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Chapter 1

Introduction

Suppose you are a stock market buyer and your choices, in terms of what
blocks of shares buy, are driven by a set of block-relative attributes such
as the number of shares in a block and its price. In particular, you are
interested in the blocks with the highest number of shares and lowest price.
Unfortunately, the two goals are complementary as the blocks with an high
volume of shares tend have an higher price: since it is not possible to es-
tablish a total ordering among the blocks, it is impossible to choose a set of
best solutions. What can be done, instead, is to present a set of interesting
ones, leaving to you the choice of what buy. A block of shares is interesting
if does not exist another block with higher volume and lower price. The set
of the interesting blocks is the skyline [21], also referred as Pareto frontier
[4] or maximum vector [10].
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Abstract

We consider the problem of efficientlycomputing the sky-
line against the most recent N elements in a data stream
seen so far. Specifically, we study the n-of-N skyline
queries; that is, computing the skyline for the most recent
n (∀n ≤ N ) elements. Firstly, we developed an effec-
tive pruning technique to minimize the number of elements
to be kept. It can be shown that on average storing only
O(logd N) elements from the most recent N elements is
sufficientto support the precise computation of all n-of-N
skyline queries in a d-dimension space if the data distri-
bution on each dimension is independent. Then, a novel
encoding scheme is proposed, together with efficient up-
date techniques, for the stored elements, so that comput-
ing an n-of-N skyline query in a d-dimension space takes
O(logN + s) time that is reduced to O(d log logN + s) if
the data distribution is independent, where s is the number
of skyline points. Thirdly, a novel trigger based technique
is provided to process continuous n-of-N skyline queries
with O(δ) time to update the current result per new data
element and O(log s) time to update the trigger list per re-
sult change, where δ is the number of element changes from
the current result to the new result. Finally, we extend our
techniques to computing the skyline against an arbitrary
window in the most recent N elements. Besides theoretical
performance guarantees, our extensive experiments demon-
strated that the new techniques can support on-line skyline
query computation over very rapid data streams.

1 Introduction
For two points x = (x1, x2, ..., xd) and y =

(y1, y2, ..., yd) in the d-dimensional space, x dominates y
if xi ≤ yi for 1 ≤ i ≤ d. Given a set P of points, the
skyline comprises the points in P , which are not dominated
by another point in P (see Figure 1 for example). Skyline
computation roots in many applications [26] that involve a
multi-criteria decision making. For instance, in the stock
market buyers may want to know the top deals so far, as one
of many kinds of statistic information, before making trade
decisions; consequently, a query “what are the top buy deals
(transactions) of a given stock” may be issued. Here, each

deal (transaction) is recorded by the price (per share) and
the volume (number of shares). This is a typical example of
ranking the data items (deals) by more than one criterion;
that is, price and volume in this case. Obviously, in such an
application a deal a is better than another deal b if a involves
a higher volume and is cheaper (per share) than those of b,
respectively. The top deals, thus, are the set of deals which
are not worse than another deal; they form the skyline of all
the deals (Figure 1 shows such an example).
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Figure 1. Skyline of Buy Deals of a Stock

Skyline query processing and its variants [3, 17, 20, 26]
have been extensively studied, and a number of algorithms
have been developed. The main memory algorithms may be
found in [3, 17, 14], while the techniques related to database
applications may be found in [4, 6, 15, 23, 27]. Without
pre-processing, the best known bounds of time complexity
among the existing algorithms for computing the skyline
of n points in a d-dimensional space are O(n logd−2 n) for
d ≥ 4 and O(n log n) for d = 2, 3 [17]. The skyline com-
putation problem is also related to several other well-known
problems, such as convex hulls, top-K queries, and nearest
neighbour search. The techniques can be found in the liter-
ature [12, 13, 22, 24].

None of the algorithms referenced above was originally
designed to support on-line computation in the presence of
rapid updates of data elements. On the other hand, in many
applications data updates may rapidly happen. For instance,
in the sliding window computation model (i.e., the most re-
cent N elements) against data streams a deletion (expiring
the oldest element) and an insertion (inserting a new ele-
ment) are always associated with the new arriving element.

Figure 1.1: Skyline over a set of block of shares [25]

Problem definition In general, given a set of d-dimensional points, the
skyline can be computed as the set of points which are not dominated by
any other points. A point p is dominated by a point r if this last is not
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worse than p in every single dimension, but it is better than p in at least
one. The meaning of “better” and “worse” depends on the type of the values
represented on a specific coordinate, e.g. in the stock market example, a
block of shares is “better” on the x-axis than another one if it has a lower
price.

The skyline query has received considerable attention in the database
research community since its introduction, due to its importance in appli-
cations like decision making and multiple criteria optimization. Moreover
the skyline computation problem is also related to a number of well-known
problems, such as convex hulls [9], top-K queries [24], and nearest neighbor
search [19].

Skyline on data stream Recently, with the arrival of the big data era
and the increasing complexity of the available data, we have witnessed to
a paradigm shift to query processing over continuous streams. The skyline
operator is no more applied to static datasets stored in disks but, instead,
the points over which it must be applied are received through a stream
with variable arrival rates. Since the stream is possibly unbounded, the
skyline cannot be computed over all the points: the approach is to compute
the skyline of the most recent points, using sliding window specifications
(time-based or count-based). In this case, the output of the module is
itself a stream: it is the sequence of the skyline updates. A skyline update
indicates the entering or the exiting of a point from the skyline.

As an example of the application of the skyline operator over a stream of
d-dimensional points, we can consider again the stock market application:
the information regarding blocks of shares are continually updated due to
modification of their price and/or volume. Clearly, the stock market buyers
are interested only in the most recent top deals and not in the ones raised, for
instance, many hours/days ago. The skyline on sliding window data-stream
matches perfectly this problem: only the most recent deals, which are not
dominated by any other one in the same sliding window, are presented to
the user. Another application could be the analysis of the data received
from a wireless sensor network. The records are received over a stream and
the records which are older than a certain threshold (the sliding window
length) must be discarded from the system because they most likely do not
reflect the current sensor readings.

Related works In literature there is a number of works regarding skyline
queries. These works can be classified in according to two factors:

• if they are centralized or distributed;
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• if they operates on static datasets or on streams.

All the four combinations are possible. Centralized skyline computation
are proposed both on static datasets [21], [12], [11], [7], [6], and streams
[26], [15], [25], [28]. At the best of our knowledge, all the parallel skyline
algorithm proposed in literature are relative to only static datasets [2], [13],
[22], [3], [23], [20].

Our contribution In this thesis, the Data Stream Processing (DaSP)
methodologies are applied in order to design a parallel module which applies
the skyline operator over a stream of d-dimensional point.

Our work starts considering the two skyline sequential algorithms, op-
erating on stream, described in [26] by Papadias & Tao, namely Lazy and
SIT. The two approaches are compared both from the view point of ser-
vice time and memory occupancy. The one performing better over all the
aspects, SIT, is chosen as the starting point of our parallelization. Since
the sequential algorithm presents an high variable load, its parallelization is
characterized by the load unbalancing problem. We deal with this problem
proposing partitioning techniques aiming to reduce it to negligible levels.
Moreover, we investigate on the underlying data structure used in the se-
quential version, the R-Tree, in order to analyze its efficiency with respect to
the employed parallelization pattern, proposing an alternative approach for
storing the data. Since the main target is to design a parallel module with
high throughput and low latency, an optimization referred as asynchronous
reduce is introduced. At the end of Chapter 4, we made a theoretical discus-
sion about the maximum sustainable bandwidth of our parallelization or,
in other words, the stream arrival rate that the parallel module is able to
sustain before it becomes bottleneck, fixed a parallelism degree. As it will
be shown in Chapter 5, we reached interesting results in terms of service
time and scalability: with the adoption of the discussed load-aware parti-
tioning schemes, the proposed parallel module presents a scalability near to
ideal one. The experiments are performed on a commodity Intel multicore
made available by the University of Pisa, the detailed description of this
architecture is reported in Chapter 5.

The sliding window specification adopted by SIT, and hence by the
proposed parallelization, is the time-based one. It is worth noting that, as
discussed in [26], this solution is more general then the count-based one,
since it can emulate this last using a simple transformation.

Paper organization The rest of this paper is organized as follows. Chap-
ter 2 gives a formal definition of the problem of computing the skyline over
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a stream, exposing what are the properties of this type of computation.
In Chapter 3 the Lazy and SIT algorithms are discussed and compared.
In Chapter 4 our parallelization of the SIT algorithm is presented. In
Chapter 5 we experimentally evaluates the performances of the proposed
parallelization. Chapter 6 concludes this work with directions for future
works.



Chapter 2

Problem definition

2.1 Preliminaries
In this chapter we discuss the skyline problem and the associated prop-
erties. Given a d-dimensional data space S, a point r is represented as
r = {r1, ..., rd} where ri is the value of r in the i-th dimension.

Assuming that there is a total order relationship on each dimension, in
this paper we use ‘<’ relation, we can define the point dominance relation-
ship as:

Definition 2.1 (Point dominance). Given two d-dimensional points x =
(x1, x2, ..., xd) and y = (y1, y2, ..., yd), x dominates y (indicated with x ≺ y)
iff ∀i ∈ [1, d] xi ≤ yi and ∃j ∈ [1, d] | xj < yj.

From now on, if x dominates y we refer to x as a “dominator” of y. For
each point r in the data space we can identify two regions: the dominance
region (r.DR) and the anti-dominance region (r.ADR). Any point falling
in r.DR is dominated by r while any point falling in r.ADR dominates r .

Figure 2.1: 2D dominance and anti-dominance region of r

In Figure 2.1 is reported a representation of this two regions in the 2D
case: r.DR is an axis-parallel rectangle whose major diagonal is decided by

7



2.2. Skyline over sliding window 8

r and the “max-corner” of the data space. The anti-dominance region is
still an axis-parallel rectangle but its major diagonal is decided by r and
the origin of the data space. If a point does not fall neither in r.DR nor in
r.ADR then it is said “incomparable” with r.

Definition 2.2. (Skyline) Given a d-dimensional data space S and a set of
points P in S, the skyline of P , indicated with sky(P ), is the set of points
belonging to P which are not dominated by any other point in P . In other
words, it is the set of points whose anti-dominance region is empty.
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Figure 2.2: Example of a 2-d skyline

In Figure 2.2 an example of two-dimensional skyline is shown: does not
exists a point which is better than r on one or more dimensions without
leading to be worse in at least one. This implies that there cannot exist
non-skyline points which are better, in every dimension, than skyline ones.

2.2 Skyline over sliding window
Consider the case in which the skyline must be computed over a stream,
possible unbounded, of d-dimensional points. Since the number of received
points could be infinite, it is impossible to calculate the skyline over all
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the entire stream. The idea is to provide the most recent information,
computing the skyline over the points received in the last W seconds, where
W is a system parameter representing the sliding window length. Fixing a
time instance t, the skyline at time t is computed over all the points whose
arrival times are in the interval [t−W, t). As the time passes, the window
slides causing the expiration of older points. In this model, a point p arrives
to the system at p.tarr and expires at p.texp = p.tarr + Tw.

Consider the hypothetical case in which we want to calculate the skyline
over the entire stream: once a point p is designed as non-skyline point, it can
be immediately discarded because, since it is not a skyline point, there exists
at least one skyline point which dominates it. In the sliding window model
things are different: all the points expire either they are into the skyline or
not. As a consequence, when all the points dominating p will be expired,
it will become a skyline point. This behavior implies that, differently from
the previous case, when p arrives, we cannot discard it simply because it is
not a skyline point at that time, since it could enter into the skyline in the
future.
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(a) At time t with p.tarr < t < p.texp
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(b) At time t′ with t′ ≥ p.texp

Figure 2.3: Effects of a point expiration over the skyline

In Figure 2.3 is reported an example of a point expiration: at time t
the skyline is the one in Figure 2.3a, the only point which dominates r is
p. At time t′, p is expired (Figure 2.3b) and, since there are no more points
dominating r, this last becomes a skyline point. In this example we assume
that no other points expire in [t, t′].

From what described above we can extract the following property:

Property 2.1. An arriving point p cannot be discarded from the system
even if it is not a skyline point at its arrival time. It will become a skyline
point when all its dominators will be expired.
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An arriving point, either it is a skyline point or not, describes a set
of points (possibly empty) which are dominated by it: is the set of points
falling in p.DR, where p is the arriving point. The points belonging to
this set can be safely discarded from the system when p arrives since they
have no more chances to enter into the skyline. For example, consider a
sliding window containing two points, p and r, with p.tarr > r.tarr and p
dominating r. When p arrives to the system there are two possible cases:

• r is a skyline point. Since p dominates r, this last is removed from
the skyline and p becomes a new skyline point;

• r is not a skyline point. There are no direct implications on the skyline.
The point p will enter into the skyline only if it is not dominated by
any other point.

In both cases, the point r can be discarded from the system. By defi-
nition, r will enter into the skyline when all its dominators will be expired
but, since p (which is a dominator of r) is younger than r, it will expire after
r: r will become a skyline a point after its expiration, which is impossible.
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Figure 2.4: Effects of point arrival

In Figure 2.4 an example of the effects caused by a new point arrival is
shown. In this example it is supposed that there are no expiration in the
time interval [t, t′′]. At time t (2.4a) the point p is not arrived yet. In 2.4b,
the dominance area of p (p.DR) is showed in gray: the points falling in that
region can be discarded (pruned) from the system either they are skyline
points or not. In Figure 2.4c the new configuration is showed: p is now part
of the skyline and all the points dominated by it are discarded. Please note
that even if the incoming point is not a skyline one (such as in this case),
it is always possible to discard the points falling in its dominance region.

From what said above, we can extract the following properties:
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Property 2.2 (Pruning). Once a new point p arrives, all the older points
dominated by it (i.e. falling in p.DR) can be safely discarded from the
system since they have no more possibilities to become skyline points. We
refer to the points that can be pruned as “obsolete” points.

Property 2.3 (Skyline inheritance). If a newly arrived point dominates
one or more skyline point, then it is a new skyline point.

This last follows from a simple observation: if r is a skyline point, then
its anti-dominance area (r.ADR) is empty; when a new point p dominating
r arrives, its anti-dominance area will be contained in r.ADR and thus
empty even it. Since a point belongs to the skyline if its ADR is empty, we
can conclude that p will be a skyline point while r will exit from the skyline
and, by Property 2.2, will be discarded.

We previously said that a non-skyline point become a skyline one when
all its dominators are expired. We can refine this definition using the concept
of “critical dominance”:

Definition 2.3 (Critical dominance). A dominance relation x→ y is crit-
ical iff x is the youngest point (but older than y) dominating y. We use
x

c−→ y to indicate that “x critically dominates y”.

Since the critical dominator of a point p is the youngest among the
p’s dominators and thus it is the one which expires later, we can state
that a point will enter into the skyline when its critical dominator will be
expired. It is worth noting that, among the dominators of a point, the
critical dominance relationship is not related to the spatial coordinates of
these but only to their arrival times.

The critical dominance relationship has not to be confused with the
exclusively dominance one. If a point p is exclusively dominated by a point r,
it means that r is the unique dominator of p. Instead, the critial dominance
has no relation with the cardinality of the dominator’s set of p.
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2.3 Module definition
In this section we give a first description of a module M which applies the
skyline operator over a stream of tuples and produces a stream of skyline
updates.

M
λ 

(a1,a2,…,ad)
(ADD ,(a1,a2,…,ad), time)
(DEL ,(a1,a2,…,ad), time)

The module M receives a stream of d-dimensional points with a rate
of λ tuples/sec. The module applies the skyline operator over the points
received from the input stream adopting the sliding window specifications.
The temporal length of the sliding window (W ) is a system parameter.
Since we adopt a temporal sliding window, the number of tuples received
in a window is:

K = λ×W

Each one of these points could be or become a skyline point (by Prop-
erty 2.1) meaning that M must be able to accommodate K tuples per sliding
window.

Property 2.2 states that when a point become obsolete, it can be dis-
carded from the system even if it is not expired yet. This behavior, called
“pruning”, is optional and it does not have any impact on the correctness of
the skyline. Please note that it is independent from the action of updating
the skyline when a skyline point become obsolete. This last action is essen-
tial for the correctness of the computation and it is different from discard
obsolete points from the system (either they are skyline or not), which has
consequences only on the memory utilization. If M adopts pruning tech-
niques, then K become an upper-bound to the number of tuples that M
must be able to accommodate. This upper-bound will be reached in the
unlucky case where, in a window, for each two consecutive points arrival,
the older point always dominates the younger one, and hence no pruning is
possible.

The module M outputs skyline updates that are expressed in the format:

(action, point, timestamp)
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where the action indicates if the point enters (+) or exits (−) from the
skyline at the specified time.

Having described the input/output format specifications, we can define
when M has to produce skyline updates:

• If a new point p arrives at time t and, at that time, it is not domi-
nated by any other points in the system, an update (+, p, t) must be
produced.

• If at certain time t a point p, with p.texp > t, has no more dominators
(since they are all expired), then an update (+, p, t) must be produced.

• If p is a skyline point and the time p.texp is reached, then an update
(−, p, p.texp) must be produced.

• If p is a skyline point and at time t a new point r arrives with r ≺ p,
then p become obsolete and an update (−, p, t) must be produced.

A point arrival can lead to the output of zero, one or more updates. If the
incoming point is not a skyline point, then zero updates will be produced.
In the other case, the arrival of the new point will lead to the production of
1 + c updates, where c is the number of skyline points pruned by the new
one. The module can also produce outputs independently from reception
events; this occurs in two cases: if a skyline point expires and if a point
enters into the skyline since all its dominators are expired.

Supposing that the module is not a bottleneck, its output rate depends
on three factors: the input rate, the spatial distribution of the received
points and the sliding window length. The first is obvious, the second
impacts on the term c which is the mean number of skyline points pruned
per received point, while the third determines the points’ expire time and
hence how often an update for the expiration of a skyline point is emitted.

Output chronological order There are two scenarios which must be
considered:

1. the updates are used in a real-time fashion. In this case the skyline
updates must be emitted respecting the chronological order: if an
update is emitted on the output stream before another one, then the
same order must be respected also on their respective timestamps.

2. the updates are used off-line: for example they are stored for future
uses. In this case we can charge the consumer itself for the temporal
reordering of the skyline updates. This case is valid only if the stream
is bounded.
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The consumer builds the skyline over the updates sent by M. If we are in
the first case, in which the updates are used in real-time, and the consumer
receive non ordered updates, it could consider as skyline a set of point that
is not a skyline by definition. For example, consider two point a and b with
b dominating a and b.tarr > a.tarr. Clearly, since one dominates the other,
these two points cannot be part of the skyline at the same time. Consider
the following sequence of events:

1. at time t, a is part of the skyline and the relative update has been
emitted, hence also the consumer knows that a is a skyline point.

2. at time a.texp, the update indicating that a is no more a skyline point
is emitted.

3. at time b.tarr, an update indicating that b enters into the skyline is
emitted.

The above sequence is correct: a and b are both skyline point but in non
overlapping time intervals. Now consider the case in which the updates
are not chronologically ordered and, for example, the last two events are
inverted: during the time interval between the reception of the two events,
the consumer see that a and b are skyline points at the same time, so the
skyline that it views is wrong.

From now on, we consider only the case in which the module must
guarantee the chronological order of the updates. This behavior is always
correct and allows us to handle both the cases in which the updates are
used in real-time or not.
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2.4 Data distributions
In the skyline problem the spatial distribution followed by the received
points plays an important role. In [21] a set of three critical types of data
distributions, stressing the effectiveness of the skyline methods, is proposed:
independent, correlated and anti-correlated.
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Figure 2.5: Data distributions in a two-dimensional space

Correlated distribution It is the case with the lowest number of sky-
line points: there is a small number of points dominating all the others.
If pruning techniques are adopted, this distribution leads to a very small
number of stored points, since it is most likely that an arriving point causes
the pruning of a large number of already stored ones.

Anticorrelated distribution It is the opposite of the correlated case. A
large number of points is into the skyline: each skyline point dominates only
a small portion of the entire dataset. It is considered the most challenging
of the three since it leads to store a high number of points, even if pruning
techniques are adopted.

Independent distribution This is the most general case: the points do
not follow a particular data distribution but are randomly distributed over
the data space.



Chapter 3

Sequential algorithms

Any implementation of the module described in the previous chapter must
implement the following functions:

1. Data processing. It is executed at each point arrival: its basic task
is to verify if the incoming point belongs to the skyline and, in case,
emit a proper update and discard all the skyline points dominated by
the new one.

2. Data maintenance. The aim of this function is to keep the skyline
updated. It ensure that the sliding window specification are respected:
when a skyline point expires, the proper update indicating its exiting
from the skyline must be emitted. In addition, depending on the
specific algorithm, it is also in charge to determine the set of points
(eventually empty) to promote to skyline points as a consequence of
the expiring of such a point.

The two functions are associated to the two types of activation of the
module: the first corresponds to the external activation while the second to
the internal one.

In [26], the proposed sequential algorithms are presented as subdivided
in two classes: lazy and eager. The lazy strategy delays most computational
work until the expiration of a skyline point. The eager method, instead,
takes advantage of precomputation to minimize the memory consumption.
The same distinction is adopted in the following discussion.

3.1 Lazy algorithm
This algorithm is presented in [26]. It is based on the idea that each func-
tion, namely data processing and data maintenance, must performs only the

16
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strictly necessary operations to full-fill their tasks: the former must only ver-
ify if the incoming point is a skyline point while the latter is in charge of
discard the expiring point and determine the set of points to promote to
skyline point as a consequence of its expiring.

The authors introduce two data structures, DBsky and DBrest: in the
former are stored points that currently are part of the skyline, while in the
latter are stored points that do not belong to the current skyline. If a point
p is stored in DBrest, it means that p is dominated by one or more points of
DBsky and by zero, one or more points of DBrest When all the dominators
of p expire, p must be moved to DBsky and thus promoted to skyline point.
The two DB are represented using R-Trees [1].

For the sake of completeness we cite a similar algorithm presented in
[15]. It differs from Lazy in the employed data structures: the concepts of
DBsky and DBrest are merged, storing all points in an unique data structure.
Finally the authors present and compare the implementation of their algo-
rithm with two different types of data structures: R-Trees and Quadtrees.

3.1.1 Data processing
When a point arrives, the data processing function must be executed: the
first step is to check if the incoming point p is dominated by someone other.
If yes, p is simply inserted in DBrest and no other operations are performed.
Otherwise, if there are no points dominating p (p.ADR is empty), p is a
skyline point, hence it is added to DBsky. In this last case, the algorithm
checks if p dominates some skyline points, which have to be removed from
the skyline and discarded from the system.

Algorithm 1 Lazy Data processing. Executed when a new point p arrives.
1: if isDominated(p,DBsky) then
2: insert p in DBrest

3: else
4: for each r ∈ findDominatedPoints(p,DBsky) do
5: delete r
6: emit (−, r, current time)
7: end for
8: insert p in DBsky

9: emit (+, p, current time)
10: end if

The Algorithm 1 shows the pseudocode of the data processing function.
At line 1, the function isDominated() checks if the new point is dominated
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by anyone in DBsky. The function getDominatedPoints(p,DB) returns all
the points in DB dominated by p. The pseudocode of this last is reported
in Appendix B.
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Figure 3.1: Effects of point arrival

For example, in Fig. 3.1, when p arrives (in 3.1b) it is not dominated
by any point, thus the function isDominated(p,DBsky) will return false: p
must be inserted into the skyline and the point r, which is a skyline point
dominated by p, must be deleted.

Please note that the Algorithm 1 does not executes any pruning opera-
tions on DBrest. As shown in Fig. 3.1b, the points in DBrest are not pruned
even if they became obsolete due to the arrival of p. They will be discarded
from the system only when they will reach their expiration time.

3.1.2 Data maintenance
The data maintenance function is executed when the oldest skyline point
expires, let us call this point p and its expiration time p.texp.

The first step is to remove p from the skyline with the emission of a
proper update on the output stream. Moreover the DBrest is cleaned-up,
removing all the expired points (which expiration time is less than p.texp).

The next step is to verify if there are points in DBrest that must be
promoted to skyline points as consequence of the expiring of p. These
points, if they exist, are the points exclusively dominated by p. For finding
them, the algorithm performs the following operations:

1. find the set of points in DBrest dominated by p, call it Dp;
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2. find the sub-skyline over the points inDp, let us call it theminiSkyline;

3. verify for each point c in miniSkyline if it belongs to the skyline or
not. If yes, a proper update is emitted indicating the entrance of c
into the skyline at time p.texp.

Note that the step 2 is optional, through it we try to reduce the number
of points which have to be analyzed in step 3. As an example, if x and y
are two points in Dp and x ≺ y, we already know that y does not belong to
the skyline, since its ADR is not empty. If step 2 is performed, y will not
be checked in step 3 because it will not belong to the miniSkyline.

In [15] is presented an algorithm capable to merge the first two steps,
it is called MINI. Given a point c and a set of point P represented though
an R-Tree (in our case DBrest), MINI finds the skyline over the points in
P with the constraint that only the ones dominated by c must be taken
in account, in other words it finds the skyline over the points in P falling
c.DR. The pseudocode of this algorithm is reported in Appendix A.

Algorithm 2 Lazy data maintenance function. Executed when the oldest
skyline point p expires (at time p.texp).

1: remove p from DBsky

2: emit (−, p, p.texp)
3: for each s ∈ DBrest | s.texp ≤ p.texp do
4: delete s
5: end for
6: compute the miniskyline for the set of data in DBrest dominated by p
7: for each s ∈ miniskyline do
8: if not isDominated(s,DBsky) then
9: move s from DBrest to DBsky

10: emit (+, s, p.texp)
11: end if
12: end for

Algorithm 2 reports the pseudocode of the data maintenance function
executed by Lazy. In Fig. 3.2 an example of how this function works is
reported. When the skyline point r expires, the miniSkyline is calculated
over all the points in DBrest. In Fig. 3.2a, the miniSkyline is composed by
the points {d1, d2, d3}. Please note that not all the points belonging to this
set will become skyline ones: only the ones that are not dominated by any
other skyline points will become (in the example only the point d2). The
Fig. 3.2b shows the configuration after the expire of r.



3.1. Lazy algorithm 20

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  100  200  300  400  500  600  700  800  900  1000

DB-rest
DB-sky

r

miniSkyline

d1

d2

d3

(a) t = r.texp

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  100  200  300  400  500  600  700  800  900  1000

DB-rest
DB-sky

d2

(b) t > r.texp

Figure 3.2: Effects of point expiration
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3.2 Eager algorithms
The idea on which the algorithms of this class are based is to introduce
an additional processing phase executed at each point arrival, in order to
reduce the time needed by the maintenance phase. Moreover, eager is more
“aggressive” from the point of view of the memory occupancy: it tries to
free memory as soon as possible, adopting pruning techniques to expunge
obsolete points from the system.

3.2.1 Skyline influence time based: SIT
This algorithm is described in [26] and it is based on the concept of point’s
skyline influence time. For correctness purposes, SIT needs to remove ob-
solete points, either they are skyline ones or not, at each point’s arrival.

Definition 3.1. The skyline influence time of a point p, indicated with
SITp, is the time instance indicating the entering of p into the skyline. It is
defined as the expiring time of the point which critically dominates p (see
def. 2.3): if c c−→ p then SITp = c.texp.

When a point arrives, it is possible to establish which is its critical dom-
inator and thus the value of SITp. If the critical dominator does not exists,
SITp is equals to 0 indicating that p becomes immediately a skyline point.
Subsequent arrivals cannot influence SITp, except the case in which the in-
coming point dominates p: in this case p cannot more enter into the skyline
so its SIT become +∞ and it must be discarded from the system. There-
fore, once the skyline influence time of a point p is determined, only two
situations are possible: the time SITp is reached and then p must be in-
serted into the skyline or a new point c, which dominates p, arrives and then
p must be discarded. This behavior allows us to define an important prop-
erty, which is valid only if the pruning of the obsolete points is performed
at each arrival:

Lemma 3.1. If a point p reaches its expiration time then, at that time, it
is part of the skyline.

Proof. If not, it means that a point c, which dominates p, exists and its
expiration time is after the one of p. But, since expiration times are defined
as c.texp = c.tarr +W and p.texp = p.tarr +W , it also means that c is arrived
after p (c.tarr > p.tarr): this is impossible because, in that case, being c
younger than p and dominating it, p would have been discarded from the
system when c is arrived and so its expire event would not have existed.
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When a point reaches its expiration time is simply removed from the
skyline and no other actions are required: the expiration time of p will match
with the SIT of the points critically dominated by it, which would enter
into the skyline. By the following lemma, we know that these points are
exactly the ones that have to be inserted into the skyline as a consequence
of p’s expiration.

Lemma 3.2. When a point expires the points which it critically dominates
are also the ones exclusively dominated by it.

Proof. The point p is the critical dominator (the youngest one) of a set
of points, let us call this set Cp. Since p is an expiring point, all other
dominators of Cp

1 are already expired (they are older than p): p is the
unique dominator of the points in Cp not expired yet, in other words the
points in Cp are the ones exclusively dominated by p.

Differently from the lazy approach, now all the points are stored in an
unique data structure, let us call it DB, which is still implemented with
an R-Tree. This choice is justified by the different behavior of the two
algorithms when a new point arrives.

• In SIT, we have to search the new point’s critical dominator among
all points. In lazy, instead, we have only to check if it is dominated
by some skyline points.

• In Lazy, no pruning operations on DBrest are performed but only
the point eventually dominated in DBsky are discarded. In eager,
we search the points dominated by the incoming one, and thus to be
discarded, among all points currently in the system.

The two observations motivate why in lazy it is useful to maintain a dis-
tinction between the points currently in the skyline and the ones that do
not belong to it, while in SIT this distinction is meaningless.

Event list SIT maintains an event list EL where each event is a triple
(p, t, tag) where p is a point, t is the time at which the event must be
triggered and tag indicates the type of event. There are two types of events:
skytime and expire. The event (p, t, skytime) indicates the entering of p
into the skyline at time t, thus t is SITp. Instead, the event (p, t, expire)
indicates the expiring of p at time t, thus t is the expiration time of p (p.texp).

1all other dominators of each point in Cp
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Algorithm 3 SIT data processing function. Executed when a new point p
arrives.

1: Dp = getDominatedPoints(p,DB)
2: for each c in Dp do
3: delete c from DB
4: delete the event associated with c (evc) from EL
5: //if evc.tag = expire then c is a skyline point
6: if evc.tag = expire then emit (−, c, current time)
7: end for
8: insert p in DB
9: criticalDominator = findCriticalDominator(p,DB)

10: if criticalDominator is null then
11: //p belongs to the skyline immediately
12: emit (+, p, current time)
13: insert (p, p.texp, expire) into EL
14: else
15: SITp = criticalDominator.texp

16: insert (p, SITp, skytime) into EL
17: end if

Data processing In Algorithm 3, the pseudocode of the SIT data pro-
cessing function is reported. The steps carried out by this function, when
a new point p arrives, are the following ones:

• pruning: delete all points in DB dominated by p and their associated
events from EL. Since the event (c, c.texp, expire) is inserted in EL
only when c becomes a skyline point, at line 6 we can check if the
pruned point belongs to the skyline or not simply checking if the tag
of its associated event (evc) is expire or not. If a point is a skyline
point, its removal must be notified onto the output stream;

• insert p in DB;

• find the point c which critically dominates p. If it exists, insert the
event (p, c.texp, skytime) into EL (recall that, in this case, SITp =
c.texp). Otherwise, if c does not exists, p is a skyline point: notify this
fact onto the output stream and insert the event (p, p.texp, expire) into
EL.

The operation of finding the critical dominator of a point is reported
in [26] with the name d-sided max search. From now on, we will use the
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notation findCriticalDominator(r, P ) to indicate such operation. Specif-
ically, it indicates the operation of finding, among all the points in P , the
one which critically dominates r, if it exists. Its pseudocode is reported in
Appendix C.
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Figure 3.3: Point arrival example. The label a : t indicates that the point
a is arrived at time t.

In Figure 3.3 is reported an example of point arrival. At time 10 the
point p arrives (Fig. 3.3a), its dominators are the one in p.ADR (indicated
by the gray rectangle). The critical dominator of p is its youngest dominator,
in this case the point b: the SIT of p is set to the expire time of b, hence
SITp = b.texp + W = 7 + W . On the other hand, all the points falling in
p.DR (indicated in blue), must be pruned. The results of the processing of
p is shown in Fig. 3.3b.

Algorithm 4 SIT data maintenance function. Executed as a trigger for
the oldest event e (with time e.t) in EV .

1: delete e from EL
2: if e.tag = expire then
3: emit (−, e.point, e.t)
4: delete e.point from DB
5: else
6: //e.tag is skytime
7: emit (+, e.point, e.t)
8: insert (e.point, e.point.texp, expire) into EL
9: end if
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Data maintenance The maintenance function of SIT is pretty trivial: it
has to monitor the event list executing the events in chronological order.
When an event is triggered, there are two possibilities:

• it is an expire event: the associated point is discarded from the DB
and its removal from the skyline is notified on the output stream (by
Lemma 3.1 we know that, since it is an expiring point, it is also a
skyline point).

• it is a skytime event: the associated point p must be added to the
skyline (emitting a proper update on the output stream) and a new
event, indicating the expiration of p, must be inserted into EL.

3.2.2 Critical dominance based: DOM
This algorithm is an our proposal. It is based on what discussed in [25] and
relies on the same concepts exposed by SIT. The basic idea it to store the
non-skyline points directly in a list associated to their critical dominators.
When a point expires, all the points critically dominated by it are promoted
to skyline points.

As in SIT, an unique data structure DB for storing all points (either
skyline points or not) is used. Even in this case, DB can be implemented
with an R-tree.

At each point p are associated the following fields:

• a flag is skyline that indicates if it is a skyline point or not;

• a list, called criticalList, storing references to the critically dominated
points;

• a reference to its critical dominator. If p is a skyline point this field
contains a null value.

Data processing When a point p arrives, it is inserted in DB and its crit-
ical dominator is searched. If it does not exists then p become immediately
a skyline point, otherwise a reference to p is inserted in the criticalList of
its critical dominator. Moreover, all the points which are become obsolete
due to p’s arrival are pruned (enabling Lemma 3.1). If some of the pruned
points are skyline points, then their removal from the skyline is notified on
the output stream. It is worth noting that when a point is pruned it must
be also deleted from the criticalList of its critical dominators.

The Algorithm 5 shows the pseudocode of the processing module, ex-
ecuted at the arrival of each point. Differently from SIT, in the pruning
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Algorithm 5 DOM processing phase. Executed when a new point p arrives.
1: Dp = getDominatedPoints(p,DB)
2: for each c in Dp do
3: delete c from DB
4: if c.is skyline then emit (−, c, current time)
5: else delete ref to c in the criticalList of c.criticalDominator
6: end for
7: insert p in DB
8: cdom = find the point which critically dominates p
9: if cdom is null then

10: //p belongs to the skyline immediately
11: p.is skyline← true
12: emit (+, p, current time)
13: else
14: p.criticalDominator = cdom
15: insert p into cdom.criticalList
16: end if

phase (lines 2-6), we do not have any method to distinguish if a point be-
longs to the skyline or not: this is why a flag, indicating the point status,
has been introduced.

As an example of the execution of the data processing function, consider
again the Figure 3.3. The newly arrived point p is inserted in the criticalList
of its critical dominator, which is b. As in SIT, all the points dominated by
p are pruned.

Data maintenance The data maintenance function is executed only when
a point p expires. When this happens, p is removed from the skyline (at
that time p is for sure a skyline point by Lemma 3.1) and all the points in
its criticalList are promoted to skyline points. By Lemma 3.2, we know
that these point are exactly the ones that must enter into the skyline as a
consequence of p’s expiration.

As said, this algorithm is based on SIT. However, its implementation
require the adoption of one data-structure for each stored point and the
pruning operation are more costly than SIT, since the reference to the
pruned point must be searched in the criticalList of its critical domina-
tor. Due to this motivation, this algorithm is not taken in account for the
parallelization. It is reported only for the sake of completeness.
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Algorithm 6 DOM data maintenance. Executed when a point (p) expires.
1: delete p from DB
2: emit (−, p, current time)
3: for each c ∈ p.criticalList do
4: c.is skyline← true
5: emit (+, c, current time)
6: end for



Chapter 4

ParSIT

The sequential module has a fixed offered bandwidth which it is able to
sustain. If the input rate grows, becoming greater than the module offered
bandwidth, its utilization factor become greater than one and the module
will be a bottleneck. In the case of skyline on stream, the bottleneck does not
represent only a performance problem but it impacts also on the produced
skyline. In fact, if the utilization factor is greater than one, the sequence of
the skyline updates emitted by M is semantically correlated to it. As said
in Section 2.3, the module has two type of activations:

• External activation. When a point is received from the input stream,
the module is activated for the processing of the new point;

• Internal activation. The module is internally activated in two cases:
a) when a point expires; b) when the skyline influence time of a point
is reached. This type activation does not depend on the reception of
new points from the input stream.

Consider two points, l and p: the former is a point already stored in the
system, its skyline influence time is set to t′; the latter is an incoming point
with an arrival time equals to t. The point p dominates l and t < t′ which
means that p will arrive before the skyline influence time of l. If the module
is not a bottleneck, then the point l will be pruned due to the arrival of p,
which is an younger point dominating it: l will never appear in the skyline.
Otherwise, if the module is bottleneck, the point p will be elaborated at
time t + τ , where τ is the delay introduced by M. In other words, it is the
necessary time to serve all the points arrived before p. If t + τ ≥ t′, the
point l will enter into the skyline before the arrival of p, and only when p
will arrive, at time t+τ , it will be pruned. The skyline updates produced in
the two cases are different: in the former l will never enter into the skyline
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while in the latter it will be part of the skyline during the time interval
[t′, t+ τ).

The above discussion motivates the need of a parallelization of the mod-
ule M , in order to make it able to sustain higher arrival rates respect to the
sequential version.

Figure 4.1: ParSIT parallel module definition

The idea is to design a parallelization of one of the sequential algorithms
presented in Section 3. The SIT algorithm has been chosen since, respect
to Lazy, it is optimal from the view point of the memory occupancy: it
keeps only the points having chances to enter into the skyline, discarding
all the “obsolete” ones. In addition, already in the sequential version, SIT
outperforms Lazy in terms of service time.

The employed parallelization pattern is a data-parallel map followed by a
reduce phase. As known, a data-parallel map consists in function replication
and data partitioning [16]. The functionality of the sequential SIT module
are replicated over a set of nodes, the workers. The internal state of the
sequential module, composed by all the non-obsolete points in the current
sliding windows, is partitioned among these workers. The internal state
partitioning is done by selecting, for each incoming point a worker, from
now on called the owner, which will be responsible for all the operation
concerning it, such as storage, expiration and skyline entrance.

Moreover, to be consistent with the sequential SIT, for each new point,
all the points dominated by the new one must be pruned. Since the points
are partitioned among the workers, each worker must perform the pruning
operation over the points contained in its partition. This leads to an im-
portant aspect: each new point must be sent to all the workers, through
a multicast communication, but only one of them will be designed as the
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owner of it. It is worth noting that the pruning operation is a requisite for
the correctness of the SIT algorithm. This behavior is a potential source
of load unbalancing among the workers: an arrival of a new point can lead
one or more worker to empty, or to drastically reduce, its partition.

If the partitioning schema relies on the spatial distribution of the incom-
ing points, there could be another potential source of load unbalancing, as
explained in the next section.

The measurements reported in the plots presented in this chapter are
taken on the test architecture described in Chapter 5. We decided to antic-
ipate some results in order to illustrate better the behavior of the discussed
aspects.

4.1 Sliding window partitioning
In this section we deal with the problem of how to partition the points
arriving in a sliding window. We remark that the partitioning is did “on
the fly”, in the sense that for each incoming point a proper owner is selected.

We can make a first distinction between the partitioning schemes that
are applicable to this problem.

• Load unaware. Do not take in account the actual load of the workers.
The partitioning process follows a set of rules that are always the same,
even if there is a non-negligible factor of load unbalancing.

• Load aware. The partitioning is based on the actual load of the
workers. The main objective is to maintain the workers’ load balanced.

The partitioning techniques differ also on if they depend or not from the
spatial distribution of the received points: in the first case the data space is
partitioned in according to a certain scheme and the resultant partitions are
mapped on the workers. When a new point is received, the owner selection
consists in finding the worker whose associated partition is the one in which
the new point falls into. In the other case, the heuristics through which the
owner selection is done are independent from the points’ spatial coordinates.

The spatial distribution dependent partitioning techniques present two
main issues:

1. if the points are not uniformly distributed in the data space, then the
workers’ load could be unbalanced;

2. the emitter cannot take any counter-measure against the load unbal-
ancing since the partitioning is constrained by the points coordinates.
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In what follows we discuss partitioning schemes that are found in liter-
ature, as the grid and angle-based partitioning, and propose a set of new
techniques with the aim to better balance the workers’ load.

4.1.1 Load unaware partitioning
In literature, one of the most prevalent methods employed for the space
partitioning, in skyline processing, is the grid partitioning. Basically it
consists in recursively splitting each dimension of the data space in two
parts, dividing the data space in a set of hypercubes and assigning each of
them to different workers.

When a new point arrives, the emitter has to individuate the hypercube
in which the new point falls into, designing as owner the worker to the which
that hypercube has been assigned.

Variants of this type of partitioning are found in both in distributed
[23] and parallel [20] configurations. The main advantage of this approach
is that, if there is a one-to-one mapping between partitions and workers,
it is possible to establish dominance relations directly among the workers.
For instance, consider the grid partitioning of a 2-dimensional data space,
illustrated in 4.2a: if a point falls into the bottom left partition, then all the
points falling in the top right partition will be dominated by it. In general,
if the upper right corner of a partition a, dominates the lower-left corner
of a partition b, then all the points contained in b are dominated by all the
points of a.

(a) Grid partitioning (b) Angle partitioning

Figure 4.2: Example of 2-d partitioning. The skyline points are black filled.

The main drawbacks of this partitioning schema are:

• many partitions do not contribute to the skyline definition. As shown
in 4.2a, most of the skyline points fall in the lower left partition, hence
they are all assigned to the same worker.
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• the number of points owned by each worker depends on their spatial
distribution. Consider again the Figure 4.2a: it is clear that the worker
associated with the upper right partition is less loaded than the worker
associated with the bottom left one.

The authors of [2] deal with the problems introduced by the grid parti-
tioning, proposing an angle-based partitioning scheme. An example of appli-
cation of this method, in a 2-dimensional data space, is shown in Fig. 4.2b.
This approach increase the efficiency of skyline query processing, since the
skyline points are more fairly distributed among the partitions respect to
the grid partitioning scheme. However, the number of points assigned to
each partition, and thus to each worker, is still dependent from the points’
spatial distribution.

A different approach to the partitioning problem is to make totally inde-
pendent the partitioning scheme from the spatial distributions of the points.
Consider a round-robin owner selection: the owner election does not depend
on the spatial coordinates of the received points, but it is done in a round-
robin fashion. Decoupling the owner selection from the space distribution
allows to be fair from the view point of load distribution among the workers.
However, even in this case, the load unbalancing introduced by the pruning
is still present.

4.1.2 Load aware partitioning
The load aware partitioning schemes aim to try to maintain the load among
the workers balanced. We remark that we have two source of load unbal-
ancing: the one introduced by the pruning and the one introduced by the
partitioning schema if it relies on spatial coordinates of the arriving points.
All the heuristics presented in this section are spatial distribution inde-
pendent, in order to restrict the load unbalancing sources to the only one
introduced by the pruning.

Fastest worker

Basically it is an on-demand policy. An arriving point is sent in multicast
to all the workers, the first which is able to accommodate the new point in
its queue become the owner. The partitioning in made directly during the
multicast did by the emitter. The pseudocode of the partitioning multicast
is reported in Algorithm 7.

This heuristic is designed for low asynchrony degrees. In fact, from its
view point, there are no differences between a channel which is almost full
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Algorithm 7 Multicast(p). Fastest worker multicast pseudocode.
1: sent← 0
2: i← 0
3: while sent < N do
4: if i-th channel’s buffer is not full then
5: if p has still not an owner then
6: set worker i as the owner of p
7: end if
8: send p through the channel i
9: sent← sent+ 1

10: end if
11: i← i+ 1 mod N
12: end while

and one which is totally empty, they have equal probability to be selected1.
If the asynchrony degree is low, e.g. one, the difference between “almost
full” and “totally empty” is about 1 element, hence the balancing is good.
In other cases, when the asynchrony degree is higher, the same worker could
be chosen as owner of new points, until its queue becomes full.

The experiments confirmed this behavior. In Fig. 4.3 we show, at each
timestamp, the difference between the number of points owned by the most
loaded worker and the number of points owned by the least loaded one.
It is possible to observe that lower the asynchrony degree, lower the load
difference, and so the load unbalancing. The best results is achieved with a
queue length equal to one: in this case a worker is selected as the owner for
a new point when it is effectively ready to process it. When the asynchrony
degree is higher, instead, a worker could be designed as owner also in the
case in which its queue is almost, but not totally, full.

In the optimal case, it is possible to note that there is an initial “tran-
sient” period where the load difference is high. This is due to the fact that,
at the beginning, all the workers are empty, so the first worker will be se-
lected until its load allows it to satisfy the stream arrival rate. When it will
be no more able to sustain that rate, the heuristic will select another worker,
until all of them will become bottleneck. At that time the system reaches a
“steady-state” where the load difference between the workers remains low.

1To be rigorous: they have the equal probability only if, in Alg. 7, the starting point
of the loop (i) is chosen at random
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Figure 4.3: Fastest worker: workers’ load difference in function of time, with
different asynchrony degrees. Parallelism degree fixed to 10. Independent
data distribution. Avg number of non-obsolete point per sliding window
size equals to 4400.

Actual load

The idea is to give to the emitter the knowledge of the number of points
currently owned by each worker. For each new point, the owner selection is
done selecting the least loaded worker.

If the module is bottleneck, the asynchrony degree of the queues from
the emitter to the workers, plays an important role. The information on
which the emitter bases the owner selection do not take in account the
points that are already in the workers’ queue. Since the processing of each
of these points can lead to variations in the workers load, we can state that
higher the asynchrony degree, more outdated are the information on which
the emitter bases its partitioning policy.

For each enqueued point, the actions impacting on the load, performed
by each worker are:

• delete all the points dominated by the new one;

• store the new point if it is the owner.

The arriving of a new point can lead the worker to perform zero or one
stores and zero, one or more deletes.

Consider the case in which, at time t, the emitter assigns a newly arrived
point p to a worker Wi because, in according to the held information, at that
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time it is the least loaded worker. That point will be received by its owner at
time t+τi, where τi is the time needed by Wi to serve all the points enqueued
before p. When the point will be received by the designated worker, there
are no guarantees that this last is still the least loaded worker, since all the
points served in τi potentially modified its load. The term τi is defined as a
function of:

a) the number of points enqueued before the new one;

b) the service time of the worker i.

If the module is a bottleneck, the queues between the emitter and the
workers are full: the number of points enqueued before the new one is
exactly the asynchrony degree. The consequence is that the error of this
heuristic, in selecting the least loaded worker, is proportional to the asyn-
chrony degree.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 4.95e+07  5e+07

M
a
x
 l
o
a
d

 -
 M

in
 l
o
a
d

 (
n
u
m

b
e
r 

o
f 

p
o
in

ts
)

Timestamp

Partitioning schemas comparison

Asynch. degree = 10K
Asynch. degree = 100

Asynch. degree = 5

Figure 4.4: Actual load: workers’ load difference in function of time, with
different asynchrony degrees. Parallelism degree fixed to 10. Independent
data distribution. Avg number of non-obsolete points per sliding window
equals to 4400 points.

In Figure 4.4, the load difference between the most loaded worker and
the least loaded one is reported. It is possible to observe that higher the
asynchrony degree, higher the load unbalancing among the workers. It is
worth noting that, with an asynchrony degree of 10K, the peaks reached
by Actual load are about one order of magnitude lower than Fastest worker
with an asynchrony degree of 30.
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Queue length

This heuristic is an extension of Actual load. It aims to reduce the error,
introduced by this last, in the selection of the least loaded worker when the
module is bottleneck and the asynchrony degree is high. The idea is that
the emitter counts, for each worker, in addition to its actual load, also the
number of the still enqueued points for which it has been designed as the
owner.

In this way, assuming that the module is a bottleneck, if a point is
received by the emitter at time t, the owner selection will not be based only
on the workers’ load at time t, but it will take in account also the additional
load that each worker will have at time t+ τi.

Clearly, also in this case, we have an approximation, since we do not
consider the pruning that each enqueued point could cause. Anyway, the
error will be lower respect the one introduced by Actual load, due to the
fact that we try to forecast what will be the load of the workers at time
t+ τi if we assign to it a point at time t.

Please note that, in the case in which the module is not a bottleneck,
this heuristic is equal to the one presented in Section 4.1.2.
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Figure 4.5: Queue length: workers’ load difference in function of time, with
different asynchrony degrees. Parallelism degree fixed to 10. Independent
data distribution. Avg number of non-obsolete points per sliding window
equals to 4400.

In Figure 4.5 the load difference between the most loaded worker and
the least loaded one is reported. It is possible to observe that this heuristic
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works better than the Actual load. The workers’ load forecasting allows the
emitter to select, with higher probability, which will be the least loaded
worker at time t + τi where, as usual, the term τi is time needed by the
worker Wi to serve a point submitted to it at time t.
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Discussion

If we consider lower values of the asynchrony degree, the best result is
achieved by Queue length, as shown in Figure 4.6.
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Figure 4.6: Worker’s load difference in function of time, with different asyn-
chrony degrees. Parallelism degree fixed to 10. Avg number of non-obsolete
points per sliding window equals to 4400 points.

In the comparison we consider the best result of Fastest worker, the one
achieved with a queue length of one, since in the other cases this heuristic
introduces a load unbalancing which is not comparable with the results of
the others.

As expected, Actual load and Queue length, are very similar in terms
of load unbalancing when the asynchrony degree is low. We remark that
the only difference between the two is that the latter takes in account the
presence of a queue between the emitter and each worker, trying to forecast
what will be the load of each worker when a point, eventually enqueued at
the current time, will be served. If the queue length is small, the difference
between the two approaches is negligible.

If we consider higher values of the asynchrony degree, the situation is
the one reported in Fig. 4.7. The measurements on Fastest Worker are not
shown, since it is not designed for high values of asynchrony degree.

Also in this case, Queue length performs better than all the others. As
confirmed by the data reported in Table 4.1, it is the one which is able to
maintain the lowest mean load difference and variance.
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Asynch. deg. Round Robin Fastest worker Actual load Queue length
Mean Variance Mean Variance Mean Variance Mean Variance

1 - - 34.13 1790.67 - - - -
5 64.20 230.88 581.45 3948.31 3.64 4.60 2.61 4.33

100 64.54 246.26 - - 12.93 136.26 10.89 23.06
10K 70.06 424.65 - - 104.60 16483.29 50.90 280.42

Table 4.1: Load difference between the most loaded worker and the least
loaded one.

In conclusion, the Queue length heuristic is the one which is able to
reach the best results in terms of load balancing among the workers, even if
the asynchrony degree is high. It is worth noting that an higher asynchrony
degree allows the module to sustain an input stream with an higher variable
arrival rate, without blocking. If we want to employ Fastest worker as
partitioning schema, we have to maintain an asynchrony degree equal to
one, otherwise the heuristic does not works.

In this section the presented partitioning schemes have been analyzed
only from the point of view of the load balancing. However, in the Chapter 5,
a comparison among them from the view point of their impact on the module
service time, is reported.
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4.2 How it works
This section describes how the parallel module is organized. The sequential
computation is analyzed from the view point of the operation that each
worker can complete locally to itself and the ones requiring a global coop-
eration. Moreover, the behavior of the emitter and the collector nodes is
explained.

As said before, the module is activated in two cases: when it receives a
new point and when an event of its event list is raised.

In the former case, the sequential module performs the following steps:

1. pruning: discard all the points dominated by p.

2. store: store p into the employed data-structure.

3. SIT: calculate SITp and insert the proper event in the event list.

In the case in which the module timer reaches the time of the oldest
event in the event list, the sequential module is internally activated:

1. if the raised event is an expire event, delete the point associated with
it.

2. emit a proper skyline update and update the event list according to
the event’s type.

The activation behavior is replicated over the workers. Since the emitter
multicasts an arriving point to all the workers, for each incoming point all
the workers will be externally activated. Differently, since each worker stores
a disjoint partition of the internal state and the events are relative to the
stored points, the workers can be internally activated independently from
the others.

The sequential module has an internal timer used for: a) timestamp
the newly arrived points; b) mark the time in order to raise the events of
skytime or expire. This behavior is reproduced on the parallel module as
follows:

• the emitter and all the workers have their own timers, they are not
necessarily synchronized.

• the emitter is in charge to timestamp the newly arrived points.

• for each received point, each worker resets its timer to the point arrival
timestamp (the one set by the emitter).



4.2. How it works 41

If this last operation is not performed and the module is bottleneck, the
points can waste time during which they should be part of the skyline into
the queue of their owners. Consider the limit case in which a point arrives
to the emitter at time t, its expire time will be texp = t + W . Since the
module is bottleneck, the point will be server by its owner at time t + τ
and, if τ ≥ W , it will be served when it will be already expired, preventing
de facto its entering into the skyline.

4.2.1 Emitter
When a new point p is received, the emitter performs the following actions:

1. select the worker which will be responsible for p (the owner of p);

2. timestamp p

3. send p to all the workers

The owner selection is done in according to the employed partitioning
scheme.

4.2.2 Worker
The target is to replicate the behavior of the sequential SIT among a set
of workers in a way such that the semantic of the original algorithm is
respected. We have to consider that the internal state is partitioned among
the workers, and each worker is responsible for the points in its partition.

Consider the computation executed at each point arrival:

1. the pruning phase is local to the partition of each worker. Since the
new point is sent to all the workers, each of them can perform the
pruning locally to its partition;

2. the store operation must not be executed by all the workers, but only
by the one to which the new point has been assigned;

3. the SIT of the new point must be computed as the expire time of its
critical dominator. The problem of finding the SIT of the new point
can be redefined as the problem of finding the youngest dominator
among all the points dominating the new one (the critical dominator).
Since the dominators of the new point can be distributed among all
the workers, the research of the critical dominator is an operation
involving them all.
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SIT calculation The skyline influence time of a new point p is determined
through a reduce phase. When a point p is received by a worker, the local
critical dominator of p is calculated. It is worth noting that this result is
local to the partition of the worker. At the end of this phase, each worker
Wi has calculated its local SIT of p, let us call it SIT i

p, as the expire time
of the local critical dominator of p.

Once each Wi has calculated its SIT i
p, the calculation of the “global”

SIT of p must be done. For this purpose, all the workers participate to the
reduce phase, in order to compute:

SITp = max
i
SIT i

p

The reduce result is sent to the owner of p, allowing it to create and
insert the proper event in its event list (as discussed in 3.2.1).

Internal activation Each worker manages its own event list. As in the
sequential SIT, an event is described by a triple (p, t, tag) where p is a point,
t is time at which the event must be raised and tag indicates the type of
the event (skytime or expire). The events in the event list of a worker are
relative to only the points owned by it.

Algorithm 8 Worker pseudocode. w time is the worker’s internal timer.
1: w time← 0
2: while true do
3: if there is a point to receive then
4: receive the point p
5: w time← p.tarr

6: dataProcessing(p)
7: else
8: increment w time
9: end if

10: dataMaintenance(w time)
11: end while

In Algorithm 8, the pseudocode of the generic worker is reported. It is
possible to observe how a worker is activated: if a new point is received,
then the worker is externally activated (lines 4-6). In this case the worker
time (w time) is reset to the new point arrival timestamp and the new point
is processed. If there are no points to receive, the worker increase its time
in order to activate itself when the timestamp of the oldest event will be
reached (through the function dataMaintenance()).
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4.2.3 Collector
All the workers send skyline updates concurrently. As said in Section 2.3,
the module must guarantee the output chronological order. If the collector
simply forwards the skyline updates received by workers, since there are no
guarantees that the workers are time-synchronized, the output chronological
order could not be preserved. Due to this motivations, the collector is
designed in way such that it is able to order the skyline updates received
by the workers.

The collector maintains the least common timestamp among all the
workers, let us call it tcoll. The updates with a time greater than tcoll are
bufferized until all the workers will have reached that time. The buffer-
ized updates are time-ordered. When all the workers reach a new common
timestamp, the tcoll is updated and the buffer is empty till the new tcoll.
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4.3 Data structures
As in the sequential module, all the non-obsolete points of the current sliding
window must be kept in memory. In the sequential module, the operations
performed on the indexing data structure are the following:

• insert/delete points. An insert operation is executed for each point
arrival. A delete operation is executed for each point expiration and
for each pruned point.

• given a point, search all the points dominated by it. This operation
is necessary to perform the pruning operation at each point arrival.

• given a point, search its critical dominator. For each newly arrived
point, its critical dominator must be found.

In the parallel module, each worker has its own data structure in which
the owned points will be stored. It is clear that, if there are no load un-
balancing problems, the number of points stored in each worker will be K

n

where K is the number of non-obsolete points in the current sliding window
and n is the parallelism degree.

4.3.1 R-Tree vs Vector
The R-Tree [1] is an height-balanced tree used for indexing multi-dimensional
objects. In literature, there are several variants of this data structure. In
this thesis we consider the R*-Tree [18], which is optimized for the index-
ing of multi-dimensional points. As discussed in [26], [27] the R-Trees do
not have provable performance guarantees, but it is well known that they
present reasonably performances for real-world data.

This type of data structure was proposed as indexing structure in a
number of works concerning skyline queries, both for sequential evaluation
over a data stream [26], [25] and sequential/parallel evaluation on static
datasets [8], [2], [21], [22].

The R-Tree is a self-balancing data structure: it ensures to maintain
the number of childs that each node will have, in a range which is an user-
specified parameter. When, due to an insertion or deletion, there are one or
more nodes with a number of childs not belonging to the specified range, a
variant-specific algorithm is executed in order to re-balance the structure.
This characteristics ensures that the height of the tree is always logarithmic
in the number of stored element. However, when the rate of inserts/deletes
operations is high, such in our application, the re-balancing costs could not
be negligible.
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R-tree size Since the R-Tree is a tree data structure, we expect that op-
erations, like as searching, will have a logarithmic behavior with additional
amortized costs deriving from re-balancing routines. However, as known,
the logarithmic costs of tree data structures are asymptotic: there are hid-
den constants that are negligible only when the number of elements in the
tree is high. In this regard, with the employed parallelization schema the
following aspects must be considered:

• assuming that there is no load-unbalancing, the number of non-obsolete
points in the current sliding window, which are the ones to be stored,
is equally distributed among the workers;

• the pruning operations can drastically reduce the number of points
stored by the workers.

Even with an high number of points received in a sliding window, the num-
ber of points stored per-worker could be one or more order of magnitude
lower, as shown at the end of this section, preventing the R-Trees to reach
their asymptotic performances.

Vector Considering the above mentioned aspects, we decided to compare
the R*-Tree-based implementation with a vector-based one. Each worker
stores its own points into a vector and, for each received point, the vector is
scanned in order to find: a) the points dominated by the new one, they are
the ones to be pruned; b) the points dominating the new one for establishing
its local critical dominator, and hence its local SIT. Since the order in which
the points are stored is not important, the insert is done at the end of the
vector in constant time. The delete is done exchanging the last element
with the one to be deleted and finally deleting it. In such a way the delete
operation does not create holes and it can be performed also in constant
time.

The points are stored using an attribute-oriented organization: d sepa-
rated vectors are used to contiguously store the same coordinate of different
points. Using this approach the operations performed in the scan loop are
ready to be vectorized and the memory access pattern allows a better use
of the cache hierarchies.

Comparison In Figure 4.8 a comparison between the version with the R*-
Tree and the one with the vector is shown. The plot reports the sequential
module service time as a function of the number of the non-obsolete points
per sliding window.
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Figure 4.8: R-Tree vs Vector comparison. It is the module service time in
function of the data structure size.

As expected, the service time of the vector-based implementation is to-
tally independent from the spatial distribution of the points: both in the
case of independent and anticorrelated distribution, the service time grows
linearly with data structure size. As far as R*-Tree based implementation is
concerned, it can be noted that also the data spatial distribution influences
the service time. In both the independent and anticorrelated cases, the
service time has a sub-linear growth, but the former case presents a lower
multiplicative constant respect to the latter one. We can state that this
multiplicative constant depends on the spatial distribution of the points.

We want to stress the point that the measurements of the above graph
are relative to the sequential module. In the parallel version we have to
consider that the number of non-obsolete points will be partitioned among
the workers. Moreover, it is worth noting that the number of non-obsolete
points is not equal to the number of points received in a sliding window.
This last can be expressed as the product between the stream arrival rate
(tuples/seconds) and the sliding window temporal length (seconds). The
number of non-obsolete points, instead, is the number of points received in
a sliding window survived to the pruning caused by the subsequent arrival
of other points.

In Figure 4.9, the number of non-obsolete point in function the number
of arrived points in a sliding window is shown, both for the independent and
anticorrelated distributions. It is interesting to observe that, even in the
anticorrelated case (the one with the lowest pruning activity), the number
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of non-obsolete points is at least two order of magnitude lower than the
total number of points received in a sliding window.
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Figure 4.9: Number of non-obsolete points in function of the number of
arrived points per sliding window, and data spatial distribution.

According to [25], in most sliding window applications, we may expect
a total number of points received in a sliding window less or equal than
106. It is possible to observe that, for a number of non-obsolete points
corresponding to a number of points received in a sliding window equals
to 106, the vector-based implementation still outperforms the R-Tree-based
one, even for the independent data distribution. Due to this observation
and the independence of the vector-based version from the data spatial
distribution, in what follows we will discuss only about this last one.

Theoretical discussion In addition to what discussed above, we can
make some considerations on the ideal scalability of the the R-Tree-based
implementation and, in general, of a module whose service time can be
expressed as:

TS = F (M) = TF ∗ log(M)

where Tf is a multiplicative constant and M is the size of a data-structure
over which F is applied. In our specific case, M is the number of points
stored in the R*-Tree.

Consider the data-parallel version of this module in which the load is
partitioned among the workers, the ideal service time with a parallel degree
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of n is:
T

(n)
id = Tf ∗ log(M

n
)

leading to an ideal scalability of:

s(n) = log(M)
log(M)− log(n)

This shows us that, from a theoretical view point, we cannot expect a
linear scalability from the data-parallelization of a module whose service
time can be expressed as logarithmic function of its load. This is another
motivation of our choice to use a vector as the data-structure of our module.
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4.4 Asynchronous reduce
The skyline influence time of each new point is calculated through a reduce
phase involving all the workers. The SIT of a point is useful only to the
owner of that point. In fact, the SIT of a point is used for the creation
of its relative event (skytime or expire, discussed in 3.2.1), which is an
operation done by its owner.

For each point, all the workers participate to the reduce phase but, if the
reduce is synchronous, only the owner have to wait its conclusion. The time
necessary to the completion of the reduce is the reduce latency. That latency
is influenced also from load unbalancing situations in which the owners wait
time will be dominated by the service time of the slowest worker.

Sheet1

Page 1

W1 wait time
W2   Module service time
W3
W4

Time

Figure 4.10: Synchronous reduce for the SIT calculation of a point assigned
to the worker W1. It must wait until all the participation of all the others
is completed.

Moreover, if the module is bottleneck, different workers could serve the
same point at different times, as illustrated in Figure 4.10. In that example,
W1 is the owner of a point which is served by the various workers in the
time slot drawn in gray. The worker W1 have to wait until all the others
participate to the reduce phase of that point. Clearly this waste of time
impacts on the workers’ service time and, if the partition schema is load
unaware, also on the load balancing.

The idea is to make the reduce asynchronous: the owner of a point
has not to wait the completion of the reduce to process all the subsequent
points: it is like an out-of-order processing. Such an approach is meaningful
only if the processing of the other points does not depend on the point for
which the reduce is still incomplete, let us call it the pending one.

Consider a worker with one or more pending points, the subsequent
points interact with them in the following ways:

• the local critical dominator of the new points must be calculated: the
information needed by this operations are the expire time of the stored
points and their spatial coordinates. The SIT of the older points is
not involved, so this operation is independent from the reduce result;
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• all the points dominated by the new ones must be pruned: the pruning
is based only on the spatial coordinates of the points. Even in this
case the reduce result is not involved.

We can conclude that the point’s processing phase does not depends on
the SIT of the others points. The asynchronous reduce works as follows:
when a point is received by a worker, whether it is the owner or not, it
participates to the reduce phase without waiting for the result. When the
reduce will be complete, its result will be sent to the owner of the point to
which the reduce is referred. All the workers non-deterministically wait for
the reception of new points from the emitter or for the result of a reduce.
If the result of a reduce relative to a point p is received, the proper event
associated with p is inserted in the worker’s event list. As in the sequential
case, the event type is established in according to the received SITp.
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Figure 4.11: Comparison between the synchronous and asynchronous re-
duce. In (a) the module service in function of the parallelism degree. In (b)
the scalability.

In Figure 4.11, the comparison between the implementation with and
without the discussed optimization is reported. As can be noted, the higher
the parallelism degree, the higher are the benefits from the adoption of the
asynchronous reduce. This behavior is motivated by the fact that the higher
the parallelism degree, more difficult is the balancing of the load with the
consequence that, in the synchronous reduce case, the owners are blocked
for longer time due to the increase of the reduce’s latency.
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4.5 Maximum sustainable rate
In this section the proposed parallelization is analyzed from the view point of
the maximum reachable bandwidth. With this term we mean the maximum
arrival rate of the elements of the input stream which the module is able to
sustain before it becomes bottleneck, given a certain parallelism degree.

Consider the hypothetical case in which no pruning operations are per-
formed. In this case, the internal state of the module correspond to all the
points received in a sliding window, let us define its size as Kno pruning:

Kno pruning = λ×W

where λ is the stream arrival rate and W is the sliding window length.
Introducing the pruning, each point has a certain probability to be

pruned, let us call it p. It is the probability that a point is pruned due
the subsequent arrival of a point dominating it, in the same sliding window.
We can model the number of non-obsolete point in a sliding window as:

K = λ×W × (1− p) = Kno pruning × (1− p)

The sequential module service time can be expressed as:

TS = F (K)

where the function F is defined by the considered implementation of the
module (R*-Tree-based or the vector-based). In the case of the vector-based
implementation, the function F is defined as

F (K) = TF ∗K

where TF is a constant. Since we consider the implementation with the
asynchronous reduce, this evaluation do not take in account the time needed
by the reduce phase.

In according with the methodologies discussed in [16], the module is a
bottleneck if:

TA = 1
λ
> TS

where TA is the inter-arrival time. In this case we can find an optimal
parallel degree n̄, such that:

T
(n̄)
S = TS

n̄
= TA
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Combining the above definitions, we can express the optimal parallelism
degree, i.e. the one for which the module is not a bottleneck given λ and
W , as:

n̄ = λ2 ×W × (1− p)× TF

Given a parallelism degree n, the module is not a bottleneck for:

λ ≤
√

n

W × (1− p)× TF

The pruning probability p depends on: a) the number of arrived points
in a sliding window, i.e. λ×W ; b) the spatial distribution of the incoming
points.
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Figure 4.12: Pruning probability in function of the number of points received
in a sliding window.

The Figure 4.12 confirms what said above. The higher the number of
points received in a sliding window, the higher the pruning probability. As
far as concerning the spatial distribution, as discussed in 2.4, the anticorre-
lated distribution is the one leading to the lowest pruning probability while
the correlated one leads to highest p. The independent data distribution is
similar to the anticorrelated one in terms of pruning activity.



Chapter 5

Experiments

As explained in Chapter 4, if the module is a bottleneck, the sequence of
the skyline updates produced by the module is correlated to the utilization
factor of this last. To ensure the repeatability of the tests the module is
implemented in way such that the sequence of the skyline updates and the
utilization factor are decoupled. The module expects to receive points in
the following format:

p = (d1, d2, ..., dn, tarr)

where tarr is the arrival time of p. In such a way, the module has not to
timestamp the arriving tuples, it must only reset its timer to the newly
arrived point’s timestamp. If the module is bottleneck and hence a point p
arrived at time tarr is served at time tarr + τ , where τ is the point’s waiting
time, the eventual updates relative to it will be emitted with time tarr since
the module timer will was reset to this time.

Given the rate at which the points must arrive to the module, this are
generated in a way such that the arrival rate is constant. The generated
points are stored in a plain-text file. A generator node has been implemented
with the function of reading the points from a file and of emulating the
input stream in according to the timestamp specified for each one of these.
Moreover, a consumer node is implemented in order to catch the updates
emitted by the module and verify if they describe a skyline or not. This
last functionality can be interpreted as “on the fly” correctness check.

In this section we consider the “best” version of the proposed parallel
module: the one with the asynchronous reduce optimization and adopting
the vector as data structure for storing the non-obsolete points.

Test platform The experiments are executed on a commodity Intel multi-
processor architecture composed by two Xeon E5-2650 CPUs for a total of

53
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16 cores and 32 hardware SMT contexts (Simultaneous Multi-Threading).
Each core is equipped with an L1 cache of 32KB and an L2 cache of 256KB.
Groups of 8 cores share L3 caches of 20MB. The communication channels
are implemented through efficient lock-free queues made available by the
FastFlow library [14].

5.1 Sequential algorithms comparison
This set of experiments compare the two sequential algorithms presented in
[26]. The target is to demonstrate that SIT outperforms Lazy both from
the view point of the service time and memory occupancy. All the tests
discussed in this sections are expressed as function of the timestamp. At
each reported timestamp is associated one of the possible events:

• a point arrival. The timestamp indicates the point’s arrival time;

• a point expire. The timestamp indicates the point’s expiration time;

• both an arrival and an expire;

We will analyze only a snapshot of the entire stream computation, in
order to illustrate better its details. Moreover, in all the following exper-
iments, the number of dimensions is fixed to 4, the stream arrival rate to
10K tuples/second and the sliding window length to 3 seconds.

For each data distribution (discussed in 2.4), three types of measure-
ments are shown: a) the module service time. It corresponds to the time
necessary to handle one of the above described events; b) the total number
of stored points by the two algorithms. This test is useful to compare them
in terms of memory occupancy; c) relative to only the Lazy algorithm. It
compares the number of points stored in DBsky and DBrest.

5.1.1 Anticorrelated distribution
In Fig. 5.1a the service time for each timestamp is reported. It is possible
to observe the different behavior of the two algorithms. Lazy, for each point
arrival, checks only if it is skyline or not, inserting it in the proper data
structure. When a point expires, the maintenance function is executed: all
the points exclusively dominated by the expiring one are inserted into the
skyline. The spikes presented by Lazy correspond to the execution of the
maintenance function. The behavior of SIT is different: since at each point
arrival the skyline influence time of the new point must be calculated, the
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data processing function is more costly. On the other hand, the computa-
tional cost of the maintenance function is negligible. It is clear that the Lazy
approach leads to an higher variance of the service time, if compared with
SIT. Due to this aspect, an hypothetical data-parallel version of Lazy could
be characterized by an high variance in the service time of the workers: this
could have a negative impact on the parallel module service time.
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Figure 5.1: Lazy vs SIT. Service time (a) and data structures size (b) as
function of time.

In Fig. 5.1b the comparison between the total number of points stored
by Lazy and SIT is shown. It is possible to observe that SIT is capable to
keep a lower number of stored points than Lazy, since it performs pruning
over all its DB. As an example, consider the timestamp 71300 in Fig. 5.1b:
both the two algorithms discard a number of points due to the arrival of
a point which dominates them. It is possible to note that the number of
points discarded by SIT is higher respect to the ones discarded by Lazy.
This is explained by the fact that this last performs pruning only over
DBsky, discarding the obsolete points in DBrest only at their expiration
time. However, due to the anticorrelated data distribution, which leads to
a minimal pruning activity, this case is the one in which the gain of SIT
respect to Lazy, in terms of memory occupancy, is the lowest, if compared
with the other data distributions.

In Fig. 5.2 the comparison between the number of points stored in the
two data structures employed by Lazy is shown. It is possible to observe
the effects of the data distribution: the anticorrelated distribution leads to
an high number of skyline points, which is comparable to the number of
non-skyline points stored in DBrest. An interesting aspect can be noted at
timestamp 71300, where the newly arrived point leads to the pruning of a
number of skyline points: the size of DBsky is drastically reduced. However,
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Figure 5.2: Lazy. Data structure comparison.

the size of DBrest still grows, even if it contains some points having no
more chances to enter into the skyline. At timestamp 72110 a skyline point
dominating an high number of points expires: at that time all the new
skyline points, i.e. the ones exclusively dominated by the expiring one, are
moved from DBrest to DBsky and the DBrest is cleaned-up, removing all
the expired points.
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5.1.2 Independent distribution
The independent distribution is characterized by an high number of both
skyline and non-skyline points. If compared with the anticorrelated one,
it presents a lower number of skyline point and an higher number of non-
skyline ones. This aspect is also confirmed by Fig. 5.3c which shows that
the number of points stored in DBrest is higher, on average, than the ones
stored in DBsky. As a consequence, the module service time, reported in
Fig. 5.3a, is higher respect to the anticorrelated case.
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Figure 5.3: Lazy vs SIT. Service time (a) and data structures size (b) as
function of time.

In Fig. 5.3b the number of points kept in memory, at each timestamp,
by the two algorithms is shown. Differently from the anticorrelated case,
the difference is more evident. As usual, this behavior is explained by the
fact that Lazy does not immediately prune the obsolete points.
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5.1.3 Correlated distribution
In the correlated distribution a small number of skyline points dominate all
the others. The Fig. 5.4c shows this behavior: the number of points stored
in DBsky is much lower respect to the ones stored in DBrest. The higher
size of DBrest leads to an higher cost of the Lazy maintenance function, as
denoted in the Fig. 5.4a where the service time of Lazy reaches the highest
peaks if compared with the other distributions.
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Figure 5.4: Lazy vs SIT. Service time (a) and data structures size (b) as
function of time.

This kind of distribution leads to an intensive pruning activity by SIT: as
shown in Fig. 5.4b, the difference between the total number of stored points
by the two algorithms is the highest among all the three data distributions.
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5.2 Effects of number of points per sliding
window

This experiments show how the sliding window length and the input stream
arrival rate influence the parallel module service time and hence its scala-
bility. The sequential module service time is expressed as:

TS = TF ×W × λ× (1− p)

where TF is a constant, W is the sliding window length (in seconds), λ is
the stream arrival rate and p is the pruning probability.

In according to [17], the parallel module ideal service time is

T
(n)
S = TS

n

where n is the parallelism degree. The ideal service time is reachable only
in the case in which the load is perfectly balanced among the workers. The
ideal bandwidth is the inverse of the ideal service time. From now on, we
refer the ideal bandwidth as the offered bandwidth, intending the bandwidth
at which the module is able to consume the input stream. The required
bandwidth, instead, is the stream arrival rate: if the offered bandwidth is
greater than or equal to the required one, the module is not a bottleneck.

All the measurements presented in this section are taken fixing:

• the number of dimensions, equals to 5;

• the partitioning scheme, set to Queue length. As discussed in 4.1.2, it
is the one able to maintain the load unbalancing among the workers to
the minimum levels, if compared with the other discussed heuristics.

In according to [2], [7], this set of experiments is relative only to the
anticorrelated and independent distribution. The correlated one is not con-
sidered since it leads to a very small number of non-obsolete points for the
selected parameters: the module is never bottleneck and hence the scalabil-
ity is meaningless.

5.2.1 Varying the sliding window length
In this experiment the module receives a stream of points with a fixed arrival
rate and following different spatial distributions. For each data distribution
different lengths of the sliding window are adopted. The target is to ob-
serve how the length of the sliding window impacts on the module offered
bandwidth and hence on the scalability.
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Anticorrelated distribution The Fig. 5.5a shows the offered bandwidth
as a function of the parallelism degree, with different lengths of the sliding
window. Moreover, the required bandwidth, i.e. the input stream arrival
rate, is reported. In all the cases the module is able to solve the bottleneck
with the available number of cores.
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Figure 5.5: Effects of the sliding window length on the service time (a) and
scalability (b) as function of par. degree. Anticorrelated distribution. Input
stream arrival rate: ∼40K tuples/sec

As expected, higher the window length, lower the offered bandwidth: the
number of non-obsolete points increases with the growing of the window
length, hence also the service time increases, since it is a function of the
number of stored points. Please note, in Fig. 5.7, that the scalability curves
stop growing after a certain parallelism degree: this is because the module,
with that number of cores, is able to sustain the input stream arrival rate.

Independent distribution The independent distributions is character-
ized by an higher pruning activity than the anticorrelated one. Fixed a
stream arrival rate and a window length, an higher pruning activity leads
to a lower number of non-obsolete points and hence to a lower service time.
This behavior is reported in Fig. 5.6a where, given a window length, it is
possible to observe that the module has an higher offered bandwidth than
the one of the anticorrelated case, specially with coarser grains, such as
W = 60s and W = 90s. The consequence is that the module is able to
sustain the stream arrival rate, and hence not to be a bottleneck, even with
lower values of the parallelism degree.
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Figure 5.6: Effects of the sliding window length on the service time (a) and
scalability (b) as function of par. degree. Independent distribution. Input
stream arrival rate: ∼40K tuples/sec

It is worth noting that an higher pruning activity is source of load un-
balancing. However, thanks to the employed partitioning scheme, this is re-
duced to negligible level, as confirmed by the scalability curves in Fig. 5.6b.

5.2.2 Varying input stream rate
This experiment is the counter-part of the previous one: the module offered
bandwidth and the scalability are analyzed fixing a window length and
varying the input stream arrival rate.

Anticorrelated distribution In Figure 5.7b the module is not bottle-
neck for a stream with arrival rate of 50K tuples/second with a parallelism
degree of eight. With a rate of 100K tuples/second the bottleneck cannot be
solved with the employed architecture. Considering the parallelism degree
interval [0, 7], where the module is a bottleneck even with a input stream
at 50k tuples/sec, it is possible to observe that lower is the sliding window
length, higher is the offered bandwidth.



5.2. Effects of number of points per sliding window 62

 0

 20000

 40000

 60000

 80000

 100000

 2  4  6  8  10  12

O
ff

e
re

d
 b

a
n
d
w

id
th

 (
tu

p
le

s/
se

c)

Parallelism degree

Offered bandwidth as function of par. degree

Rate=50K t/s
Rate=100K t/s

Required BW. 50K t/s
Required BW. 100K t/s

(a) Service time

 0

 2

 4

 6

 8

 10

 12

 14

 2  4  6  8  10  12

S
ca

la
b

ili
ty

Parallelism degree

Scalability

Rate=50K t/s
Rate=100K t/s

Ideal

(b) Scalability

Figure 5.7: Effects of the input stream rate on the service time (a) and scal-
ability (b) as function of par. degree. Anticorrelated distribution. Sliding
window length: 10 seconds

An interesting aspects can be noted comparing the Figure 5.5b with 5.7b.
The former show how the sliding window length impacts on the scalability,
fixed a stream arrival rate; the latter shows the effects on the scalability
of varying the input stream arrival rate, fixed a window length. Both are
referred to an anticorrelated distribution. In the former, with a rate of
40K tuples/second and a window length fixed to 30 seconds, hence with
a total number of points received in a sliding window equal to 1.2M , the
bottleneck is resolved with n = 8. In the latter, with a rate fixed to 100K
tuples/second and a window length of 10s, hence with a total number of
received points equals to 1M , we are not able to resolve the bottleneck with
the adopted architecture.

This behavior can be explained through the cost model discussed in
Sec. 4.5. Given a stream arrival rate and a window length, the optimal
parallelism degree, i.e. the one for which the module is not a bottleneck, is
calculated as:

n̄ = λ2 × TF ×W × (1− p)

it is clear that, even if the product λ×W is fixed1, the contribution of the
two terms to the optimal parallelism degree is different, since this last grows
as the square of λ and linearly with the window length W .

1this implies that also the pruning probability p if fixed, since it is a function of this
product.
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Figure 5.8: Effects of the input stream rate on the service time (a) and
scalability (b) as function of par. degree. Independent distribution. Sliding
window length: 10 seconds

Independent distribution Due to the higher pruning activity, there is
a lower number of stored points respect to the anticorrelated one, hence the
offered bandwidths in Fig 5.8a are higher than the ones of the anticorrelated
case. As far as concerning the scalability, the consideration reported for the
anticorrelated case are still valid.

5.3 Effects of the partitioning scheme
In this experiment the impact of the selected partitioning scheme on the
computation speed-up is measured. The heuristics on which this experiment
is based are the one presented in Section 4.1.2. In addition we consider
also the round-robin owner selection in order to compare the load-aware
heuristics with a load-unaware one. The speed-up is measured in relation
to the service time of the sequential module with the same parameters and
where, obviously, no partitioning is required.

Since we want to observe how the load-balancing techniques impact on
the speed-up, we choose, for each data distribution, a set of parameters (λ,
W ) such that the module is always bottleneck.
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Figure 5.9: Effects of the partitioning scheme on the speed-up, both in
anticorrelated (a) and independent (b) case. The asynchrony degree set to
10K points, except for Fastest worker in which is set to 1.

Anticorrelated distribution The results with this type of distribution
are reported in Fig. 5.9a. It is the one with the lowest pruning activity,
hence the load unbalancing is minimal. As can be observed, the Queue
length partitioning scheme is the one with the highest speed-up. The Actual
load, instead, is the one performing worse: as explained in Sec. 4.1.2, this
heuristic does not take in account the presence of a queue between the
emitter and each worker. When the asynchrony degree of these queues is
high, such as in this case, this approach introduces a non-negligible error in
the selection of the least-loaded owner.

Independent distribution As said, this distribution leads to an higher
pruning activity, hence to more load unbalancing. In Fig. 5.9b is reported
the speed-up of all the partitioning schemes with respect to this kind of
data distribution. In all the cases, the higher load unbalancing leads to a
lower speed-up than the one reached in the anticorrelated case. However,
even with this configuration, the Queue length heuristic is the one taking
the best counter-measures, hence the one reaching the best results.

Correlated distribution Since this distribution is characterized by an
intensive pruning activity, it is the case presenting the highest load unbal-
ancing. As shown in Fig. 5.10, the hierarchies are unchanged, except for
Fastest worker which is the one that, in this case, have the worst perfor-
mances.
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Figure 5.10: Effects of the partitioning scheme on the speed-up in the cor-
related case. The asynchrony degree set to 10K points, except for Fastest
worker in which is set to 1.

Effects of SMT It is interesting to note what happens, with the anti-
correlated and independent distribution, when we start to allocate multiple
workers on the same core with different SMT contexts, at n = 13. While the
speed-up of Fastest worker and Queue length continue to grow, the others
are subject to a significant slow-down. For the Fastest worker heuristic the
explanation is obvious: a point is assigned to the first worker that is able to
accommodate it in its queue. If a worker is slower, as in the case of n = 13,
the emitter will assign to it a minor number of points, hence the speed-up
will continue to grow in a sub-linearly way with the parallelism degree. As
far as concerning the Queue length partitioning scheme, it is based on both
the actual load of the workers and the number of enqueued points for which
each worker has been elected as the owner. A slower worker will serve slowly
the points in its queue, hence it will be designed as the owner for a minor
number of points. In conclusion, we can state that these two partitioning
schemes aim to balance the service time of the workers, instead of their
merely loads. This result is interesting because it is applicable also in cases
where the TF presents a non-negligible variance, such as in the case of the
R-Tree-based implementation of the module.

The other partitioning schemes, instead, perform the owner selection in
a totally independent way from the workers’ service time: even if the load
is balanced, the service time of the module will be dominated by the one of
the slowest workers.
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5.4 Maximum sustainable rate
In this experiment the input stream arrival rate that the module is able to
sustain before it became bottleneck is measured, for each parallelism degree.
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Figure 5.11: Maximum sustainable rate. Sliding window length fixed to 10
second. Logscale on y-axis.

In Fig. 5.11 is possible to note the importance of data distribution. We
remark that, as discussed in Section 4.5, fixed a window length, the module
is not bottleneck for:

λ ≤
√

n

W × (1− p)× TF

The TF measured on the test architecture is about 1.7×10−6 second. Clearly,
in the hypothetical case in which no pruning operation is performed (p = 0),
we expect that the maximum sustainable rate grows as the square root of
n, regardless the specific data distribution. However, the pruning activity
is present and how much pruning is performed is indicated by the pruning
probability p, which: a) is different for each data distribution; b) grows as
the number of received points per sliding window, i.e. the λ×W product.
Therefore, in a way dependent on the two above factors, the maximum
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sustainable rate grows faster than the square root of n. Nevertheless, you
have to consider that W appears in the denominator of the sustainable
bandwidth formula: higher is W , lower is the sustainable λ.



Chapter 6

Conclusion

In this thesis we proposed a parallel module which applies the skyline oper-
ator over a stream of d-dimensional points. The basic algorithm used as the
starting point of the parallelization is SIT, presented by Tao & Papadias
in [26]. Our parallelization pattern is a data-parallel map, followed by a
reduce phase.

Since the SIT algorithm prunes the points which are made obsolete by
the arriving of new ones, its load is highly variable over the time. This
behavior impacts on the proposed parallelization introducing potential load
unbalancing that, if not contrasted, can nullify its benefits in terms of service
time. To reduce this phenomena, we propose a set of load-aware partitioning
schemes, in particular it has been shown that Queue length heuristic is
designed with the aim to minimize the load unbalancing even if the module
is bottleneck and the asynchrony degree of the queues between the emitter
and the workers is high.

Two versions of the parallel module have been implemented, one utiliz-
ing the R-Tree as indexing data structure for the stored points, as proposed
by the authors of SIT in [26], and one based on a random-access data
structure. The results show that the R-Tree-based version outperforms the
vector-based one only when the number of received points per sliding win-
dow is over a certain threshold. In according to the literature, this threshold
is possibly out from the applicative domains of this kind of computation.
Due to this motivation and the fact that the R-Tree’s performances depend
on the data distribution of the stored points, the vector has been chosen as
data structure for the storage of both skyline and non-skyline points. More-
over, we discussed that the R-Tree-based implementation, and in general a
module whose service time can be expressed as a logarithmic function of the
size of its internal state, cannot reach a linear scalability due to theoretical
reasons.
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For each incoming point a reduce phase is performed in order to calculate
its skyline influence time. If the reduce is synchronous, the owner of that
point must wait for the participation of all the workers to the collective
operation. If the load is unbalanced, this behavior has a negative impact
on the module service time. Since our target is to minimize it, we propose
an optimization, called asynchronous reduce, that avoid the owners to wait
the completion of calculation of the SITs relative to the points assigned to
them.

In Section 4.5, is presented a cost model for calculating the maximum
input stream arrival rate that the parallel module is able to sustain before
it became bottleneck, given a parallelism degree. With this cost model we
are able to show how the spatial distribution of the points impacts on the
module service time.

Finally, in Chapter 5, the results of a set of experiments relative to the
various aspects of the computation is presented. In this section we show that
maintaining the load unbalancing to negligible levels (with the proposed
partitioning schema), and using the optimized version of the reduce, we are
able to reach good scalability levels.

Future works As a future work, the Queue length partitioning scheme
can be improved in order to take in account also the pruning that each ele-
ment in the workers’ queue can cause. This approach will lead to a better
approximation in forecasting the worker’s load and hence to a better load
balancing. A possible extension to our work is to make the module able to
satisfy multiple skyline queries, i.e. different sliding window lengths and/or
dimensions. The resulting module will have multiple output streams, one
for each query. Finally, an explicit cost model for calculating the pruning
probability p could be found: combining it with our cost model, it will be
possible to analytically find the maximum stream arrival rate that the mod-
ule is able to sustain knowing just the TF , which is architecture dependent.
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Appendix A

MINI

This algorithm is presented in [15]. It finds the skyline over the points
contained in an R-tree with the constraint that only the ones dominated
by a given point p must be taken into account. It utilizes a min-heap data
structure that can contains two type of objects: points or R-tree’s nodes.
In both cases, the Manhattan distance from the origin of the data space is
associated with each object and the min-heap is based on this last one.
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Algorithm 9 Mini(N, p). N is root of the R-tree, p is the constraint point
1: miniSkyline← ∅
2: insert (N, 0) into Heap
3: while Heap isn’t empty do
4: if Heap.top is a point then
5: point = pop Heap
6: if point is not dominated by anyone in miniSkyline then
7: insert point in miniSkyline
8: end if
9: else

10: node = pop Heap
11: if node.upper right ∈ p.DR then
12: if node is a leaf node then
13: local skyline = compute the skyline over the points in node
14: for each c ∈ local skyline do
15: if c ∈ p.DR then
16: insert (c,Distc) into Heap
17: end if
18: end for
19: else
20: for each c in node.children do
21: insert (c,Distc) into Heap
22: end for
23: end if
24: end if
25: end if
26: end while



Appendix B

FindDominatedPoints

Given an R-Tree and a point p, this operation finds the set of points dom-
inated by p. It is employed in Lazy for the pruning of the points stored in
DBsky.

The algorithm utilizes an heap whose elements are the R-Tree nodes to
analyze.

Algorithm 10 findDominatedPoints(N, p). N is the R-tree’s root; p is
the dominating point;

1: insert N into Heap
2: while Heap is not empty do
3: node = pop Heap
4: if p dominates the upper-right corner of node then
5: if node is a leaf then
6: for each point x ∈ node do
7: if p dominates x then
8: insert x into Domp

9: end if
10: end for
11: else
12: for each Child c ∈ node do
13: insert x and its distance into Heap
14: end for
15: end if
16: end if
17: end while
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Appendix C

FindSIT

This algorithm is presented in [26]. Given an R-Tree and a point p, it finds
the skyline influence time of p. It is based to an R-Tree in which each
intermediate node E stores the number E.tmax

exp equals to the maximum
expire time of the points in its subtree. The algorithm utilizes a max-heap
H whose elements couples < E, key > where E is an R-Tree node.

74



75

Algorithm 11 findSIT (T, p). T is the R-Tree’s root; p is the point whose
the SIT has to be calculated;

1: p.tsky = current time
2: for each node E in the R-Tree root T do
3: if E intersects p.ADR and E.tmax

exp > p.tsky then
4: insert < E,E.tmax

exp > in H
5: end if
6: if E is covered by p.ADR and E.tmax

exp > p.tsky then
7: p.tsky = E.tmax

exp

8: end if
9: end for

10: while H is not empty do
11: < E,E.tmax

exp > = pop from H
12: if E.tmax

exp < p.tsky then return
13: if E points to an intermediate node N then
14: for each entry E ′ in N do
15: if E ′ is covered by p.ADR and E ′.tmax

exp > p.tsky then
16: p.tsky = E ′.tmax

exp

17: else if E ′ intersects p.ADR and E ′.tmax
exp > p.tsky then

18: insert < E ′, E ′.tmax
exp > in H

19: end if
20: end for
21: else
22: //E points to a leaf node N
23: for each record r in N do
24: if r dominates p and r.texp > p.tsky then
25: p.tsky = r.texp

26: end if
27: end for
28: end if
29: end while
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