
Università di Pisa

DIPARTIMENTO DI INGEGNERIA DELL′INFORMAZIONE

Laurea Magistrale in Ingegneria Informatica

Exploiting Partial Dynamic
Reconfiguration for On-Line On-Demand

Detection of Permanent Faults in
SRAM-based FPGAs

Master′s Thesis

Supervisors:
Prof. Cinzia BERNARDESCHI
Prof. Andrea DOMENICI

Candidate
Domenico SORRENTI

Academic Year 2012/2013

Acknowledgements

I would like to thank those who have helped me during the development
of this thesis, making it clear that I take the blame for each mistake, which
could be found in this work.
First of all, thanks to my supervisors Prof. Cinzia Bernardeschi and Prof.
Andrea Domenici for their support and valuable advice.
I thank the Cognitronics and Sensor Systems Group for allowing me to
develop my thesis and join the group, in particular Prof. Mario Porrmann,
Dario Cozzi, Jens Hagemeyer and Sebastian Korf for their continuing help
and useful suggestions.
I would like to thank Luca Cassano for his constant assistance before, during
and after my visiting period in Germany.
I also thank Lydia Ntokou, Anna Isakova and Luca Santangelo for keeping
me company during my period in Germany.
Finally, I would like to thank my family, Laura and her family for their
support. This work is dedicated to them.

Contents

Introduction i

1 Background 1
1.1 Field Programmable Gate Array 1

1.1.1 FPGA Architecture 2
1.1.2 Programming an FPGA 6
1.1.3 Configuring an FPGA 7
1.1.4 FPGA testing . 15
1.1.5 Testing approaches: External and Built-in-Self-Test . 23

1.2 Xilinx Description Language 27
1.2.1 DHHarMa . 27

1.3 Dynamically Reconfigurable Processing Module (DRPM) . . 28
1.3.1 RAPTOR-X64 . 28
1.3.2 DB-V4 . 28
1.3.3 DB-SPACE . 30

1.4 Thesis Statement . 32

2 Related Work 34
2.1 Introduction . 34
2.2 Logical resources testing . 34
2.3 Routing resources testing . 35
2.4 The proposed approach . 35

3 Testing Circuits 37
3.1 Introduction . 37

3.1.1 Test Pattern Generator 38
3.1.2 Output Response Analyzer 38

3.2 6WUTs and 8WUTs testing circuits 39
3.2.1 6WUTs and 8WUTs planning 40
3.2.2 6WUTs implementation 42
3.2.3 8WUTs implementation 45
3.2.4 Auxiliary logic . 47

3.3 1WUT planning . 52

2

CONTENTS 3

3.4 1WUT “CLK Approach“ planning 55
3.4.1 Implementation . 55

4 Testing Circuits Verification 60
4.1 Introduction . 60
4.2 Faulty Bitstreams Creation 60
4.3 Faulty Bitstreams Injection 62
4.4 Verification Results . 64

4.4.1 6WUTs results . 65
4.4.2 8WUTs results . 66
4.4.3 1WUT results . 67
4.4.4 Summary results . 67
4.4.5 Results analysis . 68
4.4.6 Device utilization . 70

5 Conclusions and Future Work 71

Appendix A 73
.1 ORA 8WUTs synthesis . 73

.1.1 ODD parity ORA . 73

.1.2 EVEN parity ORA . 75

List of Figures

1.1 FPGA common architecture 2
1.2 Virtex-4 CLB . 3
1.3 Virtex-4 Slice L part G . 3
1.4 A configuration bit determines the state of a PIP 4
1.5 Cross Point PIP . 5
1.6 Break Point PIP . 5
1.7 Multiplexer PIP . 5
1.8 Compound PIP . 5
1.9 Xilinx design implementation 7
1.10 PR starting scenario . 8
1.11 PR bitstream 1 replacing . 8
1.12 PR bitstream A replacing . 8
1.13 Full bitstream example . 12
1.14 Frame address format . 13
1.15 FAR Top/Bottom . 14
1.16 FAR Row Address . 15
1.17 FAR Column Address . 15
1.18 FAR Minor Address . 16
1.19 Failure rate: bathtub curve 17
1.20 Effect propagation chain . 17
1.21 Switch matrix with no faulty PIPs 19
1.22 Open PIP case 1 . 20
1.23 Open PIP case 2 . 20
1.24 Conflict PIP . 21
1.25 Input Antenna PIP . 22
1.26 Output Antenna PIP . 22
1.27 Bridge PIP . 23
1.28 BIST approach scheme . 24
1.29 Comparison-Based BIST approach 25
1.30 Parity-Based BIST approach 25
1.31 Cross-Couple Parity BIST approach 26
1.32 The RAPTOR-X64 baseboard 28
1.33 The DB-V4 daughterboard 29

4

LIST OF FIGURES 5

1.34 The PR-FPGA module . 30
1.35 The DB-SPACE daughterboard 31
1.36 Example of interaction between Leon2-FT and MicroBlaze

processors without fault detection 33
1.37 Example of interaction between Leon2-FT and MicroBlaze

processors with fault detection 33

3.1 6WUTs RTL complete scheme 41
3.2 6WUTs RTL complete scheme with internal component . . . 41
3.3 6WUTs ODD TPG . 42
3.4 6WUTs EVEN TPG . 43
3.5 ODD parity ORA . 43
3.6 EVEN parity ORA . 44
3.7 6WUTs complete scheme . 45
3.8 8WUTs ODD TPG . 45
3.9 8WUTs EVEN TPG . 46
3.10 8WUTs ODD parity ORA . 46
3.11 8WUTs EVEN parity ORA 47
3.12 8WUTs complete scheme . 47
3.13 Ring oscillator . 47
3.14 Frequency divider element . 48
3.15 TPG SU state transition diagram 49
3.16 ORA SU state transition diagram 49
3.17 FSMs ModelSim simulation 50
3.18 Reset generator circuit . 50
3.19 Startchecker implementation 52
3.20 1WUT generale scheme . 52
3.21 1WUT first scheme . 53
3.22 1WUT with Manchester encoding 54
3.23 1WUT high level “CLK Approach“ scheme 55
3.24 1WUT “CLK Approach“ TPG 56
3.25 1WUT TPGCU state transition diagram 56
3.26 1WUT startchecker scheme 57
3.27 1WUT “CLK Approach“ ORA 57
3.28 1WUT “CLK Approach“ ORACU 58
3.29 1WUT OCU state transitions diagram 59

4.1 No faulty bitstream . 61
4.2 Faulty bitstream with a missing PIP 61
4.3 Faulty bitstreams creation flow 62
4.4 Faulty bitstream loading phase 63
4.5 Faulty bitstream PR phase 64
4.6 PR-FPGA module and a placed testing HM 64
4.7 6WUTs verification results . 66

LIST OF FIGURES 6

4.8 8WUTs verification results . 66
4.9 1WUT verification results . 67
4.10 Verification results . 68
4.11 Not started and no fault detected scenario 69
4.12 Bad cases: masking faults case 69
4.13 Undetectable fault on addressing wires 70
4.14 HMs sizes summary . 70

1 ODD parity ORA Karnaugh‘s map 73
2 EVEN parity ORA Karnaugh‘s map 75

List of Tables

1.1 Bitstream lengths . 10

3.1 TPG signals configurations 38
3.2 ORA expected configurations 39
3.3 8WTUs TPG signals configurations 39
3.4 8WTUs ORA expected configurations 40
3.5 Result configurations . 51
3.6 1WUT startchecker results . 57

1 ODD parity ORA truth table 73
2 ODD parity ORA proof table 1 74
3 ODD parity ORA proof table 2 74
4 ODD parity ORA proof table 3 75
5 EVEN parity ORA truth table 75
6 EVEN parity ORA proof table 1 76
7 EVEN parity ORA proof table 2 76
8 EVEN parity ORA proof table 3 77

Abstract

FPGAs become ever more popular thanks to their features, such as re-
configurability and short time to market. When FPGAs operate in harsh
environments, like in space, soft faults can occur (SEU) due to radiation,
as well as permanent faults (TID, Aging). Testing of logic resources has
already been widely considered in literature, on the other hand this work
aims at detecting permanent faults which can affect the interconnection in-
frastructure. In modern FPGAs the routing resources represent up to 80%
of the whole chip area. Few works consider permanent faults and none of
them deals with on-line testing of permanent faults with independent test
circuits. In this work a first approach is presented, where different circuits
have been developed and tested on a DB-V4 daughterboard of the RAPTOR
prototyping system.

Introduction

FPGAs are increasingly being used in safety-related and critical applica-
tions, for this reason testing of these devices is gaining importance. Un-
fortunately, existing testing techniques developed for other devices, such as
ASICs, are not adequate, therefore new techniques have been and are still
being developed.
Around twenty years ago, permanent faults were the main problem, then
with the transistors industry progress, that is smaller transistors, they have
lost importance with respect to transient ones. Nowadays, the new devices
employ small transistors, but in a really high number, and hence permanent
faults are gaining importance again. Testing the interconnection infrastruc-
ture, which in modern devices can reach up to 80% of the chip area, is gaining
importance although many works are focused only upon logical resources.
Sometimes it is the application or the operating environment that requires
fault detection, for example, the Adaptive Computing Systems (ACSes) rely
on reconfigurable hardware for adapting the system to changes of the ex-
ternal environment, exploiting hardware sharing, to increase the functional
density and reduce power consumption, and reusing modules for different
applications. Where a direct human intervention is not possible, such as in
space, fault detection and fault tolerance mechanisms are essential. Various
fault tolerance techniques exist, but these are not always suitable, for ex-
ample, redundancy and voting algorithms are expensive in terms of space,
weight and power for these systems, which are typically subject to strict
constraints.
The goal of this work is to conceive, develop and verify a mechanism which
permits permanent faults in routing resources of FPGAs to be detected.
The thesis is organized as follows:

1. Background (Chapter 1), which provides a brief description about
FPGAs, architecture and configuration, the more common testing ap-
proaches, the Xilinx Description Language and the Dynamically Re-
configurable Processing Module;

2. Related Work (Chapter 2), which reports some works associated to
FPGA testing;

i

CHAPTER 0. INTRODUCTION ii

3. Testing Circuits (Chapter 3), in which the developed mechanism is
shown in detail;

4. Testing Circuits Verification (Chapter 4), in which the developed
mechanism is verified and related results are shown;

5. Conclusions and Future Work (Chapter 5), in which final remarks
and possible improvements are reported.

CHAPTER 1. BACKGROUND 1

Chapter 1

Background

1.1 Field Programmable Gate Array

Field Programmable Gate Arrays (FPGAs) are integrated circuits, which
feature the capability to be reconfigured via software more times; as conse-
quence of this flexibility, these devices present some advantages with respect
to other technologies, such as ASICs (Application Specific Integrated Cir-
cuits).
ASICs require high investments during the design phase, in particular about
non-recurring expenses (NRE), whereas FPGA functionalities are not fixed
by the vendor, which can fabricate them in large scale lowering the price.
Then end users can adapt an FPGA to their own need by means of a con-
figuration. This leads to a sizeable decrease of the TTM (Time To Market),
which is quite important from an economic point of view. But probably the
most important advantage with respect to ASICs is the possibility to correct
errors without further costs and any time. Thanks to this feature FPGAs
were initially largely used for prototyping and exactly this represents the
reason of the starting diffusion of these devices.
There are also some disadvantages, such as a higher cost for unit in high
volume designs and a bigger size with respect to ASICs, which are realized
custom. In particular, FPGAs can take up an area 10 times bigger and be
at least 3 times slower than ASICs, the latter aspect is the consequence of
replacing metal tracks (ASICs) with programmable blocks containing active
elements (FPGAs), which introduce propagation delay. A more complete
treatise can be found in [1].
Another possible comparison is with general purpose processors, which fea-
ture a high flexibility like FPGAs, but they have typically a higher power
consumption and a lower elaboration time. For further information see [2].
With time passing FPGAs cost is decreasing, whereas their performance is
increasing, therefore nowadays FPGAs can be used for digital signal pro-
cessing, hardware acceleration, cryptography and so on; because of their

CHAPTER 1. BACKGROUND 2

flexibility they are suitable for several fields of application.

1.1.1 FPGA Architecture

In this section a brief description about FPGA architecture is given. FPGA
architecture is vendor dependent, but the most common consists in a matrix
of configurable logic blocks (CLBs) connected through a routing infrastruc-
ture.

An FPGA is made of three essential blocks (Figure 1.1):

� CLB, in which the logic functions are implemented;

� Input-Output Block (IOB), which represents connection with outside;

� Switch matrix (INT), by which is possible to drive signals inside an
FPGA. Routing is obtained by means of Programmable Interconnec-
tion Points (PIPs), which are CMOS transistors that can be activated
and deactivated in order to get a custom path within a switch matrix.
Switch matrices are linked together by fixed wires.

Figure 1.1: FPGA common architecture

CLB The CLB structure depends on vendors and FPGA families, for ex-
ample a Xilinx Virtex-4 CLB consists of 4 slices (Figure 1.2), whereas in a
Virtex-5 CLB there are 2 slices.

CHAPTER 1. BACKGROUND 3

Figure 1.2: Virtex-4 CLB

Focusing on Virtex-4, a slice is split in part F and G. Each part consists,
from a simplified viewpoint, in a 4-input Look Up Table (LUT) and a Flip-
Flop (FF). There are two types of slice:

� Slice L (Figure 1.3);

� Slice M.

Figure 1.3: Virtex-4 Slice L part G

In a slice M, LUTs can operate as a ROM, shift register or distributed
RAM.

PIP Regarding an FPGA architecture the programmable routing infras-
tructure consists of a set of wire segments, which can be interconnected

CHAPTER 1. BACKGROUND 4

by means of programmable elements: PIPs. A PIP is a switched element,
whose state is determined by the value contained in a configuration cell (see
Figure 1.4).

Figure 1.4: A configuration bit determines the state of a PIP

Several types of PIPs are used:

� Cross Point PIP (Figure 1.5), which connects wire segments placed
in different plans, that is a horizontal segment with a vertical one or
vice versa;

� Break Point PIP (Figure 1.6), which connects wire segments placed
in a same plan, that is two horizontal or vertical segments;

� Multiplexer PIP (Figure 1.7), which in turn is split in:

– Decoded multiplexer, which is made of 2k Cross Point PIPs
connected to a common output wire segment. It is driven by k
configuration bits;

– Non-Decoded multiplexer, which differs from a Decoded one
because it consists of a single configuration bit for each CMOS
transistor, in other words k wire segments are controlled by k
configuration bits.

� Compound PIP (Figure 1.8), which is made of four Cross Point and
two Break Point PIPs.

For further information see [3].

CHAPTER 1. BACKGROUND 5

Figure 1.5: Cross Point PIP

Figure 1.6: Break Point PIP

Figure 1.7: Multiplexer PIP

Figure 1.8: Compound PIP

CHAPTER 1. BACKGROUND 6

1.1.2 Programming an FPGA

FPGAs are programmable devices, for this reason their behaviour has to be
defined by the end user, which can do that by means of either a hardware
description language (HDL) or a schematic design. The former should be
preferred when the design is rather big and the most used HDLs are Verilog
and VHDL.
By the time in which the behaviour has been defined, using a design automa-
tion tool, typically supplied free of charge by vendors, a technology-mapped
netlist is generated. A netlist is a textual description of a circuit diagram,
which provides a map of how its elements are interconnected. Then a pro-
cess, called Place-and-Route, can be performed in order to adapt a netlist to
an actual FPGA architecture. On the result of the previous process, several
verification methodologies, such as timing analysis and simulation, can be
performed. Once that the result is verified, a binary file, called bitstream,
is generated and loaded into the device in order to configure or reconfigure
it.
In Xilinx language design implementation is the process of translating, map-
ping, placing, routing and generating a bitstream file for a given design. All
these tools are included and integrated in the Xilinxr ISEr Design Suite.

Figure 1.9 depicts the whole flow:

� the HDL file represents the input;

� Synthesize, which generates a supported netlist type (EDIF or NGC)
for the Xilinx implementation tools;

� Implement design, which is made of:

– Translate, which converts input design netlists and creates a
single NGD netlist;

– Map, which maps the design into CLBs and IOBs;

– Place and Route, which places the design and calculates routes
for the nets.

� Generate Programming File, which generates the bitstream which
is loaded into the device.

For further information about the Xilinx design automation tool see [4].

CHAPTER 1. BACKGROUND 7

Figure 1.9: Xilinx design implementation

1.1.3 Configuring an FPGA

Once that a bitstream is ready, it has to be loaded into a device. This
section presents how a bitstream can be loaded and in which way an FPGA
can be reconfigured, as well as a short description about the configuration
memory and the bitstream format.

Partial reconfiguration

FPGAs feature a high flexibility due to the possibility to be reprogrammed
via software; with the Partial Reconfiguration (PR) they have reached
an even higher flexibility level, inasmuch as the PR permits to reconfigure
a specified part of the device, without affecting the others.
An example of how PR works is depicted in Figure 1.10, 1.11 and 1.12.
Figure 1.10 shows a scenario where there are three bitstreams in the config-
uration memory and two bitstream queues, which involve different parts of
the device.
In Figure 1.11 the bitstream 1 has been replaced without affecting the part
of the device where other bitstreams are currently operating.
Finally, in Figure 1.12 the bitstream A has been replaced with the bitstream
B, without affecting other device parts.

PR groups Two groups of PR exist:

� dynamic PR, which permits to reconfigure some parts of the device,
without disrupting applications which are currently operating on the

CHAPTER 1. BACKGROUND 8

Figure 1.10: PR starting scenario

Figure 1.11: PR bitstream 1 replacing

Figure 1.12: PR bitstream A replacing

CHAPTER 1. BACKGROUND 9

rest of the device;

� static PR, in which, during a reconfiguration, the rest of the device
is stopped until the reconfiguration has been accomplished.

PR styles There are two different styles of PR:

� module-based, where a modular design conceived for reconfiguring
large logic blocks is used (for further information see [5]);

� difference-based, which is foreseen for dealing with small changes in
a design.

Two different ways exist for obtaining these small changes:

� a front-end approach, where it is needed to re-synthesize and re-implement
the design in order to get a NCD (Native Circuit Description) file and
thence a partial bitstream, for instance, using Xilinxr ISEr Design
Suite;

� a back-end approach, where changes are directly made with FPGA
Editor, a Xilinx tool used for displaying and configuring FPGAs.

Why use the PR?

There are several benefits using a partial reconfiguration in place of a full
one, such as:

Application A requirement of various applications is the capability to
adapt their own behaviour on the basis of different events which can occur,
in particular in the space or aerospace field, but not only. These changes
could be, for instance, the adoption of a different protocol or algorithm,
basing on collected or observed data. These applications were plainly not
supported by previous architectures, for the reason that a full configuration
is not suitable.

Performance The PR permits to reconfigure a specified part of the de-
vice, without affecting the others, that means that the system continues to
operate without service interruption.

Resource sharing The PR allows more applications to run at the same
time on a single device and hence this leads to a better utilization of hard-
ware resources, and therefrom a reducing power consumption and decreasing
cost.

CHAPTER 1. BACKGROUND 10

Configuration time Although it could seem an almost worthless benefit,
with the possibility of loading only a partial bitstream, therefore repro-
gramming only a part of the device, in contrast to a full bitstream, which
reconfigures the whole device, the configuration time has undergone a size-
able lowering. Table 1.1 reports the length of some full bitstreams, related
to the Virtex devices, and it notes that a full reconfiguration can take a
considerable amount of time to be performed.

Family Device Size(MiB)

Virtex-4 XC4VFX100 3.94

Virtex-5 LX330T 9.86

Virtex-6 XC6VLX760 22.03

Virtex-7 7V2000T 53.33

Table 1.1: Bitstream lengths

How perform a partial reconfiguration?

There are four interfaces which can be used for loading a bitstream:

1. Serial interface;

2. SelectMAP interface;

3. ICAP interface;

4. JTAG interface.

Some information about these interfaces are here reported, for full details
see [6].

Serial interface With the use of this interface an FPGA is configured by
loading one configuration bit for each CLK cycle.

SelectMap interface This interface provides a bidirectional 8, 16 and
32bit bus and can be used both for configuration and readback, that is the
process of reading back data from an FPGA, initially conceived to verify
whether the design was loaded properly.

ICAP interface The Internal Configuration Access Port (ICAP) permits
the access to the configuration data in a way similar to the SelectMap inter-
face. It can be used to perform both PR and readback operation, but not a
full configuration.

CHAPTER 1. BACKGROUND 11

JTAG interface The use of this interface was standardized by IEEE in
1990 (IEEE 1149.1 standard) and the Virtex-families are fully compliant
with it.

Configuration Memory Architecture Overview

The configuration memory in Virtex-4 FPGA is frame-based, that is it is
arranged in frames. With respect to the previous Virtex families, these
frames have a fixed length: 41 words (for further information [7], [8]).

Bitstream structure overview A full bitstream may be thought as
made of five parts:

� an informative part, with information such as design name, generating
time and so on;

� a dummy word FFFFFFFF16 and a synchronize word AA99556616,
for alignment issues;

� a sequence of packets, each one consists of a header and a payload;

� configuration words;

� another sequence of packets.

An example of full bitstream is exhibited in Figure 1.13.

CHAPTER 1. BACKGROUND 12

Informative part

FFFFFFFF16

AA99556616

Header

Payload

}
Type 1

Header

Payload

}
Type 1

Header
}

Header type 1

Header
}

Header type 2

Configuration words
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Header

Payload

}
Type 1

Header

Payload

}
Type 1

Figure 1.13: Full bitstream example

Packets The packet header specifies what operation has to be performed,
the address of the register in which to write and the word count, that is the
number of data words which follow the header and that have to be written
in a specified register. There are two packet types: type 1 and type 2. The
former is far more common than the second one, indeed the latter has been
created only to bypass the case in which the number of words, which are
specified in the word count field in the packet 1′s header, are too much with
respect to the field size. In this particular case a packet 2 is used, which has
not an address field in his header, but only the word count field, whereas
the address has to be specified by a previous packet 1 with count word field
equals to 0. In other words, a packet 2 is always preceded by a packet 1.

CHAPTER 1. BACKGROUND 13

Configuration registers Some fundamental registers, which are involved
during the configuration process, are hereinafter reported.

� Cyclic Redundancy Check (CRC). Inside the bitstream there is a
precalculated 16 bit checksum, if no disabled, which is written in the
CRC register. The configuration logic calculates the checksum during
the configuration process and compares it with what is written in the
CRC register. This option allows checking whether the transferring
data succeeds or not, in this last case an error is signalled;

� IPCODE. In this particular register a word has to be written, which is
unique for each device. The configuration logic compares the IPCODE′s
content with a hard-wired unique word and in case of mismatch an er-
ror is signalled;

� Frame Address Register (FAR). This register takes a fundamental
role in loading the configuration frames, it represents the place where
the address of the first frame is written. For a full bitstream this is
always 016 and the configuration logic is in charge of incrementing it
for every frame which is received.

Frame Address Format

The frame address, whose format is shown in Figure 1.14, is a 32 bit word
and consists of several parts:

� 9 bits are not used;

� Top/Bottom (1 bit)

� Block Type (3 bits)

� Row Address (5 bits)

� Column Address (8 bits)

� Minor Address (6 bits)

012345678910111213141516171819202122232425262728293031

Not Used T Type Row Column Minor

Figure 1.14: Frame address format

The various parts which make up a frame address are described below.

CHAPTER 1. BACKGROUND 14

Top/Bottom Virtex-4 devices have been designed as separated in two
halves: top and down half. When a full bitstream is loaded, the FAR address
is written with 016, which represents the upper-center and left-most column
of the device. In Figure 1.15 the top half is selected with the top/bottom
bit.

Figure 1.15: FAR Top/Bottom

Block Type This part of the address specifies what kind of resources will
be configured by that frame. It can assume the following value:

� 0002: CLB, IO, DSP, CLK, MGT;

� 0012: block RAM interconnect;

� 0102: block RAM content;

� 0112: it is reserved;

� 1002: it is reserved;

� 1012: it is reserved;

� 1102: block RAM data integrity.

Row Address It is used to select a row of frames and has been introduced
with the Virtex-4 family. Its number increases with the distance from the
center of device, both in top and bottom half. In Figure 1.16 a row in the
top half is selected with the row address.

Column Address This field selects one column of frames in the row which
is specified by the Row Address field, obviously in the half of device which
has been specified by the Top/Bottom field. It starts with 02 and is incre-
mented moving toward right in the device. In Figure 1.17 one column in the
row is selected with the column address.

CHAPTER 1. BACKGROUND 15

Figure 1.16: FAR Row Address

Figure 1.17: FAR Column Address

Minor Address It selects one frame inside a column of frames, in fact
a frame represents the smallest addressable part in a device and a way for
indicating directly a word within a frame does not exist. Finally, in Figure
1.18 one frame in the column is selected with the minor address.

1.1.4 FPGA testing

FPGAs are suitable for many fields of application. In particular, the growing
use of FPGAs in safety-critical systems requires that the system does not fail
because of faults and that it features a gradual degradation of performance
due to aging. Moreover nowadays the testing has acquired a lead role in
the life cycle of these devices, due, again, to their increasing use in critical
applications.
This section briefly introduces possible causes of faults, which can affect
these devices, a first fault classification based on duration of their effect, and
a description about faults which can occur in the PIPs of the interconnection

CHAPTER 1. BACKGROUND 16

Figure 1.18: FAR Minor Address

infrastructure.

Fault causes

FPGAs are electronic devices and hence prone to an unavoidable aging of
their own components, with a consequent degradation in terms of perfor-
mance, which can lead to a failure. Figure 1.19 depicts the “bathtub“ curve
which is typically used for indicating the failure rate evolution with respect
to time.

In addition, FPGAs can operate in harsh environments, for example in
space, where radiations can affect the device causing even a failure. Figure
1.20 depicts how the radiation effect can propagate itself throughout the
system and can lead to a failure.

CHAPTER 1. BACKGROUND 17

Figure 1.19: Failure rate: bathtub curve

Figure 1.20: Effect propagation chain

Fault classification

An FPGA can be affected by:

CHAPTER 1. BACKGROUND 18

� Single Event Upset (SEU), that is the effect of a particle on a
memory element, such as a LUT or a register, which causes a change
of the stored value;

� Total Ionizing Dose (TID), that is an accumulation of charge in
the silicon injected by radiations; when the charge reaches a sizeable
value, a transistor is not no longer able to switch between state on and
off.

As SEU belongs to the soft error type [9], on the other hand, TID belongs
to the permanent one. For a more complete classification see [3].
Some works on SEU and TID are here reported:

� SEU

– In [10] a prover of SEUs unexcitability based on a model checker
tool is shown;

– In [11] an automatic test pattern generation tool for detection of
SEUs is presented; it is based on the use of Genetic Algorithms
(GAs);

– In [8] Xilinx proposes how dealing with SEU using a combination
of PR and readback.

� TID

– In [12] a complete testing and diagnosing flow is proposed; it
consists of several available tools.

PIPs behaviour in presence of fault

As previously said, a fault can affect the configuration memory, in particular
a configuration bit which controls a PIP. Consequences can be different:

� Open;

� Conflict;

� Input Antenna;

� Output Antenna;

� Bridge;

Figure 1.21 depicts a switch matrix, whose PIPs are not affected by
faults.

CHAPTER 1. BACKGROUND 19

Figure 1.21: Switch matrix with no faulty PIPs

Open There are two possible cases of open:

� Figure 1.22, where the net 7E is deleted, because the PIP is no longer
programmed;

� Figure 1.23, where the net 7E is deleted and a new net, for example,
5E, between an unused input node 5 and the previously used ouput
node E, is created.

CHAPTER 1. BACKGROUND 20

Figure 1.22: Open PIP case 1

Figure 1.23: Open PIP case 2

CHAPTER 1. BACKGROUND 21

Conflict Figure 1.24, where a new PIP is added between two previously
used input and output nodes (net 7C is created).

Figure 1.24: Conflict PIP

Antenna Two types of antenna are possible:

� Input : Figure 1.25, where a new PIP is programmed creating a new
net, for example, 4C between an unused input node 4 and a used
output node C;

� Output : Figure 1.26, where a new PIP is programmed creating a new
net, for example, 2D between a used input node 2 and an unused
output node D .

CHAPTER 1. BACKGROUND 22

Figure 1.25: Input Antenna PIP

Figure 1.26: Output Antenna PIP

CHAPTER 1. BACKGROUND 23

Bridge Figure 1.27, where the net 7E is deleted and a new net, for in-
stance, 2E, between a used input node and the output node of the net 7E,
is created.

Figure 1.27: Bridge PIP

For further information and more details see [3].

1.1.5 Testing approaches: External and Built-in-Self-Test

There are various testing methodologies and they can be classified in two
big families:

� Application-independent testing, in which the goal is to detect
every structural defect because of the manufacturing process in the
whole FPGA;

� Application-dependent testing, in which the aim is to detect de-
fects only in resources actually used by the design.

In order to perform whatever test, the following items are needed:

1. a mechanism to provide a set of input stimuli;

2. a circuit under test (CUT);

3. a mechanism to analyse responses in order to discriminate whether the
CUT is fault-free or not.

CHAPTER 1. BACKGROUND 24

Amongst various methodologies the most common are the external and
the Built-in-Self-Test (BIST) approach.
The former approach was the first utilized and consists in considering the
circuit under test like a black box, providing input stimuli from outside the
device through IOBs or JTAG interface, for example. Then responses are
collected by means of IOBs or a readback and they are externally assessed.
On the other hand, the BIST approach, which is currently the most utilized,
allows a device to test itself without acting from outside. This approach is
faster, simpler, inexpensive and does not require external test equipment,
whereas its disadvantages are additional design requirements and area over-
head. The advent of the PR has helped to diffuse the BIST approach,
because it allows a device to test its own parts without disrupting applica-
tions which are currently running.
The idea on which the BIST approach is based is to configure some CLBs
as Test Patter Generator (TPG), which is in charge of generating input
stimuli, and some others as Output Response Analyzer (ORA), which
is in charge of assessing responses of the CUT and giving a related result,
that is whether the CUT is faulty or not. Figure 1.28 depicts a simple BIST
scheme, where the CUT is represented by a wire under test (WUT). With
the term wire a set of PIPs and physical wire segments is meant.

Figure 1.28: BIST approach scheme

In [13] the first BIST approach for testing the interconnection infrastruc-
ture in an FPGA is reported.

BIST approach evolution From its first definition the BIST approach
is passed through various improvement steps:

� Comparison-Based;

� Parity-Based;

� Cross-Coupled Parity Based.

Comparison-Based This was the initial stage, in which the name derives
from the fact that the ORA compares responses received on the WUTs.
It represents the most simple BIST approach, where the TPG generates

CHAPTER 1. BACKGROUND 25

identical signals on the WUTs, which are received by the ORA. A problem
with this approach is that equivalent faults (that is faults with the same
effects) are not detected. In addition, if, for example, the TPG is faulty and
provides same signals on the WUTs, the ORA is not able to detect the fault.
Figure 1.29 depicts the Comparison-Based approach with two WUTs.

Figure 1.29: Comparison-Based BIST approach

Parity-Based This version was introduced for the first time in [14]. It
consists in realizing the TPG with a n-bit counter, therefore the input stimuli
are 2n, and using a parity bit, which is transmitted on fault-free routing re-
sources. This version is affected by the fact that if the parity remains correct
even in presence of a fault (for example if the TPG is frozen to a fixed input),
the fault is not detected by the ORA. With respect to the Comparison-Based
approach, now the ORA is able to detect equivalent faults on the WUTs,
and sometimes if the TPG is faulty, this can be detected through a readback
of the state of the counter. Figure 1.30 depicts the Parity-Based approach
with two WUTs and the parity bit.

Figure 1.30: Parity-Based BIST approach

Cross-Coupled Parity Based This version is the most recent, it aims
to outdo the too rigid constraint of transmitting the parity on fault-free

CHAPTER 1. BACKGROUND 26

routing resources. It is realized through the use of two n-bit counters, which
compose the TPG, whose parity bits are exchanged and sent to two different
ORAs (see Figure 1.31); in this way if a TPG is faulty the ORA is able to
detect the fault, without needing to resort to a readback of the state of the
counters. It was proposed in [15] for Virtex-4 devices.

Figure 1.31: Cross-Couple Parity BIST approach

CHAPTER 1. BACKGROUND 27

1.2 Xilinx Description Language

The Xilinx Description Language (XDL) is a human-readable format com-
patible with the more known and used Netlist Circuit Description (NCD).
Both these languages have been created by Xilinx for describing and repre-
senting FPGA designs.
With the XDL it is possible to obtain a full description about:

1. the available resources in an FPGA. This report can occupy from a few
MiBs (smaller or older devices) up to several GiBs (newer devices);

2. FPGA netlists, such as complete systems, hard macros or modules.

Notwithstanding the same language is used for both cases, descriptions differ
in both syntax and structure [16].

What is a hard macro? A hard macro is a pre-placed and pre-routed
design block. If a hard macro is moved along an FPGA, all its elements
maintain the same position within it.

1.2.1 DHHarMa

DHHarMa[17] is a software flow which exploits the XDL, in particular it can
be used for the automatic generation of homogeneous HMs and it offers the
possibility to constrain both placing and routing phases.

CHAPTER 1. BACKGROUND 28

1.3 Dynamically Reconfigurable Processing Mod-
ule (DRPM)

The project in [18], under ESA contract, is aimed at designing, develop-
ing and validating a DRPM demonstrator. The system updates and adapts
its functionalities through a dynamically exchange of processing modules at
run-time. Because of the harsh environment in which the system operates,
that is in space, particular attention was paid about mitigation of radiations
and recovery mechanisms in case of failure. The DRPM is particular indi-
cated for space mission in which there is the need to adapt data processing
algorithms basing on the collected data.
The DRPM consists in three fundamental components:

� RAPTOR-X64 baseboard;

� DB-V4 daughterboard;

� DB-SPACE daughterboard.

1.3.1 RAPTOR-X64

It is a rapid prototyping system based on a modular approach: the base
system provides the communication infrastructure and some management
facilities, which can be used by various extension modules. Figure 1.32
depicts the RAPTOR-X64 baseboard.

Figure 1.32: The RAPTOR-X64 baseboard

1.3.2 DB-V4

It is a RAPTOR-X64 extension module and hosts:

� Xilinx Virtex-4 FX100 FPGA;

CHAPTER 1. BACKGROUND 29

� 4 GiB DDR2 RAM.

Figure 1.33 depicts the DB-V4 daughterboard.

Figure 1.33: The DB-V4 daughterboard

PR-FPGA

It is the main payload processing module of the system. The FPGA consists
in three essential parts:

� Static processing components part, which includes a memory con-
troller, which is connected to a DDR2 RAM, and several communica-
tion bridges;

� Self-hosting reconfiguration (SHR) components part, which in-
cludes a MicroBlaze processor and is in charge of carrying out the
PR through the ICAP interface;

� Dynamic processing components part, which can be dynamically
reconfigured in order to adapt the system to changed environment
situations or to perform on-demand operations.

CHAPTER 1. BACKGROUND 30

Figure 1.34 depicts the PR-FPGA module. The Host PC is the backplane
for the RAPTOR-X64 baseboard.

Figure 1.34: The PR-FPGA module

1.3.3 DB-SPACE

This daughterboard is conceived for space missions, in fact it hosts a Leon2-
FT core, which is the SEU fault tolerant (FT) version of the Leon2 processor,
in particular FFs are protected with triple modular redundancy (TMR),
while internal and external memories with Error Detection And Correction
(EDAC) mechanisms. Figure 1.35 exhibits the DB-SPACE daughterboard.

CHAPTER 1. BACKGROUND 31

Figure 1.35: The DB-SPACE daughterboard

CHAPTER 1. BACKGROUND 32

1.4 Thesis Statement

Critical operations are processed on the DB-SPACE daughterboard, where
the various components are fault tolerant, but there are cases in which some
important operations are performed elsewhere, in fact the PR-FPGA is typ-
ically used on-demand by the Leon2-FT processor, which delegates some
operations to it.
For example, the Leon2-FT processor has to take some decisions about mov-
ing and, for some reasons, it may need to calculate a Fast Fourier Transform
(FFT), therefore it delegates this operation to the PR-FPGA. The MicroB-
laze processor loads a bitstream from the DDR2-RAM, through the memory
controller, into the SHR controller for performing the PR. The loaded bit-
stream is relative to a hard macro which is able to perform the FFT. Sup-
posing the chosen empty space, in which the hard macro has been placed, is
in somehow faulty and hence the hard macro could not work or worse could
give a wrong result.
The aim of this thesis is to provide some mechanisms, in particular hard
macros (HMs), which allow the MicroBlaze processor to detect faults in
the chosen space. The processor could decide whether launching testing
periodically, during idle time, or just before to execute a new PR, that is
on-demand.
Figure 1.36 depicts a scheme in which fault detection is not carried out,
the scenario is that the Leon2-FT processor delegates an operation A to
the MicroBlaze processor, which performs all the due steps to obtain the
operation A results. On the other hand, when fault detection mechanisms
are available, the previous scenario can be changed as depicted in Figure
1.37, where before loading the hard macro related to the operation A, the
MicroBlaze processor may decide of verifying the chosen space with one or
a set of testing HMs.

CHAPTER 1. BACKGROUND 33

Figure 1.36: Example of interaction between Leon2-FT and MicroBlaze pro-
cessors without fault detection

Figure 1.37: Example of interaction between Leon2-FT and MicroBlaze pro-
cessors with fault detection

CHAPTER 2. RELATED WORK 34

Chapter 2

Related Work

2.1 Introduction

FPGA testing occupies an important part in the literature pertaining to
FPGAs, above all as a result of their increase of popularity and use in
safety-related and space applications.
At the beginning most of the works were addressed to the Off-Line testing,
that is where possible running applications are stopped and the device is
then tested. This service interruption is not feasible in continuous operating
contexts. Recently, in particular with the introduction of the PR, the focus
was moved on performing On-Line testing, allowing running applications to
continue their elaborations.
In the following sections some works related to the FPGA testing are pre-
sented. Finally, the approach object of this thesis is briefly introduced.

2.2 Logical resources testing

Works in this section are focused on logical resources testing:

1. [19], where only faults in memory elements are addressed, supposing
that IOBs and interconnections have already been tested;

2. [20], where testing integration in a runtime reconfigurable system is
emphasized. Logical resources are divided in containers and the logic,
within the container under test, is tested through a comparison-based
BIST approach, utilizing TPG and ORA placed in different containers;

3. [21], where the use of testing HMs and the constraint of using only
some columns for each testing session are introduced, in particular
five columns are considered:

� one contains two TPGs;

CHAPTER 2. RELATED WORK 35

� two contain ORAs;

� two contain Blocks Under Test (BUTs).

The approach is a comparison-based BIST, where each ORA compares
two responses, which come from two different BUTs, driven by differ-
ent TPGs. Finally, columns are shifted on the next testing session.

4. [22], where a comparison-based BIST is used and columns are shifted
in each testing session; in particular this work is focused on Xilinx
Virtex-4 devices and uses the PR for keeping the testing time low,
because it mainly depends on the reconfiguration time.

2.3 Routing resources testing

Works in this section are aimed at detecting faults in routing resources.

1. [23], where an external approach is used, rather than a BIST. It ex-
ploits the JTAG interface for providing input stimuli and retrieving
results;

2. [24], where a comparison-based BIST approach is used, in particu-
lar test vectors are stored in LUTs and then subsequently applied to
CUTs;

3. [25], where a comparison-based BIST approach is used and it exhibits
the feature of moving the part under test in every testing session for
both logical and routing resources. Input stimuli for routing resources
are generated as in [23] with a Walking-0 or Walking-1 approach;

4. [26], where the cross-coupled parity BIST and registers for storing
test results are used. This work represents the starting point for the
approach proposed in this thesis.

2.4 The proposed approach

All the aforementioned works feature interesting properties, but no one com-
bines:

� Hard macros utilization, these pre-built blocks can be stored in the
DDR2 RAM and loaded on-demand by the MicroBlaze;

� Cross-coupled parity approach, which outdoes limitations of the
comparison-based and single parity approaches;

� Interconnection infrastructure testing, which, as previously said,
by now occupies up to 80% of whole chip area;

CHAPTER 2. RELATED WORK 36

� Focus on permanent faults, which nowadays, with really bigger
devices, are gaining importance again;

� PR and readback, which represent the key for an On-Line testing
approach as well as for keeping the testing time low;

� On-Line testing, which permits the use of these mechanisms even
in situations where a service interruption is not feasible, such as in
ACSes operating in space.

The proposed approach aims at combining all these elements, with a
reasonable tradeoff between simplicity and effectiveness.
In order to realize easy placeable testing hard macros, the use of the following
elements must be avoided:

� global signals, as clock and reset, therefore they should be internally
generated;

� particular resources, as the CAPTURE unit, which is used when the
content of registers is read through a readback, for example where
results are stored in registers as in [26].

Moreover, the quantity of the used logical resources has to be kept small
in respect to the total available and the approach has to be optimized for
Xilinx Virtex-4 devices, the same with which the DB-V4 daughterboard is
equipped.

CHAPTER 3. TESTING CIRCUITS 37

Chapter 3

Testing Circuits

3.1 Introduction

Three different testing circuits have been developed, each has different char-
acteristics and features a diverse granularity level in terms of number of
WUT. More precisely they are:

� A version with 6WUTs, which thanks to a feedback mechanism is able
to detect transient faults, as well permanents;

� A version with 8WUTs, which is a variation of the previous version, it
has no longer the feedback mechanism, but is able to test eight wires
at the same time;

� A version with 1WUT, which represents the higher reachable gran-
ularity level, it employs a completely new approach because of the
constraint of having only a wire between TPG and ORA.

There are actually two variants for the first two circuits, one without
and one with a clock cycle counter. This counter could be used to check if
there is performance degradation, for instance due to aging.
As previously said, in order to ease the placement of the hard macros inside
an FPGA, the planning phase of these circuits has to eliminate, and where
it is not possible, to reduce:

� global signals, e.g. Clock and Reset;

� using specific resources, e.g. the CAPTURE unit;

� used logical resources.

Consequently, it has also been necessary to develop other logic, as a ring
oscillator for generating a clock signal and a circuit for generating a reset
signal.

CHAPTER 3. TESTING CIRCUITS 38

The results of the ORA assessment task are stored in distributed RAM and
in due time these will be read by means of a readback operation.
Before presenting the developed testing circuits in details, some useful in-
formation about TPG and ORA are given in the following section.

3.1.1 Test Pattern Generator

The function of this component is to generate some specific signals, which
are propagated on the wires under test, thereby testing their status. The
testing signals derive from [26], representing the starting point for 6WUTs
and 8WUTs circuits. There are overall four configurations of these signals,
which are shown in Table 3.1.

Num I II III IV V VI

1 0 0 0 1 1 1

2 0 1 1 1 0 0

3 1 0 1 0 1 0

4 1 1 0 0 0 1

Table 3.1: TPG signals configurations

In reality, the TPG is made of two internal TPGs (up and down counting
TPG) and for that reason in the Table 3.1 the columns have been highlighted
with different colours, in particular, each colour represents a different inter-
nal TPG.

3.1.2 Output Response Analyzer

Functions of this component are essentially two:

1. Assessing if the received signals, by means of the WUTs, are what it
is expected;

2. Basing on the assessment at the point 1, providing the test results,
that is whether a fault has been detected or not. Hereinafter it will be
adopted the following convention: a 1 will indicate that at least one
fault has been noticed, whereas a 0 that no faults have been detected.

Likewise at the TPG, the ORA is made of two internal ORAs.
The four expected configurations are shown below in Table 3.2, where each
colour represents the group of signals which is assessed by the same internal
ORA.
It is useful to note that columns III and IV do not belong to the same
groups any longer, as in Table 3.1, but their groups have been exchanged,
thence the name of this approach: cross-coupled parity. The assessment
process is very simple, that is:

CHAPTER 3. TESTING CIRCUITS 39

Num I II III IV V VI

1 0 0 0 1 1 1

2 0 1 1 1 0 0

3 1 0 1 0 1 0

4 1 1 0 0 0 1

Table 3.2: ORA expected configurations

� In the event that one of these configurations has been received, both
the internal ORAs will give ‘0‘ as output;

� In the event that one configuration, which is not in Table 3.2, has been
received, then both internal ORAs will give ‘1‘ as output;

� In the case that one configuration, which is partially in Table 3.2, has
been received, one internal ORA will give ‘0‘ as output and the other
‘1‘, this latter is the ORA which is related to the missing part of the
configuration in Table 3.2. If, for instance, the received configuration
is “000101“, by observing the first row of the Table 3.2, it is possible
noticing that part of the configuration is present for the blue group,
but not for the green one, therefore for the aforementioned reasons,
the blue internal ORA will give ‘0‘ and the green one ‘1‘ as output.

3.2 6WUTs and 8WUTs testing circuits

Figure 3.1 shows the high-level abstraction scheme of the 6WUTs testing
circuit, while the complete scheme with internal components is reported in
Figure 3.2. Tables 3.1 and 3.2 above represent the 6WUTs TPG and the
6WUTs ORA signal configurations.
Outwardly the differences between 6WUTs and 8WUTs are fundamentally
about the number of links between TPG and ORA. Tables 3.1 and 3.2 change
to Tables 3.3 and 3.2, respectively.

Num I II III IV V VI VII VIII

1 0 0 0 1 1 1 1 0

2 0 1 1 0 1 0 0 1

3 1 0 1 1 0 1 0 0

4 1 1 0 0 0 0 1 1

Table 3.3: 8WTUs TPG signals configurations

CHAPTER 3. TESTING CIRCUITS 40

Num I II III IV V VI VII VIII

1 0 0 0 1 1 1 1 0

2 0 1 1 0 1 0 0 1

3 1 0 1 1 0 1 0 0

4 1 1 0 0 0 0 1 1

Table 3.4: 8WTUs ORA expected configurations

The operating principles of both TPG and ORA are equal to those of
the 6WUTs version.

3.2.1 6WUTs and 8WUTs planning

In both 8WUTs and 6WUTs versions there are two FSMs (Finite State
Machines), which behave as coordinator amongst units and generate some
important signals, needed for:

� starting the write of results in distributed RAM;

� requesting the next input to the TPG.

Moreover, in order to improve the following diagnostic phase, it has been
chosen to use some signals, which are generated by the TPG, to address the
distributed RAM, in particular columns I, II, V e VI of the Table 3.3.

By observing the first group of the Table 3.1, that is columns I, II and
III, it is easy to note that the first two columns represent a mere 2-bit
counter, which starts from 00b up to 11b, whereas the latter column is the
parity, in particular the even parity, inasmuch as it is be ‘0‘ when the number
of ‘1‘ in columns I and II is even. For the aforementioned reasons:

� signals relating to the columns I and II are called Cu1 and Cu0,
respectively. Indeed, Cu derives from Counter-Up.

� the signal relating to the column III is called PEven, hence the in-
ternal TPG is called Even Parity TPG.

On the other hand, by observing the second group in Table 3.1, it could be
noted that in this case the columns IV and V also represent a 2-bit counter,
but now it starts from 11b and reaches 00b, that is it is a Counter-Down,
therefore these signals are called Cd1 and Cd2, respectively. Regarding to
the column VI, it also represents a parity, which is now odd, in other words
it will be ‘0‘ when the number of ‘1‘ in the columns IV e V is odd, hence the
name POdd for the signal and Odd Parity TPG for the internal TPG.
Concerning the internal ORAs, their names derive from the parity type, that
is:

CHAPTER 3. TESTING CIRCUITS 41

Figure 3.1: 6WUTs RTL complete scheme

Figure 3.2: 6WUTs RTL complete scheme with internal component

� the internal ORA which uses PEven in its assessment is called Even
Parity ORA, in particular it uses the configurations of the second
group in Table 3.2;

� the internal ORA which uses POdd in its assessment is called Odd
Parity ORA, in particular it uses the configurations of the first group

CHAPTER 3. TESTING CIRCUITS 42

in Table 3.2.

The 8WUTs version differs from the 6WUTs version for the presence of two
further wires, related to the columns IV and VIII of Table 3.3 and 3.4,
which are called NPEven and NPOdd, respectively. The names of the
internal ORAs, TPGs and the other six wires are unchanged.

3.2.2 6WUTs implementation

The implementation of this version is based on [26].

Components implementation

As it is possible to note in Figure 3.3 and 3.4 the internal TPGs are two
mere counters, in which the parity is represented by the next state of CD1
or CU1, depending on which type of internal TPG is considered.

Figure 3.3: 6WUTs ODD TPG

CHAPTER 3. TESTING CIRCUITS 43

Figure 3.4: 6WUTs EVEN TPG

In internal ORAs the assessment is performed by means of:

� XNOR gate in the ODD Parity ORA (Figure 3.5);

� XOR gate in the EVEN Parity ORA (Figure 3.6).

It is possible to note that there is a feedback wire, whose task is to keep
track of possible faults detected in previous configurations, transitory faults
included.

Figure 3.5: ODD parity ORA

CHAPTER 3. TESTING CIRCUITS 44

Figure 3.6: EVEN parity ORA

Complete scheme

In Figure 3.7 a 6WUTs complete scheme is shown. Its operating principle
is as follows:

1. The RESET signal permits to initialize the system:

(a) FSMs in initial state;

(b) The first input configuration is generated upon the wires under
test as consequence of the initialize process.

2. When RESET signal is low, the FSM TPG SU becomes sensitive to
the clock signal, which is generated by a ring oscillator;

3. The TPG SU signals to the ORA the presence of valid data upon the
wires under test;

4. The ORA SU FSM launches the writing procedure of results in dis-
tributed RAM through ORACLK and signals the availability to receive
the next input configuration by means of DONE;

5. The TPG SU requests the next input configuration to the TPG by
means of TPG NEXT and all is repeated from point 3.

CHAPTER 3. TESTING CIRCUITS 45

Figure 3.7: 6WUTs complete scheme

3.2.3 8WUTs implementation

As previously mentioned the only external difference with the 6WUTs is the
presence of two further wires between TPG and ORA, that is NPOdd and
NPEven.

Components implementation

Figure 3.8 and 3.9 depict the two internal TPGs.

Figure 3.8: 8WUTs ODD TPG

It forthwith stands out the likeness with the other version that has been
previously presented, whereas the structure of ORA (Figure 3.10 and 3.11)

CHAPTER 3. TESTING CIRCUITS 46

Figure 3.9: 8WUTs EVEN TPG

is to some extent different. The feedback has been removed and two further
wires can be put under test using the two released inputs, these additional
wires are NPOdd and NPEven.
As regards to the assessment logic in the internal ORAs, it has been ob-
tained through a synthesis process, in which the Karnaugh′s maps have
been employed. It is reported in appendix A.

Figure 3.10: 8WUTs ODD parity ORA

Complete scheme

In Figure 3.12 a 8WUTs complete scheme is shown. Its operating principle
is equal to that of the 6WUTs version.

CHAPTER 3. TESTING CIRCUITS 47

Figure 3.11: 8WUTs EVEN parity ORA

Figure 3.12: 8WUTs complete scheme

3.2.4 Auxiliary logic

In this section all the supporting logic which is used by both 6WUTs and
8WUTs is presented:

� Ring oscillator;

� TPG SU and ORA SU;

� Reset generator circuit;

� Startchecker.

Ring Oscillator

It is briefly shown here a ring oscillator, which generates a clock signal used
by other units. The adopted structure is exhibited in Figure 3.13.

Figure 3.13: Ring oscillator

CHAPTER 3. TESTING CIRCUITS 48

The FDE (Figure 3.14) or Frequency Divider Element divides the fre-
quency of the input signal by 2.

Figure 3.14: Frequency divider element

It is useful to note that the circuit has been developed using the VHDL
generate construct, therefore there is the possibility of choosing the number
of NOT gates or FDEs for influencing the frequency of the generated signal.

TPG SU and ORA SU

It follows a presentation of the two FSMs: TPG SU and ORA SU.
As previously mentioned, they are essentially coordinators amongst units
and also generate some important signals. In particular the ORA SU has
been conceived to be used also with “smarter“ device (devices that signal
when results have been written) with some little changes, like introducing a
further signal to indicate when the write was effectively done.
Figure 3.15 shows the state transition diagram of TPG SU, where the two
output signals are, respectively:

� TPG NEXT, for requesting the next input configuration to the TPG;

� DR, that is Data Ready, for signalling that the configuration, upon
the wires under test, is valid.

Conversely, in Figure 3.16 the state transition diagram of the ORA SU is
reported, where the output signals are respectively:

� ORA CLK, to starting the write in distributed RAM;

� DONE, for signalling the availability to receive the next input con-
figuration. In particular this signal becomes significant in presence
of smarter devices or when some particular timing constraints are
present, such as t-hold ; in the case of distributed RAM this constraint
is not present.

CHAPTER 3. TESTING CIRCUITS 49

Figure 3.15: TPG SU state transition diagram

Figure 3.16: ORA SU state transition diagram

In Figure 3.17 an example of simulation of the FSMs with Modelsim [27] is
exhibited. The simulation is not behavioural, but post place and route, in
other words delays of both logic and wires propagation are considered.

CHAPTER 3. TESTING CIRCUITS 50

Figure 3.17: FSMs ModelSim simulation

Reset generator circuit

It is now briefly presented the circuit which generates the RESET signal
(Figure 3.18).
It fundamentally consists of a shift register, 32 bits in this case, and its
operating principle is the following:

� In the initial state its state is 1111111111111111b;

� On every clock cycle:

– LSB (Least Significant Bit) is propagated upon the output wire;

– The state is shifted toward right of one position;

– It is added 0 as MSB (Most Significant Bit).

� It is obtained a reset signal, which is high for 16 clock cycles.

Figure 3.18: Reset generator circuit

CHAPTER 3. TESTING CIRCUITS 51

Startchecker

The purpose of this component is to allow checking whether the test has
been started or not from external.
As consequence, now there are three results and their possible combinations
are reported in Table 3.5.

Startchecker
DRAM

ODD
parity
ORA
DRAM

EVEN
parity
ORA
DRAM

Description

1 - - Test has not been started

0 0 0 Test has been started and no
fault has been detected

0 1 0 Test has been started and it
has been detected at least a
fault in the Odd Parity ORA

0 0 1 Test has been started and it
has been detected at least a
fault in the Even Parity ORA

0 1 1 Test has been started and it
has been detected at least
a fault in both Even Parity
ORA and Odd parity ORA

Table 3.5: Result configurations

A possible implementation is exhibited in Figure 3.19 and its operating
principle is the following:

� DRAM is initialized to ‘1‘, that is the test has not been started;

� When TPG NEXT requests a new input configuration to the TPG,
the AND gate′s inputs are ‘1‘ and this enables the writing of ‘0‘ in
distributed RAM, in other words the test has been started;

� When the writing has been accomplished, the distributed RAM′s out-
put is ‘0‘ and the AND gate becomes insensitive to further changes of
TPG NEXT.

CHAPTER 3. TESTING CIRCUITS 52

Figure 3.19: Startchecker implementation

Distributed RAM addressing (Only 8WUTs)

It is useful to mention that some TPG outputs, in particular columns I, II,
V and VI of Table 3.3, are used for addressing the distributed RAM, this
could permit to obtain some useful information for the diagnostic phase.
Moreover, considering that distributed RAMs are initialized to FFFF16, in
the very rare case of a stuck-at fault of all the WUTs at a configuration
which is present in Table 3.4, the fault is anyway detected, because the
configuration in the distributed RAM is different from the expected one
(four ‘0‘).

3.3 1WUT planning

In this case the design of the testing hard macro has been lead by the
requirement that there must be only a WUT between TPG and ORA. It is
naturally the wire subjected to the test.

Figure 3.20: 1WUT generale scheme

A general scheme is exhibited in Figure 3.20. This approach is to a
certain extent new. The first issue is how to realize the TPG and the ORA.
A first scheme is shown in Figure 3.21, where the sequence “0110“ has been
selected. Such sequence has been chosen due to the fact that it includes
both high-to-low and low-to-high transitions. In addition it is very easy to
realize in hardware, using a 2-bit counter and a XOR gate.
One challenge in the implementation of the new ORA has been how to make
it able to discriminate amongst consecutive inputs. In particular problems

CHAPTER 3. TESTING CIRCUITS 53

can occur in two cases:

� in the same sequence, there are two consecutive ‘1‘;

� between consecutive sequences (i-th and i+1-th), there are two con-
secutive ‘0‘: the last ‘0‘ of the i-th sequence and the first ‘0‘ of the
i+1-th one.

Figure 3.21: 1WUT first scheme

A possible solution would have been to encode signals with the Manchester
code [28]. The aforesaid problem would have not been present, for the rea-
son that in this coding there is a transition for each sent bit.
Figure 3.22 shows how the scheme would have appeared using the Manch-
ester encoding. A Manchester encoder is quite easy to realize and it could
be expressed through the following formula:

Encoded Sequence=CLK xor Sequence

To be more accurate, the latter formula is valid only if it is adopted one of
the following standards:

� IEEE 802.4;

� IEEE 802.3.

On the other hand, by using the G.E. Thomas convention, which was pub-
lished in 1949, the formula is not valid any more.

CHAPTER 3. TESTING CIRCUITS 54

Figure 3.22: 1WUT with Manchester encoding

In particular, in both IEEE standards, a low-to-high transition represents a
1 and a high-to-low transition represents a 0.
Regarding the decoder, which is far more complex than the encoder, there
are two possibilities:

� Using a particular counting algorithm [29], which exploits a clock sig-
nal with a frequency 8-16 times higher than the clock signal used by
the encoder, in order to sample transitions for each sent bit. In the
event of using clock signals generated by accurate and controllable os-
cillators, this choice would probably be the one which uses less logic;

� Using a PLL (Phase Lock Loop), in order to extract the clock signal
from the received signal and afterwards, by exploiting it, to obtain the
decoded sequence.

Unfortunately, in both choices a clock synchronisation is required, which
could be obtained by means of using a preamble and a shift register.

Some more problems occur in the implementation of the decoder using
the Manchester encoding.
In the first choice, two oscillators are required, which should be quite accu-
rate and controllable. Ring oscillators are not well suited in this case, be-
cause the clock signal frequency will be given by propagation delays, which
will change with respect to the chosen routing, within FPGAs context. Con-
versely, in the second choice, the amount of required logic is absolutely ex-

CHAPTER 3. TESTING CIRCUITS 55

cessive. Furthermore, in both choices it is needed to consider logic for clock
synchronization as well. Since the goal of the test circuit is the testing of a
single wire, this might burst the limits of the testing circuit.
For the aforementioned reasons, a new approach needs to be developed.

3.4 1WUT “CLK Approach“ planning

The idea behind this approach is quite simple: with the requirement that
upon the wire both types of transition must be present, that is high-to-low
and low-to-high, a clock signal could be used.
In this way there are no sequences any more (with the same meaning of the
previous approach) and the sequence recognizer is no longer needed.
A new issue arises: how the ORA can detect the accomplishment of a new
test.
The ultimately idea is to send a finite number of clock cycles, 2n−1. A high
level scheme is exhibited in Figure 3.23.

Figure 3.23: 1WUT high level “CLK Approach“ scheme

3.4.1 Implementation

In this section the circuit implementation will be described in terms of its
function and structure:

� TPG;

� ORA.

TPG

This component is made of two main parts:

CHAPTER 3. TESTING CIRCUITS 56

� the usual ring oscillator which generates a clock signal;

� TPGCU (TPG Control Unit) FSM which disables clock propagation
upon the WUT when 2n − 1 cycles are reached, where n is the size in
terms of bits of an internal counter.

Figure 3.24 provides a scheme of this component.

Figure 3.24: 1WUT “CLK Approach“ TPG

In Figure 3.25 the state transition diagram of TPGCU is reported,
where the only output is the ENABLE signal.

Figure 3.25: 1WUT TPGCU state transition diagram

It is worth noting that transitions occur on high-to-low edge of the clock
signal, the reason is to avoid that the last cycle′s high part will be shorter
than the others.

Startchecker

This component has been foreseen also for 1WUT version and in this case
there are only two results, whose possible configurations are reported in
Table 3.6. The scheme of this component is shown in Figure 3.26 and also
in this case its operating principle is rather simple, which is as follows:

� The distributed RAM is initialized to ‘1‘, that is the test has not been
started;

CHAPTER 3. TESTING CIRCUITS 57

Startchecker DRAM ORA DRAM Description

1 - Test has not been started

0 0 Test has been started and not
fault has been detected

0 1 Test has been started and it
has been detected at least a
fault

Table 3.6: 1WUT startchecker results

� By the time in which ENABLE signal changes from ‘1‘ to ‘0‘, the
NOT gate′s output follows this transition allowing a writing of ‘0‘ in
the distributed RAM, that is the test has been started.

Figure 3.26: 1WUT startchecker scheme

ORA

The ORA represents the central part of the circuit, as well as the more
complex.
A possible representation is shown in Figure 3.27.

Figure 3.27: 1WUT “CLK Approach“ ORA

The High and Low counters keep track of how many high and low clock
edges, respectively, are sent upon the WUT. Their size in bit is n.
In the absence of faults both counters will reach a configuration with n bits
equal to ‘1‘, therefore the NAND gate′s output will be a configuration with
n bits equal to ‘0‘ and finally the OR gate′s output will be ‘0‘.

CHAPTER 3. TESTING CIRCUITS 58

By that time the ORACU FSM will begin the writing of ‘0‘ in distributed
RAM, indicating that no faults have been detected.
In the case of fault, there are two possible scenarios, depending on the fault
type:

� stuck-at ‘0‘ or ‘1‘ or even in the event that due to one or more shorts
the ORA will receive less clock cycles than 2n−1. In this case the OR
gate′s output stays to ‘1‘ and the ORACU will not enable the writing
to the distributed RAM, where the initialization value is ‘1‘, that is a
fault has been detected;

� one or more shorts generate one or more additionally clock cycles, the
counters will resume from a configuration with n bits equal to ‘0‘.
In this particular case the ORACU will enable the writing of ‘0‘ in
distributed RAM, since it is not able to predict the future, but as
soon as the OR gate′s output becomes ‘1‘ again, in other words after
the 2n-th cycle, the FSM will command a write of ‘1‘ in the distributed
RAM and it will become insensitive to further changes of the OR gate′s
output.

ORACU

The ORACU block contains the FSM, and besides other related logic (see
Figure 3.28).

Figure 3.28: 1WUT “CLK Approach“ ORACU

FFDN and FFDP are FF D-negative-edge-triggered and D-positive-
edge-triggered, they are initialized to ‘0‘ and ‘1‘, respectively. These com-
ponents have two aims:

� to uncouple clocks, making them independent from each other, there-
fore there are no constraints about the relative frequency speed be-
tween TPG and ORA clock signals, thus it is no longer needed that
the ORA′s clock signal is faster than the TPG′s one;

CHAPTER 3. TESTING CIRCUITS 59

� to sample and hold signals for a reasonable amount of time, in order
to permit to the FSM to determine whether the OR gate′s output
has been equal to ‘0‘ previously and afterwards is returned to ‘1‘ or
not. Indeed, the amount of time, in which that output is ‘0‘, could
be relatively short and it could happen that the FSM is not able to
notice this change.

Figure 3.29 depicts the state transition diagram of OCU (ORA Control
Unit) FSM, where the outputs are DATATORAM and WRITETORAM,
respectively.

Figure 3.29: 1WUT OCU state transitions diagram

CHAPTER 4. TESTING CIRCUITS VERIFICATION 60

Chapter 4

Testing Circuits Verification

4.1 Introduction

In order to assess how the developed testing circuits behave in presence of
faults a verification phase has been foreseen, which does not include only
faults along the wires under test, but in any PIP of the circuit.
Goal of this section is to show how the verification is performed, in particular
how faults are injected in the device in order to validate the testing circuits,
and what are the results.

4.2 Faulty Bitstreams Creation

Faults are injected through loading bitstreams which piggyback faults, here-
inafter called faulty bitstreams. The idea, on which this process is based
on, is to start with an XDL file, one for each testing circuit, which is the
description of the hard macro where information about the used PIPs are
included. At this point removing PIP by PIP it is generated a new XDL
file for each existing PIP. Each generated file has a missing PIP, which rep-
resents the piggybacked fault. At the end, from each generated XDL file, a
faulty bitstream is obtained.
Figure 4.1 depicts an HM portion where there are all the PIPs, while Figure
4.2 depicts the same portion in which a PIP has been removed.

CHAPTER 4. TESTING CIRCUITS VERIFICATION 61

Figure 4.1: No faulty bitstream

Figure 4.2: Faulty bitstream with a missing PIP

The flow which creates faulty bitstreams starting from an XDL file is
automatic and it is shown in Figure 4.3. In particular:

CHAPTER 4. TESTING CIRCUITS VERIFICATION 62

� The starting XDL is obtained by means of DHHarMa, that allows
to set constrains on both placing and routing of the testing circuits;
although it is possible using other tools provided by the vendor;

� Create faulty XDL files consists in a C program, which parses the
starting XDL file and creates a new faulty XDL file for each PIP;

� Create faulty HMs consists in a bash script, which using the XDL
command, provided by Xilinx, translates faulty XDL files in HMs;

� Create faulty bitstreams consists in a script for Xilinx FPGA Ed-
itor, which generates the faulty bitstreams by means of the command
bitgen.

Figure 4.3: Faulty bitstreams creation flow

4.3 Faulty Bitstreams Injection

In order to:

� move faulty bitstreams from the host PC into the DDR2 RAM, which
is on the DB-V4 daughterboard;

� perform the PR, for each stored faulty bitstream, through the SHR
controller in the PR-FPGA module;

a synchronization protocol, which automatizes the injection phase, has
been developed. The PR-FPGA module is implemented using Xilinx EDK
Design tools, that is an integrated environment of developing that includes

CHAPTER 4. TESTING CIRCUITS VERIFICATION 63

a GNU compiler and a debugger for C/C++ software, whereby it is possible
to set the MicroBlaze processor behaviour.
The synchronization protocol between Host PC and MicroBlaze is based on
messages exchange. The injection takes place in two distinct steps:

1. Loading: as Figure 4.4 depicts, a faulty bitstream is loaded into the
memory, in particular through the communication bridge between lo-
cal bus and Processor Local Bus (PLB), then the memory controller
is in charge of completing the loading;

2. Reconfiguration: as Figure 4.5 depicts, a faulty bitstream is taken
from the DDR2 RAM and then, through a local link, it is moved to
the SHR controller, which performs the PR by means of the ICAP
interface.

Figure 4.4: Faulty bitstream loading phase

CHAPTER 4. TESTING CIRCUITS VERIFICATION 64

Figure 4.5: Faulty bitstream PR phase

4.4 Verification Results

The testing results are stored in LUTs, operating as distributed RAM and
thence in slices of type M. They are collected exploiting the operation of
readback and a synchronization protocol between Host PC and MicroBlaze.
Figure 4.6 depicts the whole PR-FPGA module and highlights a placed
testing hard macro.

Figure 4.6: PR-FPGA module and a placed testing HM

CHAPTER 4. TESTING CIRCUITS VERIFICATION 65

Results include information about:

� fault detection, that is whether a fault is detected or not in that
particular test;

� testing start, that is whether that particular test is able to start or
not. This is useful because some faults can impede the starting of a
test, in fact it is enough to think about a fault in the ring oscillator,
which generates the clock signal used in the circuit.

With two possible results four combinations can be obtained:

� Not started and fault detected, when a fault is detected, but the
circuit is not able to start; it is useful to remember that the default
value in the distributed RAM is set to fault detected, therefore if a
fault impedes the test starting and affects the assessment logic, that
value does not change;

� Not started and no fault detected, when a fault is not detected
and the circuit is not able to start;

� Started and fault detected, when a fault is detected and the circuit
is able to start;

� Started and no fault detected, when the circuit is able to start,
but no fault is detected. It represents the bad case, because the fault
is undetectable with that testing HM.

The testing results for each circuit are shown below. In particular, dia-
grams are structured as follows:

� the total number of loaded faulty bitstreams is shown in grey;

� the number of good cases, that is all that cases in which is possible
to obtain in somehow some information about the fault, is shown in
green;

� the number of bad cases is shown in red;

� the number of each single component which makes up the good cases
is shown in blue.

Results are obtained running the testing HMs on a Xilinx Virtex-4 FX100
FPGA.

4.4.1 6WUTs results

Figure 4.7 depicts the results related to the 6WUTs version.

CHAPTER 4. TESTING CIRCUITS VERIFICATION 66

Figure 4.7: 6WUTs verification results

4.4.2 8WUTs results

Figure 4.8 depicts the results associated to the 8WUTs version.

Figure 4.8: 8WUTs verification results

CHAPTER 4. TESTING CIRCUITS VERIFICATION 67

4.4.3 1WUT results

Figure 4.9 depicts the results connected to the 1WUT version.

Figure 4.9: 1WUT verification results

4.4.4 Summary results

The summarized results are shown in Figure 4.10, in particular they are
reported in percentage with respect to their own total number of loaded
faulty bitstreams.

CHAPTER 4. TESTING CIRCUITS VERIFICATION 68

Figure 4.10: Verification results

4.4.5 Results analysis

In order to find out why:

� not started and no fault detected cases are possible;

� there are many bad cases;

� 8WUTs HM features a rather higher fault coverage than the struc-
turally alike 6WUTs version;

a deeply analysis of results has been performed and its outcomes are here-
inafter reported.

Not started and no fault detected case This case can happen when a
fault affects a wire which brings the starting information and does not affect,
directly or indirectly, wires between TPG and ORA. Figure 4.11 depicts a
possible fault which leads to this case.

Bad cases One reason is rather obvious: if a fault occurs in resources
which are placed after the ORA, the latter cannot detect it. Figure 4.12
depicts a particular case, where a fault occurs on the wire which brings the
assessment result. If a stuck-at 0 fault occurs, the logic value is fixed to 0
and only it can be written in the memory, that is this fault is theoretically
able to mask other faults as well as it is undetectable. The second reason
derives from how the gnd (logic value 0) and vcc (logic value 1) signals are
typically generated within a hard macro. They are obtained by means of a

CHAPTER 4. TESTING CIRCUITS VERIFICATION 69

Figure 4.11: Not started and no fault detected scenario

LUT which gives the desired logic value as fixed output. As consequence the
wire, which distributes that logic value, is rather long and with high fanout;
now supposing a stuck-at 0 for gnd or a stuck-at 1 for vcc, the circuit is
not able to detect the fault, because there are no detectable changes. For
example the gnd wire has 15 PIPs in the 6WUTs version, therefore in the
event of a stuck-at 0 verification they represent 15 bad cases.

Figure 4.12: Bad cases: masking faults case

8WUTs higher fault coverage The justification lies on the choice of
using two signals to address the distributed RAM. Indeed, both in 1WUT
and 6WUTs, the results are always written in the same position, that is the
first address. Supposing a stuck-at 0 fault in a whatever PIP along one of
the four wires, which are used for addressing, this fault is not detectable in
the 6WUTs and 1WUT because the address does not change, whereas in the
8WUTs this type of faults are detectable on the addressing wires. Figure
4.13 depicts this case with the 6WUTs.

CHAPTER 4. TESTING CIRCUITS VERIFICATION 70

Figure 4.13: Undetectable fault on addressing wires

4.4.6 Device utilization

In this section an idea about testing HMs size is given. Figure 4.14 reports
size in terms of occupied slices, LUTs used as logic, distributed RAM and
shift register for each circuit. Just to give an idea, the Xilinx Virtex-4 FX100
has 42176 slices and thence 84352 LUTs.

Figure 4.14: HMs sizes summary

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 71

Chapter 5

Conclusions and Future
Work

In this thesis three circuits for detecting faults, which affect routing resources
of FPGAs, have been conceived, developed and verified. Partial reconfig-
uration has been successfully exploited in order to make possible On-Line
testing and it has been shown that the fault coverage reached with a single
testing HM, on a Xilinx Virtex-4 FX100 FPGA, varies between 60% and
78%. Even though the fault coverage can seem low it is useful to remember
that:

� a tradeoff between effectiveness and simplicity has been taken in ac-
count in the design of testing HMs;

� all faults along the wires under test are detected;

� testing HMs use only CLBs and their interconnection resources and
they are independent of external signals, such as reset and clock, there-
fore they can be replicated in different portions of the device and can
operate at the same time.

Moreover, hard macros are optimized for Xilinx Virtex-4 devices and an
automatic verification flow for stuck-at faults has been developed. Particular
attention has been paid to make the verification flow able to obtain results
independently where HMs are positioned in the bitstream, which is obtained
with a readback, because that position depends on where the distributed
RAM, which contains results, is placed within a frame. This feature allows
creating different hard macros, starting from the same HDL description of
a testing circuit, changing the placing and routing, for example by means
of constraints. In this way it is possible to obtain a set of testing HMs,
which are sequentially usable in every frame in order to test all the routing
resources in that frame and improve fault coverage. It is also possible to
realize custom HMs, that is HMs which are able to detect faults in routing

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 72

resources which are actually used by a given design. It is enough to constrain
the placing and routing phases, for example with the aid of DHHarMa.
As further work, other interesting aspect will be considered, such as verifying
how testing circuits behave in the presence of faults (multiple fault analysis),
as well as improving circuits in terms of fault coverage and utilized logic,
and providing better support for new device families.

Appendix A

.1 ORA 8WUTs synthesis

.1.1 ODD parity ORA

Cu1 Cu0 PODD NPODD Pass/Fail

0 0 1 0 0

0 1 0 1 0

1 0 0 0 0

1 1 1 1 0

Whatever else 0

Table 1: ODD parity ORA truth table

Figure 1: ODD parity ORA Karnaugh‘s map

Synthesis

(1)
Pass/Fail = Cu0 · NPodd + Cu0 · NPodd

+ Cu0 · Cu1 · Podd + Cu1 · Cu0 · Podd

+ Cu1 · Cu0 · Podd + Cu1 · Cu0 · Podd

(2)
Pass/Fail = Cu0 ⊕ NPodd + Cu0

· (Cu1 · Podd + Cu1 · Podd)

+ Cu0 · (Cu1 · Podd + Cu1 · Podd)

73

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 74

(3)Pass/Fail = Cu0 ⊕ NPodd + Cu0

· (Cu1 ⊕ Podd) + Cu0 · (Cu1 ⊕ Podd)

(4)Pass/Fail = Cu0 ⊕ NPodd + Cu0 ⊕ Cu1 ⊕ Podd

Proof

Cu0 NPodd Cu0 ⊕ NPodd

0 0 0

0 1 1

1 0 1

1 1 0

Table 2: ODD parity ORA proof table 1

Cu1 Cu0 Podd Cu1 ⊕ Cu0 ⊕ Podd

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Table 3: ODD parity ORA proof table 2

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 75

Cu1 Cu0 Podd NPodd Cu0 ⊕ NPodd + Cu1 ⊕ Cu0 ⊕ Podd

0 0 0 0 1

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 1

0 1 0 1 0

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Table 4: ODD parity ORA proof table 3

.1.2 EVEN parity ORA

Cu1 Cu0 PODD NPODD Pass/Fail

1 1 0 1 0

1 0 1 0 0

0 1 1 1 0

0 0 0 0 0

Whatever else 0

Table 5: EVEN parity ORA truth table

Figure 2: EVEN parity ORA Karnaugh‘s map

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 76

Synthesis

(5)
Pass/Fail = Cd0 · NPeven + Cd0 · NPeven

· Cd0 · Cd1 · Peven + Cd1 · Cd0 · Peven

+ Cd1 · Cd0 · Peven + Cd1 · Cd0 · Peven

(6)
Pass/Fail = Cd0 ⊕ NPeven + Cd0

· (Cd1 · Peven + Cd1 · Peven)

+ Cd0 · (Cd1 · Peven + Cd1 · Peven)

(7)Pass/Fail = Cd0 ⊕ NPeven + Cd0

· (Cd1 ⊕ Peven) + Cd0 · (Cd1 ⊕ Peven)

(8)Pass/Fail = Cd0 ⊕ NPeven + Cd0 ⊕ Cd1 ⊕ Peven

Proof

Cd0 NPeven Cd0 ⊕ NPeven

0 0 0

0 1 1

1 0 1

1 1 0

Table 6: EVEN parity ORA proof table 1

Cd1 Cd0 Peven Cd1 ⊕ Cd0 ⊕ Peven

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Table 7: EVEN parity ORA proof table 2

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 77

Cd1 Cd0 Peven NPeven Cd0 ⊕ NPeven + Cd1⊕Cd0⊕Peven

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Table 8: EVEN parity ORA proof table 3

Bibliography

[1] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 26, pp. 203–215, Feb 2007.

[2] K. Underwood, “Fpgas vs. cpus: Trends in peak floating-point perfor-
mance,” in Proceedings of the 2004 ACM/SIGDA 12th International
Symposium on Field Programmable Gate Arrays, FPGA ’04, (New
York, NY, USA), pp. 171–180, ACM, 2004.

[3] M. V. Niccolò Battezzati, Luca Sterpone, Re-configurable Field Pro-
grammable Gate Arrays for Mission-Critical Applications. Springer
New York, July 2014.

[4] Xilinx, ISE In-Depth Tutorial, April 2012. UG695.

[5] Xilinx, Partial Reconfiguration Flow Presentation Manual. Xilinx Uni-
versity Program.

[6] Xilinx, Partial Reconfiguration User Guide, January 2012. UG702.

[7] Xilinx, Virtex Series Configuration Architecture User Guide, September
2000. XAPP151.

[8] Xilinx, Correcting Single-Event Upsets in Virtex-4 FPGA Configura-
tion Memory, October 2005. XAPP1088.

[9] R. Baumann, “Radiation-induced soft errors in advanced semiconduc-
tor technologies,” Device and Materials Reliability, IEEE Transactions
on, vol. 5, pp. 305–316, Sept 2005.

[10] C. Bernardeschi, L. Cassano, and A. Domenici, “Seu-x: A seu un-
excitability prover for sram-fpgas,” in On-Line Testing Symposium
(IOLTS), 2012 IEEE 18th International, pp. 25–30, June 2012.

[11] M. C. C. Bernardeschi, L. Cassano and A. Domenici, “Gabes: a genetic
algorithm based environment for seu testing in sram-fpgas,” Journal of
Systems Architecture, vol. 59, pp. 1243–1254, November 2013.

78

BIBLIOGRAPHY 79

[12] L. Cassano, D. Cozzi, S. Korf, J. Hagemeyer, M. Porrmann, and L. Ster-
pone, “On-line testing of permanent radiation effects in reconfigurable
systems,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2013, pp. 717–720, March 2013.

[13] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, “Built-in
self-test of fpga interconnect,” in Test Conference, 1998. Proceedings.,
International, pp. 404–411, Oct 1998.

[14] B. C. X. Sun, J. Xu and P. Trouborst, “Novel technique for bist of fpga
interconnects,” in Proc. IEEE International Test Conf, pp. 795–803,
2000.

[15] B. Dixon and C. Stroud, “Analysis and evaluation of routing bist ap-
proaches for fpgas,” in Proc. IEEE North Atlantic Test Workshop,
pp. 85–91, 2007.

[16] C. Beckhoff, D. Koch, and J. Torresen, “The xilinx design language
(xdl): Tutorial and use cases,” in Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), 2011 6th International Workshop
on, pp. 1–8, June 2011.

[17] S. Korf, D. Cozzi, M. Koester, J. Hagemeyer, M. Porrmann, U. Ruck-
ert, and M. Santambrogio, “Automatic hdl-based generation of homo-
geneous hard macros for fpgas,” in Field-Programmable Custom Com-
puting Machines (FCCM), 2011 IEEE 19th Annual International Sym-
posium on, pp. 125–132, May 2011.

[18] D. Cozzi, J. Hagemeyer, S. Korf, D. Jungewelter, and M. Porrmann,
DRPM User Manual Guide, February 2014.

[19] W.-K. Huang, F. Meyer, N. Park, and F. Lombardi, “Testing mem-
ory modules in sram-based configurable fpgas,” in Memory Technology,
Design and Testing, 1997. Proceedings., International Workshop on,
pp. 79–86, Aug 1997.

[20] L. Bauer, C. Braun, M. Imhof, M. Kochte, H. Zhang, H. Wunderlich,
and J. Henkel, “Otera: Online test strategies for reliable reconfigurable
architectures; invited paper for the ahs-2012 special session ;depend-
ability by reconfigurable hardware;,” in Adaptive Hardware and Systems
(AHS), 2012 NASA/ESA Conference on, pp. 38–45, June 2012.

[21] Z. Zhang, Z. Wen, L. Chen, F. Zhang, and T. Zhou, “A novel bist ap-
proach for testing logic resources using hard macro,” in Neural Networks
and Signal Processing, 2008 International Conference on, pp. 379–381,
June 2008.

BIBLIOGRAPHY 80

[22] S. Dhingra, C. Stroud, and D. Milton, “Bist for logic and memory
resources in virtex-4 fpgas,” in IEEE North Atlantic Test Workshop -
NATW, pp. 19–27, 2006.

[23] A. Hassan, J. Rajski, and V. Agarwal, “Testing and diagnosis of inter-
connects using boundary scan architecture,” in Test Conference, 1988.
Proceedings. New Frontiers in Testing, International, pp. 126–137, Sep
1988.

[24] J. S and V. K. Agrawal, “Article: Detection and diagnosis of faults in
the routing resources of a sram based fpgas,” International Journal of
Computer Applications, vol. 53, pp. 18–22, September 2012. Published
by Foundation of Computer Science, New York, USA.

[25] M. Abramovici, C. Strond, C. Hamilton, S. Wijesuriya, and V. Verma,
“Using roving stars for on-line testing and diagnosis of fpgas in fault-
tolerant applications,” in Test Conference, 1999. Proceedings. Interna-
tional, pp. 973–982, 1999.

[26] J. Yao, B. Dixon, C. Stroud, and V. Nelson, “System-level built-in self-
test of global routing resources in virtex-4 fpgas,” in System Theory,
2009. SSST 2009. 41st Southeastern Symposium on, pp. 29–32, March
2009.

[27] M. Technology, User Manual, August 2002. Version 5.6 d.

[28] Atmel, Manchester Coding Basics, September 2009. Application Note.

[29] Xilinx, Manchester Encoder-Decoder for Xilinx CPLDs, October 2002.
XAPP339.

	Introduction
	Background
	Field Programmable Gate Array
	FPGA Architecture
	Programming an FPGA
	Configuring an FPGA
	FPGA testing
	Testing approaches: External and Built-in-Self-Test

	Xilinx Description Language
	DHHarMa

	Dynamically Reconfigurable Processing Module (DRPM)
	RAPTOR-X64
	DB-V4
	DB-SPACE

	Thesis Statement

	Related Work
	Introduction
	Logical resources testing
	Routing resources testing
	The proposed approach

	Testing Circuits
	Introduction
	Test Pattern Generator
	Output Response Analyzer

	6WUTs and 8WUTs testing circuits
	6WUTs and 8WUTs planning
	6WUTs implementation
	8WUTs implementation
	Auxiliary logic

	1WUT planning
	1WUT ``CLK Approach`` planning
	Implementation

	Testing Circuits Verification
	Introduction
	Faulty Bitstreams Creation
	Faulty Bitstreams Injection
	Verification Results
	6WUTs results
	8WUTs results
	1WUT results
	Summary results
	Results analysis
	Device utilization

	Conclusions and Future Work
	Appendix A
	ORA 8WUTs synthesis
	ODD parity ORA
	EVEN parity ORA

