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Abstract

In this letter we present the ‘‘Egg of Columbus’’ for making fibres with unprecedented toughness: a slider, in the simplest
form just a knot, is introduced as frictional element to dissipate additional energy and thus demonstrating the existence of a
previously ‘‘hidden’’ toughness. The proof of concept is experimentally realized making the world’s toughest fibre,
increasing the toughness modulus of a commercial Endumax macroscopic fibre from 44 J/g up to 1070 J/g (and of a zylon
microfiber from 20 J/g up to 1400 J/g). The ideal upperbound toughness is expected for graphene, with a theoretical value
of ,105 J/g. This new concept, able of maximizing (one fold increment) the structural robustness, could explain the
mysterious abundance of knot formations, in spite of their incremental energy cost and topological difficulty, in biological
evolved structures, such as DNA strands and proteins.
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Introduction

A great flourish of interest in the development of new high-

strength and high-toughness materials is taking place in contem-

porary materials science, with the aim of surpassing the

mechanical properties of commercial high-performance fibres.

Recently, macroscopic buckypapers [1–5], nanotube bundles [5–

13] and graphene sheets [14–18] have been manufactured. While

their macroscopic strength remains 1–2 orders of magnitude lower

than their theoretical strength, and is thus comparable to that of

current commercial fibres, recent progress has been made in

significantly increasing toughness. In particular, researchers have

produced extremely tough nanotube fibres with toughness

modulus values of up to 570 J/g [8], 870 J/g [13] and very

recently, including graphene, reaching 970 J/g [8], thus well

surpassing that of Kevlar (,80 J/g [8]) and even spider silk

(,170 J/g [8], with a record for a giant riverine orb spider of

,390 J/g [19]). In this letter, thanks to a new paradigm based on

structural mechanics rather than on materials science, we present

the ‘‘Egg of Columbus’’ for making fibres with unprecedented

toughness: a slider, in the simplest form just a knot, is introduced

as frictional element to dissipate energy and in general to reshape

the fibre constitutive law, showing evidence of a previously

‘‘hidden’’ toughness, strictly related to the specific strength of the

material. The result is a nearly perfectly plastic constitutive law,

with a shape mimicking that of spider silk. The proof of concept is

experimentally realized making the world’s toughest fibre,

increasing the toughness modulus of a commercial Endumax

macroscopic fibre from 44 J/g up to 1070 J/g (and of a zylon

microfiber from 20 J/g up to 1400 J/g). This new concept, able of

maximizing the structural robustness, could explain the mysterious

abundance of knot formations, in spite of their incremental energy

cost and topological difficulty, in biological evolved structures,

such as DNA strands and proteins [20–30]. The ideal upperbound

toughness is expected for graphene or carbon nanotubes [31–35],

with a theoretical value of ,105 J/g.

The Concept

The concept is thus based on the introduction of appropriate

sliders, even simple knots, as frictional elements for energy

dissipation in one dimensional elements such as fibres. Part of

the energy is dissipated through friction by the fibre sliding in the

slider along an extra-length of the fibre, e.g. a loop, additionally to

the intrinsic stretching energy dissipated by fracture and kinetic

energy when the fibre breaks. The concept is summarized in Fig. 1.

In particular, the energy at break q per unit mass m of a fibre

having cross-sectional area A, length l, Young’s modulus

E, strength sf and mass density r, can be calculated from the

load-displacement curve as w=m~1=m
Ðxf

0

Fdx~l0A=m
Ðef

0

sde~

1{k1ð Þ=r
Ðef

0

sde, where F is the force, x is the displacement,

s~F=A is the stress, e~x=l0 is the apparent strain, l0 is the end-

to-end length of the fibre and 0ƒk1~ l{l0ð Þ=lƒ1 is a slider
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parameter whereas the subscript f denotes final values, see Fig. 1.

Accordingly k1 represents the ratio between the extra-length, e.g.

of the loop, and the total length of the fibre. For a linear elastic

fibre, classical thus without an extra-length or slider (k1~0), this

simply yields w=m~sf ef

�
2rð Þ, where ef ~sf

�
E; in contrast, for

‘‘knotted fibres’’ the situation changes dramatically and the

toughness increases enormously (see expression of w=m, where

k1 appears in both the constant of proportionality and in the

definition of the strain and thus cannot be directly evinced from

the stress-strain curve). For the sake of simplicity, let us consider a

fibre forming a large slip-loop in a slider, e.g. a knot, with the two

clamped fibre ends initially fixed as close as possible to the slider,

Fig. 1. When a knot is inserted in a fiber, the fiber strength in

general decreases due to the stress concentration imposed by the

presence of the knot; the related ‘‘knot strength’’ of the fibre is here

denoted by sk~k2sf , where accordingly 0ƒk2ƒ1. Considering

an independent slider/knot can mitigate this restriction. During

fibre tension, first the strain increases with the fibre sliding through

the slider at a mean stress plateau value of sp&k3sk, where

0ƒk3ƒ1 denotes the ratio between plateau stress and slider/knot

fibre strength. This sliding phase takes place for a displacement

Dx&l{l0, ideally at a force just below the breaking force Ff of

the fibre, in order to maximize the dissipated energy; then, the

slip-loop tightens (it could also unfasten, depending on the type of

slider/knot topology, e.g. see Fig. 2) and the fibre deforms and

finally breaks. Thus, in the stress-strain curve a long plastic-like

plateau naturally emerges (Figs. 2 and 3) thanks to the presence of

the slider. The increment of the final strain is

Def &Dx=l0~k1= 1{k1ð Þ and can be precisely tuned selecting

an appropriate value of k1. The strength of the fibre with the slider

(e.g. ‘‘knot strength’’) should ideally approach that of the pristine

fibre in order to minimize the negative strength variation

Dsf ~sf {sk~ k2{1ð Þsf . Accordingly, the increment in tough-

ness modulus, or previously ‘‘hidden toughness’’, is huge and given

by Dw=m&k1k2k3sf

�
r approaching the enormous value of sf

�
r,

which is the fibre specific strength. Regarding the estimation of the

Young’s modulus Ek of the knotted fibre, we simply (series of

compliances) find Ek&E= 1zckEA=l0ð Þ, where ck is the knot

compliance and thus a weak softening DE~E{Ek~ 1{kð ÞE
(k&ckEA=l0 for ck?0, i.e. tight knots, for which Ek?E) is

expected. More in general, the application of this concept allow to

reshape the constitutive law of the fibre in terms of variations of

the four main engineering properties Dw=m,Def ,Dsf ,DE, i.e.

toughness modulus, failure strain, strength and Young’s modulus,

respectively. In particular, we can mimic the constitutive law of

spider silk, crucial for structural robustness [31], with the friction

in the slider that plays the role of the hydrogen bond breaking in

the silk, which is responsible for its dissipative plastic-like plateau.

Moreover, the usually competing material properties of strength

and toughness (we are considering here the toughness modulus

rather than so-called fracture toughness) are reconciled: high

strength and simultaneously super-tough fibres become feasible, of

course at the expense of a larger elongation, the latter being either

positive or negative depending on the specific application. Note,

that this mechanism leads to one-shot plasticity, as the real

plasticity does. Of course changing the application points of the

forces, in order to make cycles of the extra-length of the fiber (i.e.

extending and reducing the length of the loop) can lead to systems

with multiple-shots plasticity. Also note that, especially in this last

case, there may be some associated effects with the optimal

conditions k1,2,3?1 that may limit the maximum theoretical

toughness. For example, if the plateau stress is very high the

friction of the fiber through the knot is very high, which may result

in serious degradation of the fiber as it slides through the knot

especially for multiple cycles. This degradation may lead to

premature failure that may be well under the original strength of

the fiber. Also, high values of the plateau stress will most likely

restrict the value of the failure stress of the knotted fiber. Thus

k1,2,3 are not fully independent and are evolving parameters. It is

clear that in order to maximize the dissipated energy and therefore

the toughness modulus, the specific strength of the fibre must be

high, i.e., sf

�
r?max (fibre condition n. 0), and the following 3

conditions must be met: the sliding length must be maximized

(k1?1, geometrical condition n. 1); the fibre must display minimal

fragilization due to the presence of the slider (expected as a

consequence of the applied additional stresses; k2?1, fibre-slider

Figure 1. Concept. The classical fibre dissipates during fracture its cumulated strain energy, thus displaying a toughness modulus of
w=m&sf ef

�
2rð Þ (the factor 2 must be replaced by an other number for nonlinear elastic fibres). In contrast, a fibre with a slider, e.g. knot, can

dissipate much more energy, thanks to a sliding friction force. The upper limit of the toughness in this case is constituted by the product of a force
F{

f just below the breaking force Ff and a displacement equal to the entire fibre length l, thus reaching a toughness modulus of

w=m&sf

�
r 1zef

�
2

� �
. Accordingly, a huge (1wwef ) previously ‘‘hidden’’ toughness Dw=m&sf

�
r naturally emerges.

doi:10.1371/journal.pone.0093079.g001
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condition n. 2); the slider must ensure an initial stress plateau as

flat and as high as possible (k3?1, slider condition n. 3). Clearly,

the mass of the slider should also be minimized, but its influence

on the toughness modulus approaches zero for increasing sliding/

fiber length. These 1+3 main conditions can substantially be

achieved through careful choice of fibres and sliders. For example

hundreds of knots, widely used in climbing, sailing and fishing

activities, are currently known, and multiple knots can be realized

too, allowing the design of complex, e.g. multi-plateau, constitutive

laws and architectures, e.g. ropes, fabrics, hierarchical reinforce-

ments for composites, etc.

Moreover, note that this concept partially applies also to other

systems not in tension and without knots, e.g. curved wires under

bending or torsion in addition to stretching: the wire will exhibit

an increasing stiffness with deformation and the resulting

toughness will be much superior than that of the related initially

straight wire; eventually, the wire will straighten and fracture at

the same load of an initially straight wire; however note that, in

this case, the force is not maximal from the beginning and thus the

gain in toughness is not maximized, as for the case of fibres

working just below the fracture force from the beginning.

Formation of plastic hinges could be desired as observed in tough

helical carbon nanotubes [34–35] or in contrast could be a

Figure 2. Proof of concept. Specific force-displacement or stress-strain curves of knotted and unknotted Dyneema fibres (the number of knots is
depicted for each curve; s=r~F=m with m~rA mass per unit length, given in MPa*cm3/g or, equivalently, in J/g; test parameters are dx/dt = 2 mm/
min, l0 = 10 mm, l = 100 mm, m= 0.0361 g/m). The appearance with the knot of the hidden toughness, the plastic-like plateau absent in the
constitutive law of the unknotted fibre (27 J/g), is evident. For 1 and 2 coils the knot unties (peculiar mechanism) and stress goes to zero, then the
fibres extends, deforms and fractures at the pristine fibre strength, with an increment in the toughness of up to 722% (2 coils, 195 J/g). For 3 coils the
dissipated energy is further increased up to a maximal value of 320 J/g, corresponding to a toughness increment of 1185%. For 4 coils, premature
failure leads to a reduction in both toughness and failure strain. The total hidden toughness is given by the specific strength, thus for this fibre it is
close to 1000 J/g.
doi:10.1371/journal.pone.0093079.g002
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limitation for energy storage and thus super-elastic, e.g. NiTi,

alloys, could also be good candidates.

The Proof of Concept

The proof of concept is realized considering commercial Dyneema

fibres (fishing line, multifilament composed by 200 filaments),

which combine a high-strength with low density, i.e. quite high

specific strength (and stiffness). We tested them in a uniaxial

loading tensile testing machine (MTS, Insight). The measured

constitute law of this fibre is reported in Fig. 2 (curve without the

symbol of knot) and shows a specific strength of

sf

�
r&1 GPa

�
1 g=cm3
� �

~1000 J=g and a toughness modulus

of 27 J/g. Note that the value of the specific strength, which

according to our previous considerations also denotes the hidden

toughness, suggests a huge margin for increasing the toughness of

this fibre. Additionally, these fibres display reduced fragilization

when tied into slip-knots, allowing us to prove the concept with a

simple double knot, Fig. 2, that however is itself sliding along the

fibre and is not an independent slider and thus does not allow us to

reach a high stress plateau: here we have deliberately not

optimized the knot in order to prove the robustness of the concept

(in our cases k3&0:1{0:4, depending on the number of coils, and

k1&0:75{1; these numbers are roughly estimated by their

definitions from the experimental force vs. displacements curves).

We have considered also different strain rates (concluding the

tensile tests in characteristic times of seconds) with the aim of

reducing the stick-slips in the plateau but without any significant

improvement.

The adopted knots were simple, double, triple or quadruple

overhand knots (double topology reported in Fig. 2). Different

numbers of coils (1{4, specified for each curve) are considered in

order to maximize the friction force during sliding without leading

to premature fibre fracture before full knot tightening. The fibre

length is l = 10 cm whereas the selected initial value of the end-to-

end length was fixed at l0~1 cm, thus k1~0:9 and Def ~900%.

Note that the strain is here fictitious –due to the arbitrary choice of

the initial length– whereas the displacement is the physical

quantity. The measured specific stress-strain curves of knotted

fibres are shown in Fig. 2 and compared to that of the unknotted

fibre. The expected appearance with the knot of a previously

hidden toughness, and thus of a, even if here irregular, plastic-like

plateau, absent in the constitutive law of the unknotted fibre, is

evident. For 1 and 2 coils a peculiar mechanism is observed,

leading to the optimal condition k2~1 and no strength reduction,

i.e. Dsf ~0: the knot unfastens after the full closure of the loop

(this is the reason for which the stress goes to zero in the related

curves), then the fibre extends, deforms and fractures at exactly the

pristine fibre strength. For 1 coil the toughness modulus reaches

88 J/g whereas for 2 coils a value of 195 J/g is obtained, thanks to

an increment in the toughness up to 722%, without any strength

reduction. The constitutive law of this fibre resembles that of

spider silk (in terms of both toughness modulus and strength). For

3 coils the dissipated energy further increases up to a value of

320 J/g, corresponding to a toughness increment of 1185%, with

a strength reduction of ,25%. For 4 coils premature failure leads

to a reduction in both failure strain and toughness modulus, of

148 J/g, with a similar strength reduction. We conclude that a

number of 3 coils maximizes the toughness of our first specific

knot-fibre system. These set of experiments prove the robustness of

the concept.

We finally consider independent sliders/knots and Endumax

fibres. Following the previous procedure a more regular sliding,

thanks to the independency of the slider that thus remains fixed

during the fibre sliding (specific details of the slider are under

patenting) is achieved and results in a more regular plastic-like

Figure 3. World toughness record (work in progress, with a zylon microfiber we have already achieved a toughness modulus of
1400 J/g starting from its intrinsic value of 20 J/g - preliminary results reported in the ERC proposal ‘‘Knotough’’). Force vs
displacement curve of Endumax fibres with (samples 2,3,4) or without a slider (sample 4). The pristine fibre has a toughness modulus of 44 J/g. The
introduction of the slider dramatically changes the scenario: a long plastic-like plateau clearly emerges thanks the presence of the slider and allows
the dissipation of a huge amount of energy, approaching an unprecedented toughness modulus of 1070 J/g (other two tests, leading to 988 and
1025 J/g are shown). The specific strength and thus maximal achievable toughness is for this fibre of about 1600 J/g (see stress peak in the figure).
doi:10.1371/journal.pone.0093079.g003
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plateau, see Fig. 3. The initial toughness modulus of the pristine

fibre thus without slider is 44 J/g. With the introduction of the

slider we obtained 988, 1025 and finally 1070 J/g, thus surpassing

the unprecedented value of 1000 J/g. Further improvements are

expected for this specific fibre, up to a toughness modulus close to

the fibre specific strength that we have measured as 1600 J/g (see

stress peak in Fig. 3); with a zylon microfiber we have already

achieved a toughness modulus of 1400 J/g starting from its

intrinsic value of 20 J/g (preliminary results reported in the ERC

proposal ‘‘Knotough’’).

Towards the Solution of the Mystery of Slipknots
in Biology

This new concept could have important consequences in

Biology. In particular, proteins separated by a billion years of

evolution often display remarkable similarities and functions.

Slipknots, for example, have been found in proteins as well as in

DNA strands [20–30] and are conserved in different families and

species. This happens even if the folding process resulting in the

formation of knots is intrinsically more energetically expensive and

topologically difficult than the process of producing unknotted

proteins. Thus knotting might seem unlikely to occur during

evolution but, in contrast and still surprising, it does regularly

occur. Specifically, Sulkowska el al. [21–23] have quantified how

knots and slipknots, instead of being discarded through the process

of evolution, are strongly conserved in proteins. This confirms

that, despite the larger energy cost and topological difficulty in the

formation of knots, they are somehow advantageous and

important to the function of the protein. Moreover, according to

the same authors, knots and slipknots take place at specific points

of larger flexibility and contribute to the stability of the location of

the protein, e.g. in the membrane barriers of cells. However, the

significant extra effort to fold into knotted shapes must have a

biological payoff or Nature would have selected a less expensive

path. The stability may not be sufficient to justify alone this payoff.

According to the concept that we have presented in this paper we

here suggest a new plausible important reason for the appearance

of slipknots in Biology: biological structures may have evolved with

knots in order to easily but dramatically (one fold) increase their

robustness. This huge robustness enhancement of the protein

could be crucial for resisting against different types of diseases or

viceversa to design new types of more robust proteins for disease

treatments.

Also coiled structures are examples of other preferred solutions

in Nature, e.g. the topology of the primary and secondary

structure of the DNA, the coiled coil structural motif of proteins (in

which alpha-helices are coiled together like the strands of a rope;

dimers and trimers are the most common types); and as previously

discussed, also coiled structures –in addition to knots– may lead to

a higher robustness thanks to a larger ultimate displacement.

Conclusions

Summarizing, thanks to the new evidence of existence of a

previously ‘‘hidden’’ toughness, much higher toughness levels,

which can surpass the highest-known values in the literature, could

be obtained in the near future. We can apply our concept to

current high-strength or high-tough fibres, e.g. graphene/nano-

tube-based (which have also shown to be resilient to knots [32]).

Note that, considering the theoretical nanotube/graphene

strength, an ideal upperbound toughness theoretical limit of about

stheo=r,105 J/g is computed; moreover, since smaller is stronger,

the hidden toughness can be more easily observed reducing the

system size-scale. Even spiders can thus do better. For example,

the giant riverine orb spider [19] seems to have optimized

toughness during the last ,200 millions of years of evolution; in

spite of this, for the mentioned spider we compute a toughness

limit of stheo=r,1380 J/g against its measured value and actual

record of ,390 J/g (we have assumed a mean density of ,1.34 g/

cm3). Thus, even this spider (or us, using its silk and our concept)

could further improve the toughness of its silk, by a factor of

,350%. During the next millions of years this percentage of

hidden toughness will be probably further reduced by evolution

and the same appearance of knots in spider silks and webs cannot

be excluded, as already observed in proteins and DNA strands.

This ‘‘egg of Columbus’’ could thus be used by evolution for

maximizing (one fold increment) the robustness of biological

systems and for suggesting us new strategies to design innovative

types of more robust proteins for disease treatments or to design

unprecedented super-tough materials.
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