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Abstract

Knuth's celebrated balancing method consists of inverting the �rst z bits in

a binary information sequence, such that the resulting sequence has as many

ones as zeroes, and communicating the index z to the receiver through a short

balanced pre�x. In the proposed method, Knuth's scheme is extended with

error-correcting capabilities, where it is allowed to give unequal protection levels

to the pre�x and the payload. An analysis with respect to the redundancy of

the proposed method is performed, showing good results while maintaining the

simplicity features of the original scheme.

1 Introduction

Sets of binary sequences that have a �xed length n and a �xed weight w (number of
ones) are usually called constant-weight codes. An important sub-class is formed by
the so-called balanced codes, for which n is even and w = n=2, i.e., all codewords have
as many zeroes as ones. Such codes have found application in various transmission and
(optical/magnetic) recording systems. A survey on balanced codes can be found in [6].

A simple method for generating balanced codewords, which is capable of encoding
and decoding (very) large blocks, was proposed by Knuth [4] in 1986. In his method,
an m-bit binary data word, m even, is forwarded to the encoder. The encoder inverts
the �rst z bits of the data word, where z is chosen in such a way that the modi�ed
word has equal numbers of zeroes and ones. Knuth showed that such an index z can
always be found. The index z is represented by a balanced word of length p. The p-bit
pre�x word followed by the modi�ed m-bit data word are both transmitted, so that
the rate of the code is m=(m + p). The receiver can easily undo the inversion of the
�rst z bits received once z is computed from the pre�x. Both encoder and decoder do
not require large look-up tables, and Knuth's algorithm is therefore very attractive for
constructing long balanced codewords. The redundancy of Knuth's method is roughly
twice the redundancy of a code which uses the full set of balanced words. Since the
latter has a prohibitively high complexity in case of large lengths, the factor of two
can be considered as a price to be paid for simplicity. In [7] and [9], modi�cations to
Knuth's method are presented closing this gap while maintaining su�cient simplicity.

Knuth's method does not provide protection against errors which may occur during
transmission or storage. Actually, errors in the pre�x may lead to catastrophic error
propagation in the data word. Here, we propose and analyze a method to extend
Knuth's original scheme with error correcting capabilities. Previous constructions for
error-correcting balanced codes were given in [8], [2] and [5]. In [8], van Tilborg and
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Blaum introduced the idea to consider short balanced blocks as symbols of an alphabet
and to construct error-correcting codes over that alphabet. Only moderate rates can be
achieved by this method, but it has the advantage of limiting the digital sum variation
and the runlengths. In [2], Al-Bassam and Bose constructed balanced codes correcting
a single error, which can be extended to codes correcting up to two, three, or four
errors by concatenation techniques. In [5], Mazumdar, Roth, and Vontobel considered
linear balancing sets and applied such sets to obtain error-correcting coding schemes in
which the codewords are balanced. In the method proposed in the current paper, we
stay very close to the original Knuth algorithm. Hence, we only operate in the binary
�eld and inherit the low-complexity features of Knuth's method. In our method, the
error-correcting capability can be any number. The focus will be on long codes, for
which table look-up methods are unfeasible. An additional feature is the possibility
to assign di�erent error protection levels to the pre�x and the payload, which could
be useful when designing the scheme to achieve a certain required error performance
while optimizing the rate.

The rest of this paper is organized as follows. In Section 2, the proposed method
for providing balancing and error-correcting capabilities is presented. In Section 3,
the redundancy of the new scheme is considered. Finally, the results of this paper are
discussed in Section 4.

2 Construction Method

The proposed construction method is based on a combination of conventional error
correction techniques and Knuth's method for obtaining balanced words. The encoding
procedure consists of fours steps which are described below and illustrated in Figure 1.
The input to the encoder is a binary data block u of length k. Let bi denote a run of
i bits b, e.g., 1305 = 11100000.

1. Encode u using a binary linear (m; k; d1) block code C1 of dimension k, Hamming
distance d1, and even length m. The encoding function is denoted by �.

2. Find a balancing index z for the obtained codeword �(u), with 1 � z � m.

3. Invert the �rst z bits of �(u), resulting in the balanced word c = �(u) + 1z0m�z.

4. Encode the number z into a unique codeword s from a binary code C2 of even
length p, constant weight p=2, and Hamming distance d2. The encoding function
is denoted by  .

The output of the encoder is the concatenation of the balanced word s =  (z), called
the pre�x, and the balanced word c = �(u) + 1z0m�z, called the bulk or payload.
It is obvious that the resulting code C is balanced and has length n = m + p and
redundancy r = m + p � k, and thus code rate R = k=(m + p) and normalized
redundancy � = 1�R = 1� k=(m+ p). Its Hamming distance d satis�es the following
lower bound.

Theorem 1 The Hamming distance d of code C is at least

minf2dd1=2e; d2g:
Proof: Let (s; c) and (s0; c0) denote two di�erent codewords of C and let z =  �1(s). If
s 6= s0, then the Hamming distance between the codewords is at least d2, since s and s

0

are both in C2. If s = s0, then the Hamming distance between the codewords is at least
2dd1=2e, which follows from the fact that c+ 1z0m�z and c0 + 1z0m�z are two di�erent
codewords from C1, implying that dH(c; c

0) � d1, and the fact that c and c0 are both
balanced, implying that dH(c; c

0) is even.
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Figure 1: Encoding procedure.

Corollary 1 In order to make C capable of correcting up to t errors, it su�ces to
choose constituent codes C1 and C2 with distances d1 = 2t+ 1 and d2 = 2t+ 2, respec-
tively.

Example 1 Let the information block length be chosen as k = 750. We consider (750+
10t1; 750; 2t1 + 1) codes C1, with t1 = 0; 1; : : : ; 4, obtained by shortening (1023; 1023 �
10t1; 2t1 + 1) BCH codes. For C2 we consider the shortest known balanced codes with
cardinality at least 750+10t1 and Hamming distance 2t2+2, with t2 = 0; 1; : : : ; 4. Such
balanced codes are tabulated on [3], from which we collected the cardinalities of some
short codes in Table 1.

An overview of the parameters of codes obtained by choosing t1 = t2 = t is provided
in Table 2. If t = 0, then it is found from Table 1 that a pre�x of length 12 is required
to represent the 750 possible balancing positions without error correction capabilities,
as in the original Knuth case, leading to a code rate of 750=(750 + 12) = 0:9843, i.e.,
a normalized redundancy of 1 � 0:9843 = 0:0157. If t = 1, then it is found from
Table 1 that a pre�x of length 16 is required to represent the 760 possible balancing
positions in the BCH codeword with a single error correction capability, leading to a
higher normalized redundancy of 1� 750=(760 + 16) = 0:0335. Further increasing the
value of t leads to higher distances at the expense of higher redundancies, as can be
checked from the table.

The proposed scheme also o�ers the option to provide unequal error protection to
the bulk and the pre�x. An overview of the parameters of codes obtained by �xing
t1 = 3 and varying t2 is provided in Table 3. Choosing t2 = 0, i.e., providing no error
correction capability to the pre�x, gives a Hamming distance d = 2 and a normalized
redundancy 1 � 750=(780 + 12) = 0:0530. Note that increasing t2 up to the value of
3 increases both the Hamming distance (since d = minf8; 2t2 + 2g = 2t2 + 2) and the
redundancy. However, also note that further increasing t2 from 3 to 4 (or beyond)
increases the redundancy, without the reward of an improved distance d (since it is
stuck at d = 8 due to the fact that t1 = 3).



Table 1: Cardinalities of the largest known balanced codes with length p � 28 and
Hamming distance d2 � 10 [3].

p d2 = 2 d2 = 4 d2 = 6 d2 = 8 d2 = 10

2 2
4 6 2
6 20 4 2
8 70 14 2 2
10 252 36 6 2 2
12 924 132 22 4 2
14 3432 325 42 8 2
16 12870 1170 120 30 4
18 48620 3540 320 48 10
20 184756 13452 944 176 38
22 705432 40624 2636 672 46
24 2704156 151484 5616 2576 123
26 10400600 431724 16117 3588 210
28 40116600 1535756 53021 6218 790

Table 2: Code parameters in the setting of Example 1 for the case t1 = t2 = t with
0 � t � 4.

C1 C2 C
t m k d1 p d2 n � d

0 750 750 1 12 2 762 0:0157 2

1 760 750 3 16 4 776 0:0335 4

2 770 750 5 20 6 790 0:0506 6

3 780 750 7 24 8 804 0:0672 8

4 790 750 9 28 10 818 0:0831 10

Table 3: Code parameters in the setting of Example 1 for the case t1 = 3 and 0 � t2 � 4.

C1 C2 C
t1 t2 m k d1 p d2 n � d

3 0 780 750 7 12 2 792 0:0530 2

3 1 780 750 7 16 4 796 0:0578 4

3 2 780 750 7 20 6 800 0:0625 6

3 3 780 750 7 24 8 804 0:0672 8

3 4 780 750 7 28 10 808 0:0718 8



CHANNEL OUTPUT

r

-�
p

y

-�
m
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Figure 2: Decoding procedure.

Upon receipt of a sequence (r;y), where r and y have lengths p and m, respectively,
a simple decoding procedure, illustrated in Figure 2, consists of the following steps.

1. Look for a codeword q in C2 which is closest to r, and set ẑ =  �1(q).

2. Invert the �rst ẑ bits in y, i.e., set ŷ = y + 1ẑ0m�ẑ.

3. Decode ŷ according to a decoding algorithm for code C1, leading to an estimated
codeword ĉ and thus to an estimated information block û = ��1(ĉ).

The following results are immediate.

Theorem 2 The proposed decoding procedure for code C corrects any error pattern
with at most d2=2� 1 errors in the �rst p bits and at most dd1=2e� 1 errors in the last
m bits.

Corollary 2 The proposed decoding procedure for code C corrects up to the number of
errors

minfdd1=2e � 1; d2=2� 1g
guaranteed by the Hamming distance result from Theorem 1.

Corollary 3 The proposed decoding procedure for code C corrects up to t errors if
d1 = 2t+ 1 and d2 = 2t+ 2.

In the next section, we study the redundancy of the proposed method, which we
compare with the minimum redundancy required to achieve balancing in combination
with error correction capabilities.



3 Redundancy

Let A(n; d; w) denote the maximum cardinality of a code of length n, constant weight
w, and even Hamming distance d. Hence, for any balanced code of even length n and
Hamming distance d, the redundancy is at least

rmin = n� log2A(n; d; n=2): (1)

Since

A(n; 2; n=2) =

 
n

n=2

!
; (2)

the minimum redundancy for a balanced code without error correction capabilities [4]
is

r0 = n� log2

 
n

n=2

!
(3)

� 1

2
log2 n+

1

2
log2(�=2) (4)

� 1

2
log2 n+ 0:326; (5)

where the �rst approximation is due to the well-known Stirling formula

n! �
p
2�nnne�n: (6)

No general expression for A(n; d; w) is known, but bounds are available in literature.
From Theorem 12 in [1], we have the upper bound

A(n; d; n=2) �
�

n
n=2�t

�
�
n=2
t

� =

�
n
n=2

�
�
n=2+t

t

� ; (7)

where t = d=2 � 1. Note that for d = 2, i.e., t = 0, this gives the same expression
as (2), and thus the bound is tight in this case. The upper bound (7) can be used to
lower bound the minimum redundancy in case t � 1, i.e.,

rmin � n� log2

 
n

n=2

!
+ log2

 
n=2 + t

t

!
(8)

�
�
t+

1

2

�
log2

�
n

t

�
+ t(log2 e� 1)� 1; (9)

where the inequality follows from (1) and (7) and the approximation is due to Stirling's
formula. The lower bound from (8) will be denoted by r�min. We see that it consists of

the sum of a contribution r0 from the balance property and a contribution log2
�
n=2+t

t

�
from the capability of correcting up to t errors.

Next, we will investigate the di�erence between the lower bound r�min on the redun-
dancy, of which it is unknown whether it is achievable in general, and the redundancy
r of the proposed construction method. We know from [4] that the redundancy of the
Knuth scheme, without error correction, falls a factor of two short of the minimum
achievable redundancy. Obviously, this is a price to be paid for simplicity. For the
example introduced in the previous section, we get the following results when error
correction is involved.



Table 4: Redundancy comparison in the setting of Example 2.

t n � = 1� 750=n ��min = r�min=n �=��min

0 762 0:0157 0:0067 2:34

1 776 0:0335 0:0177 1:89

2 790 0:0506 0:0271 1:87

3 804 0:0672 0:0355 1:89

4 818 0:0831 0:0432 1:92

Example 2 Consider again the setting from Example 1 and choose t1 = t2 = t, with
t = 0; 1; : : : ; 4. Hence, C1 has length m = 750 + 10t and Hamming distance 2t + 1,
while C2 has length p = 12 + 4t and Hamming distance 2t + 2. Thus, the code C has
length n = m+ p = 762 + 14t, redundancy r = 12 + 14t, normalized redundancy

� =
12 + 14t

762 + 14t
;

and Hamming distance d = 2t+ 2.
In Table 4, we compare the normalized redundancy � to ��min. Note that �=��min is,

as for Knuth's original method, close to 2, in fact a little bit less in case we have error-
correcting capabilities. The factor �=�min, the price to be paid for simplicity, may even
be smaller since ��min is only a lower bound on �min of which it is unknown whether it
is achievable in case t � 1.

In general, the redundancy of the proposed method is equal to the sum of the
redundancy of code C1 and the length of the pre�x. For neither of these terms a general
expression is available. The former depends on the choice of C1. For example, for BCH
codes it is roughly t log2m. The latter, i.e., the length of the pre�x, can be decomposed
into two parts: a contribution of length log2m identifying the balancing index and a
contribution of length roughly (t+1=2) log2 log2m (based on the presented bounds on
constant weight codes) providing the error correction and balancing properties to the
pre�x. Hence, the total redundancy of the proposed method can be approximated as

(t+ 1) log2m+ (t+ 1=2) log2 log2m:

In comparison, it follows from (9) that the minimum redundancy for any balanced code
with large length n and small error correction t capability is approximately

(t+ 1=2) log2 n:

Although the results presented in this analysis are based on bounds and approximations
rather than exact results, it seems safe to conclude that in general, as in the example,
the redundancy of the presented method is within a factor of two of the optimum. The
redundancy of the codes presented in [2] is (slightly) lower, but the method presented
here is simpler and more general (since the constructions from [2] are for t � 4 only).
The constructions from [8] are of a completely di�erent nature, with much higher
redundancies but balancing being established on a very small block scale.



4 Discussion

We have extended Knuth's balancing scheme with error-correcting capabilities. The
approach is very general in the sense that any block code can be used to protect the
payload, while the pre�x of length p is protected by a constant-weight code where the
weight is p=2. As for the original Knuth algorithm, the scheme's simplicity comes at
the price of a somewhat higher redundancy than the most e�cient but prohibitively
complex code. In [10], it is demonstrated that, in order to meet a certain target block
or bit error probability in an e�cient way, the distances of the constituent codes may
preferably be unequal. Hence, from the performance perspective, the overall Hamming
distance is of minor importance.

In conclusion, the proposed scheme is an attractive simple alternative to achieve
(long) balanced sequences with error correction properties.
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