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Introduction

Equilibrium Problems (in short, EP) are a unified approach to express Optimization

Problems, Variational Inequalities, Nash Equilibrium, Fixed Point and Saddle Point

problems within the very same general mathematical framework. In the last decade they

received an increasing interest mainly because many theoretical and algorithmic results

developed for one of these models can be extended to the others through the unifying

language provided by the common format of EPs. Moreover, they benefit from the vast

number of concrete applications that all the above models embrace. As a result, their

applicative domain ranges from Engineering (e.g., desing of cognitive radio systems)

to Economies (e.g., competition over production and/or distribution) and Computer

Science (e.g., cloud computing), and in general EPs arise in the modelling of competitive

agents systems.

The format of the Equilibrium Problem reads

find x ∈ C s.t. f(x, y) ≥ 0 ∀y ∈ C,

where C ⊆ Rn is a nonempty closed set and f : Rn×Rn → R is an equilibrium bifunction,

i.e. f(x, x) = 0 for all x ∈ C.

Several kinds of methods have been proposed to solve (EP): fixed point methods, prox-

imal point methods, regularization methods, Tikhonov-Browder methods and extragra-

dient methods. This thesis focuses on the class of the so-called descent methods.

Descent methods come from Optimization Problems aiming at minimizing a function

f : Rn → R (the reader can refer to Appendix B for further details on Optimization

Problems). Their distinctive feature is that the sequence of points xk ∈ Rn they generate

satisfies f (xk) > f (xk+1). As we will see, (EP) can be reformulated as an Optimization

Problem and then solved using descent methods.

The main complexity of all the techniques mentioned above lies in the solution of inner

Optimization Problems, at least one of which has to be solved at every step. In this

thesis, we propose two algorithms that ammortize the cost of this sub-problem relying

on an error tolerant approach, which, roughly speaking, consists in computing only a

sub-optimal solution of the inner problem instead of a truly optimal one. In this way the
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inner problem solver can end his computation earlier, hopefully enhancing the overall

computational cost. As a consequence, our work deals also with practical methods for

computing such sub-optimal solutions and control their quality.

It is worth to notice that the two algorithms are tightly coupled to two non monotone

descent methods: the Enhanced Basic Algorithm and the Nonlinear Constraint Approx-

imation Algorithm. In fact, the two algorithms could be considered an error tolerant

extension of theirs.

The thesis is organized in four chapters.

In Chapter 1, we formally introduce (EP) and its reformulation as an Optimization

Problem. Moreover, we describe two descent methods: the Basic Algorithm and the

Enhanced Basic Algorithm, which differ mainly for the assumptions upon which are

built. Finally, we show our first error tolerant algorithm and its proof of correctness.

Chapter 2 deals with the case in which (EP) involves nonlinear inequality constraints.

Firstly we present the Nonlinear Constraints Approximation Algorithm, which exploits

the particular structure of the constraints, and then we propose our second error tolerant

algorithm and its proof of correctness.

This second error tolerant algorithm is more complex than the previous one in Chapter

1. In fact, due to the approximation of the constraints, the Nonlinear Constraints

Approximation Algorithm requires to know optimal dual solutions of the inner problem,

which in turn cannot be computed exactly in the error tolerant version. In order to

overcome this issue we introduce a notion of dual approximated solution which is suitable

for our aims. In addition, we develop some methods that can be used to compute jointly

the primal and dual approximated solutions. These methods are the subject of Chapter

3.

In Chapter 3, firstly we give a theoretical insight on the nature of sub-optimal solutions,

then we exploit these results to prove the correctness of two methods. The first is

derived from the Frank-Wolfe algorithm and it reduces to a sequence of linear programs.

The second is derived from the Fiacco and McCormick’s Barrier Method and it reduces

to a single unconstrained nonlinear minimization problem. The main difficulty here

originates from the fact that we need to control the quality of the sub-optimal solution.

Indeed, the error tolerant algorithms non only require an ongoing refinement of the

sub-optimal solutions, but also require to know a priori their quality.

Chapter 4 presents an original application that is used as a test case for comparing

our algorithms. The choosen applicative domain is Cloud Computing. We consider the

point of view of an IaaS provider that sells virtual machines with a certain computational

capacity and communication bandwidth to the users. Clearly, a flow allocation in the

physical provider’s network has to match the communication bandwidth bought by the

users. On the other hand, we suppose that the quantity of bandwidth bought depends
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also on prices the provider sets. In our scenario the provider has already allocated the

virtual machines of his tenant and has a stochastic knowledge of the communication

bandwidth intensity that the users will buy as a function of the transmission price. The

objective of the provider is to choose proper network routing and transmission prices in

order to achieve efficient allocations and high revenues. On the other hand, the users

are interested in accessing the best communication bandwidth at the most convenient

price. The system is modeled as a non cooperative game and the algorithms developed

in the previous chapters are applied to find an equilibrium. Numerical results are shown

at the end of the chapter and they show some improvement of performance with respect

to the corresponding exact algorithm.

The thesis includes also two appendices. In the first we recall some important theo-

rems about point-to-set maps in mathematical programming, while in the second we

summarize the most relevant results about nonlinear optimization.





Chapter 1

Descent Methods for Equilibrium

Problems

1.1 Introduction to the Problem

In what follows we assume C ⊂ Rn to be a nonempty compact convex set and f :

Rn × Rn → R, to be a bifunction such that

− f is continuously differentiable,

− f(x, x) = 0 for any x ∈ C

− f(x, ·) is convex for any x ∈ C.

Definition 1.1 (Equilibrium Problem)

We define the equilibrium problem (EP) as follows:

find x ∈ C s.t. f(x, y) ≥ 0 ∀y ∈ C. (EP)

(EP) is a very general model with an expressivity equivalent to the one of Optimization

Problems and of Variational Inequalities Problems (see [BCPP13] for more details).

Another class of problems, which is relevant for the application we will describe in the

Chapter 4 , is given by the Nash Equilibrium problems. In the next paragraph we

introduce the notion of Game and of Nash Equilibrium, and show how the problem of

finding a Nash Equilibrium can be expressed through (EP).

Applications to Game Theory

Definition 1.2 (Game)

A game G is a triple G = 〈P, {Sp}p∈P , {up}p∈P 〉 where

9



10 Chapter 1 Descent Methods for Equilibrium Problems

− P = {1, 2, . . . , N} is the set of players,

− Sp ⊆ Rnp is the set of strategies of player p,

− up :
∏N
j=1 Sj → R is the payoff function of player p.

Usually given a point x ∈
∏N
p=1 Sp we will denote as xp the vector of the components of

x related to the player p and as x−p the vector of the remaining components of x. With

a little abuse of notation we will use up(xi, x−i) or up(x) equivalently and in general, we

will act as if for any two vectors y, x ∈
∏N
j=1 Sj the concatenation of yi and x−i preserve

the original order of the components in the vectors y and x.

The interpretation of the above definition is straightforward: there are N players who

can choose a strategy (xp ∈ Sp is the strategy choosen by player p) which we can imagine

as a trajectory of moves in the game. Once each player has choosen his strategy, the

player p can evaluate how good this scenario x = (s1, s2, . . . , sN ) is for him through his

utility function up. We assume that each player is interested in choosing his strategy in

a way that his cost function is minimized.

A game can be given defining for each player the optimization program that determines

the best response, i.e., the optimal strategy with respect to its payoff function when the

strategies of the other player are fixed. Formally, given s−p ∈
∏
i 6=p Si the best response

of the player p is

min{up(sp, s−p) | sp ∈ Sp}.

A common problem in Game Theory is the determination of the Nash Equilibria (Nash

Equilibrium Problem (NEP)) for a certain Game.

Definition 1.3 (Nash Equilibrium)

Let G be a game. A point x∗ ∈
∏N
p=1 Sp is called Nash Equilibrium for the game G iff

for any player p,

∀y ∈ Sp, up(y, x
∗
−p) ≥ up(x∗).

We can interpret a Nash Equilibrium as a scenario in which every player isn’t interested

in changing his strategy unilateraly because it would result in an increasing of his payoff

function.

Definition 1.4 (Nikaido-Isoda Bifunction ([NI55]))

Let G be a game. Then, we define the Nikaido-Isoda bifunction NI :
∏N
p=1 Rnp ×∏N

p=1 Rnp → R as follows

NI(x, y) =

N∑
p=1

up(yp, x−p)− up(x).
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The Nikaido-Isoda bifunction allows us to express the problem of finding a Nash Equi-

librium as an Equilibrium Problem. Indeed, it is easy to see that the solutions of the

following Equilibrium Problem:

find x ∈
N∏
p=1

Sp : NI(x, y) ≥ 0 ∀y ∈
N∏
p=1

Sp,

are Nash Equilibria and viceversa any Nash Equilibrium solves the above problem.

1.1.1 Restating (EP) as an Optimization Problem

In order to design a descent method to solve (EP) we clearly need a function to descend.

In this section we show how (EP) can be transformed in an optimization problem to-

gether with a family of functions suitable to the implementation of descent methods.

Definition 1.5 (Gap Function for (EP))

A function f : Rn → R is called gap function for (EP) iff satisfies:

a) f (x) ≥ 0 for any x ∈ C,

b) f (x∗) = 0 iff x∗ solves (EP).

It is straightforward that a function satisfying the above property can be used to refor-

mulate (EP) as an optimization problem. One well known gap function is the function

ϕ defined below.

Definition 1.6 (ϕ)

We define the function ϕ : Rn → R as

ϕ(x) = −min
y∈C

f(x, y).

Theorem 1.1

ϕ is a gap function for (EP).

Proof. Since 0 = f(x, x) ≥ min {f(x, y) : y ∈ C}, then ϕ(x) ≥ 0 for any x ∈ C, hence

a) holds. Furthermore, if −ϕ(x∗) = min {f(x, y) : ∈ C} = 0, then f(x, y) ≥ 0 for any

y ∈ C and therefore x∗ solves (EP). On the other hand is straightforward that if x∗

solves (EP) then 0 = f(x, x) is the minimum value. Thus, b) holds as well.

As a result of the Theorem 1.1, we could solve (EP) through the optimization problem

min
x∈C

ϕ(x). (1.1)
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Unfortunately, the assumptions we made on f are not strong enough to ensure two

properties which are fundamental in order to develop efficient descent methods. Firstly,

we can’t guarantee the differentiability of ϕ. In fact, exploiting Theorem A.2 with

Ω(x) = C and f = −f we get that the directional derivative at point x ∈ C and

direction d ∈ Rn is

ϕ′(x; d) = max
y∈M(x)

〈∇x − f(x, y), d〉

where M(x) = {y ∈ C| ϕ(x) ≤ −f(x, y)},

In general, this expression is not linear as a function of d.

Secondly, also in the good case when ϕ is differentiable, many optimization methods

ensure only to find a stationary point. Thus, a way to ensure that the stationarity of a

point implies that it is a minimizer would be valuable. Notice that usually this would

be guaranteed by the convexity of the gap function ϕ, but unfortunately in general, ϕ

isn’t convex.

1.1.2 Auxiliary Problem Principle

A possible solution to achieve continuous differentiability is to add a regularizing term

h to the bifunction f in such a way that the solutions of the equilibrium problem do

not change. This approach appears in [Mas03], inspired by the work on Variational

Inequalities of Zhu and Marcotte ([ZM94]) and Fukushima ([Fuk92]).

Assumption 1.1 (Regularizing bifunction h)

We assume h : Rn×Rn → R to be a continuously differentiable bifunction over Rn×Rn

such that for any x ∈ C

− h(x, y) ≥ 0 ∀y ∈ C

− h(x, x) = 0,

− h(x, ·) is strictly convex,

− ∇yh(x, x) = 0.

An example is the bifunction

h(x, y) =
1

2
‖x− y‖2. (1.2)

In general, the whole family of Bregman distances provides bifunctions which are suitable

to play the role of h.
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Definition 1.7 (fα)

Given α > 0, we define the bifunction fα : Rn × Rn → R as

fα(x, y) = f(x, y) + αh(x, y).

Notice that fα inherits all the proprieties of f , in addition fα(x, ·) is strictly convex for

any x ∈ C which is a desirable propriety if we whish to solve the problem miny∈C fα(x, y).

We can introduce definitions as we did for f , defining the Equilibrium Problem and gap

function corresponding to fα.

Definition 1.8 (α- Regularized Equilibrium Problem)

Given α > 0, we define the α regularized equilibrium problem as follows:

find x ∈ C s.t. fα(x, y) ≥ 0 ∀y ∈ C. (α-EP)

Definition 1.9

Given α > 0, x ∈ C we define the optimization problem (Pαx ) as

min
y∈C

fα(x, y). (Pαx )

Notice that since fα is strictly convex the solution of (Pαx ) is unique.

Definition 1.10

Given α > 0, we define the functions ϕα : Rn → R and yα : Rn → Rn to be respectively

the changed sign optimum value and the minimizer of (Pαx ), i.e.

ϕα(x) = −min
y∈C

fα(x, y),

yα(x) = arg min
y∈C

fα(x, y).

It is straightforward to check that by Definition 1.5 ϕα is a gap function for (α-EP),

moreover we have that ϕα(x) = −fα(x, yα(x)).

The following Theorem ensures that we can work with fα and ϕα in order to solve (EP)

without loss of generality. In other words, it shows that ϕα is also a gap function for

(EP).

Theorem 1.2 ((EP) and (α-EP) Equivalency [Mas00])

Given any α > 0, and x ∈ C, then x solves (EP) iff x solves (α-(EP)).

Proof. Suppose that α > 0 and that x∗ solves (α-EP), then Definition 1.5 guarantees

ϕα(x) = 0, which implies min{ fα(x, y) : y ∈ C} = 0. Since fα(x, ·) is strictly convex by

construction (sum of a convex and strictly convex function), the unique y that minimizes
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fα(x, ·) has to be x∗ (in fact we have fα(x∗, x∗) = 0). Indeed, because x∗ is optimal, it

is necessarily a stationary point for fα(x∗, ·):

〈∇yfα(x∗, x∗), z − x∗〉 ≥ 0 ∀z ∈ C.

This equation jointly with the fact that ∇yh(x∗, x∗) = 0 implies that

〈∇yf(x∗, x∗), z − x∗〉 ≥ 0 ∀z ∈ C,

and so x∗ minimizes also f(x, ·). Thus, ϕ(x) = −f(x∗, x∗) = 0 and x∗ solves (EP).

Now, suppose that x∗ solves (EP), then by Theorem 1.1 ϕ(x∗) = 0, but we know that

for any x ∈ C −f(x, y) ≥ −f(x, y) − αh(x, y) because Assumption 1.1 guarantees

h(x, y) ≥ 0. Therefore, ϕ(x) ≥ ϕα(x) ≥ 0, where the last inequality follows from

Definition 1.5, thus ϕ(x∗) = 0 implies ϕα(x∗) = 0, and this concludes the proof.

The following theorems justify the exploitation of the regularizing bifunction h. The

next theorem ensures the continuity of yα and ϕα in the more general case when α is

considered to be a variable.

Theorem 1.3

The functions φ : Rn × int R+ → R and y : Rn × int R+ → Rndefined as

φ(x, α) = min
y∈C

f(x, y) + αh(x, y)

y(x, α) = arg min
y∈C

f(x, y) + αh(x, y)
(1.3)

are continuous over Rn × int R+.

Proof. We can invoke Theorem A.1 with Ω(x) = C and f (x, α, y) = −f(x, y)−αh(x, y)

to obtain that φ is continuous over Rn× int R+. The assumptions on f are met because

of the proprieties (x, α, y) 7→ −f(x, y)−αh(x, y) inherits from f and h (viz. continuity)

and it is easy to see that the constant point-to-set map Ω is continuous and uniformly

compact.

Suppose that y(x, α) is not continuos over Rn× int R+, then there must exists sequences

{xk} and {αk} such that

xk → x∗ ∈ C,

αk → α∗ ∈ int R+,

y(xk, αk)→ y 6= y(x∗, α∗) or {y(xk, αk)} diverges.

(1.4)
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Suppose that the y(xk, αk) → y. Since C is compact y ∈ C. Furthermore by the

continuity of φ and (x, α, y) 7→ −f(x, y)− αh(x, y) we have that

φ(x∗, α∗) = lim
k
−f(xk, y(xk, αk))− αkh(xk, y(xk, αk)) = −f(x∗, y)− α∗h(x∗, y).

This implies that y is a minimizer of −fα∗(x∗, ·) over C but since −fα∗(x∗, ·) is strictly

convex the minimizer has to be unique and thus y = y(x∗, α∗), in contradiction with

(1.4).

Now suppose that {y(xk, αk)} diverges. At least one between lim supk y(xk, αk) and

lim infk y(xk, αk) must be different from y(x∗, α∗), otherwise we would have that y(xk, αk)→
y(x∗, α∗). Suppose without loss of generality that lim supk y(xk, αk) = y2 6= y(x∗, α∗)

then we have found a sequence converging to a value different from y(x∗, α∗) and we can

repeat the same reasoning done for the previous case.

As a corollary of Theorem 1.3, keeping α fixed we obtain the following result:

Corollary 1.1

yα is continuous over Rn.

Theorem 1.4

Given α > 0, x ∈ C solves (EP) iff x = yα(x)

Proof. Suppose that x∗ ∈ C solves (EP) then by Theorem 1.2 and Definition 1.5 we

have that fα(x∗, yα(x∗)) = f(x∗, x∗) = 0. Since fα is strictly convex the minimizer must

be unique and therefore yα(x∗) = x∗. Now suppose that x∗ = yα(x∗), thus ϕα(x∗) = 0

and by Definition 1.5 x∗ solves (α-EP) and thus (EP).

Theorem 1.5

ϕα is continuously differentiable over C with the following gradient at point x:

∇ϕα(x) = −∇xfα(x, yα(x)). (1.5)

Proof. We can invoke Theorem A.2 with Ω(x) = C and f = −fα to obtain that for

any x, d ∈ X, the directional derivative ϕ′α(x; d) exists and

ϕ′α(x; d) = max
y∈M(x)

〈∇x − fα(x, y), d〉

where M(x) = {y ∈ C| ϕα(x) ≤ −fα(x, y)}.

But because fα(x, ·) is strictly convex M(x) = {yα(x)} is a singleton. Thus,

ϕ′α(x; d) = −〈∇xfα(x, yα(x)), d〉.
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The continuity follows from the continuity of ∇xf , ∇xh, which we supposed and from

the continuity of yα, which we proved in Corollary 1.1. Therefore, ϕα is differentiable

and (1.5) holds.

To Summarize, in this sub-section we have shown how we can conveniently switch to

our main problem (EP) to a family of Equilibrium Problems (α-EP) gaining the con-

tinuous differentiability of the gap function. It is still not clear how we can overcome

the second issue (stationarity): at the best of our knowledge, two solutions are possible.

Both of them consists in strenghten the assumptions on f . The difference between the

two solutions lies in the choosen assumption: the first is called strictly ∇-monotonicity,

the second is called c-monotonicity. We will introduce the assumptions and the corre-

sponding algorithms in the following sections.

1.2 Descent Method Under strictly ∇-monotonicity As-

sumption

Definition 1.11

A differentiable bifunction g : Rn × Rn → R is called

− ∇-monotone over C if

〈∇xg(x, y) +∇yg(x, y), y − x〉 ≥ 0, ∀x, y ∈ C;

− strictly ∇-monotone over C if

〈∇xg(x, y) +∇yg(x, y), y − x〉 > 0, ∀x, y ∈ C;

− strongly ∇-monotone over C if there exists τ > 0 such that

〈∇xg(x, y) +∇yg(x, y), y − x〉 ≥ τ‖y − x‖2, ∀x, y ∈ C.

The next theorem suggests a possible descent direction under the assumption that fα

is strictly ∇-monotone. Notice that choosing a regularizing bifunction as defined in Eq.

(1.2) the strict ∇-monotonicity of f is a sufficient and necessary condition to fα to be

strictly ∇-monotone. Indeed, in this case

〈∇xh(x, y) +∇yh(x, y), y − x〉 = 〈x− y, y − x〉+ 〈y − x, y − x〉 = 0.

The next theorem motivates the above assumption and will be heavily exploited in the

algorithm.
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Theorem 1.6 ([Mas03] [BCP09])

Suppose that x ∈ C is not a solution of (EP). If fα is strictly ∇-monotone on C, then

〈∇ϕα(x), yα(x)− x〉 < 0.

Proof. We have that for any x ∈ C:

〈∇ϕα(x), yα(x)− x〉

(Theorem 1.5) =− 〈∇xfα(x, yα(x)), yα(x)− x〉

(strict ∇-monotonicity) <〈∇yfα(x, yα(x)), yα(x)− x〉

≤0,

where the last inequality follows from the fact that yα(x) is the minimizer over C of

fα.

Theorem 1.7 ([BCP09])

Suppose that fα is strictly ∇-monotone. If x ∈ C is a stationary point of ϕα over C,

i.e.

〈∇ϕα(x), y − x〉 ≥ 0 ∀y ∈ C,

then x solves (EP).

Proof. By contraddiction, suppose that x doesn’t solve (EP), then by Theorem 1.6 we

have that

〈∇ϕα(x), yα(x)− x〉 < 0

but this would contradict the assumption of stationarity of x.

Basic Algorithm

The algorithm below (we name Basic Algorithm) is due to Mastroeni ([Mas03]) and have

been designed for strictly ∇-monotone f .

At every iteration k the algorithm maintains an approximated solution for (EP) xk and

compute the next one as xk+1 = xk + tkdk. dk is setted to yα(xk) − xk. Thanks to

Theorem 1.6, we notice that it is a descent direction for ϕα, in the sense that there

must exists a steplength t > 0 such that

ϕα(xk + tdk) < ϕ(xk).

tk is the stepsize choosen by the algorithm, aiming to obtain the maximum decrement

of the function ϕα in the direction dk without exiting from C. In other words, tk =

arg mint∈[0,1] ϕα(xk + tdk).
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Algorithm 1.1: Basic Algorithm

1 . Set k = 0 and choose x0 ∈ C
2 . Compute yk = arg miny∈C fα(xk, y)

3 . Set dk = yk − xk
4 . Compute tk = arg mint∈[0,1] ϕα(xk + tdk)

5 . xk+1 = xk + tkdk

6 . I f ‖xk+1 − xk‖ = 0

then STOP

e l s e Set k = k + 1 and GOTO Step 2 .

Formally, the correctness is stated by the following theorem:

Theorem 1.8 (Theorem 3.2 in [Mas03])

Let fα be a strictly ∇-monotone bifunction, then for any x0 ∈ C, the sequence {xk}
generated by Algorithm 1.1 belongs to the set C and any accumulation point of {xk}
is a solution of (EP).

1.3 Descent Method Under c-monotonicity Assumption

Considerations about ∇-monotonicity

Previous assumptions are not completely satisfactory since many bifunction of interests

are not strictly∇-monotone nor they lead to a gap function ϕα such that all its stationary

points over C are minimizers. As an example1 consider the bifunction f : R × R → R
defined as f(x, y) = x−y together with the set C = [−1, 1]. It is a ∇-monotone function

which is not strictly ∇-monotone. The solution of (EP) is the point x∗ = 1. Choosing

h(x, y) = (x−y)2

2 as regularizing bifunction, we find out that

yα(x) =


−1 if x ∈ (−∞,−1− α−1),

x+ α−1 if x ∈ [−1− α−1, 1− α−1],

1 if x ∈ (1− α−1,+∞),

and

ϕα(x) =


− (1+x)(αx+α−2)

2 if x ∈ (−∞,−1− α−1),

(2α)−1 if x ∈ [−1− α−1, 1− α−1],

(1−x)(αx+2−α)
2 if x ∈ (1− α−1,+∞).

The graph of ϕα is given in Figure 1.1. Notice that that every point in [−1−α−1, 1−α−1]

is a local minimum. Hence if we try to solve (EP) minimizing ϕα and employing an

algorithm that stops when a stationary point is found, choosing a starting point x0 ∈
1This example is taken from [BCP09].
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Figure 1.1

Plot of ϕα over C for α = 2.

[−1−α−1, 1−α−1], the algorithm would stop at the first iteration, failing in finding the

solution of (EP).

c-monotonicity

A possible patch to this problem consists in changing our assumptions and consequently

also the algorithm: instead of strict ∇-monotonicity we suppose c-monotonicity.

Definition 1.12 ([BCP09], [BP14])

A differentiable bifunction g : Rn×Rn → R is called c-monotone if satisfies the following

inequality:

g(x, y) + 〈∇xg(x, y), y − x〉 ≥ 0 ∀x, y ∈ C. (1.6)

Notice that c-monotonicity is nor a stronger nor a weaker assumption than strictly ∇-

monotonicity. In fact, it can be checked (see Example 3.4 in [BP14]) that c-monotonicity

doesn’t imply strict ∇ monotonicity and viceversa strict ∇ monotonicity doesn’t imply

c-monotonicity.

Hence, although we have presented c-monotonicity as a patch to solve some particular

issues it is way more: it virtually enlarges the set of problems we can handle.

Conversely, it can be proven that c-monotonicity is stronger than simple∇-monotonicity.

Theorem 1.9 (Theorem 3.1 in [BCP09])

Let g : Rn × Rn → R be a differentiable bifunction, if g is c-monotone, it is also

∇-monotone.

In the remaining part of this section supposing f to be c-monotone allows us to achieve

properties which are fundamental to design a suitable descent method.

Theorem 1.10 (Theorem 3.3 in [BCP09])

Suppose that f is c-monotone. If x ∈ C is not a solution of (EP) then there exists

α > 0 such that x is not a stationary point for ϕα and yα(x)− x is a descent direction

for any α ∈ (0, α].
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Theorem 1.10 allows to finding a descent direction changing the gap function simply

descreasing parameter α.

The next theorem provides an upper bound on the directional derivative of ϕα in direc-

tion yα − x.

Theorem 1.11 (Theorem 3.4 in [BCP09])

If f is c-monotone and h is ∇-monotone, it holds that

〈∇ϕα(x), yα(x)− x〉 ≤ f(x, yα(x))− α(〈∇xh(x, yα(x)), yα(x)− x〉) ≤ 0

for any α > 0 and x ∈ C.

Enhanced Basic Algorithm

The algorithm below is due to Bigi, Castellani and Pappalardo ([BCP09]). It exploits

the considerations we developed so far in order to obtain a solution of (EP) under c-

monotonicity assumption.

Algorithm 1.2: Enhanced Basic Algorithm

0 . Fix η, γ ∈ (0, 1) , β ∈ (0, η) and a p o s i t i v e sequence δi → 0 .
1 . Choose x0 ∈ C , s e t α0 = δ0 , k = 0 and i = 0 .
2 . I f ϕαk(xk) = 0 STOP.
3 . Compute yk = arg miny∈C fαk(xk, y) and s e t dk = yk − xk .
4 . I f

ϕαk(xk)− αk(h(xk, yk) + 〈∇xh(xk, yk), yk − xk〉) < −ηϕαk(xk) ,

then s e t αk+1 = αk , and tk = γm

where m i s the s m a l l e s t nonnegat ive i n t e g e r such that

ϕαk(xk + γmdk − ϕαk(xk) < −βγmϕαk(xk)

e l s e s e t i = i+ 1 , αk+1 = δi and tk = 0 .
5 . Set xk+1 = xk + tkdk .
6 . I n c r e a s e k and GOTO 2 .

Formally, the correctness is stated by the following theorem:

Theorem 1.12 (Theorem 3.6 in [BCP09])

If f is c-monotone and h is ∇-monotone, then Algorithm 1.2 stops at a solution of

(EP) after a finite number of steps or it produces a sequence {xk} such that any of its

cluster points solves (EP).
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1.4 Error Tolerant Descent Method Under c-monotonicity

Assumption

In a recent article ([LPS13]) Di Lorenzo, Passacantando and Sciandrone proposed a

descent method for (EP) that converges to a solution of (EP) without computing exact

solutions of the problem (??). In fact their approach relies only on the computation of

the so called ε-approximated solution of (Pαx ) defined as follows:

Definition 1.13 (ε approximated solution of (Pαx ))

Given ε, α > 0 and x ∈ C a point y ∈ Rn it is called ε approximated solution of (Pαx )

if satisfies

i) y ∈ C

ii) fα(x, y)− ε ≤ fα(x, yα(x)) ≡ −ϕα(x).

Notice that condition i) implies that fα(x, y) ≥ fα(x, yα(x)).

The authors suppose that the sequence {εk} of approximation parameters goes to 0

and develop a convergent method under the assumption of strict ∇-monotonicity of f .

Inspired by their work, we have designed an error tolerant algorithm that converges

under the assumption of c-monotonicity of f .

Our tractation is structured as follows: firstly a couple of Lemmas concerning properties

of the gap function for some particular sequence of parameters α and ε are stated. It

follows the algorithm pseudocode and its proof of correctness.

1.4.1 Auxiliary Lemmas

In what follows we will use the symbol yαεx to represent an ε-approximation of (Pαx ).

Notice that given α and x there could be more then one ε approximated solution of

(Pαx ), instead, since fα(x) is strictly convex the minimizer yα(x) is unique.

In addition in this section we will strengthen our assumption on the bifunction h as

follows:

Assumption 1.2

We assume h : Rn×Rn → R to be a continuously differentiable bifunction over Rn×Rn

such that for any x ∈ C

− h(x, y) ≥ 0 ∀y ∈ C,

− h(x, x) = 0,
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− h(x, ·) is strongly convex,

− ∇yh(x, x) = 0.

Now we are ready to state the first couple of Lemmas on the limit proprieties of fα.

Lemma 1.1

Given the sequences

− {αk} such that αk > 0 for any k,

− {εk}such that εk > 0 for any k, εk → 0,

− {xk} such that xk ∈ C for any k, xk → x∗ ∈ C.

− {ykαεx} sequence of εk approximations of (Pαkxk ), i.e., ykαεx ≡ yαkεkxk for any k,

it holds

a) limk→∞ ‖fαk(xk, y
k
αεx)− ϕαk(xk)‖ = 0,

b) limk→∞ ‖ykαεx − yαk(xk)‖ = 0

Proof. Consider the difference fαk(xk, y
k
αεx)− ϕαk(xk), by Definition 1.13 it holds

0 ≤ fαk(xk, y
k
αεx)− ϕαk(xk) ≤ εk.

Since εk → 0, we have

lim
k→∞

fαk(xk, y
k
αεx)− ϕαk(xk) = 0. (1.7)

Thus part a) of the statement is proved. Furthermore, because of the strongly convexity

of fα (see Assumption 1.2), the following chain of inequalities holds:

fαk(xk, y
k
αεx)− ϕαk(xk)

= fαk(xk, y
k
αεx)− fαk(xk, yαk(xk))

≥ 〈∇xfαk(xk, yαk(xk)), y
k
αεx − yαk(xk)〉+M‖ykαεx − yαk(xk)‖2

≥M‖ykαεx − yαk(xk)‖2 ≥ 0.

Where we have exploited the optimality of yαk(xk). Since by (1.7) the LHS tends to 0,

we have that M‖ykαεx − yαk(xk)‖2 → 0.

Lemma 1.2

Consider sequences {αk}, {εk}, {xk} , and {ykαεx} defined in Lemma 1.1. If αk → 0

and

f(xk, y
k
αεx)− αk〈∇xh(xk, y

k
αεx), ykαεx − xk〉 > η(f(xk, y

k
αεx)− εk) ∀k > 0, (1.8)
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for any fixed η ∈ (0, 1), then x∗ solves (EP).

Proof. The condition (1.8) could be restated as:

− αk〈∇xh(xk, y
k
αεx), ykαεx − xk〉+ ηεk

η − 1
< f(xk, y

k
αεx) ≤ εk ∀k > 0

where the last inequality follows from Definition 1.13 taking into account that ϕα(x) ≥
0 for any x ∈ C. Since ykαεx ∈ C and C is bounded we can take a subsequence k ∈ L for

some infinite L ⊆ N such that ykαεx → y∗αεx. Hence exploiting Lemma 1.1 we can assert

that

lim
k →∞
k ∈ L ⊂ N

− f(xk, y
k
αεx) = lim

k →∞
k ∈ L ⊂ N

ϕαk(xk).

Thus taking the subsequential limit we obtain

lim
k →∞
k ∈ L ⊂ N

− αk〈∇xh(xk, y
k
αεx), ykαεx − xk〉+ ηεk

η − 1
≤ lim

k →∞
k ∈ L ⊂ N

f(xk, y
k
αεx) ≤ lim

k →∞
k ∈ L ⊂ N

εk

⇔

lim
k →∞
k ∈ L ⊂ N

− αk〈∇xh(xk, y
k
αεx), ykαεx − xk〉+ ηεk

η − 1
≤ lim

k →∞
k ∈ L ⊂ N

− ϕαk(xk) ≤ lim
k →∞
k ∈ L ⊂ N

εk.

Besides, Lemma 1.1 b) guarantees lim
k →∞
k ∈ L ⊂ N

ykαεx = y∗αεx ∈ C. Thus, thanks to the

continuity of ∇xh(x, y) it holds that

〈∇xh(xk, y
k
αεx), ykαεx − xk〉 → 〈∇xh(x∗, y∗αεx), y∗αεx − x∗〉 ∈ R

and therefore lim
k →∞
k ∈ L ⊂ N

− αk〈∇xh(xk, y
k
αεx), ykαεx − xk〉+ ηεk

η − 1
→ 0. Putting this to-

gether with the latter inequality above we get:

0 ≤ lim
k →∞
k ∈ L ⊂ N

− ϕαk(xk) ≤ 0.

To complete the proof, we will show that ϕαk(xk)→ 0 as k →∞ with k ∈ L implies that

x∗ solves (EP). Let’s start exploiting the propriety of −ϕαk(xk) of being a minimum:

f(xk, y) + αkh(xk, y) ≥ −ϕαk(xk) ∀y ∈ C. ∀k ∈ L,

taking the limit as k →∞ with k ∈ L, we obtain

f(x∗, y) ≥ 0 ∀y ∈ C,
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i.e., x∗ solves (EP).

Corollary 1.2

Consider x∗ ∈ C that doesn’t solve (EP), and two positive sequences, {αk}, {εk}, such

that αk → 0, εk → 0, then ∃k∗ such that ∀k > k∗

f(xk, y
k
αεx)− αk〈∇xh(xk, y

k
αεx), ykαεx − xk〉 ≤ η(f(xk, y

k
αεx)− εk),

holds for all k ≥ k∗ with any fixed η ∈ (0, 1).

Proof. Ab absurdo, suppose

f(xk, y
k
αεx)− αk〈∇xh(xk, y

k
αεx), ykαεx − xk〉 > η(f(xk, y

k
αεx)− εk) ∀k.

Applying Lemma 1.2 with xk := x∗ for all k, we get that x solves (EP).

1.4.2 The Algorithm and its Correctness

The pseudo code of Algorithm 1.3 is given below.

Algorithm 1.3: Error Tolerant Algorithm

0 . Choose x0 ∈ C and p o s i t i v e ( dec r ea s ing ) sequences {σk} : σk → 0 ,
{δk} : δk → 0,

∑∞
k=0 δk <∞ and {εk} : εk < δk .

1 . Set α0 := σ0 , s e t k := 0, i := 0 choose cons tant s γ, η, β ∈ (0, 1), η > β .

2 . Compute ykαεx , εk approximated s o l u t i o n o f (Pαkxk ) .

3 . Set dk := ykαεx − xk .
4 . I f

f(xk, y
k
αεx)− αk〈∇xh(xk, y

k
αεx), ykαεx − xk〉 ≤ η(f(xk, y

k
αεx)− εk) ,

5 . Compute the s m a l l e s t non negat ive i n t e g e r s such that

−fαk(xk + γsdk, yαkεk(xk+γsdk)) ≤ −fαk(xk, y
k
αεx) + βγ2s(f(xk, y

k
αεx)− εk) + δk ,

s e t tk := γ2s and αk+1 := αk ,
e l s e

6 . s e t tk := 0 , i := i+ 1 , αk+1 := σi .
7 . Set xk+1 := xk + tkdk and k := k + 1 .

8 . I f fαk(xk, y
k
αεx) ≤ εk STOP e l s e GOTO 2 .

Lemma 1.3

The line search procedure at Step 5 of Algorithm 1.3 is well defined, i.e., it terminates

in a finite number of steps.
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Proof. Assume by contradiction that for all s

−fαk(xk + γsdk, yαkεk(xk+γsdk)) + fαk(xk, y
k
αεx) > βγ2s(f(xk, y

k
αεx)− εk) + δk

holds. Since by Definition 1.13 the LHS is less or equal to ϕαk(xk+γsdk)−ϕαk(xk)+εk,

it also holds

ϕαk(xk + γsdk)− ϕαk(xk) + εk > βγ2s(f(xk, y
k
αεx)− εk) + δk.

Taking εk to the RHS, and dividing by γs we obtain

ϕαk(xk + γsdk)− ϕαk(xk)

γs
> βγs(f(xk, y

k
αεx)− εk) +

δk − εk
γs

.

For sufficiently large s, we have

δk − εk
γs

≥ 〈∇xϕαk(xk), dk〉+ 1,

Thus for those s we have that

ϕαk(xk + γsdk)− ϕαk(xk)

γs
≥ βγs(f(xk, y

k
αεx)− εk) + 〈∇xϕαk(xk), dk〉+ 1.

Taking the lims→∞ we get to the contradiction

〈∇xϕαk(xk), dk〉 ≥ 〈∇xϕαk(xk), dk〉+ 1.

Lemma 1.4

Let f be c-monotone. Consider a subsequence indexed by kr (and his induced natural

numbers subset R), such that xkr → x∗ and αkr → σ 6= 0 and suppose that

f(xk, y
k
αεx)− αk〈∇xh(xk, y

k
αεx), ykαεx − xk〉 ≤ η(f(xk, y

k
αεx)− εk)

holds. Then

〈∇xϕσ(x∗), yσ(x∗)− x∗〉 ≤ ηf(x∗, yσ(x∗))
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Proof. For all k ∈ R the following chain of inequalities holds:

〈∇xϕαk(xk), yαk(xk)− xk〉

≤ f(xk, yαk(xk))− αk〈∇xh(xk, yαk(xk)), yαk(xk)− xk〉

≤ f(xk, y
k
αεx) + αk(h(xk, y

k
αεx)− h(xk, yαk(xk)))− αk〈∇xh(xk, yαk(xk)), yαk(xk)− xk〉

≤ η(f(xk, y
k
αεx)− εk) + αk(h(xk, y

k
αεx)− h(xk, yαk(xk)))

+ αk(〈∇xh(xk, y
k
αεx), ykαεx − xk〉 − 〈∇xh(xk, yαk(xk)), yαk(xk)− xk〉)

(1.9)

Where the first inequality is Theorem 1.11, the second is implied by Definition 1.13

and the third is provided by the assumption. We conclude the proof taking the limit as

k →∞ with k ∈ R of (1.9). In fact, for Theorem 1.3 we have

yαk(xk)→ yσ(x∗). (1.10)

In addition, Lemma 1.1 guarantees lim
k →∞

k ∈ R ⊂ N

‖ykαεx−yαk(xk)‖ = 0. Hence, ykαεx → yσ(x∗)

and we obtain

αk(h(xk, y
k
αεx)− h(xk, yαk(xk)))

+ αk(〈∇xh(xk, y
k
αεx), ykαεx − xk〉 − 〈∇xh(xk, yαk(xk)), yαk(xk)− xk〉)→ 0

η(f(xk, y
k
αεx)− εk)→ ηf(x∗, yσ(x∗)).

Lemma 1.5

Consider the sequence of {αk} generated by the algorithm. If αk → σ 6= 0, then

lim
k→∞

|t2k(f(xk, y
k
αεx)− εk)| = 0

Proof. The condition at Step 4 can be not met at most a finite number of times (oth-

erwise αk → 0). Therefore, there must exist k such that for all k ≥ k αk = σ. The

definition of tk (Step 5) guarantees

fαk(xk + tkdk, yαkεk(xk+tkdk)) ≤ −fαk(xk, y
k
αεx) + βt2k(f(xk, y

k
αεx)− εk) + δk ∀k ≥ k.

Thus, the definition of ε-approximation leads to the following equation:

ϕαk(xk+1)− ϕαk(xk)− εk ≤− fαk(xk + tkdk, yαkεk(xk+tkdk)) + fαk(xk, y
k
αεx)

≤βt2k(f(xk, y
k
αεx)− εk) + δk ∀k ≥ k.
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Summing up these inequalities from k to k we get

k∑
i=k

ϕσ(xi+1)− ϕσ(xi)− εi ≤
k∑
i=k

βt2i (f(xi, y
i
αεx)− εi) + δi.

Since
k∑
i=k

ϕσ(xi+1)− ϕσ(xi) = ϕσ(xk)− ϕσ(xk), (1.11)

taking δi to the LHS and multiplying by −1 we obtain

−ϕσ(xk) + ϕσ(xk) +

k∑
i=k

(εi + δi) ≥
k∑
i=k

−βt2i (f(xi, y
i
αεx)− εi).

Since εi+δi ≤ 2δi, ϕσ(xk) ≤ 0 and (by definition of the approximation) f(xi, y
i
αεx)−εi ≤

0, the above inequality implies that

ϕσ(xk) + 2
k∑
i=k

δi ≥
k∑
i=k

β|t2i (f(xi, y
i
αεx)− εi)|.

By assumption, the series
∑∞

i=k
δi is convergent, hence also the series∑∞

i=k
β|t2i (f(xi, y

i
αεx)− εi) is convergent, which implies limk→∞ β|t2k(f(xk, y

k
αεx)− εk)| =

0.

Lemma 1.6

Let f be c-monotone. If αk → σ 6= 0 and x∗ is a cluster point of {xk}, then x∗ solves

(EP).

Proof. Without loss of generality, suppose that the subsequence xkr satisfy xkr → x∗.

Lemma 1.5 guarantees

lim
r→∞

β|t2kr(f(xkr , y
kr
αεx)− εkr)| = 0.

Two cases may occour, f(xkr , y
kr
αεx)− εkr → 0 or tkr → 0.

1. If f(xkr , y
kr
αεx)− εkr → 0 then from Definition 1.13 we have

lim
r→∞

fαkr (xkr , y
kr
αεx) ≥ lim

r→∞
−ϕαkr (xkr) ≥ lim

r→∞
fαkr (xkr , y

kr
αεx)− εkr

Therefore εkr → 0 and f(xkr , y
kr
αεx)→ 0 guarantee

lim
r→∞

−ϕαkr (xkr) = lim
r→∞

fαkr (xkr , y
kr
αεx) ≥ lim

r→∞
f(xkr , y

kr
αεx) = 0,
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and thus, limr→∞−ϕσ(xkr) = 0. Thanks to the non negativity of ϕσ. Since we

have found a pair (x∗, yσ(x∗)) that minimizes the gap function, Theorem 1.1

guarantees that x∗ solves (EP).

2. Now suppose that tkr → 0. Let R be the infinite subset of N induced by {kr}. The

line search at Step 5,ensures that

−fαk(xk +
tk

γ
dk, yαkεk(xk+

tk
γ
dk)

) > −fαk(xk, y
k
αεx) + β(

tk
γ

)2(f(xk, y
k
αεx)− εk) + δk,

is valid for all k ∈ R. Furthermore, (Definition 1.13) guarantees ϕαk(xk + tk
γ dk) ≥ −fαk(xk +

tk

γ
dk, yαkεk(xk+

tk
γ
dk)

)

−fαk(xk, y
k
αεx) ≥ ϕαk(xk)− εk

for all k ∈ R. Hence, for all k ∈ R, it holds

ϕαk(xk+
tk
γ
dk)−ϕαk(xk) > β(

tk
γ

)2(f(xk, y
k
αεx)−εk)+δk−εk ≥ +β(

tk
γ

)2(f(xk, y
k
αεx)−εk).

By the mean value theorem there exists θk ∈ (0, 1) such that

〈∇ϕαk(xk + θk
tk
γ
dk), dk〉 ≥ β

tk
γ

(f(xk, y
k
αεx)− εk) ∀k ∈ R.

Taking the limit as k →∞ we obtain

〈∇ϕσ(x∗), d∗〉 ≥ 0.

Where d∗ := yσ(x∗)− x∗. Besides, Lemma 1.4 guarantees

〈∇ϕσ(x∗), d∗〉 ≤ ηf(x∗, yσ(x∗)).

Putting the two inequalities together, we get

ηf(x∗, yσ(x∗)) ≥ 0,

that implies that −ϕσ(x∗) ≥ 0. Therefore, as in the previous case, x∗ solves (EP).

Theorem 1.13 (Correctness of Algorithm 1.3)

Let f be c-monotone. Let x∗ be a cluster point of the sequence {xk} generated by

Algorithm 1.3, then x∗ solves (EP).
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Proof. Firstly notice that, the existence of a cluster point is guaranteed by the compact-

ness of C. Let {kr} be a subsequence such that xkr → x∗. We distinguish two cases:

αk → 0, and αk → σ 6= 0 (indeed, there are no other possibility for {αk}).

1. Suppose αk → 0. Then, we can choose an appropriate subsequence S of {kr} such

that

f(xk, y
k
αεx)− αk〈∇xh(xk, y

k
αεx), ykαεx − xk〉 > η(f(xk, y

k
αεx)− εk) ∀kr ∈ S,

This could be for example the subsequence of αkr obtained restricting to different

values of αkr . Now we are in condition to apply Lemma 1.2 and prove that x∗

solves (EP).

2. Suppose that αk → σ 6= 0, then the thesis follows from Lemma 1.6.





Chapter 2

Handling Nonlinear Constraints

This Chapter is devoted to the particular case when the set C is described not only

by linear constraints but also by nonlinear inequalities. Since solving the auxiliary

problem (Pαx ) could become a cumbersome task in presence of non linear inequalities,

approximation techniques have been adopted in literature to contain the algorithmic

cost.

Firstly, we show a descent method that approximates the nonlinear constraints with

their first order Taylor approximation in order to solve more efficiently the auxiliary

problem. Then, we develop an error tolerant version of the method and, in the next

chapter, discuss possible ways to compute solution of the auxiliary problem.

2.1 Nonlinear Constraints Approximation Algorithm

Throughout this Chapter we will make further assumptions on C.

Assumption 2.1

We suppose C to be the intersection of a bounded polyhedron D and a convex set given

through convex inequalities, namely C = D ∩ C̃ with

D = {y ∈ Rn : 〈aj , v〉 ≤ bj , j = 1, . . . , r1, 〈aj , v〉 = bj , j = r + 1, . . . , r}

for some aj ∈ Rn and bj ∈ R

C̃ = {y ∈ Rn : ci(y) ≤ 0 i = 1, . . . ,m}

where ci : Rn → R are twice continuously differentiable (nonlinear) convex functions.

Furthermore we assume that the vectors aj with j = 1, . . . , r1 are linearly independent

and that there exists ŷ ∈ D such that 〈aj , ŷ〉 < bj for j = 1, . . . , r1 and ci(ŷ) < 0 for i =

1, . . . ,m.

31
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The method we describe has been proposed by Bigi and Passacantando ([BP12]) and

is built upon a new gap function ψ : Rn → R. While computing the gap function

ϕ at a point x implicitly involves an Optimization Problem over the set C defined

in Assumption 2.1, computation of ψ(x) involves an Optimization Problem over the

polyhedron P (x), defined as follows:

Definition 2.1 (Polyhedron P (x))

Given (EP) and a point x ∈ Rn we define the polyhedron P (x) as:

P (x) = {y ∈ D : ci(x) + 〈∇xci(x), y − x〉 ≤ 0, i = 1, 2, . . . ,m},

where ci and D are the ones defined in Assumption 2.1.

As a consequence of the simpler structure of the feasible set, the computation of ψ(x)

should be less expensive than computing ϕ(x).

Before step deeply into the method, we want to point out some properties of P (x) that

will be used extensively throughout this Chapter.

Proposition 2.1 ([BP12])

Given x ∈ Rn, it holds

a) C ⊆ P (x) ⊆ D;

b) x ∈ C ⇔ x ∈ P (x).

Proof. a) By Definition 2.1 we have that P (x) ⊆ D. On the other hand the convexity

of ci guarantees

ci(x) ≥ ci(x0) + 〈∇ci(x0), x0 − x〉, (2.1)

for any x0, x ∈ Rn. thus, if x ∈ C, we have that 0 ≥ ci(x) and hence x ∈ P (x).

b) Consider a point x ∈ D by Definition 2.1 we have that x ∈ P (x) iff ci(x) ≤ 0 for

any i.

We still not have given a clear definition of the function ψ. Formally, given x ∈ D we

define the problem Px as

min
y∈P (x)

f(x, y), (Px)

and define the function ψ : D → R as the changed sign optimal value of Px for given x.

In order to handle a differentiable function we can exploit the auxiliary problem principle

defining the problem (Pαx ) and the function ψα. Notice that in this way we gain also

the strictly convexity of the objective function.
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Definition 2.2

Given α > 0, x ∈ C we define the optimization problem (Pαx ) as

find να(x) = arg min
y∈P (x)

fα(x, y) (Pαx )

Notice that since fα is strictly convex the solution of (Pαx ) is unique.

Definition 2.3

Given α > 0, we define the functions ψα : Rn → R and να : Rn → Rn to be respectively

the changed sign optimum value and the minimizer of (Pαx ), i.e.

ψα(x) = − min
y∈P (x)

fα(x, y),

να(x) = arg min
y∈P (x)

fα(x, y).

Functions ψα and να are clearly the counterparts of ϕα and yα.

We will see in few pages that we can deal with ψα or να as we did previously with

the gap function ϕα or yα, i.e. they allow us to reformulate (EP) as an Optimization

Problem.

Under Assumption 2.1, the map x 7→ να(x) is single valued (remember that fα(x, ·) is

strictly convex and thus the solution of min{fα(x, y) : y ∈ P (x)} is unique), furthermore

it allows a fixed point reformulation of (EP) as stated by the following theorem:

Lemma 2.1 ([BP12])

Given any α > 0, x∗ solves (EP) iff να(x∗) = x∗.

Proof. Suppose that x∗ solves (EP), then for Theorem 1.2 it also solves (α-EP).

and therefore thanks to Theorem 1.1 it minimizes fα(x∗, ·) over C.

Hence, there exist Lagrange multiplier vectors λ∗ ∈ Rm+ , and µ∗ ∈ Rr such that

µ∗1, µ
∗
2, . . . , µ

∗
r1 ≥ 0 and

∇yfα(x∗, x∗) +
∑m

i=0 λ
∗
i∇ci(x∗) +

∑r
j=0 µ

∗
jaj = 0

λ∗i ci(x
∗) = 0 i = 1, 2, . . . ,m

µ∗j (〈aj , x∗〉 − bj) = 0 j = 1, 2, . . . , r

ci(x
∗) ≤ 0 i = 1, 2, . . . ,m

〈aj , x∗〉 − bj ≤ 0 j = 1, 2, . . . , r1

〈aj , x∗〉 − bj = 0 j = r1 + 1, 2, . . . , r.
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Defining gi(y) = ci(x
∗) + 〈∇ci(x∗), y − x〉, then we have gi(x

∗) = ci(x
∗) and we can

rewrite the above conditions in the following way:

∇yfα(x∗, x∗) +
∑m

i=0 λ
∗
i∇gi(x∗) +

∑r
j=0 µ

∗
jaj = 0

λ∗i gi(x
∗) = 0 i = 1, 2, . . . ,m

µ∗j (〈aj , x∗〉 − bj) = 0 j = 1, 2, . . . , r

gi(x
∗) ≤ 0 i = 1, 2, . . . ,m

〈aj , x∗〉 − bj ≤ 0 j = 1, 2, . . . , r1

〈aj , x∗〉 − bj = 0 j = r1 + 1, 2, . . . , r,

which are the Karush-Kuhn-Tucker conditions for the problem of minimizing fα(x∗, ·)
over P (x∗). Since this is a strictly convex problem and both x∗ and να(x∗) solve it we

have that να(x∗) = x∗.

Now suppose that να(x∗) = x∗, therefore x∗ ∈ C because x∗ = να(x∗) ∈ P (x∗). Since

να(x∗) minimizes fα(x∗, ·) over C, the necessary and sufficient conditions read

〈∇yf(x∗, x∗), z − x∗〉 ≥ 0 ∀z ∈ P (x∗),

taking into account that ∇yh(x, x) = 0 for any x ∈ C. Since C ⊆ P (x∗), we also have

〈∇yf(x∗, x∗), z − x∗〉 ≥ 0 ∀z ∈ C.

Hence, x∗ is a minimizer of f(x∗, ·) over C and f(x∗, x∗) = 0. Thus, x∗ solves (EP).

Lemma 2.2 ([BP12])

Given α > 0, the function ψα is a gap function for (α EP), i.e.,

(a) ψα(x) ≥ 0 for any x ∈ C,

(b) x∗ solves (EP) iff ψα(x∗) = 0 and x∗ ∈ C.

Proof. (a) If x ∈ C, then optimality of να(x) guarantees

−ψα(x) = fα(x, να(x)) ≤ fα(x, x) = 0.

(b) If x∗ solves (EP), then x∗ ∈ C and by Lemma 2.1 να(x∗) = x∗. Thus ψα(x∗) = 0.

On the other hand, suppose that ψα(x∗) = fα(x∗, x∗) = 0 and x∗ ∈ C. Since fα(x, ·)
is strictly convex να(x∗) = x∗ is the only minimizer of that function. Therefore we can

apply again Lemma 2.1 to conclude the proof.

Lemma 2.3 ([BP12])

For any α > 0, the map να is continuous on Rn.
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Lemma 2.4 ([BP12])

For any α > 0, ψα is locally Lipschitz continuous on Rn.

Definition 2.4 (Clarke Generalized Directional Derivative [Cla87])

Let f : Rn → R be a locally Lipschitz continuous function, then we define the Clarke

generalized directional derivative in direction d ∈ Rn at point x ∈ Rnas:

f ◦(x; d) = lim sup
(z,t)→(x,0)

f (z + td)− f (z)

t

In a similar way we can define the generalized gradient.

Definition 2.5 (Generalized Gradient [Cla87])

Let f : Rn → R be a locally Lipschitz continuous function, then given x ∈ Rn, we define

the generalized gradient set ∂◦f (x) of f at x as

∂◦f (x) = {ξ ∈ Rn | f ◦(x; v) ≥ 〈ξ, v〉 v ∈ Rn}.

an element of ∂◦f (x) is called generalized gradient of f at x.

In our case the generalized directional derivative plays the role of the directional deriva-

tive in order to validate a descent direction: if it is negative, we have found a descent

direction. The main reason to exploit the generalized directional derivative is the ex-

ploitation of the mean value theorem:

f (x+ d)− f (x) = 〈ξ, d〉

where ξ is a generalized gradient of f at a point in the line between x and d. Notice

that this property is not guaranteed by the directional derivative in the case of non

differentiable functions.

The following theorem (which is the counterpart of Theorem 1.11) is fundamental: it

provides an upper bound on the generalized directional derivative ψ◦α(x; να(x)−x), thus

allowing to avoiding its direct computation.

Theorem 2.1 ([BP12])

Given α > 0, the inequality

ψ◦α(x, να(x)− x) ≤ −〈∇xfα(x, να(x)), να(x)− x〉,

holds for any x ∈ D.

When we substitute C with P (x), implicitely we loose the guarantee to remain inside

C while moving along the direction να(x)−x. In fact, να(x) could belong to D\C while
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exploiting the direction yα(x)− x with proper stepsize, we were sure to never get out of

C (assuming x ∈ C).

This issue have been tackled in [BP12] exploiting penalization techniques: instead of

minimizing the gap function ψα, they minimize the function defined as follows:

Definition 2.6

Given α, % > 0, we define the function Ψ%
α : Rn → R

Ψ%
α(x) = ψα(x) +

1

%
‖c+(x)‖, (2.2)

and c+(x) = (c+
1 (x), c+

2 (x), . . . , c+
m(x)) with

c+
i (x) =

0 if ci(x) < 0

ci(x) otherwise.
(2.3)

It’s immediate that for all the points outside C, the additive term 1
%‖c

+(x)‖ act as a

penalization increasing the value of the objective function, instead for all points belong-

ing to C, Ψ%
α is equal to ψα. % is employed as the penalization’s tuner: reducing % the

penalization increases and viceversa increasing it the penalization decreses.

Exploiting penalization, we obtain a gap function over the whole set D as stated by the

following theorem:

Theorem 2.2 ([BP12])

Given α > 0, there exist % > 0 such that

a) Ψ%
α(x) ≥ 0 for any x ∈ D,

b) x∗ solves (EP) iff Ψ%
α(x∗) = 0,

where α ∈ [0, α] and % ∈ (0, %).

The next theorem involves some inequality that will be very useful in the designing of a

descent method.

Lemma 2.5 (Lemma 4 and Theorem 4 in [BP12])

Suppose that f : Rn × Rn → R is c-monotone, and let Λα(x) be the set of Lagrangian

multipliers associated to να(x), then it holds that:

(i) Ψα◦
% (x; να(x)− x) ≤ −Ψα

% (x)− α[h(x, να(x)) + 〈∇xh(x, να(x)), να(x)− x〉],



Chapter 2 Handling Nonlinear Constraints 37

(ii) If x ∈ D \ C and (λ, µ) ∈ Λα(x), then Ψα◦
% (x; να(x) − x) < 0 for any % such that

1
% > ‖(λ

+)‖, where

λ+
i =

λi if ci(x) > 0

0 else.

(iii) If x ∈ C does not solve (EP) and η ∈ (0, 1), then

Ψ%
α(x)− αk(h(x, να(x)) + 〈∇xh(x, να), να(x)− x〉) ≤ −ηΨα(x)

holds for any ε > 0, and any sufficiently small α > 0.

The first statement is the counterpart of Theorem 2.1 and provides a way to check

whether or not the direction να(x)−x is a descent one. The second and third statement

suggests a condition on the penalization parameter % and the Lagrangian multipliers

that will be used to ensure the correctness of the algorithm.

Now we are ready to give the algorithm pseudocode (see the listing Algorithm 2.1)

and state its correcteness.

Algorithm 2.1: Nonlinear Constraints Approximation Algorithm

0 . Fix η, γ, δ ∈ (0, 1) , β ∈ (0, η) and p o s i t i v e sequence αk, %k ↓ 0 ,
choose x0 ∈ D , and s e t k = 1 .

1 . Set z0 = xk−1 and j = 0 .
2 . Compute νj = arg miny∈P (zj) fαk(zj , y) and λj ∈ Rm any Lagrange

m u l t i p l i e r vec to r cor re spond ing to the l i n e a r i z e d
c o n s t r a i n t s .

3 . Set dj = νj − zj , i f dj = 0 STOP.
4 . I f the f o l l o w i n g r e l a t i o n s hold :

a ) Ψ%k
αk(zj) > 0

b) 1
%k
≥ ‖λ+

k ‖+ δ

c ) Ψ%k
αk(zj)− αk(h(zj , νj) + 〈∇xh(zj , νj), νj − zj〉) < −ηΨ%k

αk(zj)
then compute the s m a l l e s t non negat ive i n t e g e r s
such that

Ψ%k
αk(zj + γsdj)−Ψ%k

αk(zj) ≤ −βγ2s‖dj‖ ,

s e t tj = γs , zj+1 = zj + tjdj , j = j + 1 and GOTO Step 2 ,
e l s e s e t xk = zj , k = k + 1 and GOTO Step 1 .

Theorem 2.3 (Correctness of Algorithm 2.1 [BP12])

If f is c-monotone, then either the algorithm stops at a solution of (EP) after a fi-

nite number of iterations or it produces either an infinite sequence {xk} or an infinite

sequence {zj} such that any of its cluster points solves (EP).
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2.2 Error Tolerant Extension

As we did before with Algorithm 1.2, now we are going to develop an Error Tolerant

Version of Algorithm 2.1. Our work is based on the following definitions:

Definition 2.7 (ε approximated solution of (Pαx ))

Given ε, α > 0 and x ∈ D a point y∗ ∈ Rn it is called ε approximated solution of (Pαx )

if satisfies

i) y∗ ∈ P (x) and

ii) fα(x, y∗)− ε ≤ fα(x, να(x)) ≡ ψα(x).

Definition 2.8 (Λεα(x))

Given α > 0, we define the point to set map Λα : int R+ × Rn → Rm+ as a point to set

map satisfying the following properties:

a) given ε > 0 and x ∈ P (x), Λεα(x) is bounded,

b) for any positive sequence {εk} and xk ∈ D satisfying εk → 0 and xk → x∗ and for

any sequence {λk} such that λk ∈ Λεkαk(xk) there exists a subsequence induced by

S ⊂ N such that

lim
k∈S

λk ∈ Λα(x∗),

where Λα(x) ⊂ Rm+ is the set of Lagrange multipliers vectors corresponding to the

nonlinear constraints for the problem (Pαx ).

Notice that differentely from Algorithm 1.3, now we need both approximated primal

(Definition 2.7) and dual solutions (2.8).

In addition, consider the following definition.

Definition 2.9 (Γ%α)

Given α, % > 0, we define the function Γ%α : Rn × Rn → R as

Γ%α(x, ν) = −fα(x, ν) +
1

%
‖c(x)+‖

Notice that from this definition it follows that Ψ%
α(x) = Γ%α(x, να(x)) for any x.

In the remaining part of this chapter we give the algorithm pseudocode and we prove

its correctness, afterwards in the next Chapter we propose some methods to compute

suitable approximated primal and dual solutions of (Pαx ) for a given error parameter ε.
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Algorithm 2.2: Error Tolerant Algorithm Nonlinear Constraints

0 . Choose x0 ∈ D , and p o s i t i v e sequences {aj}, {εj}, {ρj}, {δj}
converg ing to zero such that

∑∞
j=1 δj < +∞ and εj < δj .

Set a l l indexes I%, Iα, Iε to 0 and k = 0 .
1 . I n c r e a s e Iε .

2 . Compute ν , εIε approximated s o l u t i o n o f (PaIαxk ) and λ , a

vec to r in Λ
εIε
aIα (xk) .

3 . I f Γ
ρI%
aIα (xk, ν) < 0 (¬C1) or

−η(Γ
ρI%
aIα (xk, ν) + εIε) < −Γ

ρI%
aIα (xk, ν)− aIα [h(xk, ν) + 〈∇xh(xk, ν), ν − xk〉] (¬C2)

i n c r e a s e Ia and Iρ and GOTO Step 1 .
4 . I f 1

ρI%
≤ ‖λ+‖ (¬C3) i n c r e a s e IρI% and GOTO Step 1 .

5 . Set dk = ν − xk .
6 . Set k = k + 1 and αk = aIα , %k = ρI% , εk = εIε .
7 . I f dk−1 = 0 s e t xk = xk−1 , tk−1 = 0 and GOTO Step 1 .
8 . Find s m a l l e s t s ∈ N such that

Γ%kαk(xk−1 + γsdk−1, νs)− Γ%kαk(xk−1, ν) ≤ −βγ2s‖dk−1‖+ δk−1

where νs i s an εk approximated s o l u t i o n o f (Pαkxk−1+γsdk−1
) .

9 . Set tk−1 = γs , xk = xk−1 + tk−1dk−1 and GOTO Step 1 .

2.2.1 Algorithm and Proof of Correctness

The pseudocode of Algorithm 2.2 is given in the listing below.

The first Lemma is devoted to prove that the line search at Step 8 eventually terminates.

Lemma 2.6

Given x, d ∈ D, and α, %, ε, δ > 0, γ ∈ (0, 1), let νs ∈ P (x) be an ε approximated

solution of (Pαx+γsd), and ν0 an ε approximated solution of (Pαx ). Suppose that δ > ε,

then there must exist s ∈ N such that

Γ%α(x+ γsd, νs)− Γ%α(x, ν0) ≤ −βγ2s‖d‖+ δ (2.4)

Proof. Definition 2.7 guarantees

Γ%α(x, να(x)) ≤ Γ%α(x, ν0) + ε

Γ%α(x+ γsd, να(x+ γsd)) ≥ Γ%α(x, νs).

Therefore, supposing that (2.4) hold, for any s > 0, we get

Γ%α(x+ γsd, να(x+ γsd))− Γ%α(x, να(x)) + ε > −βγ2s‖d‖+ δ (2.5)
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Since the generalized Clarke derivative in the direction d: Γ%◦α (x, να(x); d) = Ψ%◦
α (x; d)

is finite and δ − ε > 0, there must exist s such that δ−ε
γs ≥ Γ%◦α (x, να(x); d) + 1 holds for

any s > s. Thus (2.5) produces the following contradiction:

lim sup
s→∞

Γ%α(x+ γsd, να(x+ γsd))− Γ%α(x, να(x))

γs
≥ lim sup

s→∞
−βγs‖d‖+Γ%◦α (x, να(x); d)+1,

i.e. 0 ≥ 1.

Looking at the proof, we understand why we need to control the entity of the approx-

imation ε. Without any guarantee on the approximation, we cannot set a proper δ to

ensure that this kind of line search terminates. A good reason to use a line search like

this, is that without assuming that the direction is a descent one, it allows us to prove

the next Lemma, which is very important for the correctness of the method.

Lemma 2.7

Let {xk} be a sequences in D, let {δk}, {εk}, {tk} be positive numbers sequences, such

that
∑∞

i=1 δk < ∞ and δk > εk, and let α, % > 0, and let ν+
k , ν

−
k ∈ P (x) be respectively

an εk approximated and an εk+1 approximated solution of (Pαxk). In addition suppose

that the following inequalities:

Γ%α(xk, ν
+
k )− Γ%α(xk−1, ν

−
k−1) ≤ −βt2k‖dk‖+ δk

Γ%α(xk, ν
−
k ) ≥ 0

hold for all k. Then limk→∞ ‖t2kdk‖ = 0.

Proof. Exploiting the definition of εk approximation, the line search procedure implies

that :

Γ%α(xk, να(xk))− εk − Γ%α(xk−1, να(xk−1)) ≤ −βt2k‖dk‖+ δk,

holds for any k. The above inequality leads to

N∑
k=2

[Γ%α(xk, να(xk))− Γ%α(xk−1, να(xk−1))] ≤
N∑
k=2

−βt2k‖dk‖+
N∑
k=2

(δk + εk),

where N > 2. Thus, multiplying by −1, we obtain

−Γ%α(xN , να(xN )) + Γ%α(x1, να(x1)) +

N∑
k=2

(δk + εk) ≥
N∑
k=2

βt2k‖dk‖.

Since Γ%α(xN , ν
−
N ) ≥ 0, then also Γ%α(xN , να(xN )) ≥ 0. Thus, we obtain that

Γ%α(x1, να(x1)) +

N∑
k=2

(δk + εk) ≥
N∑
k=2

βt2k‖dk‖.
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holds for any N > 2. Thus, since
∑∞

k=1(δk + εk) is convergent, then also
∑∞

k=1 βt
2
k‖dk‖

is. As a consequence the generic series term have to go to 0:

lim
k→∞

‖t2kdk‖ = 0.

Lemma 2.8

Consider positive sequences {αk}, {εk}, {%k}, and sequences {xk}, {νk} in D. Suppose

that the set S ⊂ N induces a subsequence such that

lim
k →∞
k ∈ L ⊂ N

(xk, αk, %k, εk) = (x∗, 0, 0, 0) and

Γ%kαk(xk, νk) < 0 (¬C1)

or

− η(Γ%kαk(xk, νk) + εk) < −Γ%kαk(xk, νk)− αk[h(xk, νk) + 〈∇xh(xk, νk), νk − xk〉] (¬C2)

holds for any k ∈ S, for some given sequence {νk} of εk approximated solutions of (Pαkxk ).

Then x∗ solves (EP).

Proof. Either condition ¬C1 or condition ¬C2 has to be true an infinite number of

times. Suppose there exists an infinite set L ⊂ S such that

Γ%kαk(xk, νk) < 0

holds for any k ∈ L. where {νk} is a sequence of εk approximated solutions of (Pαkxk ).

Then, by Definition 2.7 we also have that

Γ%kαk(xk, ναk(xk)) < 0 ∀k ∈ L. (2.7)

Since ναk(xk) belongs to a compact set, we can assume without loss of generality that

lim
k →∞
k ∈ L ⊂ N

ναk(xk) = ν∗. In addition, we notice that taking the limit as k →∞ with k ∈ L

in the following inequalities

f(xk, ναk(xk)) + αkh(xk, ναk(xk)) ≤ f(xk, ν) + αkh(xk, ν) ∀ν ∈ P (xk),

leads to

f(x∗, ν∗) ≤ f(x∗, ν) ∀ν ∈ P (x∗). (2.8)

Notice that we exploited the fact that the point to set map P : Rn → Rn is continuous

and therefore open, that is for any ν ∈ P (x∗) we can devise a sequence of νk ∈ P (xk)

converging to ν.
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As a consequence of (2.8), we have ν∗ ∈ arg min{f(x∗, ν) : ν ∈ P (x∗)} . Notice that x∗

must belong to C, otherwise taking the limit as k →∞ with k ∈ L of (2.7), we obtain

Γ%kαk(xk, ναk(xk)) = −fαk(xk, ναk(xk)) +
‖c+(xk)‖

%k
→ +∞ ≤ 0

since ‖c
+(xk)‖
%k

→ +∞ and fαk(xk, ναk(xk))→ f(x∗, y∗).

Finally, taking the limit as k →∞ with k ∈ L of (2.7), we obtain

−f(x∗, ν∗) ≤ 0

and therefore x∗ solves (EP). This concludes the case in which ¬(C1) is true an infinite

number of times. Now we move to the other case.

Suppose there exists L ⊂ S such that

−η(Γ%kαk(xk, νk) + εk) < −Γ%kαk(xk, νk)− αk[h(xk, νk) + 〈∇xh(xk, νk), νk − xk〉]

holds for any k ∈ L. Rewriting the above inequality we obtain

Γ%kαk(xk, νk) <
− αk[h(xk, νk) + 〈∇xh(xk, νk), νk − xk〉] + ηεk

1− η
∀k ∈ L2.

Because the RHS goes to 0 as k → +∞, we obtain that x∗ solves (EP) just arguing as

in the former case.

Another important consequence of the above Lemma is that if xk doesn’t solve (EP)

eventually, the variable k defined in Algorithm 2.2 will increase. In other words is not

possibile to have an infinite loop of Steps: 1→ 2→ 3→ 1→ 2→ 3... cycling on some

xk that doesn’t solve (EP). In fact, consider the variables aIα , ρI% , εIε and y: each time

the GOTO 1 is taken at Step 3 C1 or C2 is false, in addition, the variables aIα , ρI% , εIε

decrease thus an infinite loop would generate a going to zero sequence and match the

premises of the above Lemma.

Theorem 2.4 (Correctness)

Suppose that f is c-monotone and let x∗ be a cluster point of the sequence {xk} generated

by Algorithm 2.2, then x∗ solves (EP).

Proof. Let S ⊂ N be the set of all indexes k such that the GOTO at Step 3 has been

taken at that k. If |S| = |N|, then exist a subset of N satisfying the assumptions of

Lemma 2.8, and thus, x∗ solves (EP). Instead, if S is finite, we have that %k = % and



Chapter 2 Handling Nonlinear Constraints 43

αk = α, and C1, C2, C3 hold from some k onwards. Indeed if k > max{n ∈ S} C1

and C2 hold and the only possibility to update %k is that the condition ¬C3 at Step 4

is true, but this could happen only for a finite number of times. Otherwise, we would

have a subsequence of λk ∈ Λεkα (xk) for some xk → x∗ ∈ D, with εk → 0 such that:

λk → λ∗ ∈ Λα(x∗) ⊂ Rm

1

%k
≤ ‖λ+

k ‖

1

%k
→∞,

where the first statement follows directly from Definition 2.8, the second is the viola-

tion of (C3) and the third is due to the going to zero of %k.

Hence we now deal with the case when %k = % and αk = α, and C1, C2, C3 hold

from some k onwards. Then thanks to the line search at Step 8, the assumptions of

Lemma 2.7 are met and so we have that ‖t2kdk‖ → 0. Let L be an infinite subset of N
such that the limit of xk as k →∞ with k ∈ L is x∗.

We distinguish two cases. If ‖dk‖ → 0 for k ∈ L, then we can choose a convergent

subsequence of εk approximated solutions νk → ν for k ∈ L such that dk = νk − xk,
(remember that D is compact). Hence, since εk → 0, then ‖να(xk) − νk‖ → 0 and

therefore ν = να(x∗) and d∗ = να(x∗) − x∗ equal to zero actually means that x∗ is a

solution of (EP).

Now, suppose that tk → 0. If for some infinite set R ⊆ L we have that tk = 0 we

can reduce again to the case ‖dk‖ → 0 for k ∈ R , hence we can limit ourselves to the

case tk > 0 from k ≥ k onwards for some k ∈ N. By the way the line search at Step 8

is performed, there exist two sequences ν+
k , ν

−
k ∈ P (x) being respectively an εk and an

εk+1 approximated solutions of (Pαxk) for which

Γα% (xk−1 +
tkdk
γ

, ν+
k )− Γα% (xk−1, ν

−
k−1) > −β(

tk
γ

)2‖dk‖+ δk,

at every step k > k ∈ N.

Thus, by Definition 2.7 we can affirm

Γα% (xk−1 +
tkdk
γ

, να(xk−1 +
tkdk
γ

))− Γα% (xk−1, να(xk−1)) + εk > −β(
tk
γ

)2‖dk‖+ δk

holds for any k > k. The mean value theorem guarantees the existence of θk ∈ (0, 1)

such that

Γα% (xk−1 +
tkdk
γ

, να(xk−1 +
tkdk
γ

))− Γα% (xk−1, να(xk−1)) = 〈ξk,
tkdk
γ
〉,
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where ξk is a generalized gradient of Γα% (·, να(·)) at xk−1 + θk
tkdk
γ . Because of the gen-

eralized gradient proprieties, we have

Γα◦% (xk−1 + θk
tkdk
γ

, να(xk−1 + θk
tkdk
γ

); dk) ≥ 〈ξk, dk〉 ∀k > k.

Hence,

Γα◦% (xk−1 + θk
tkdk
γ

, να(xk−1 + θk
tkdk
γ

); dk) > −β
tk
γ
‖dk‖+ δk − εk (2.9)

holds for any k ≥ k.

Exploiting the upper semicontinuity of the generalized derivative (see e.g. [Cla87]) taking

the lim sup as k → +∞ with k ∈ L of (2.9) we get

Γα◦% (x∗, να(x∗); d∗) ≥ 0. (2.10)

Now, there can be two cases based wheter or not x∗ belongs to C.

Suppose that x∗ ∈ C and but it doesn’t solve (EP).

Notice that −Γα◦% (x∗, να(x∗); d∗) ≤ −ηΓα% (x∗, να(x∗)). Indeed C2 guarantees

− Γα% (xk, να(xk))− α[h(xk, να(xk)) + 〈∇xh(xk, να(xk)), να(xk)− xk〉]

≤ −Γα% (xk, ν
+
k )− α[h(xk, να(xk)) + 〈∇xh(xk, να(xk)), να(xk)− xk〉]

≤ −η(Γα% (xk, ν
+
k ) + εk)− α[h(xk, να(xk)) + 〈∇xh(xk, να(xk)), να(xk)− xk〉]

+ α[h(xk, ν
+
k ) + 〈∇xh(xk, ν

+
k ), ν+

k − xk〉],

from which, taking the limit as k →∞, k ∈ L, we obtain the following chain of inequal-

ities

− ηΓα% (x∗, να(x∗))

≥ −Γα% (x∗, να(x∗))− α[h(x∗, να(x∗)) + 〈∇xh(x∗, να(x∗)), d∗〉]

= −Ψα
% (x∗)− α[h(x∗, να(x∗)) + 〈∇xh(x∗, να(x∗)), d∗〉]

≥ Ψα◦
% (x∗; d∗) = Γα◦% (x∗, να(x∗); d∗).

(2.11)

Where the last inequality follows from Lemma 2.5 (i). Therefore, if x∗ doesn’t solve

(EP) and x∗ ∈ C,

(2.11) contradicts (2.10), since −ηΓα% (x∗, να(x∗)) = −ϕα(x∗) < 0.
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Suppose that x∗ 6∈ C and it does not solve (EP). Condition C3 guarantees 1
% ≥

‖(λ+
k )‖+ δ, with λk ∈ Λεkα (xk). Hence, exploiting Definition 2.8 we can take a subse-

quence converging to λ∗ ∈ Λα(x∗), such that 1
% ≥ ‖(λ

∗)+)‖+δ. Thus, by Lemma 2.5(ii),

Γα◦% (x∗, να(x∗); d∗) < 0, contradicting (2.10).





Chapter 3

On the Computation of the Inner

Problem’s Solutions

Algorithm 2.2 generates a sequence of xk ∈ D, and it needs both some εk approximated

solution yk and some λk ∈ Λεkαk(xk) at each step.

In this chapter, we firstly study how the characteristics of yk and λk are linked to a

perturbation of the well known KKT optimality conditions for (Pαx ). Afterwards we

propose two methods. The first, is derived from the Frank and Wolfe algorithm and it

reduces to a sequence of linear programs, interestingly, theoretical results show that it

could be arranged to converge rapidly in our framework. The second is derived from

the Fiacco and McCormick’s Barrier Method and it reduces to a single unconstrained

nonlinear minimization problem.

All the considerations of this chapter are applicable with not much effort to the simpler

case of Algorithm 1.3. Please notice that for the aims of this chapter, we can consider

xk = x ∈ D, εk = ε > 0 and αk = α > 0 fixed.

3.1 A Subset of Approximated Dual Solutions

In this section we study the point to set map Uε, which associates to a point x ∈ Rn

a subset of ε approximated dual solutions. Uε and the function L∗ defined below, are

common tool which are exploited in literature (e.g. [Hog73a]) to study the asymptotic

behaviour of properties of approximated dual/primal solutions as the approximation

goes to zero. In our case they constitute the main tool to prove that a dual feasible

vector λ ∈ Rm belongs to the set Λεα(x).

In order to express compactly the feasible region of (Pαx ) and abstract from its real

structure we introduce the functions gi.

47
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Definition 3.1 (gi)

We define the functions gi : Rn × Rn → R for i = 1, 2, . . . ,m as follows:

gi(x, y) = ci(x) + 〈∇ci(x), y − x〉.

Where the functions ci are the ones defined in Assumption 2.1.

We can now express the polyhedron P (x) as follows:

P (x) = {y ∈ D : gi(x, y) ≤ 0}.

Notice that in this way, with a mere substitution gi(x, y) = ci(x) we can cover also the

case of the algorithm Algorithm 1.3.

Definition 3.2 (L∗)

We define the function L∗ : Rn+m → R as:

L∗(x, u) = max
y∈D
− fα(x, y)−

m∑
i=1

uigi(x, y)

The function (y, λ) 7→ fα(x, y)+
∑m

i=1 uigi(x, y) is a partial Lagrangian of (Pαx ). Indeed,

it considers only the inequality-constraints that depends upon the considered x.

Remark 3.1. Let (λ∗, µ∗) ∈ Rm+r be the Lagrangian multipliers for the problem

max
y∈P (x)

− fα(x, y).

Then L∗(x, λ∗) = ψα(x).

Proof. Under Assumption 2.1, strong duality holds for the problem

max
y∈D
− fα(x, y)−

m∑
i=1

uigi(x, y).

Hence, we have that

L∗(x, λ∗)

= max
y∈D
− fα(x, y)−

m∑
i=1

λ∗i gi(x, y)

= min
µ∈Rr1+

{max
y∈Rn

−fα(x, y)−
m∑
i=1

λ∗i gi(x, y)−
r1∑
j=1

µjhj(y) : hj(y) = 0, j = r1, . . . , r}

(3.1)

Where in the last equation we have exploited the hj from the definition of D (see

Assumption 2.1).
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On the other hand, strong duality holds also for the problem

max
y∈P (x)

− fα(x, y),

and we get

ψα(x) = min
(µ,λ)∈Rm+r1

+

{max
y∈Rn

−fα(x, y)−
m∑
i=1

λigi(x, y)−
r1∑
j=1

µjhj(y) : hj(y) = 0, j = r1, . . . , r}

=− fα(x, y)−
m∑
i=1

λ∗i gi(x, y)−
r1∑
j=1

µ∗jhj(y).

Since the minimum is attained at (λ∗, µ∗), µ∗ has to minimize the RHS of (3.1).

This remark will be exploited in the proof of Lemma 3.4.

Lemma 3.1

(i) L∗ is a continuous function over Rn+m.

(ii) L∗(x, ·) is convex for any x ∈ Rn.

Proof.

(i) The point to set map x 7→ D is constant, and therefore continuous (see [Hog73c]).

In addition x 7→ D is uniformly compact thanks to Assumption 2.1. The func-

tion −fα(x, ·) −
∑m

i=1 uigi(x, ·) is continuous, thus Theorem A.1 guarantee the

continuity of L∗.

(ii) Let λ ∈ [0, 1] and u1, u2 ∈ Rm+ then

L∗(x, λu1 + (1− λ)u2)

= max
y∈D
−fα(x, y)−

m∑
i=1

(λu1 + (1− λ)u2)gi(x, y)

= max
y∈D
−λfα(x, y)−

m∑
i=1

λu1gi(x, y)− (1− λ)fα(x, y)−
m∑
i=1

(1− λ)u2gi(x, y)

≤ max
y∈D
−λfα(x, y)−

m∑
i=1

λu1gi(x, y) + max
y∈D
−(1− λ)fα(x, y)−

m∑
i=1

(1− λ)u2gi(x, y)

= λL∗(x, u1) + (1− λ)L∗(x, u2)
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Definition 3.3

For any ε ≥ 0, we define the point to set map Uε : Rn → Rm as follows:

Uε(x) = {u ∈ Rm+ |L∗(x, u) ≤ ψα(x) + ε}

Notice that the above definition allows ε to be zero. By definition the set U0(x) is the

set of Lagrangian multipliers of the problem (Pαx ). The following lemma, will be heavily

exploited in the proof of Theorem 3.1.

Lemma 3.2 ([Hog73b])

If ψα(x) is finite, then the point set map U0 : Rn → Rm is non empty and uniformly

compact near x, and U0 is closed at x.

Now we will prove that uniformly compactness is achieved also in the case ε > 0.

Lemma 3.3

Given any ε ≥ 0, Uε is a closed point to set map.

Proof. Just apply Theorem A.3 with P (x) ≡ Uε(x), Y ≡ Rm+ and g(x, u) ≡ L∗(x, u).

Lemma 3.4

Given any ε > 0, Uε is an open point to set map.

Proof. We invoke Theorem A.4 with P (x) ≡ {y ∈ Y | g(x, y) ≤ 0} for any x ∈ Rn,

Y ≡ Rm+ and g(x, u) ≡ L∗(x, u) − ψα(x) − ε, which actually means P (x) = Uε(x). In

order to apply Theorem A.4, we have to prove that g is continuous on x× P (x), that

g(x, ·) is convex (both ensured by Lemma 3.1) and that for each fixed x ∈ Rn, there

exists u ∈ Y such that g(x, u) < 0. This could be seen, observing that fixed x ∈ Rn,

there exists u ∈ Rm+ : L∗(x, u)−ψα(x)− ε < 0. Indeed Remark 3.1 shows that for any

x we can choose the optimal Lagrangian multiplier u∗ and obtain L∗(x, u∗) = ψα(x).

Lemma 3.3 and Lemma 3.4 guarantee the continuity of the point to set map Uε.

Corollary 3.1

For any ε > 0 the point to set map Uε is continuous.

Lemma 3.5

Let ε > 0 and suppose that Uε(x) is non empty. Then, the point to set map Uε : Rn →
Rm is non empty and uniformly compact near x.

Proof. Let f : R2n → R be a constant function, let Ω(x) ≡ Uε(x), v(x) ≡ supy∈Ω(x) f (x, y)

and M(x) ≡ {y ∈ Ω(x)|v(x) ≤ f (x, y)}. Since f is constant, M(x) = Ω(x).
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Moreover f is continuous and quasiconcave and, Lemma 3.4 and Lemma 3.3, guarantee

that Ω is closed on a neighborhood of x and open at x.

Furthermore, M(x) = Uε(x) is bounded: otherwise, there would exist uk ∈ Uε(x) such

that ‖uk‖ → +∞, so, there could exist an index i∗ ∈ {1, 2, . . . ,m} such that uki∗ → +∞.

Let y ∈ D satisfy gi(x, y) < 0 for any i (the existence of such a vector y is ensured by

Assumption 2.1), then we would have

L∗(x, uk) = max
y∈D
−fα(x, y)−

m∑
i=1

ukigi(x, y) ≥ −fα(x, y)−
m∑
i=1

ukigi(x, y),

Therefore, since −ukigi(x, y) → zi ∈ R+ ∪ {+∞} for any i, we would have that

L∗(x, uk) → +∞. Obviously L∗(x, uk) ≤ ψα(x) + ε since uk ∈ Uε(x), and thus the

finiteness of ψα(x) would led to a contradiction.

Hence, all the assumptions of Theorem A.5 are met and the thesis follows.

Our aim is to prove that Uε(x) ⊆ Λεα(x). We already showed that Uε(x) is bounded. The

following lemma shows that we can extract a converging subsequence, then exploiting

Lemma 3.1, we will prove the desired inclusion.

Theorem 3.1

Let {xk} and {εk} be two sequences such that εk > 0, εk → 0 and xk → x∗ for some x∗

at which ψα(x∗) finite, then ∪k>0Uεk(xk) is bounded.

Proof. By contradiction, we prove that the existence of a sequence {uk} such that uk ∈
∪k>0Uεk(xk) and ‖uk‖ → +∞ is not possible.

By Lemma 3.5, Uεk(xk) is bounded for any k. Thus, in order to prove that ‖uk‖ → +∞
is impossible, we can just consider the case uk ∈ Uεk(xk).

Suppose there exists a sequence {uk} such that uk ∈ Uεk(xk) and ‖uk‖ → +∞. Thanks

to Lemma 3.2, we can construct a sequence zk ∈ U0(xk), such that zk → z∗ ∈ U0(x∗).

Moreover, given an abitrarily large M > 0, we can construct also a sequence {wk}
satisfying the following conditions:

(a) wk = λkzk + (1− λk)uk,

(b) λk ∈ [0, 1],

(c) wk converges to some w∗ such that M < ‖w∗‖ < +∞.
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If M < ‖z∗‖, it is enought to set λk = 1 to satisfy (a), (b) and (c). Hence, suppose

M > ‖z∗‖, and choose λk = 1− δ
‖uk‖ with δ > 0. We have

‖wk‖2 = λ2
k‖zk‖2 + (1− λk)2‖uk‖2 + 2λk(1− λk)zTk uk

= (1− δ

‖uk‖
)2‖zk‖2 + δ2 + 2δ(1− δ

‖uk‖
)zTk (

uk
‖uk‖

)

≤ (1− δ

‖uk‖
)2‖zk‖2 + δ2 + 2δ(1− δ

‖uk‖
)‖zk‖,

(3.2)

where we have exploited the well known Cauchy–Schwarz inequality. As a consequence,

taking the limit in (3.2) as k → +∞, we obtain that ‖w∗‖ < +∞. Furthermore, it holds

‖wk‖2 ≥ (1− δ

‖uk‖
)2‖zk‖2 + δ2,

In fact, since Uε(x) ⊂ Rm+ for any ε ≥ 0 and any x ∈ Rn we have 2λk(1− λk)zTk uk ≥ 0.

Now, taking the limit as k → +∞ in the above inequality, we obtain

‖w∗‖ ≥ ‖z∗‖2 + δ2.

Since ‖uk‖ → ∞, we can set δ =
√
M and subsequencing to fulfil the requirement

0 ≤ λk ≤ 1. Hence, we can assume to have sequence a {wk} that satisfies (a), (b) and

(c).

By Lemma 3.1, we have that L∗(xk, ·) is convex. Therefore, it holds

L∗(xk, w
k) ≤ λkL∗(xk, zk) + (1− λk)L∗(xk, uk) ≤ λkψα(xk) + (1− λk)(ψα(xk) + εk),

where the last inequality follows from zk ∈ U0(xk) and uk ∈ Uεk(xk). Moreover,

we proved that L∗ and ψα are continuous functions. Thus, taking the limit we get

L∗(x∗, w∗) ≤ ψα(x∗), and hence w∗ ∈ U0(x∗). Anyway, by construction we can make

‖w∗‖ arbitrarily big contradicting the boundedness of U0(x∗), which is guaranteed by

Lemma 3.2.

We are finally ready to state the following corollary:

Corollary 3.2

Uε(x) ⊆ Λεα(x).

Proof. Lemma 3.5 guarantees that Definition 2.7 a) holds. Consider a sequence λk ∈
Uεk(xk) with xk → x∗ ∈ D and εk → 0. Theorem 3.1 guarantees that we can construct

a converging subsequence λkj → λ∗. Furthermore since L∗ is continuous, we obtain that

λ∗ ∈ U0(x∗), i.e., λ∗ is a Lagrangian multiplier of (Pαx ). Hence, also Definition 2.7 b)

holds.
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3.2 Relaxating the Complementary Slackness Conditions

In this section we study a weaker case of KKT conditions (named εKKT(η) conditions),

obtained relaxating the complementary slackness conditions. Afterwards, we prove that

vectors which satisfy them provide suitable ε approximated solution y and λ ∈ Λεα(x).

Definition 3.4 (εKKT(η))

Given η ∈ int Rm+ , and ε > 0 we say that a vector (y, λ, µ) ∈ Rn+m+r satisfies the

εKKTx(η) conditions if

∇yfα(x, y) +
m∑
i=1

λi∇ygi(x, y) +
r∑
j=1

µj∇hj(y) = 0 (εKKTx(η)1)

m∑
i=1

λigi(x, y) ≥ −ε (εKKTx(η)2)

µjhj(y) = 0 j = 1, 2, . . . , r1 (εKKTx(η)3)

gi(x, y) ≤ −ηi i = 1, 2, . . . ,m (εKKTx(η)4)

y ∈ D (εKKTx(η)5)

λ ∈ Rm+ , µ ∈ Rr1+ × Rr−r1 (εKKTx(η)6)

The following Lemma shows that the εKKTx(η) conditions are sufficient for y to be an

ε approximated solution of (Pαx ).

Lemma 3.6

If (y, λ, µ) ∈ Rn+m+r satisfies the εKKTx(η) conditions, then y is an ε approximated

solution of (Pαx ).

Proof. Let y∗ be a solution of (Pαx ). By (εKKTx(η)4) and (εKKTx(η)5), y ∈ P (x) and

therefore fα(x, y∗) ≤ fα(x, y). Thus, it is enough to prove that fα(x, y∗) + ε ≥ fα(x, y).

Exploiting the convexity of gi(x, ·), hj and (εKKTx(η)1), we obtain

0 = 〈∇yfα(x, y) +
m∑
i=1

λi∇ygi(x, y) +

r∑
i=1

µi∇hi(y), y∗ − y〉

≤ fα(x, y∗)− fα(x, y) +
m∑
i=1

λi(gi(x, y
∗)− gi(x, y)) +

r∑
j=1

µj(hj(y
∗)− hj(y)).

Since y∗ ∈ P (x) and λ ∈ Rm+ , λigi(x, y
∗) ≤ 0 for any i. Moreover, it holds

r∑
j=1

µj(hj(y
∗)− hj(y)) =

r1∑
j=1

µj(hj(y
∗)− hj(y))

≤
r1∑
j=1

µj(−hj(y)) = 0.
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Where the first equality holds since y, y∗ ∈ D, the inequality holds since µj ≥ 0 and

y∗ ∈ D and the last equality follows from (εKKTx(η)3). Therefore, we obtain

0 ≤ fα(x, y∗)− fα(x, y) +
m∑
i=1

λi(gi(x, y
∗)− gi(x, y)) +

r∑
j=1

µj(hj(y
∗)− hj(y))

≤ fα(x, y∗)− fα(x, y)−
m∑
i=1

λigi(x, y).

Where we implicitly exploit that λ ∈ Rm+ , y∗ ∈ P (x) implies λigi(x, y
∗) ≤ 0. Finally

applying (εKKTx(η)2) to the last inequality, we conclude that

0 ≤ fα(x, y∗)− fα(x, y)−
m∑
i=1

λigi(x, y) ≤ fα(x, y∗)− fα(x, y) + ε.

The remaining part of this section is devoted to prove that if (y, λ, µ) ∈ Rn+m+r satisfies

the εKKTx(η) conditions, then λ ∈ Uε(x) (and thus λ ∈ Λεα(x)).

Proposition 3.1

Let x ∈ Rn and ε > 0 be given. If (y, λ, µ) ∈ Rn+m+r satisfies εKKTx(η), then

λ ∈ Uε(x).

Proof. Given x ∈ Rn, by definition it is required that L∗(x, λ) ≤ ψα(x) + ε for λ to

belong to Uε(x).

Consider the problem

min
y∈D

fα(x, y) +
m∑
i=1

λigi(x, y). (P(λ))

The convexity of fα(x, ·) +
∑m

i=1 λigi(x, ·), guarantees that the KKT are sufficient to be

a minimizer. KKT conditions for (P(λ)) are indeed satisfied by (y, λ, µ), since they are

exactly (εKKTx(η)1), (εKKTx(η)3), (εKKTx(η)5) and (εKKTx(η)6). Therefore, y is a

solution of (P(λ)) and we have

−L∗(x, λ) = min
y∈D

fα(x, y) +
m∑
i=1

λigi(x, y)

= fα(x, y) +
m∑
i=1

λigi(x, y)

≥ −ψα(x) +

m∑
i=1

λigi(x, y)

≥ −ψα(x)− ε.
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Where the first inequality follows from Lemma 3.6 and the second from (εKKTx(η)2).

3.3 Existence of Solutions

In this section we show that at least one vector satisfying conditions εKKTx(η) for a

given ε always exists.

Definition 3.5

Let η ∈ Rm+ . We define the point-to-set map P : Rn × Rm → Rn as

P (x, η) = {y ∈ D| gi(x, y) + ηi ≤ 0, i = 1, 2, . . . ,m}.

Definition 3.6

Let η ∈ Rm+ . We define the problem (P ηx ) as

(P ηx ) find y ∈ arg min
y∈P (x,η)

fα(x, y)

Under Assumption 2.1, the continuity of the functions involved in our problem guar-

antees the existence of η ∈ int Rm+ such that whenever η ∈ Rm+ satisfies η 5 η compo-

nentwise there exists y ∈ Rn such that gi(x, y) + ηi < 0 and hj(y) < 0 hold for any

x ∈ Rn and i = 1, 2, . . .m, j = 1, 2, . . . , r1. Therefore, the set

V ≡ {η ∈ Rm+ | ∃y ∈ Rn∀x ∈ Rn : gi(x, y)+ηi < 0, hj(y) < 0, i = 1, . . . ,m, j = 1, . . . , r1, },

includes an open ball centered at 0. If we restrict to those η ∈ V only, we can assume

that the Slater’s constraint-qualification holds and that the solutions of (P ηx ) satisfy the

KKT conditions. Namely, these conditions read:

∇yfα(x, y) +

m∑
i=1

λi∇ygi(x, y) +

r∑
i=1

µi∇hi(y) = 0 (KKTη
x 1)

λigi(x, y) = −λiηi i = 1, 2, . . . ,m (KKTη
x 2)

µihi(y) = 0 i = 1, 2, . . . , r1 (KKTη
x 3)

gi(x, y) ≤ −ηi i = 1, 2, . . . ,m (KKTη
x 4)

y ∈ D (KKTη
x 5)

λ ∈ Rm+ , µ ∈ Rr1+ × Rr−r1 (KKTη
x 6)

Notice that for any η ∈ V , (P ηx ) admits a solution since the feasible region is non empty

and compact and fα(x, ·) is continuous. Furthermore, the solution is unique since fα(x, ·)
is strictly convex.
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Thanks to the convexity assumptions, also strong duality holds.

Now, we are going to show some proprieties of the optimal multipliers for (P ηx ). It is

straightforward to see that

U(x, η) ≡ {u ∈ Rm+ | L(x, η, u) = max
u=0

L(x, η, u)},

where

L(x, η, u) ≡ inf
y∈D

fα(x, y) +
m∑
i=1

ui(gi(x, y) + ηi),

is the set of Lagrange multipliers for (P ηx ) corresponding to the constraints gi.

Lemma 3.7

For any (x, η) ∈ Rn × V , the point-to-set map U : Rn+m → R is non empty, uniformly

bounded near (x, η) and closed at (x, η).

Proof. Notice that

i) min
y∈P (x,η)

fα(x, y) exists and it is finite thanks to the Weierstrass’s theorem (since

fα(x, ·) is continuous and P (x, y) is compact).

ii) fα(x, ·) is convex and continuous and so are also the functions (y, η) 7→ gi(x, y) + η,

iii) Slater’s constraint qualification holds for any x ∈ Rn and η ∈ V ,

iv) the solution set M(x, η) = arg min
y∈P (x,η)

fα(x, y) is a subset of D and therefore is bounded

thanks to Assumption 2.1.

Then, the thesis follow directly from Theorem A.6 considering f = −fα and Ω = P ,

X = Rn × V , Y = Rm.

Existence of an εKKTx(η) vector

Obviously, the existence of a vector (y, λ, µ) ∈ Rn+m+r satisfing KKTη
x conditions, im-

plies the existence of an εKKTx(η) vector with ε =
∑m

i=1 λiηi. Intuitively, this leads us

to think that for any ε > 0, there exists η ∈ int Rm+ such that the system of Defini-

tion 3.4 admits at least one solution.

Theorem 3.2

Let ε > 0, then exist η ∈ int Rm+ such that for any η ∈
∏m
i=1[0, ηi] exists a vector

(y, λ, µ) ∈ Rn+m+r satisfying the εKKTx(η) conditions.
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Proof. Given ε > 0 we construct a sequence such that ηk ∈ V , ηk → 0 with λk ∈ U(x, ηk).

Thanks to Lemma 3.7, we can take a subsequence of λk converging to λ∗. Therefore,∑m
i=1 λkiηki → 0. Thus, there exists an index k such that

∑m
i=1 λkiηki ≤ ε since ε > 0.

This guarantees that εKKTηk
x admits a solution.

3.4 Practical Methods to Compute Approximated Primal/-

Dual Solutions

A possible way to compute an ε approximated solution is to solve directly the equations

coming out from εKKTx(η) conditions. Unluckily, as for the KKT conditions, this could

be difficult or inefficient in some cases. Therefore, we develop a very general method

based on the Frank-Wolfe algorithm.

3.4.1 Frank & Wolfe Method Review

The Frank-Wolfe method [FW56] is a well known method to solve constrained optimiza-

tion problems. When applied to the problem (Pαx ), it generates two sequence of points

of P (x): zk and yk:

zk ∈ arg min
z∈P (x)

fα(x, yk−1) + 〈∇yfα(x, yk−1), z − yk−1〉

yk = (1− αk−1)yk−1 + αk−1zk−1,

(3.5)

where {αk} is a sequence in [0, 1] such that αk → 0 and y0 ∈ P (x).

Proposition 3.2

Define εk = fα(x, yk) − fα(x, yk−1) − 〈∇yfα(x, yk−1), zk − yk−1〉 then yk is an εk ap-

proximated solution of (Pαx )for any k > 0.

Proof. The sequence of points yj , j ∈ N produced by the Frank and Wolfe algorithm

belongs to the set P (x). Thus, the only property to be checked is that

fα(x, να(x)) ≥ fα(x, yk)− εk.

Exploiting the convexity of fα(x, ·) we have that

fα(x, να(x)) ≥ fα(x, yk−1)+〈∇yfα(x, yk−1), να(x)−yk−1〉 ≥ fα(x, yk−1)+〈∇yfα(x, yk−1), zk−yk−1〉,

where the last inequality is due to the optimality of zk. The definition of ε allows writing

the above inequality as

fα(x, yk)− εk = fα(x, yk−1) + 〈∇yfα(x, yk−1), zk − yk−1〉 ≤ fα(x, y(x)). (3.6)
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Frank and Wolfe [FW56] proved that if fα(x, ·) is convex and D is compact yk → να(x) as

k →∞. This implies that the error εk → 0. Thanks to the above proposition, breaking

the Frank-Wolfe procedure when εk ≤ ε, yk provides the desired ε approximated solution.

3.4.1.1 How to Obtain Bounded Approximated Dual Solutions

A possible way to obtain elements of Λεα(x) is to gather them from the solution of the

problem

min
z∈P (x)

fα(x, yk−1) + 〈∇yfα(x, yk−1), z − yk−1〉

that is solved at every iteration of the Frank-Wolfe procedure. In particular we can use

as approximated dual solution the solution of the problem

λx ∈ arg max
λ∈Rm+

min
z∈D
〈∇yfα(x, yk̂−1) + fα(x, yk̂−1), z − yk̂−1〉+

m∑
i=1

λigi(x, z) (3.7)

where yk̂ satisfies

ε ≥ εk̂ = fα(x, yk̂)− fα(x, yk̂−1)− 〈∇yfα(x, yk̂−1), zk̂ − yk̂−1〉. (3.8)

For clarity, suppose that our algorithm calls the routine below (see Algorithm 3.1) at

each iteration with parameters xk and εk in input to obtain the approximated primal

and dual solution of Pαxk .

Algorithm 3.1: Truncated Frank & Wolfe

TruncatedFrankAndWolfe (x , ε)
Choose y0 ∈ P (x) , s e t i = 0 .
do

Compute (zi, λi) , pr imal and dual s o l u t i o n o f the problem
minz∈P (x) fα(x, yi) + 〈∇yfα(x, yi), z − yi〉 .

αi = 2
i+2

yi+1 = (1− αi)yi + αizi
e r r o r = fα(x, yi+1)− fα(x, yi)− 〈∇yfα(x, yi), zi − yi〉
i = i+1

whi le ( e r r o r > ε)
re turn (yi, λi−1)

Multipliers obtained in this way enjoy the fundamental propriety of belonging to the set

Uε(x) given in Definition 3.3 as stated by the following Lemma.

Theorem 3.3

Suppose that λ ∈ Rm+ satisfies (3.7), then λ ∈ Uε(x).
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Proof. Consider the function L∗ given in Definition 3.2. Exploiting the convexity of

fα(x, ·), we obtain

L∗(x, λ) = max
z∈D
−fα(x, z)−

m∑
i=1

λigi(x, z)

≤ max
z∈D
−fα(x, yk̂−1)− 〈∇yfα(x, yk̂−1), z − yk̂−1〉 −

m∑
i=1

λigi(x, z)

= −fα(x, yk̂−1)− 〈∇yfα(x, yk̂−1), zk̂ − yk̂−1〉.

Thanks to (3.8) we get

fα(x, yk̂−1)+〈∇yfα(x, yk̂−1), z−yk̂−1〉 = f(x, yk̂)−εk̂ ≥ min
y∈P (x)

fα(x, y)−εk̂ = −ψα(x)−εk̂.

Multiplying the above inequality by -1, we get

L∗(x, λ) ≤ ψα(x) + εk̂ ≤ ψα(x) + ε,

which is the characteristic property of the vector λ belonging to Uε(x).

This result, coupled with Theorem 3.1, ensures that the procedure described in Al-

gorithm 3.1 is suitable to be embedded in algorithm Algorithm 2.2.

3.4.1.2 On the Computational Cost

The Truncated Frank-Wolfe algorithm explained in the above section has the advantage

of involving only the solution of linear optimization programs. In fact, thanks to the

linearization technique introduced in the previous chapter, all the constraints functions

in (Pαx ) are linear. Moreover, the Frank and Wolfe algorithm solves an optimization

program with a linear objective function at each step.

On the other hand, the well known drawback of the Frank-Wolfe algorithm is its “slow”

convergence rate. Indeed we have fα(x, yk)−fα(x, yα(x)) ≤ O( 1
k ) ([FW56] and [DH78]).

Anyway in a recent paper ([JLJ14]) Simon Lacoste-Julien and Martin Jaggi showed that

the Frank-Wolfe variant with Away Steps converges with a geometric rate (O(%−k)) for

any strongly convex objective function if furthermore the feasible region is a polytope.

This is indeed our case: the strong convexity requirement is always met due to the

properties of h, as well as the geometric properties of the feasible region.

The Away Steps variant was proposed in [Wol70]. While in the standard Frank-Wolfe

algorithm the direction at each iteration k is given by the vertex zk, the Away Steps

variant allows us to exploit also a subset of the vertices which have already been consid-

ered in the previous iterations. To do so, a data structure containing a subset of those
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vertices {zi|i ≤ k} is mantained. At each iteration k a new vertex could be added or

there could be a “drop step”, which causes the deletion of one or more vertices. After

computing the standard Frank-Wolfe direction zk − yk, the algorithm chooses the best

descent direction available in the data structure, i.e. z1 − yk, is better than z2 − yk if

〈∇yfα(x, yk), z1〉 ≤ 〈∇yfα(x, yk), z2〉.

It is easy to check that the Away Steps variant enjoys the same good properties of

the standard Frank-Wolfe algorithm and therefore we can use a Truncated Away Steps

Algorithm correctly.

Summarizing, exploiting a Frank and Wolfe method (in its Away Steps variant) and

truncating it when the error gets under our treshold ε, we get an ε approximated solution

of (Pαx ) and one vector λ ∈ Λεα(x). In addition, the algorithm has a good theoretical

behaviour due to its geometric rate of convergence and to the fact that the iteration cost

could be ammortized exploiting linear programming solvers.

3.4.2 Unconstrained Minimization Method

We introduced Algorithm 3.1 mainly because of its linearization property. Although

its theoretical “good behaviour” practical performances could be very different.

Beyond the Frank-Wolfe approach, another possibility that could lead to good perfor-

mances is the Uncostrained Minimization Method.

Given t > 0, consider the problem

min{fα(x, y)− 1

t

m∑
i=1

log(−gi(x, y)) : y ∈ D, gi(x, y) < 0 i = 1, 2, . . . ,m}. (CP(t))

Since G ≡ {y ∈ Rn| gi(x, y) < 0 i = 1, 2, . . . ,m} is an open convex set, if y ∈ G ∩ D
solves (CP(t)), either

∇y[fα(x, y)− 1

t

m∑
i=1

log(−gi(x, y))] = 0,

or y is a boundary point of G ∩D. Optimization algorithms can benefit from this fact.

As an example, in the case when D = Rn, (CP(t)) can be solved as an unconstrained

optimization problem searching for y ∈ Rn satisfying

∇y[fα(x, y)− 1

t

m∑
i=1

log(−gi(x, y))] = 0.
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Enhanced techniques are possible also in the case when D is given by linear equalities

and in general when it is a polyhedron strengthening the hypothesis accordingly.

The solution of (CP(t)) is linked to the εKKT(η) conditions by the following theorem.

Lemma 3.8

If y∗ solves (CP(t)), then there exist λ ∈ Rm+ , µ ∈ Rr1+ × Rr−r1 and η ∈ int Rm+ such

that (y∗, λ, µ) satisfies the εKKT(η) conditions with ε = m
t .

Proof. Since −log(−(·)) is a convex increasing function, its composition with gi(x, ·)
preserves the convexity. Since the Slater’s constraint qualification holds, the KKT con-

ditions for (CP(t)) have to be satisfied by some µ ∈ Rr1+ × Rr−r1 :

∇yfα(x, y∗) +

m∑
i=1

∇ygi(x, y∗)
−tgi(x, y∗)

+

r∑
j=1

µj∇hj(y∗) = 0 (3.9a)

µjhj(y
∗) = 0 j = 1, 2, . . . , r1 (3.9b)

y∗ ∈ G ∩D. (3.9c)

Defining λi = 1
−tgi(x,y∗) for i = 1, 2, . . . ,m, we are done. In fact (εKKTx(η)1), (εKKTx(η)3),

(εKKTx(η)5) are satisfied respectively because of (3.9a), (3.9b) and (3.9c). In addition

we have that λigi(x, y) = 1
−t and therefore also (εKKTx(η)2) is satisfied since

m∑
i=1

λigi(x, y) = −m
t
. (3.10)

Finally, y∗ ∈ G guarantees (εKKTx(η)6) and the existence of η ∈ int Rm+ such that

(εKKTx(η)4) holds.

It is straightforward that due to this lemma, we can provide suitable ε approximated

solutions solving a single problem in the form of (CP(t)) with t = m/ε, taking advantage

of the lack of constraints.

3.4.2.1 Historical Notes

The name comes from the fact that it reduces a constrained problem in the form of (Pαx )

to unconstrained optimization problems, except for the linear constraints which define

D (see Assumption 2.1). Moreover, in turn they could be partially absorbed into the

objective function obtaining

min
Hy=0

fα(x, y)− 1

t

m∑
i=1

log(−gi(x, y))− 1

t

r1∑
j=1

log(−hj(y)),
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where H ∈ Rn×r−r1 .

Usually, the Unconstrained Minimization Method, is not used as it is to solve exactly

an optimization problem through a unique unconstrained problem. Indeed it is used to

solve a sequence of problems in the form (CP(t)) for increasing values of t, exploiting

every time the previous solution point as the starting point. Since the solutions of

(CP (tk)) are m
tk

approximated solutions of (Pαx ), for tk → ∞ the method converges to

an optimal solution. The m
tk

approximated solutions are internal points of the feasible

region: for this reason the sequence of points solution of (CP (tk)) is called central-

path. This kind of methods, was originally proposed by Fiacco and McCormick in the

1960s. These methods are also called Barrier Methods or Sequential Unconstrained

Minimization Technique (SUMT) and belong to the family of Interior Point Methods.



Chapter 4

Equilibrium Prices Forecasting in

Cloud Computing

In this chapter we describe a concrete equilibrium problem which can be formulated in

the (EP) format, and we apply the methods proposed in the previous chapters aiming at

solving it. The first section describes the domain of the application (Cloud Computing).

In the second section we give a description of the problem from a Game Theoretic point

of view. In the third section we briefly discuss the assumptions and the application of

the descent methods. In the last section we show some numerical results.

4.1 Domain Presentation

A Cloud Computing Application

According to Armbrust at al. [AFG+10] “cloud computing refers to both the applications

delivered as services over the Internet and the hardware and systems software in the data

centers that provide those services”. Therefore, cloud computing involves computational

resources being sold on demand (utility computing) as a service. These computational

resources can belong to different levels of abstraction from software (software as a service

or SaaS) to hardware (platform or infrastructure as a service or PaaS/IaaS).

The impact of cloud computing in modern economy is huge. Selling computational

resources on demand allows converting capital expenses to operating expenses (CapEx

to OpEx) and cut down the over/under provisioning problem. For these reasons currently

the cloud computing offer is becoming day by day wider.

As cloud-based services increase and become more dynamic, new challenges and prob-

lems for the management of the provider systems arise. As a result Game Theory have

63
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been used extensively to model the competitive behaviour of the service providers and

users, see for example Shue et al. [SFS13] and Ardagna et al. [APP11].

In this chapter we consider the point of view of an IaaS provider which sells virtual

machines and communication bandwidth to the users. The users act as if their virtual

machines were real computing platforms with memory and computational capacity. On

the other side, the provider assigns each virtual machine to a physical server which

runs a virtualization software emulating the behaviour of the virtual machines. The

virtual machines belonging to the same user can send and receive messages, which in

turn are transmitted between the physical machines over the provider’s network. In

our scenario the provider has already allocated the virtual machines of his tenants and

has a stochastic knowledge of the communication bandwidth intensity that the users

will buy as a function of the transmission price. The objective of the provider is to

choose proper network routing and transmission prices in order to achieve an efficient

allocation and high revenues. On the other hand, the users are interested in accessing

the best communication bandwidth at the most convenient price. The system is modeled

as a game and the algorithms developed in the previous chapters are applied to find an

equilibrium.

System Model

We can model the server network as a graph G = (N,A), whose nodes are the physical

machines. We assume to have |N | = m physical machines denoted as PMi for i =

1, . . . ,m. T is the number of tenants, VM(i) is the set of virtual machines bought by

tenant i. The generic virtual machine is denoted as VMj .

Each virtual machine has been allocated on one physical machine and has associated

a parameter µj that represents its computational capacity. We can think of µj as the

mean number of data that the virtual machine can can process in the unit of time.

For each pair of communicating virtual machines VMs, V Mr ∈ VM(i), λsr denotes the

transmission bandwidth bought for communication from VMs to VMr. We can think

of λsr as the maximum number of data that VMs can send to VMr in the unit of time.

K is the number of communicating machine pairs and Λ(i) is the set of communication

pairs associated to tenant i.

The arc (i, j) ∈ A has associated a capacity, denoted as xkij , that is reserved for the

transmission of data of the pair k. The total capacity of the arc (i, j) is denoted by uij .

The unitary price paid for the transmission k is denoted by ck. In addition, we denote

the cost for routing a unit of flow through the arc (i, j) by bij .

We have the following quantities:

•
∑

(i,j)∈A
∑K

k=1 bijx
k
ij , the total routing cost in the server network.
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•
∑

k λkck, the income of the provider.

•
∑

k x
k
ij , the total reserved capacity of the arc (i, j).

• uij −
∑

k x
k
ij , the free capacity of the arc (i, j).

4.2 Game Theoretic Formulation

We model the behaviour of the tenants and the service provider as a game. The service

provider’s strategy concerns the allocation of the flows in the network (xkij) in order to

satisfy the demands of the tenants and the transmission prices (ck). A tenant’s strategy,

instead, concerns the deciding of the transmission demand (λk) between his virtual

machines. Since we assume the virtual machines to be already assigned to the physical

machines, each λk has associated an origin-destination pair of physical machines.

Provider’s Best Response

Formally, given vector of transmission demands λ ∈ RK , the response of the service

provider is

min
∑

(i,j)∈A

K∑
k=1

bijx
k
ij −

∑
k

rkλkck∑
j∈BS(i)

xkji −
∑

j∈FS(i)

xkij = βki i = 1, 2, . . . ,m, k = 1, 2, . . . ,K

K∑
k=1

xkji ≤ uij (i, j) ∈ A

K∑
k=1

ck
K
≤ B

xkij ≥ 0 (i, j) ∈ A, k = 1, 2, . . . ,K

0 ≤ ck ≤ c k = 1, 2, . . . ,K

(PR)

where

βki =


−λk if i is the origin of flow k

λk if i is the destination of flow k

0 otherwise

,

BS(i) and FS(i) denote respectively the backward and forward star of node i and rk

is a positive constant that can be used to model particular server’s policies (e.g, QoS

classes).

The first set of constraints provides a correct allocation of the flows λk in the network,

in order to satisfy the demands. The subsequent capacity constraints guarantee that
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the arc capacity uij is not exceeded. The first term of the objective function requires

the routing to be of minimum cost with respect to the prices bij . Notice that the

set of constraints relative to the variables xkij requires the solution of an embedded

multicommodity minimum cost flow problem in which K is the number of commodities.

The provider prices are constrained to be lower or equal to c and the mean price
∑K

k=1
ck
K

cannot exceed the fixed positive constant B.

Tenant’s Best Response

The response of each tenant depends only on the prices. This is because he does not

have knowledge of the network. The purpose of the tenant is to minimize his expenses.

In addition, in order to guarantee a good communication between his virtual machines,

the tenant tries to maximize the minimum bandwidth. Formally, given the provider

strategy c ∈ RK , the response of the tenant i is given by

min
∑
k∈Λ(i)

λkck − λmin∑
k∈S(j)∩Λ(i)

λk ≤ µj j ∈ VM(i)

λk ≥ λmin k ∈ Λ(i)

W k ≤ λk ≤W k k ∈ Λ(i)

(TR)

where S(j) denotes the set of pairs that have the virtual machine VMj as destination.

λmin is an auxiliary variable: due to the constraints λk ≥ λmin, the best value it can get

whenever λk’s are given is always the value of the minimum λk ∈ Λ(i). The constraint∑
k∈S(j)∩Λ(i) λk ≤ µj requires that the intensity of data transmitted in the time unit to

machine VMi does not exceed the quantity of data it can compute. W k,W k ∈ R+ are

lower and upper bound on the bandwidth allocation to the tenant.

4.2.1 Enhanced Formulation

Bounding Network Delay

The game formulated above would be perfect to test ?? and ??, aiming at finding

equilibria. Anyway, we need nonlinear constraints in order to test properly algorithm

Algorithm 2.1 and Algorithm 2.2,. Therefore, we decided to modify the provider

response (PR) adding a constraints on the maximum delay to cross arcs in the network.

The delay function we consider is the one introduced by the U.S. Bureau of Public Roads

[oPR64], defined as

Dij(x) = fij [1 + 0.15(

∑
k x

k
ij

uij
)4],
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where fij is the free flow travel time on link (i, j) per unit of time. Dij extimates the

mean time required to cross the arc (i, j) when the utilization factor of the arc is equal

to
∑
k x

k
ij

uij
. The provider best response, we call it (PRE) (Provider Response Enhanced),

becomes

min
∑

(i,j)∈A

K∑
k=1

bijx
k
ij −

∑
k

rkλkck∑
j∈BS(i)

xkji −
∑

j∈FS(i)

xkij = βki i = 1, 2, . . . ,m, k = 1, 2, . . . ,K

K∑
k=1

xkji ≤ uij (i, j) ∈ A

Dij(x) ≤ Dij (i, j) ∈ A
K∑
k=1

ck
K
≤ B

xkij ≥ 0 (i, j) ∈ A, k = 1, 2, . . . ,K

0 ≤ ck ≤ c k = 1, 2, . . . ,K

(PRE)

where Dij is a positive constant bounding the delay for crossing arc (i, j).

Software Application Scenario

All the descent methods we have described in the previous chapters implicitely require

a centralized execution. In fact, all the players’ parameters have to be accessible to

the algorithm. This could be in contrast with some enviromental policies, as in cloud

computing, where for security reasons is often preferred a distributed approach.

Our proposal is to apply the algorithms at the server side, with simulation purposes.

Instead of computing equilibria that require all players’ informations, the provider esti-

mates the parameters of the users (e.g., from past sessions) and solve (EP). The aim is

to provide the server with a stochastic knowledge of the equilibria.

In our case, all the parameters W k,W k and µj are private informations of the tenant

and hence are not known to the provider. Therefore, we suppose that the provider treats

them as random variables with known distribution. Instead of requiring λk, to satisfy

the constraints  λk ≤W k

λk ≥W k,
(4.1)
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it is required that the probability that the random variables W k and W k satisfy the

constraints is greater than ε ∈]0, 1[: P{λk ≤W k} ≥ ε

P{λk ≥W k} ≥ ε.
(4.2)

In the same way, introducing the random variable µj , we substitute the constraints∑
k∈S(j)∩Λ(i)

λk ≤ µj j ∈ VM(i) (4.3)

with

P{
∑

k∈S(j)∩Λ(i)

λk ≤ µj} ≥ ε j ∈ VM(i). (4.4)

Optimization programs that include this kind of constraints are also known as chance

(or probabilistic) constrained programs. Chance constrained programming have been

introduced by Charnes and Cooper [CC59] in a linear programming framework.

Due to the simple structure of the constraints (4.1), the constraints (4.2) can be handled

easily.

Definition 4.1

Let FX be the cumulative distribution function of a random variable X : Ω→ R where

(Ω,F ,P) is a probability space. Then given ε ∈ (0, 1], the ε quantile of X is defined as

qεX = arg inf{x ∈ R | FX(x) ≥ ε}.

Since the cumulative distribution function FX is continuous and monotone non decreas-

ing, if FX is invertible with inverse F−1
X , we have qεX = F−1

X (ε). Furthermore it holds

that if x ≤ qεX then FX(x) ≤ ε.

Exploiting the quantile we can replace the constraints (4.2), which can be nonlinear, by

simple box constraint as shown by the following theorem.

Theorem 4.1

λk ∈ R satisfies (4.2) iff

qεWk
≤ λk ≤ q1−εWk

.

Proof. Let FWk
and FWk

be the cumulative distribution function of W k and W k respec-

tively. The first constraint of (4.2) rewrites

1− P{λk ≥W k} ≥ ε

1− FWk
(λk) ≥ ε

FWk
(λk) ≤ 1− ε.
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Definition 4.1 guarantees that the above condition is satisfied by λk iff λk ≤ q1−εWk
.

Similarly the second constraint of (4.2) is equivalent to FWk
(λk) ≥ ε. This condition is

satisfied iff λk ≥ qεWk
.

Repeating the same reasoning with constraints (4.4) we obtain the equivalent theorem:

Theorem 4.2

λk ∈ R satisfies (4.4) iff ∑
k∈S(j)∩Λ(i)

λk ≤ q1−ε µj .

The best response of the tenant i becomes

min
∑
k∈Λ(i)

λkck − λmin∑
k∈S(j)∩Λ(i)

λk ≤ q1−ε µj j ∈ VM(i)

λk ≥ λmin k ∈ Λ(i)

qεWk
≤ λk ≤ q1−εWk

k ∈ Λ(i).

(TRE)

Notice that in (TRE) all the parameters are known to the provider. Indeed q1−ε µj , qεWk
, q1−εWk

could be statistically extimated by the observations collected during previous sessions

with the user i.

In what follows we will refer to the game given by (PRE) and (TRE) as the prices

forecasting game and to the problem of finding an equilibrium as the equilibrium prices

forecasting problem (EPFP).

4.3 From Theory to Application

4.3.1 Generalized Games

There is a very relevant difference between the game definition given in Definition 1.2

and the game presented in the previous section. Indeed, looking at (PRE) we can notice

that the strategy set of the provider depends on the variables of the other players. This

is due to the constraints∑
j∈BS(i)

xkji −
∑

j∈FS(i)

xkij = βki i = 1, 2, . . . ,m, k = 1, 2, . . . ,K,

since βki depends on λk. This is in contrast with Definition 1.2, since it requires that

the strategy set of each player is independent of the others player’s variables.
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In this section we introduce the notion of Generalized Game and of Generalized Nash

Equilibrium Problem (Debreu [Deb52]), which is a more general class of problems that

cover our case. As we will see, due to the particular structure of the game, the GNEP

can be found exploiting a Nikaido-Isoda bifunction as before: thus, we can apply the

theory developed in the past chapters.

Definition 4.2 (Generalized Game)

A generalized game G is a triple G = 〈P, {Sp}p∈P , {up}p∈P 〉 where

− P = {1, 2, . . . , N} is the set of players,

− Sp is a point to set map Sp : Rn−p → Rnp ,

− up :
∏N
j=1 Sj → R is the payoff function of player p.

Clearly, the difference with Definition 1.2 lays in Sp. While in Definition 1.2 Sp is a

set meaning that the player p can always play any strategy sp ∈ Sp, in Definition 4.2

Sp is a point to set map with the meaning that the strategy played by p depends on the

strategies s−p choosen by the other players:

sp ∈ Sp(s−p).

Hence, the best response of player p to the other players’ strategy s−p ∈
∏
i 6=pRni is

min{up(sp, s−p) | sp ∈ Sp(s−p)}.

The Generalized Nash equilibrium problem (GNEP) consist in finding strategies (s1, s2, . . . , sN )

which are a Generalized Nash equilibrium, defined as follows.

Definition 4.3 (Generalized Nash Equilibrium)

Let G be a game and let

S = {x ∈
N∏
p=1

Rnp | xp ∈ Sp(x−p) p = 1, 2, . . . , N}.

A point x∗ ∈ S is called Generalized Nash Equilibrium for the game G iff

up(y, x
∗
−p) ≥ up(x∗) ∀(y, x∗−p) ∈ S

holds for any player p.

The Jointly Convex situation (Rosen [Ros65]) provides an interesting case.



Chapter 4 Equilibrium Prices Forecasting in Cloud Computing 71

Assumption 4.1 (Convexity Assumption)

A (GNEP) is said to satisfy the Convexity Assumption if for every player p and every

x−p ∈
∏
i 6=p Im Si, the payoff function up(·, x−p) is convex and the set Sp(x−p) is closed

and convex.

Definition 4.4 (Jointly Convex)

Consider a GNEP satisfying the Convexity Assumption. We say that it is jointly convex

if there exists some closed convex set X ∈
∏N
i=1 Rni such that we have that

Sp(x−p) = {xp ∈ Rnp | (xp, x−p) ∈ X} ∀x−p ∈
∏
i 6=p

Rni

holds for any player p.

It is remarkable that if the sets Sp(x−p) are given by inequalites in the form

Sp(x−p) = {xp ∈ Rnp | gp(xp) ≤ 0, g(xp, x−p) ≤ 0}

for some g :
∏N
i=1 Rni → Rm, gp : Rnp → Rmp , and , m,m1, . . . ,mP ≥ 1 then a GNEP

satisfying the Convexity Assumption is jointly convex iif g, g1, . . . , gP are convex over

their respective domain.

The interesting thing about jointly convex (GNEP)s it that can be reformulated as an

(EP) exploiting the Nikaido Isoda bifunction (1.4). In fact if NI is the Nikaido Isoda

bifunction and X is the convex set of strategies as in Definition 4.4, then solving the

(GNEP) is equivalent to solve the following (EP):

find x ∈ X : NI(x, y) ≥ 0 ∀y ∈ X.

For further details on (GNEP) the reader can refer to the detailed survey by Facchinei

and Kanzow [FK07].

4.3.2 Application of the Descent Methods

We introduced the Equilibrium Prices Forecasting problem in order to have a concrete

setting to test the algorithms described in the previous chapters. In this paragraph we

show that the (GNEP) associated with the EPFP problem matches all our assumptions.

Joint Convexity

Firstly, notice that the (GNEP) is jointly convex. Indeed, both the provider and the

tenants’ payoff functions (see (PRE) and (TRE)) are affine with respect to their opti-

mization variables. In addition, all the constraints in (PRE) and (TRE) are given by
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inequalities or equalities and are convex with respect to all the variables. Hence, the

corresponding (GNEP) satisfies the Convexity Assumption and is jointly convex.

Assumptions on the Nikaido Isoda Bifunction

The Nikaido Isoda bifunction NI : RK|A|+K+K × RK|A|+K+K → R associated with

(EPFP) is

NI(X,Y ) = fprov(Yx, Xλ, Yc)−fprov(Xx, Xλ, Xc)+
T∑
t=1

f tten(Xx, Yλ, Xc)−f tten(Xx, Xλ, Xc)

where fprov is the payoff function of the provider, i.e.,

fprov(x, λ, c) =
∑

(i,j)∈A

K∑
k=1

bijx
k
ij −

∑
k

rkλkck,

and f tten → R is the payoff function of the tenant t, i.e.,

f tten(x, λ, c) =
∑
k∈Λ(t)

λkck − λtmin

and Xx ∈ RK|A|, Xλ ∈ RK , Xc ∈ RK are the components of the vector X related

respectively to the variables xkij , λk and ck (Yx ∈ RK|A|, Yλ ∈ RK , Yc ∈ RK are defined

accordingly).

NI is composed by affine functions. Obviously, it is differentiable and NI(X, ·) is convex

for any X ∈ RK|A|+K+K . In addition, it can be proven (see [BP14]), that c-monotonicity

is guaranteed if NI(·, Y ) is concave for any Y ∈ RK|A|+K+K . This is indeed the case,

since NI(·, Y ) is affine.

4.4 Numerical Results

The platform we decide to adopt is MATLAB R2011a. We implement the following

algorithms:

BCP: Algorithm 1.2,

BCP-ET: Algorithm 1.3,

COAP: Algorithm 2.1,

COAP-ET: Algorithm 2.2.
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The implementation includes an OO framework for optimization problems, a random

generator of instances of (EPFP) and MATLAB coding of several nonlinear optimization

algorithms.

In order to test properly the algorithms, we decided to solve their inner problems (Pαx )

and (Pαx ) using the same procedure: the Sequential Unconstrained Minimization Tech-

nique described in subsection 3.4.2. We have seen that the SUMT solves a sequence of

problems in the form (CP(tk)) with tk → +∞. In our implementation tk = 10 · 20k and

the central path problem (CP(tk)) is solved via the MATLAB function fmincon exploing

the Successive Quadratic Programming method. COAP and BCP require an optimal

solution, so the choice 10−6 represent the threshold for “true optimality”. Instead, BCP-

ET and COAP-ET stop the computation whenever an ε approximated solution is found.

This obvioulsy impacts on the number of average iterations of the SUMT method and

therefore on the average computational time.

After some preliminary tests we set parameters of the algorithm as follows:

Parameter Value

η 0.8

β 0.7

γ 0.9

Sequence Value

αk
1
k2

%k
1
k5

εk
1
k2

δk
25
k2

Firstly we tested the algorithm on 10 instances of (EPFP) generated fully at random for

fixed number of tenant (10) and network nodes (8). The table below reports the average

size of the subprobem (Pαx ).

Dimension

Variables 352

Nonlinear Constraints 33

Linear Inequalities 41

Linear Equalities 80

The computation is ended when h(xk, yα(xk)) < 10−2. The mean of the results is shown

in the following table.

Algorithm Time Sub-Problems Sub-Problem Time Jumps

BCP 219s 20 8.14s 14

COAP 211s 20 8.03s 14

BCP-ET 144s 20 4.6s 15

COAP-ET 138s 20 4.49s 16

where

Time is the average completion time of the algorithm (in seconds),
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Sub-Problems is the number of times a problem in the form (Pαx ) and (Pαx ) is solved,

Sub-Problem Time is the average time required for solving these problems,

Jumps is the mean number of GOTO taken due to a dissatisfaction of a condition.

Remember that a GOTO is taken every time the parameter α or % are updated.

While the general behaviour of the algorithm does not change (number of jumps and

of sub-problem solved), we can notice a sensible decrement in the completion time that

almost halves. This is due to the reduction of the average time required to solve the inner

problems. Notice that the time to solve (Pαx ) and (Pαx ) is nearly the same. This is due

to the SUMT method: indeed, all the inequality constraints are taken into the objective

function during the computation and the nonlinear constraints influence minimally only

the evaluation of the objective function and of its gradient.

In order to approximate the asymptotic behaviour of the algorithms we plan an “in-

cremental size” test. We generate 6 instances of (EPFP) of different sizes, maintaining

constant the ratio between number of nodes and number of flows. The following graph

relates the number of variables to the completion time of the algorithms.

BCP

COAP

BCP-ET

COAP-ET

0 100 200 300 400 500
Variables0

100

200

300

400

500

Time Hsec.L

It can be noticed that we have an encouraging speed up in both error tolerant versions

also for different problem sizes.

The error tolerant versions perform as well as the tolerance threshold for h(x, yα(x)) is

high. The number of iterations increases when lowering the threshold and consequently

the average time required to find a sub-optimal solution of the inner problem increases.

The following table helps to understand the decay of the error tolerant benefits as the

threshold decreases.
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It has been generated solving an instance of (EPFP) of 8 nodes and 10 flows via BCP and

BCP-ET. We have taken the average time needed to solve the inner problem at every

iteration, considering the iterations that achieve almost the same value h(x, yα(x)). We

can do this since the behaviour of the two algorithms is very similar. Anyway, we can

always enforce this behaviour choosing proper sequence {εk}. Hence the ratio of the

average inner problem solution time for the different iterations is an estimator of the

potential speed up for different threshold.

Notice that since the behaviour of COAP/COAP-ET is comparable with the one of

BCP/BCP-ET due to the SUMT algorithm, we have consired only BCP and BCP-ET

in this test.

Iteration Avg IPT BCP Avg IPT BCP-ET Ratio

1 7.71s 3.30s 2.33

2 7.34s 4.38s 1.67

3 7.44s 4.48s 1.66

4 7.58s 4.48s 1.69

5 7.73s 4.54s 1.70

6 8.81s 6.07s 1.45

7 9.15s 6.48s 1.48

8 9.19s 6.46s 1.42

9 9.04s 7.55s 1.19

10 9.09s 7.64s 1.18

11 8.87s 7.62s 1.16

where

Iteration is the number of iterations,

Avg IPT BCP is average time required by BCP for solving the inner problem,

Avg IPT BCPET is average time required by BCPET for solving the inner problem,

Ratio is the ratio Avg IPT BCP
Avg IPT BCPET .

In the following graph shows how the Ratio changes as a function of the number of

iterations
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As expected, the improvement provided by the error tolerant approach vanish as the

number of iterations increases.

Summarizing, numerical results suggest to apply the error tolerant extensions when it

is required a mid-low accurancy (h(x, yα(x)) threshold) of the solutions of (EP) or in

general when the number of iterations is not too high. But this is rather intuitive,

indeed, since the speed up provided by the error tolerant approach lasts for a finite

number of iterations it is useless to apply BCP-ET or COAP-ET when (EP) requires a

high number of iterations. On the other hand, under this above conditions, numerical

results show that the performace can improve moderately.



Appendix A

Point-to-Set Maps in

Mathematical Programming

The following paragraph briefly reviews some results due to Hogan about the theory of

points-to-set maps, that are used throughout all the thesis.

Definition A.1 ([Hog73c])

Let X and Y be topological spaces. Let Ω be a point-to-set map Ω : X → Y , i.e., a

function Ω : X → 2Y . Then, we define Ω to be:

a) open at a point x ∈ X iff {xk} ⊂ X, xk → x and y ∈ Ω(x) imply the existence of an

integer m and a sequence {yk} ⊂ Y such that yk → y and yk ∈ Ω(xk) for k ≥ m.

b) closed at a point x ∈ X iff {xk} ⊂ X, xk → x, yk ∈ Ω(xk) and yk → y imply

y ∈ Ω(x).

c) continuous at a point x iff is closed and open at x.

Ω is open, closed of continuous on X if it has the corresponding property for every

x ∈ X.

d) Ω is said to be uniformly compact(bounded) near x iff there is a neighbour N of x

such that the set ∪x∈NΩ(x) is, respectively, compact(bounded).

Theorem A.1 ([Hog73c])

Let Ω be a point-to-set map Ω : X → Y , and let f : X × Y → [−∞,+∞] . Consider

the following function v : X → [−∞,+∞]

v(x) = sup
y∈Ω(x)

f (x, y).

If Ω is continuous and uniformely compact at x ∈ X and f is continuous on x× Ω(x),

then v is continuous at x.

77
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Theorem A.2 (Danskin [Dan67] [Hog73b])

Let Ω, f , v,X, Y be defined as in Theorem A.1. Suppose that ∇xf exists, f and ∇yf

are continuous over X × Y , X is compact, and Ω is constant. Then, the directional

derivative v′(x; d) exists for any x, d ∈ X and

v′(x; d) = max
y∈M(x)

〈∇xf (x, y), d〉

where M(x) = {y ∈ Ω(x)| v(x) ≤ f (x, y)}.

Theorem A.3 ([Hog73c])

Let P be a point-to-set map P : X → Y defined as follows:

P (x) = {y ∈ Y : g(x, y) ≤ 0},

where g(x, y) : X × Y → [−∞,+∞]m. If each component of g is lower semicontinuous

on x× Y , then P is closed at x.

Theorem A.4 ([Hog73c])

Let P be a point-to-set map and g a function defined as in Theorem A.3. If Y is

convex and normed, if each component of g is continuous on x × P (x) and g(x, ·) is

convex for each fixed x ∈ X, and if there exists y ∈ Y such that g(x, y) < 0, then P is

open at x.

Theorem A.5 ([Hog73c])

Let Ω, f , v,M be as defined in Theorem A.2. Suppose in addition that Y is a subset of

a finite-dimensional normed space, f (x, ·) is quasiconcave in y for fixed x and continuous

on X × Y , Ω is closed on a neighborhood of x and open at x, and Ω(x) is convex for

each x in a neighborhood of x. Then, M(x) is non empty and compact if and only if

M(x) is nonempty and uniformly compact near x.

Theorem A.6 ([Hog73b])

Let Y be a closed convex set, and let the point-to-set maps Ω,M : X → Y and the

function v : X → Y be defined as follows:

Ω(x) = {y ∈ Y | g(x, y) 5 0},

v(x) = sup
y∈Ω(x)

f (x, y),

M(x) = {y ∈ Y | v(x) ≤ f (x, y)},

where g(x, ·) and −f (x, ·) are convex. In addition, let x ∈ X and suppose that g, f are

continuous on Nx×Y , where Nx is a neighborhood of x. Let U(x) be the set of Lagrangian

multipliers associated with the problem which defines v(x). If M(x) is nonempty and

bounded and there is a point y ∈ Y such that g(x, y) < 0, then U and M are nonempty

and bounded on a neighborhood of x and U is closed at x.
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Nonlinear Programming

Convexity

Definition B.1 (Convex Set)

A set C ⊆ Rn it is said to be convex if given any x, y ∈ C

λx+ (1− λ)y ∈ C ∀λ ∈ [0, 1].

Definition B.2 (Convex Function)

Let C be a convex subset of Rn. A function f : Rn → R is called

− convex over C if for any x, y ∈ C

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀λ ∈ [0, 1].

− strictly convex over C if for any x, y ∈ C

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) ∀λ ∈ [0, 1].

− strongly convex over C if ∃m > 0 such that for any x, y ∈ C

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− 1

2
mλ(1− λ)‖x− y‖22 ∀λ ∈ [0, 1].

A function f such that −f is convex, strictly or strongly convex is called respectively

concave, strictly concave or strongly concave. The following implications are obvious

from the above definitions:

f strongly convex ⇒ f strictly convex ⇒ f convex. (B.1)

Theorem B.1

Let C ⊆ Rn be a convex set. A differentiable function f : Rn → R is

79
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− convex over a set C iff for any x, y ∈ C

f(x) ≥ f(y) + 〈∇f(y), x− y〉. (B.2)

− strictly convex over a set C iff for any x, y ∈ C

f(x) > f(y) + 〈∇f(y), x− y〉.

− strongly convex over a set C iff ∃m > 0 such that for any x, y ∈ C

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
m

2
‖x− y‖22.

Optimization Problems

Let f be a function Rn → R and D be a subset of Rn, then we define the optimization

problem (OP), denoted as

min
x∈D

f(x), (OP)

as the problem of finding a point x ∈ Rn satisfying

i) x ∈ D,

ii) f(x) ≤ f(y) ∀y ∈ D.

The requirement i) is called feasibility while ii) is called optimality. A solution of (OP)

is also called global minimum of (OP) in order to distinguish it from local minima of

(OP), which are feasible points that satisfy the optimality requirement only in their

neighborhoods.

Definition B.3 (Local Minimum of (OP))

A point x ∈ D is a local minimum of (P) if ∃ε > 0

f(x) ≤ f(y) ∀y ∈ B(x, ε) ∩D, (B.3)

where B(x, ε) denotes the open ball of radius ε centered at x.

Clearly a global minimum is also a local minimum but not viceversa.

Theorem B.2

Suppose that f is convex over D. If x is a local minimum of (OP), then it is also a

global minimum of (OP).

Theorem B.3

Suppose that f is strictly convex over D. Then, if there exists at least one local minimum

of (OP), it is unique.
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Unconstrained Optimization

In this paragraph we deal with the case D = Rn. In this case the problem (OP) is called

Unconstrained Optimization Problem (UOP) and it is denoted as

min
x∈Rn

f(x). (UOP)

Definition B.4 (Stationary Point of (UOP))

Suppose that f is differentiable. Then, a point x is called Stationary Point of (UOP) if

∇f(x) = 0. (B.4)

Theorem B.4 (Fermat (1637))

If x is a local minimum of (UOP), then it is a stationary point of (UOP).

As a consequence of (B.2) and of Theorem B.4 we obtain the following theorem

Theorem B.5

Suppose that f is differentiable and convex over Rn, then x solves (UOP) iff

∇f(x) = 0. (B.5)

The interesting fact is that if f is differentiable and convex, the problem (UOP) collapse

in the problem of solving a system of equations. Therefore, in principle, any algorithm

to solve nonlinear systems (e.g., Newton-Raphson) could be used.

Constrained Optimization

In this paragraph we generalize the above results removing the assumption D = Rn.

The first results concern a convex feasible region D.

Definition B.5

Suppose that D is convex and that f is differentiable over D. Then a point x ∈ D is

called stationary point of (OP) if

〈∇f(x), x− x〉 ≥ 0 ∀x ∈ D. (B.6)

Theorem B.6

Suppose that D is convex and that f is differentiable over D. Then if a point x ∈ D is

a local minimum of (OP) it is a stationary point of (OP).

As a consequence of Theorem B.2, Theorem B.6 and (B.2) we obtain the following

result.
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Theorem B.7

Suppose that D is convex and that f is differentiable and convex over D. Then a point

x ∈ D is a global minimum of (OP) iff is a stationary point of (OP).

More interesting results could be obtained supposing that D is explicitly described by

inequalities. Let functions f, gi, hj : Rn → R be differentiable over Rn for i = 1, 2, . . . ,m

and j = 1, 2, . . . , r. In addition, suppose that

D = {x ∈ Rn| gi(x) ≤ 0, hi(x) = 0} (B.7)

Then, the the problem (OP) reads

min f(x)

gi(x) ≤ 0 i = 1, 2, . . . ,m

hj(x) = 0 j = 1, 2, . . . , r

(COP)

and the following theorem holds.

Theorem B.8 (Fritz-John)

If x is a local minimum for (COP) then ∃ θ, λ1, . . . , λm ≥ 0 and µ1, . . . , µr ∈ R such

that

θ∇f(x) +

m∑
i=1

λi∇gi(x) +

r∑
j=1

µjhj(x) = 0

λigi(x) = 0 i = 1, 2, . . . ,m

gi(x) ≤ 0 i = 1, 2, . . . ,m

hj(x) = 0 j = 1, 2, . . . , r

(FJ)

with at least one nonzero element between θ, λ1, . . . , λm, µ1, . . . , µr.

Definition B.6 (Set of Active Constraints)

Given x ∈ Rn, we define the (index) set of active inequality constraints I(x) as

I(x) = {i| gi(x) = 0}.

Definition B.7 (SCQ)

Let x be a point of Rn. If gi is convex and hj is affine for any j and i ∈ I(x), the

vectors ∇hj(x) are linearly independent and there exists y ∈ Rn such that gi(y) < 0

and hj(y) = 0 for any j = 1, . . . , r, i ∈ I(x), then x satisfies the Slater constraint

qualification.

Definition B.8 (MFCQ)

Let x be a point of Rn. If the vectors ∇hj(x) are linearly independent and if there
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exists d ∈ Rn such that

〈∇gi(x), d〉 < 0 i ∈ I(x)

〈∇hj(x), d〉 = 0 j = 1, 2, . . . , r,

then x satisfies the Mangasarian-Fromovitz constraint qualification.

Notice that SCQ implies MFCQ.

Theorem B.9 (Karush-Kuhn-Tucker)

Let x be a point satisfying MFCQ constraint qualification. If x is a local minimum for

(COP), then there exist λ1, . . . , λm ≥ 0 and µ1, . . . , µr ∈ R such that

∇f(x) +
m∑
i=1

λi∇gi(x) +
r∑
j=1

µjhj(x) = 0

λigi(x) = 0 i = 1, 2, . . . ,m

gi(x) ≤ 0 i = 1, 2, . . . ,m

hj(x) = 0 j = 1, 2, . . . , r

(KKT)

The above optimality necessary conditions are also called KKT conditions and they are

a particular case of Theorem B.8. For the sake of brevity, we reported only MFCQ and

SCQ but there are other assumptions on x, called constraint qualifications, that allows

us to move from Fritz-John conditions to the KKT conditions.

While in general KKT conditions are only necessary conditions to be a global minimum,

in the particular case when f, gi are convex for i = 1, . . . ,m and hj are affine for j =

1, . . . , r, they are also sufficient. The λi satisfying (KKT) are called Lagrange multipliers.

Duality

Definition B.9 (Lagrangian)

We define the Lagrangian function of (COP), L : Rn × Rm × Rr → R as

L(x, λ, µ) = f(x) +

m∑
i=1

λigi(x) +

r∑
j=1

µjhj(x).

Notice that the first KKT condition

∇f(x) +
m∑
i=1

λi∇gi(x) +
r∑
j=1

µjhj(x) = 0 (B.8)

could be also written ∇xL(x, λ, µ) = 0, with the immediate interpretation that a local

minimum has to be a stationary point of the function L(·, λ, µ).
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Definition B.10 (Lagrange Dual Function)

We define the function g : Rm+ × Rr → R as the optimum value of the unconstrained

minimization problem of minimizing L(·, λ, µ) over Rn, i.e.

g(λ, µ) = inf
x∈Rn

L(x, λ, µ).

Theorem B.10

Given λ ∈ Rm+ and µ ∈ Rr, let x∗ be the solution of (COP). Then, it holds

g(λ, µ) ≤ f(x∗).

Definition B.11

We define the Lagrange dual problem as the constrained optimization problem given by

max{g(λ, µ) : λ ∈ Rm+ , µ ∈ Rr}. (LD)

Theorem B.11 (Strong Duality)

Suppose that f, gi are convex and hj are affine for any i, j. If x∗ solves (COP) and

satisfies SCQ and, in addition (λ∗, µ∗) solves (LD), then

g(λ∗, µ∗) = L(x∗, λ∗, µ∗) = f(x∗).

and the vector (x∗, λ∗, µ∗) the satisfies KKT conditions.
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