergence of the cluster expansion, and, accordingly, as

measure for uncertainties from its truncation.
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Figure 9.7 – CR-CC(2,3) (filled symbols) and ΛCCSD(T) (open symbols) ground-state energies
as function of the single-particle model-space truncation parameter emax computed for the
NN+3N-full Hamiltonian. In addition, the arrows mark the CCSD ground-state energies at
emax = 12 using a HF basis. Blue and green symbols correspond to α = 0.04fm4 and α= 0.08fm4,
respectively. Remaining parameters are ħhΩ= 24MeV and E3max = 14, and the NO2B approxima-
tion is used. (published in [136])

9.2.3 Iterative Normal Ordering for Large E3max

Due to the fact that the coupled-cluster approach is not consistent with the E3max trun-

cation of the 3N matrix elements sets, but would formally require matrix elements up to

E3max = 3 · emax, we also need to look into the convergence with respect to E3max. As dis-

cussed in detail in Section 2.2.3, full 3N matrix element sets become inconveniently large

even in the J T -coupled scheme at E3max " 16. To overcome this problem we have de-

veloped the normal-ordering scheme discussed in Section 2.3.2 that avoids the storage

of full 3N matrix element sets, and instead precompute only those 3N matrix elements

that are actually required. To ensure that the information contained in the large E3max, i.e.,

E3max > 14 matrix elements is included consistently in the reference state used to derive the

NO2B approximation we take advantage of the following iterative scheme: we start with

the calculation of the Hartree-Fock ground-state including the full 3N matrix-element set

with E3max = 14. Then we use the Hartree-Fock ground-state as reference state for comput-

ing the NO2B matrix elements for the large E3max we target. These matrix elements enter

another Hartree-Fock calculation at the NO2B level yielding a reference state including in-
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Figure 9.8 – Convergence of CCSD ground-state energies with respect to E3max. CCSD is per-
formed at emax = 12 using a HF basis and for SRG flow parameters α = 0.04 (•) and 0.08fm4 ( )
for the NN+3N-induced (left-hand column) and NN+3N-full (right-hand column) Hamiltoni-
ans. Remaining parameters are ħhΩ= 24MeV, the SRG model-space truncation= and the NO2B
approximation is used. (published in [136])
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Figure 9.9 – Convergence of CCSD ground-state energies with respect to E3max here using the
too small SRG model space & . CCSD is performed at emax = 12 and for SRG flow parameters
α= 0.04 (•) and 0.08fm4 ( ) for the NN+3N-full Hamiltonians at ħhΩ= 24MeV and using the NO2B
approximation. Note the different convergence pattern compared to Figure 9.8.

formation of large E3max, which is then used to again compute the normal-ordered matrix

elements. This procedure can be iterated until we reach consistency. However, typically a

single iteration is sufficient due to the excellent accuracy of the NO2B approximation. In

this way we can easily produce NO2B matrix elements with E3max = 18 or even beyond if

necessary.

In Figure 9.8, we present the convergence of the ground-state energies for 48Ca, 48Ni,
90Zr, 100Sn and 132Sn with respect to E3max for the NN+3N-induced and NN+3N-full Hamil-

tonian. The results for SRG parameters α = 0.04 and 0.08fm4 are depicted as blue discs

and green diamonds, respectively. For nuclei up to 90Zr convergence with respect to E3max

is essentially reached at E3max = 14 independently of the used Hamiltonian or SRG flow

parameter. For the heavier nuclei between 100Sn and 132Sn the access to the large E3max

matrix element sets is crucial to reach converged results. We note that the convergence

pattern is changing throughout the tin isotopic chain: while the energies for 100Sn are well

converged with respect to E3max, we find slightly larger contributions from E3max = 18 for
132Sn and a slower convergence for α = 0.08fm4. For 132Sn the energies seem to be closer

to convergence for the NN+3N-full Hamiltonian compared to the NN+3N-induced Hamil-

tonian, hinting at ongoing cancellations and we come back to this point in Section 9.2.5.

Overall, we can state that we can largely suppress uncertainties due to the E3max truncation

as evident from Figure 9.8.

Furthermore, as we have briefly discussed at the end of Section 8 and in Refs. [46, 98],

the triples corrections for soft interactions can become comparable to the uncertainties in-

troduced by the NO2B approximation at the level of CCSD calculations. Therefore, in order

to improve the accuracy of our final calculations discussed in Section 9.2.5 further, we in-

clude the normal-ordered 3B part explicitly up to E3max = 12, and include the contributions

beyond that up to E3max = 18 using the NO2B approximation. According to this we prac-

tically remedy uncertainties stemming from the NO2B approximation at least throughout

the oxygen, calcium and nickel isotopic chains.

Another interesting detail about the convergence pattern of the CCSD ground-state en-

ergies with respect to E3max is its dependence on the SRG model space. In Figure 9.9 we

present the convergence behavior for 40Ca, 56Ni, 78Ni and 90Zr analogously to Figure 9.8 but
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9.2 Closed-Shell Nuclei up to 132Sn with Chiral 3N Interactions

here with an NN+3N-full Hamiltonian resulting from the SRG evolution using the much

smaller SRG model-space truncation & , which has been our default for light nuclei, in-

stead of the significantly larger ramp= . See Figure 9.3 to recall their definition. We have

discussed the insufficiency of the small SRG model space& , which leads to significant un-

derbinding of heavy nuclei already above. In addition, we see now from Figure 9.9 that also

the convergence pattern with respect to E3max is spoiled by the severe limitation of the SRG

model space: we observe deviations from E3max = 14 to 16 in 56Ni that occur in the results

obtained with the sufficiently large SRG model space= only in the heavy tin isotopes. For
78Ni and 90Zr we find significant changes of the energies when we increase E3max from 12

through 14 to 16, which are completely absent when we use model space= (cf. Figure 9.8).

This highlights once more the problematic of using too small SRG model spaces, as they

would lead to increased computational costs caused by the spurious demand for matrix

element sets at unnecessarily large E3max.

9.2.4 HO Frequency Dependence

As the last point on our path towards the validation of chiral Hamiltonians by means of

comparing to experimental energies we investigate the dependence of ground-state en-

ergies on the HO frequency of the underlying single-particle basis. We depict the corre-

sponding results for the NN+3N-full Hamiltonian in Figure 9.10 where we in addition in-

clude curves for different E3max. Although the coupled-cluster approach is formally no

variational calculation, one typically adopts the energy minima as function of the fre-

quency as working point. We find the frequency dependence for 40Ca, 48Ca and 56Ni essen-

tially flat where ħhΩ = 24MeV yields the minimal energy for all E3max, although the energy

is subject to a slight increase with increasing E3max. The somewhat steeper frequency de-

pendence for the heavier nuclei is consistent with the emax convergence pattern observed

in Figure 9.7. Interestingly, for the tin isotopes the energy minimum moves as function of

E3max: it seems to be located around the larger frequencies 32 or 36MeV for E3max = 12, but

with increasing E3max to 16 the minimum is shifted to smaller frequencies and we again

identify ħhΩ = 24MeV as minimum position over the studied frequency range. Overall,

we have found moderate frequency dependence, and we choose the optimal frequency

ħhΩ= 24MeV for all nuclei and calculations presented in the following subsection.

9.2.5 From 16O to 132Sn with Chiral Hamiltonians

The detailed uncertainty analysis presented in the previous four subsections together with

the benchmark of the NO2B approximation in Section 8 paves the way for first accurate

ab-initio calculations for the regime of heavy nuclei. Facilitated by a number of technical

developments we have demonstrated that we can avoid spurious results from shortcom-

ings of the SRG model space, and that we are able to provide (NO2B) matrix elements

computed with sufficiently large E3max to reach model-space convergence and to guaran-

tee that we adopt the energy minimum as function of the HO frequency of the underly-

ing single-particle basis of the coupled-cluster approach. Altogether, we find an accuracy
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Figure 9.10 – Dependence of the CCSD ground-state energies on the HO frequency for the
NN+3N-full Hamiltonian, and for the different parameters E3max = 12 (•), 14 ( ), 16 (▲), and
18 (★). CCSD uses a HF single-particle basis and is performed at emax = 12 and using the NO2B
approximation.

of the many-body approach for fixed SRG flow parameter and for a given Hamiltonian

of about 3% up to 100Sn, which is determined mainly by the CR-CC(2,3) triples correc-

tion on top of the energy obtained from CCSD [136]. For the heavy tin isotopes the accu-

racy amounts to about 4% due to the somewhat slower convergence with respect to emax

(cf. Figure 9.7). Based on this we study in the following the ground-state energies of nuclei

with closed sub-shells spanning the range from 16O up to 132Sn using SRG-evolved chiral

NN+3N-Hamiltonians that have been fixed entirely in two-, three- and four-body systems.

We use the two SRG flow parameters α = 0.04 and 0.08fm4 to investigate the SRG flow-

parameters dependence, and, therefore, indirectly the relevance of SRG-induced multi-

nucleon contributions.

We summarize all results in Figure 9.11, where panels (a) and (c) show the ground-state

energies obtained with CR-CC(2,3) in comparison to experiment for the NN+3N-induced

and NN+3N-full Hamiltonian, respectively. Panels (b) and (d) show the size of the respec-

tive triples corrections beyond the CCSD level, which we also adopt as residual uncertainty
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Figure 9.11 – CR-CC(2,3) ground-state energies per nucleon obtained with the (a) NN+3N-
induced Hamiltonian using the N3LO and N2LO-optimized chiral NN interactions, respectively,
and the NN+3N-full Hamiltonian with momentum cutoff Λ3N = 400MeV/c and Λ3N = 350MeV/c
using a HF basis. The span of the bars denotes the spread of the energies from α = 0.04fm4 to
α = 0.08fm4, while the tip points in the direction of smaller flow parameters. In panels (b) and
(d) we show the respective contributions of the CR-CC(2,3) triples corrections. Further param-
eters are ħhΩ = 24MeV, and E3max = 18 for the 3N interactions in NO2B approximation and for
their full inclusion in CCSD E3max = 12. Experimental energies are denoted as black bars [144].
(published in [136])

of the many-body method. Evidently, the triples corrections per nucleon remain rather

constant over the whole mass range and contribute between 0.1 and 0.2 MeV per nucleon.

We proceed with the more detailed discussion considering the NN+3N-induced results

depicted in panel (a). We concentrate first on the blue bars corresponding to calculations

using the standard initial N3LO chiral NN interaction, which we introduced in Section 1.1.

The span of the bars represents the difference between the results from α = 0.04fm4 to

α = 0.08fm4, and the tip points towards smaller SRG flow parameters. For the light oxy-

gen isotopes we observe only a slight dependence on the SRG flow parameter, which is at

the same order of magnitude as the triples correction, i.e., the overall uncertainty of the

calculations. Hence, this complies with our findings before that SRG-induced four- and

multi-nucleon contributions originating from the initial NN interaction are irrelevant for

ground-state energies (cf. Section 6.1 and 8 or Refs. [42, 43, 34]). In contrast, with in-

creasing mass number we find a strong increase of the SRG flow-parameter dependence.

The discussions in the previous subsections show that none of the remaining uncertainties

can explain this increased flow-parameter dependence. Therefore, we conclude that in the

heavy-mass regime the contributions of SRG-induced four- and multi-nucleon forces orig-

inating from the initial NN interaction grow and become significant. We confirm this ob-

servation by the results shown as violet bars, which correspond to the use of an alternative
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9 Ab-Initio Studies from Oxygen to Heavy Tin Isotopes

chiral NN interaction, the so-called optimized chiral NN interaction N2LOopt introduced

in Ref. [146]. In addition, the direction of the α dependence indicates an attractive charac-

ter of the SRG-induced beyond-3N interactions, while we have found the SRG-induced 3N

contribution to be repulsive, e.g., see Section 6.1 or Refs. [42, 145, 40].

We proceed with the energies computed with included initial chiral 3N interaction to

the Hamiltonian containing the N3LO NN interaction shown in Figure 9.11(c). We start

with the results obtained with the 3N interaction with Λ3N = 400MeV/c that are depicted as

red bars. We have found already before that the contributions of induced four- and multi-

nucleon contributions are suppressed when we use this 3N interaction in calcium iso-

topes, see Section 6.3 and Refs [43, 46]. Now we can confirm this even for the heavy-mass

regime, i.e., throughout the tin isotopic chain. This is striking due to the significant flow-

parameter dependence in the NN+3N-induced Hamiltonian results. This can be explained

by a cancellation of the attractive SRG-induced four- and multi-nucleon forces originat-

ing from the initial NN interaction with repulsive SRG-induced four- and multi-nucleon

forces originating from the initial 3N interaction. We study this further based on the re-

sults obtained with the 3N interaction with the further reduced cutoff Λ3N = 350MeV/c

shown as green bars. For nuclei up to 78Ni the α dependence remains comparable to the

one obtained with the Λ3N = 400MeV/c interaction, but the direction of the α dependence

is reversed. For the heavier nuclei the effective weakening of the 3N interaction due to

the further lowered cutoff Λ3N also the repulsive SRG-induced 4N contributions from the

initial 3N interaction is weakened (cf. Section 6.3). Accordingly, the attractive 4N contri-

butions induced by the initial NN interaction prevail and lead to an reversed and increased

flow-parameter dependence of ground-state energies of the tin isotopes indicating net at-

tractive four- and multi-nucleon forces.

Exploiting the cancellation of the different SRG-induced contributions for the NN+3N-

full Hamiltonian with Λ3N = 400MeV/c we take the opportunity to compare the ground-

state energies to experiment. The latter are indicated in Figure 9.11 as black bars. For both

oxygen isotopes we find very good agreement with experiment. For all remaining nuclei,

i.e., over the whole mass range from 36Ca up to 132Sn, we find a remarkable qualitative

agreement of our results with the experimental binding-energy systematics. We note once

more that the low-energy constants of the applied chiral Hamiltonian have been deter-

mined in the few-nucleon sector. Overall, we find deviations from experiment of about

1 MeV per nucleon overbinding for all studied nuclei beyond 36Ca. Altogether, this high-

lights the predictive power of chiral Hamiltonians even in the heavy-mass regime. Nev-

ertheless, for more rigorous and quantitative statements or analyses one has to include

consistently the sub-leading 3N interaction from N3LO and also the leading 4N interac-

tion that emerge at this order of the chiral power counting. In particular our findings that

SRG-induced 4N interaction originating from the initial NN interaction, which have been

found to be negligible in light nuclei, can be amplified by combinatorics may indicate rele-

vant contributions of initial chiral 4N interactions in the medium- and heavy-mass regime.

Note that these effects have been found to contribute a few hundred keV to the binding en-

ergy of 4He in Ref. [170].
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Finally, we note that charge radii computed with the Hartree-Fock reference state are

systematically too small compared to experiment [171] with increasing deviations reach-

ing from 0.3fm to 1.0fm from 16O to 132Sn. These discrepancies are larger than the effects

expected from beyond-Hartree-Fock correlations or the consistent SRG evolution of the

radii [109], and pose one challenge for future investigations from first principles already in

light nuclei, which may require improvements of the initial chiral Hamiltonians.

In conclusion, we have presented first precise ab-initio calculations of heavy nuclei

based on SRG-evolved chiral NN+3N Hamiltonians which allow for the direct validation of

chiral Hamiltonians by means of ground-state energies of closed-shell nuclei in this mass

regime. For this a careful uncertainty analysis is mandatory, and has been enabled by var-

ious technical developments we discuss throughout this work, such as the SRG transfor-

mation in sufficiently large model spaces (cf. Section 3 and 5), the normal-ordering of 3N

matrix elements with large E3max (cf. Sections 2.3 and 8), and the extension of the coupled-

cluster approach to heavy nuclei with the inclusion of 3N interactions that is discussed in

detail in Ref. [96].
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INTRODUCTION TO PART III

Aggregates of neutrons and protons exhibit not only bound states, which have been the

focus of the discussion so far, but also unbound resonances and scattering states. These

states are of particular importance in different aspects: on the one hand nuclear scatter-

ings and reactions are a standard tool for experimental nuclear physics, e.g., to populate

and study properties of nuclear states that are not accessible by radioactive decays. On

the other hand properties of atomic nuclei and their consequences in nuclear reactions

are crucial to understand the formation of the lightest elements few minutes after the Big

Bang and also to explain the abundance and production of heavier elements [6]. It is evi-

dent that nuclear theory should also provide the capabilities to describe scattering states

and resonances of atomic nuclei and, thus, nuclear reactions.

Thus, the goal is to arrive at a unified ab-initio framework capable to describe struc-

tural properties as well as reactions of nuclei and, in view of the previous discussion in this

thesis, capable to include chiral 3N interactions. This defines the topic of the third part

of this thesis, which is organized as follows: We start with general aspects of many-body

scattering to identify the quantities we need to compute later on and to fix the notation

in Section 10. In Section 11 we introduce the formalism of the resonating group method

combined with the no-core shell model (NCSM/RGM) that constitutes a nuclear scatter-

ing technique. In particular, we present in detail the necessary steps to extend the formal-

ism to 3N interactions and highlight how this can be achieved also for targets beyond the

lightest nuclei. After discussing the R matrix theory that is used to solve the NCSM/RGM

equations in Section 12, we apply the extended formalism to nucleon-4He scattering and

study the effects of chiral 3N interactions on phase shifts, differential cross sections and

analyzing powers in Section 13. Finally, in Section 14 we introduce the so-called no-core

shell model with continuum (NCSMC) that combines the NCSM and NCSM/RGM to an

ab-initio approach capable to describe bound and continuum states on equal footing.

Since the NCSM/RGM Hamiltonian kernels are one component also of the NCSMC equa-

tions the former developments for the NCSM/RGM facilitate the extension of NCSMC to

include 3N interactions. Finally, we employ the NCSMC with explicit 3N interactions for

first ab-initio investigations of the impact of the continuum and of the 3N interactions on

the spectrum of 9Be.
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SECTION 10

Generalities on Many-Body Scattering

We begin our investigations of the theoretical formalism for nuclear scatterings and

reactions with a brief overview of general prerequisites for the theoretical description of

collisions involving many-nucleon systems. Ultimately, we aim at a unified ab-initio the-

ory for the description of bound and continuum states, as motivated in the introduction.

Before we describe the steps towards such a theory throughout the next sections, here we

define the necessary notation, give the expressions for scattering states and their connec-

tion to scattering phase shifts, cross sections and polarization observables.

For the theoretical description of nuclear reactions the main focus is on A-nucleon sys-

tems that consist of different sub-clusters of nucleons. For a given energy E the particles

may form all kinds of energetically allowed partitions p with A =
∑

i Ap ,i , where Ap ,i de-

notes the mass number of the i -th sub-cluster of the partition p . An illustration of the

different possible partitions is shown in Figure 10.1. In addition, the sub-clusters may ex-

ist in any of their excited states so that the total energy amounts to E . To keep track of all

this information we introduce the concept of channels: we define a particular channel ν

by specifying the partition p of the A nucleons into sub-clusters and, in addition, by listing

their intrinsic energies and the good quantum numbers assigned to the internal states of

all sub-clusters, respectively. Each channel has a so-called threshold energy Eν =
∑

i EAp (ν ),i

given by the sum of the intrinsic energies of all nucleon sub-clusters EAp (ν ),i . A channel is

said to be open if its threshold energy Eν is smaller than the total energy E of the system,

and it is closed if Eν ≥ E . To account for all these degrees of freedom adequately one needs

to use a many-body basis which is sufficiently flexible. The most general basis states de-
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10 Generalities on Many-Body Scattering

scribing all these degrees of freedom may be written as

|Φ〉= &̂p |φ1ν 〉⊗ |φ2ν 〉⊗ |r⃗ 〉 (10.1)

+ &̂p ′ |φ1ν ′ 〉 ⊗ |φ2ν ′ 〉 ⊗ |φ3ν ′ 〉 ⊗ |r⃗ , r⃗ ′〉 (10.2)

+ &̂p ′′ |φ1ν ′′ 〉 ⊗ |φ2ν ′′ 〉 |φ3ν ′′ 〉 ⊗ |φ4ν ′′ 〉 ⊗ |r⃗ , r⃗ ′, r⃗ ′′〉 (10.3)
...

+ |φλ〉 , (10.4)

where states |φiν 〉 are the intrinsic states of sub-cluster i and the channel index ν contains

the relevant quantum numbers of all sub-clusters, we state more explicitly which quan-

tum numbers it includes in different contexts below. The operators &̂p are the inter-cluster

antisymmetrizers that ensure the antisymmetry of the basis state |Φ〉 also for nucleon ex-

changes between different clusters, and the states |r⃗ , r⃗ ′, ...〉 describe the relative distances

between the nuclear clusters. In the last line we have singled-out square integrable A-body

states, which are sometimes referred to as distortion states [172]. They help to handle the

so-called specific distortion, which is related to the attractive character of the nuclear in-

teraction at the long range and, therefore, the clusters tend to deform to make the best use

of the attraction. Stated differently, this induces correlations in the A-body many-body

states which can be described most efficiently by the inclusion of the distortion states. We

come back to this in Section 14. In practical calculations it is, however, not feasible to take

all terms shown in Eqs. (10.1)-(10.4) into account. Instead, we have to restrict the number

of channels to a subset of the most important ones for the considered energy range. We can

check if the selection is reasonable via the explicit investigation of the convergence of scat-

tering observables with respect to the number of included channels. At high energies the

number of relevant channels with significant contributions may become quite large. Fi-

nally, an important formal requirement of channels is that they are stable, i.e., that they do

not decay into different sub-clusters for any finite time t . This is important for the mathe-

matical description of the scattering process, for which we investigate so-called scattering

states for times t → ±∞, as discussed below. In fact, scattering experiments are quite of-

ten done involving unstable particles with respect to the definition above, a prominent

example being scattering experiments involving the unstable neutron. However, in prac-

tice an infinite long lifetime means that the lifetime of the sub-clusters in a channel needs

to be much larger compared to the actual collision time. Then it is sufficient to detect

the sub-clusters before they are subject to decay. Scattering theory is usually adapted to

this perspective. For instance, for the description of nuclear collisions with neutrons one

usually neglects the weak interaction in the Hamiltonian, because the scattering process

is dominated by the strong interaction. Thus, in the calculations the neutron is actually

stable.

The nuclear Hamiltonian we use to describe the nuclear collisions is given by

Ĥ = T̂int+ V̂ NN+ V̂ 3N , (10.5)
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...

Figure 10.1 – Illustration of the possible partitions of an A = 9 system. Partitions that can be ob-
tained by means of inter-cluster antisymmetrizers are not shown. The vertical ellipsis denotes
partitions with four or more nucleon sub-clusters.

i.e., it is identical to the Hamiltonians investigated in the nuclear structure calculations

discussed in Part II, in particular we account for 3N interactions explicitly. Accordingly, we

will be able to study effects of the initial chiral 3N interactions by comparing results ob-

tained with the NN+3N-full Hamiltonian to those from the NN+3N-induced Hamiltonian

in the context of scattering observables (for the definitions of the Hamiltonians see Sec-

tion. 3).

To be able to draw such conclusions we are required to investigate nuclear collisions

in an ab-initio fashion. We present two possible approaches for this in Sections 11 and 14.

Both of them rely on the usual approach to describe the scattering process as boundary-

value problem, that is, only the states of the A-body system for long times before and after

the actual scattering process need to be investigated. Stated differently, we need to deter-

mine the asymptotic states of the system for times t →±∞. Thus, the complicated details

and structure of the collision present at intermediate times need not to be considered ex-

plicitly. In the following we restrict ourselves to channels with partitions involving two

sub-clusters, i.e., to those depicted in the second row of Figure 10.1, and allow different

channels in terms of excitations of the sub-clusters. We outline the general steps leading

to the outgoing scattering state, which defines the phase shifts and differential and total

cross sections or polarization observables. We assume that the incident particles can be

described by a plane wave propagation in z -direction. We have to define an ansatz for the

asymptotic scattering state |Ψ+νM1M2MT1 MT2
(t →∞)〉. Here and in the following, we adopt the

notation in which all quantum numbers defining the considered channel are collected the
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10 Generalities on Many-Body Scattering

index ν . If particular quantum numbers are important in the context of a specific equation

we may denote them explicitly, while they may be implicitly contained in ν in a different

context. The Mi and MTi are the projection quantum numbers of the total intrinsic angular

momenta ˆ⃗Ii and isospins ˆ⃗Ti for each of the two sub-clusters, respectively. The stationary

scattering state can be expressed as superposition of partial-wave states as follows [173]

|Ψ+νM1M2MT1 MT2
〉

= i (2π)−
3
2

1
π

k

∑

Jπ

∑

s l

∑

T

C−1
ν

?

(2l + 1)e iσl

!

I1 I2

M1 M2

3
3
3
3
3

s

Ms

"!

s l

Ms 0

3
3
3
3
3

J

M

"!

T1 T2

MT1 MT2

3
3
3
3
3

T

MT

"

|ΨJ MπT MT
ν 〉 , (10.6)

with MT =MT1+MT2 , M =M1+M2 and the Coulomb phase shiftσl . In writing Eq. (10.6) we

used the context-dependent meaning of the index ν : on the left-hand side it includes ν =

{E1, I π1
1 ,T1; E2, I π2

2 ,T2}, while on the right-hand side it is given as ν = {E1, I π1
1 ,T1; E2, I π2

2 ,T2;s l },
where l is the orbital angular momentum quantum number of the relative motion of the

two clusters. The Clebsch-Gordan coefficients take care of the angular-momentum cou-

pling of ˆ⃗I1 and ˆ⃗I2 to the so-called channel spin ˆ⃗s . In addition, also the isospins of the

sub-clusters, ˆ⃗T1 and ˆ⃗T2, are coupled to the total isospin ˆ⃗T . This is convenient because the

partial-wave states |ΨJ MπT MT
ν 〉 reflect the basic symmetries of the used Hamiltonian which

make the total relative orbital momentum J and its projection as well as the total parity

to good quantum numbers. In addition, we also assume the isospin to be a good quan-

tum number, which is an approximation but typically very well fulfilled. The partial-wave

states themselves are the quantities we need to calculate. They constitute the interface

for the scattering formalisms we introduce in the next sections. The ansatz for these par-

tial wave states can get quite complicated as we have seen in Eqs. (10.1)-(10.4). However,

for collisions where the restriction to the partition with two sub-clusters is sufficient, they

may be written as an expansion over basis states given by Eq. (10.1) in the generic angular-

momentum coupled form

|ΨJ MπT MT
ν0

〉=
∑

ν

ˆ

dr r 2 uν (ν0)(r )

r
&̂p
@

( |φ1ν 〉⊗ |φ2ν 〉)s ⊗ |r l m 〉
AJ MπT MT , (10.7)

where ν0 indicates the channel of the incident particles. The expansion coefficients uν (ν0)(r )

are the relative-motion wave functions that need to be calculated. Inserting these with

help of Eq. (10.7) in Eq. (10.6) fully determines the scattering state. We will come back to

this ansatz in more detail in the next Section about the NCSM/RGM approach.

Apart from that, we can construct the general form of the asymptotic scattering state

following some general arguments: first of all, the whole formalism is developed under the

requirement that all potentials tend to zero faster than 1
r

for r →∞. The sole exception is

a point-Coulomb interaction VC =
Z1ν1Z2ν e 2

r
between the sub-clusters. If we switch off all

other interactions and keep only this point-Coulomb interaction, we are essentially left

with Coulomb scattering. Under these circumstances no coupling of the interaction to
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the angular momenta of the sub-clusters exists, so that the asymptotic wave function3 is

simply given by the product of the relative-motion wave function ψ+C (r⃗ ) from Coulomb

scattering and the wave functions of the sub-clusters with the identical orbital quantum

numbers as the incident wave function, i.e.,

Ψ+νM1M2MT1 MT2
({ξ⃗i },{η⃗i }, r⃗ )

r→∞−−→ψ+C (r⃗ )φν I1M1T1MT1
({ξ⃗i })φν I2M2T2MT2

({η⃗i }) , (10.8)

where the sets of coordinates {ξ⃗i } and {η⃗i } denote the Jacobi coordinates used for the de-

scription of the respective sub-clusters. We list convenient Jacobi coordinates for binary-

cluster scattering in Appendix B. The relative-motion wave function ψ+C (r⃗ ) is known from

Coulomb scattering and has the asymptotic form

ψ+C (r⃗ )
|r−z |→∞
−−−−→ (2π)−

3
2

:

e i (k z+η ln(k (r−z ))) + fC (Ω)
e i (k r−η ln(2k r ))

r

;

(10.9)

with the Coulomb scattering amplitude fC (Ω) depending on the solid angle Ω and the Som-

merfeld parameter η. We not discuss the details of Coulomb scattering here, a detailed dis-

cussion can be found, e.g., in Ref. [174]. If we now switch on again the nuclear and higher-

order electromagnetic interactions, the radial dependence of the asymptotic wave func-

tion still needs to coincide with the form of the outgoing spherical wave from Coulomb

scattering due to the fact that the point-Coulomb potential is the only interaction present

at r →∞. However, now the angular momenta of the sub-clusters may have changed due

to interaction effects. Therefore, the asymptotic behavior of the scattering wave function

reads

Ψ+νM1MT1 M2MT2
({ξ⃗i },{η⃗i }, r⃗ )

r→∞−−→ ψ+C (r⃗ )φν I1M1MT1
({ξ⃗i })φν I2M2MT2

({η⃗i })

+ (2π)−
3
2

∑

ν ′

∑

M ′
1M ′

2

∑

M ′
T1

M ′
T2

e i (kν ′r−ην ′ ln(2kν ′ r ))

r
f
(νM1M2MT1 MT2 )

ν ′M ′
1M ′

2M ′
T1

M ′
T2

(Ω)φν ′I ′1M ′
1M ′

T1
({ξ⃗i })φν ′ I ′2M ′

2M ′
T2
({η⃗i }) ,

(10.10)

where we introduce for each possible outgoing channel the complex scattering amplitudes

f
(νM1M2MT1 MT2 )

ν ′M ′
1M ′

2M ′
T1

M ′
T2

(Ω) at which the upper indices denote the angular quantum numbers of the

incident particles. Equating the asymptotic limit of the scattering state (10.6) converted

in coordinate-space representation with the asymptotic form (10.10) yields the scattering

amplitudes [173]

3We switch to coordinate representation here to be consistent with most of the scattering literature.
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10 Generalities on Many-Body Scattering

f
(νM1M2MT1 MT2 )

ν ′M ′
1M ′

2M ′
T1

M ′
T2

(Ω)

= i

1
π

k

∑

Jπ

∑

T

∑

s l

∑
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?

2l + 1 e i (σl+σl ′ )

!
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3
3
3
3
3
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3
3
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1 M ′
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3
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Ms ′ M −Ms ′

3
3
3
3
3
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!

T1 T2

MT1 MT2

3
3
3
3
3

T

MT

"!

T ′1 T ′2

M ′
T1

M ′
T2

3
3
3
3
3

T

MT

"

(δν ′ ,νδs ′,sδl ′,l −U JπT
ν ′s ′l ′,νs l

)Y
Ms−Ms ′

l ′
(Ω) , (10.11)

where U JπT
ν ′s ′l ′,νs l is the so-called scattering matrix element. It is the central object for the

determination of the relative-motion wave functions as well as for the subsequent calcu-

lation of the scattering observables. We give the explicit expression in Section 12 on the

R-matrix theory.

For completeness we also give the expressions for the scattering observables that we

study in the following. All of them are deduced from the scattering amplitudes and can be

found in Refs. [173, 175]. The differential elastic cross section is given by

dσel.

dΩ
=

1

(2I1+ 1)(2I2+ 1)

∑

M1M2

∑

M ′
1M ′

2

3
3
3 fC (Ω)δM1,M ′

1
δM2,M ′

2
+ f

(νM1M2MT1 MT2 )

νM ′
1M ′

2MT1 MT2
(Ω)

3
3
3

2
, (10.12)

with solid angle Ω. Note that the energy dependence of the differential cross section is ab-

sorbed in the scattering matrix elements entering the scattering amplitude f
(νM1M2MT1 MT2 )

ν ′M ′
1M ′

2M ′
T1

M ′
T2

(Ω)

in Eq. (10.11). The inelastic or reaction cross sections can be obtained from

dσν→ν ′

dΩ
=

1

(2I1+ 1)(2I2+ 1)

∑

M1M2

∑

M ′
1M ′

2

3
3
3
3
f
(νM1M2MT1 MT2 )

ν ′M ′
1M ′

2M ′
T1

M ′
T2

(Ω)

3
3
3
3

2

. (10.13)

In addition, also polarization observables can be computed from the scattering ampli-

tudes or differential cross sections. For a summary of their definition see, e.g., Ref. [176].

For the example of polarized spin one-half particles scattering off a unpolarized target and

unpolarized ejectiles, i.e., the reaction A(a⃗ ,b )B , the differential cross section can be written

as

:dσ

dΩ

;

=
:dσ

dΩ

;

unpol.

@

1+
∑

i

pi Ai
A

, (10.14)

with
$dσ

dΩ

%

unpol. denoting the cross section for unpolarized projectiles, pi indicating the

component of the polarization vector of the incident particles, where i ∈ {x ,y ,z }, and Ai as

the so-called analyzing powers that describe how the reaction is influenced by the individ-

ual polarization components. To compute for example the analyzing power for spin one-
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half nucleons scattering off a nucleus with vanishing spin one can exploit that in this case

the scattering amplitude can be written in terms of the non-spin-flip amplitude a (E ,Θ)

and the spin-flip amplitude b (E ,Θ) as [177, 178]

f = a (E ,Θ)1+ ib (E ,Θ)e⃗n · σ⃗ (10.15)

in matrix notation, where 1 denotes the unit matrix, σ⃗ is the vector of Pauli matrices, and

e⃗n denotes the unit vector perpendicular to the scattering plane. The analyzing power Ay

is then given by [177, 178]

Ay (Θ) =
2Im

$

a (E ,Θ)b (E ,Θ)⋆
%

|a |2+ |b |2
. (10.16)

Alternatively it can be computed directly as trace over the scattering amplitude by [178]

Ay =
Tr(f σy f †)

Tr(f f †)
. (10.17)
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SECTION 11

The No-Core Shell Model / Resonating
Group Method

The combination of the no-core shell model with the resonating-group method (NCSM/

RGM) is an ab-initio technique for the description of nuclear collisions, which has been

introduced in Refs. [47] and [48]. It is a microscopic cluster technique using RGM-inspired

basis states (10.1). The clusters occurring in each reaction channel are described via eigen-

states obtained from the NCSM. Both the interactions between the sub-clusters and the

interactions used within the NCSM to obtain the cluster eigenstates are given by realistic

Hamiltonians. The NCSM/RGM approach has been successfully applied in various binary-

cluster collisions such as nucleon-nucleus scatterings [47, 48, 179], for deuterons scatter-

ing off nuclei [180], for the radiative capture reaction 7Be(p,γ)8B [181] and 3H(d,n)4He,

and 3He(d,p)4He fusion reactions [182]. Recently, the NCSM/RGM formalism has been ex-

tended to partitions involving three sub-clusters [183]. All these studies were performed

using realistic SRG-transformed Hamiltonians at the NN-only level for a particular SRG

flow parameter. Thus, neither SRG-induced 3N interactions nor initial 3N contributions

have been studied in the NCSM/RGM approach so far.

Throughout this section we generalize the NCSM/RGM formalism to explicitly include

3N Hamiltonians allowing for studies of 3N-force effects on scattering observables from

first principles. This brings us in the position to apply the chiral NN+3N Hamiltonians

not only in nuclear structure as discussed in Part II, but also in ab-initio predictions of

nuclear-reaction observables. At the same time, tests of the chiral NN+3N interactions

in the context of nuclear collisions become possible and may reveal valuable information

about the quality of modern nuclear forces. The formalism as described in this section

allows these investigations also beyond the lightest nuclei. We note that the extension of

the NCSM/RGM formalism to include 3N interactions resulted in a collaborative publi-

cation recently in Ref. [51], where we presented the first ab-initio study of nucleon-4He

elastic scattering including 3N interactions. In this paper two alternatives for the treat-

ment of the additional terms from 3N interactions are discussed — one using precom-
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11 The No-Core Shell Model / Resonating Group Method

ξ⃗1

ξ⃗2

ξ⃗0

ϑ⃗4

η⃗3,2

Figure 11.1 – Description of two nucleon sub-clusters by Jacobi coordinates ξ⃗0, ξ⃗1, ξ⃗2 , ϑ⃗4 and η⃗3,2,
exemplarily for an A = 5 system. Black dots denote the nucleons, red dots represent the centers
of mass of different sub-systems used for the construction of the Jacobi coordinates. For the
mathematical definition of the Jacobi coordinates see Appendix B.

puted coupled densities applicable mainly to targets up to A = 4 and one using uncoupled

densities computed on-the-fly applicable also to heavier targets. Since we have devel-

oped the latter approach we will focus mainly on this variant here, however we will high-

light the differences where interesting. We start with the discussion of generalities on the

NCSM/RGM formalism following Refs. [47, 48] and [51]. Then, we discuss the derivations

of the norm and Hamiltonian kernels in Section 11.2. We summarize the results for all

kernels in Section 11.2.4 and discuss the differences compared to the alternative approach

mentioned above. Finally, we give the details about the implementation of the kernels in

Section 11.2.5.

11.1 General Formalism

The general idea of the binary-cluster NCSM/RGM approach is based on the division of

the intrinsic A-body Hilbert space;A into three parts

;A =;A−a ⊗;a ⊗;rel . (11.1)

Where the (A − a )-body target and the a -body projectile are described within the Hilbert

spaces;A−a and;a , respectively. Here we restrict ourselves to the case of binary-cluster

systems, however note that NCSM/RGM approach was also successfully formulated and

applied for three-cluster systems [183]. The remaining degree of freedom, namely the rel-

ative motion of the two nuclear clusters, is considered within the Hilbert space;rel. Be-

cause scattering processes as well as the properties of the nuclei themselves must conform

translational invariance, we can safely omit the center-of-mass degrees of freedom of the

A-body system from the outset. This means, the center of mass of the A-body system is

not considered explicitly, which is accomplished by Jacobi coordinates as shown in Fig-

ure 11.1, where ξ⃗0 points to the center of mass of the A-body systems and is thus omitted

as explained above. Stated differently, the Hilbert spaces in Eq. (11.1) are intended for the
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11.1 General Formalism

description of intrinsic degrees of freedom of the A-body system only.

For the description of this A-nucleon system by means of the single partition made of

two sub-clusters we need a suitable many-body basis. One possible choice are the RGM

inspired states [172, 184, 185, 186]

|Φ〉= |ΨA−a E1I π1
1 T1〉⊗ |Ψa E2I π2

2 T2〉⊗ |r l m 〉 , (11.2)

where |ΨA−a E1I π1
1 T1〉 and |Ψa E2I π2

2 T2〉 are translational invariant eigenstates of the target

and projectile obtained from the ab-initio (IT-)NCSM with Ei as energy, I πi

i as angular mo-

mentum and parity, and Ti as isospin quantum numbers. The state |r l m 〉 describes the

relative degree of freedom of the two clusters with quantum numbers for the relative dis-

tance r of the two clusters and the corresponding relative orbital angular momentum l

and its projection m . In order to reflect the basic symmetries of the nuclear Hamiltonian

already in the underlying basis, it is convenient to switch to angular-momentum-coupled

basis states. Hence, starting from Eq. (11.2) and coupling the angular momenta of the

NCSM eigenstates to the channel spin ˆ⃗s , and the latter with the orbital angular momen-

tum ˆ⃗l to the total angular momentum ˆ⃗J and analogously coupling the isospins to total

isospin ˆ⃗T , we obtain the binary-cluster channel states

|Φ J MπT MT
νr 〉=

<
$

|ΨA−a E1I π1
1 T1〉⊗ |Ψa E2I π2

2 T2〉
%s T ⊗ |r l 〉

=J MπT MT

, (11.3)

which will span the NCSM/RGM A-body model space. Analogously to Section 10 we collect

all discrete quantum numbers in the channel index ν = {A−a , E1, I π1
1 ,T1;a , E2, I π2

2 ,T2;s l } and

denote the continuous dependence on r as explicit index. Note that we omit the projection

quantum numbers M and MT for brevity in the following.

We use the binary-cluster channel basis { |Φ JπT
νr 〉} to expand the partial-wave scattering

state on the right-hand side of Eq. (10.6) in analogy to Eq. (10.7)

|ΨJπT 〉=
∑

ν

ˆ

dr r 2 g JπT
ν (r )

r
&̂ν |Φ JπT

νr 〉 , (11.4)

where the sum over ν runs over all considered channels and the radial integral accounts for

all relative distances in the binary system. The relative-motion wave functions are given

by g JπT
ν (r )

r
= 〈Φ JπT

νr |ΨJπT
ν0
〉, i.e., they constitute the overlap between the binary-cluster channel

states and the partial-wave scattering state. Of course |ΨJπT 〉must be fully antisymmetric

with respect to particle exchange. The NCSM eigenstates of the projectile and target fulfill

this for nucleons within the clusters, and we enforce the antisymmetry with respect to

nucleon exchanges between different clusters using the inter-cluster antisymmetrizer

&̂ν =

B

(A −a )!a !

A!

∑

i

sgn(6i )6̂i (11.5)

where the summation covers all permutations 6i of nucleons belonging to different clus-

ters. To obtain the relative-motion wave functions g JπT
ν (r ), which are the unknowns in
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11 The No-Core Shell Model / Resonating Group Method

expansion (11.4), we multiply the stationary many-body Schrödinger equation Ĥ |ΨJπT 〉 =
E |ΨJπT 〉 from the left by 〈Φ JπT

ν ′r ′ |&̂ν ′ and obtain

∑

ν

ˆ

dr r 2@; JπT
ν ′ν (r

′,r )− E4 JπT
ν ′ν (r

′,r )
A g JπT

ν (r )

r
= 0 (11.6)

with the so-called Hamiltonian kernel

; JπT
ν ′ν (r

′,r ) = 〈Φ JπT
ν ′r ′ |&̂ν ′Ĥ&̂ν |Φ

JπT
νr 〉 (11.7)

and norm kernel

4 JπT
ν ′ν (r

′,r ) = 〈Φ JπT
ν ′r ′ |&̂ν ′ &̂ν |Φ

JπT
νr 〉 . (11.8)

The total energy in the center-of-mass frame is denoted by E and the intrinsic microscopic

Hamiltonian Ĥ is decomposed as

Ĥ = T̂rel+ Ârel+
ˆ̄VC (r̂ )+ ĤA−a + Ĥa . (11.9)

Here, T̂rel is the kinetic energy of the relative motion of the two clusters, and ĤA−a and Ĥa

are the intrinsic Hamiltonians of the target and projectile, respectively, including NN and

3N interactions. In addition we have added and subtracted the average Coulomb inter-

action between the clusters ˆ̄VC (r̂ ) =
Z1νZ2ν e 2

r̂
with nuclear charge numbers Z1ν and Z2ν of

the clusters. The subtracted potential ˆ̄VC (r̂ ) is absorbed in the inter-cluster potential Ârel,

which in addition includes all nuclear interactions between nucleons belonging to differ-

ent clusters and is given by

Ârel =

A−a∑

i=1

A∑

j=A−a+1

e 2(1+ τ̂3,i )(1+ τ̂3,j )

4|ˆ⃗ri − ˆ⃗rj |
−

1

(A −a )a
V̂C (r̂ )+ V̂ NN

i j

+

A−a∑

i<j=1

A∑

k=A−a+1

V̂ 3N
i j k +

A−a∑

i=1

A∑

j<k=A−a+1

V̂ 3N
i j k , (11.10)

where τ̂3,i denotes the three-component of the isospin operator. The subtraction of the

average Coulomb potential cancels the leading 1
r

contribution of the point Coulomb inter-

action and, thus, leads to an 1
r 2 behavior of the overall Coulomb contribution in Ârel [48] re-

sulting in a localized Ârel, which is important for the description of the asymptotic scatter-

ing states by Coulomb functions, i.e., to obtain well-defined phase shifts (see Section 12).

As before, we denote the NN interaction as V̂ NN and the 3N force as V̂ 3N. We present the

derivation of explicit formulas for the norm and Hamiltonian kernels as well as details of

their implementation in the next subsection. The extension of the formalism to 3N inter-

actions will give rise to two new contributions in addition to the well-known NN kernels,

however also for the NN kernels we will introduce a new computational scheme compared

to the one in Refs. [47, 48].

Having computed the kernels (11.7) and (11.8), our remaining task is to solve Eq. (11.6).
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11.1 General Formalism

It is important to note that the relative-motion wave functions g JπT
ν (r ) are not usual Schrö-

dinger wave functions because of the nonorthogonality of the basis. Nevertheless, they

obey the same asymptotic boundary conditions as Schrödinger wave functions, since the

nonorthogonality is of short range, i.e., typically the norm kernel 4 JπT
ν ′ν (r,r ′) practically

vanishes for relative distances larger than 3 fm as discussed in detail in Ref. [48]. But the

radial motion wave functions g JπT
ν (r ) are affected at small distances by this nonorthogo-

nality, and consequently one has to be careful when using these wave functions for cal-

culations of observables, e.g., transition matrix elements. To avoid this complication we

introduce the orthogonalized version of the NCSM/RGM equations (11.6) by multiplying

with the inverse square root of the norm kernel4 − 1
2 from the left and inserting a identity

matrix in terms of4 − 1
24

1
2 . We obtain

∑

ν

ˆ

dr r 2
<

H
JπT
ν ′ν (r,r ′)− Eδν ′ν

δ(r − r ′)

r ′r

=χ JπT
ν (r )

r
= 0. (11.11)

where the Hermitian nonlocal orthorgonalized Hamiltonian kernel is given as

H
JπT
ν ′ν (r

′,r ) =
∑

γ′

ˆ

dy ′y ′2
∑

γ

ˆ

dy y 24
− 1

2
ν ′γ′ (r

′,y ′) ;̄ JπT
γ′,γ (y

′,y )4
− 1

2
γν (y ,r ) (11.12)

and the new unknowns χ JπT
ν (r ) are related to the original relative-motion wave functions

by

χ JπT
ν (r )

r
=
∑

γ

ˆ

dy y 24
1
2
νγ(r,y )

g JπT
γ (y )

y
, (11.13)

and accordingly

g JπT
ν (r )

r
=
∑

γ

ˆ

dy y 24
− 1

2
νγ (r,y )

χ JπT
γ (y )

y
. (11.14)

In addition, the orthogonalized channel states |ξJπT
νr 〉 are given in terms of the original ones

of Eq. (11.3) by

|ξJπT
νr 〉=

∑

γ

ˆ

dy y 24
− 1

2
νγ (r,y )&̂γ |Φ JπT

γy 〉 . (11.15)

For the calculation of the square roots of the norm kernel and also for the derivation of

the kernel formulas in the next section we define the HO channel states by

|Φ JπT
νr 〉=

Nmax∑

n

<
$

|ΨA−a E1I π1
1 T1〉⊗ |Ψa E2I π2

2 T2〉
%s T ⊗ |nl 〉

=JπT
Rnl (r,b )

.
=

Nmax∑

n

Rnl (r,b ) |Φ JπT
νn,b 〉 , (11.16)

where we expand the state describing the relative motion of the nuclear clusters |r l m 〉 in
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11 The No-Core Shell Model / Resonating Group Method

a set of HO eigenstates |nl m 〉 yielding the HO radial wave functions as expansion coeffi-

cients 〈nl ′m ′|r l m 〉 = Rnl (r )δl ′l δm ′m . The truncation Nmax of this expansion is performed

consistently with the truncation of the HO model space used in the NCSM calculations

of the sub-cluster eigenstates. Of course, the convergence of this expansion needs to be

checked, however, it is valid as long as the involved operators are localized. We introduced

in Eq. (11.16) the notation |Φ JπT
νn,b 〉 for the binary-cluster channel states using an HO eigen-

state for the description of the relative motion. Here b =
?

ħh/µΩ =
?

A/A − 1b0 represents

the HO length with b0 =
?

ħh/mNΩ and the reduced mass µ = A−1
A

mN . We will drop the HO

length b as label in the HO channel states in the following for brevity.

The (inverse) square roots of the norm kernel matrix can be computed using the re-

lation of the coordinate-space norm kernel to the norm kernel within the truncated HO

model space

4 JπT
ν ′ν (r

′,r ) =δν ′ν
<δ(r ′ − r )

r ′r
−
∑

n

Rnl (r
′)Rnl (r )

=

+

Nmax∑

n′n

Rn′l ′(r
′)Λ JπT

ν ′n′νnRnl (r ) . (11.17)

The second term is the convolution of the HO model-space norm kernel whose matrix

elements are denoted by Λ JπT
ν ′n′νn = 〈Φ

JπT
ν ′n′ |&̂

2 |Φ JπT
νn 〉 and the first term is a correction due the

finite size of the HO model space.

The (inverse) square roots of the norm kernel in the HO model space are then com-

puted as usual by diagonalizing the HO norm kernel matrix and then using the eigenvalues

λ
± 1

2
Γ and eigenvectors |ϕ JπT

Γ 〉 to obtain their spectral representation

Λ
± 1

2
ν ′n′νn =

∑

Γ

〈Φ JπT
ν ′n′ |ϕ

JπT
Γ 〉λ

± 1
2
Γ 〈ϕ

JπT
Γ |Φ

JπT
νn 〉 . (11.18)

Then the (inverse) square roots are in analogy to Eq. (11.17) given by

4
± 1

2
ν ′ν (r

′,r ) =δν ′ν
<δ(r ′ − r )

r ′r
−
∑

n

Rnl (r
′)Rnl (r )

=

+
∑

n′n

Rn′l ′ (r
′)Λ
± 1

2
ν ′n′νnRnl (r ) , (11.19)

where one has to exclude the Pauli-forbidden states with λΓ=0 for the inverse operation to

be well-defined [48]. Inserting this last equation and Eq. (11.12) in Eq. (11.11) we can cast

the system of coupled differential equations into the form

<

−
ħh2

2µ

∂ 2

∂ r ′2
+
ħh2l (l + 1)

r ′2
+ V̄C (r

′)− (E − E
I
′π′1
1 T ′1
ν ′ )

=χ JπT
ν ′ (r

′)

r ′
+
∑

ν

ˆ

dr r 2 W JπT
ν ′ν (r

′,r )
χ JπT
ν (r )

r
= 0

(11.20)

where all nonlocal terms are collected in the potential W JπT
ν ′ν (r

′,r ) and E
I
′π′1
1 T ′1
ν ′ denotes the

energy eigenvalue of the target within channel ν ′.

Having developed the general formalism to arrive at Eq. (11.20), the path towards scat-

tering observables is a two-step process: first we need to compute the norm and Hamil-

tonian kernels, which is the computationally most demanding task. We discuss the corre-
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11.2 The Norm and Hamiltonian Kernels

sponding details in the next subsection. The second step is the actual solution of Eq. (11.20)

for which we utilize the technique of the R-matrix formalism, as discussed in Section 12.

11.2 The Norm and Hamiltonian Kernels

In this section we present the derivation of the norm and Hamiltonian kernels including

NN+3N interactions, and afterwards give details about their implementation. From now

on we restrict ourselves to the single-nucleon projectiles, i.e., a = 1. All calculations ad-

dressed later on have been done in the single-nucleon formalism. Of course this leads to

some simplifications, however, the generalizations to a ≥ 1 are straight forward and can be

found for the case of NN interactions in Ref. [180].

11.2.1 Derivation of the Kernels

As first consequence of the restriction to single-nucleon projectiles we can simplify the

inter-cluster antisymmetrizer to

&̂ =
1
1

A

$

1−
A−1∑

i=1

T̂i ,A
%

, (11.21)

where we dropped the index ν for brevity. Hence, the squared antisymmetrizer which we

will employ for the derivation of the kernels is given as

&̂ 2 =
1

A

$

1−
A−1∑

i=1

T̂i ,A
%$

1−
A−1∑

i ′=1

T̂i ′,A
%

=
1

A

$

1− 2
A−1∑

i=1

T̂i ,A +

A−1∑

i=1

A−1∑

i ′=1

T̂i ,AT̂i ′,A
%

=
1

A

$

1− 2
A−1∑

i=1

T̂i ,A +

A−1∑

i=1

T̂i ,A T̂i ,A +

A−1∑

i ′=1

A−1∑

i ̸=i ′

T̂i ,AT̂i ′,A
%

=
1

A

$

1− 2
A−1∑

i=1

T̂i ,A +(A − 1)+
A−1∑

i ′=1

T̂i ′,A

A−1∑

i ̸=i ′

T̂i ′,i
%

=
1

A

$

1− 2
A−1∑

i=1

T̂i ,A +(A − 1)+ (2−A)

A−1∑

i ′=1

T̂i ′,A
%

=1−
A−1∑

i=1

T̂i ,A . (11.22)

To facilitate the kernel derivation we note that the binary-cluster channel states in the

single-nucleon formalism simplify to

|Φ JπT
νr 〉=

<
$

|ΨA−a E1I π1
1 T1〉⊗ |Ψ1

1
2

1
2 〉
%s T ⊗ |r l 〉

=JπT
. (11.23)

Furthermore, for all terms in the kernels that originate from transpositions (see Eq. (11.22))

as well as for computing the matrix elements 〈Φ JπT
ν ′r ′ | Ârel |Φ JπT

νr 〉we use the expansion (11.16)
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11 The No-Core Shell Model / Resonating Group Method

Figure 11.2 – Pictorial illustration of the direct (left) and exchange (right) contributions to the
norm kernel. The dotted circled line emphasizes the (A −1)-nucleon cluster, i.e., the target. The
separated line represents the projectile, here for the special case of the single-nucleon formal-
ism. The lower ends of the lines represent the initial, the upper ends the final states, respectively.

in HO channel states. The HO channel states in the single-nucleon projectile formalism

are given by

|Φ JπT
νn 〉=

<
$

|ΨA−a E1I π1
1 T1〉⊗ |Ψ1

1
2

1
2 〉
%s T ⊗ |nl 〉

=JπT
. (11.24)

We use Eqs. (11.22), (11.23) and (11.16) to convert the integral kernels into a more con-

venient form for the subsequent derivations. We find for the norm kernel

4 JπT
ν ′ν (r

′,r ) = 〈Φ JπT
ν ′r ′ |&̂

2 |Φ JπT
νr 〉= 〈Φ

JπT
ν ′r ′ | (1−

A−1∑

i=1

T̂i ,A ) |Φ JπT
νr 〉 (11.25)

=δν ′ν
δ(r ′ − r )

r ′r
− (A − 1)

∑

n′n

Rn′l ′ (r
′)Rnl (r )〈Φ JπT

ν ′n′ | T̂A−1,A |Φ JπT
νn 〉 (11.26)

.
=δν ′ν

δ(r ′ − r )

r ′r
+4 exchange

ν ′ν (r ′,r ) , (11.27)

where we exploit the fact that the (A − 1) nucleons are treated as indistinguishable par-

ticles and consequently all transpositions of the projectile with any nucleon within the

target yield identical contributions. The last line represents the typical decomposition of

the norm kernel into a direct contribution, which stems from the identical permutation

contained in &̂ , and a so-called exchange term, 4 exchange
ν ′ν (r ′,r ), which collects all other

contributions. A pictorial illustration of the norm kernel is shown in Figure 11.2. The lines

represent the nucleons, where their lower end correspond to the initial states and the up-

per ends to the final states. The lines that are encircled by the dashed circled line repre-

sent the target nucleons, whereas the separated single line denotes the single projectile

nucleon. The exchange part of the norm kernel is represented by the right diagram that

highlights the exchange of one nucleon from the target with the projectile one.

More involved due the presence of the nuclear interactions, but using similar argu-

ments we can rewrite the Hamiltonian kernel. First we make use of the commutator of

the inter-cluster antisymmetrizer with the A-body Hamiltonian
@

&̂ ,Ĥ
A

= 0 and then dis-

tinguish between terms where eigenvalue relations are applicable and terms where the
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11.2 The Norm and Hamiltonian Kernels

inter-cluster potential Ârel contributes. The latter are further split into terms including NN

interactions denoted by A NN
ν ′ν (r

′,r ), and into terms including 3N interactions denoted by

A 3N
ν ′ν (r

′,r ). We obtain

; JπT
ν ′ν (r

′,r ) = 〈Φ JπT
ν ′r ′ |Ĥ&̂

2 |Φ JπT
νr 〉= 〈Φ

JπT
ν ′r ′ |Ĥ (1−

A−1∑

i=1

T̂i ,A) |Φ JπT
νr 〉

= 〈Φ JπT
ν ′r ′ | (T̂rel+ V̄C (r̂ )+ ĤA−1+ Ârel)(1−

A−1∑

i=1

T̂i ,A ) |Φ JπT
νr 〉

= (Trel+ V̄C (r
′)+ E

I
′π′1
1 T ′1
ν ′ )N JπT

ν ′ν (r
′,r )+A NN

ν ′ν (r
′,r )+A 3N

ν ′ν (r
′,r ) , (11.28)

where E
I
π1
1 T1

1 is the eigenenergy of the target eigenstate and we also used the eigenvalue

relation for the average Coulomb potential. In addition, we use the coordinate space rep-

resentation of the relative kinetic energy of the sub-clusters

Trel=−
ħh2

2µ

1

r ′
∂ 2

∂ r ′2
r ′+
ħh2l ′(l ′+ 1)

2µr ′2
. (11.29)

We note that the Hamiltonian kernel as defined in Eq. (11.28) is non-Hermitian. For the

solution of the radial equation we use the Hermetized Hamiltonian kernel

;̄ JπT
ν ′ν (r

′,r ) = 〈Φ JπT
ν ′r ′ |&̂ Ĥ&̂ |Φ JπT

νr 〉= 〈Φ
JπT
ν ′r ′ |H −

1
2

∑

i

(T̂i A Ĥ + ĤT̂i A) |Φ JπT
νr 〉 , (11.30)

which in practice can be obtained by adding of Eq. (11.28) to itself with exchanged bra and

ket states [48]. Note that the total contribution of the average Coulomb potential to the

Hermitian Hamiltonian kernel is given by [48]

1

2
δν ′ν

$

V̄C (r
′)+ V̄C (r )

%
<δ(r ′ − r )

r ′r
−
∑

n

Rnl (r
′)Rnl (r )

=

, (11.31)

and follows from the fact that the subtracted average Coulomb part is hidden in the inter-

action kernel, which is expanded in the HO basis.

For further investigations of the part of the Hamiltonian kernel containing the two-

body interaction part,

A NN
ν ′ν (r

′,r ) = 〈Φ JπT
ν ′r ′ |

A−1∑

j=1

V̂j A
$

1−
A−1∑

i=1

T̂i ,A
%

|Φ JπT
νr 〉 , (11.32)

we split this expression into three parts:
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11 The No-Core Shell Model / Resonating Group Method

(i) first term

〈Φ JπT
ν ′r ′ |

A−1∑

j=1

V̂j A |Φ JπT
νr 〉

= (A − 1)〈Φ JπT
ν ′r ′ | V̂A−1A |Φ JπT

νr 〉

= (A − 1)
∑

n′n

Rn′l ′(r
′)Rnl (r )〈Φ JπT

ν ′n′ | V̂A−1A |Φ JπT
νn 〉 (11.33)

(ii) second term for j = i

−〈Φ JπT
ν ′r ′ |

A−1∑

i=1

V̂i A

A−1∑

j=1

T̂j ,Aδj ,i |Φ JπT
νr 〉

=−〈Φ JπT
ν ′r ′ |

A−1∑

i=1

V̂i AT̂i ,A |Φ JπT
νr 〉

=−(A − 1)
∑

n′n

Rn′l ′(r
′)Rnl (r )〈Φ JπT

ν ′n′ | V̂A−1A T̂A−1,A |Φ JπT
νn 〉 (11.34)

(iii) second term for j ̸= i

−〈Φ JπT
ν ′r ′ |

A−1∑

i=1

V̂i A

A−1∑

j=1,j ̸=i

T̂j ,A |Φ JπT
νr 〉

=−(A − 1)〈Φ JπT
ν ′r ′ |

A−2∑

i=1

V̂i A T̂A−1,A |Φ JπT
νr 〉

=−(A − 1)(A − 2)
∑

n′n

Rn′l ′ (r
′)Rnl (r )〈Φ JπT

ν ′n′ | V̂A−2A T̂A−1,A |Φ JπT
νn 〉 . (11.35)

The contributions are collected into a direct NN potential kernel given by Eqs. (11.33)

and (11.34)

A NN, direct
ν ′ν (r ′,r ) = (A − 1)

∑

n′n

Rn′l ′(r
′)Rnl (r )〈Φ JπT

ν ′n′ | V̂A−1A (1− T̂A−1,A) |Φ JπT
νn 〉 , (11.36)

and an exchange NN potential kernel defined by Eq. (11.35)

A NN, exchange
ν ′ν (r ′,r ) =−(A − 1)(A − 2)

∑

n′n

Rn′l ′(r
′)Rnl (r )〈Φ JπT

ν ′n′ | V̂A−2A T̂A−1,A |Φνn〉 . (11.37)

A diagrammatic illustration of the NN potential kernel can be found in Figure 11.3. The

general pattern is the same as for the norm kernel, the additional red dashed line connects

the interacting nucleons.

Analogously we consider the contribution of the 3N interaction to the potential kernel.

As a consequence of the single-nucleon projectile only the first term of the 3N interaction

in Eq (11.10) contributes, and yields

〈Φ JπT
ν ′r ′ |

∑

j<k

V̂j k A &̂ 2 |Φ JπT
νr 〉= 〈Φ

JπT
ν ′r ′ |

∑

j<k

V̂j k A
@

1−
A−1∑

i=1

T̂i A
A

|Φ JπT
νr 〉 , (11.38)
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11.2 The Norm and Hamiltonian Kernels

Figure 11.3 – Pictorial illustration of the direct (first two) and exchange (right) contributions to the
NN interaction kernel. The red-dashed line connects the interacting nucleons. The remaining
illustrations are identical to Figure 11.2

which we split into four parts:

(i) first term

〈Φ JπT
ν ′r ′ |

∑

i<j

V̂i j A |Φ JπT
νr 〉

=
(A−1)(A−2)

2 〈Φ JπT
ν ′r ′ | V̂A−2A−1A |Φ JπT

νr 〉

=
(A−1)(A−2)

2

∑

n′n

Rn′l ′ (r
′)Rnl (r )〈Φ JπT

ν ′n′ | V̂A−2A−1A |Φ JπT
νn 〉 (11.39)

where we again used the internal symmetry of the target state and, therefore, obtain iden-

tical contributions leading to the prefactor (A−2)(A−1)
2 , equal to the number of nucleon-pairs

in the target. In the second term of Eq. (11.38) we distinguish the following three cases

(ii) i ̸= j ∧ i ̸= k

−〈Φ JπT
ν ′r ′ |

A−1∑

j<k

V̂j k A

A−1∑

i=1,i ̸=j ,k

T̂i A |Φ JπT
νr 〉

= −(A − 1)〈Φ JπT
ν ′r ′ |

A−2∑

j<k

V̂j k AT̂A−1A |Φ JπT
νr 〉

= − (A−1)(A−2)(A−3)
2

∑

n′n

Rn′l ′ (r
′)Rnl (r )〈Φ JπT

ν ′n′ | V̂A−3A−2A T̂A−1A |Φ JπT
νn 〉 , (11.40)

(iii) i = j

−〈Φ JπT
ν ′r ′ |

A−1∑

j<k

V̂j k AT̂j A |Φ JπT
νr 〉

=− (A−1)(A−2)
2 〈Φ JπT

ν ′r ′ | V̂A−2A−1A T̂A−2A |Φ JπT
νr 〉

=− (A−1)(A−2)
2

∑

n′n

Rn′l ′ (r
′)Rnl (r )〈Φ JπT

ν ′n′ | V̂A−2A−1A T̂A−2A |Φ JπT
νn 〉 , (11.41)
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Figure 11.4 – Pictorial illustration of the direct (first three) and exchange (right) contributions to
the 3N interaction kernel. The remaining illustrations are identical to Figure 11.3

(iv) i = k

−〈Φ JπT
ν ′r ′ |

A−1∑

j<k

V̂j k AT̂j A |Φ JπT
νr 〉

=− (A−1)(A−2)
2 〈Φ JπT

ν ′r ′ | V̂A−1A−2A T̂A−1A |Φ JπT
νr 〉

=− (A−1)(A−2)
2

∑

n′n

Rn′l ′ (r
′)Rnl (r )〈Φ JπT

ν ′n′ | V̂A−1A−2A T̂A−1A |Φ JπT
νn 〉 . (11.42)

We collect the contributions of Eqs. (11.39), (11.41), and (11.42) in the direct 3N potential

kernel

A 3N, direct
ν ′ν (r ′,r ) = (A − 1)

∑

n′n

Rn′l ′ (r
′)Rnl (r )〈Φ JπT

ν ′n′ | V̂A−2,A−1,A (1− T̂A−1,A − T̂A−2,A) |Φ JπT
νn 〉 , (11.43)

and Eq.(11.40) represents the exchange 3N potential kernel

A 3N, exchange
ν ′ν (r ′,r ) =− (A−1)(A−2)

2

∑

n′n

Rn′l ′ (r
′)Rnl (r )〈Φ JπT

ν ′n′ | V̂A−1,A−2,A T̂A−1,A |Φ JπT
νn 〉 . (11.44)

The diagrams corresponding to the 3N potential kernel can be found in Figure 11.4.

11.2.2 Slater Determinant Channel States and Translational Invariant Kernels

All presented kernels have one common structure which needs to be evaluated, namely

matrix elements of a translational invariant operator Ô with respect to the HO binary-

channel states 〈Φ JπT
ν ′n′ |Ô |Φ

JπT
νn 〉. The basis states |Φ JπT

νn 〉 as defined in the previous section

are translational invariant. This implies that in particular the target eigenstates can be ob-

tained by diagonalization using an NCSM model space spanned by HO Jacobi-coordinate

basis states, as described in Section 4.1. However, the properties of the HO allow to re-

cover the translational invariant kernels in spite of using an NCSM model space spanned

by standard HO Slater determinant basis states that include center-of-mass degrees of

freedom. We will exploit this because of two reasons: the computation of target eigen-

states beyond the lightest nuclei can be done much more efficiently using the HO Slater

determinant basis because its antisymmetrization is straight forward, while the antisym-
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metrization becomes inefficient for the Jacobi HO basis for A > 4 due to the demanding

computation of the coefficients of fractional parentage. Furthermore, also the compu-

tation and derivation of the kernel formulas is simpler when using the HO Slater deter-

minant basis, because we can make use of second-quantization techniques. We briefly

review the recipe to obtain the translational invariant kernels from those computed with

respect to HO Slater determinants. Afterwards we use the latter for the derivation of the

norm and Hamiltonian kernels.

The so-called Slater determinant channel states in the single-nucleon projectile for-

malism read

|ΦC πT
νn 〉SD = |ΨA−a E1I1

π1 T1〉 |N A−1
c m=0, LA−1

c m=0〉⊗ |Ψ1
1
2

1
2 〉⊗ |

rA1
A
ℓ〉

I1

s

C π

T

(11.45)

= |ΨA−a E1I1
π1 T1〉 |N A−1

c m=0, LA−1
c m=0〉⊗ |Ψ1

1
2

1
2 〉⊗ |

rA1
A
ℓ〉 ,

ℓs

C π

T

(11.46)

with the factorization of the Slater determinant NCSM target eigenstate denoted by the

subscript SD is given by

|ΨA−a I π1
1 M1T1MT1〉SD = |ΨA−a I π1

1 M1T1MT1〉 |N
A−1
c m=0, LA−1

c m=0,M A−1
L =0〉 , (11.47)

which is a consequence of the Nmax-truncation scheme as discussed in Section 4.1. We

note that the couplings shown in Eqs. (11.45) and (11.46) are equivalent due to the fact

that the center-of-mass part of the target eigenstate is forced to be in its HO ground state.

To arrive at the translational-invariant kernels from those obtained with respect to the

states (11.45) we need a link between the two different bases. Therefore, we start from

the states (11.46) and transform the center-of-mass coordinates r⃗A and R⃗ A−1
c m =

11
A−1

∑A−1
i=1 r⃗i

of the target and projectile, by means of an orthogonal transformation into the center-of-

mass coordinate of the A-body system

ξ⃗0 =

C

A − 1

A
R⃗ A−1

c m +
r⃗A1

A
(11.48)

and the relative coordinate between the two sub-clusters

η⃗A−1=

C

1

A
R⃗ A−1

c m −
C

A − 1

A
r⃗A . (11.49)

This transformation of the underlying coordinate system is accomplished using so-called

generalized Harmonic-Oscillator Brackets (HOBs) denoted by 〈〈. . . | . . .〉〉d (see [94, 187] for
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details) with parameter d = 1
A−1 , yielding

|ΦC πT
νn 〉SD =

∑

nl (η⃗)

∑

4 ! (ξ⃗0)

〈〈nl (η⃗),4 ! (ξ⃗0);ℓ|00,nℓ(r⃗A )〉〉 1
A−1

× |ΨA−a E1I1
π1 T1〉⊗ |Ψ1

1
2

1
2 〉 |nl (η⃗)〉⊗ |4 ! (ξ⃗0)〉 .

s

T

ℓ

C π

(11.50)

The vectors in the parenthesis after the orbital angular momentum quantum numbers

indicate the coordinates used to define the orbital angular-momentum operators.

In a second step, we recouple the angular momenta with help of 6j -symbols and obtain

|ΦC πT
νn 〉SD =

∑

nl (η⃗)

∑

4 ! (ξ⃗0)

∑

J

〈〈nl (η⃗),4 ! (ξ⃗0);ℓ|00,nℓ(r⃗A )〉〉 1
A−1

Ĵ ℓ̂(−1)s+l (η⃗)+! (ξ⃗0)+C

×

1

s l (η⃗) J

! (ξ⃗0) C ℓ

2

|ΨA−a E1I1
π1 T1〉⊗ |Ψ1

1
2

1
2 〉 |nl (η⃗)〉⊗ |4 ! (ξ⃗0)〉

s

T

J

C π

=
∑

nl (η⃗)

∑

4 ! (ξ⃗0)

∑

J

〈〈nl (η⃗),4 ! (ξ⃗0);ℓ|00,nℓ(r⃗A )〉〉 1
A−1

Ĵ ℓ̂(−1)s+l (η⃗)+! (ξ⃗0)+C

×

1

s l (η⃗) J

! (ξ⃗0) C ℓ

2

|Φ JπT
νn 〉 |4 ! (ξ⃗0)〉 ,

C π

(11.51)

where we recognize the translational invariant channel states in the last line. With help of

Eq. (11.51) we can relate the translational invariant kernels to those obtained with respect

to the Slater determinant channel basis via

SD〈Φ
C πT
ν ′n ′ |Ô |Φ

C πT
νn 〉SD =

∑

nl(η⃗)

∑

n′l′(η⃗)

∑

J

∑

4 ! (ξ⃗0)

×〈〈nl (η⃗),4 ! (ξ⃗0);ℓ|00,n ′ℓ′(r⃗A )〉〉 1
A−1
〈〈n′l ′(η⃗),4 ! (ξ⃗0);ℓ|00,n ′ℓ′(r⃗A )〉〉 1

A−1

×(−1)s+s ′+l (η⃗)+l ′(η)+2C Ĵ 2ℓ̂ℓ̂′

1

s l (η⃗) J

! (ξ⃗0) C ℓ(r⃗A )

21

s ′ l ′(η⃗) J

! (ξ⃗0) C ℓ′(r⃗A )

2

×〈Φ JπT
ν ′n′ |Ô |Φ

JπT
νn 〉 . (11.52)

It is evident that inverting this relation, which can be managed by a matrix inversion, al-

lows to obtain the translational invariant kernel matrix elements from those computed in

the Slater determinant channel basis. This is convenient as both, the derivation of the

kernel formulas and their actual computation is done more easily starting from the Slater

150



11.2 The Norm and Hamiltonian Kernels

determinant channel states. Note that all partial-wave states of the Slater-determinant

channel basis do contribute to each partial wave of the translational invariant basis. This

strategy to recover the translational invariant kernels can be applied also to projectiles

with a > 1 as described for instance in Ref. [48].

11.2.3 Integration Kernels in the Slater Determinant Channel Basis

Having the ability to transform the Slater determinant basis kernels into the translational

invariant ones, the remaining task is then to derive the kernel formulas that are suitable

for implementation. Foremost, we once more change the angular-momentum couplings

of the SD channel basis according to

|ΦC πT
νn 〉SD =

∑

j

(−1)I1+C +j ŝ ĵ

1

I1
1
2 s

ℓ C j

2

|εC πT
νn 〉SD (11.53)

with the states

|εC πT
νn 〉SD = |ΨA−a E1I1

π1 T1〉SD ⊗ |Ψ1
1
2

1
2 〉 |nℓ(r⃗A )〉 ,

j

C π

T

(11.54)

which sets the starting point for the different derivations in the following.

We begin with the investigation of the norm kernel

SD〈ε
C πT
ν ′n ′ | T̂A−1,A |εC πT

νn 〉SD =

∑

M1m j

∑

MT1 mt

∑

M ′
1m ′

j

∑

M ′
T1

m ′
t

!

I1 j

M1 m j

3
3
3
3
3

C
$

"!

T1
1
2

MT1 mt

3
3
3
3
3

T

MT

"!

I ′1 j ′

M ′
1 m ′

j

3
3
3
3
3

C
$

"!

T ′1
1
2

MT ′1
m ′

t

3
3
3
3
3

T

MT

"

×SD〈ΨA−1E ′1I
′π′1
1 M ′

1T ′1MT ′1
|〈n ′ℓ′ j ′m j

1

2
mt | T̂A−1,A |ΨA−1E1I π1

1 M1T1MT1〉SD |nℓj m j
1

2
mt 〉 , (11.55)

by decoupling the angular momenta ˆ⃗Ii of the target and the projectile ˆ⃗j as well as their

isospins. In the following, we omit the isospin quantum numbers in the single-particle

states of the projectile, and the parity of the target states π1 and π′1 for brevity.
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Thus, we are left with

SD〈ΨA−1E ′1I ′1M ′
1T ′1MT ′1

|〈n ′ℓ′ j ′m j mt | T̂A−1,A |ΨA−1E1I1M1T1MT1〉SD |nℓj m j mt 〉

=
∑

α1...αA

∑

α′1...α′A

SD〈ΨA−1E ′1I ′1M ′
1T ′1MT ′1

|〈n ′ℓ′ j ′m j mt |α′1 . . .α′A〉

×〈α′1 . . .α′A | T̂A−1,A |α1 . . .αA〉〈α1 . . .αA |ΨA−1E1I1M1T1MT1〉SD |nℓj m j mt 〉

=
∑

α1...αA

∑

α′A−1α
′
A

SD〈ΨA−1E ′1I ′1M ′
1T ′1MT ′1

|〈n ′ℓ′ j ′m j mt |α1 . . .αA−2α
′
A−1α

′
A〉

×〈α′A−1α
′
A |αAαA−1〉〈α1 . . .αA |ΨA−1E1I1M1T1MT1〉SD |nℓj m j mt 〉

=
1

(A − 1)!

∑

α1...αA

SD〈ΨA−1E ′1I ′1M ′
1T ′1MT ′1

|α1 . . .αA−2αA〉a 〈n
′ℓ′ j ′m j mt |αA−1〉

× a 〈α1 . . .αA−1 |ΨA−1E1I1M1T1MT1〉SD〈αA |nℓj m j mt 〉

=
1

(A − 1)!

∑

α1...αA−2

SD〈ΨA−1E ′1I ′1M ′
1T ′1MT ′1

| â †
nℓj m j mt

|α1 . . .αA−2〉a

× a 〈α1 . . .αA−2|â n ′ℓ′ j ′m ′
j m ′

t
|ΨA−1E1I1M1T1MT1〉SD

=
1

A − 1 SD〈ΨA−1E ′1I ′1M ′
1T ′1MT ′1

| â †
nℓj m j mt

â n ′ℓ′ j ′m ′
j m ′

t
|ΨA−1E1I1M1T1MT1〉SD . (11.56)

We started by inserting the A-body identity operators consisting of product states of HO

l s -coupled single-particle states |αi 〉

1̂=
∑

α1...αA

|α1 . . .αA〉〈α1 . . .αA | (11.57)

on both sides of the transposition operator. We have explicitly performed the transposi-

tion, used the orthogonality relations of the HO single-particle states and made use of the

antisymmetry of the target eigenstates which automatically projects the (A − 1)-portion

of the HO product states on (A − 1)-body Slater determinants. Then we have introduced

the creation and annihilation operators â † and â , respectively, with respect to HO single-

particle states, which leads to the one-body density matrix. The final step was then to use

the identity

1

(A − 2)!
=

∑

α1...αA−2

|α1 . . .αA−2〉a a 〈α1 . . .αA−2| . (11.58)

We continue with the derivation of the NN interaction kernels which is done with

respect to the states |ΨA−1E1I1M1T1MT1〉SD |nℓj m j mt 〉, too. The angular-momentum cou-

plings can be accounted afterwards and are identical to those in Eq. (11.55). As we will see,

it is useful to stick to the splitting into the direct and exchange NN kernels for the deriva-

tion. We start with the direct contributions and follow essentially the same procedure as
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described above

〈Ψ′A−1E ′1I ′1M ′
1T ′1M ′

T1
|〈n ′ℓ′ j ′m ′

j m ′
t | V̂A−1A

$

1− T̂A−1,A
%

|ΨA−1E1I1M1T1MT1〉 |nℓj m j mt 〉

=
∑

α1α2...αA

∑

α′A−1α
′
A

〈ΨA−1E ′1I ′1M ′
1T ′1M ′

T1
|〈n ′ℓ′ j ′m ′

j m ′
t |α1α2 . . .αA

D

×〈α1α2 . . .αA | V̂A−1A
$

1− T̂A−1,A
%

|α1α2 . . .αA〉

×〈α1α2 . . .αA−2α
′
A−1α

′
A |ΨA−1E1I1M1T1MT1

D

|nℓj m j mt 〉

=
∑

α1α2...αA

∑

α′A−1α
′
A

〈Ψ′A−1E ′1I ′1M ′
1T ′1M ′

T1
|α1α2 . . .αA−1

D

δn ′ℓ′ j ′m ′
j m ′

t ,αA

×〈α1α2 . . .αA | V̂A−1A
$

1− T̂A−1,A
%

|α1α2 . . .αA−2α
′
A−1α

′
A〉

×〈α1α2 . . .αA−2α
′
A−1|ΨA−1E1I1M1T1MT1

D

δα′A ,nℓj m j mt

=
1

(A − 1)!

∑

α1α2...αA−1

∑

α′A−1

〈Ψ′A−1E ′1I ′1M ′
1T ′1M ′

T1
|α1α2 . . .αA−1

D

a

×〈αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂A−1A
$

1− T̂A−1,A
%

|α′A−1nℓj m j mt 〉

×a 〈α1α2 . . .αA−2α
′
A−1|ΨA−1E1I1M1T1MT1

D

=
1

(A − 1)!

∑

α1α2...αA−2

∑

αA−1

∑

α′A−1

×〈Ψ′A−1E ′1I ′1M ′
1T ′1M ′

T1
| â †
αA−1
|α1α2 . . .αA−2〉a a 〈α1α2 . . .αA−2| âα′A−1

|ΨA−1E1I1M1T1MT1〉

×〈αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂A−1A
$

1− T̂A−1,A
%

|α′A−1nℓj m j mt 〉

=
1

A − 1

∑

αA−1

∑

α′A−1

×〈Ψ′A−1E ′1I ′1M ′
1T ′1M ′

T1
| â †
αA−1

âα′A−1
|ΨA−1E1I1M1T1MT1〉

×〈αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂A−1A
$

|α′A−1nℓj m j mt 〉− |nℓj m j mtα
′
A−1〉

%

=
1

A − 1

∑

αA−1

∑

α′A−1

×〈Ψ′A−1E ′1I ′1M ′
1T ′1M ′

T1
| â †
αA−1

âα′A−1
|ΨA−1E ′1I1M1T1MT1〉

×a 〈αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂ |α
′
A−1nℓj m j mt 〉a . (11.59)

In the last step used that the antisymmetrizer is idempotent and

〈αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂
$

|α′A−1nℓj m j mt 〉− |nℓj m j mtα
′
A−1〉

=
1

2〈αA−1n ′ℓ′ j ′m ′
j m ′

t |& V̂ |α′A−1nℓj m j mt 〉a

= a 〈αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂ |α
′
A−1nℓj m j mt 〉a (11.60)

to arrive at the antisymmetric two-body states.
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Also the derivation of the exchange NN kernel follows the same lines, however the iden-

tification of antisymmetric two-body states is less obvious

SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|〈n ′ℓ′ j ′m ′

j m ′
t | V̂A−2A T̂A−1,A |ΨA−1E1I1M1T1MT1〉SD |nℓj m j mt 〉

=
∑

α1...αA

∑

α′A−2α
′
A−1

∑

α′A

SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|〈n ′ℓ′ j ′m ′

j m ′
t |α1 . . .αA〉

×〈α1 . . .αA | V̂A−2A T̂A−1,A |α1 . . .αA−3α
′
A−2α

′
A−1α

′
A〉

×〈α1 . . .αA−3α
′
A−2α

′
A−1α

′
A |ΨA−1E1I1M1T1MT1〉SD |nℓj m j mt 〉

=
∑

α1...αA

∑

α′A−2α
′
A−1

∑

α′A

SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|α1 . . .αA−1〉δn ′ℓ′ j ′m ′

j m ′
t ,αA

×〈αA−2αA−1αA | V̂A−2A |α′A−2α
′
Aα
′
A−1〉δα′A ,nℓj m j mt

×〈α1 . . .αA−3α
′
A−2α

′
A−1 |ΨA−1E1I1M1T1MT1〉SD

=
∑

α1...αA−1

∑

α′A−2α
′
A−1

SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|α1 . . .αA−1〉

×〈αA−2αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂A−2A |α′A−2nℓj m j mtα
′
A−1〉

×〈α1 . . .αA−3α
′
A−2α

′
A−1 |ΨA−1E1I1M1T1MT1〉SDδαA−1,nℓj m j mt

=
∑

α1...αA−2

∑

α′A−2α
′
A−1

SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|α1 . . . nℓj m j mt 〉

×〈αA−2n ′ℓ′ j ′m ′
j m ′

t | V̂A−2A |α′A−2α
′
A−1〉〈α1 . . .αA−3α

′
A−2α

′
A−1 |ΨA−1E1I1M1T1MT1〉SD

=
1

(A − 1)!

∑

α1...αA−2

∑

α′A−2α
′
A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †

nℓj m j mt
â †
αA−2
|α1 . . .αA−3〉a

×a 〈α1 . . .αA−3

3
3âα′A−2

âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×〈αA−2n ′ℓ′ j ′m ′
j m ′

t | V̂A−2A |α′A−2α
′
A−1〉

=
1

2(A − 1)(A − 2)

∑

αA−2

∑

α′A−2α
′
A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †

nℓj m j mt
â †
αA−2

âα′A−2
âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×a 〈αA−2n ′ℓ′ j ′m ′
j m ′

t | V̂A−2A |α′A−2α
′
A−1〉a . (11.61)

The trick to end up with antisymmetric two-body states is to rename two indices which

are summed, and introduce the factor 1
2 . We show the similar step in detail in the case of

the 3N exchange kernel.

Now we come to the derivation of the kernels involving the 3N interactions. Again we

consider the terms contributing to the direct kernels together, because this facilitates the

use of 3N matrix elements with respect to antisymmetric 3N states. We obtain for the direct
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3N contribution

SD〈Ψ
′
A-1E ′1I ′1M ′

1T ′1M ′
T1
|〈n ′ℓ′ j ′m ′

j m ′
t | V̂A-2A-1A

$

1-T̂A-1,A -T̂A-2,A
%

|ΨA-1E1I1M1T1MT1〉SD |nℓj m j mt 〉

=
∑

α1...αA

∑

α′A−2

∑

α′A−1

∑

α′A

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|〈n ′ℓ′ j ′m ′

j m ′
t |α1 . . .αA

D

×〈α1 . . .αA | V̂A−2A−1A
$

1− T̂A−1,A − T̂A−2,A
%

|α1 . . .αA−3α
′
A−2α

′
A−1α

′
A〉

×〈α1 . . .αA−3α
′
A−2α

′
A−1α

′
A |ΨA−1E1I1M1T1MT1

D

SD |nℓj m j mt 〉

=
∑

α1...αA

∑

α′A−2

∑

α′A−1

∑

α′A

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|α1 . . .αA−1

D

δαA ,n ′ℓ′ j ′m ′
j m ′

t

×〈αA−2αA−1αA | V̂
$

1− T̂A−1,A − T̂A−2,A
%

|α′A−2α
′
A−1α

′
A〉

×〈α1 . . .αA−3α
′
A−2α

′
A−1|ΨA−1E1I1M1T1MT1

D

SDδα′A ,nℓj m j mt

=
1

(A − 1)!

∑

α1...αA−1

∑

α′A−2

∑

α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|α1 . . .αA−1

D

a

×〈αA−2αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂
$

1− T̂A−1,A − T̂A−2,A
%

|α′A−2α
′
A−1nℓj m j mt 〉

×a 〈α1 . . .αA−3α
′
A−2α

′
A−1|ΨI1M1T1MT1

D

SD

=
1

(A − 1)!

∑

α1...αA−1

∑

α′A−2

∑

α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †
αA−1

â †
αA−2
|α1 . . .αA−3〉a

×a 〈α1 . . .αA−3| âα′A−2
âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×〈αA−2αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂
$

1− T̂A−1,A − T̂A−2,A
%

|α′A−2α
′
A−1nℓj m j mt 〉

=
1

(A − 1)(A − 2)

∑

αA−2

∑

αA−1

∑

α′A−2

∑

α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †
αA−1

â †
αA−2

âα′A−2
âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×〈αA−2αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂
$

|α′A−2α
′
A−1nℓj m j mt 〉− |α′A−2nℓj m j mtα

′
A−1〉

− |nℓj m j mtα
′
A−1α

′
A−2〉

%

=
1

(A − 1)(A − 2)

∑

αA−2

∑

αA−1

∑

α′A−2

∑

α′A−1

×
1

2

<

SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †
αA−1

â †
αA−2

âα′A−2
âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×〈αA−2αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂
$

|α′A−2α
′
A−1nℓj m j mt 〉− |α′A−2nℓj m j mtα

′
A−1〉

− |nℓj m j mtα
′
A−1α

′
A−2〉

%

+〈Ψ′A−1E ′1I ′1M ′
1T ′1M ′

T1
| â †
αA−1

â †
αA−2

âα′A−1
âα′A−2
|ΨA−1E1I1M1T1MT1〉SD

×〈αA−2αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂
$

|α′A−1α
′
A−2nℓj m j mt 〉− |α′A−1nℓj m j mtα

′
A−2〉

− |nℓj m j mtα
′
A−2α

′
A−1〉

%
=
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=
1

2(A − 1)(A − 2)

∑

αA−2

∑

αA−1

∑

α′A−2

∑

α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †
αA−1

â †
αA−2

âα′A−2
âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×〈αA−2αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂
$

|α′A−2α
′
A−1nℓj m j mt 〉− |α′A−2nℓj m j mtα

′
A−1〉

− |nℓj m j mtα
′
A−1α

′
A−2〉− |α

′
A−1α

′
A−2nℓj m j mt 〉+ |α′A−1nℓj m j mtα

′
A−2〉

+ |nℓj m j mtα
′
A−2α

′
A−1〉

%

=
1

2(A − 1)(A − 2)

∑

αA−2

∑

αA−1

∑

α′A−2

∑

α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †
αA−1

â †
αA−2

âα′A−2
âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×〈αA−2αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂ |α
′
A−2α

′
A−1nℓj m j mt 〉a

1
6

=
1

2(A − 1)(A − 2)

∑

αA−2

∑

αA−1

∑

α′A−2

∑

α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †
αA−1

â †
αA−2

âα′A−2
âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×a 〈αA−2αA−1n ′ℓ′ j ′m ′
j m ′

t | V̂ |α
′
A−2α

′
A−1nℓj m j mt 〉a (11.62)
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Finally, the derivation of the exchange 3N kernel reads

SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|〈n ′ℓ′ j ′m ′

j m ′
t | V̂A−3A−2A T̂A−1,A |ΨA−1E1I1M1T1MT1〉SD |nℓj m j

1
2 mt 〉

=
∑

α1...αA

∑

α′A−3...α′A

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|〈n ′ℓ′ j ′m ′

j m ′
t |α1 . . .αA

D

〈α1 . . .αA | V̂A−3A−2A T̂A−1,A

× |α1 . . .αA−4α
′
A−3 . . .α′A〉〈α1 . . .αA−4α

′
A−3 . . .α′A |ΨA−1E1I1M1T1MT1

D

SD |nℓj m j mt 〉

=
∑

α1...αA

∑

α′A−3...α′A

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|α1 . . .αA−1

D

δn ′ℓ′ j ′m ′
j m ′

t ,αA

×〈αA−3αA−2αA−1αA | V̂A−3A−2A |α′A−3α
′
A−2α

′
Aα
′
A−1〉 δαA−1,α′A

×〈α1 . . .αA−4α
′
A−3 . . .α′A−1|ΨA−1E1I1M1T1MT1

D

SD δnℓj m j mt ,α′A

=
∑

α1...αA−2

∑

α′A−3...α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|α1 . . .αA−2nℓj m j mt

D

×〈αA−3αA−2n ′ℓ′ j ′m ′
j m ′

t | V̂A−3A−2A |α′A−3α
′
A−2α

′
A−1〉

×〈α1 . . .αA−4α
′
A−3 . . .α′A−1|ΨA−1E1I1M1T1MT1

D

SD

=
1

(A − 1)!

∑

α1...αA−2

∑

α′A−3...α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|α1 . . .αA−2nℓj m j mt 〉a a 〈α1 . . .αA−4α

′
A−3 . . .α′A−1|ΨA−1E1I1M1T1MT1〉SD

×〈αA−3αA−2n ′ℓ′ j ′m ′
j m ′

t | V̂A−3A−2A |α′A−3α
′
A−2α

′
A−1〉

=
1

(A − 1)!

∑

α1...αA−2

∑

α′A−3...α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †

nℓj m j mt
â †
αA−2

â †
αA−3
|α1 . . .αA−4〉a

×a 〈α1 . . .αA−4| âα′A−3
âα′A−2

âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×〈αA−3αA−2n ′ℓ′ j ′m ′
j m ′

t | V̂A−3A−2A |α′A−3α
′
A−2α

′
A−1〉

=
1

(A − 1)(A − 2)(A − 3)

∑

αA−3

∑

αA−2

∑

α′A−3

∑

α′A−2

∑

α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †

nℓj m j mt
â †
αA−2

â †
αA−3

âα′A−3
âα′A−2

âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×〈αA−3αA−2n ′ℓ′ j ′m ′
j m ′

t | V̂A−3A−2A |α′A−3α
′
A−2α

′
A−1〉
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=
1

6(A − 1)(A − 2)(A − 3)

∑

αA−3

∑

αA−2

∑

α′A−3

∑

α′A−2

∑

α′A−1

×〈αA−3αA−2n ′ℓ′ j ′m ′
j m ′

t | V̂A−3A−2A · SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
|

×
:

â †
nℓj m j mt

â †
αA−2

â †
αA−3

âα′A−3
âα′A−2

âα′A−1
|ΨA−1E1I1M1T1MT1〉SD |α

′
A−3α

′
A−2α

′
A−1〉

+ â †
nℓj m j mt

â †
αA−2

â †
αA−3

âα′A−1
âα′A−3

âα′A−2
|ΨA−1E1I1M1T1MT1〉SD |α

′
A−1α

′
A−3α

′
A−2〉

+ â †
nℓj m j mt

â †
αA−2

â †
αA−3

âα′A−2
âα′A−1

âα′A−3
|ΨA−1E1I1M1T1MT1〉SD |α

′
A−2α

′
A−1α

′
A−3〉

+ â †
nℓj m j mt

â †
αA−2

â †
αA−3

âα′A−2
âα′A−3

âα′A−1
|ΨA−1E1I1M1T1MT1〉SD |α

′
A−2α

′
A−3α

′
A−1〉

+ â †
nℓj m j mt

â †
αA−2

â †
αA−3

âα′A−1
âα′A−2

âα′A−3
|ΨA−1E1I1M1T1MT1〉SD |α

′
A−1α

′
A−2α

′
A−3〉

+ â †
nℓj m j mt

â †
αA−2

â †
αA−3

âα′A−3
âα′A−1

âα′A−2
|ΨA−1E1I1M1T1MT1〉SD |α

′
A−3α

′
A−1α

′
A−2〉

;

=
1

6(A − 1)(A − 2)(A − 3)

∑

αA−3

∑

αA−2

∑

α′A−3

∑

α′A−2

∑

α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †

nℓj m j mt
â †
αA−2

â †
αA−3

âα′A−3
âα′A−2

âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×〈αA−3αA−2n ′ℓ′ j ′m ′
j m ′

t | V̂A−3A−2A

×
:

|α′A−3α
′
A−2α

′
A−1〉+ |α

′
A−1α

′
A−3α

′
A−2〉+ |α

′
A−2α

′
A−1α

′
A−3〉− |α

′
A−2α

′
A−3α

′
A−1〉

− |α′A−1α
′
A−2α

′
A−3〉− |α

′
A−3α

′
A−1α

′
A−2〉

;

=
1

1
6(A − 1)(A − 2)(A − 3)

∑

αA−3

∑

αA−2

∑

α′A−3

∑

α′A−2

∑

α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †

nℓj m j mt
â †
αA−2

â †
αA−3

âα′A−3
âα′A−2

âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×〈αA−3αA−2n ′ℓ′ j ′m ′
j

1
2 m ′

t | V̂A−3A−2A |α′A−3α
′
A−2α

′
A−1〉a

=
1

6(A − 1)(A − 2)(A − 3)

∑

αA−3

∑

αA−2

∑

α′A−3

∑

α′A−2

∑

α′A−1

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †

nℓj m j mt
â †
αA−2

â †
αA−3

âα′A−3
âα′A−2

âα′A−1
|ΨA−1E1I1M1T1MT1〉SD

×a 〈αA−3αA−2n ′ℓ′ j ′m ′
j

1
2 m ′

t | V̂A−3A−2A |α′A−3α
′
A−2α

′
A−1〉a (11.63)

This derivation is quite elaborate because we want to end up with 3N matrix elements

with respect to antisymmetric 3N states. We have used similar tricks already before in

the derivations of the exchange NN and direct 3N kernels. Here, we distinguish six terms

where we renamed the primed indices of the HO single-particle states in the six differ-

ent combinations that are possible by their permutations and introduced a factor 1
6 . Due

to the anti-commutation relations of the fermionic annihilation operators we can recast

them into their original order in each term, while generating the appropriate signs that

lead us to the antisymmetric 3N state in the ket. Then we can use the idempotence of the

antisymmetrizer and exploit that it does commute with the 3N interaction to obtain the

antisymmetric 3N state in the bra.

This completes the derivation of the necessary kernels for NN+3N Hamiltonians. We
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will give a summary of the results in the next subsection and confront our formulas with

those obtained using a different strategy, namely using coupled densities as, e.g., in Ref. [48].

11.2.4 Summary of Kernels — Coupled vs. Uncoupled Densities

In this section we give a summary of the kernel formulas which are the starting point for

our implementations and discuss their general structure. Afterwards, we give a short re-

view of an alternative approach where the kernel formulas are manipulated further be-

fore implementation, which is mainly followed by Quaglioni, Navrátil and Hupin, see, e.g.,

[51, 48].

We start by summarizing the norm and Hamiltonian kernels with respect to states (11.54)

as derived in the previous subsection. Here we switch the notation and replace the α as la-

bel of ℓs -coupled HO single-particle states, which was convenient for the derivations of

the formulas, by the labels a ,b , . . . to be consistent with the notation in Part I and II. Then,

the expressions for the different kernels read:

norm kernel

〈εC πT
ν ′n ′ | T̂A−1,A |εC πT

νn 〉=
∑

M1m j

∑

MT1 mt

∑

M ′
1m ′

j

∑

M ′
T1

m ′
t

!

I1 j

M1 m j

3
3
3
3
3

C
$

"!

T1
1
2

MT1 mt

3
3
3
3
3

T

MT

"!

I ′1 j ′

M ′
1 m ′

j

3
3
3
3
3

C
$

"!

T ′1
1
2

MT ′1
m ′

t

3
3
3
3
3

T

MT

"

×
1

A − 1 SD〈ΨA−1E ′1I ′1M ′
1T ′1MT ′1

| â †
nℓj m j mt

â n ′ℓ′ j ′m ′
j m ′

t
|ΨA−1E1I1M1T1MT1〉SD (11.64)

Direct NN interaction kernel

〈εC πT
ν ′n ′ | V̂A−1A

$

1− T̂A−1,A
%

|εC πT
νn 〉=

∑

M1m j

∑

MT1 mt

∑

M ′
1m ′

j

∑

M ′
T1

m ′
t

!

I1 j

M1 m j

3
3
3
3
3

C
$

"!

T1
1
2

MT1 mt

3
3
3
3
3

T

MT

"!

I ′1 j ′

M ′
1 m ′

j

3
3
3
3
3

C
$

"!

T ′1
1
2

MT ′1
m ′

t

3
3
3
3
3

T

MT

"

×
1

A − 1

∑

a b

SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †

a âb |ΨA−1E ′1I1M1T1MT1〉SD

× a 〈a n ′ℓ′ j ′m ′
j m ′

t | V̂ |b nℓj m j mt 〉a (11.65)
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Exchange NN interaction kernel

〈εC πT
ν ′n ′ | V̂A−2A T̂A−1,A |εC πT

νn 〉=
∑

M1m j

∑

MT1 mt

∑

M ′
1m ′

j

∑

M ′
T1

m ′
t

!

I1 j

M1 m j

3
3
3
3
3

C
$

"!

T1
1
2

MT1 mt

3
3
3
3
3

T

MT

"!

I ′1 j ′

M ′
1 m ′

j

3
3
3
3
3

C
$

"!

T ′1
1
2

MT ′1
m ′

t

3
3
3
3
3

T

MT

"

×
1

2(A − 1)(A − 2)

∑

a

∑

c d

× SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †

nℓj m j mt
â †

a â c â d |ΨA−1E1I1M1T1MT1〉SD

× a 〈a n ′ℓ′ j ′m ′
j m ′

t | V̂A−2A |c d 〉a (11.66)

Direct 3N interaction kernel

〈εC πT
ν ′n ′ | V̂A−2A−1A

$

1− T̂A−1,A − T̂A−2,A
%

|εC πT
νn 〉=

∑

M1m j

∑

MT1 mt

∑

M ′
1m ′

j

∑

M ′
T1

m ′
t

!

I1 j

M1 m j

3
3
3
3
3

C
$

"!

T1
1
2

MT1 mt

3
3
3
3
3

T

MT

"!

I ′1 j ′

M ′
1 m ′

j

3
3
3
3
3

C
$

"!

T ′1
1
2

MT ′1
m ′

t

3
3
3
3
3

T

MT

"

×
1

2(A − 1)(A − 2)

∑

abd e

×SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †

a â †
b â d â e |ΨA−1E1I1M1T1MT1〉SD

×a 〈b a n ′ℓ′ j ′m ′
j m ′

t | V̂ |d e nℓj m j mt 〉a (11.67)

Exchange 3N interaction kernel

〈εC πT
ν ′n ′ | V̂A−3A−2A T̂A−1,A

%

|εC πT
νn 〉=

∑

M1m j

∑

MT1 mt

∑

M ′
1m ′

j

∑

M ′
T1

m ′
t

!

I1 j

M1 m j

3
3
3
3
3

C
$

"!

T1
1
2

MT1 mt

3
3
3
3
3

T

MT

"!

I ′1 j ′

M ′
1 m ′

j

3
3
3
3
3

C
$

"!

T ′1
1
2

MT ′1
m ′

t

3
3
3
3
3

T

MT

"

×
1

6(A − 1)(A − 2)(A − 3)

∑

abd e f

×SD〈Ψ
′
A−1E ′1I ′1M ′

1T ′1M ′
T1
| â †

nℓj m j mt
â †

b â †
a â d â e â f |ΨA−1E1I1M1T1MT1〉SD

×a 〈a b n ′ℓ′ j ′m ′
j m ′

t | V̂A−3A−2A |d e f 〉a (11.68)

Before entering the final step of solving the radial equation, the kernels listed above un-

dergo the following manipulations: First, they are transformed with help of Eq. (11.54) to

yield the kernels with respect to the Slater determinant channel basis. These are converted

into the translational invariant kernels with help of the inversion of Eq. (11.52). Finally, the

Hamiltonian kernels enter the radial Schrödinger Equation (11.11) directly, while the norm

kernel enters in form of its inverse square root. The steps towards the solution of the radial

equation are discussed in Section 12.
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All kernels (11.64) - (11.68) have a common structure: they consist of sums over four

Clebsch-Gordan coefficients that accomplish the angular-momentum and isospin decou-

pling of the target and projectile for the bra and ket states, respectively. It is important

to note that the total isospin quantum number MT is known from the proton and neu-

tron content of the A-body system under consideration, and all terms with non-vanishing

Clebsch-Gordan coefficients contribute to the kernel matrix element. A second generic

feature of the kernels is their dependence on density matrices. The norm and direct NN

kernels depend on a one-body density matrix, the exchange and direct 3N kernels on a

two-body density matrix and the exchange 3N kernel on a three-body density matrix, all

of them with respect to the NCSM target eigenstates given as superposition of Slater deter-

minants. The occurrence of a three-body density matrix in the 3N kernels highlights the

increased computational cost compared to calculations considering only NN interactions.

Actually, the handling of the three-body density poses the main challenge for the compu-

tational realization, because its storage in memory for reasonably-large model spaces is

problematic. Therefore, we have developed an efficient on-the-fly calculation of the den-

sities, which will be explained in more detail in the next subsection. The next critical ob-

jects in the kernels are the interaction matrix elements with respect to m-scheme states.

As we have discussed in Section 2.2.1 the storage in fast memory of 3N matrix elements

in the m-scheme becomes challenging beyond E3max = 11. Thus, we make use of the 3N

matrix elements in the C T -coupled scheme and the corresponding on-the-fly decoupling

(see Section 2.2.1 or Ref. [44]) that yields the necessary m-scheme matrix elements. More-

over, it is evident that the projection quantum numbers of the target eigenstates need to

be treated explicitly including consistent relative phases. Technically, NCSM eigenvec-

tors with different projections stem from independent diagonalizations of the Hamilto-

nian matrix since the projection quantum numbers are defined beforehand to reduce the

many-body basis dimension. However, different diagonalizations may yield different rel-

ative phases. To overcome this problem and also to avoid additional diagonalizations we

can generalize the well-known raising and lowering operators for the angular momentum

Ĵ± and isospin T̂± to operators acting in A-body space, using for example

Ĵ
(A−1)
+ |ΨA−1E1I1M1T1MT1〉SD

=

A∑

m

1̂⊗ . . .⊗ 1̂⊗ ĵ+
︸︷︷︸

m -th space

⊗ 1̂ . . .⊗ 1̂
∑

i

Ci |Φi ,M1〉a

=
∑

i

Ci

∑

m

*

ħh2(ji m −mi m )(ji m +mi m + 1) |Φi ,M1+ 1〉a , (11.69)

where we denote HO Slater determinants with sum of all projection quantum numbers

equal to M1 by |Φi ,M1〉a . The single-particle raising operator is denoted by ĵ+, and the

angular momentum and its projection quantum number are denoted by jn i and mn i , re-

spectively. Hence, we can generate all necessary inputs from a single NCSM run, which

generates an eigenvector with specific projection quantum numbers, and obtain all other

input vectors with necessary projection quantum numbers using the raising and lowering
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operators and a subsequent renormalization of the vectors.

The formulas as discussed so far have been used in our calculations and are imple-

mented as described in the next subsection. In the literature, however, also a different

strategy to handle the kernels exists, that is to manipulate the formulas given above such

that angular momentum coupled densities are introduced. This has been done in the

original NCSM/RGM kernels for NN-only calculations [48] and is also an option when

3N interactions are present as discussed in our collaborative paper [51]. In order to in-

troduce angular-momentum coupled densities in Eq. (11.68), one can introduce the C T -

coupled 3N matrix elements and exploit the Wigner-Eckart theorem [188] to obtain re-

duced density matrices in angular momentum and isospin. After this, one can evaluate all

summations of projection quantum numbers in exchange for summations over quantum

numbers from intermediate angular-momentum couplings. As a consequence of using

the Wigner-Eckart theorem for the isospin one cannot include the isospin dependence of

the NN interaction exactly. Instead one adopts an averaging procedure to account for the

isospin symmetry breaking approximately, for details see Ref. [51]. In contrast, our ap-

proach treats the isospin dependence of the nuclear interaction without approximation.

We assess the quality of the averaging procedure in the case of p-4He scattering on the

level of phase shifts as discussed in Section 13. Here, we want to discuss this alternative

treatment of the NCSM/RGM kernels for the 3N exchange kernel, i.e., the one including

the three-body density, exemplarily. The corresponding formula with angular-momentum

coupled densities reads

〈εC πT
ν ′n ′ | V̂A−3A−2A T̂A−1,A

%

|εC πT
νn 〉=

1
6(A−1)(A−2)(A−3)

∑

ā b̄ d̄ ē f̄

∑

Ja b Ta b
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J0T0

∑

Jd e Td e
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∑

K τ
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j ′ C j

21

j ′ K j

Jg Jab J0

21

T1 τ T ′1
1
2 T 1

2

21
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2 τ 1
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Tg Tab T0

2

SD〈Ψ
′
A−1E ′1I ′1T ′1 |||

<:
$

â †
ā â †

b̄

%Ja b Ta b â †
nℓj

;Jg Tg
:
$
ˆ̃a

d̄
ˆ̃a ē

%Jd e Td e ˆ̃a f̄

; J0T0
=K τ
|||ΨA−1E1I1T1〉SD

a 〈
$

(ā b̄ )Jab Tab ,n ′ℓ′ j ′
%

J0T0| V̂ 3N |
$

(d̄ ē )Jd e Td e , f̄
%

J0T0〉a , (11.70)

with time-reversed annihilation operators ˆ̃a a = (−1)ja−m jα+
1
2−mtα â n a ℓa ja−m ja −mta

. Moreover,

as already introduced in Section 2.3, the HO single-particle indices ā ,b̄ , . . . denote sets

of HO single-particle quantum numbers without projection quantum numbers, i.e., HO

single-particle orbitals ā = {n a ,ℓa , ja }. The three vertical bars in the coupled-density ma-

trix element indicates their reduced character. Although the angular-momentum coupling

reduces the memory needs to store the reduced density in memory, it still remains pro-

hibitive. To overcome this problem one inserts an identity in terms of (A − 4)-body eigen-

states in between of the creation and annihilation operators, and arrives at the following

162



11.2 The Norm and Hamiltonian Kernels

form which can be employed in calculations

SD〈ε
C πT
ν ′n ′ |T̂A−1,A V̂ 3N
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⎭
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%Ja b Ta b â †

nℓj
1
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; Jg Tg

|||ΨA−4Eβ I
πβ
β Tβ 〉SD

×SD〈ΨA−1α1I1T1|||
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$

â †
d̄

â †
ē

%Jd e Td e â †
f̄

; J0T0
|||ΨA−4Eβ I

πβ
β Tβ 〉SD . (11.71)

In this form, the explicit treatment of the three-body density matrix can be avoided by

breaking it down into matrix elements of three coupled creation or annihilation opera-

tors, which are easily manageable in memory. Unfortunately, this procedure is limited to

light systems, because one needs a sufficiently complete set of (A − 4)-body eigenstates to

make the splitting of the three-body density accurate. This is of course a nontrivial task

and, thus, this approach is at the moment limited to A = 4 targets in the single-nucleon

formalism. Nevertheless, in collaboration with Hupin, Navrátil and Quaglioni we made

use of this approach to cross-check the NCSM/RGM kernels and phase shifts in the case

of nucleon-4He elastic scattering, which resulted in a joint publication which will be the

focus of Section 13. In our approach, i.e., utilizing Eqs. (11.64)-(11.68), the principal limi-

tation to light targets is absent, which is the reason why reactions involving heavier targets

with explicit 3N interactions are now accessible. We will discuss first results for scattering

involving heavier targets in Section 14 in context of the no-core shell model with contin-

uum approach, where also the NCSM/RGM kernels enter, for the example of 9Be in terms

of neutron-8Be scattering.

Another formal difference to our approach is the direct use of the 3N matrix elements

in the C T -coupled scheme. Therefore, the step of angular-momentum decoupling can be

avoided, however in exchange one needs to consider sums of C T -coupled 3N matrix ele-

ments including appropriate 6j -symbols if a matrix element not contained in the standard

storage scheme is required. This is the identical complication that we encounter during

the calculation of 3N matrix elements in the NO2B approximation discussed in Section 2.3

or in Ref. [96].

11.2.5 Implementation Details

The aim of this section is to give more details on the actual evaluation of Eqs. (11.64)-

(11.68) that leads to a hybrid MPI/OpenMP parallel implementation. As mentioned above,

we have to pay special attention to the three-body density matrix that occurs in the 3N ex-

change kernel, because of its memory needs. Our approach is to compute the three-body
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Figure 11.5 – Scaling of the NCSM/RGM kernel calculation. Shown is the speed-up (•) as function
of CPU cores relative to a calculation on 25 nodes each with 24 cores. The red line marks ideal
scaling.

density matrix elements, and likewise all other density matrix elements in the NCSM/RGM

kernels, on the fly. This has the advantages that no additional memory to store the densi-

ties is needed, and we have the possibility to treat the isospin dependence of the nuclear

interaction without further approximations.

First of all, from Eqs. (11.64)-(11.68) it is evident that we need to consider those combi-

nations of projection quantum numbers which lead to non-vanishing contributions only,

i.e., those terms where all four Clebsch-Gordan coefficients are non-zero. Once we have

decided which channels shall be taken into account this information is simply given by the

corresponding triangular relations. This is due the fact that we know the total projection of

the isospin determined by the number of protons and neutrons in the A-body system be-

forehand, and that we can choose an arbitrary value for the projection quantum number

of the total angular momentum MC , because the kernels are independent of this quantity.

In practice, we split the calculation of the kernels into different runs for each contributing

combination of projection quantum numbers. In a subsequent step all partial contribu-

tions are added and yield the final results for the NCSM/RGM kernels.

For the implementation of the single contributions of a specific set of projection quan-

tum numbers we exploit the fact that the NCSM target eigenstates are implicitly given as

expansion in terms of HO (A − 1)-body Slater determinants |φn 〉 within the NCSM model

space

|ΨA−1E1I1M1T1MT1〉SD =
∑

i
|φi ,M1〉a∈$NCSM

Ci |φi ,M1〉a . (11.72)

We can pull the two summations from the expansions of the target states in the bra and ket

in front of the summations over the HO single-particle states in Eqs. (11.68) - (11.64). In
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this way we guarantee that each term within these two summations contributes indepen-

dently to the respective total kernel matrix elements. This means, we obtain an expression

ideally suited for parallel computation with good scaling. To this end we developed an

hybrid OpenMP/MPI parallel code for the kernel computations. The scaling behavior of

our NCSM/RGM kernel implementation is illustrated in Figure 11.5. Furthermore, within

each of these terms the sums over HO single-particle states are restricted to those com-

binations that can connect the SD in the ket with the SD in the bra state with help of the

creation and annihilation operators. To identify the contributing combinations we can

make use of the algorithms for the computation of many-body matrix elements of the NN

or 3N interaction, e.g., during the setup of the many-body Hamilton matrix in the NCSM.

Here, we adopt the routines that have been developed originally for this step within the

IT-NCSM framework. Generally, the corresponding procedure is known as Slater-Condon

rules, for reference see, e.g., [126, 127, 189].

Besides the three-body density matrix, also the storage of the m-scheme three-body

matrix elements is prohibitive. Here, we benefit again, as before in the NCSM calculations,

from the C T -coupled scheme of the 3N matrix elements in combination with the corre-

sponding storage scheme tailored to the effective decoupling into the m-scheme as dis-

cussed in detail in Section 2.2.1. In terms of computing time the production of the direct

and exchange 3N kernels are most expensive. In the future, one option for possible im-

provements in this direction might be the processing of the decoupling of the 3N matrix

elements on graphics processing units (GPUs), which are currently available on modern

super-computers. We have tested a first version of this GPU decoupling routine (cf. Sec-

tion 2.2.3 or Ref. [95], which can eventually be used in the NCSM/RGM kernel production

runs, too.

We conclude the remarks on our implementation of the kernel formulas by outlining

the general program flow: After the definition of the NCSM target eigenstates we want to

take into account, we determine the allowed combinations of projection quantum num-

bers with help of the triangular relations of the Clebsch-Gordan coefficients. Each of these

combinations is then handled in a separate hybrid OpenMP/MPI parallelized job. These

jobs start with reading the necessary NN and 3N interaction matrix elements in the C T -

coupled scheme as well as the two necessary target eigenvectors. This data is subsequently

broadcasted to all nodes using the built-in routines of the MPI library. The loops over the

SD components of the target eigenvectors are parallelized via MPI over different nodes and

using OpenMP within each node. At the end of these loops each node reduces the con-

tributions to the five NCSM/RGM kernels of the different OpenMP threads, respectively.

After that the contributions from different nodes are accumulated using again collective

MPI-library routines. Finally, the transformation into the SD channel basis (11.53) is per-

formed and the kernels are written to disk. Once all jobs dealing with the different sets of

projection quantum numbers have finished, all contributions are read-in, summed in the

appropriate way and a file with the NCSM/RGM kernel in SD channel basis for the given

set of considered target eigenstates is generated.

Finally, this file is read-in again, the translational invariant kernels are computed and
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the radial Eq. (11.20) is solved with the techniques discussed in the next section.
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SECTION 12

The R-Matrix Theory

The R-matrix theory was introduced in the late 1940s by Wigner and Eisenbud [190,

191, 192] and was primarily formulated to describe resonances in nuclear reactions. In

the mean time, the R-matrix formalism has evolved into a well-established tool to de-

scribe scattering in nuclear physics involving nucleons and nuclei [193], or in quantum

chemistry involving electrons, atoms and molecules [174]. Two variants of the R-matrix

theory have been developed [173]: one is the so-called phenomenological R-matrix ap-

proach, which is mainly used in nuclear physics. Here the parameters of the R-matrix are

determined from experimental data and then the R-matrix can be used to analyze, e.g.,

radiative-capture cross-sections at low energies as it is of interest in astrophysics. We will

not discuss these aspects of the R-matrix theory in further detail here, however, thorough

review articles including examples of its applications can be found in Refs. [193, 194, 173].

In the following, we will focus on the second variant, which initially has been used in

atomic physics and is generally known as calculable R-matrix approach. It constitutes an

elegant path towards accurate solutions to the radial Schrödinger equation at positive en-

ergies as they typically emerge in scattering problems, however, also solutions for bound

states are accessible as they are relevant, e.g., for capture cross-sections. It has been in-

troduced for nuclear problems, but subsequently was developed further particularly for

electron scattering off atoms and molecules to describe excitation or ionization processes.

In the context of nuclear physics, it has proven to be applicable in particular for coupled-

channel scatterings and microscopic cluster techniques, which is also the application we

focus on.

12.1 Calculation of the R-Matrix for Single-Channel Problems

Throughout this subsection we focus on the solution of the radial Schrödinger equation,

where we consider a single channel only. We will generalize the formalism to multi-channel

problems in the next subsection. For now, we aim at the solution of a radial Schrödinger
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equation in coordinate-space representation that can be cast in the form

I

−
ħh2

2µ

∂ 2

∂ r 2 +
ħh2l (l + 1)

r 2 +V (r )− E

J

u l (r ) = 0 (12.1)

with u (0) = 0 as additional constraint at the origin. The relative orbital angular momen-

tum quantum number l denotes the arbitrary partial wave considered and the spherical

harmonic describing the orbital part of the wave function has been separated already. In

addition we require the potential to fulfill the asymptotic property

V (r )
r→∞−−→

Z1Z2e 2

r
+D

: 1

r 2

;

, (12.2)

i.e., at large relative distances r the particles interact only via the Coulomb force. The

asymptotic property is automatically fulfilled for the centrifugal barrier. Moreover, we note

that also non-local potentials, e.g., in the form

V (r )u l (r ) =U (r )u l (r )+

ˆ ∞

0
dr W (r ′,r )u l (r

′) (12.3)

as in the case of the NCSM/RGM equations, can be handled as long as they are localized.

Finally, we assume the potentials to be real, so that the phase shifts are real and the scat-

tering matrix is unitary.

The basic principle of R-matrix theory is the splitting of the configuration space into

two parts, an internal and an external region, which are connected at the so-called chan-

nel radius a . The external interaction is approximated just by the Coulomb interaction,

hence in practice we have to ensure that the channel radius is chosen large enough to ob-

tain accurate results. Stated differently, this means that all extracted physical observables

should be independent of the actual choice for the channel radius. The remaining task is

to find the solutions of the radial Schrödinger equation in the internal and external regions

for given energy E respectively, and to ensure that the continuity conditions at the channel

radius are fulfilled, i.e., u int
l (a ) =u ext

l (a ) and u ′ int
l (a ) = u ′ ext

l (a ).

Let us start with the solutions u ext
l in the external region, where the radial Schrödinger

equation simplifies to the Coulomb wave equation

&
∂ 2

∂ r 2 −
l (l + 1)

r 2 −
2kη

r
+k 2

'

u int
l (r ) = 0, (12.4)

where we introduced the dimensionless Sommerfeld parameter η= Z1Z2e 2

ħhv
with relative ve-

locity v = ħhk
µ

, and the wavenumber k =
1

2µE

ħh
. In the context of nuclear reactions η ≥ 0

holds. Solutions for positive energies are the regular and irregular Coulomb functions

Fl (η,k r ) and Gl (η,k r ), respectively. Accordingly, general solutions are given by linear com-

binations of these two functions. We employ the ansatz

u ext
l (r ) =Cl

$

Il (η,k r )−Ul Ol (η,k r )
%

(12.5)
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using the combinations

Il (η,k r ) =Gl (η,k r )− i Fl (η,k r ) (12.6)

and

Ol (η,k r ) =Gl (η,k r )+ i Fl (η,k r ) = I ⋆l (η,k r ) . (12.7)

These choices are particular convenient because their asymptotics correspond to incom-

ing

Il (η,k r )
k r→∞−−−→ e

−i (k r− 1
2 lπ−η ln 2x+σl ) (12.8)

and outgoing

Ol (η,k r )
k r→∞−−−→ e

i (k r− 1
2 lπ−η ln 2x+σl ) (12.9)

waves. For vanishing Sommerfeld parameter the Coulomb functions are reduced to spher-

ical Bessel and von-Neumann functions Fl (0,k r ) = k r jl (k r ) and Gl (0,k r ) = k r n l (k r ), re-

spectively. Bound-state solutions, i.e., at negative energies, are given by Whittaker func-

tions W−ηB ,l+ 1
2
(2κB r ), with κB =

1
−2µE

ħh
and ηB =

sgn(Z1Z2)

a BκB
, which are singular at r = 0.

Clearly, the nontrivial task is to determine the wave function u int
l (r ) in the internal re-

gion, where we have to consider the more complicated nuclear interaction. We make use

of an expansion of the internal wave function for partial wave l in terms of a finite basis of

N square-integrable basis functions ϕj (r )

u int
l (r ) =

N∑

j=1

c jϕj (r ) , (12.10)

which need to be linearly independent and must vanish at the origin. However, they are

not necessarily orthogonal and they are not required to meet any special conditions at

the channel radius a . Of course this method relies on suitably chosen basis functions that

allow a good matching to the external wave function at the channel radius, and at the same

time the number of functions N needs to be computationally manageable. For all results

we will discuss we have used Lagrange functions [195] in the expansion (12.10) and we

will give more details on this choice in Section 12.3. However, we note that other choices

are discussed in the literature as well, e.g., sine functions [173] and basis functions with

Gaussian behavior [196, 173].

Having our ansätze for the wave functions in the internal and external domain, we can

define the so-called R-matrix at energy E by

u l (a ) =Rl (E )
@

a u ′l (a )− Bu l (a )
A

, (12.11)

with a dimensionless parameter B . For the single-channel problem considered through-
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out this subsection the R-matrix is just a number, i.e., a matrix of dimension one. This

will differ in the multi-channel case discussed in the next subsection. In the following, the

strategy will be to solve for the R-matrix using information from the internal region and

then to obtain the scattering matrix Ul .

The investigation of the radial Schrödinger equation (12.1) over the internal region

[0,a ] reveals that the differential operator composed of the first three terms, i.e., the Hamil-

tonian for partial wave l , is not Hermitian as can be seen by explicit evaluation of matrix

elements of the kinetic energy operator. This can be fixed using the surface operator orig-

inally introduced by Bloch

! (B ) =
ħh2

2µ
δ(r −a )

: d

dr
−

B

r

;

, (12.12)

sometimes also referred to as Bloch operator. It turns out that the sum of the Hamiltonian

for partial wave l and the Bloch operator is Hermitian in [0,a ] as discussed in detail in

Ref. [197]. We utilize this to approximate the Schrödinger equation (12.1) by the so-called

Bloch-Schrödinger equation

I

−
ħh2

2µ

∂ 2

∂ r 2 +
ħh2l (l + 1)

r 2 +V (r )+! (B )− E

J

u int
l (r ) =! (B )u

ext
l (r ) , (12.13)

where the external wave function is approximated by Eq. (12.5). It is evident from explic-

itly inserting the Bloch operator that Eq. (12.13) is equivalent to the radial Schrödinger

equation plus the continuity condition u ′int
l (a ) = u ′ext

l (a ). This means, solutions of the

Bloch-Schrödinger equation automatically fulfill the continuity of the derivative of the

wave function, which is a useful side effect of the Bloch operator.

To obtain a formal solution of Eq. (12.13) is always possible with help of a Green’s func-

tion G (r,r ′) by

I

−
ħh2

2µ

∂ 2

∂ r 2 +
ħh2l (l + 1)

r 2 +V (r )+! (B )− E

J

G (r,r ′) =δ(r − r ′) and G (0,r ) = 0. (12.14)

We use the generic solution expressed in terms of the Green’s function to solve for the R-

matrix by comparing

u l (a ) =

ˆ a

0
Gl (a ,r ′)! (B )u ext

l (r
′)dr ′

=

ˆ a

0
Gl (a ,r ′)

ħh2

2µ
δ(r ′ −a )

$ ∂

∂ r ′
−

B

r ′
%

u ext(r ′)dr ′

= Gl (a ,a )
ħh2

2µa

$

a u ′ ext
l (a )− Bu ext

l (a )
%

(12.15)

to Eq. (12.11) and obtain Rl (E ) =Gl (a ,a ) ħh
2

2µa
. Without the knowledge of the Green’s func-

tion beforehand this expression for the R-matrix is of no practical gain, however, it reveals

the general structure of the R-matrix and we will aim at its representation in terms of the
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set of basis functions ϕj (r ) in the following. Therefore, we rewrite the Bloch-Schrödinger

equation (12.13) using the expansion (12.10) for the internal wave function on the left-

hand side and in addition we project the whole equation on the basis function ϕi (r ) by

multiplication from the left and integration over r . This yields

ˆ a

0
drϕi (r )

I

−
ħh2

2µ

∂ 2

∂ r 2 +
ħh2l (l + 1)

r 2 +V (r )+! (B )− E

J N∑

j=1

c jϕj (r )

=

ˆ a

0
drϕi (r )

ħh2

2µ
δ(r −a )

$ ∂

∂ r
−

B

r

%

u ext
l (r )

=
ħh2

2µa
ϕi (a )

$

a u ′ext
l (a )− Bu ext

l (a )
%

(12.16)

or equivalently

N∑

j=1

:
ˆ a

0
drϕi (r )

I

−
ħh2

2µ

∂ 2

∂ r 2 +
ħh2l (l + 1)

r 2 +V (r )+! (B )− E

J

ϕj (r )
;

︸ ︷︷ ︸

≡Ci j (E ,B )

c j

=
ħh2

2µa
ϕi (a )

$

a u ′ext
l (a )− Bu ext

l (a )
%

, (12.17)

where we have introduced the matrix C (E , B ) defined by its matrix elements Ci j (E , B ) in the

last expression. In the following we use the notation Ci j =Ci j (E , B ) for matrix elements for

brevity. Owing to the fact that the right-hand side is given in terms of the known external

wave function, we can solve for the coefficients c j using the inverse matrix C (E , B )−1

ck =

N∑

i ,j=1

(C−1)k i Ci j c j =

N∑

i=1

(C−1)k i
ħh2

2µa
ϕi (a )

$

a u ′ ext
l (a )− Bu ext

l (a )
%

. (12.18)

By inserting these coefficients in the expansion of the internal wave function we can iden-

tify the R-matrix

u int
l (a ) =

N∑

j=1

N∑

i=1

(C−1)j i
ħh2

2µa
ϕi (a )

$

a u ′ ext
l (a )− Bu ext

l (a )
%

ϕj (a ) (12.19)

⇒ Rl (E , B ) =
N∑

i ,j=1

ħh2

2µa
ϕi (a ) (C

−1)i j ϕj (a ) . (12.20)

This is the desired representation of the R-matrix over a finite basis as one can use it in

actual calculations. Finally, we obtain for the internal wave function

u int
l (r ) =

ħh2

2µa

u ext
l (a )

Rl (E , B )

N∑

i ,j=1

(C−1)i j ϕi (a )ϕj (r ) . (12.21)

If we assume the basis functions ϕj (r ) to be orthonormal, we can further manipulate

the expression for the R-matrix. By diagonalizing the matrix C (0, B ) we obtain its eigen-

vectors v⃗nl and the corresponding eigenvalues Enl , where l labels the considered partial
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wave. We can use the eigenvectors and eigenvalues to bring the matrix C (E , B ) in its spec-

tral decomposition

C (E , B ) =

N∑

n=1

v⃗nl Enl v⃗⊤nl −
N∑

n=1

v⃗nl v⃗⊤nl E , (12.22)

which can be used to obtain the inverse matrix

C (E , B )−1 =

N∑

n=1

v⃗nl (Enl − E )−1v⃗⊤nl . (12.23)

Note that the dependence on B on the right-hand side is implicit in the eigenvectors. We

introduce this in Eq. (12.20) and receive

Rl (E , B ) =

N∑

n=1

∑N
i=1
ħh2

2µa
vnl ,iϕi (r )

∑N
j=1 vnl ,jϕj (r )

Enl − E

=

N∑

n=1

γ2
nl

Enl − E
, (12.24)

where we define the so-called reduced width amplitudes

γnl =

K

ħh2

2µa

N∑

i=1

vnl ,iϕi (r )

and with vnl ,i as the i -th component of eigenvector v⃗nl [173].

For solutions with positive energies the final step is the determination of the scattering

the scattering matrix Ul . From the continuity condition for the wave function at r = a and

the defining relation for the R-matrix (12.11) we obtain

Cl
$

Il (k a )−Ul Ol (k a )
%

= u int
l (a ) = Rl (E , B )

$

a u ′l (a )− Bu l (a )
%

(12.25)

which we can solve for the scattering matrix by introducing once more the external wave

function at the channel radius in the right-hand side

Il (k a )−Ul Ol (k a ) = Rl (E , B )
:

k a (I ′l (k a )−Ul O ′l (k a ))− B (Il −Ul Ol (k a )
;

⇒ Ul =
Il (k a )

:

1−Rl (E , B )
$

k a
I ′l (k a )

Il (k a )
− B

%
;

Ol (k a )
:

1−Rl (E , B )
$

k a
O ′l (k a )

Ol (k a )
− B

%
; (12.26)

= e 2iφl
1−Rl (E , B )

$

k a
I ′l (k a )

Il (k a )
− B

%

1−Rl (E , B )
$

k a
O ′l (k a )

Ol (k a )
− B

%
, (12.27)

where φl (k a ) =−arctan
$ Fl (k a )

Gl (k a )

%

holds. We further simplify this expression by defining

Ll = k a
O ′l (k a )

Ol (k a )
=Sl (k a )+ i Pl (k a ) , (12.28)
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with the so-called shift factor Sl and the penetration factor Pl . In practice they can be

computed by

Pl (E ) =
k a

Fl (k a )2+Gl (k a )2
, (12.29)

Sl (E ) = Pl (E )
$

Fl (k a )F ′l (k a )+Gl (k a )G ′l (k a )
%

. (12.30)

Inserting Eqs. (12.29) and (12.30) with help of definition (12.28) in Eq. (12.27) yields the

final result for the scattering matrix

Ul (E ) = e 2iδl (E ) = e 2iφl
1− (Sl (E )− B )Rl (E , B )+ i Pl (E )Rl (E , B )

1− (Sl (E )− B )Rl (E , B )− i Pl (E )Rl (E , B )
. (12.31)

As we have discussed in Section 10 the scattering matrix elements fully determine the scat-

tering amplitude as evident from Eq. (10.11). Therefore, knowing the scattering matrix

Ul we are able to compute the scattering observables we are interested in such as cross-

sections or polarization observables. Note that it can be shown that the scattering ma-

trix (12.31) is independent of the boundary parameter B [173]. The scattering phase shifts

can be computed by

δl =φl + arctan
: Pl (E )Rl (E , B )

1− (Sl (E )− B )Rl (E , B )

;

. (12.32)

An important feature of the R-matrix theory for the development of a unified theory of

nuclear structure and reactions is its ability to solve Eq. (12.13) also for the bound states

of the system, i.e., to obtain the solutions of the radial Schrödinger equation at negative

energies. Following Ref. [198] we make a convenient choice of the boundary parameter B

such that the right-hand side of Eq. (12.17) vanishes, i.e., we choose

B = 2κB a
W ′
η,l+1/2(2κB a )

Wη,l+1/2(2κB a )
. (12.33)

Due to the Dirac delta function in the Bloch operator this cancels the right-hand side and

we are left with the solution of

N∑

j=1

Ci j (0, B )ϕj (r ) c j = E B ci , (12.34)

with matrix C as defined in Eq. (12.17). This resembles a standard eigenvalue problem,

however, the boundary parameter B depends on the binding energy E B . Therefore, we

solve Eq. (12.34) using an iterative procedure starting with B = 0 corresponding to E B = 0.

At convergence of the binding energies we solve the eigenvalue problem and calculate the

coefficients c j , which in turn yield the internal wave function.
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12 The R-Matrix Theory

12.2 The Calculable R-Matrix in Multi-Channel Scattering

In the previous subsection we presented a brief summary of necessary steps towards the

determination of the scattering matrix and phase shifts for single-channel problems. Now,

we aim at the generalization of this approach to multi-channel scattering problems, as

needed in the NCSM/RGM approach discussed in Section 11 and the NCSMC formalism

in Section 14. The generalization to more than one channel does not change the general

features of the R-matrix and also its derivations follows the same strategy as in the single-

channel case.

The first generalization towards a multi-channel scattering theory is obviously the emer-

gence of additional channels labelled by ν in the expansion of the partial wave states

|ΨJπT 〉=
∑

ν

ˆ

dr r 2 uν (r )

r
&̂p
@

( |φ1ν 〉⊗ |φ2ν 〉)s T ⊗ |r l m 〉
AJ MπT MT , (12.35)

where restrict ourselves to binary-cluster channels. With help of this expansion we have

to solve the set of radial Schrödinger equations

∑

ν ′

(
:

−
ħh2

2µν

∂ 2

∂ r 2 +
ħh2lν (lν + 1)

r 2 + Eν − E
;

δν ′,ν +Vν ′ν (r )

)

uν ′ (r ) = 0 (12.36)

As before, we require the potentials to fulfill the asymptotic behavior

Vν ′ν (r )
r→∞−−→

Z1νZ2ν e 2

r
δν ′,ν (12.37)

so that we are allowed to make use of the external wave functions from pure Coulomb

scattering. Hence, we have

u ext
ν (ν0)
(r ) = v

− 1
2

ν
$

Iν (kν r )δν ,ν0 −Uνν0Oν (kν r )
%

(12.38)

for open channels, i.e., E > Eν , where we ensure that incoming flux can only occur a chosen

entrance channel labelled by ν0. For closed channels with E < Eν we adopt

u ext
ν (ν0)
(r ) = Aνν0 W

−ην ,l+
1
2
(2κν r ) . (12.39)

The definition of the multi-channel R-matrix is given by

uν (a ) =
∑

ν ′

C
µν
µν ′

Rν ′ν (E )
$

a u ′ν ′ (a )− Bν ′uν ′(a )
%

, (12.40)

where Rν ′ν are now matrix elements of the symmetric R-matrix after which the whole

approach is named. The dimension of the R-matrix is always equal to the number of

included channels independent of the energy. Following the same arguments as in the

single-channel case, we define for the multi-channel formalism a set of Bloch operators as
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12.2 The Calculable R-Matrix in Multi-Channel Scattering

in Eq. (12.12) but with an additional channel index

!ν =
ħh2

2µν
δ(r −a )

: d

dr
−

Bν

r

;

, (12.41)

and where the boundary parameters Bν are chosen as zero or as in Eq. (12.33) for open and

closed channels, respectively [173].

Accordingly, the set of Bloch-Schrödinger equations is given by

∑

ν ′

(
:

−
ħh2

2µν

∂ 2

∂ r 2 +
ħh2lν (lν + 1)

r 2 +!ν + Eν − E
;

δν ′,ν +Vν ′ν (r )

)

u int
ν ′ (r ) =!νu ext

ν (r ) (12.42)

with the additional conditions u ext
ν (a ) = u int

ν (a ). We skip the formal solution in terms of a

Green’s function here and investigate immediately the practically relevant spectral decom-

position of the Green’s functions with help of an expansion of the internal wave functions

over the basis functions ϕj (r ), i.e.,

u int
ν (r ) =

N∑

j=1

cν j ϕj (r ) . (12.43)

We insert this expansion for u int
ν in the ν-th Bloch-Schrödinger equation and project it on

the basis function ϕi (r ) yielding

∑

ν ′

N∑

j=1

<
ˆ

drϕi (r )
:
$

−
ħh2

2µν

∂ 2

∂ r 2 +
ħh2lν (lν + 1)

r 2 +!ν + Eν − E
%

δν ,ν ′ +Vνν ′
;

ϕj (r )
=

︸ ︷︷ ︸

cν ′ j

≡Cν i ,ν ′j (E ,Bν )

=ϕi (a )
ħh2

2µνa

$

a u ′ext
ν (a )− Bνu ext

ν (a )
%

, (12.44)

where we define the expression inside the brackets as matrix elements Cν i ,ν ′ j (E , Bν ). By

multiplication with the inverse matrix C−1 from the left we solve for the expansion coeffi-

cients cν j and obtain for the internal wave function evaluated at the channel radius

u int
ν (a ) =

∑

ν ′

N∑

j=1

N∑

i=1

ϕj (a )(C
−1)ν j ,ν ′i ϕi (a )

ħh2

2µνa

$

a u ′ext
ν ′ − Bν ′u

ext
ν ′ (a )

%

. (12.45)

By comparison to Eq. (12.40) we read off the R-matrix elements as

Rν ′ν =
ħh2

2
1
µνµν ′a

N∑

j=1

N∑

i=1

ϕj (a )(C
−1)ν j ,ν ′i ϕi (a ) . (12.46)

As in the single-channel formalism, diagonalizing the matrix C (E , Bν ) at zero energy allows

for the calculation of its inverse matrix using the spectral decomposition with respect to
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12 The R-Matrix Theory

the eigenvectors v⃗n ,ν of C (0, Bν )

C−1 =
∑

n

v⃗n ,ν
1

En ,ν − E
v⃗⊤n ,ν , (12.47)

where the number of summands is determined by the number of included channels times

the number of considered basis functions N . The En ,ν are the eigenvalues of C (0, Bν ). Fi-

nally, we can convert the R-matrix elements into the familiar form

Rνν ′ =
∑

n

γnνγnν ′

En ,ν − E
(12.48)

with the reduced-width amplitudes γnν =

L

ħh2

2µνa

∑N
i=1 vn ,ν iϕi (a ).

Finally, we deduce the scattering matrix from

∑

ν ′

v
− 1

2
ν
$

Iν (kνa )δν ,ν ′ −Uνν ′Oν (kνa )
%

=
∑

ν ′

C
µν
µν ′

v
− 1

2
ν ′ Rν ′ν

<

kν ′a
$

I ′ν ′ (kν ′a )δν ′ν −Uνν ′O
′
ν ′ (k

′
νa )

−Bν ′
$

Iν ′ (kν ′a )δν ′ν −Uνν ′Oν ′(kν ′a )
%
=

, (12.49)

where we used the continuity of the wave function at the channel radius and the definition

of the multi-channel R-matrix. We isolate all terms that contain scattering matrix elements

Uνν ′ on the left-hand side and collect all other terms on the right-hand side, and we make

use of
*
µν
µν ′
=
*

vν ′
vν

to identify the structure of the equation as

∑

ν ′

Zνν ′Uν ′ν0 =Z ⋆νν0
. (12.50)

In terms of matrices we then obtain the scattering matrix U by multiplication with the

inverse of matrix Z from the left

U =Z−1Z ⋆ , (12.51)

where the elements of the matrix Z are given by

Zνν ′ =
1

?

kν ′a

$

Oν (kνa )δν ′ν −kν ′a Rνν ′O
′
ν ′ (kν ′a )− Bν ′Rνν ′Oν ′ (kν ′a )

%

. (12.52)

From diagonalizing the U matrix using a matrix S obtained from the eigenvectors of U we

can extract the eigenphase shifts δn from with help of

S⊤US = e 2iδ , (12.53)

where δ is a diagonal matrix with the eigenphase shifts as diagonal entries.

The treatment of bound states is exactly analogous as described at the end of the previ-
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12.3 R-Matrix Theory on a Lagrange Mesh

ous section for the single channel case. The only difference induced by the multi-channel

problem is the fact that the scattering matrix Ul is now really a matrix while it was a simple

coefficient in the single-channel case. For the iterative solution of Eq. (12.44) we start with

Bν = 0 for all channels.

12.3 R-Matrix Theory on a Lagrange Mesh

So far we have discussed the solution of the radial Schrödinger equation using the R-

matrix theory which is based on the generic expansion of the internal wave function over

N basis functions ϕj (r ),

u int
ν (r ) =

N∑

j=1

cν j ϕj (r ) . (12.54)

Up to now we did not specify the basis functions and, actually, various choices are possible

and discussed in the literature, see, e.g., Refs. [173, 199, 195]. We stress again, that neither

the functions are required to meet any boundary conditions at the channel radius nor they

need to be orthogonal. However, of course the quality of the matching of the internal and

external wave functions and, thus, the accuracy of the obtained phase shifts depend on the

conformity of the functions with the problem. For example, it is known that choosing sine

functions does not lead to accurate results because the derivatives of all basis functions

vanish at the channel radius as discussed in detail in [173]. Another common choice are

Gaussian functions, which one the one hand often leads to analytically solvable integrals

but on the other hand they contain parameters that need to be adapted to the considered

system [173, 196]. In the following we will give the details about the Lagrange basis func-

tions, which we use to obtain the results of Sections 13 and 14. For an overview of Lagrange

functions corresponding to different kinds of meshes see Ref. [195].

We employ a set of N functions ϕi (r )which are associated with a mesh of points axi on

the internal region [0,a ] such that the so-called Lagrange conditions

ϕi (ax j ) = (aλi )
− 1

2δi ,j , (12.55)

hold. Hence, all functions vanish at all these mesh points except one, where the coeffi-

cients λi are given by the weights of a Gauss quadrature

ˆ 1

0
f (r )dr ≈

N∑

i=1

λi f (ri ) . (12.56)

Functions fulfilling these conditions are so-called Lagrange functions, and various sets of

functions with corresponding meshes are possible [195]. In the following we adopt La-

grange functions constructed from Legendre polynomials and the mesh points are fixed

by the roots of the Legendre polynomials. This choice originally has been applied to the

R-matrix theory by Malegat in Ref. [200], and was further developed to include multiple

channels [201] and to handle non-local interactions by Hesse et al. in Ref. [202]. Both ex-
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12 The R-Matrix Theory

tensions are important for the applications throughout the next sections. Thus, we adopt

the N Lagrange functions of Ref. [202]

ϕi (r ) = (−1)N+i
: r

axi

;?

axi (1−xi )
PN (2

r
a
− 1)

r −axi
, (12.57)

with the Legendre polynomials of order N and where the xi are the roots of the shifted

Legendre polynomial, i.e., they fulfill

PN (2xi − 1) = 0. (12.58)

The weights λi of Eq. (12.55) correspond to a Gauss-Legendre quadrature in the interval

[0,1]. The Lagrange functions are continuous and indefinitely differentiable over the com-

plete interval, however they are not orthogonal due to the prefactor r
axi

. However, all in-

tegrals which will be evaluated using the Gauss-Legendre quadrature approximation such

that the basis functions become approximately orthogonal in the sense

ˆ a

0
ϕi (r )ϕj (r )≈δi ,j , (12.59)

which still leads to accurate results as found in Ref. [199]. The introduction of the regu-

larization via the prefactor r
axi

offers the possibility to retain the exact matrix elements of

singular potentials in spite of using the Gauss quadrature approximation. In the following

this is important to treat the singularities at r = 0 in the Coulomb and centrifugal barrier

potential [203].

We employ the Lagrange mesh technique to calculate the matrix elements Cν i ,ν ′ j in

Eq. (12.44) defined as

Cν i ,ν ′ j =

ˆ

drϕi (r )
:
$

−
ħh2

2µν

∂ 2

∂ r 2 +
ħh2lν (lν + 1)

r 2 +!ν + Eν − E
%

δν ,ν ′ +Vν ′ν
;

ϕj (r ) . (12.60)

The first term corresponds to the matrix elements of the kinetic energy T
(ν )

i j , which are

diagonal in the channel index. Following Ref. [204], together with the matrix elements for

the Bloch operator! (ν )i j and using the Lagrange functions (12.57), they are exactly given by

T
(ν )

i i +!
(ν )
i i (0) =

1

6a 2xi (1−xi )

<

4N (N + 1)+ 3+
1− 6xi

xi (1−xi )

=

, (12.61)

and for non-diagonal matrix elements by

T
(ν )

i j +!
(ν )

i j (0) =
(−1)i+j

2a 2
?

xi x j (1−xi )(1−x j )

<

N (N +1)+1+
xi +x j − 2xi x j

(xi −x j )2
−

1

1−xi
−

1

1−x j

=

(12.62)

The next term constitutes the centrifugal barrier which has a singularity at r = 0. As men-

tioned above and discussed in more detail in Ref. [199] the regularization of the Lagrange

functions ensures the exact evaluation of this term using the Gauss quadrature, i.e., one
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12.3 R-Matrix Theory on a Lagrange Mesh

obtains

ˆ a

0
ϕi (r )
ħh2lν (lν + 1)

r 2 ϕj (r )dr =
ħh2lν (lν + 1)

a 2x 2
i

δi ,j . (12.63)

This allows the accurate treatment of the centrifugal term also for non-zero relative orbital

angular momenta lν [199, 203]. The contributions to matrix elements of the Bloch operator

for nonzero Bν can be computed by

ϕi (r )
δ(r −a )

r
ϕj (r ) =

(−1)i+j

a 2
?

xi x j (1−xi )(1−x j )
(12.64)

given in Ref. [204]. We split the matrix elements of the potential part in two parts: The

matrix elements containing the local interaction become

Ui j =

ˆ a

0
ϕi (r )U (r )ϕj (r )dr ≈U (axi )δi ,j . (12.65)

The second part handles the non-local contributions to the potentials, which have been

treated in the R-matrix on a Lagrange mesh formalism first in Ref. [202]. The correspond-

ing matrix elements are given by

Wi j =

ˆ a

0

ˆ a

0
ϕi (r )W (r,r ′)ϕj (r

′)dr dr ′ ≈ a
?

λiλj W (axi ,ax j ) , (12.66)

where again the Gauss quadrature has been used. Finally, the last two contributions are

simply given by Eq. (12.59). Altogether, we can compute the matrix elements Cν i ,ν ′ j just

from the knowledge of the potentials at the mesh points, i.e., in particular analytic evalua-

tions of integrals are avoided and thus the simplicity of a mesh calculation is retained. In

spite of the Gauss quadrature the matrix C (E , Bν ) remains symmetric due to the exact treat-

ment of the kinetic part. Having computed the matrix C (E , Bν )we can obtain the R-matrix

as explained after Eq. (12.17) in the previous subsection. We note that so-called forbidden

states, i.e., non-vanishing radial wave functions that are solutions to the RGM equations

for all energies, are removed by dropping those eigenvectors with eigenvalues close to zero

in the spectral decomposition of C (E , Bν ). Their numbers increases with larger numbers

of used basis function N , i.e., with increasing accuracy [202]. For further details about this

procedure see Refs. [205, 172].

The accuracy of the R-matrix on a Lagrange mesh method has been benchmarked in

different scenarios: the comparison in case of an analytically solvable problem [201], as

well as the comparison to calculations using alternative basis functions [199, 173] and

also benchmarks of the Lagrange mesh against exact calculations with Lagrange func-

tions [203, 199] did prove its very good accuracy. At the same time it is very efficient

thanks to the significantly simplified computation of the integral terms. Compared to

finite-difference methods already few basis functions, i.e., few mesh points, yield already

accurate results [202]. For our results presented in Sections 13 and 14 we typically use 40

179



12 The R-Matrix Theory

basis functions. Furthermore, as can be seen from Eq. (12.54) another advantage is the

knowledge of the wave function not only at the mesh points, but over the complete in-

terval (0,a ) such that subsequent calculations of matrix elements with respect to the wave

function may be obtained exactly.
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SECTION 13

Nucleon-4He Scattering

As first application of the extended NCSM/RGM formalism, capable to explicitly in-

clude 3N interactions, we study nucleons scattering off a 4He target. Although this consti-

tutes one of the simplest scattering systems, it exhibits interesting features that allow to an-

alyze consequences of 3N interactions for scattering observables. In earlier studies of the

NCSM/RGM formalism with NN interactions [47, 48] the spin-orbit splitting between the
2P3/2 and 2P1/2 resonances has been found too small. Consequently, we expect the inclu-

sion of 3N interactions to enlarge this splitting. This has been first investigated by means

of Green’s function Monte Carlo (GFMC) calculations in Ref. [206], using the local Argonne

V18 potential [8] and the phenomenological Urbana IX and Illinois2 3N interactions [39].

The nucleon-4He scattering discussed in the following constitutes the first investigation

with chiral NN+3N Hamiltonians and also their first application to scattering observables

for systems with A > 4 without approximation. This emphasizes that the extension of the

NCSM/RGM formalism to explicit 3N interactions paves the way for ab-initio calculations

of a wealth of scattering observables based on chiral NN+3N interactions.

Another favorable property of the nucleon-4He system is the presence of only a single

open binary-cluster channel up to fairly high energies beyond 15 MeV, due to the tightly

bound 4He target. This makes it an ideal benchmark system for scattering calculations in

general and, in particular, for the two alternative approaches for the inclusion of the 3N

interaction into the NCSM/RGM formalism discussed in Section 11.2.4.

In the first subsection we present a comprehensive convergence analysis of the dif-

ferent truncations involved in the NCSM/RGM approach, including the convergence with

respect to the number of included channels, here given by the number of excited states

of 4He. In addition, the dependence on the SRG flow parameter and the different possi-

bilities to treat the isospin are investigated in this section. Afterwards, in Section 13.2, we

concentrate on the 3N interaction effects on scattering phase shifts with special attention

to the distinction of effects originating from the SRG-induced 3N and from the initial chiral

3N interaction on the P-wave spin-orbit splitting mentioned above. Finally, we investigate

the sensitivity of differential cross sections and analyzing powers to the inclusion of 3N
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Figure 13.1 – Convergence of the 2S1/2, 2P1/2, 2P3/2 and 2D3/2 partial-wave phase shifts with respect
to the model-space size, for Nmax = 7 ( ), 9 ( ), 11 ( ), and 13 ( ) from single-channel
calculations including the ground-state of 4He. The NN+3N-full Hamiltonian is applied at SRG
flow-parameter α= 0.0625fm4 with E3max = 14 and ħhΩ= 20MeV. (published in [51])

interactions in Section 13.3. The findings of this section have resulted in the collaborative

publication Ref. [51].

13.1 Convergence Studies of Scattering Phase Shifts

This section is dedicated to a comprehensive analysis of all relevant parameter variations

of the NCSM/RGM with explicit 3N interactions. We concentrate on the effects on scatter-

ing phase shifts, from which all other scattering observables can be deduced. Moreover,

we focus on the 2S1/2, 2P1/2, 2P3/2 and 2D3/2 phase shifts (2s+1l J ), because all remaining phase

shifts are very small, although they are not always negligible as discussed in Section 13.3.

The NCSM/RGM equations (11.20) are solved using the calculable R-matrix method on

a Lagrange mesh described in Section 12. To expand the wave function in the internal

region we use 40 lattice points, and the internal and external regions are matched at the

channel radius of 18fm. Beyond the channel radius the clusters interact via the average

Coulomb force only. We have checked explicitly the independence of all following re-

sults from these parameters. We apply the identical SRG-transformed Hamiltonians as

in Part II, in particular the standard initial chiral 3N interaction at N2LO with cutoff mo-

mentum Λ3N = 500MeV/c .

13.1.1 Dependence on the Model-Space Truncation Nmax

First, we explore the convergence of elastic neutron-4He (n-4He) phase shifts with respect

to the HO model-space truncation parameter Nmax. The same HO model-space size is

used consistently in both, the expansion of the localized parts of the NCSM/RGM kernels
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(cf. Eqs. (11.43) and 11.44), and the NCSM when computing the eigenstates of the 4He

target that enter expansion (11.4). We use the chiral NN+3N-full Hamiltonian evolved to

SRG flow-parameter α = 0.0625fm4 and the HO frequency ħhΩ = 20MeV. In Figure 13.1 we

show the (first four) elastic scattering phase shifts for Nmax = 7,9,11, and 13 obtained from a

single-channel calculation including the ground state (g.s.) of 4He only. All phase shifts ex-

hibit a good rate of convergence: while the steps from Nmax = 7 through 9 to 11 are visible,

the phase shifts for Nmax = 11 and Nmax = 13 are practically identical. The only exception

is the 2P3/2 phase shift between 4 and 10 MeV, where we find a difference of about 5 deg or

less. Moreover, this convergence behavior is similar to the one obtained in Ref. [121] with

the NCSM/RGM approach using NN-only Hamiltonians at the same SRG flow parame-

ter. Accordingly, we perform some of the following convergence studies using the smaller

Nmax = 11 to cope with the large-scale calculations.

Finally, we list in Table 13.1 the energies of the first seven 4He eigenstates, which we

utilize in the calculations later on. We note that the ground-state energy is well converged

with respect to Nmax. For α = 0.0625fm4 the change between the energies for Nmax = 10 to

Nmax = 12 is below 0.2%, and for α= 0.08 and 0.04fm4 below 0.1% and below 0.7%, respec-

tively.

13.1.2 Dependence on E3max

Next we study the dependence of the phase shifts on different truncations E3max of the

3N matrix elements. Recall that calculations for a specific Nmax in principle require 3N

matrix elements up to E3max = 2 ·Nmax for a complete calculation, but typically only ma-

trix element sets with much smaller E3max are manageable. Hence, the E3max truncation is

not consistent with the NCSM/RGM model space, similarly as for the coupled-cluster ap-

proach discussed in Part II, and could lead to spurious effects. In Figure 13.2 we present the

n-4He phase shifts computed at Nmax = 11 and using E3max = 10, 12 and 14 for the NN+3N-

induced (left panel) and the NN+3N-full Hamiltonian (right panel). For both Hamiltonians

we find the E3max = 12 and 14 results agree very well, i.e., they are practically on top of each

other. From analogous studies for different combinations of α, ħhΩ and Nmax we confirm

that the E3max truncation leads to less uncertainties than other parameters such as the

NCSM/RGM model space truncation. For all calculations presented in the following we

adopt E3max = 14.

Table 13.1 – Energies of the first seven eigenstates of 4He in MeV at Nmax = 12 (13 for negative
parity) for the three SRG flow parameters and computed with the NN+3N-full Hamiltonian at
ħhΩ= 20MeV. The experimental energies are listed in the last row.

α [fm4] g.s. 0+0 0−0 2−0 2−1 1−1 1−0
0.04 -28.36 -5.37 -6.38 -5.24 -3.86 -3.58 -2.73
0.0625 -28.44 -5.62 -6.51 -5.39 -4.03 -3.77 -2.95
0.08 -28.46 -5.70 -6.55 -5.44 -4.09 -3.84 -3.03
exp. [81] -28.29 -8.08 -7.28 -6.45 -4.99 -4.65 -4.04
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Figure 13.2 – Phase shifts 2S1/2, 2P1/2, 2P3/2 and 2D3/2 for E3max = 10 ( ), 12 ( ) and 14 ( )
from single-channel calculations including the ground-state of 4He for the NN+3N-induced
(left-hand panel) and the NN+3N-full (right-hand panel) Hamiltonians. Remaining parameters
are Nmax = 11, α= 0.0625fm4, E3max = 14, and ħhΩ= 20MeV. (published in [51])

13.1.3 Dependence on the HO Frequency

We proceed with the sensitivity of the n-4He(g.s.) phase shifts to the HO frequency ħhΩ

by varying the frequency from 16 through 20 to 24MeV, and again we use Nmax = 11 and

α= 0.0625fm4. The phase shifts for the larger two frequencies are practically identical with

only marginal deviations around the 2P1/2 and 2P3/2 resonance positions. For the lower

frequency ħhΩ= 16MeV the observed deviations are slightly enhanced. However, from our

discussions in Sections 5 and 9 we know that here the finite SRG model space and also the

E3max parameter can affect the frequency dependence. Nevertheless, overall we find only

minor dependence on the HO frequency and stick to ħhΩ= 20MeV in the following.

13.1.4 Dependence on the Number of Excitations of the 4He Target

As discussed in Section 10, for scattering calculations involving many-body systems typ-

ically only a subset of a priori most relevant channels can be included in the calculation.

To make sure the selection provides accurate results one needs to study the convergence

with respect to the considered channels. Due to the single open channel of the nucleon-
4He system up to fairly high energies, we adopt here the NCSM/RGM model space char-

acterized by expansion (11.4) in terms of binary-cluster channel states that are, for the

single-nucleon projectile formalism, given by Eq. (11.24). Consequently, we need to study

the convergence with respect to the NCSM/RGM model-space size by including more and

more channels, i.e., excited states of 4He, into our investigations. Each included channel

increases the computational cost for the Norm and Hamiltonian kernels. In Figure 13.4 we

present the convergence of the n-4He phase shifts with respect to the number of excited
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Figure 13.3 – Dependence of the 2S1/2, 2P1/2, 2P3/2 and 2D3/2 n-4He phase shifts on the HO frequency
for ħhΩ= 16MeV ( ), ħhΩ= 20MeV ( ) and ħhΩ= 24MeV ( ) from single-channel calculations
including the ground-state of 4He for the NN+3N-induced (left-hand panel) and the NN+3N-
full (right-hand panel) Hamiltonians. Remaining parameters are Nmax = 11, α = 0.0625fm4 and
E3max = 14. (published in [51])

states of the 4He target up to the first seven states (I π1
1 T1 = g.s.,0+0,0−0,2−0,2−1,1−1,1−0).

Their energies obtained from the NCSM are listed in Table 13.1. We use the largest model

space Nmax = 13 and the NN+3N-full Hamiltonian evolved to α = 0.0625fm4 and ħhΩ =

20MeV. The crucial role of the excited states is evident in particular from the resonant

P wave phase shifts: the 2P1/2 phase shift is enhanced by the inclusion of the negative par-

ity states at energies beyond its resonance position with strongest effects by the 1− states.

The 2P3/2 phase shift near the resonance energy is strongly influenced by the 2−0 state and

further enhanced by the additional states. In contrast, the phase shift corresponding to the

Pauli blocked 2S1/2 partial wave is mostly insensitive to the polarization effects triggered by

inclusion of more channels. The rather slow convergence of the NCSM/RGM with respect

to the number of excited states is consistent with Refs. [47, 48] for NN-only Hamiltonians.

However, the changes in the phase shifts obtained with six or seven states are acceptably

small. Hence, we adopt the inclusion of seven excited states for our studies of the 3N in-

teraction effects and their comparison to experiment in Section 13.2. One reason for the

large number of 4He states necessary to reach convergence is connected with the fact that

correlations of the A-body system are more conveniently described if the so-called A-body

distortion functions (see last line of Eq. (10.4)) considered in the basis. These are not in-

cluded in the NCSM/RGM model space. However, it is possible to extent the NCSM/RGM

approach to account for such contributions. This is the topic of Section 14 and leads to the

no-core shell model with continuum approach.
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Figure 13.4 – Dependence of the 2S1/2, 2P1/2, 2P3/2 and 2D3/2 n-4He phase shifts on the NCSM/RGM
model space via the successive inclusion of excited states of 4He in corresponding multi-
channel calculations. Remaining parameters are Nmax = 13, α= 0.0625fm4 and E3max = 14. (pub-
lished in [51])

13.1.5 Relevance of Discarded SRG-Induced Multi-Nucleon Forces

Now we study the SRG flow-parameter dependence of the low-energy n-4He phase shifts

to assess the role of discarded SRG-induced multi-nucleon contributions. In Part II we

have emphasized that a reliable assessment the α dependence requires convergence with

respect to the model-space size of the approach, see, e.g., Section 6. In addition, we stress

that even if no SRG-induced multi-nucleon forces would have been neglected, significant

artificial dependencies on the SRG flow parameter can arise from inconsistent truncations

are used as, e.g., the E3max in the NCSM/RGM. Furthermore, the α dependence carried

by the NCSM input vectors for the 4He target is translated into the NCSM/RGM kernels,

too. We investigate this point for SRG flow parameters α = 0.0625 and 0.08fm4 using the

largest accessible model space, i.e., including seven states of 4He at Nmax = 13 and E3max =

14. The results are shown in the left- and right-hand panel of Figure 13.5 for the NN+3N-

induced and NN+3N-full Hamiltonian, respectively. The 2S1/2 and 2D3/2 phase shifts, which

we have found well converged with respect to all truncations discussed throughout the

previous subsections, are on top of each other. That is, the discarded SRG-induced multi-

nucleon interactions are irrelevant for these partial waves. For the 2P1/2 and 2P3/2 phase

shifts the dependence is visible and slightly larger for the NN+3N-full Hamiltonian, but

overall very small. Note that these partial waves have shown the largest sensitivities to

the truncations studied before, such that our statement above applies and the slight α

dependence could be artificial. To confirm the latter point we additionally study the third

SRG flow parameter α = 0.04fm4 with the NN+3N-full Hamiltonian and include only four

excited states of 4He by dropping the 1− states. The resulting phase shifts are depicted in

Figure 13.6. The 2S1/2 and 2D3/2 phase shifts are again practically identical for all three flow
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Figure 13.5 – Dependence of the 2S1/2, 2P1/2, 2P3/2 and 2D3/2 n-4He phase shifts on the SRG flow
parameter for the NN+3N-induced (left-hand panel) and the NN+3N-full (right-hand panel)
Hamiltonians including seven eigenstates of 4He. Shown are results for α = 0.08 ( ) and
0.0625 fm4 ( ). Remaining parameters are Nmax = 13, E3max = 14, and ħhΩ= 20 MeV. (published
in [51])

parameters. In contrast the P wave phase shifts exhibit larger differences, in particular,

for the harder α= 0.04fm4 Hamiltonian, which emphasizes its smaller rate of model-space

convergence compared to the softer Hamiltonians (cf. Part II).

Altogether, the remaining flow-parameter dependence for the most complete calcu-

lation including seven excited states of 4He at Nmax = 13 and E3max = 14 for the range of

flow-parameters studied here is small compared to, e.g., the consequences of including

additional 4He eigenstates. Hence, we stick to α= 0.0625fm4 in the following.

13.1.6 Benchmark of the Isospin Treatment

As final point of our uncertainty analysis we compare the treatment of the isospin depen-

dence of the NN interaction that differs between the two approaches to compute the Norm

and Hamiltonian kernels: our implementation based on Eqs. (11.64) - (11.68) using un-

coupled densities is capable to fully account for charge dependence effects of the nuclear

and electromagnetic interactions. However, the original NCSM/RGM NN kernels [48] and

also the 3N kernels in the spirit of Eq. (11.71), which make use of precomputed coupled

reduced density matrix elements proposed by Hupin and Quaglioni, rely on isospin av-

eraged interactions. Therefore, our implementation allows for the first time to assess the

quality of the isospin averaging traditionally used in the NCSM/RGM formalism [47, 48].

For the Hamiltonians used here the different isospin treatment is relevant in the NN

kernels (11.65) and (11.66) only. This is due to the fact that the initial chiral 3N interac-

tion we use is isospin averaged, i.e., it is independent of the isospin projection. Also for

the SRG transformation of the NN Hamiltonian in three-body space we use an isospin av-
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Figure 13.6 – Dependence of the 2S1/2, 2P1/2, 2P3/2 and 2D3/2 n-4He phase shifts on the SRG
flow parameter for the NN+3N-full Hamiltonians including five eigenstates of 4He (I π1

1 T1 =

g .s ., 0+0, 0−0, 2−0, 2−1). Shown are results for α = 0.08 ( ), 0.0625 fm4 ( ), and 0.04 fm4 ( ).
Remaining parameters are Nmax = 13, E3max = 14, and ħhΩ= 20 MeV. (published in [51])

eraged initial interaction developed in [207]. As a result the total 3N interaction, i.e., the

SRG-induced and the transformed chiral contribution, is isospin averaged and Eqs. (11.68)

and (11.71) are equivalent. However, the NN interaction, resulting from SRG transforma-

tion in two-body space, includes charge dependence effects of both, the nuclear inter-

action and the proton-proton Coulomb interaction. Thus, for the NN kernels computed

with reduced density matrices in spirit of Eq. (11.71), see Ref. [48] for details, the isospin

averaged NN interaction is used. In particular, the T = 1 matrix elements are obtained via

〈 ˆ̄V NN
T=1〉= cp n 〈V̂

pn
T=1〉+ cp p 〈V̂

pp
T=1〉+ cnn 〈V̂ nn

T=1〉 (13.1)

with

cp n =
1
2 (ZP NT+NPZT )

ZPZT+NP NT+
1
2 (ZP NT+NPZT )

, (13.2)

cp n = ZP NT

ZPZT+NP NT+
1
2 (ZP NT+NPZT )

, (13.3)

cp n = NP NT

ZPZT+NP NT+
1
2 (ZP NT+NPZT )

, (13.4)

with ZP ,NP and ZT ,NT as number of protons and neutrons in the projectile and target, re-

spectively [51]. Because our implementation of the NN kernels (11.65) and (11.66) does not

rely on this averaging we are in the position to validate the averaging procedure. We com-

pare both approaches in Figure 13.7 using the phase shifts for the four lowest partial waves

of proton-4He scattering, where the effects of the isospin averaging are enhanced due to

the relevance of the inter-cluster Coulomb interaction. The calculations include the first

four excited states of 4He, i.e., in particular the 2−1 state with non-vanishing isospin, and

we employ the NN+3N-full Hamiltonian at α= 0.0625fm4 with E3max = 14. The calculations
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Figure 13.7 – Comparison of the two approaches to treat the isospin in the potential kernels for
the example of p-4He scattering phase shifts including 5 eigenstates of 4He. The isospin depen-
dence is treated exactly in kernels with uncoupled densities (11.65) and (11.66) ( ), or using
the averaging (13.1) and kernels using reduced coupled densities (11.71) ( ). For further de-
tails see text. Remaining parameters are Nmax = 13, E3max = 14, and ħhΩ = 20 MeV. (published
in [51])

with and without isospin averaging are shown as dashed and solid lines, respectively. We

find the isospin averaging (13.1) very accurate and slight differences occur only in the 2P3/2

phase shift. Thus, the isospin averaging used throughout the initial NCSM/RGM calcula-

tions [47, 48] appears reliable as long as the isospin violation of the included target states

is small.

13.2 Three-Nucleon Force Effects on Scattering Phase Shifts

Having completed the comprehensive uncertainty analysis of all truncations involved in

the NCSM/RGM formalism including 3N interactions in the previous subsection, we now

focus on the 3N force effects on the scattering phase shifts. Therefore, we apply the largest

NCSM/RGM model space considered before, i.e., including the seven states of 4He (I π1
1 T1 =

g .s .,0+0,0−0,2−0,2−1,1−1,1−0) at Nmax = 13 with ħhΩ = 20MeV and using the truncation

E3max = 14 for the 3N matrix elements. In addition, we adopt α= 0.0625fm4 throughout.

We show in Figure 13.8 the comparison between the scattering phase shifts obtained

with the NN-only, the NN+3N-induced, and the NN+3N-full Hamiltonians. First we fo-

cus on the 2S1/2 and 2D3/2 partial waves that we find almost insensitive to the inclusion

of 3N interactions. The 2D3/2 phase shift is practically identical for all three Hamiltoni-

ans. For the 2S1/2 phase shift we find small changes if the SRG-induced 3N components

are included, and additional slightly smaller changes of opposite sign once the chiral 3N

interaction is included. These findings are consistent with the Green’s function Monte

Carlo results presented in Ref. [206] obtained for the AV18 [8] NN interaction along with
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Figure 13.8 – Comparison of the n-4He 2S1/2, 2P1/2, 2P3/2 and 2D3/2 phase shifts for the NN-only ( ),
NN+3N-induced ( ) and NN+3N-full ( ) Hamiltonians including seven eigenstates of 4He
and at Nmax = 13. Remaining parameters are E3max= 14 and ħhΩ= 20 MeV. (published in [51])

the UIX or IL2 3N interaction models [39]. We find stronger effects of 3N interactions in

the P wave phase shifts. As can be seen by comparison to the NN+3N-induced results, both

are overestimated by the NN-only Hamiltonian for energies around their respective reso-

nance position and also beyond. Therefore, the inclusion of SRG-induced 3N interactions

is crucial to reveal and eliminate the artificial enhancement of the NN-only phase shifts.

While the effect of the SRG-induced 3N interactions is quite similar for both P wave phase

shifts, they are pushed apart by the chiral 3N interaction. The 2P1/2 resonance is slightly

broadened and overall its phase shift is further reduced by the chiral 3N interaction. In

contrast, the 2P3/2 phase shift is increased and ends up almost on top of the NN-only re-

sult, which is accidental. Again our results are similar to those obtained in Ref. [206] with

the GFMC. In summary, we have found the inclusion of 3N interactions important on the

one hand to avoid artificial results caused by discarded SRG-induced 3N contributions and

on the other hand to include the additional operators structures of the chiral 3N interac-

tion. Both contributions yield sizable effects in the P wave phase shifts and in particular

the splitting between the P wave resonances.

Finally, we explore if the inclusion of the initial chiral 3N interaction helps to improve

the agreement with experimental phase shifts. For that we compare in Figure 13.9 the

phase shifts obtained from the NN+3N-induced and NN+3N-full Hamiltonians to exper-

imental phase shifts from an accurate phenomenological R matrix analysis of the 5He

data [208]. We start with the discussion of the n-4He case shown in the left-hand panel.

We find very good agreement with the experimental phase shifts for the 2S1/2, 2P1/2 and
2D3/2 phase shifts. For the 2P1/2 clearly the chiral 3N interaction is responsible for the

improved agreement compared to the NN+3N-induced results. However, we also note

slightly larger deviations from experiment compared to the NN+3N-induced calculations
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Figure 13.9 – Comparison of the n-4He (left-hand panel) and p-4He (right-hand panel) scattering
phase shifts for partial wave 2S1/2, 2P1/2, 2P3/2 and 2D3/2 obtained with the NN+3N-induced ( )
and NN+3N-full ( ) Hamiltonians to experimental phase shifts (+) obtained from R-matrix
analysis [208]. The calculations include seven eigenstates of 4He and use Nmax = 13. Remaining
parameters are E3max= 14 and ħhΩ= 20 MeV. (published in [51])

for the 2P1/2 phase shift below its resonance energy and for the 2S1/2 phase shift at large

energies. The 2P3/2 phase shift is clearly enhanced by the chiral 3N interaction leading to

quite good agreement with experiment beyond 4 MeV energy in the center-of-mass frame.

As mentioned before, a particularly interesting feature in n-4He scattering is the spin-orbit

splitting between the P waves. When we compare the difference of the resonance positions

of both P wave phase shifts obtained with the NN+3N-induced Hamiltonian to the split-

ting resulting from the additional inclusion of the chiral 3N, the latter indeed increases

the difference. However, the enhancement of the 2P3/2 phase shift remains too small for

energies around its resonance centroid and below. Consequently, a clear discrepancy to

the experimental resonance energy at 0.78 MeV remains. However, we are not in the posi-

tion to blame this on the initial chiral Hamiltonian because one possible explanation is of

course connected to the still limited NCSM/RGM model space. As evident from Table 13.1

we have included 4He states up to excitation energies of 24 MeV. However, the deuteron-
3H channels opens experimentally at 17.63 MeV and the coupling to this channel is likely

to impact the results and would yield a more complete picture. In order to include this

channel it is required to extend the NCSM/RGM formalism for two-nucleon projectiles to

include 3N interactions. Another possibility to overcome the limited convergence of the

NCSM/RGM approach is the use of the no-core shell model with continuum, discussed

in Section 14, that includes low-lying 5He states into the basis expansion. Work in both

directions is currently underway [209].

The discussion of the p-4He phase shifts, shown in the right-hand panel of Figure 13.9,

is qualitatively identical. We find the 2S1/2 and 2D3/2 in good agreement with experiment
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Figure 13.10 – Differential cross section for neutron-4He elastic scattering at incident neu-
tron energy of 17.6 MeV obtained with the three types of Hamiltonians compared to exper-
iment. The NCSM/RGM calculations include the first seven low-lying states of 4He I π1

1 T1 =

(g.s., 0+0, 0−0, 2−0, 2−1, 1−1, 1−0). Remaining parameters are Nmax = 13, E3max = 14, α = 0.0625fm4,
and ħhΩ= 20MeV. The experimental data is taken from Ref. [210]. (published in [51])

and they are, as in the n-4He case, not very sensitive to the inclusion of the initial chiral

3N interaction. For the 2P1/2 phase shift the NN+3N-full Hamiltonian is responsible for the

good agreement with experiment at large energies, but near the resonance around 3.2 MeV

we observe small deviations from experiment and the NN+3N-induced Hamiltonian yields

the better agreement with experiment. For the 2P3/2 partial wave the NN+3N-full Hamil-

tonian leads to better agreement with experiment than the NN+3N-induced Hamiltonian

for all studied energies. In line with the n-4He discussion above, we still find rather large

differences to experiment in the 2P3/2 phase shift below 6 MeV such that the experimen-

tal resonance position at 1.69 MeV [147] is clearly not reproduced. As before this may be

related to missing deuteron-3He contributions.

Altogether, the agreement with experiment for the nucleon-4He phase shifts is very

promising, confirms the validity of chiral NN+3N Hamiltonians also in ab-initio studies of

nuclear reactions, and motivates the investigation of further scattering observables.

13.3 Cross Sections and Analyzing Powers

Now we focus on elastic scattering observables of the nucleon-4He system. Given the dis-

cussion in the last subsection it is clear that we should investigate energies beyond the P

wave resonances for such studies. That is, we focus on energies where the phase shifts

are in good agreement with experiment. In Ref. [179] it has been demonstrated that the

NCSM/RGM approach with NN-only interactions is able to provide sensible descriptions

of angular differential cross sections and analyzing powers even when including only two
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Figure 13.11 – Differential cross section for proton-4He elastic scattering at different proton ener-
gies Ep obtained with the NN+3N-induced and NN+3N-full Hamiltonians compared to experi-
mental data of Ref. [211]. Note that the 2% uncertainty of the data is hidden by the plot markers.
The remaining parameters are identical to Figure 13.10. (published in [51])

excited states of 4He. Note, however, that this is related to the artificial enhancement of the

NN-only phase shifts due to the omission of SRG-induced 3N interactions. In the follow-

ing we discuss differential cross sections and analyzing powers computed with the chiral

NN+3N Hamiltonians and with the set of parameters used in the previous Section, i.e., in

particular including the first seven states of 4He.

We begin with the investigation of the differential cross section at incident neutron en-

ergy of 17.6 MeV shown in Figure 13.10 for the NN-only (green-dotted line), the NN+3N-

induced (blue-dashed line), and the NN+3N-full Hamiltonian (solid-red line) in compar-

ison to the experimental data of Drosg et al. [210] (crosses). At all angles we find good

agreement with experiment. Between 45 and 135 degrees all three Hamiltonians yield

practically the identical results. Strikingly, in particular the inclusion of the 3N interaction

does not affect the differential cross section for these angles, which might be expected due

to the limited effects also in the phase shifts at the corresponding center-of-mass frame

energy of 14.08 MeV. However, at smaller angles the inclusion of both, the SRG-induced

3N and the initial 3N interaction slightly reduces the differential cross section, leading to

a marginal underestimation of the data point at 30 degrees. Also at large angles the inclu-

sion of both 3N interactions leads to a minor decrease of the differential cross section. In

193



13 Nucleon-4He Scattering

0 50 100 150
Θcm [deg]

-0.5

0

0.5

1
A

y
(Θ

cm
)

4He(n⃗,n)4He
En = 11 MeV

0 50 100 150
Θcm [deg]

4He(n⃗,n)4He
En = 15 MeV

0 50 100 150
Θcm [deg]

4He(n⃗,n)4He
En = 17 MeV

Figure 13.12 – Analyzing power Ay for neutron-4He elastic scattering at incident neutron ener-
gies 11 (left-hand panel), 15 (middle panel), and 17 MeV (right-hand panel) obtained for the
NN+3N-induced ( ) and NN+3N-full ( ) Hamiltonians compared to experimental data (+)
of Refs.[212, 210, 213]. The NCSM/RGM calculations include the first seven low-lying states of
4He I π1

1 T1 = (g.s., 0+0, 0−0, 2−0, 2−1, 1−1, 1−0). Remaining parameters are identical to Figure 13.10.
(published in [51])

addition, we show in Figure 13.11 the p-4He differential cross section the incident proton

energies of 5.95, 7.89, 9.89, and 11.99 MeV for the NN+3N-induced and NN+3N-full Hamil-

tonians compared to experiment. By comparison of the results for these two Hamiltonians

we study the impact of the initial chiral 3N interaction. For angles below 90 degrees both

results are on top of each other and, as above for the n-4He cross section, we find no effect

of the initial 3N interaction. However, this changes at larger angles beyond 90 degrees,

where the latter clearly yields additional contributions that yield good agreement of the

differential cross sections with experiment essentially for all angles, although a slight over-

estimation for large angles remains.

We proceed with the discussion of the analyzing power Ay , which is more complicated.

We start again with neutron-4He scattering and present the Ay at incident neutron ener-

gies 11, 15 and 17 MeV for the three types of Hamiltonians compared to experiment in Fig-

ure 13.12. Near the minimum around 95 degrees the NN-only Hamiltonian leads to results

closer to experiment than the NN+3N-induced Hamiltonian, which is due to the acciden-

tally better agreement of the 2P3/2 phase shift with experiment for the NN-only Hamilto-

nian than for NN+3N-induced Hamiltonian, as evident from a comparison of Figures 13.8

and 13.9. However, for 15 and 17 MeV at large angles the NN+3N-induced Hamiltonian

leads to better agreement with experiment. Finally, the inclusion of the initial 3N interac-

tion improves the agreement with experiment at 11 and 15 MeV for small and large angles

compared to the NN+3N-induced Hamiltonian, while both yield similar values for Ay be-

tween 100 and 125 degrees. For the 17 MeV results the NN+3N-full Hamiltonian overall

improves the experimental agreement, with the exception of the largest angles measured.

Altogether, the deviations from experiment are clearly larger for the Ay than for the dif-

ferential cross section discussed above. One reason is that this polarization observable is

more sensitive to the spin-orbit components of the nuclear interaction [214] and to non-
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Figure 13.13 – Analyzing power Ay for proton-4He elastic scattering for different incident proton
energies Ep obtained for the NN+3N-induced ( ) and NN+3N-full ( ) Hamiltonians com-
pared to experimental data (+) of Ref. [211]. The NCSM/RGM calculations include the first
seven low-lying states of 4He I π1

1 T1 = (g.s., 0+0, 0−0, 2−0, 2−1, 1−1, 1−0). Remaining parameters are
identical to Figure 13.10. (published in [51])

convergence with respect to model-space size. For instance, the small deviations of the

phase shifts from experiment present in Figure 13.9 at Ekin = 8.8MeV corresponding to

11 MeV neutron energy are amplified in the Ay . A second reason for the deviations is re-

lated to the fact that the Ay at energies above 11 MeV is sensitive to partial waves up to

at least J = 11
2 before convergence is reached. However, for the discussed results at 15

and 17 MeV we have limited this expansion to partial waves with J ≤ 7
2 because we found

phase shifts corresponding to higher partial waves at these energies to be biased by the

E3max truncation. However, for the lower energy of 11 MeV we include partial waves up

to J = 11
2 , and this is also the case for the Ay of p-4He shown in Figure 13.13 where we

study again the four incident proton energies below 12 MeV. Overall, for all four energies

the NN+3N-full Hamiltonian improves the agreement with experiment compared to the

NN+3N-induced results except for the minimum near 90 degrees for 5.95 MeV incident

proton energy and the peak at 110 degrees for the 7.89 MeV case. However, at small angles

below the minimum discrepancies between the Ay and experiment remain for all energies

also for the NN+3N-full Hamiltonian. The experimental data around the minimum is best

reproduced at Ep = 7.89 and 9.89 MeV. For angles larger than 135 degrees we find devi-
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13 Nucleon-4He Scattering

ations from experiment for the NN+3N-induced Hamiltonian for all considered energies

and for the NN+3N-full Hamiltonian for the larger energies 9.89 and 11.99 MeV that are in

line with the overestimation of the differential cross section, respectively.

In conclusion, the chiral 3N interaction is vital for the study of nucleon-4He scattering

resulting in a good description of n-4He and p-4He scattering phase shifts away from the
2P3/2 resonance. For the 2P3/2 phase shift convergence with respect to the NCSM/RGM

model space size is not yet reached in spite of including seven states of the 4He target.

This can be improved by also including the deuteron-triton channel and by using the no-

core shell model with continuum approach, which will be the focus of the next section.

In addition, we have found remarkably good agreement of differential cross sections with

experiment over a wide incident energy range, in particular for p-4He scattering due to

the included chiral 3N interaction. For the analyzing powers we find larger deviations at

certain energies and angles.

Altogether, these findings give confidence in further developments of more sophisti-

cated ab-initio approaches to nuclear reactions and applications to scattering involving

heavier target nuclei. Furthermore, our results pave the way towards detailed benchmarks

and sensitivity studies of the chiral nuclear forces also in the domain of scattering observ-

ables for light nuclei similar to the studies in Sections 6 and 7 for nuclear structure.
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SECTION 14

No-Core Shell Model with Continuum

The extension of the NCSM/RGM formalism to include 3N interactions discussed in

Section 11 in combination with the R-matrix theory for solving the radial Schrödinger

equation constitutes a major step towards the ab-initio description of bound- and scat-

tering states based on chiral NN+3N Hamiltonians. In the previous section we found en-

couraging results for nucleon-4He scattering including chiral 3N interactions. In order to

converge the calculations with respect to the NCSM/RGM model space we included up

to six excited states of the 4He target, but in particular for the P-wave phase shifts full

convergence was not yet reached. The same issue has been found also in calculations

for 7Be(p,γ)8B with NN interactions, and it becomes even more apparent when the sub-

clusters are weakly bound, e.g., for deuteron projectiles where the inclusion of numer-

ous excited pseudo-states of the deuteron is required [180, 182]. Even though, this poses

no formal problems, the calculations become much more complex due to many coupled

channels, and the computational cost for the norm and Hamiltonian kernels increases sig-

nificantly. The origin of this rather slow convergence is connected to a lack of correlations

in the A-body states of the NCSM/RGM channel basis due to their cluster structure. The

correlations within the (A − a )-body target and the a -body projectile clusters are well de-

scribed by the representation as NCSM eigenstates, however, the inter-cluster correlations

are not taken into account and, thus, need to be covered by the inclusion of more eigen-

states of the projectile and the target into the calculation. This is similar to the NCSM,

where the superposition of Slater determinants covers the A-body correlations, while a

single Slater determinant carries no information about correlations of the system.

To improve on this issue of the NCSM/RGM approach Baroni, Navrátil and Quaglioni

recently proposed the ab-initio no-core shell model with continuum (NCSMC)[49, 50].

The basic idea is to augment the partial-wave scattering state of the NCSM/RGM for-

malism (11.4) by a superposition of NCSM eigenstates of the A-body system. Based on

the discussion above, the motivation for this choice of basis states is evident: the NCSM

eigenstates have the ability to describe the short-range correlations of the systems prop-

erly, while they do not exhibit the correct asymptotic behavior to describe weakly-bound
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14 No-Core Shell Model with Continuum

or even scattering states, because they are expanded in a finite HO basis. However, the

weakly-bound or scattering states are well-described by the cluster states adopted from

the NCSM/RGM approach. In this way one obtains a symbiotic basis, where the advan-

tages of both parts remedy the drawbacks of each other. In combination with the R-matrix

theory the NCSMC treats bound- and scattering states on equal footing suitable for the

ab-initio predictions of structural and scattering observables within a unified framework.

So far, the NCSMC has been successfully applied to the unbound 7He nucleus with

NN-only Hamiltonians [50, 49]. In this section, we aim at the application of the NCSMC

formalism including explicit 3N interactions. As demonstrated in the next subsection, the

extension of the NCSM/RGM kernels to include 3N interactions discussed in Section 11

constitutes a major step towards the extension of the NCSMC formalism to 3N interac-

tions. In the next subsection we outline the general formalism of the NCSMC. Afterwards,

we present first results for NCSMC with explicit 3N interactions for the neutron-8Be sys-

tem. The results presented in the following are achieved in collaboration with Petr Navrátil

(TRIMUF).

14.1 Formalism

We start with a brief overview of the NCSMC approach following Ref. [49], where further

details about the formalism for NN interactions can be found. In particular, we highlight

which quantities are affected by the extension of the formalism to 3N interactions.

The ansatz for the eigenstates of the A-body system in the NCSMC formalism reads

|ΨJπT 〉=
∑

λ

cλ |ΨA Eλ J πT 〉+
∑

ν

ˆ

dr r 2χν (r )

r
|ξJπT
νr 〉 , (14.1)

where the first term is a superposition of NCSM eigenstates of the A-body system (cf. Sec-

tion 4.1), and the second term represents the expansion in binary-cluster channel states

analogous to Eq. (11.4). We have dropped the projection quantum numbers M and MT

and the superscript JπT at the relative motion wave function χν (r ) for brevity. Note that

we wrote the expansion in terms of the orthogonalized NCSM/RGM channel states (11.15),

which are related to the non-orthogonalized channel states by

|ξJπT
νr 〉=

∑

ν ′

ˆ

dr ′r ′24
− 1

2
ν ′ν (r

′,r )&̂ν ′ |Φ JπT
ν ′r ′ 〉 , (14.2)

with the inverse of the square root of the norm kernel as given in Eq. (11.19), and the un-

knowns of this expansion are the coefficients cλ and the relative wave functions χν (r ).

It is evident, that the basis states (14.1) are well-suited to describe bound and scattering

states. The appropriate treatment of correlations of the A-body system, which are prob-

lematic in the NCSM/RGM cluster basis, is accomplished by the NCSM eigenstates. Thus,

if the existence of nucleon sub-clusters is relevant for the description of the A-nucleon sys-

tem this ansatz improves the model-space convergence compared to both, the NCSM and

NCSM/RGM approach.
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14.1 Formalism

To derive the conditional equations for the coefficients cλ and the relative wave func-

tionsχν (r )we insert ansatz (14.1) in the time-independent Schrödinger equation Ĥ |ΨJ πT 〉=
E |ΨJ πT 〉. In addition, multiplication from the left by another NCSM eigenstate 〈ΨA Eλ′ J πT |
leads to

∑

λ

(HNCSM)λ′λ cλ+
∑

ν

ˆ

dr r 2hλ′ν (r )
χν (r )

r
= E

∑

λ

δλ′λ cλ+
∑

ν

ˆ

dr r 2gλ′ν (r )
χν (r )

r
(14.3)

with the definitions

(HNCSM)λ′λ = 〈ΨA Eλ′ J
πT |Ĥ |ΨA Eλ J πT 〉= Eλδλ′,λ , (14.4)

hλ′ν (r ) = 〈ΨA Eλ′ J
πT |Ĥ |ξJπT

νr 〉 (14.5)

=
∑

ν ′

ˆ

dr ′r ′2〈ΨA Eλ′ J
πT |Ĥ&̂ν ′ |Φ JπT

ν ′r ′ 〉 4
− 1

2
ν ′ν (r

′,r ) , (14.6)

gλ′ν (r ) = 〈ΨA Eλ′ J
πT |ξJπT

νr 〉 (14.7)

=
∑

ν ′

ˆ

dr ′r ′2〈ΨA Eλ′ J
πT |&̂ν ′ |Φ JπT

ν ′r ′ 〉4
− 1

2
ν ′ν (r

′,r ) . (14.8)

In Eqs. (14.6) and (14.8) we have inserted Eq. (14.2) to express the functions hλ′ν (r ) and

gλ′ν (r ) in terms of the non-orthogonalized channel states, because this is more convenient

regarding the implementation. Multiplication from the left by an orthogonalized channel

state 〈ξJπT
ν ′r ′ | leads to

∑

λ

hλν ′ cλ+
∑

ν

ˆ

dr r 2; (r ′,r )
χν (r )

r
= E

∑

λ

gλν ′ (r )cλ+
∑

ν

ˆ

dr r 2δ(r
′ − r )δν ′,ν

r ′r

χν (r )

r
, (14.9)

with

; (r ′,r ) = 〈ξJπT
ν ′r ′ |Ĥ |ξ

JπT
νr 〉

=
∑

γγ′

ˆ

dy y 2
ˆ

dy ′y ′24
− 1

2
γν ′ (y ,r ′)〈Φ JπT

γy |&̂γĤ&̂γ′ |Φ JπT
γ′y ′ 〉4

− 1
2

y ′ν (y
′,r ) , (14.10)

which is exactly the NCSM/RGM Hamiltonian kernel with respect to the orthogonalized

basis (11.12). The latter contains with 〈Φ JπT
γy |&̂γĤ&̂γ′ |Φ JπT

γ′y ′ 〉 the Hamiltonian kernel for

which we have derived the explicit formulas for the inclusion of 3N interactions and dis-

cussed implementation strategies in Section 11. The remaining quantity that needs to be

generalized to 3N interactions is the coupling form factor hλ′ν (r ) of Eq. (14.6), which has

been completed by Petr Navrátil. With help of above definitions we can cast the NCSMC

Eqs. (14.3) and (14.9) in a more compact form by means of matrix notation

!

HNCSM h

h ;

"!

c

χ(r )/r

"

= E

!

1 g

g 1

"!

c

χ(r )/r

"

. (14.11)
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14 No-Core Shell Model with Continuum

Of course, the NCSMC basis in terms of states (14.1) is over-complete, which is manifested

by the presence of the norm matrix

N =

!

1 g

g 1

"

(14.12)

on the right-hand side of Eq. (14.11). In practice it is more convenient to work with the

orthogonalized NCSMC equations that can be obtained analogously as in the NCSM/RGM

approach by multiplications with appropriate (inverse) square roots of N . For the details of

the orthogonalization procedure we refer to Ref. [50]. Finally, the orthogonalized NCSMC

equations become

H̄

!

c̄

χ̄(r )/r

"

= E

!

c̄

χ̄(r )/r

"

, (14.13)

with the orthogonalized Hamiltonian matrix

H̄ =N−
1
2

!

HNCSM h

h ;

"

N−
1
2 and

!

c̄

χ̄/r

"

=N
1
2

!

c

χ/r

"

. (14.14)

The solution of the orthogonalized NCSMC equations is achieved by the R-matrix method

on a Lagrange mesh presented in Section 12 that yields the bound- as well as scattering-

state solutions.

Finally, we note that the application of the NCSMC formalism extended to 3N inter-

actions beyond the lightest systems, i.e., beyond 4He targets relies on the computation of

the NCSM/RGM kernels using our approach based on the on-the-fly computation of the

involved density matrices, see Eqs. (11.64)- (11.68), while it is prohibitive in the alternative

strategy using coupled densities (cf. Section 11.2.4).

14.2 Ab-Initio Description of 9Be via n-8Be Scattering

As first application of the NCSMC with explicit 3N interactions we focus on the excita-

tion spectrum of 9Be. This system is interesting because only its ground state is bound

while all excited states are above the n-8Be energy threshold located experimentally at

1.665 MeV [215, 148]. Therefore, it is appealing to study the impact of the continuum

on the excited-state resonances with particular focus on the effects of chiral 3N interac-

tions. In addition, 9Be is of interest for astrophysics, because it provides seed material

for the production of 12C via the (ααn)9Be(α,n)12C reaction as alternative to the triple-α

reaction [216].

We aim at the description of the low-energy resonances up to about 10 MeV above the

n-8Be threshold. Hence, all excited states of 9Be in this energy range may significantly

contribute in the NCSMC expansion (14.1). We include the four positive-parity states 1
2
+

,
5
2
+, 3

2
+

, 9
2
+

, and the six negative-parity states 3
2
−

, 5
2
−, 1

2
−

, 3
2
−

, 7
2
−, and 5

2
− as these are the

lowest-energy states computed with the (IT-)NCSM. The selection of these states is also
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consistent with the experimental energy levels which show a gap of about 3 MeV between

the second 5
2
− state that we still include and the next experimentally known resonance at

11.2 MeV [148], which is also found near this energy in NCSM calculations. Similar argu-

ments lead to the selection of channels that we include into the NCSM/RGM part of the

NCSMC expansion. First of all, we restrict ourselves to channels with projectiles consisting

of single neutron projectiles and 8Be targets. For the 8Be target we take its 0+ ground state

and the 2+ excited state into account. The next excitation of 8Be is a broad 4+ state around

11 MeV that is beyond the targeted energy range.

The solution of the NCSMC equations is achieved by the R-matrix theory on a Lagrange

mesh using a channel radius of 18 fm and 40 mesh points. We study the NN+3N-induced

and NN+3N-full Hamiltonians, where for the latter we employ the reduced cutoff momen-

tum Λ3N = 400MeV/c . This choice is motivated by the observation that the Λ3N = 500MeV/c

Hamiltonian overbinds the n-8Be threshold by about 800 keV in IT-NCSM calculations at

Nmax = 12, which is not the case with the reduced-cutoff 3N interaction. In the following,

we study the convergence with respect to different truncations present in the NCSMC cal-

culations and the dependence on the SRG flow parameter for phase shifts and eigenphase

shifts of the n-8Be system. Finally, we extract the resonance centroids and corresponding

widths and investigate the continuum as well as 3N-force effects on the spectrum of 9Be

in Section 14.2.5.

14.2.1 Monitoring the IT-NCSM Inputs in the NCSMC

The NCSMC relies on a set of NCSM eigenstates for 8Be and 9Be. Their computation

quickly becomes demanding when large model spaces are considered and, accordingly,

we compute the required eigenstates with the IT-NCSM for Nmax > 7. We emphasize that

this does not only reduce the computational cost for the input vectors, but also and equally

important the computation of the NCSM/RGM kernels and NCSMC coupling form factors

is significantly simplified because much less Slater determinants are included in the su-

perposition of the eigenstates in Eq. (11.72). Also the energy eigenvalues enter the NCSMC

equations, namely in HNCSM for 9Be, and to determine whether a channel is open or closed

for 8Be. The extrapolation to vanishing importance thresholds is performed for these en-

ergies as discussed in Section 4.2. However, for the computation of the NCSM/RGM ker-

nels and NCSMC coupling form factor we use the eigenvectors from the IT-NCSM at the

smallest importance threshold κmin = 3 ·10−5 and Cmin = 10−4. That is, we waive the extrap-

olation to vanishing importance thresholds for the computed phase shifts and scattering

observables, as this would significantly complicate the calculations. Instead we asses the

quality of the importance truncation by direct comparison to phase shifts computed with

full NCSM vectors in the largest feasible model space.

In a first step we investigate n-8Be scattering in the NCSM/RGM formalism only, where

the IT-NCSM vectors enter in the norm and Hamiltonian kernels, which are also a compo-

nent of the NCSMC approach later on. We show the phase shifts and eigenphase shifts at

Nmax = 8 (9 for negative parity) in Figure 14.1 computed from IT-NCSM vectors as dashed
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Figure 14.1 – NCSM/RGM n-8Be phase shifts (upper panels) and eigenphase shifts (lower panels)
at Nmax = 8 for negative parity (left-hand panels) and Nmax = 9 for positive parity (right-hand
panels). Compared are results using NCSM vectors ( ) to results based on IT-NCSM vec-
tors ( ). Remaining parameters are ħhΩ = 20MeV, α = 0.0625fm4 and E3max = 14. Same colors
correspond to identical angular momenta.

lines, and from NCSM vectors as solid lines, and both as function of the kinetic energy Ekin

in the center-of-mass frame. Note that the phase shifts are extracted from the diagonal

entries of the scattering matrix before it is diagonalized. Hence, they correspond to par-

ticular partial waves with well defined quantum numbers. This is useful to identify which

partial wave is responsible for a resonance present in the eigenphase shifts. The latter are

relevant to determine resonance energies and corresponding widths, i.e., they are impor-

tant for comparisons of energy levels against experiment (cf. Section 14.2.4). Note that we

include in Figure 14.1 only those (eigen)phase shifts that are significantly different from

zero. In addition, the eigenphase shifts and phase shifts below about 3.5 MeV are identi-

cal, because at these low energies only a single open channel, defined by the 8Be ground

state, exists.

First, we concentrate on the negative-parity results shown in the left-hand panels of

Figure 14.1. The phase shifts and eigenphase shifts resulting from NCSM/RGM calcula-

tions based on IT-NCSM and NCSM vectors are practically on top of each other. Thus,

configurations discarded by the importance truncation yield negligible contributions to

the (eigen)phase shifts. The spike in the 2F5/2 partial wave slightly below 3 MeV is not an
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Figure 14.2 – NCSMC n-8Be negative-parity phase shifts (left-hand panel) and eigenphase shifts
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on IT-NCSM vectors ( ). Remaining parameters are ħhΩ = 20MeV, α = 0.0625fm4, and E3max =

14. Same colors correspond to identical angular momenta.

artifact but corresponds to a narrow resonance which is not fully resolved by the energy

grid used here. Note that it is also present in the calculations based on the IT-NCSM vec-

tors, where it is again not fully resolved and can be seen slightly below its position from

the calculation with NCSM vectors. For the positive-parity results shown in the right-hand

panels of Figure 14.1 the general conclusion is the same: we find good agreement between

the NCSM/RGM (eigen)phase shifts of n-8Be based on the NCSM and IT-NCSM vectors.

An interesting detail is that the 2D5/2 and 6S5/2 phase shifts show deviations near their reso-

nance energies, however, after the diagonalization of the scattering matrix both 5
2
+

eigen-

phase shifts are again in excellent agreement.

For NCSMC calculations we show the impact of using the IT-NCSM instead of NCSM

vectors in Figure 14.2 again for both, phase shifts and eigenphase shifts at Nmax = 8. We

note that here the 8Be and additionally the 9Be vectors enter in the NCSMC coupling form

factor. However, given the large computational cost of the calculations involving the full

NCSM vectors we restrict ourselves to negative parities. Again we find most phase shifts

and eigenphase shifts computed with IT-NCSM or NCSM on top of each other. The sole

exception are the 7
2
−

and 5
2
−

resonances, where we find slight differences of about 100 keV

for the resonance positions, respectively.

Overall we have found good agreement for NCSM/RGM or NCSMC (eigen)phase shifts

with NCSM and IT-NCSM eigenstates of 8Be and 9Be. This gives confidence in the appli-

cation of IT-NCSM vectors for larger model spaces. In the following, we use NCSM input

vectors for Nmax = 6 and 7, and beyond we resort to IT-NCSM vectors.

14.2.2 Model-Space Convergence

Next we discuss the convergence of the n-8Be phase shifts and eigenphase shifts with re-

spect to the model-space truncation Nmax. The results are summarized in Figure 14.3. We
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Figure 14.3 – NCSMC n-8Be (eigen)phase shifts for positive (negative) parity for Nmax = 6(7) ( ), 8
(9) ( ), 10 (11) ( ), 12 (13) ( ) using IT-NCSM vectors for Nmax > 7. The left- and right-hand
columns show the results for the NN+3N-induced and NN+3N-full Hamiltonian, respectively.
Remaining parameters are ħhΩ= 20MeV, α= 0.0625fm4, and E3max = 14. Same colors correspond
to identical angular momenta.
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start with the negative-parity phase shifts and eigenphase shifts shown in the first two

rows, respectively. The left-hand panels show the results for the NN+3N-full Hamilto-

nian, and the right-hand panels for the NN+3N-induced Hamiltonian. We note that the

(eigen)phase shifts are most sensitive to the model-space size near their resonance posi-

tions. For the NN+3N-full Hamiltonian we find minor changes for the step Nmax = 6 to

8, followed by a larger effect to Nmax = 10, and finally a minor change to the Nmax = 12 re-

sults. The only exception is the 7
2
−

(eigen)phase shift, where the results for the three largest

model spaces are almost on top of each other. The findings are similar for the NN+3N-

induced Hamiltonian, however, the differences between Nmax = 10 and 12 are slightly larger

than in the NN+3N-full results. Note that for the 2F5/2 resonance the Nmax = 10 and 12 re-

sults are perfectly on top of each other. An interesting detail is visible in the 5
2
−

results:

although the 4P5/2 and 6P5/2 phase shifts both show a large change going from Nmax = 8 to

10, only the resonant eigenphase shift shows this behavior while the non-resonant one is

rather insensitive to the different model-space sizes. Altogether, the Nmax convergence for

the negative-parity phase shifts is acceptable and similar to the one found in Ref [50, 49]

with NN-only Hamiltonians for 7He. Although there will be further contributions from

larger model spaces we do not expect that an Nmax = 14 calculations would significantly

change the present results.

The convergence behavior of the (eigen)phase shifts for the positive-parity partial waves

are shown in the lowest two rows of Figure 14.3. Again, the (eigen)phase shifts are most

sensitive to the growing model space near their resonance positions. However, an excep-

tion is the 2S1/2 phase shift and the corresponding 1
2
+

eigenphase shift that is affected at

all energies. As before the convergence pattern is similar for the NN+3N-induced and

NN+3N-full Hamiltonians. However, the Nmax dependence of the individual phase shifts

is stronger than for the negative-parity partial waves and the large changes between the

Nmax = 9 and 11 phase shifts show that the calculation is not yet converged. Nevertheless,

we use the Nmax = 11 results for the following investigations of the positive parity spectrum.

14.2.3 Dependence on the SRG Flow Parameter

Although we are in the domain of light nuclei and we are using the 3N interaction with

the reduced cutoff Λ3N = 400MeV/c , which reduces the flow-parameter dependence of

energies (cf. Section 6.3), possible non-convergences or inconsistent truncations, e.g.,

E3max, can lead to dependencies on the SRG flow parameter. Hence, we study the n-8Be

(eigen)phase shifts for the different SRG flow parameters α = 0.04, 0.0625, and 0.08fm4 for

the NN+3N-full Hamiltonian in Figure 14.4. All (eigen)phase shifts for negative-parity par-

tial waves shown in the left-hand panels reveal only negligible differences for α = 0.0625

and 0.08fm4, since they are almost on top of each other. However, the latter deviate from

the α= 0.04fm4 (eigen)phase shifts at least near resonance energies. As discussed in Part II

further evolved Hamiltonians exhibit an improved rate of convergence with respect to

model-space size. Accordingly, the (eigen)phase shifts for α= 0.04fm4 are expected to con-

verge slower than those for larger flow parameters. Indeed, the direction of the deviations
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Figure 14.4 – SRG parameter dependence of the NCSMC n-8Be phase shifts (upper panels) and
eigenphase shifts (lower panels) for α= 0.04 ( ), 0.0625 ( ), and 0.08fm4 ( ) for the NN+3N-
full Hamiltonian. Remaining parameters are Nmax = 10 (11) for the negative (positive) parity
partial waves, ħhΩ= 20MeV and E3max = 14.

is consistent with the convergence pattern with respect to Nmax shown in Figure 14.3.

The right-hand panels of Figure 14.4 show the (eigen)phase shifts for the positive-

parity partial waves for the same set of flow parameters. The overall conclusions are iden-

tical, however, the differences between α= 0.08 and 0.0625fm4 and also between α= 0.0625

and 0.04fm4 are larger compared to the negative-parity results. Again, this may be related

to the somewhat slower rate of convergence we found for the positive-parity partial waves

in Figure 14.3. Note that the 1
2
+

resonance shows a dependence on the SRG parameter also

for energies beyond its resonance position, however, for all flow parameters its resonance

position remains rather stable, in particular above the threshold.

As argued above some contributions to the α dependence could also originate from the

E3max truncation. For all calculations presented here we use E3max = 14, which is currently

the largest we can manage in the NCSMC. For the NCSM/RGM kernels, which are one

ingredient to the NCSMC equations, almost no dependence on E3max for the somewhat

lighter system n-4He (cf. Figure 13.2). Due to the small differences between phase shifts

for α= 0.0625 and 0.08fm4, and since the larger differences for α= 0.04fm4 are likely due to

a reduced rate of convergence, we stick to α= 0.0625fm4 for our discussion in the following.
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Figure 14.5 – n-8Be NCSMC (eigen)phase shifts for the NN+3N-induced ( ) vs. the NN+3N-
full ( ) Hamiltonians at α = 0.0625fm4 and Nmax = 12 using IT-NCSM vectors. The remaining
parameters are ħhΩ= 20MeV and E3max= 14.

14.2.4 3N-force Effects on n-8Be Scattering Phase Shifts

In this section we aim at disentangling the effects of the SRG-induced 3N interactions on

the (eigen)phase shifts from the effects originating from the initial chiral 3N interaction.

Therefore, we compare the (eigen)phase shifts for the NN+3N-induced and NN+3N-full

Hamiltonians in the left- and right-hand panels of Figure 14.5 for positive- and negative-

parity partial waves, respectively. For all partial waves we find some sensitivity to the in-

clusion of the initial chiral 3N interactions, except for the narrow 2F5/2 resonance which

is practically identical for both Hamiltonians. In general, we observe larger effects of the

chiral 3N interactions for the negative-parity than for the positive-parity partial waves,

particularly near resonance energies. We note that the initial chiral 3N interaction always

moves the resonance energy of all eigenphase shifts to larger energies relative to the n-8Be

threshold. The non-resonant 5
2
−

or 3
2
+

eigenphase shifts are basically unaffected. This is

also true for all remaining non-resonant phase shifts that we do not show here. For nega-

tive parity, the largest effect caused by the initial chiral 3N interaction is found in the rather

broad 5
2
−

resonance around 6 MeV. All other negative-parity partial-wave phase shifts en-

counter roughly the same shift of their resonance position due to the initial 3N interaction.

In addition, the chiral 3N interaction yields almost identical resonance positions for the
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1
2
−

and 5
2
−

eigenphase shifts. The largest effect on its resonance energy for positive parity

emerges for the 3
2
+

phase shift. The resonant 5
2
+

eigenphase shift is affected beyond its

resonance energy, mainly regarding the position of its kink. This kink is due to the fact

that the 5
2
+

resonance is bound with respect to the second excited state of 8Be, which we

consider in the NCSMC ansatz. The changed position of the kink complies with the effect

on the excitation energy of the 2+ state of 8Be caused by the initial 3N interaction. Finally,

the 1
2
+

eigenphase shift is only slightly enhanced by the initial chiral 3N interaction and its

resonance position is practically identical for both Hamiltonians, i.e., the 1
2
+

state remains

slightly unbound in excellent agreement with experiment.

14.2.5 Impact of the Continuum on the 9Be Spectrum

For a more direct comparison of the impact of the continuum and the 3N interactions on

the 9Be resonances we extract the energies of the resonance centroids ER and correspond-

ing widths Γ from the eigenphase shifts shown above. As in the initial NCSMC publica-

tions [50, 49] we extract the centroids from the maximum of the derivative of the eigen-

phase shifts with respect to the kinetic energy, i.e., ER is defined by the inflection point of

the eigenphase shifts. The width follows from

Γ= 2/
:dδ(Ekin)

dEkin

;3
3
3
Ekin=ER

(14.15)

with eigenphase shifts δ in units of radians. Although there exist other possibilities to ex-

tract resonance energies and widths, this constitutes a generally accepted approach safely

applicable to sharp resonances [217]. For the following qualitative discussions we adopt

the described procedure for all resonances. In addition to resonances the NCSMC ap-

proach also yields bound-state energies on equal footing. They follow with help of R-

matrix theory with bound-state boundary conditions (cf. Section 12.1). For all NN+3N

Hamiltonians considered here, only one bound state is found, namely the 3
2
−

ground state

of 9Be.

The influence of the continuum on the 9Be spectrum can be seen in Figure 14.6 by com-

parison of the 9Be energies relative to the n-8Be threshold for the IT-NCSM and the NC-

SMC. The left-hand panel shows the negative-parity states, and the positive-parity results

are shown in the right-hand panel. In each panel, the first two columns contain the nega-

tive (positive) parity results from IT-NCSM at Nmax = 6 (7) and 12 (11), respectively. Columns

four and five show the corresponding results for NCSMC, and in the middle we include the

experimental energies. First, we concentrate on the left-hand panel showing the spectrum

for the negative-parity states. By comparing the IT-NCSM and NCSMC results at equal

Nmax we find for all states significant contributions of the additional continuum degrees

of freedom in the NCSMC. The sole exception is the 7
2
−

state, where the effects stay below

0.5 MeV. The NCSMC reduces the energy differences to the threshold compared to the IT-

NCSM for all states and for both Nmax, respectively. As a consequence, the agreement with

the experimental energies relative to the n-8Be threshold is generally improved, and we
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Figure 14.6 – Negative (left-hand panel) and positive (right-hand panel) parity spectrum of 9Be
relative to the n-8Be threshold ( ) at Nmax = 6 (7) and 12 (11) for IT-NCSM (first two columns)
and NCSMC (last two columns) compared to experiment [148]. Remaining parameters are ħhΩ=
20MeV and α= 0.0625fm4. For further explanations see text.

find excellent agreement for the 1
2
−

and second 5
2
−

resonances at Nmax = 12. Note that also

the energy of the 3
2
−

ground state is lowered by about 0.5 .MeV due to continuum contribu-

tions and the agreement with experiment is improved. Next we compare the changes for

Nmax = 6 to 12 for both methods, respectively. For the NCSMC energies we find only small

effects from the increased model-space size that are slightly larger for the higher-excited

states but still remain below 0.5 MeV. Thus, the NCSMC calculations seem to be well con-

verged with respect to Nmax as already observed for the eigenphase shifts in the previous

subsection. This is different for the IT-NCSM energies, where we find significantly larger

effects hinting at less converged calculations. This is of course not unexpected due to the

fact that all excited states of 9Be are resonances and the IT-NCSM with its basis of A-body

HO Slater determinants is not designed for a proper description of continuum states.

The discussion of the positive-parity states of 9Be in context of the right-hand panel of

Figure 14.6 is similar: we find even more dramatic effects of the continuum as evident from

comparing the energies for fixed Nmax between the two approaches. Again, the NCSMC

reduces all energy differences relative to the n-8Be threshold compared to the IT-NCSM,

leading to improved agreement with experiment. The agreement is particularly striking for

the S-wave dominated 1
2
+

state, which for Nmax = 7 is shifted by about 5 MeV right on top

of its experimental position slightly above the threshold, and remains practically constant

for the step to Nmax = 11 in the NCSMC. Also the 3
2
+

resonance dominated by the 4S 3
2

partial

wave is found in good agreement with experiment, while the discrepancies remain larger

for the 5
2
+

and 9
2
+

resonances. Note that one might expect contributions from the broad 4+

state of 8Be that might improve the 9
2
+

resonance of 9Be. As for the negative parities, the

NCSMC energies are much less affected by increasing the model space from Nmax = 7 to 11
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Figure 14.7 – Negative (left-hand panel) and positive (right-hand panel) parity spectrum of 9Be
relative to the n-8Be threshold ( ) at Nmax = 12 and 11, respectively. Shown are from IT-
NCSM (first two columns) and NCSMC (last two columns) results and experiment (middle
columns) [148]. The first and last columns contain the energies for the NN+3N-induced and
the second and fourth column for the NN+3N-full Hamiltonian, respectively. Remaining pa-
rameters are ħhΩ= 20MeV and α= 0.0625fm4. For further explanations see text.

than the IT-NCSM energies, which exhibit significant changes.

We add a comment on excitation energies that can be read off Figure 14.6 by the energy

differences to the ground-state. The excitation energy of the 5
2
−

resonance and similarly all

excitation energies of the positive-parity states relative to the 1
2
+

state are in good agree-

ment with experiment already at the level of IT-NCSM calculations. It seems as if the main

issue of the IT-NCSM is to produce the correct threshold energy.

So far we have found significant effects due to the continuum in the 9Be energy levels

for the NN+3N-full Hamiltonian. In Figure 14.7 we go on with distinguishing effects caused

by the SRG-induced 3N interaction from those originating from the initial chiral 3N inter-

action. Again the left hand-panel covers the negative-parity spectrum at Nmax = 12, and

the right-hand panel contains the energies of positive-parity states at Nmax = 11. Within

each panel the first two columns depict the results from the IT-NCSM while the two last

columns cover the results from the NCSMC, and we include the experimental energy in

the middle. Furthermore, the first column contains the results from the NN+3N-induced

Hamiltonian and the second the energies for NN+3N-full. This is reversed for the columns

corresponding to NCSMC (see column labels). In the negative-parity spectrum we find

all states, except the first 5
2
−

resonance, sensitive to the inclusion of the initial chiral 3N

interaction with effects of roughly similar size for both, the IT-NCSM and the NCSMC. Ex-

cept for the ground state the inclusion of the initial chiral 3N interaction increases the

energy difference to the threshold. Since the IT-NCSM energy differences for the NN+3N-

induced Hamiltonian are typically close to or above the experimental energies, the agree-
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Table 14.1 – Resonance energies relative to the n-8Be threshold and corresponding width in MeV
for NCSMC with the NN+3N-full Hamiltonian with Λ3N = 400MeV/c extracted as explained in
the text in comparison to experiment [148]. For positive and negative parity the model-space
truncation Nmax = 11 and 12 is used, respectively.

NCSMC experiment
9Be states ER [MeV] Γ [MeV] ER [MeV] Γ [MeV]

1
2
+

0.012 0.09 0.019 0.22
5
2
+

3.39 0.17 1.38 0.28
3
2
+

2.85 0.41 3.03 0.74
9
2
+

7.48 2.25 5.09 1.33
3
2
−

-1.367 - -1.66 -
1
2
−

1.15 0.95 1.11 1.08
5
2
−

1.25 0.02 keV 0.76 0.78 keV
3
2
−

3.4 0.26 3.92 1.33
5
2
−

6.21 2.22 6.27 1.0
7
2
−

6.21 0.84 4.71 1.21

ment with experiment becomes worse when the initial 3N interaction is included. In con-

trast, the NCSMC energy differences for the NN+3N-induced Hamiltonian are typically

smaller than the experimental ones and, thus, the overall agreement with experiment is

clearly improved due to the initial chiral 3N interaction. Note that this conclusion would

have been opposite based on the IT-NCSM, which highlights the benefit from the NCSMC

approach, i.e., the inclusion of continuum effects, for validations of the chiral Hamiltoni-

ans in 9Be. Exceptions are the 5
2
−

resonance, which is not affected at all and the 7
2
−

state

for which the shift caused by the initial 3N interaction has the wrong sign, hinting again at

possible deficiencies in the initial (3N) Hamiltonian.

The same study for the positive-parity spectrum, contained in the right-hand panel

of Figure 14.7, reveals the positive-parity states to be rather insensitive to the initial 3N

interaction compared to the energy shifts we observed for the negative-parity states. In

particular, the 1
2
+

state is practically unaffected and remains slightly above the threshold

in excellent agreement with experiment. Note that this state has been found to be very

weakly-bound in NN-only calculations [209].

Finally, we list the extracted resonance centroids and corresponding widths for the

NCSMC calculations using the NN+3N-full Hamiltonian with Λ3N = 400MeV/c along with

the experimental data in Table 14.1. As before the positive-parity states are treated in an

Nmax = 11 model space and the negative-parity states are computed at Nmax = 12. We have

discussed the resonance energies already above in context of Figures 14.6 and 14.7. Overall

the widths extracted as described above are within the same order of magnitude as the ex-

perimental ones. Typically the computed widths are smaller than the experimental ones,
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except for the 9
2
+

and the 3
2
−

resonances, which we find larger than experiment. Note that

the narrow 5
2
−

resonance with experimental width of 0.78 keV is also found very narrow in

the NCSMC calculations.

In conclusion, NCSMC calculations are well converged already at moderate model-

space sizes (here Nmax = 6 or 7) and, if continuum effects are important, yield results su-

perior to IT-NCSM calculations that are performed in much larger model spaces. The sole

exception for the negative-parity states of 9Be is the 7
2
−

state, which is rather insensitive to

both, additional continuum degrees of freedom and to the larger model spaces. Although

we cannot rule out the relevance of different cluster structures that are not captured by

the single-nucleon binary-cluster ansatz used here, one might expect larger sensitivities

to the IT-NCSM model-space size if such structures would be relevant. Therefore, the de-

viations from experiment are likely to be connected to deficiencies of the chiral NN+3N

Hamiltonian.
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We have discussed the building blocks for the inclusion of 3N interactions, as they

emerge from chiral effective field theory, consistently in ab-initio calculations for different

nuclear structure and reaction scenarios. This involved the development of an adapted

storage scheme that turned out to be key for the practical management of 3N matrix el-

ements, and the consistent transformation of the chiral NN+3N Hamiltonians by means

of the SRG, followed by the application of the SRG-evolved Hamiltonians in nuclear struc-

ture calculations using the IT-NCSM and CC method. In applications to ground-state en-

ergies we found dependencies on the SRG flow parameter hinting at effects of discarded

SRG-induced multi-nucleon interactions beyond the 3N level for nuclei within the upper

p-shell and heavier. We traced back the origin of these SRG-induced interactions to the

two-pion exchange contribution of the leading chiral 3N interaction, and we found a way

around those by lowering the cutoff momentum of the 3N force. Applying the latter in-

teractions by means of the normal-ordered two-body approximation, which we found to

be accurate, for ab-initio predictions of binding energies for selected closed-shell nuclei

up to 132Sn, revealed remarkable agreement with the experimental binding energy sys-

tematics. Furthermore, we have studied the effects of chiral 3N interactions on nuclear

energy spectra, where we found an improved agreement with experiment. However, a

sensitivity study in the 12C and 10B spectra with respect to variations of low-energy con-

stants of the 3N interaction also revealed discrepancies with experiment for certain states

and hints at missing operator structures in the leading chiral 3N interaction. In Part III we

have focussed on the ab-initio description of nuclear reactions. Therefore, we extended

the NCSM/RGM formalism to include 3N interactions in particular for targets involving

more than four nucleons. We applied this extended formalism to nucleon-4He scattering

and found good agreement with experimental data for scattering phase shifts, cross sec-

tions and analyzing powers. We then moved on to the NCSMC approach that combines

the NCSM and NCSM/RGM to an ab-initio framework suitable to describe nuclear bound

and continuum states on equal footing. Our developments for the NCSM/RGM facilitate

the extension of the NCSMC to 3N interactions, which we eventually apply to neutron-8Be

scattering and explore the impact of the continuum on the 9Be energy levels. The NC-

SMC approach shows superior convergence properties compared to both, IT-NCSM and

the NCSM/RGM approach and the 3N interaction overall yields improved agreement with

experiment.

Our results show that ab-initio nuclear theory using chiral NN+3N Hamiltonian is able

to exploit the link to low-energy QCD via chiral EFT interactions, i.e., to arrive at predic-

tions for binding energies up to the heavy-mass regime, for nuclear spectra throughout
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the p- and lower s d -shell, and also for nuclear reaction observables. Nevertheless, there

are several directions for further research. One of these concerns ab-initio predictions

for open-shell nuclei in the medium-mass regime including 3N interactions. Promising

techniques that recently became available are extensions of coupled-cluster theory, the in-

medium similarity renormalization group [34] or the self-consistent Gorkov Green’s func-

tion approach [31].

Another important challenge already in lighter nuclei is the investigation of nuclear

structure observables other than energies, e.g., radii or electromagnetic transitions. This

involves the inclusion of electromagnetic currents provided by chiral EFT to arrive at a

consistent description. Furthermore, the corresponding operators need to be included

consistently in the SRG evolution.

Concerning nuclear reactions next steps involve the inclusion of 3N interactions also in

the two-nucleon projectile formalism of the NCSM/RGM and NCSMC approaches. Opti-

mally also the extension of both methods to handle channels including three-body cluster

systems with 3N interactions is interesting, but poses a formidable task. This will allow for

further systematic studies of chiral interactions in nuclear reactions

Finally, it will be interesting to see how the next-generation chiral interactions alter

the findings in the different aspects covered in this work. On the one hand this includes

optimized fits of the low-energy constants to experimental data, see, e.g., Ref. [146] for

first attempts in this direction. On the other hand also sub-leading 3N interactions, i.e., at

N3LO will become available in the near future and can enter the framework presented in

this work. Eventually it will be challenging how to handle chiral four-nucleon interactions

that also emerge at N3LO, and which one would have to take into account for consistency.
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APPENDIX A

High-Order Padé-Resumed Many-Body
Perturbation Theory

In this appendix we present another nuclear structure many-body method based on

standard Rayleight-Schrödinger many-body perturbation theory (MBPT)[218] that com-

plements the methods of Section 4. We discuss how the generalization of MBPT to degen-

eracies in combination with the evaluation of high-order contributions can serve for the

ab-initio description of ground-states and excitation spectra of closed- and open-shell nu-

clei. We have published the formalism and results presented in the following in Ref. [219].

Low-order MPBT has been used for studies of systematics of ground-state properties

of closed-shell nuclei throughout the nuclear chart [220, 103, 87], and for calculations fo-

cussing on infinite neutron and nuclear matter [84, 221], however, the quality of such low-

order approximations often remains unclear. With the recursive formulation of MBPT we

present in the following, it becomes possible to test this at least for light nuclei, and the

application of a subsequent resummation of the perturbation series by means of Padé ap-

proximants [222] allows for very stable and converged energies in very good agreement

with exact NCSM calculations.

We start with a brief overview of the necessary steps to formulate degenerate many-

body perturbation theory (DMBPT) for high orders. The degeneracy concerns the unper-

turbed, i.e., zeroth-order, energy level and needs to be considered explicitly to allow for

studies of excited states and open-shell nuclei. The non-degenerate case, which is suit-

able to describe ground states of closed-shell nuclei, follows as special case. The starting

point for the formulation of DMBPT is the eigenvalue problem of the intrinsic Hamilto-

nian Ĥ of Eq. (4.1), which is partitioned into an unperturbed part Ĥ0 and a perturbation Ŵ

and we introduce a auxiliary parameter λ, i.e.,

Ĥ
partitioning
−−−−−−−→ Ĥλ = Ĥ0+λŴ = Ĥ0+λ(Ĥ − Ĥ0) . (A.1)

Note that the original Hamiltonian is recovered for λ = 1. Basically, there are no further
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formal restrictions on the partitioning, i.e., on the form of the unperturbed Hamiltonian

Ĥ0. However, the eigenvalue problem of the unperturbed Hamiltonian

Ĥ0 |φn 〉= εn |φn 〉 (A.2)

fixes the unperturbed states { |φn 〉} that are used a basis for the subsequent perturbative ex-

pansion. Therefore, in practice we are interested in choosing the partitioning such that the

unperturbed states are convenient from a computational and physical point of view. Typ-

ical choices for Ĥ0 adopted in the nuclear-structure context are single-particle Hamiltoni-

ans, e.g., of Hartree-Fock or harmonic oscillator type, such that the unperturbed states are

given as Slater determinants of the corresponding single-particle states. Accordingly, the

unperturbed energies are determined by the sum of single-particle energies of occupied

states in |φn 〉. We concentrate mainly on unperturbed HO single-particle Hamiltonians,

but all formulas are of general validity.

Since we are aiming at a general formulation, suitable to describe open-shell nuclei and

also excited states, we need to take possible degeneracies of the unperturbed energy levels

εn into account. We do so by introducing the degeneracy index d labeling the unperturbed

states |φnd 〉, which span the g n -dimensional degenerate subspace associated with εn . As

a consequence we have to attach the degeneracy index also in the power-series for the

perturbed energies and states, that is we set

End (λ) = εn +λE
(1)
nd +λ

2E
(2)
nd + . . . , (A.3)

|Ψnd (λ)〉= |Ψ
(0)
nd 〉+λ |Ψ

(1)
nd 〉+λ

2 |Ψ(2)nd 〉+ . . . , (A.4)

with E
(0)
nd = εn . Furthermore, E

(p )
nd and |Ψ(p )nd 〉 denote the p-th order energy and states cor-

rections, respectively, and, therefore, are the quantities we want to determine up to high

orders p . We obtain the starting point for the derivation of these corrections by insert-

ing Eqs. (A.3) and (A.4) together with the partitioned Hamiltonian (A.1) in the eigenvalue

problem of the Hamiltonian Ĥλ, and match same orders of λ to arrive at

Ŵ |Ψ(p−1)
nd 〉+ Ĥ0 |Ψ

(p )
nd 〉=

p∑

j=0

E
(j )
nd |Ψ

(p−j )
nd 〉 . (A.5)

Before starting the actual derivation of the corrections, we need to fix another subtlety

caused by degeneracy: as evident from the power-series ansatz and also from Eq. (A.5)

we need an expression for the unperturbed state |Ψ(0)nd 〉. However, we can choose arbitrary

linear combinations of the g n unperturbed Slater determinants |φnd 〉 corresponding to

energy level εn , i.e.,

|Ψ(0)nd 〉=
g n−1∑

e=0

χnd ,n e |Φn e 〉 . (A.6)

Inserting the latter expansion in Eq. (A.5) at p = 1 and multiplication by 〈Φnd ′ | yields the
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eigenvalue equation of the perturbation Ŵ in the nth degenerate subspace

g n−1∑

e=0

$

〈Φnd ′ |W |Φn e 〉− E
(1)
ndδd ′e

%

χnd ,n e = 0. (A.7)

Thus, diagonalization yields the expansion coefficients χnd ,n e of |Ψ(0)nd 〉 and determines the

first-order energy correction E
(1)
nd . Moreover, orthonormality of the unperturbed states

〈Ψ(0)nd |Ψ
(0)
nd ′ 〉 = δd d ′ holds, and choosing the intermediate normalization 〈Ψ(0)nd |Ψnd 〉 = 1 one

can deduce 〈Ψ(0)nd |Ψ
(p )
nd 〉 = δ0p . These relations are important during the derivation of the

perturbative corrections.

The pth order energy correction is obtained via multiplication of Eq. (A.5) by 〈Ψ(0)nd | as

E
(p )
nd = 〈Ψ

(0)
nd |Ŵ |Ψ

(p−1)
nd 〉 , (A.8)

and is identical to the form in non-degenerate MBPT [223]. For the derivation of the state

corrections we start with expanding the pth order state correction in the unperturbed basis

|Ψ(p )nd 〉=
m ̸=n∑

m

∑

e

C
(p )
nd ,m e |φm e 〉+

e ̸=d∑

e

D
(p )
nd ,n e |Ψ

(0)
n e 〉 , (A.9)

where we use the simple Slater determinants |φm e 〉 in the subspaces orthogonal to the

degenerate subspace n , and within the latter we use the unperturbed states (A.6). Accord-

ingly, we have defined C
(p )
nd ,m e = 〈Φm e |Ψ

(p )
nd 〉 for m ̸= n , and D

(p )
nd ,n e = 〈Ψ

(0)
n e |Ψ

(p )
nd 〉 for e ̸= d . Thus,

to complete the derivation we need the expression for these expansion coefficients. For

coefficients C we multiply Eq. (A.5) by 〈Φm e | for m ̸= n , and to determine the coefficient D

we multiply Eq. (A.5) by 〈Ψ(0)n e | for e ̸= d . After some algebra we obtain the following expres-

sions, which provide the complete information to evaluate the perturbation series (A.3)

and (A.4): the energy corrections are given by

E
(p=1)
nd =

g n−1∑

e=0

g n−1∑

e ′=0

χ∗nd ,n e χnd ,n e ′ 〈Φn e |Ŵ |Φn e ′ 〉 , (A.10)

and

E
(p≥2)
nd =

m ̸=n∑

m ,e

g n−1∑

e ′=0

χ∗nd ,n e ′ 〈Φn e ′ |Ŵ |Φm e 〉 ·C
(p−1)
nd ,m e . (A.11)

The expressions for the C -coefficients read

C
(p=0)
nd ,m e = 0, (A.12)

C
(p=1)
nd ,m e =

〈Φm e |Ŵ |Φnd 〉
εn −εm

, (A.13)
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and

C
(p≥2)
nd ,m e =

1

εn −εm

⎛

⎜
⎝

m ′ ̸=n∑

m ′,e ′
〈Φm e |Ŵ |Φm ′e ′ 〉C

(p−1)
nd ,m ′e ′ +

e ′ ̸=d∑

e ′

g n−1∑

e ′′=0

χn e ′,n e ′′ 〈Φm e |Ŵ |Φn e ′′ 〉D
(p−1)
nd ,n e ′

−
p−1∑

j=1

E
(j )
nd C

(p−j )
nd ,m e

⎞

⎟
⎠ . (A.14)

For the D-coefficients we obtain

D
(p=0)
nd ,n e = 0 (A.15)

and

D
(p≥1)
nd ,n e =

1

E
(1)
nd − E

(1)
n e

⎛

⎜
⎝

m ̸=n∑

m ,e ′

g n−1∑

e ′′=0

χ∗n e ,n e ′′ 〈Φn e ′′ |Ŵ |Φm e ′ 〉C
(p )
nd ,m e ′ −

p−1∑

j=1

E
(j+1)
nd D

(p−j )
nd ,n e

⎞

⎟
⎠ . (A.16)

For the practical implementation of Eqs. (A.10) - (A.16) and their efficient evaluation

up to high orders p , it is mandatory to exploit their recursive structure: to compute the

energy correction of pth order we need the state correction of (p−1)th order (cf. Eq. (A.8)),

however as evident from Eq. (A.11) only the coefficients C
(p−1)
nd ,m e are required, which only

implicitly depend on the coefficients D
(p−2)
nd ,n e . The expansion coefficients C

(p≥2)
nd ,n e depend on

C coefficients, D coefficients and energy corrections of lower orders, and the D
(p≥1)
nd ,n e de-

pend on lower-order D coefficients and on C coefficients of same order. Thus, it becomes

possible to construct the perturbation series order by order up to very high orders as fol-

lows: the zeroth-order energy is given by the unperturbed energy εn , the first-order cor-

rection follows form the diagonalization in the degenerate subspace, and for the second-

order correction we need only the coefficients C
(1)
nd . For the energy corrections of order

p ≥ 3 we start with computing coefficients D
(p−2)
nd ,n e which include the known C

(p−2)
nd and

all lower-order D coefficients. Then the coefficients D
(p−2)
nd ,n e and the C coefficients up to

p − 2 input the computation of C
(p−1)
nd which finally yield E

(p )
nd . Furthermore, we note that

in the special case of no degeneracy of the targeted energy level the formulas presented

above simplify to the recursive scheme for the non-degenerate case, which we published

in Ref. [223]. Note in particular that the coefficients D are not defined in this case. Fur-

thermore, we point out that the recursive structure of the expressions is less obvious in a

diagrammatic approach or if the A-body matrix elements are broken down into two- or

three-body matrix elements of the interactions involved.

Concerning the inclusion of the 3N interaction into the formalism, we emphasize that

we did not make any assumptions about the interactions included in the Hamiltonian for

the formalism presented above, which is consequently valid for 3N interactions, too. This

is again due to the fact, that the formalism is formulated in terms of A-body Slater deter-

minants so that the only complication when switching from NN to 3N interactions is due

to the generalization of the Slater-Condon rules [126] that are used for the evaluation of
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Figure A.1 – Energies from the DMBPT power series (A.3) truncated at order p for 6Li and for the
levels corresponding to the degenerate n = 0 subspace computed with the NN-only Hamilto-
nian. As unperturbed Hamiltonian the HO is used with ħhΩ = 20MeV and the model space is
truncated as in the NCSM at Nmax = 8. Results are shown for SRG flow parameters α = 0.04fm4

(•) and 0.16fm4 ( ), and the dashed lines correspond to the exact NCSM results obtained using
the identical model space. (published in [219])

the A-body matrix elements like 〈Φm e |Ŵ |Φnd 〉, analogously as in the NCSM for the com-

putation of the Hamilton matrix elements in Eq. (4.2). Another computational similarity

to the NCSM approach are the matrix-vector multiplications of the Hamilton matrix and

the coefficient vectors, e.g., in Eqs. (A.14) or (A.16), and the coefficient vectors of previous

orders need to be stored. This is similar to the operations in the Lanczos algorithm used

for the matrix-diagonalization step in the NCSM. Accordingly, the limitations with respect

to nucleon number and model-space size of the DMBPT approach are similar to those of

NCSM at least when aiming at high-order corrections, e.g., of 30th order which we study in

the following. Therefore, to go beyond the domain of the NCSM one has to invent alterna-

tives for an efficient evaluation of the nested sums in the expressions above, or one needs

to resort to low-orders.

In Figure A.1 we present results for 6Li using DMBPT up to 30th order. We restrict

ourselves to the NN-only Hamiltonian using the chiral two-nucleon interaction at N3LO,

see Section 1.1, as initial Hamiltonian, and do not consider 3N interaction for simplicity.

The unperturbed Hamiltonian includes the kinetic energy and a one-body HO potential,

and defines the unperturbed basis states |Φnd 〉 given as Slater determinants of HO single-

particle states, i.e., they are identical to the basis states used in the NCSM. Therefore, we

adopt the model-space truncation in terms of Nmax, and use Nmax = 8 with ħhΩ = 20MeV.

Since we study 6Li, which is not consistent with an HO shell closure, we need to consider

degeneracies, and we concentrate on the subspace with lowest unperturbed energy, i.e.,

n = 0, which consists of ten degenerate states |Φ0d 〉. We assign the degeneracy index d in

the order of ascending first-order energy corrections obtained by the diagonalization of

the perturbation Ŵ in the degenerate subspace. Results from an exact diagonalization via

the NCSM are shown as dashed horizontal lines. Obviously, we find for all states a diver-

gent perturbation series, in fact for both SRG parameters. We observe different patterns
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of the partial sums as function of the perturbation order p : in some cases the agreement

with the exact result seems to be reasonable but then the perturbative corrections become

larger again and the series starts to diverge oscillatory (e.g. for d = 5,6,7), or the perturba-

tion series exhibits an oscillatory pattern already at low orders and the amplitude of the

oscillation increases with ascending order p (e.g. for d = 0,8). In addition, we observe even

monotonous divergence beyond p ≈ 8 (e.g. for d = 3 and 4 for α= 0.04fm4). Also low-order

corrections do not yield a reliable estimate: while the second and third-order results for

α = 0.04fm4 are typically below and above the exact result, respectively, with increasing

degeneracy index the second-order partial sum approaches the exact result and is above

the exact result for d = 9. This is even more severe for α = 0.16fm4 results, where the step

from second to third order typically enlarges the deviation from the exact result. Hence,

in summary perturbation theory based on HO basis states does not provide controlled

approximations of the exact energy eigenvalues. It is important to note that also the sig-

nificantly softer Hamiltonian with α= 0.16fm4 does not improve this issue. Thus, the SRG

can improve the convergence of many-body calculations with respect to model-space size,

but it does not necessarily improve the convergence of the perturbation series. Neverthe-

less, such soft interactions are sometimes termed ’perturbative’ see, e.g., Ref.[224], which

might be misleading.

To overcome these convergence issues, which are consistent with our findings with

non-degenerate MBPT for 4He, 16O, and 40Ca presented in Ref. [223], we take advantage of

resummations of the perturbation series by means of Padé approximants [225, 222]. The

idea is to represent the energy End (λ) by means of a rational function

E (λ) =
a 0+λa 1+λ2a 2 . . .

b0+λb1+λ2b2 . . .
. (A.17)

instead of the simple power-series (A.3) of pure DMBPT. The truncation of the polyno-

mials in the numerator at order L, and the one in the denominator at order M yields the

definition of the Padé approximant

[L/M ](λ) =
a 0+λa 1+λ2a 2 . . .+λLa L

b0+λb1+λ2b2 . . .+λM bM
, (A.18)

which by construction is able to describe singularities [225, 222, 189]. The coefficients {a i },
{b j } can be obtained from a set of coupled linear equations derived by matching same or-

ders of λ for a Taylor expansion of Eq (A.18) and the perturbation series (A.3), i.e., they

can be determined completely by information from the DMBPT calculation. An alterna-

tive possibility to compute the Padé approximants, equivalent to the solution of the above

mentioned set of coupled equations, is the ratio of determinants that are constructed di-
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rectly from the energy corrections E (p ) of the DMBPT power series

[L/M ](λ) =

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

E (L−M+1) E (L−M+2) · · · E (L+1)

E (L−M+2) E (L−M+3) · · · E (L+2)

...
...

...
...

E (L) E (L+1) · · · E (L+M )

L−M∑

p=0
E (p )λM+p

L−M+1∑

p=0
E (p )λM+p−1 · · ·

L∑

p=0
E (p )λp

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3
3
3

E (L−M+1) E (L−M+2) · · · E (L+1)

E (L−M+2) E (L−M+3) · · · E (L+2)

...
...

...
...

E (L) E (L+1) · · · E (L+M )

λM λM−1 · · · 1,

3
3
3
3
3
3
3
3
3
3
3
3
3

, (A.19)

with E (p ) = 0, where we have dropped the subscript nd for brevity. From this it follows that

in order to compute the Padé approximant [L/M ](λ) we need the first L +M energy cor-

rections E (p ) from DMBPT for the state under investigation. Its evaluation at the physical

point, i.e., [L/M ](λ = 1) then provides the resummed energy. We note that the same in-

formation, namely the DMBPT energy corrections, enter the Padé approximant [L/M ] and

the perturbation series at p = L+M . We note that an extensive convergence theory of Padé

approximants does exist [225, 222], however, most theorems rely on the knowledge of the

complete power series. Nevertheless, there is the so-called Padé conjecture [225] that can

help to understand the results presented in the following. It essentially states that for a

continuous function E (λ) there is an infinite sub-sequence of diagonal Padé approximants

[L/L](λ) that converges uniformly against E (λ) for |λ| ≤ 1. The formal continuity require-

ment is always fulfilled for real λ in our applications, and, therefore, the Padé conjecture

may motivate a convergent sequence in our results.

We can apply the concept of Padé approximants evaluated at the physical point again

to the ten-fold degenerate subspace n = 0 of 6Li for the NN-only Hamiltonian at SRG flow

parameter α = 0.04fm4. The energy corrections presented in Figure A.1 constitute the

sole input for the Padé approximants. We compute the diagonal [L/L], the superdiagonal

[L/L+ 1], and the subdiagonal [L/L− 1] Padé approximants and plot the resulting energies

in Figure A.2. Evidently, if we include only information from low-order DMBPT the agree-

ment with the exact results, shown as horizontal dashed line, is not improved compared

to the pure perturbative treatment. However, including information of higher-orders of

DMBPT improves the agreement with the NCSM result and in particular beyond L+M ≈ 15

we obtain an overall excellent agreement. This is remarkable since exactly the high-order

energy corrections that caused the failure of the simple perturbation series are key for the

accuracy of the Padé approximants. This complies with the above mentioned Padé con-

jecture, note, however, that we also find excellent agreement for the non-diagonal approx-

imants. In principle, outliers are possible since the Padé conjecture covers only a sub-

sequence of diagonal approximants, and in fact we observe slightly larger deviations for
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Figure A.2 – Energies obtained by means of Padé approximants for the ten states corresponding
to the n = 0 HO subspace of 6Li. Plotted are the diagonal [L/L] (•), the superdiagonal [L/L+1] (

), and the subdiagonal [L/L − 1] (▲) Padé approximants as well as the energies obtained by
diagonalization in the NCSM ( ). The model space is truncated at Nmax = 8, and we use ħhΩ =
20MeV and α= 0.04fm4. (published in [219])

some individual approximants, e.g., for off-diagonal approximants at d = 3,4,5 or 8. Given

the clear divergences of the DMBPT power series, the recovery of such accurate results via

Padé resummation, even for the monotonously divergent cases d = 3 and 4, is impressive.

Nevertheless, we find that at least 10th order perturbation theory is mandatory to achieve

accurate agreement with the NCSM results.

From the data shown in Figure A.2 we can extract an averaged result. Therefore, we

average all approximants with L+M ≥ 15, exclude those approximants which exhibit devi-

ations larger than 0.5MeV, and rebuild the average of the reduced set and adopt the stan-

dard deviation as uncertainty of the averaged approximants. We compile the energies in

terms of the positive parity excitation spectrum of 6Li in the left panel of Figure A.3, where

the averaged Padé results are depicted in the third column. In addition, the first column

shows the energy levels obtained from experiment, and the second column the NCSM re-

sults obtained in the same HO model space as the DMBPT energy corrections that input

the Padé approximants. We find very good agreement of the energies extracted by means

of the averaged Padé approximants with the exact NCSM results for the energetically low-

est 5 states. Note that the standard deviation from the averaging process is depicted as

orange band. For the remaining high-lying states we find small deviations from the cor-

responding exact results. In addition, we conduct the same type of calculations for the

low-lying negative parity states of 7Li and obtain the spectrum shown in the right panel of

Figure A.2. We find again very good agreement with the NCSM energies for all states. In

the fourth to last column of the respective spectra we include the results obtained from

the partial sums of the DMBPT power series truncated at order p = 2,3,4, and 8, respec-

tively. These low-order DMBPT results do not provide reliable approximations for the exact

eigenvalues. The second-order excitation energies are too large for all investigated states,

and their deviation from the NCSM energies seem to increase with increasing excitation.

The inclusion of the third order correction typically lowers the excitation energies, thus
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Figure A.3 – Low-lying excitation energies of 6Li and 7Li obtained in the Nmax = 8 model space, at
ħhΩ = 20MeV and α= 0.04fm4. Shown are in each panel from the left the experimental energies,
the NCSM results, the Padé resummed results as described in the text, and the results from the
DMBPT power series truncated at p = 2, 3, 4, and 8. Experimental results taken from Ref. [147].
(published in [219])

reducing the deviations from the exact results. However, generally the forth-order con-

tributions are less coherent, and several level crossings occur in the step to p = 8. For

even higher orders (not shown) the excitation spectra are completely destroyed due to the

strong divergence of the DMBPT power series, cf. Figure A.1.

Overall, we state that DMBPT formulated by means of HO unperturbed basis states is

typically divergent despite the use of very soft interactions, and low-order DMBPT results

are not sufficient to obtain reliable approximations to the exact NCSM results. However,

when we use the Padé resummation technique based on DMBPT information up to high

orders, i.e., 15th - 30th order, we observe remarkably good agreement with the energies

obtained in the identical model-space within the ab-initio NCSM.

Finally, the discrepancies between the Padé-resummed DMBPT and NCSM excitation

energies from experiment hints at deficiencies of the SRG-evolved NN interaction. As

mentioned above the inclusion of 3N interaction into the DMBPT framework is straightfor-

ward, however, before going in this direction, which requires the whole 3N matrix-element

technology we have discussed in Section 2.2.3, another option is a change in the partition-

ing of the Hamiltonian (A.1) and correspondingly to a change of the unperturbed basis. A

first step in this direction is the use of single-particle basis states obtained from a preced-

ing Hartree-Fock calculation using the consistent nuclear Hamiltonian and model space.

First results for the MBPT ground-state energy of 16O using such a Hartree-Fock basis with

emax = 8 and the considerations of up to 2-particle-2-hole (2p2h) excitations of the Hartree-

Fock ground state are shown in Figure A.4 as function of the perturbation order. The per-
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Figure A.4 – 16O ground-state energy obtained from the MBPT power series truncated p th order
computed with Hartree-Fock basis at model-space truncation emax = 8 allowing up to 2p2h-
excitations. Shown are results obtained with the NN-only Hamiltonian at SRG flow parameters
α= 0.02 (•), 0.04 ( ), 0.08fm4 (▲). Figure adapted from [226].

turbation series obtained for the Hamiltonians at α= 0.02 (violet circles) and 0.04fm4 (blue

diamonds) are both non-convergent and, therefore, fit in the usual picture we discussed

above in context of Figure A.1 using the HO basis. However, we find the amplitude of

the oscillatory pattern reduced for the softer Hamiltonian at α = 0.04fm4. Furthermore,

for the further softened Hamiltonian at α = 0.08fm4 we find the perturbation series prac-

tically converged beyond eighth order without Padé resummation and even lower-order

partial sums constitute a good approximation. Although we are using a severely truncated

model-space with only 2p2h excitations, these results hint towards the improvement of

the convergence of the perturbation series (A.3) for further SRG-transformed, i.e., softer

Hamiltonians, in contrast to our findings based on the HO basis in Figure A.1. An analo-

gous pattern has been found also in different small model spaces, and a more systematic

and detailed investigation can be found in Ref. [226] and is subject to further research.
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APPENDIX B

Binary-Cluster Jacobi Coordinates

We give suitable Jacobi coordinates for the description of binary-cluster scattering for

the general case of an (A−a )-body target and a -body projectile, where an average nucleon

mass m is assumed. They can be also found in Ref. [48]. The coordinates are given in terms

of the Cartesian single-particle coordinates {r⃗i }.
The vector proportional to the center of mass of the A-nucleon system is given by

ξ⃗0 =
1
1

A

A∑

i=1

r⃗i . (B.1)

The Jacobi coordinates describing the (A −a ) target nucleons read

ξ⃗1 =
1
1

2

$

r⃗1− r⃗2
%

(B.2)

ξ⃗k =

B

k

k + 1

: 1

k

k∑

i=1

r⃗i − r⃗k+1

;

for 2≤ k ≤A −a − 1. (B.3)

The internal coordinates concerning the a -body projectile are given by

ϑ⃗A−k =

B

k

k + 1

: 1

k

k∑

i=1

r⃗A−i+1− r⃗A−k

;

for a − 1≥ k ≥ 2 (B.4)

ϑ⃗A−1 =
1
1

2

$

r⃗A−1− r⃗A
%

. (B.5)

Finally, the relative vector between the centers of mass of the two clusters reads

η⃗A−a ,a =

C

(A −a )a

A

: 1

A −a

A−a∑

i=1

r⃗i −
1

a

A∑

j=A−a+1

r⃗ j

;

. (B.6)

For the special case of the single-nucleon projectile formalism these coordinates sim-

plify to those depicted in Figure 11.1.
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