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1.1 Breast cancer and current therapeutic options 

Among women breast cancer is the most often diagnosed malignancy (1). Though a 

proper progress in breast cancer therapy within the last 15 years the mortality rate is still 

about 25 % (1). The clinical disease is described with a ranking according to the TNM 

(tumor, node, metastasis) staging system, which can be divided in four stagings (with 

subdivisions) (2). Furthermore, the histological and genetic characterization is also 

important for the classification of mamma carcinomas. E.g. the status of estrogene- and 

progesterone receptor is determined via histological stainings and the status of the   

BRCA1 and BRCA2 (Breast Cancer, early onset 1 and 2) gene can be determined via a 

genetic analysis giving implications for clinical treatment and prognosis (3). According to 

the respective staging of the tumor the therapy is adjusted. In sum, there are three 

general therapeutic options how breast cancer can be treated: The first is surgery and if 

possible complete excision of the tumor tissue, second, radiation of the tumor or tumor 

surrounding tissue and third pharmacological intervention (4). Pharmacological therapy 

can be further subdivided in hormone therapy, targeted therapy and classical 

chemotherapy. Hormone therapy can be used for tumors expressing estrogen receptors. 

Commonly used drugs are aromatase inhibitors like Anastrazol or selective estrogen-

receptor modulators like Tamoxifen (5). The group of targeted therapy contains drugs like 

Trastuzumab, an antibody directed against the growth factor receptor HER2/neu, or 

Lapatinib, a receptor-tyrosine-kinase inhibitor (Erb1 and HER2/neu) (6). The largest group 

of drugs against mamma carcinomas are classical chemotherapeutics. Different classes 

of chemotherapeutics are used against breast cancer: For instance, alkylants like 

Cisplatin and Cyclophosphamide, antimetabolites like Methotrexate and Fluoruracil, 

anthracyclins like Doxorubicin and taxanes like Paclitaxel or Docetaxel (1). All of the 

above mentioned chemotherapeutics show partially strong adverse effects that can be 

dose-limiting or even lead to the abrogation of chemotherapy. E.g. Doxorubicin is known 

to be cardiotoxic in a dose-cumulative manner, whereas taxanes are strongly related to 

neurotoxicity (7, 8). Furthermore, a broad variety of resistance mechanisms against 

almost every chemotherapeutic agent is known, which further limits the efficacy of today’s 

anti-cancer drugs (9). Thus, research for new targets and compounds is still necessary to 

strengthen the phalanx of anti-cancer drugs against human malignancies. 
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1.2 Actin-binding compounds Chondramide A and Doliculide 

One emerging source of potential new anti-cancer drugs are the myxobacteria. 

Approximately 7500 identified myxobacterial strains have yielded at least 100 distinct core 

structures (10). Among them are also the Chondramides. Another source for natural 

derived compounds are marine organisms. They also possess a broad biodiversity 

containing organisms producing potential anti-cancer structures in their secondary 

metabolism (11). Chondramide A (Fig. 1.1 A) was first isolated from Chondromyces 

crocatus in 1995 and showed cytostatic properties on mammalian cell lines (12). 

Doliculide (Fig. 1.1 B) was first extracted from Dolabella auricularia a sea hare in 1994 

and is cytotoxic towards Hela cells, a cervix carcinoma cell line (13, 14). Both compounds 

share common structural features as they are both cyclodepsipeptides. Chondramide A 

consists of 18 atoms in the ring whereas Doliculide has 16 atoms (14, 15). Regarding their 

similar structure it is not surprissing that Chondramide A and Doliculide also share the 

same target structure. It was shown for both compounds that they compete with 

Phalloidin, known to bind to filamentous actin, to the actin binding site (16). The 

Phalloidin-binding site on actin, probably also the binding-site of Chondramide A and 

Doliculide, was characterized by microscopic and X-ray diffraction methods and appears 

to interact with three actin monomers simultaneously (17-19). The binding of the three 

compounds to actin lead to the stabilization and overpolymerization of the actin 

cytoskeleton. The contrary effect a de-stabilization is also known for other natural 

compounds binding to actin e.g. Rhizopodin or Cytochalasin D (16). Though those 

compounds are strong inhibitors of mammalian cancer cell growth none of those 

compounds has ever been brought to clinical trials. The reasons for it might range from 

poor membrane permeability for Phalloidin to cardiotoxic effects for Jasplakinolide to the 

fact that no closer mechanistic insight how cell death might be established through the 

disruption of the actin cytoskeleton has ever been gained (20-22). Thus, Chondramide A 

and Doliculide were used as tools to examine the potential of actin as anti-cancer target. 
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Figure 1.1: Chemical structures of (A) Chondramide A and (B) (-)-Doliculide. 
 
 

1.3 The actin cytoskeleton: Regulation and physiological 
function 

Next to microtubules and the intermediate filaments, actin filaments also called 

microfilaments form the third column of the cellular cytoskeleton (CSK) of eukaryotes (23). 

Monomeric actin proteins exist in six isoforms (α1, α2, αcardiac, β, γ1 and γ2) and show a 

tissue specific distribution (24). Monomeric or globular actin (g-actin) is able to polymerize 

to polarized, helical actin filaments (f-actin) in an ATP dependent manner. Globular actin 

monomers nucleate at a minimal concentration of four monomers and elongate faster on 

the barbed end whereas they slowly depolymerize on the pointed end (23). The 

polymerization of actin is a dynamic process in which the ATP-bound to actin gets 

hydrolyzed to ADP and Pi and leads to the severing of the actin monomer from the 

filament. The free globular actin monomer can be recharged with ATP and again be 

implemented in the growing actin filament. This circle of globular and filamentous actin is 

also called treadmilling (Fig. 1.2 A) (25). A variety of more than 100 proteins participate in 

the regulation of actin dynamics (23). The most famous actin-binding proteins controlling 

actin dynamics are for example: severing proteins like Cofilin/ADF and Gelsolin, branching 

proteins like the Arp2/3 complex or proteins promoting nucleation and elongation like the 

Formins and WASP (Fig. 1.2 B) (23, 26). This complex regulation of the actin CSK primes 

it for important functions in an eukaryotic cell. The actin CSK is very important for the form 

and structure of the cell and for its adhesion to other cells or the basal lamina (27). 

Furthermore, actin plays a crucial role during cytokinesis, via forming the contractile ring, 

during endocytosis, by delivering the force for clathrin-mediated vessel transport, and 

A B
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migration of motile cells, by pulling forward the cell body (23). Changes in actin dynamics 

are also known to interfere with the induction of apoptosis. Pharmacological perturbations 

of the actin CSK with overpolymerizing compounds like Jasplakinolide or depolymerizing 

compounds like Cytochalasin D are known to lead to apoptosis, but closer mechanistic 

insights are still elusive (22). 

 

Figure 1.2: Regulation of actin dynamics. (A) Four actin monomers are necessary to form a 
nucleus from which polymerization can start. Polymerization is faster on the barbed end (B), 
whereas on the pointed end (P) ATP gets hydrolyzed and an actin monomer is severed from 
the filament. The monomer can be recharged with ATP and can be reused for polymerization 
on the barbed end. This process is called treadmilling. (B) Actin-binding proteins and their 
different functions in regulation of filament structure. Cofilin/ADF severs filaments into 
globular actin monomers, ARP2/3 is a typical branching protein and Formin promotes 
elongation of actin filaments. 
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1.4 Regulation of apoptosis 

Apoptosis or programmed cell death was first described in 1972 by Kerr et al. (28) and 

was characterized as a new type of cell death different from necrosis. Meanwhile it is 

known that apoptosis is a major factor for tissue homeostasis and it is a well-known fact 

that cancer cells possess various ways to evade apoptosis and gain unlimited proliferative 

capacities to establish their deleterious network (29-31). Some morphological and cellular 

hallmarks of apoptosis are the blebbing of the plasma membrane, nuclear condensation 

and fragmentation, and the transition of phosphatidyl serine from the inner leaflet of the 

plasma membrane to the outer leaflet (32). The main class of proteins that are responsible 

for the morphological and cellular changes of apoptotic cells are the caspases. Caspases 

(cysteinyl-aspartate specific proteases) are a family of cysteine proteases which contain 

cysteine residues at their active site and cleave their substrate at a position next to an 

aspartate residue (33). Caspases can be grouped into initiator- and effector caspases and 

depending on the mechanism how specific initiator caspases are activated at least two 

different apoptosis pathways can be distinguished (32).These two different induction 

mechanism will be highlighted in the following chapter. 

1.4.1 Extrinsic apoptosis pathway 

The extrinsic apoptotic pathway is induced by a ligand (e.g. Tumor necrosis factor α 

(TNFα) or Tumor necrosis factor related apoptosis inducing ligand (TRAIL)) binding to its 

so-called death-receptor (e.g. TRAIL-receptors 1 and 2) (29). Once the ligand binds to its 

receptor the cascade that starts is very similar between the different ligand/receptor 

complexes. The activation of the death receptors causes the recruitment and 

oligomerization of the adapter protein FADD (Fas-associating death domain-containing 

protein) within the death-inducing signaling complex (DISC). DISC cleaves the initiator 

Caspase 8 in its active form which further activates downstream effector Caspases 3 and 

7 (32). There is a crosslink between the extrinsic and intrinsic apoptotic pathway via the 

BH3-only protein Bid that is truncated by Caspase 8 and leads to mitochondrial 

membrane permeabilization (34). Mitochondrial membrane permeabilization is also the 

crucial hallmark of the intrinsic apoptotic pathway (Fig. 1.3 A). 
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1.4.2 Intrinsic apoptosis pathway 

The stimuli for intrinsic apoptotic cell death are multifactorial and range from DNA-damage 

over oxidative and ER stress to metabolic disorders (32, 35). Independent of the origin of 

the death signal the crucial step of the intrinsic pathway is the release of proteins from the 

intermembrane space of mitochondria to the cytosol. One major protein that is released is 

Cytochrome C. Once in the cytosol Cytochrome C forms a multi protein complex with 

APAF1 and Caspase 9, the so called Apoptosome. This leads to the activation of the 

initiator Caspase 9 and the subsequent activation of the effector Caspases 3, 6 and 7 and 

the induction of subsequent cellular demolition (Fig. 1.3 B) (29, 36). 

Crucial regulators and mediators of stress signals to the mitochondria are the proteins 

belonging to the Bcl-2 family (32). The name derives from the role model molecule that is 

genetically altered in B-cell lymphoma. These proteins are characterized by the presence 

of at least one Bcl-2 homology (BH) domaine. Bcl-2 proteins can be divided in two groups: 

the anti-apoptotic Bcl-2 proteins consisting of e.g Bcl-2, Bcl-XL and Mcl-1 and the pro-

apoptotic Bcl-2 proteins containing the proteins e.g Bax, Bak, Bad, Bid, Noxa and PUMA. 

All these proteins are regulated via transcriptional, post-translational and protein-protein 

interactions among the members of this class (37). 
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Figure 1.3: Mechanisms of apoptosis induction: (A) Extrinsic pathway: A ligand like TNFα 
binds to its receptor (death receptor) and activates the formation of the death-inducing-
signaling-complex (DISC) consisting of FADD and Caspase 8, leading to Caspase 8 
activation. Active Caspase 8 cleaves the effector caspases 3, 6 and 7 into active forms and 
can also co-activate the intrinsic apoptotic pathway by cleaving Bid into truncated Bid 
(tBid), which leads to Cytochrome C release from mitochondria. (B) Several stress signal 
lead to a change of the ratio between anti- and pro-apoptotic Bcl-2 proteins, switching it on 
the site of the pro-apoptotic ones (like Bax). This leads to the permeabilization of 
mitochondria and the release of Cytochrome C. Cytochrome C, APAF1, ATP/dATP and 
Caspase 9 form the active Apoptosome and active Caspase 9 leads to the activation of the 
effector caspases 3,6 and 7, which results in cellular demolition. 
 

1.5 Mitochondrial permeability transition 

Main hallmark of the intrinsic apoptotic pathway is mitochondrial membrane 

permeabilization. Next to mitochondrial outer membrane permeabilization (MOMP), 

mitochondrial permeability transition (MPT) via the mitochondrial permeability transition 

pore complex is the major pathway how intermembrane space proteins can be released 

from mitochondria (29). The exact composition of the pore complex is controversial, but a 

consensus model established within the last decade which will be promoted in this chapter 

(29, 38). 

Death receptor

TNFαA B

FADD
Caspase8

Active 
Caspase 8 Bid

tBid

Anti-apoptotic Bcl-2 proteins e.g. Bcl-2

Pro-apoptotic Bcl-2 proteins e.g. Bax

Stress signal

Cytochrome C

APAF1
ATP/dATP
Caspase 9

Apoptosome => active Caspase 9

Caspase 3, 6 and 7

Cellular Demolition

DISC



INTRODUCTION 17 

1.5.1 Structure of the mitochondrial permeability transition pore 

The mitochondrial permeability transition pore (MPTP) is a multi-protein complex located 

on the contact sites of inner mitochondrial membrane (IMM) and outer mitochondrial 

membrane (OMM) (38). It consists of Cyclophilin D in the inner lumen of mitochondria, the 

adenosine-nucleotide-transporter (ANT) in the IMM, the voltage-dependent-anion-channel 

(VDAC) in the OMM and Hexokinase II (HkII) located on the cytoplasmic site (Fig. 1.4). 

Other proteins like the peripheral benzodiazepine receptor (PBR) or creatinin-kinase (CK) 

are also discussed to be part of the MPTP (38). The MPTP is supposed to fulfill functions 

in maintaining mitochondrial homeostasis, by transporting H20, ions and solutes < 1500 

Dalton, and induction of cell death (38). Upon a sustained opening of MPTP a release of 

Cytochrome C from the inter-membrane space (IMS) can be observed. How exactly 

Cytochrome C is released is still a matter of debate. The way directly through MPTP is 

unlikely. It is more plausible that solutes enter the mitochondria via the open MPTP, thus 

leading to the swelling of mitochondria and finally to the disruption of the OMM and the 

respective release of IMS proteins (39, 40). The release of IMS proteins then results in the 

induction of apoptosis. 

1.5.2 Regulation of the mitochondrial permeability transition pore 

In the context of this work especially the regulation of the MPTP is crucial. Several 

proteins of the putative multi-protein complex are known to regulate the opening 

probability of the pore. The only verified protein of the pore is Cyclophilin D located in the 

inner lumen of mitochondria. Upon opening of the pore Cyclophilin D locates to the multi-

protein complex and facilitates in the release of IMS proteins (41). The participation of 

Cyclophilin D can pharmacologically be inhibited via Ciclosporine A that prevents the 

binding of Cyclophilin D to the other pore proteins (42). This property is often used in 

assays working with isolated mitochondria to detect a participation of MPTP (43). Another 

protein interaction is also known to regulate the opening of the pore, namely the 

interaction between VDAC in the OMM and HkII on the cytoplasmic site. When HkII is 

associated to VDAC the MPTP is in a closed conformation (44). Whereas, when HkII 

dissociates from VDAC the opening probability of MPTP is increased. Another regulation 

of the pore is achieved via proteins belonging to the Bcl-2 family. The BH-3 only protein 

Bad is described to be able to open the MPTP, when Bad is dephosphoylated on Serine 

residue 112 resulting in its activation (45). This is supposed to happen via an interaction 

with Bcl-XL, an anti-apoptotic member of the Bcl-2 family that is physiologically located in 

the OMM and facilitates the closure of MPTP. Active Bad interacts with Bcl-XL and 

prevents it from closing the MPTP (Fig. 1.4) (45). The interaction of HkII/VDAC and 
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Bad/Bcl-XL are known to be regulated by a serine-/threonine kinase from the PKC family 

named PKCε. 

 

Figure 1.4: Structure and regulation of the mitochondrial permeability transition pore: 
Physiological conditions: Bad is phosphoylated, inactive and rests in the cytosol. 
Hexokinase II (HkII) and Bcl-XL stabilize the MPTP and prevent its opening. The voltage-
dependent-anion-channel (VDAC) is located in the outer mitochondrial membrane (OMM) 
and the adenosine-nucleotide-translocase (ANT) in the inner mitochondrial membrane 
(IMM). Cyclophilin D is located in the mitochondrial matrix. Cell death conditions: 
Cyclophilin is recruited to ANT and facilitates opening of MPTP, HkII translocates from 
VDAC to the cytosol preferring the opening of MPTP and dephosphoylated, active Bad 
interacts with Bcl-XL also enabling the opening of MPTP. This results in a release of 
Cytochrome C from the intermembrane space (IMS) to the cytosol resulting in apoptosis. 
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1.6 PKCε: structure, function and implications in cancer 

The protein kinase C family (PKC) consists of eleven members, that regulate a wide 

variety of cellular functions (46). The PKC family is further subdivided into three classes 

named the classical PKCs (α,βI,βII and γ), the novel PKCs (δ,θ,ε and η) and the atypical 

PKCs (ζ, ι/λ) (47). The classes differ in the way they are activated. In our context one PKC 

is of special interest: PKCε. 

 

1.6.1 The structure of PKCε 

The overall structure of PKCε is very similar to other PKCs. It consists of a regulatory 

domain containing the C2-like region responsible for binding phospholipids and 

membrane localization of active PKCε, a pseudo-substrate region and the C1 domain that 

is splitted into the C1A and C1B region (Diacylglycerol and phorbol 12-myristate 13-acetat 

bind to the C1 domain). A hinge region connects the regulatory domain and the kinase 

domain consisting of the C3 and C4 region. Within the C1 domain a structural feature, an 

actin-binding-site is contained, that is unique to PKCε (Fig. 1.5) (47-49).  

 

Figure 1.5: Structure of PKCε. 
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1.6.2 Activation and function of PKCε 

Agonist stimulation of several g-protein-coupled receptors and tyrosine kinase receptors 

can activate Phospholipase C (PLC). PLC facilitates the production of Diacylglycerol 

(DAG), hence the activation of PKCε (48). Other activators of PKCε are fatty acids like 

arachidonic acid or phorbol 12-myristate 13-acetate (PMA) (47). Upon activation PKCε is 

either localized to the cell membrane where DAG is bound or to so called RACKS 

(receptor of activated protein C kinases) that are located at intracellular membranes like 

the Golgi. Binding to the membrane leads to conformational changes of PKCε and 

substrate binding in the kinase domain can take place (50). Once activated PKCε has a 

broad variety of downstream targets. Among others PKCε regulates STAT3 activity by 

Ser727 phosphoylation (51), activates NF-κB (52) or increases protein levels of anti-

apoptotic Bcl-2 (53). Furthermore, PKCε is also known to regulate the opening probability 

of MPTP: One parameter regulated by PKCε is the interaction between VDAC and HkII. 

Several mechanisms seem to be plausible: First, VDAC could be directly phosphoylated 

by PKCε strengthening the interaction between VDAC and HkII (54). Second, the 

interaction between VDAC and HkII might be indirectly regulated by PKCε via the 

transcription factor ATF2 (55). Another MPTP regulator controlled by PKCε is the pro-

apoptotic BH3-only protein Bad. PKCε can directly phosphoylate Bad on Ser112 and keep 

Bad in its inactive conformation (56). 

 

Figure 1.6: PKCε activation and downstream targets: Upon agonist stimulation of GPCRs or 
receptor tyrosine kinases Phospholipase (PLC) generates membrane-anchored 
Diacylglycerol (DAG), which activates PKCε. PKCε can also artificially be activated via 
exogenous PMA. Upon activation PKCε either translocates to the cell membrane or to 
intracellular receptors of activated protein C kinase (RACK) located on intracellular 
compartments like the golgi. PKCε regulates among others the transcription factors STAT3 
and NF-κB and exerts pro-survival signals via stabilizing the VDAC/HkII interaction and the 
phosphoylation of BAD on Ser112, thus preventing the opening of MPTP. 
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1.6.3 The role of PKCε as oncogenic player and its role in cancer 

The regulation of NF-κB and Stat3 already indicates a pro-survival and oncogenic function 

of PKCε. Also other oncogenic functions for PKCε were described: PKCε was shown to 

increase tumorigenicity of non-cancer cells, increases metastatic potential and resistance 

to chemotherapy and irradiation (57-59). Furthermore, PKCε is also known to be 

overexpressed in certain human malignancies and linked to poor prognosis e.g. in breast 

cancer and gliomas (60, 61). PKCε is the only PKC isoform considered to have a massive 

oncogenic potential (50). This primes PKCε as a promising anti-tumor target, but 

approaches to target PKCε selectively failed so far, because inhibition with small 

molecules lack isoform specificity (62). 

Because of its role as oncogene, its actin-binding site and its implications in controlling the 

MPTP, PKCε is an interesting candidate linking the disruption of the actin CSK by 

Chondramide to cell death. 

 

1.7 Aim of the study 

Evading apoptosis is a major hallmark of cancer cells. Commonly used chemotherapies 

aim to drive cancer cells into apoptosis and to stop tumor growth. Though the ubiquitous 

microtubule network is a cancer target for decades, another import cytoskeletal network 

the actin cytoskeleton is not targeted by any clinically used drug so far. Thus, we used the 

actin-binding compounds Chondramide A and Doliculide to describe their potential to 

stimulate apoptotic cell death in breast cancer cells. Furthermore, we wanted to explore 

the cell death inducing mechanism that is behind the disruption of the actin cytoskeleton 

and use Chondramide A for this purpose. An interesting signaling player connecting the 

actin cytoskeleton and cell death is PKCε with its actin-binding site. PKCε might be the 

key player to link intrinsic apoptosis via the mitochondrial permeability transition pore 

complex to cell death induction by Chondramide A. Furthermore, we have also been 

interested in the question whether there is any selectivity between cancerous and non-

cancerous cells towards Chondramide A induced toxicity and the link to PKCε expression 

level (Fig. 1.7 A).  

Besides, we want to characterize another actin-binding compound namely Doliculide on 

its effects: first on the actin cytoskeleton, second functional characteristics of cancer cells 

like proliferation and migration and third on its impact on apoptosis induction (Fig. 1.7 B). 
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Figure 1.7: (A) One aim of the study is to investigate the effects of Chondramide A treatment 
on the actin cytoskeleton (Actin CSK) and the subsequent downstream signaling leading to 
apoptosis. Of special interest in this context is PKCε as it contains an actin-binding site and 
might be affected by Chondramide A treatment. Downstream of PKCε we are interested in 
proteins regulating the mitochondrial permeability transition pore (MPTP), namely 
VDAC/HkII interaction and Bad phosphoylation. (B) The second aim of the study was to 
investigate the effects of Doliculide on the actin CSK and basic functional parameters like 
proliferation, migration and apoptosis induction. 
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2.1 Materials 

2.1.1 Chondramides 

Myxobacterial cyclodepsipeptides Chondramide A and B were provided by the group of 

Rolf Müller (Department of Pharmaceutical Biotechnology, Saarbrücken, Germany). 

Chondramide A was used in in vitro cell culture experiments, whereas Chondramide B 

was used in animal experiments, because of its higher abundance. Chondramide A was 

dissolved in DMSO at a concentration of 1 mM and aliquots were stored at – 20° C. For 

stimulation a 10 x overconcentrated solution in medium was prepared and added in 

concentrations as indicated in figures. 

2.1.2 Doliculide 

(-)-Doliculide was synthesized by the group of Karlheinz Altmann (Pharmaceutical 

Biology, ETH Zürich, Switzerland) and dissolved in DMSO at a concentration of 1 mM. 

Aliquots were stored at – 20° C. For stimulation the same procedure as for Chondramide 

A was performed. 

2.1.3 Reagents: Biochemicals, inhibitors, cell culture reagents and 
technical equipment     

Biochemicals 

Reagent Producer 

Amaxa Nucleofector Kit V Lonza, Köln, Germany 

Annexin-V-FITC Apoptosis detection Kit ebioscience, Vienna, Austria 

β-mercaptoethanol Merck, Darmstadt, Germany 

Bovine Serum Albumine (BSA) Sigma-Aldrich, Taufkirchen, Germany 

Bradford reagent Roti® Quant Carl Roth, Karlsruhe, Germany 

CellTiterBlue reagent Promega, Mannheim, Germany 

Digitonin Sigma-Aldrich, Taufkirchen, Germany 

Dimethylsulfoxide (DMSO) Sigma-Aldrich, Taufkirchen, Germany 

ECL Plus WB Detection reagent GE Healthcare, München, Germany 

FluorSave® reagent mounting medium Merck, Darmstadt, Germany 
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Formaldehyde-Solution 10% PBS buffered Applichem, Darmstadt, Germany 

FuGENE® HD transfection reagent Promega, Mannheim, Germany 

Glutamine Sigma-Aldrich, Taufkirchen, Germany 

Glycerol Applichem¸ Darmstadt, Germany 

HEPES Carl Roth, Karlsruhe, Germany 

JC-1 iodide Axxora, Lörrach, Germany 

Mannitol Merck, Darmstadt, Germany 

Mitotracker Red CMXROS Invitrogen, Karlsruhe, Germany 

Na2EGTA Applichem, Darmstadt, Germany 

Na2EDTA Carl Roth, Karlsruhe, Germany 

Non-fat dry milk powder Carl Roth, Karlsruhe, Germany 

PAGE Ruler® Prestained Protein Leader Fermentas, St. Leon-Rot, Germany 

Phorbol-13-myristate-12-acetate (PMA) Merck Millipore, Billerica, MA, USA 

Polyacrylamide Carl Roth, Karlsruhe, Germany 

Propidium iodide Sigma-Aldrich, Taufkirchen, Germany 

Pyronine Y Applichem, Darmstadt, Germany 

Rhodamin 123 Sigma-Aldrich, Taufkirchen, Germany 

Rhodamin-Phalloidin Invitrogen, Karlsruhe, Germany 

Saccharose Carl Roth, Karlsruhe, Germany 

Sodium chloride Carl Roth, Karlsruhe, Germany 

Sodiumdodecylsulfate (SDS) Carl Roth, Karlsruhe, Germany 

Sodiumglycerolphosphate Applichem, Darmstadt, Germany 

Tris Base Sigma-Aldrich, Taufkirchen, Germany 

Triton X-100 Merck, Darmstadt, Germany 

Tunel ApopTag® apoptosis detection Kit Merck Millipore, Billerica, MA, USA 

 

All other biochemical reagents were purchased by Carl Roth, Sigma-Aldrich or Merck. 
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Inhibitors 

Inhibitor Producer 

Ciclosporine A Sigma-Aldrich, Taufkirchen, Germany 

Complete® mini EDTA free Roche diagnostics, Penzberg, Germany 

NaF Merck, Darmstadt, Germany 

Na3VO4 ICN, Biomedicals, Aurora, OH, USA 

Phenymethylsulfonyl fluoride (PMSF) Sigma-Aldrich, Taufkirchen, Germany 

 

Cell culture reagents 

Cell culture reagent Producer 

Cholera Toxin Sigma-Aldrich, Taufkirchen, Germany 

Collagene G Biochrom AG, Berlin, Germany 

DMEM/High glucose PAA Laboratories, Pasching, Austria 

EGF Peprotech, Rocky Hill, NJ, USA 

Fetal calf serum (FCS) PAN Biotech, Aidenbach, Germany 

Horse serum Invitrogen, Karlsruhe, Germany 

Hydrocortison Sigma-Aldrich, Taufkirchen, Germany 

Insulin Sigma-Aldrich, Taufkirchen, Germany 

Non-essential amino acids (NEAA) PAA Laboratories, Pasching, Austria 

Penicillin/Streptomycin 100x PAA Laboratories, Pasching, Austria 

Pyruvate Merck, Darmstadt, Germany 

RPMI 1640 PAA Laboratories, Pasching, Austria 

Trypsin PAN Biotech, Aidenbach, Germany 

 

Technical Equipment 

Name Device Producer 

ABI 7300 RT-PCR System Applied Biosystems, 
Fosterer City, CA, USA 

Axiovert 200 Invert microscope Zeiss, Jena, Germany 
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Culture flasks, plates and 
dishes 

Disposable cell culture 
material 

TPP, Trasadingen, 
Switzerland 

Curix 60 Tabletop film developer Agfa, Köln, Germany 

FACSCalibur Flow cytometer Becton Dickinson, 
Heidelberg, Germany 

Ibidi® µ-slide Microscope slide Ibidi GmbH, Martinsried, 
Germany 

LSM 510 Meta Confocal laser scanning 
microscope 

Zeiss, Jena, Germany 

Micro 22 R Table centrifuge Hettich, Tuttlingen, 
Germany 

Nanodrop RND 1000 Spectrophotometer Peqlab, Wilmigton, DE, 
USA 

Odyssey 2.1 Infrared imaging system Li-Cor Biosciences, Lincoln, 
NE, USA 

SpectraFluor®PLUS Microplate multifunctional 
reader 

Tecan, Männedorf, 
Switzerland 

Sunrise® Microplate absorbance 
reader 

Tecan, Männedorf, 
Switzerland 

Vi-Cell® CR Cell viability and counting 
system 

Beckmann Coulter, 
Fullerton, CA, USA 

 

 

 

2.2 Cell culture 

2.2.1 Cell culture buffers, solutions, procedure and cell lines 

Following buffers and solutions were used for cultivation of breast cancer cell lines. 
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Commonly used buffers and solutions 

  

 

 

 

   

The human epithelial breast cancer cell line MCF7 was purchased from the DSMZ 

(Braunschweig, Deutschland) and maintained in RPMI 1640 medium supplemented with 

10 % heat inactivated fetal calf serum, 1% pyruvate, 125µg/l insulin, 1% non-essential 

amino acids and 1% penicillin/streptomycin. The mammary gland adenocarcinoma cell 

line MDA-MB-231 was purchased from cell lines service (Eppelheim, Germany) and 

maintained in DMEM high glucose supplemented with 10% FCS and 1% 

penicillin/streptomycin. MCF10-A non-tumorigenic epithelial cells were from ATCC 

(Manassas, VA, USA) and cultivated in RPMI 1640 medium supplemented with 5% horse 

serum, Insulin 125µg/l, EGF 100ng/ml, Hydrocortison 0,8µg/ml, Cholera-Toxin 0,16µg/ml 

and 1% penicillin/streptomycin. All cell lines were maintained in a humidified incubator at 

37°C and 5 % CO2. For passaging cells culture medium was discarded and the cell layer 

was washed with PBS and incubated with 3 ml Trypsin/EDTA (T/E) for several minutes at 

37°C until all cells detached. T/E was stopped by adding 7 ml of the respective medium 

(containing 10 % FCS), cells were counted with the Vi-Cell system, centrifuged (1000 rpm, 

5 minutes), resuspended and either passaged or seeded in culture dishes. MCF-7 and 

MDA-MB-231 were splitted in a 1:10 ratio, whereas MCF-10A cells were passaged in a 

PBS (pH 7,4)  

NaCl 123,2 mM 

Na2HPO4 10,4 mM 

kH2PO4 3,2 mM 

H2O  

PBS + Ca2+/Mg2+ (pH 7,4)  

NaCl 137 mM 

KCl 2,68 mM 

Na2HPO4 8,10 mM 

KH2PO4 1,47 mM 

MgCl2 0,25 mM 

CaCl2 0,7 mM 

H2O  

Trypsin/EDTA  

Trypsin 0,05 % 

EDTA 0,20 % 

PBS  

Collagen G    

Collagen G 0,001 % 

PBS  
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ratio of 1:5. As cell density is of enormous impact on the result of an experiment, 

especially with a high abundance target like actin, the cell density was kept equal to about 

30000 cells/cm² if possible. Additionally, flasks and dishes for MCF-7 were coated with 

Collagen G solution for 5 minutes, before the MCF-7 cells were seeded. 
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2.2.2 Freezing and thawing of cells 

For freezing cells were trypsinized, resuspended in culture medium and counted. 2 x 106 

cells in 1 ml freezing medium (containing 20 % FCS + 10 % DMSO) were frozen in 

cryovials first at – 20°C overnight, then at – 80°C and few days later the cryovials were 

stored in nitrogen tanks (-196°C) for long-term storage. 

For thawing cells were warmed up in a water bath at 37° C, then they were resuspended 

in culture medium and excessive DMSO was separated by centrifugation. The cell pellet 

was resuspended in culture medium and grown in a 25 cm² flask. 

2.3 Fluorescence recovery after photobleaching (FRAP) 

To analyze rapid changes in actin dynamics FRAP assay was performed. MCF7 cells 

transfected with mGFP-β-actin were seeded in ibidi®-µ-slides and incubated in the climate 

chamber of a Zeiss LSM 510 confocal microscope at 5% CO2, 37°C and humidified 

atmosphere. Regions of interest (ROI) of equal size were chosen in untreated and 

Chondramide (300nM, 0.5 h) treated cells and were bleached by high laser energy (488 

nm). Images were taken every five seconds lasting for approximately 2,5 minutes and the 

fluorescence intensity within the ROI was measured. Cells were randomly chosen for 

bleaching and quantification of fluorescence recovery was done using the LSM image 

browser software (Zeiss, Jena, Germany). 

2.4 Quantification of cell death 

2.4.1 Propidium iodide exclusion assay 

Cells were harvested on ice, washed, exposed to a solution of propidium iodide (5µg/ml) 

in PBS and immediately analyzed by flow cytometry using a Becton Dickinson 

FACSCalibur. Cells permeable for Propidium iodide were considered as dead. Data were 

analyzed by using FlowJo 7.6 software. 

2.4.2 Analysis of membrane phosphatidylserine exposure 

Phosphatidylserine switch to the outer leaflet of the plasma membrane was analyzed by 

Annexin-V staining using the respective apoptosis detection kit according to 

manufacturer’s instructions. Cells were analyzed by a FACSCalibur cytometer. Cells 
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positive for Annexin-V-FITC were considered to be early apoptotic, cells positive for 

Annexin-V-FITC and Propidium iodide were considered to be late apoptotic and cells 

positive for Propidium iodide only were considered to be necrotic. Data analysis was 

perfomed using FlowJo 7.6 software. 

2.5 Cytochrome C release 

To detect Cytochrome C release from mitochondria, residual Cytochrome C in 

mitochondria was measured via flow cytometry. Cells were harvested and incubated in a 

digitonin-containing buffer for 30 min on ice (0.2mM Na-EGTA, 100mM KCl, 50µg/ml 

digitonin, PBS), fixed with 4% PFA for 20 min and unspecific binding was blocked (3% 

BSA, 0.05% Saponine, 1h, RT) before incubation with Cytochrome C antibody over night 

at 4°C and staining with the secondary antibody for 1h. Cytochrome C antibody was 

purchased from Cell Signaling Technology (Danvers, MA, USA) and secondary goat-anti-

rabbit-Alexa-488 antibody was obtained from Invitrogen (Darmstadt, Germany). 

Fluorescence was detected using a FACSCalibur cytometer. A decrease in fluorescence 

intensity indicates a loss of mitochondrial Cytochrome C that is washed out after cell 

membrane permeabilization. Data analysis was performed by FlowJo 7.6 software. 

2.6 Mitochondrial membrane potential (ΔΨm) 

Analysis of ΔΨm was performed in living cells with the mitochondria selective dye JC-1. 

Cells were harvested and incubated with JC-1 (1,25µM, 37°C, 30 minutes). Mitochondria 

with an intact potential display JC-1 red fluorescing aggregates, whereas in mitochondria 

with disrupted potential JC-1 is monomeric and green fluorescent. The shift in 

fluorescence was monitored by a FACSCalibur cytometer using channel FL1-H for green 

fluorescence. For data analysis FlowJo 7.6 software was used. 

2.7 Caspase 8 activity assay 

Caspase 8 activity was measured using a commercial kit (Merck Millipore, Darmstadt, 

Germany), based on the cleavage of a caspase-8 specific AFC (7-amino-4-trifluoromethyl 

coumarin) labeled peptide. Cells were harvested, washed once with ice-cold PBS and 

lysed by the caspase lysis buffer and stored over night at -80°C. The next day, the cell 

lysate was centrifuged (14,000rpm, 10min, 4°C) to remove cell debris and the supernatant 

was transferred to a new vial. Protein concentration was determined by Bradford assay. 
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For measurement 10μl of each sample was pipetted in a non-transparent 96-well plate in 

triplicates. 90μl of the freshly made substrate solution containing the labeled peptide was 

added to each well. The fluorometric shift over 5h at 37°C was monitored by a fluorescent 

plate reader (SpectraFluorPlus, Tecan) calculating the slope of the relative enzyme 

activity in %. 

2.8 Isolation of mitochondria from cultured cells 

A semi-automated method was used for isolating mitochondria from MDA-MB-231 cells 

treated with Chondramide or DMSO 0,03 % as solvent control. This assay was performed 

in the laboratory of Dr. Hans Zischka in collaboration with Sabine Schmitt (Institut für 

molekulare Toxikologie und Pharmakologie, Helmhotz Zentrum München). Briefly, cells 

were harvested via trypsination, counted and 5x106 cells were homogenized using a Balch 

homogenizer coupled to a high-precision pump. This method provides mitochondria from 

cultured cells that have a similar quality like rat liver mitochondria that resemble to be the 

gold standard (43). Homogenisates are subjected to two centrifugation steps (800g and 

9000g) to separate the nuclei fraction (pellet 800g), the mitochondrial fraction (pellet 

9000g) and the cytosolic fraction (supernatant 9000g). The mitochondrial fraction was 

further subjected to a protein quantification via Bradford and equal amounts of protein 

were used to assess the mitochondrial membrane potential via fluorescence quenching of 

Rhodamin123+ and swelling analysis at an absorbance of 540 nm. To assess a 

participation of the mitochondrial permeability transition pore Ciclosporin A (5 µM) and 

Ca2+ (400 µM) was added. As positive control for an intact mitochondrial membrane 

potential (ΔΨm) in control mitochondria, ΔΨm was disrupted by the addition of the 

protonophore FCCP (Carbonyl cyanide 4(trifluoromethoxy) phenylhydrazone) (500 nm). 
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2.9 Western blot 

2.9.1 Buffers and solutions for Western blot 

Lysis buffers 

 

Digitonin lysis buffer (pH7,2)  

Mannitol 210 mM 
Sucrose 200 mM 
Hepes (pH 7,2) 10 mM 
Na2EGTA 0,2 mM 
Succinate 5 mM 
BSA 0,15 % 
Digitonin in H2O 80 µg/ml 

 

 

 

  

Phospho lysis buffer (pH 7,5)  

EDTA 2xH2O 2 mM  

NaCl 137 mM 

Glycerol 10 % 

Na4P2O7 x H2O 2 mM 

Tris-Base 20 mM 

Triton X-100 1 % 

C3H7Na2O6P x H2O 20 mM 

NaF 10 mM 

Na3VO4 2 mM 

PMSF 1 mM 

Complete® mini EDTA free in H2O 4 mM 
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Solutions for Western blot         

  

 

 

  

 

 

    

 

 

 

 

5x SDS sample buffer  

Tris HCl (pH6,8) 3,125 mM 

Glycerol 10 ml 

SDS 5 % 

DTT 2 % 

Pyronin Y 0,0025 % 

H2O  

Separation gel 12 %  

Polyacrylamid solution 40 % 

Tris HCl pH 8,8 375 mM 

SDS 0,1 % 

TEMED 0,2 % 

APS 0,1 % 

H2O  

Stacking gel  

Polyacrylamid solution 40 % 

Tris HCl pH 6,8 125 mM 

SDS 0,1 % 

TEMED 0,2 % 

APS 0,1 % 

H2O  

Electrophoresis buffer   

Tris-Base 4,9 mM 

Glycine 38 mM 

SDS 0,1 % 

H2O  

Tank buffer 5x  

Tris-Base 240 mM 

Glycine 195 mM 

H2O  

Tank buffer 1x  

Tank buffer 5x 20 % 

Methanol 20 % 

H2O  
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TBS-T (pH 8,0)  

Tris-Base 24,76 mM 

NaCl 189,9 mM 

Tween 20 0,1 % 

H2O  

 

2.9.2 Western blot, cytosolic-mitochondrial fractionation and           
cytosolic-cytoskeletal fractionation 

The protein levels were examined by Western blotting analysis. Cells were grown in a 12-

well culture dish and treated for the indicated time points. Because of dealing with cell 

death, the media of the cells was also collected as well as the PBS buffer which was used 

for washing and the T/E solution and the stopping medium. After collection cells were 

centrifuged at 1500 rpm for 10 minutes at 4°C and washed with PBS and transferred to an 

eppendorf cup. Again cells were centrifuged at 1500 rpm for 10 minutes at 4°C. 

Supernatant was discarded and 85µl of phospho lysis buffer was added and cells were 

frozen at -20°C overnight. Next day lysates were centrifuged at 10000 rpm for 10 minutes 

at 4°C to remove cell debris. Supernatant was collected and an aliquot was used for 

protein quantification via Bradford according to manufacturer’s instructions. An equal 

amount of protein was separated via SDS-Page (100 V, 20 minutes then 200 V, 43 

minutes) (Bio-Rad System, München, Germany) and transferred to a nitrocellulose 

membrane (GE Healthcare, München, Germany) via tank blotting (90 V for 90 minutes, 

4°C). The detection of specific proteins was achieved by using the ECL WB plus reagent 

detection system or the Odyssey Infrared Imaging system version 2.1. 

To separate the mitochondrial from the cytosolic fraction cells were harvested, incubated 

with the Digitonin lysis buffer (20min, on ice) and centrifuged (10min, 1,300rpm, 4°C). The 

supernatant was collected (cytosolic fraction) and the cell pellet was permeabilized with 

0.1% TritonX-100 (15min, on ice) (mitochondrial fraction). Both fractions were centrifuged 

one more time (14,000rpm, 10min, 4°C) to sediment the cell debris. Mitochondrial and 

cytosolic fractions were then processed like Western blot lysates mentioned above. 

Cytosolic and cytoskeletal fractionation was achieved by using different centrifugation 

steps. Cells are harvested as described above and lysed with phospho lysis buffer (30 
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minutes on ice). Lysates were centrifuged at 300 g for 15 minutes (4°C) to remove cell 

debris and keep the cytoskeletal fraction in solution. Supernatant (Cytosolic and 

cytoskeletal fraction) was collected and again centrifuged at 14 000 rpm for 15 minutes to 

separate higher molecular cytoskeletal proteins from cytosolic proteins. Supernatant 

containing the cytosolic fraction was carefully collected and protein content was 

determined via Bradford analysis. The pellet containing the cytoskeletal fraction was 

resolved in phospho lysis buffer and mixed with 5x SDS sample buffer. Equal amounts of 

protein were separated as mentioned above. 

2.9.3 Primary and secondary antibodies used for immunoblotting 

Primary antibodies 

Antigen Source Dilution In Producer 

Actin Mouse 1:1000 Blotto 5 % Merck-Millipore 

Bad Rabbit 1:1000 BSA 5 % Cell Signaling Technologies 

phospho-Bad (Ser112) Mouse 1:1000 BSA 5 % Cell Signaling Technologies 

COX IV Rabbit 1:1000 Blotto 5 % Cell Signaling Technologies 

GAPDH Mouse 1:1000 Blotto 5 % Santa Cruz  

Hexokinase II Rabbit 1:1000 BSA 5 % Cell Signaling Technologies 

PKCα Rabbit 1:1000 Blotto 5 % Santa Cruz 

PKCε Rabbit 1:1000 Blotto 5 % Santa Cruz 

PARP Rabbit 1:1000 Blotto 5 % Cell Signaling Technologies 

Pro-caspase-9 Rabbit 1:1000 Blotto 5 % Cell Signaling Technologies 

Tubulin-β Rabbit 1:1000 BSA 5 % Cell Signaling Technologies 
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Secondary antibodies 

Antibody Dilution In Producer 

Goat-anti-mouse IgG1 HRP 1:10000   Blotto 1 %   Biozol 

Goat-anti-mouse IgG HRP 1:10000 Blotto 1 % Santa Cruz 

Goat-anti-rabbit IgG HRP 1:10000 Blotto 1 % Bio-Rad 

Goat-anti-mouse IRDye® 800cw 1:20000 Blotto 1 % Li-Cor GmbH 

Goat-anti-rabbit AlexaFluor® 680 1:20000 Blotto 1 % Molecular Probes 

 

2.10 Transfection of FLAG.PKCε and mGFP-β-actin 

FLAG-PKCε plasmid was a gift of Alex Toker (Addgene plasmid 10795) (63). MCF7 cells 

were transfected using the Amaxa Nucleofector kit V according to manufacturer’s 

instructions. MDA-MB-231 cells were transfected using FuGene® HD transfection kit. 

pcDNA3.1 (Invitrogen) was used as empty vector control. Upregulation of PKCε was 

confirmed on protein level via Western blot. 24h after transfection, cells were treated with 

Chondramide at indicated concentrations. For confocal microscopy MCF7 cells were 

transfected with mGFP-β-actin plasmid, which was a gift of Ryohei Yasuda (Addgene 

plasmid 21948) (64), by using the Fugene HD transfection kit according to manufacturer’s 

instructions. mGFP-β-actin expressing cells were analyzed by confocal microscopy. 
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2.11 Immunostaining and confocal microscopy 

To visualize a certain protein within a cell immunostaining and adjacent confocal 

microscopy were carried out. Cells were seeded in ibidi®-µ-slides (20000 cells/well), 

treated as indicated, washed with PBS+, fixed with 4% paraformaldehyde, permeabilized 

with 1% Triton-X 100 and incubated with 1% bovine-serum-albumin solution for 1 hour to 

block unspecific binding of antibodies. After blocking, cells were incubated with the 

respective antibody solution overnight (4°C), washed with PBS+ and incubated with the 

secondary antibody and a compartment selective dye for two hours. The actin 

cytoskeleton was either stained with f-actin selective dye Rhodamin-phalloidin or the cells 

were transfected with mGFP-β-actin to visualize the actin cytoskeleton. After washing with 

PBS+, stainings were sealed with mounting medium (FluorSaveTM Reagent) and cover 

slip. Samples were kept at 4°C for longer storage. Images were obtained using a Zeiss 

LSM 510 META confocal microscope (Zeiss, Jena, Germany) and image analysis was 

performed with the Zeiss LSM image browser software. 

Primary antibodies used for immunostaining 

Antibody Dilution Producer 

Bad 1:100 Cell Signaling Technologies 

Hexokinase II 1:1000 Cell Signaling Technologies 

PKCα 1:100 Santa Cruz 

PKCε 1:100 Santa Cruz 

 

Secondary antibodies and dyes for immunostaining 

Antibody/Dye Dilution Producer 

Alexa Fluor 488 chicken-anti-rabbit IgG 1:1000 Invitrogen 

Alexa Flour 647 chicken-anti rabbit IgG 1:1000 Molecular Probes 

Hoechst (bisBenzimide H 33342) 1:100 Sigma Aldrich 

Mitotracker® Red CMXRos* 1:10000 Invitrogen 

*Diluted in PBS+ and added directly to living cells (37°C, 30 Min) 
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2.12 Immunhistochemistry of tissue sections 

Tumor and healthy breast tissues were fixed in formalin and embedded in paraffin blocks. 

Sections were stained with anti-PKCε antibody (Santa Cruz) and visualized with the 

Vectastain® ABC Kit (Vector Laboratories, Burlingame, CA, USA) according to 

manufacturer’s instructions. Four control tissues and six tumor tissues were analyzed and 

images were taken on an Olympus BX41 microscope with a 20-fold magnification. Tissues 

were provided by Dr. Doris Mayr (Pathologisches Institut, LMU München). 

2.13 In vivo mouse xenograft model 

For the subcutaneous xenograft model, 5x106 MDA-MB-231 cells in Matrigel/PBS (1:1) 

were injected subcutaneously in the flank of female SCID (C.B-17/IcrHan®Hsd-Prkdcscid, 

Harlan, USA) mice. 9 days after tumor cell injection, 0.75mg chondramide/kg in PBS/5% 

Solutol® (BASF, Ludwigshafen, Germany) was injected intraperitoneally thrice a week. 

After 34 days, mice were sacrificed and tumor growth and tumor weight of control (n=10) 

and Chondramide treated mice (n=10) was determined. Tumor volume was calculated 

every second day according to the formula V= a x b2/2 (a = largest side of the tumor and b 

= the largest side vertical to a). Average tumor volumes of the two groups were compared 

over time. Tumor tissues were either frozen in liquid nitrogen or fixed in formalin. 

Cryosections were stained for actin with rhodamine-phalloidin and anti-PKCε-antibody 

(Abcam, Cambridge, UK) followed by incubation with anti-rabbit secondary antibody 

conjugated with Alexa 488 (Invitrogen). Formalin preserved sections were embedded in 

paraffin and stained for apoptotic cells by ApopTag® Fluorescein In Situ Apoptosis 

Detection Kit according to manufacturer’s instructions. TUNEL positive cells were 

visualized with a Zeiss confocal microscope. Six randomly chosen images of each tumor 

were counted for TUNEL positive nuclei. All animal procedures were approved and 

controlled by the local ethics committee and carried out according to the guidelines of the 

german law of protection of animal life. The animal experiment was performed by Dr. 

Rebekka Kubisch and Johanna Busse in the laboratory of Prof. Dr. Ernst Wagner 

(Pharmaceutical Biotechnology, LMU München). 
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2.14 Proliferation assay 

MCF7 and MDA-MB-231 cells were seeded in 96 well plates (3000 cells/well) and 

cultivated overnight. To detect the cell number on day 0 three wells were incubated with 

CellTiter-Blue® reagent for 2 hours and analyzed with a TECAN fluorescence reader 

according to the manufacturer’s instructions to measure metabolic activity. Cells were 

stimulated with increasing concentrations of Doliculide (10 - 500 nM) and DMSO 0.05% as 

solvent control. After 72 hours cells were incubated with CellTiter-Blue® reagent for 2 

hours and measured as mentioned above. IC50 values were calculated using GraphPad 

Prism 5.0 software non-linear regression with sigmoidal dose response. 

2.15 Migration assay 

To measure migration inhibiton of Doliculide on MDA-MB-231 cells xCELLigence 

instrument (ACEA Biosciences, San Diego, CA, USA) was used. The lower compartment 

of CIM-Plates® (ACEA), filled with 160 µl FCS-containing media, and the upper chamber 

were put together. The upper compartment was filled with 27 µl media without FCS and 

the plates were equilibrated at 37°C for 1 hour. MDA-MB-231 cells were harvested and 

resuspended in DMEM without FCS. 30000 MDA-MB-231 cells per 100 µl were added in 

CIM-Plates® with 8µm pore width and analyzed for 10 hours in the xCELLigence® 

instrument (ACEA). MDA-MB-231 cells were stimulated after adherence with the indicated 

concentrations of Doliculide or DMSO 0.01% as solvent control. Data analysis was 

performed using RTCA 1.2.1 software (ACEA). 

2.16 Statistics 

The experiments were commonly performed three times in an independent manner. The 

statistical test used for analysis is indicated in the respective figure legend. Bars represent 

mean ± SEM. Statistical analysis was performed with the software GraphPad Prism 

Version 5.04 (GraphPad Software, Inc., La Jolla, CA, USA). Significance levels are 

indicated in the according figure legend. 

 

 



 

3 RESULTS 

  



RESULTS 42 

3.1 Disrupting the actin cytoskeleton with Chondramide leads 
to cell death via trapping PKCε  

Although for Chondramide and other actin-binding compounds exist a variety of data 

concerning its growth inhibitory potential on different cancer cell lines (65), neither for 

other actin-stabilizers nor for Chondramide itself exists an explanation, how the disruption 

of the actin cytoskeleton leads to cell death respectively proliferation arrest (22). In this 

work I will show a distinct mechanism of action, how the Chondramide induced 

overpolymerization of the actin cytoskeleton leads to the induction of the intrinsic apoptotic 

pathway in breast cancer cells. 

3.1.1 Chondramide impairs actin dynamics and leads to the induction of the 
intrinsic apoptotic pathway 

 

3.1.1.1 FRAP-analysis of Chondramide treated cells 

First, Chondramide’s influence on the actin cytoskeleton should be determined. Therefore 

a Fluorescence-recovery after photobleaching (FRAP) assay was performed to analyze 

the dynamic fraction of globular actin within a cell after Chondramide treatment. A distinct 

region of MCF7 mammary cancer cells transfected with green fluorescent protein (GFP) 

tagged β-actin has been bleached by laser (488nm) and the actin filament dynamics were 

observed by time lapse microscopy (Fig. 3.1 A). Untreated cells recover from 

photobleaching within seconds seen by the rapid disappearance of the bleached area 

(Fig. 3.1 A upper panel, white arrows). In contrast, cells treated with 300nM Chondramide 

(ChA) for 30 min display a massive reduction of the mobile, globular actin fraction (Fig. 
3.1 A lower panel, white arrows). Quantification of fluorescence recovery confirms a 

distinct abrogation of actin filament dynamics by ChA (Fig. 3.1 A, graph). Furthermore, 

ChA treatment time dependently induces agglomeration of globular actin which results in 

formation of actin lumps shown in Fig. 3.1 B. 
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Figure 3.1: Chondramide A (ChA) inhibits actin dynamics and leads to agglomeration of 
actin. (A) MCF7 cells were transfected with mGFP-β-actin and treated with 300nM ChA for 30 
min. The mobile actin fraction was quantified by FRAP analysis. Upper panel: White arrows 
indicate the photobleached area in representative images (Ctrl, untreated cells; Ch300, cells 
treated with 300nM ChA). Lower panel: Values represent the % fluorescence recovery over 
time of mGFP-β-actin after photobleach. (B) Time course of actin hyperpolymerization of 
MCF7 cells expressing mGFP-β-actin and treated with 300nM ChA (Ch300) for 0.5h, 6h and 
24h. Scale bar indicates 10 µm. n=3 
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Taken together Chondramide leads to a rapid overpolymerization of the actin CSK, which 

results in large agglomerates of actin within the cell over 24 hours. 

3.1.1.2 Chondramide induces cell death in breast cancer cells 

After showing the disruption of the actin CSK it was interesting to know, if such an event 

leads to cell death. Cell death was quantified using an Annexin-V-FITC/PI co-staining 

assay in MCF-7 and MDA-MB-231 cells. In both cell lines cell death was quantified to 

about 40 % (Fig. 3.2). This cell death rate aroused our interest in how exactly cell death is 

mediated after Chondramide treatment. 

 

 

 

 

 

 
 

 

Figure 3.2: Chondramide leads to cell death in MCF7 and MDA-MB-231 cells. MCF-7 as well 
as MDA-MB-231 cells were treated with Chondramide (300nM, 48h) and analyzed for 
apoptotic cell death by staining with Annexin-V-FITC/PI. Living cells are marked in gray, 
early apoptotic cells in white (Annexin V positive), late apoptotic cells in black (Annexin V 
and PI positive) and necrotic cells in spotted gray (PI positive). 
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3.1.1.3 Chondramide does not influence Caspase 8 activation 

One critical hallmark for the induction of the extrinsic apoptosis pathway is the activation 

of Caspase 8 (66). Caspase 8 activity is measured using a quenched Caspase 8 

substrate that becomes fluorescent when active Caspase 8 cleaves the peptide, which 

can be easily monitored with a fluorescence microplate reader. 

 

Figure 3.3: Chondramide treatment does not alter Caspase 8 activity significantly. MCF-7 
and MDA-MB-231 cells were treated with 100 nM and 300 nM Chondramide for 6 hours and 
Caspase 8 activity was determined by the cleavage of Caspase 8 substrate Ac-Leu-Glu-Thr-
Asp-AFC. Cleavage of the substrate was observed via fluorescence increase with an 
excitation wavelength of 390 nm and an emission wavelength of 535 nm. Bars represent the 
mean ± S.E.M. ns= no statistical significant change, p<0,05, (One Way ANOVA, Tuckey) 
 

Caspase 8 activity shows no significant increase in both cell lines (Fig. 3.3) after 6 hours 

of Chondramide treatment. Especially, the apoptosis inducing concentration of 300 nM 

Chondramide does not alter Caspase 8 activation. These experiments make a 

participation of the extrinsic apoptosis pathway in Chondramide induced cell death 

unlikely. 
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3.1.1.4 Chondramide treatment leads to decrease of mitochondrial membrane 
potential and release of Cytochrom C from mitochondria 

To further address the question, which pathway of apoptosis induction is stimulated by 

Chondramide treatment (intrinsic or extrinsic) we investigated the mitochondrial 

membrane potential (ΔΨm) by JC-1 iodide staining and the release of mitochondrial 

Cytochrome C to the cytoplasm. Both parameters are typical hallmarks of the intrinsic 

apoptotic pathway (29). Fluorescence profiles of both cell lines show a shift toward green 

fluorescence of JC-1 after Chondramide treatment indicating a decrease in mitochondrial 

membrane potential (Fig. 3.4 A). In line with disruption of mitochondrial membrane 

potential, Chondramide treatment (300nM) results in a release of cytochrome C from the 

mitochondria in both cell lines. Fig. 3.4 B shows FACS analysis of cytochrome C 

remaining in the mitochondria of cells treated with Chondramide for 24h compared to 

untreated cells. 

Figure 3.4: (A) Mitochondrial membrane potential (ΔΨm) of cells was determined by flow 
cytometry using JC-1 as mitochondrial selective dye. MCF7 and MDA-MB-231 cells were 
treated with 100nM and 300nM ChA for 24 h. (B) Mitochondrial cytochrome C content in 
cells (MCF7, MDA-MB-231) treated for 24h with ChA (100nM, 300nM) was measured via flow 
cytometry. ***p < 0.001 (One Way ANOVA, Bonferroni) 
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3.1.1.5 PARP cleavage and Caspase 9 activation by Chondramide treatment 

According to the disruption of mitochondrial membrane potential and cytochrome C 

release also other markers of the intrinsic apoptotic pathway should be activated. Typical 

downstream markers for the induction of the intrinsic apoptotic pathway are the activation 

of caspases. We checked two caspase hallmarks: On the one hand Poly-(ADP)-ribosyl 

Polymerase (PARP), whose cleavage is a sign for caspase 3 activation, on the other hand 

pro-caspase 9, which is part of the apoptosome consisting of caspase 9, APAF-1 and 

cytochrome C (67). Both cell lines show a diminished expression of Procaspase 9 and a 

cleavage of PARP after 300 nM Chondramide treatment (Figure 3.5), indicating the 

activation of caspases 3 and 9, respectively. 

In sum, our results show a disruption of the actin CSK by Chondramide and the 

subsequent induction of the intrinsic apoptotic pathway. 

 

 

 

 

 

Figure 3.5: Chondramide leads to a decrease of Procaspase 9 and PARP cleavage. Western 
Blot analysis of procaspase-9 and cleavage of PARP as parameters for activation of 
caspase-9 and -3, respectively, was performed using cells exposed to ChA (100nM, 300nM, 
24h). Blotting for GAPDH serves as loading control. A representative blot out of three is 
shown. 
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3.1.2 The role of mitochondrial permeability transition in Chondramide 
induced cell death 

A crucial component of the intrinsic apoptotic pathway is the mitochondrial network. 

Mitochondria can be permeabilized by several molecular mechanisms (29) e.g. via the 

mitochondrial transition pore complex. In the following section I want to sum up the data 

supporting a participation of mitochondrial permeability transition (MPT) in cell death 

induction by Chondramide. 

3.1.2.1 Chondramide induces translocation of Hexokinase II from   
mitochondria and dephosphoylation of Bad pointing to a role of the MPT 

As Chondramide depleted mitochondrial membrane potential and induced mitochondrial 

cytochrome C release in mammary cancer cells, both known to be hallmarks of the 

mitochondrial permeability transition (MPT), we focused on major players involved in this 

process. VDAC, which is localized at the outer mitochondrial membrane, interacts with 

Hexokinase II (HkII) thereby negatively modulating MPT and preventing apoptosis. The 

postulated composition of the mitochondrial permeability transition complex consists, next 

to ANT and Cyclophilin D, also of VDAC and Hexokinase II on the cytoplasmic leaflet of 

the outer mitochondrial membrane (68). The association of VDAC and Hexokinase II can 

be analyzed indirectly via co-staining of Hexokinase II and the mitochondrial network with 

Mitotracker. As VDAC is one of the most abundant proteins in the outer mitochondrial 

membrane, it is very likely that Hexokinase II co-localizing with mitochondria is bound to 

VDAC. Another regulator of MPT is the proapoptotic, Bcl2-family protein Bad, which is 

active in a dephosphoylated status and contributes to MPT opening (45). 
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Figure 3.6: Treatment with Chondramide A leads to the dislocation of Hexokinase II (HkII) 
from mitochondria and activation of pro-apoptotic Bad. (A) MCF-7 cells transfected with 
mGFP-β-actin were treated with 300nM ChA for 6h, fixed and co-stained with Mitotracker red 
CMX-ROS and anti-Hexokinase II antibody followed by confocal microscopic analysis. Scale 
bar indicates 10 µm. Representative images are shown. (B) Western Blot of HkII in 
mitochondrial fraction of MDA-MB-231 cells treated with 300nM ChA for 6h and 24h. 
Cytosolic and mitochondrial fractions were separated. Immunoblotting for β-tubulin and 
COX IV were used for controlling purity of mitochondrial fraction and loading control, 
respectively. (C) Western blot analysis for Bad and phospho-(Ser112)-Bad in MCF7 and 
MDA-MB-231 cells treated with 100nM and 300nM ChA for 6h. (D) MCF7 cells transfected 
with mGFP-β-actin were treated with 300nM ChA for 6h, fixed and co-stained with 
Mitotracker red CMX-ROS and anti-Bad-antibody followed by confocal microscopic analysis. 
Scale bar indicates 10 µm. Representative images are shown.  
 

We found that the binding of HkII and VDAC is impaired by Chondramide (Fig. 3.6 A). 

HkII co-localizes with mitochondria shown as a distinct dot-like pattern in control cells. In 

contrast, cells treated with 300nM Chondramide displayed a rather diffuse localization of 

HkII suggesting a disruption of the mitochondrial VDAC/HkII interaction. Western blot 

experiments support this notion as decreased protein levels of HkII were found in the 

mitochondrial fraction of cells treated with Chondramide (300nM, 6h and 24h) (Fig. 3.6 B).  

Moreover, Chondramide affects a further regulator of the MPT, i.e. the Bcl-2 protein Bad. 

Protein level of Ser-112 phosphoylated, inactive Bad decreased dose-dependently after 

treatment of cells with Chondramide (100nM, 300nM, 6h) with constant total Bad protein 

(Fig. 3.6 C). Consequently, in cells treated with Chondramide an intensified co-localization 

of Bad with mitochondria was observed in comparison to untreated cells (Fig. 3.6 D) 

supporting the idea that pro-apoptotic, mitochondrial Bad is increased by Chondramide 

due to abrogation of the inactive, phosphoylated form of Bad.  
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3.1.2.2 Mitochondria of Chondramide treated cells are more sensitive towards MPT 
induction by Ca2+ implicating MPT opening 

To further confirm the participation of mitochondrial permeability transition (MPT) in 

Chondramide induced cell death, we performed an analysis of isolated mitochondria from 

MDA-MB-231 cells in collaboration with the laboratory of Dr. Hans Zischka (Institute for 

Molecular Pharmacology and Toxicology, Helmholtz Center, Neuherberg). Importantly, 

Ciclosporin A efficiently blocked the Ca2+-induced loss of ΔΨm (Fig. 3.7 A) and confirms 

participation of the MPT in isolated mitochondria from control cells. In contrast, isolated 

mitochondria from ChA treated cells only weakly respond towards the inhibitory action of 

Ciclosporin A. A progressing depletion of ΔΨm coincided with an increasing extent of 

mitochondria that have undergone swelling (i.e. MPT) (Fig. 3.7 B).  

Thus, by altering known modulators of the MPT Chondramide leads to a release of 

Cytochrome C from mitochondria. The MPT-blocking HkII/VDAC interaction is disrupted, 

Bad localizes to mitochondria, and Ciclosporin A mediated inhibition of the MPT is 

abrogated, thus finally resulting in Cytochrome C release. 
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Figure 3.7: Participation of the MPT in ChA induced apoptosis. Mitochondria were isolated 
from either untreated (controls) or ChA treated MDA-MB-231 cells. Parallel measurements of 
ΔΨm by Rhodamine123+ (125nM) quenching (A) and mitochondrial swelling (MPT) by 
absorbance at 540 nm (B) Mitochondria of control and ChA 300 nM (24 h) treated cells were 
incubated with Ca2+ (400µM) in the presence of Ciclosporin A (5µM). FCCP addition (500 nM) 
after 50 min served as internal control for ΔΨ disruption. The experiment was independently 
repeated two times. These experiments were performed in collaboration with Sabine 
Schmitt and Dr. Hans Zischka (Institute for Molecular Pharmacology and Toxicology, 
Helmholtz Center, Neuherberg).  
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3.1.3 Chondramide inhibits PKCε by trapping it in actin bundles 

Ser112-phosphoylation of Bad as well as the interaction of HkII with VDAC are known to 

be regulated by PKCε (45, 55). As PKCε contains an actin-binding site our working 

hypothesis focused on PKCε as a link between the effect of Chondramide on the actin 

CSK and the induction of apoptosis via mitochondrial activation. This section sets the 

focus on the interaction between the actin CSK and PKCε and the selectivity of this 

interaction. 

3.1.3.1 PKCε colocalizes with actin bundles and is enriched in the CSK fraction 
under Chondramide treatment 

First the interaction between the actin CSK, PKCε and its Chondramide induced inclusion 

should be confirmed. Immunostaining of mGFP-β-actin transfected MCF7 cells showed an 

enrichment of PKCε in Chondramide induced actin bundles 6h and 24h after treatment, 

indicated by the yellow color in the merged image (Fig. 3.8 A). Analysis of cytosolic and 

cytoskeletal fractions of MDA-MB-231 (Fig. 3.8 B) showed increased actin content in the 

CSK fraction after Chondramide treatment compared to control cells which, importantly, is 

accompanied by enhanced PKCε protein levels, but not PKCα which does not contain an 

actin binding site. 

  



RESULTS 54 

 

Figure 3.8: Co-localization of PKCε with Chondramide induced actin bundles and its 
enrichment in the cytoskeletal fraction. (A) MCF7 cells were transfected with mGFP-β-actin 
and incubated with     300 nM ChA for 6 h and 24 h. Cells were fixed and stained for PKCε. 
Yellow color in merged images indicates co-localization of PKCε with actin bundles. Nuclei 
were stained by Hoechst 33342. Scale bar indicates 10 µm. (B) Cytosolic and cytoskeletal 
fractions of MDA-MB-231 cells were isolated, resolved by SDS-PAGE and immunoblotted 
using antibodies against PKCα, PKCε, Actin and GAPDH. Representative blots are shown. 
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3.1.3.2 PKCα lacking an actin-binding site does not co-localize with actin bundles 

To check the specificity of the actin-binding site in PKCε for its actin interaction, we also 

stained for another PKC isoform named PKCα, which does not contain an actin-binding 

site (47). PKCα does not co-localize with Chondramide induced actin bundles (Fig. 3.9). 

This supports the data from the cytosolic-cytoskeletal fractionation from Fig. 3.8 B and 

supports the notion that the interaction between PKCε and the actin CSK depends on its 

specific actin-binding site. 

 

Figure 3.9: PKCα does not co-localize with Chondramide induced actin bundles. MCF7 cells 
transfected with mGFP-β-actin were treated with 300 nM ChA for 6 h and 24h. 
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3.1.3.3 Membrane localization of PKCε is diminished after Chondramide treatment 

After the confirmation of the co-localization of PKCε and Chondramide induced actin 

bundles, it was also interesting to know if the activation of PKCε is impaired as well. A 

classical marker for the activation of PKCs is its translocation to the inner leaflet of the 

cytoplasmic membrane after stimulation with phorbol esters (49, 52). As translocation of 

PKCs to the cell membrane is a typical hallmark for their activation, MDA-MB-231 cells 

were stained for PKCε after exposure to PMA, a common inducer of PKCs (1µM, 30 min). 

PMA stimulated cells clearly display PKCε protein localized on the cellular membrane, 

whereas additional treatment with Chondramide results in a significant decrease of PKCε 

at the plasma membrane quantified by counting the respective cells (Fig. 3.10). 

Taken together, the results from 3.1.3 display a trapping of PKCε and impaired PKCε 

activation as consequence of Chondramide induced polymerization of actin CSK. 

 

Figure 3.10: PKCε shows a decreased activation after Chondramide treatment. PKCε 
activation was determined via monitoring the translocation to the plasma membrane. MDA-
MB-231 cells treated with 100 nM and 300 nM ChA for 6 h were co-stimulated with phorbol 
12-myristate 13-acetate (PMA) (1 µM, 30 min), fixed and stained for PKCε. Quantification of 
cells with activated PKCε was done by analyzing at least 80 cells per group for their PKCε 
membrane localization (confocal microscopy). Shown are representative images, white 
arrows indicate cells with active PKCε. Scale bar indicates 10 µm. The graph shows a 
normalized statistical analysis. Bars represent the mean ± S.E.M. of three independent 
experiments performed in triplicates, *p < 0.05, **p < 0.01 (One Way ANOVA, Bonferroni) 
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3.1.4 PKCε overexpression leads to cell death reduction 

Our next aim was to verify the crucial role of PKCε in cell death induction by 

Chondramide. Therefore overexpression of PKCε protein levels might overcome the 

trapping of PKCε in actin bundles and sustain PKCε survival signaling. In order to prove 

the link between PKCε and Chondramide induced apoptosis, cells overexpressing PKCε 

were analyzed for their apoptotic response upon Chondramide treatment (Fig. 3.11). 

Overexpression of PKCε was verified by Western blot analysis (Insets; Fig. 3.11). PKCε 

transfected MCF7 and MDA-MB-231 cells show a significant decrease in sensitivity 

towards Chondramide treatment compared to cells transfected with empty vector plasmid, 

thus verifying the importance of PKCε in cell death induction mediated by Chondramide. 

 

Figure 3.11: PKCε overexpression rescues cells from Chondramide induced apoptosis. 
MCF7 and MDA-MB-231 cells were transfected with FLAG.PKCε or an empty vector and 
treated with 300nM ChA for 24 h. The number of dead cells was analyzed using the 
propidium iodide exlusion assay for MCF7 cells and Annexin V staining for MDA-MB-231 
cells. Overexpression of PKCε was confirmed by Western Blot (Insets). The graphs show 
the results normalized to the according control. ns no significant difference, ** p<0,01; *** 
p<0,001 (One-Way-ANOVA, Bonferroni) 
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3.1.5 Chondramide treatment displays tumor cell specificity 

3.1.5.1 Non-tumor cells express lower levels of PKCε and are not prone to cell 
death towards Chondramide treatment 

The distinct role of PKCε in Chondramide induced cancer cell apoptosis and even more its 

selectivity towards tumor cells was demonstrated by another set of experiments. The 

effect of Chondramide on the two tumor cell lines (MCF-7, MDA-MB-231) was compared 

to that on the non-tumorigenic breast epithelial cell line MCF10-A (Fig. 3.12). Treatment 

with 300nM Chondramide disrupts the actin CSK in MCF10-A as well (Fig. 3.12 A), 

however MCF10-A cells show no increased cell death rate in contrast to MCF7 and MDA-

MB-231 cells after stimulation with Chondramide (Fig. 3.12 B). To link PKCε to induction 

of apoptosis we compared PKCε protein levels in all three cell lines. Of note, MCF10-A 

non-tumorigenic cells express much less PKCε protein than MCF7 and MDA-MB-231 

cancer cells (Fig. 3.12 C). A similar picture was observed when analyzing breast tissue 

from patients (obtained from Doris Mayr, Institute for Pathology, LMU Munich). Human 

breast cancer tissues display a massive expression of PKCε whereas healthy breast 

tissues show only weak staining for PKCε besides in acini of breast glandular cells (Fig. 
3.12 D).  

 

In sum Chondramide induced apoptosis is mediated by actin CSK disruption and is highly 

depending on the expression of PKCε in cells. 
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Figure 3.12: Non-cancerous cells are less susceptible to Chondramide, though the actin 
CSK is also disrupted. (A) MCF10-A cells were transfected with mGFP-actin and treated with 
300 nM Chondramide for 24h. (B) The adenocarcinoma cell lines MCF7, MDA-MB-231 and 
the non-tumorigenic epithelial breast cell line MCF10-A were evaluated for their 
responsiveness to Chondramide by monitoring PI positive cells. (C) Comparison of PKCε 
levels is shown in MCF7, MDA-MB-231 and MCF10-A via Western blot as well as via 
immunohistochemistry. GADPH and actin serve as loading control. Each experiment was 
independently performed three times. (D) Representative PKCε tissue stainings of healthy 
breast tissue and mammary tumor tissue. Nuclei are counterstained with Hematoxylin. *p < 
0.05, **p < 0.01, ***p<0.001 (One Way ANOVA, Bonferroni). Confocal images, cell death 
quantification and Western blot analysis were conducted by Christina Moser. 
 

 

PKCε

Actin

GAPDH

M
CF

7

M
CF

10
-A

M
DA

-M
B-

23
1

MCF10-A MCF7 MDA-MB-231

Ctrl
Ch100
Ch300

Ce
ll 

de
at

h 
[%

]

0

10

20

30

40

50

ns ns
*

*** ***

ns

B

C

D Healthy breast tissue Breast tumor tissue

MCF10-A

MDA-MB-231

MCF7

Ctrl Ch300
M

C
F1

0-
A

A



RESULTS 60 

3.1.6 Chondramide has anti-tumor effects in vivo 

To prove the feasibility of Chondramide as potential anti-cancer treatment an ectopic 

breast cancer model was used to address this question. This animal experiment was 

conducted by Johanna Busse and Rebekka Kubisch from the laboratory of Prof. Ernst 

Wagner (Pharmaceutical Biotechnology, Ludwig-Maximillians-University, Munich).  

3.1.6.1 Chondramide treatment reduces tumor growth and increases apoptotic cell 
death in vivo 

Using a MDA-MB-231 xenograft mouse model administration of 0.75mg/kg Chondramide 

(three times per week) was shown to significantly reduce tumor growth as monitored by 

tumor volume (Fig. 3.13 A). Tumor tissue was examined for apoptotic cells (TUNEL 

assay) and showed a significant increase of apoptotic nuclei in the Chondramide treated 

group compared to control tissue (Fig. 3.13 B). Furthermore, the mouse body weight was 

measured during the treatment period and no significant difference between the 

Chondramide treated group and the control group was observable indicating tolerable 

adverse effects of Chondramide treatment (Fig. 3.13 C). 
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Figure 3.13: Chondramide treatment decreases tumor growth, increases apoptotic cell 
death, but has no influence on mouse body weight. (A) Tumor volume of female SCID mice 
harboring a MDA-MB-231 tumor in their flank that were either treated with solvent control 
(DMSO) or 0.75mg/kg/day Chondramide. (B) Statistical analysis of TUNEL stained paraffin 
sections. Six fields per tumor were visualized and counted. Significance analysis was 
performed using student-t-test with *p<0.05 , **p<0.01. (C) Body weight of female SCID mice 
during the treatment period normalized to day 7 after tumor inoculation (start of treatment). 
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3.1.6.2 Chondramide leads to actin clumping and PKCε trapping in vivo 

Next to standard examinations like TUNEL analysis, cryosections of the tumor tissue were 

investigated, in order to detect similar actin perturbations like in the cell culture model. 

Also the interaction between the actin CSK and PKCε was analyzed in vivo. Chondramide 

leads also in vivo to a disruption of actin cytoskeleton (especially on the border of tumors) 

and moreover, PKCε is localized in actin bundles in Chondramide treated tumors (Fig. 
3.14).  

In sum this set of experiments shown in 3.1.6 confirms Chondramides’ cell death inducing 

mechanism in vivo and proves the feasibility of actin targeting in an ectopic tumor model. 

 

 

Figure 3.14: Chondramide induces actin polymerization and trapping of PKCε in vivo. 
Cryosections of tumors were stained for actin (red), PKCε (green) and nuclei (blue). Scale 
bar indicates 50 µm. Representative images of control and Chondramide treated tumor 
borders are shown. Inserts in the merged images show a magnification of a few single cells. 
5 tissue sections of control and Chondramide treated tumors were investigated. 
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3.2 Characterization of actin-binding Doliculide in breast 
cancer cells 

Similar to Chondramide also Doliculide is known to bind to the actin CSK and to 

overpolymerize it (69). But no closer characterization of Doliculides’ action in cancer cells 

is available in literature. In the following section basic effects of Doliculide on breast 

cancer cells will be provided. 

3.2.1 Effects of Doliculide on the actin cytoskeleton 

First, we wanted to examine the effects of Doliculide on the actin cytoskeleton of breast 

cancer cells. This was achieved by two means: one via a FRAP-assay to determine early 

effects and rhodamine-phalloidin staining to detect later effects on the actin cytoskeleton. 

We analyzed the short-term effects of Doliculide on the actin cytoskeleton in GFP-tagged 

β-actin transfected MCF7 cells via fluorescence recovery after photobleach (FRAP) 

analysis (Fig. 3.15 A). Green fluorescent MCF7 cells were randomly chosen and a Region 

of Interest (ROI) of similar size was determined. This area was bleached by high laser 

energy (488 nm) and the fluorescence intensity was measured every two seconds. In 

control cells the bleached area was rapidly refilled by diffusing g-actin monomers. Cells 

treated with 100 nM Doliculide for 30 minutes showed a slower fluorescence recovery 

over time, whereas cells treated with 300 nM Doliculide showed no more fluorescence 

recovery at all indicating that g-actin monomers were reduced by Doliculide treatment. 

The quantification of control cells and 300 nM Doliculide treated MCF7 cells is shown in 

Fig. 3.15 B. The difference in fluorescence intensity after photobleaching between control 

and treated cells can be explained by the very fast re-diffusion of g-actin monomers into 

the bleached area during the process of image generation (two seconds). Fig. 3.15 C 

shows long term effects (24 hours) of Doliculide treatment on the actin cytoskeleton of 

MCF7 and MDA-MB-231 cells. 100 nM Doliculide lead to reduced actin stress-fibers 

compared to control cells. 300 nM and 500 nM Doliculide show effects on the formation of 

actin bundles in both cell lines. 
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Figure 3.15: Doliculide inhibits actin dynamics and leads to the formation of actin bundles. 
(A) Fluorescence recovery after photobleach (FRAP) analysis of MCF7 cells. MCF7 cells 
were transfected with mGFP-β-actin and treated with 100 nM and 300 nM Doliculide for 30 
min. The mobile actin fraction was quantified by FRAP analysis. White arrows indicate the 
photobleached area in representative images. (B) Values represent the % fluorescence 
recovery over time of mGFP-β-actin after photobleach of control and 300 nM Doliculide 
treated cells. (C) Actin staining of MCF7 and MDA-MB-231 cells by rhodamin-phalloidin. 
Cells were treated for 24 hours with 100 nM, 300 nM and 500 nM Doliculide and stained for 
filamentous actin (red) and nuclei (blue). Scale bar indicates 10 µm. Each experiment was 
performed independently three times. 
 

3.2.2 Effects of Doliculide on functional parameters of breast cancer cells 

The next aim was to investigate Doliculide’s impact on a functional level of breast cancer 

cells like proliferation of MCF-7 and MDA-MB-231 cells as well as migration of the 

invasive breast cancer cell line MDA-MB-231. As shown in Fig. 3.16 A Doliculide inhibits 

proliferation dose-dependently after 72 hours in MCF7 and MDA-MB-231 with an IC50 of 

93 nM and 77 nM, respectively. The influence on migration by Doliculide was tested in 

highly metastatic MDA-MB-231 cells (Fig. 3.16 B). The migratory potential of MDA-MB-

231 was analyzed for eight hours by impedance measurements (xCELLigence), revealing 

a dose-dependent inhibition of migration by Doliculide treatment compared to control cells. 

The negative control, containing no FCS in the lower compartment of the CIM-Plate® 

does not migrate at all. 

In sum, Doliculide impairs crucial characteristics of malignant breast cancer cells, namely 

proliferation and migration. 
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Figure 3.16: Doliculide inhibits proliferation and impairs migration of invasive breast cancer 
cells. (A) Logarithmical proliferation of MCF7 and MDA-MB-231 cells determined via 
CellTiter-Blue® assay. Cells were treated for 72 hours with increasing Doliculide 
concentrations (10, 50, 100, 150, 200, 300 and 500 nM) and 0.05% DMSO as solvent control. 
IC50 values indicate the Doliculide concentration when the proliferation inhibition is half 
maximum. (B) Transwell migration assay with MDA-MB-231 cells. MDA-MB-231 cells were 
treated with subtoxic Doliculide concentrations (10, 50 and 100 nM) for 8 hours and 
migration through a 8 µm pore-size membrane was detected using the xCELLigence® 
impedance measurement device. Negative control contained no chemo-attractant in the 
lower compartment.  
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3.2.3 Doliculide induces apoptosis 

Another typical hallmark of cancer cells is their capability to evade apoptosis (30). In this 

section we determined Doliculides’ potential to induce apoptosis in breast cancer cells. 

Cell death was quantified with propidium iodide exclusion assay in MCF7 and MDA-MB-

231 cells (Fig. 3.18 A). Both cell lines show an increased rate of PI positive cells after 24 

hours Doliculide exposure in a dose-dependent manner. Western blot analysis of MCF7 

and MDA-MB-231 cells shows classical apoptotic marker proteins Pro-caspase 9 and 

Poly-(ADP)-ribonucleotid-Polymerase (PARP) (Fig. 3.18 B). Doliculide leads to a dose-

dependent decrease of Pro-caspase 9 pointing to its activation. In addition, PARP 

cleavage is strongly induced in Doliculide treated cells indicating activation of caspase-3 

thus confirming the induction of apoptosis. 
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Figure 3.18: Doliculide induces cell death and leads to caspase activation and PARP 
cleavage. (A) Propidium iodide exclusion assay of MCF7 and MDA-MB-231 cells treated with 
100 nM, 300 nM and 500 nM Doliculide for 24 hours. (B) Western blot analysis of apoptotic 
marker proteins Pro-caspase 9 and PARP in MCF7 and MDA-MB-231 cells treated with 100 
nM, 300 nM and 500 nM Doliculide for 48 hours. GAPDH serves as loading control. A 
representative blot out of three is shown. 

 
 

Taken together, we could show that Doliculide leads to the overpolymerization of the actin 

CSK, inhibition of functional cancer characteristics and the induction of apoptosis. 
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The actin and microtubule cytoskeletons play pivotal roles in cancer biology as they 

regulate tumor relevant processes for example cell cycle, morphogenesis or migration. 

Actin fulfills multiple functions in eukaryotic cells like movement of intracellular organelles, 

migration of the cell, and separation of the cell bodies in the end of mitosis (70). The actin 

cytoskeleton (CSK) is a tightly regulated network of globular actin monomers that ATP-

dependently polymerize into complex structures (26). Concerning their special duties in 

cell movements, actin filaments are polarized with barbed and pointed ends, because the 

actin monomers always interact in the same direction, which leads to the polarization of 

the filaments. The assembly, elongation and dissociation of actin monomers to filaments 

are highly regulated mechanisms, which involve more than 100 actin-related proteins (23). 

Moreover, the equilibrium between monomeric and filamentous actin can also be affected 

by natural compounds, which arose in a broad variety in several species like marine 

organisms, fungi and myxobacteria. These compounds can be divided into two 

mechanistically different groups: compounds that inhibit filament assembly or 

depolymerize filaments like Latrunculin B and Cytochalasin D and those that stabilize or 

overpolymerize the actin CSK like Chondramide, Jasplakinolide or Phalloidin (12, 16, 20). 

Another main component of the CSK are the microtubules, building up the microtubule 

network that regulates the transport of organelles and is an important structure in the 

mitotic spindle apparatus responsible for the segregation of chromosomes during mitosis 

(71). To date, a wide range of natural compounds is available, which overpolymerize or 

depolymerize the microtubule CSK and lead to cell death in cancer cells. Notably, contrary 

to actin binding compounds several of these natural products or synthetic derivatives of 

them are in clinical use as anti-cancer agents for decades, like the Taxanes, Epothilones 

or Vinca alcaloids (72). One reason for the extensive use of microtubule targeting drugs in 

cancer treatments might be their very well understood mechanism of action (73, 74). In 

contrast, the pharmacological properties of actin-binding compounds are so far poorly 

described (22). This is the reason why we used Chondramide A and Doliculide as tools to 

decipher the mechanisms behind their anti-cancer actions. 

4.1 Targeting the actin cytoskeleton with Chondramide A: 
selective  anti-tumor action via trapping PKCε 

The data communicated here provide a conceptual framework for actin-polymerizing 

agents such as Chondramide as tumor cell specific, cytotoxic drugs. Major findings were: 

1) The actin cytoskeleton is involved in specific apoptotic signaling via PKCε and 

regulation of mitochondrial permeability transition (MPT). As PKCε is overexpressed in 
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cancer cells a tumor cell selective mode of action is proposed. 2) Actin-targeting 

Chondramide masters the challenge of isoform specific inhibition of PKC, namely 

protumorigenic PKCε. 3) Chondramide induces apoptosis and displays in vivo efficacy via 

disruption of PKCε signaling. 

4.1.1 PKCε is an interesting candidate linking the actin CSK to cell death 

Pharmacological interruption of actin dynamics has been reported before to lead to cell 

death however the exact mechanisms remain unclear (22). Posey et al. hypothesized a 

role of gelsolin, an actin binding protein, for apoptosis induced by another actin 

polymerizing natural compound named Jasplakinolide, however gelsolin overexpression 

was shown to have no impact on apoptosis induction by Jasplakinolide (75). We used 

Chondramide as a chemical tool to learn more about actin specific apoptotic signaling. 

Chondramide, similar to Jasplakinolide (76), hyperpolymerizes the actin cytoskeleton, 

induces agglomeration of actin that assembles over time and forms massive amorphous 

actin bundles which contain actin–binding proteins as reported (77). Our driving strategy 

was to search for regulators of cell death containing an actin-binding site and to examine 

whether they might be trapped within these actin structures and thereby display 

decreased functionality. We came up with PKCε, a member of the PKC family, which on 

one hand possesses an actin-binding motif (49, 78) and is on the other hand a crucial 

regulator of several pro-survival pathways (50, 52, 59-62). 
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4.1.2 PKCε is the “Bad guy” among PKCs 

The PKC family has been an exciting target for drug discovery especially in cancer ever 

since they were identified as intracellular receptors for the tumor promoting agents 

phorbol esters (79). However, major challenges such as dissecting the contribution of   

PKC isozymes to cancer progression or developing modulators specific for the PKC 

isozymes are still to be met. PKCs are either pro-mitogenic or inhibit cell-cycle 

progression depending on isozyme and cell type. PKCα and PKCδ for instance promote 

anti-mitotic responses (80) in tumor cells whereas PKCε is required for cancer cell survival 

(50, 52). Further, PKCε has been shown to be overexpressed in various types of cancer 

including breast cancer (60, 62) supported by our own data.  

4.1.3 Apoptosis via MPT is modulated by PKCε and affected by 
Chondramide 

PKCε mediates oncogenic activities as it affects the activity of transcription factors like 

ATF2, NFκB and Stat3 (51, 55, 81), but also addresses distinct targets in the apoptotic 

machinery of cells such as the BH3-only Bcl2-family protein Bad. Bad exerts its pro-

apoptotic functions in a dephosphoylated form and PKCε is known to directly 

phosphoylate Bad on Serine 112, thus inhibiting the pro-apoptotic activity of Bad (45, 56, 

82) by preventing the mitochondrial permeability transition (MPT) (45) and hence the 

onset of apoptosis. PKCε counteracts the MPT not only via inactivation of Bad but also by 

maintaining the complex of voltage-dependent anion channel (VDAC) and Hexokinase II 

(HkII) at the outer mitochondrial membrane. Phosphoylation of VDAC (54) as well as 

phosphoylation of the transcription factor ATF2, which then attenuates apoptosis through 

saving the VDAC/Hk interaction (55), are discussed as mechanisms for the prosurvival 

features of PKCε. The association between the glycolytic enzyme HkII and VDAC has 

been reported to be specific for cancer cell mitochondria and thus its disruption promises 

tumor cell specific apoptosis (44). Inhibition of PKCε leads to the MPT due to loss of 

VDAC/Hk complex as well as loss of inactivated Bad, both of which could be clearly 

demonstrated for Chondramide treatment. Our work provides evidence for the MPT as 

target in apoptosis induction by PKCε inhibition in Chondramide treated cells. Data show 

that Ciclosporine A, which normally blocks the Ca2+-induced MPT, is not able to prevent 

mitochondrial swelling (i.e. the MPT) in isolated mitochondria from cells treated with 

Chondramide, thus further supporting the involvement of MPT. Moreover, our data offer 

an explanation how changes in actin cytoskeleton dynamics lead to cell death and 

proposes the actin cytoskeleton as a specific antitumor target. 
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4.1.4 Chondramide is a selective indirect inhibitor of PKCε 

As mentioned above identification of isozyme selective modulators of PKCs has been a 

major challenge taken up by various approaches such as the development of ATP-

competitive small-molecule inhibitors that bind to the catalytic domain of the kinase, 

phorbol ester derivatives that mimic the binding of diacylglycerol, or peptides which 

prevent the anchoring of the PKC to its RACK (receptor of activated C-kinase), which 

brings the activated enzyme to its substrate (79). Our data propose Chondramide as an 

indirect PKCε specific inhibitor based on the fact that particularly PKCε due to its actin 

binding site is trapped by Chondramide induced actin polymerization. The role of PKCε as 

a promising tumor specific therapeutic target and as a major player in Chondramide 

induced tumor cell death is supported by two facts: first, non-tumor cells (MCF-10A breast 

epithelial cells) showing level of PKCε are not sensitive to Chondramide. Second, PKCε 

overexpression leading to more free PKCε which is not trapped in actin bundles, rescues 

Chondramide induced apoptosis. 

Importantly, Chondramide shows in vivo efficacy. Treatment of mice bearing a xenograft 

breast tumor (MDA-MB-231 cells) with Chondramide leads to reduction of tumor growth 

by inducing apoptosis through PKCε trapping in actin bundles as shown by 

immunostainings. Besides this fact, Chondramide treatment is also well tolerable in vivo 

which was monitored by mouse body weight that did not decrease during the treatment 

period, thus demonstrating the principle feasibility of actin-stabilizers as potential tumor 

therapeutics. 

Our data link actin, a target distributed in all eukaryotic cells to the cancer-specific protein 

PKCε and open new therapeutical approaches by using actin-overpolymerizing 

compounds. Thus our work encourages comprehensive pharmacological evaluation of 

this class of actin-targeting agents in tumor therapy. 
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4.2 Pharmacological characterization of actin-binding (-)-
Doliculide 

Another part of this work was to characterize the natural compound doliculide, an actin-

overpolymerizing agent, with regard to its cellular effects. The actin binding properties of 

doliculide were first described by Bai et al. in 2002 (14). The authors showed, that 

doliculide replaces fluorescent phalloidin from actin filaments and proposed a similar 

binding site of doliculide to the actin filament. Furthermore, Bai et al. performed a 

molecular modeling study in which other actin-overpolymerizing compounds like 

Jasplakinolide, Phalloidin, Chondramide C and Doliculide were mathematically compared. 

They suggest Doliculide as “core” pharmacophore of these four actin-overpolymerizing 

compounds (14). 

4.2.1 Doliculide inhibits actin dynamics 

These previous results primed Doliculide for further pharmacological investigations in our 

laboratory. To get closer insights in the early influence of Doliculide on the actin CSK we 

performed FRAP analysis. It was shown that Doliculide leads to a very rapid inhibition of 

actin dynamics in MCF7 breast cancer cells. First effects were detectable after just eight 

(!) minutes of incubation, which reflects an extremely good membrane permeability of 

Doliculide. Actin staining by Rhodamin-Phalloidin of MCF7 and MDA-MB-231 cells 

reinforced the data obtained by Bai et al., illustrating Doliculide-induced bundling of actin 

to amorphous clumps. 

4.2.2 Doliculide inhibits functional parameters and induces apoptosis 

For a closer characterization as potential anti-cancer compound we examined the effects 

on proliferation and migration, which were also inhibited by Doliculide in low 

concentrations. It is known, that several other actin-binding compounds participate in the 

induction of apoptosis, however no closer mechanistic insights are available up-to-date 

(22, 83). In line with these studies, Doliculide leads to cell death in both cell lines. 

Activation of Caspase 9 and the cleavage of Poly-(ADP)-ribonucleotid-Polymerase 

(PARP), common hallmarks of apoptosis, were detectable as well. 

Our work defines Doliculide as a potent agent against breast cancer cells lines, which 

strongly inhibits proliferation and migration and induces apoptosis. Furthermore, these 

data set the stage for a closer investigation of Doliculide to establish the actin CSK as 

potential anti-cancer target. 
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4.3 The potential of actin targeting compounds in cancer 
therapy 

In my work I investigated the cell death inducing mechanism only with Chondramide A. 

Nonetheless, I claim that the mechanism of trapping PKCε in actin agglomerates is similar 

between all actin-overpolymerizing compounds and might be a class effect. Doliculide 

also leads to the agglomeration of actin in which PKCε might be trapped as well. The 

formation of actin agglomerates is also known for Jasplakinolide (76). One can argue that 

the feasibility of in vivo trials with Chondramide could be conferrable to other actin-

overpolymerizers, too. Moreover, the tolerability in the in vivo model encourages for 

further preclinical investigations concerning pharmacokinetic properties and closer 

examinations of highly actin depending organs like the muscle of the heart. Next to the 

cell death induction of actin overpolymerizing compounds described in this work, the actin 

CSK plays also pivotal roles in other processes concerning cancer malignancies: 

Magdalena Menhofer could show in her work, that Chondramide inhibits metastasis and 

angiogenesis (84, 85), thereby increasing the therapeutic potential of actin binders, too. 
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4.4 Future perspectives 

Modern chemotherapies use combinations of anti-cancer drugs to deal with the disease. 

Thus, potential combination partners for Chondramide should be examined as well. This 

investigation already started in some respect by combining Chondramide and several 

other established or experimental chemotherapeutic. Among these compounds are drugs 

like Doxorubicin, an often used chemotherapeutic in clinic. Another combination based on 

the fact that PKCε is inhibited by Chondramide is the combination with a STAT3 inhibitor 

(Stattic) that showed synergistic effects on cell death in combination with Chondramide in 

preliminary in vitro studies (data not shown). Furthermore, drug targeting strategies can 

also be performed for Chondramide. Conceivable are targeting strategies using 

Chondramide coupled antibodies directed against cancer cell epitopes or charging 

nanoparticles with Chondramide to improve the cancer site specific delivery of the 

compound. Furthermore, the compounds used in this study are not perfect drug molecules 

concerning their yield during synthesis and their solubility characteristics. Thus, 

Chondramide and Doliculide can be used as leads to further improve the structure thereby 

simplifying the molecule and increasing the solubility in water. Thereby, making this 

compound class more interesting for the pharmaceutical industry and exploiting the 

potential of actin-binding compounds in cancer therapy. 
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Targeting the cytoskeleton (CSK) of cancer cells offers a valuable strategy in cancer 

therapy. Whereas drugs which address microtubule CSK such as vinca alkaloids or 

taxanes are well established in the clinic, compounds binding to the actin CSK are still far 

away from their therapeutical application. One reason might be the lacking knowledge on 

their mode of cytotoxicity and moreover their tumor specific mechanism of action.  

We used the myxobacterial compound Chondramide as a tool to first elucidate the 

mechanisms of cytotoxicity by actin targeting in different breast cancer cells, namely 

MCF7 and MDA-MB-231. Chondramide inhibits actin filament assembly and dynamics 

shown by a fluorescence-based analysis (FRAP) in whole cells and leads to apoptosis 

characterized by phosphatidylserine exposure, release of cytochrome C from 

mitochondria and finally activation of caspases (-9 and -3). Detailed analysis revealed, 

that Chondramide induces apoptosis by enhancing the occurrence of mitochondrial 

permeability transition (MPT). Known MPT-modulators were found to be affected by 

Chondramide: Hexokinase II (HkII) bound to the voltage dependent anion channel (VDAC) 

translocated from the outer mitochondrial membrane to the cytosol and the proapoptotic 

protein Bad was recruited to the mitochondria. Importantly, PKCε, a prosurvival 

serine/threonine kinase possessing an actin-binding site and known to regulate the 

HkII/VDAC interaction as well as Bad phosphoylation was identified as the link between 

actin CSK and apoptosis induction. PKCε which was found overexpressed in breast 

cancer cells accumulated in actin bundles induced by Chondramide and lost its activity. 

The second goal of our work was to inform on a potential tumor specific action of actin 

binding agents such as Chondramide. As the nontumor breast epithelial cell line MCF-10A 

in fact shows resistance to Chondramide induced apoptosis and notably express very low 

level of PKCε we claim that trapping PKCε via Chondramide induced actin 

hyperpolymerization displays tumor cell specificity.  

Our work provides a link between targeting the ubiquitously occurring actin CSK and 

selective inhibition of pro-tumorigenic PKCε, thus setting the stage for actin-stabilizing 

agents as innovative cancer drugs. This is moreover supported by the in vivo efficacy of 

Chondramide triggered by abrogation of PKCε signaling shown in a xenograft breast 

cancer model. 

For the actin targeting compound Doliculide we could show that Doliculide impairs the 

dynamics of the actin CSK similar to Chondramide. Moreover, it reduces the proliferation 

rate and migration of cancer cells and also leads to the induction of apoptosis, thus 

Doliculide is also an interesting lead structure for further preclinical investigations. 
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Figure 5.1: (A) Summary of the mechanism of action of Chondramide A. Chondramide A 
leads to the disruption of the actin cytoskeleton (CSK) by overpolymerizing it and forming 
agglomerates, containing actin and proteins with an actin-binding site like PKCε. 
Downstream signaling of PKCε is impaired resulting in opening of the MPTP via the 
disruption of the interaction between the voltage-dependent anion channel (VDAC) and 
Hexokinase II (HkII) and the dephosphoylation of Bad, which finally leads to the induction of 
apoptosis. ANT = Adenosin nucleotide translocase; OMM = outer mitochondrial membrane; 
IMS = intermembrane space; IMM = inner mitochondrial membrane. (B) Summary of 
Doliculide’s effects: Doliculide leads to an agglomeration of actin. Concomitantly, Doliculide 
inhibits proliferation, migration and induces apoptosis. 
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