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ABSTRACT 

 

Background. Papillary thyroid cancer (PTC) is the most common (~90%) endocrine 

malignancy. The first manifestation of the thyroid cancer is through thyroid nodules and the 

most sensitive and specific diagnostic tool to detect malignancy in patients with thyroid 

nodules is fine-needle aspiration biopsy (FNAB). Nevertheless, sometimes it is not efficient 

enough to give a specific diagnosis leading to the so called diagnoses of indeterminate or 

suspicious lesions for PTC which ranges from 20 to 30% of cases. BRAF mutational 

analysis is commonly used to assess the malignancy of thyroid nodules but unfortunately it 

still leaves indeterminate diagnoses. Recent studies conducted in our laboratories have 

shown a significant highly decrease rather than increase in transcript of c-KIT in malignant 

thyroid lesions compared to the benign ones, and it was demonstrated to be effective as a 

new biomarker in the preoperative diagnosis of thyroid tumors.  

Aim: The aim of the present study is mainly to investigate thoroughly the role of the c-KIT 

gene in thyroid cancerogenesis, and to characterize in details the c-KIT signaling pathway 

and the cause of its down-regulation in thyroid cancer. Another aim of this present study is 

to identify other molecular markers in order to improve the cytological diagnosis and to 

better understand the mechanisms underlying thyroid epithelium transformation. 

Methods: We have collected 169 pre-operative thyroid Fine Needle Aspirate (FNA) sample. 

All 169 FNA samples analyzed in this study were molecularly characterized for the presence 

of the V600E BRAF mutation in exon 15. SNP analysis, methylation analysis and various 

gene expression analyses were conducted in order to clarify c-Kit role in thyroid neoplastic 

trasformation. Gene expression computational models (Neural Network Bayesian Classifier, 

Discrimination Analysis) were built, together with ROC curves and PCA (Principal 

Component Analysis) to distinguish a malignant/benign status and BRAF status. Finally a 

panel of 84 Human Tyrosine Kinases gene array was amplified on 8 benign samples and 12 

malignant samples.  

Results: 64/103 malignant samples carried the V600E mutation while all 66 benign samples 

were wild type for BRAF exon15. The results of the analysis related to c-KIT function 

support our hypothesis that this receptor controls a differentiation pathway in thyrocytes. 

Methylation biochemal process and 146b/222 miRNA expression account for part of the  

c-KIT dowregulation. 

The Bayesian Artificial Neural Network and Discriminant Analysis, made of 4 gene (KIT, 

TC1, miRNA222, miRNA146b) showed a very strong predictive value (94.12% and 92.16% 
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respectively) in discriminating malignant from benign patients and it is interesting to notice 

that Discriminant Analysis showed a correct classification of 100.00 % of the samples in the 

malignant group, and 95.00 % by BNN. This same model defines two clearly different 

genetic background related to BRAF mutational status. In the panel of 84 Human Tyrosine 

Kinases gene array we found in three (malignant vs benign; V600E vs benign; WT 

malignant vs benign) of the four conducted comparisons, four genes (ALK, CSK, HCK e 

MSTR1) in common that had a significantly altered expression. 

Conclusion: The results of this research support the idea that c-KIT is driving a thyroid cell 

differentiation pathway, which results altered in thyroid neoplasm transformation. In the 

same study a 4 gene model was build able to discriminate with high probability between 

benign and malignant FNAs. The model is proposed to be added to the routinely BRAF 

diagnostic test in order to improve FNA diagnostic accuracy solving the problems of the 

nodules that otherwise would remain suspicious. Moreover the present study shows clearly 

how the presence of the BRAF V600E mutation is accompanied by a unique genetic 

scenario in which sets of genes specifically discriminate the mutational and wild-type status. 

Several tyrosine kinase genes showed statistically significant differential expression between 

malignant and benign thyroid nodules. 
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1 INTRODUCTION 

 

1.1 Anatomy and histology of the thyroid 
 

The thyroid gland, which is the largest endocrine organ in humans, regulates systemic 

metabolism through thyroid hormones. The thyroid gland is a highly vascularized organ 

located anteriorly in the neck, deep to the platysma, sternothyroid and sternohyoid muscles, 

and extending from the 5th cervical  (C5) to the 1st thoracic (T1) vertebrae.  The gland 

consists of two lobes (left and right) connected by a thin, median isthmus overlying the 2nd 

to 4th tracheal rings, typically forming an "H" or "U" shape.  Occasionally the isthmus is 

absent and the thyroid exists as two distinct lobes (Figure 1.1) 

The thyroid is divided into lobules, each composed of about 20 to 40 evenly dispersed 

follicles. Thyroid follicles are surrounded by a single layer of thyroid epithelial cells 

surrounding a gel-like pinkish material called colloid (Figure 1.2 A). Follicular cells (or 

“thyroid epithelial cells”) are the most numerous cells present in the simple epithelial layer 

and are responsible for iodine uptake and thyroid hormone synthesis as well as 

thyroglobulin, a glycoprotein. Thyroid hormones are stored extracellularly as part of the 

thyroglobulin which is the main component of the colloid. The size of follicles and the 

height of follicular cells vary even within one section of the gland. Squamous principal cells 

indicate a relatively inactive gland whereas cuboidal to columnar cells indicate more activity 

in removing the hormone from the stored form. In addition to follicular cells there is another 

type of functional cell in the thyroid gland, the parafollicular cell, which may be found as 

single cells in the epithelial lining of the follicle or in groups in the connective tissue 

between follicles (Figure 1.2 B).  They usually appear as large, clear cells since they do not 

stain well with hematoxylin and eosin; sometimes, these cells are called parafollicular cells, 

because of their location, or clear cells (C cells), for their appearance of their cytoplasm. 

Parafollicular cells are dedicated to the production of the hormone calcitonin, which lowers 

the level of calcium in the blood [1,2]. 
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Figure 1.1: Gross anatomy of the thyroid gland   

 

 

 

Figure 1.2: A thyroid follicles; B follicular and parafollicular cells 
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1.2  Thyroid neoplasm  

 

 

 The thyroid gland gives rise to a variety of neoplasms, ranging from circumscribed, benign 

adenomas to highly aggressive, anaplastic carcinomas [3]. Thyroid cancer is the most 

common malignant tumor of the endocrine system and accounts for approximately 1% of all 

newly diagnosed cancer cases. Its incidence has increased significantly in the USA and other 

countries over the last several decades [4,5]. Age- adjusted global incidence rates vary from 

0.5 to 10 cases per 100,000 population, occurring in most of the cases between 20 and 50 

years of age. 

From a clinical standpoint, the possibility of neoplastic disease is of major concern in 

individuals who present thyroid nodules. The overwhelming majority of solitary nodules are 

benign lesions. Carcinomas of the thyroid, in contrast, are uncommon, accounting for much 

less than 1% of solitary thyroid nodules. Adenomas are benign neoplasms derived from 

follicular epithelium. The malignant tumours of the thyroid can originate from each 

of the cell types that populate the gland such as the follicle cells, the C cells that produce 

calcitonin, lymphocytes, and cells originating from the vascular and stromal elements; 

moreover malignant tumors may be due to metastasis from other organs [3].  

The most frequent type of thyroid malignancy is papillary carcinoma, which constitutes 

approximately 80% of all cases, and this tumor type is primarily responsible for the overall 

increase in incidence of thyroid cancer (Figure 1.4 A) [6].  

 

The second most common tumor type is follicular carcinoma, which accounts for 

approximately 15% of all thyroid malignancies and may be of conventional or oncocytic 

(Hurthle cell) type [7]. It is likely that follicular carcinomas can develop either from 

preexisting benign follicular adenomas or directly, by passing the stage of adenoma. These 

follicular cellderived tumors are well differentiated, in contrast to poorly differentiated and 

anaplastic thyroid carcinomas, which can arise de novo or from preexisting 

welldifferentiated papillary or follicular carcinomas (Figure 1.4 B). 

Anaplastic and poorly differentiated carcinomas are rare (~2% of all thyroid cancer cases) 

and represent the most aggressive types of thyroid cancer (Figure 1.4 C). 

Thyroid medullary carcinoma originates from parafollicular C cells and accounts for 

approximately 3% of thyroid cancer  (Fifure 1.4 D) (Fifure 1.5) [7].  
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Figure 1.4: A) Classic papillary thyroid carcinoma is formed of papillae with fibrovascular cores; B) 

Follicular carcinoma; C) Anaplastic carcinoma; D) Medullary carcinoma 

 

 
 
Figure 1.8: Schematic representation of thyroid cancer origin and its putative progression. 

Oncocytic adenoma and carcinoma are currently considered to be variants of follicular adenoma and 

carcinoma. Papillary carcinoma may be of the classical type or manifests as one of its variants, 

including oncocytic variant of papillary carcinoma. (Pathology and Genetics of Tumours of 

Endocrine Organs. IARC Press, Lyon, France, 2004) [7].  

A B 

C D 
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   1.3 Common alterations in thyroid cancer 
 

Similar to other cancer types, thyroid cancer initiation and progression occur through 

gradual accumulation of various genetic and epigenetic alterations, including activating 

and inactivating somatic mutations, alterations in gene expression patterns, microRNA 

(miRNA) deregulation and aberrant gene methylation. Among these alterations, most of 

the data that have accumulated relate to somatic mutations, many of which occur early in 

the transformation process and are essential for cancer development. Point mutation and 

chromosomal rearrangements are very frequent in thyroid cancer progression. The 

former is a result of single nucleotide change within the DNA chain, whereas the latter 

represents a large-scale genetic abnormality with breakage and fusion of parts of the 

same or different chromosomes. Importantly, a growing body of evidence suggests that 

these two distinct mutational mechanisms are associated with specific etiologic factors 

involved in thyroid carcinogenesis.  

 

    1.4 Altered signalling pathways in thyroid cancer 
 

Recent years have been marked by significant expansion in the understanding of the 

molecular basis of thyroid carcinogenesis. Most mutations in thyroid cancer involve the 

effectors of the MAPK pathway and the PI3K-AKT pathway (Figure 1.6).  

It has become apparent that thyroid tumors, especially those of the papillary type, 

frequently have genetic alterations leading to activation of the MAPK signaling pathway. 

These include RET/PTC rearrangement and point mutations of the BRAF, a RAS genes 

and, in some cases, by the recently discovered ALK mutations43. In thyroid 

follicular carcinomas, in addition to RAS mutations and PAX8PPARγ rearrangement, 

alterations involving the PI3K/AKT signaling pathway are likely to play a role, 

particularly in later stages of tumor progression. Many of these mutations are associated 

with distinct phenotypical features of tumors, and some of them serve as markers of 

more aggressive tumor behavior. Current molecular techniques allow the detection of 

these genetic alterations in thyroid fineneedle aspiration (FNA) samples and surgically 

removed samples, offering useful information for diagnosis and management of patients 

with thyroid cancer. Many of these mutations, particularly those leading to the activation 

of the MAPK pathway, are being actively explored for targeted therapy of thyroid 

cancer. These tumors frequently have mutations in genes coding for proteins that signal 



 13 

along the MAPK signaling pathway. This ubiquitous intracellular cascade regulates cell 

growth, differentiation and survival in response to growth factors, hormones and 

cytokines that interact with cell surface receptor tyrosine kinases [8]. Activating 

mutations of the BRAF, RET or RAS genes are found in approximately 70% of papillary 

carcinomas, and they rarely overlap in the same tumor, suggesting that activation MAPK 

signaling is essential for tumor initiation and that alteration of a single effector of the 

pathway is sufficient for cell transformation [9–11]. Despite their common ability to 

activate the MAPK pathway, each of these mutations is likely to have additional and 

unique effects on cell transformation, as they are associated with unique gene expression 

signatures and distinct phenotypical and biological properties of papillary carcinomas 

(Figure 1.7) [12,13]. 

 

Figure 1.6: Mutations of the MAPK pathway (in blue) are associated with papillary thyroid cancer. 

* Denotes known genetic mutations associated with sporadic follicular thyroid cancer. Sporadic 

mutations of the PI3K/AKT pathway have been associated with follicular thyroid cancer. In the third 

pathway, mutations of the nuclear receptor PPARgamma have been associated with follicular thyroid 

cancer. Th = thyroid hormone, TR = thyroid hormone receptor, NGF = nerve growth factor, GDNF = 

glial cell line-derived neurotrophic factor. (The Evolution of Biomarkers in Thyroid Cancer—From 

Mass Screening to a Personalized Biosignature: Raymon H. Grogan , Elliot J. Mitmaker †and Orlo 

H. Clark ) 

 



 14 

 

 
 

Figure 1.7: Molecular pathways in thyroid papillary cancer and typical microscopic presentation and 

clinicalpathological features of tumors associated with specific mutations. N: Normal thyroid. 

(Nikiforov, Y.E. & Nikiforova, M. N., Nature Reviews, 2011) 

 

 

The PI3K/Akt signaling pathway, also plays an important role in the regulation of cell 

growth, proliferation and survival. This pathway can be activated by the upstream 

stimulatory molecules (i.e., RAS, RET/PTC), through the loss of function of PTEN protein 

that normally inhibits PI3K signaling or as a result of activating mutations or amplification 

of genes coding for the effectors of this pathway. The PIK3CA gene, coding for a catalytic 

subunit of PI3Ks, has been shown to harbor mutations in thyroid tumors, although at low 

frequency. Specifically, it has been found in 6–13% of follicular carcinomas and in 0–6% of 

follicular adenomas [14,15]. Mutations typically involve various nucleotides in exons 20 and 

9 of the PIK3CA gene. Mutations of the PTEN gene have been reported in a small 

proportion of follicular carcinomas (~7%), but not in follicular adenomas [15,16 ]. 
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1.5  Gene mutations 
 

1.5.1 BRAF 

BRAF is a serine-threonine kinase that belongs to the family of RAF proteins, which are 

intracellular effectors of the MAPK signaling cascade. Upon activation triggered by 

RAS binding and protein recruitment to the cell membrane, these kinases phosphorylate 

and activate MEK, which in turn activates ERK and consequent effectors of the MAPK 

cascade. Point mutations of the BRAF gene are found in about 45% of thyroid papillary 

carcinomas (9, 17). Virtually all point mutations involve nucleotide 1799 (generally 

T>A, Figure 1.8) and result in a valine-to-glutamate substitution at residue 600 (V600E) 

(19, 20).  

 

Figure 1.8: BRAF 1799T>A point mutation. 

 

 

BRAF V600E mutation leads to constitutive activation of BRAF kinase and the mechanisms 

of activation have been recently elucidated. In the dephosphorylated, wild type BRAF 

protein the hydrophobic interactions between the activation loop and the ATP binding site 

maintains the protein in an inactive conformation. The V600E substitution disrupts these 

interactions and allows the formation of new interactions that keep the protein in a 

catalytically competent conformation, resulting in continuous phosphorylation of 

MEK.  BRAF mutations are highly prevalent in papillary carcinomas with classical 
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histology and in the tall cell variant, but are rare in the follicular variant  [20, 18]. In many 

studies, the presence of BRAF mutation has been found to correlate with aggressive tumor 

characteristics such as extra thyroidal extension, advanced tumor stage at presentation, 

tumor recurrence, and lymph node or distant metastases [22-23]. Importantly, BRAF V600E 

mutation has been found to be an independent predictor of tumor recurrence even in patients 

with stage I-II of the disease  [23, 24]. BRAF mutations have also been associated with the 

decreased ability of tumors to trap radioiodine and treatment failure of the recurrent disease, 

which may be due to the deregulation of function of the sodium iodide symporter (NIS) and 

other genes metabolizing iodide in thyroid follicular cells  [23, 25]. 

Other and rare mechanisms of BRAF activation in papillary thyroid cancer include K601E 

point mutation, small in-frame insertions or deletion surrounding codon 600  [26-28]. In 

addition to papillary carcinomas, BRAF is found mutated in thyroid anaplastic and poorly 

differentiated carcinomas, typically in those tumors that also contain areas of well- 

differentiated papillary carcinoma [22, 29, 30]. In those tumors, BRAF mutation is 

detectable in both well-differentiated and poorly differentiated or anaplastic tumor areas, 

providing evidence that it occurs early in tumorigenesis. Therefore, the detection of V600E 

BRAF mutation in thyroid FNA samples or in surgically removed samples is virtually 

diagnostic for papillary carcinoma [22,23]. 

 

1.5.2 RAS 

The RAS genes (HRAS, KRAS and NRAS) encode highly related G-proteins that are 

located at the inner surface of the cell membrane and play a central role in the intracellular 

transduction of signals arising from cell membrane receptors tyrosine kinase and G-protein- 

coupled receptors. In its inactive state, RAS protein is bound to guanosine diphosphate 

(GDP). Upon activation, it releases GDP and binds guanosine triphospate (GTP), activating 

the MAPK and other signaling pathway, such as PI3K/AKT. Normally, the activated RAS-

GTP protein becomes quickly inactive due to its intrinsic guanosine triphosphatase 

(GTPase) activity and the action of cytoplasmic GTPase-activating proteins, which catalyze 

the conversion of the active GTP form to the inactive GDP-bound form. In many human 

neoplasms, point mutations occur in the discrete domain of the RAS gene, which result in 

either an increased affinity for GTP (mutations in codons 12 and 13) or inactivation of the 

autocatalytic GTPase function (mutations in codon 61). As a result, the mutant protein 

becomes permanently switched in the active position and constitutively activates its 

downstream signaling pathways. 
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Point mutations of RAS occur with variable frequency in all types of papillary thyroid 

follicular cell-derived tumors. In papillary carcinomas, RAS mutations are relatively 

infrequent, as they occur in about 10% of tumors [31, 32]. Papillary carcinomas with RAS 

mutations almost always have the follicular variant histology; this mutation also correlates 

with significantly less prominent nuclear features of papillary carcinoma, more frequent 

encapsulation, and low rate of lymph node metastases [33]. Some studies have reported the 

association between RAS mutations and more aggressive behavior of papillary carcinoma 

and with higher frequency of distant metastases [34]. In follicular thyroid carcinomas, RAS 

mutations are found in 40-50% of tumors and may also correlate with tumor 

dedifferentiation and less favorable prognosis [35-38]. RAS mutations may predispose to 

tumor dedifferentiation, as they are found with high prevalence in anaplastic 

(undifferentiated) thyroid carcinomas. This may be due to the effect of mutant RAS to 

promote chromosomal instability, which has been documented in the in vitro settings. 

Mutations of the RAS gene are not restricted to papillary carcinoma and also found in other 

benign and malignant thyroid neoplasms, as well as in tumors from other tissues [39]. 

The diagnostic use of RAS mutation detection is controversial. On the one hand, it is not 

specific for malignancy since RAS mutations also occur with significant prevalence in 

benign follicular adenomas. On the other hand, RAS mutations frequently occur in follicular 

carcinomas and the follicular variant papillary carcinomas, both of which are difficult to 

diagnose cytologically in thyroid FNA samples. Moreover, since mutant RAS is likely to 

predispose to progression from follicular adenoma to carcinoma and to further tumor 

dedifferentiation, it may be justifiable to surgically remove the RAS positive adenomas to 

prevent such a progression. In a prospective study aimed to assess the role of detection of 

different mutations in improving the preoperative FNA diagnosis of thyroid nodules, the 

detection of RAS mutations was found to improve the diagnostic accuracy and allowed to 

diagnose malignant tumors in several samples with negative or insufficient cytology [40]. 
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1.6 Gene translocations 
 

 1.6.1 RET/PTC 

The RET proto-oncogene codes for a cell membrane receptor tyrosine kinase. In the thyroid 

gland, RET is highly expressed in parafollicular C-cells but not in follicular cells, where it 

can be activated by chromosomal rearrangement known as RET/PTC rearrangement [42]. 

RET/PTC rearrangement is another genetic alteration that is frequently found in papillary 

carcinomas, [29  and is a result of t e fusion  et een t e     ortion of t e RE  rece tor 

t rosine kinase gene and t e    portion of various genes. 

At least 11 types of RET/PTC have been reported to date, all formed by the RET fusion to 

different partners [43, 44]. All fusions leave the tyrosine kinase domain of the RET receptor 

intact and enable the RET/PTC oncoprotein to bind SHC and activate the RASRAFMAPK 

cascade [48]. The two most common rearrangement types, RET/PTC1 and RET/PTC3 

account for the vast majority of all rearrangements found in papillary carcinomas. Several 

studies suggest that the oncogenic effects of RET/PTC require signaling along the MAPK 

pathway and the presence of the functional BRAF kinase  [45-47]. Indeed, BRAF silencing 

in cultured thyroid cells reverses the RET/PTC-induced effects such as ERK 

phosphorylation, inhibition of thyroid specific gene expression, and increased cell 

proliferation [46, 47]. RET/PTC is found on average in about 20% of adult sporadic 

papillary carcinomas, although its prevalence is highly variable between different 

observations [43, 44]. In general RET/PTC incidence is higher in tumors from patients with 

a history of radiation exposure and in pediatric populations. The distribution of RET/PTC 

rearrangement within each tumor may vary from involving almost all neoplastic cells (clonal 

RET/PTC) to being detected only in a small fraction of tumor cells (non-clonal RET/PTC) 

[31, 48].  The heterogeneity may be of potential problem for the RET receptor-targeted 

therapy, since tumors with non-clonal RET/PTC frequently have other genetic alterations 

and may not respond to RET inhibitors in the same way as tumors harboring the clonal  

 

1.6.2 PAX8/PPARγ 

PAX8/PPARγ rearrangement results from the translocation t(2;3)(q13;p25) that leads to the 

fusion between the PAX8 gene, which encodes a paired domain transcription factor, and the 

peroxisome proliferator-ativated rece tor (PPARγ) gene [50]. PAX8-PPARγ occurs in a out 

35% of conventional follicular carcinomas, and with lower prevalence in oncocytic (Hurtle 

cell) carcinomas [50-52]. Tumors harboring PAX8-PPARγ rearrangement tend to  resent at 
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a younger age, be smaller in size, and more frequently have vascular invasion. The 

rearrangement causes t e over ex ression of t e PPARγ  rotein   ic  can  e detected by 

immunohistochemistry [49, 53]. 

The mechanisms of cell transformation induced by PAX8-PPARγ are not full  understood. 

Some evidence  as  een  resented for in i ition of normal PPARγ function via a dominant- 

negative effect of the PAX8-PPARγ  rotein on  ild t  e PPARγ [49, 45]. Other studies 

have found t e activation of kno n PPARγ target genes in tumors  ar oring PAX8-PPARγ, 

arguing against the dominant-negative effect. Other possible mechanisms include 

deregulation of PAX8 function, known to be critical for thyroid cell differentiation, and 

activation of a set of genes related to neit er  ild t  e PPARγ nor wild type PAX8 

pathways [55, 56]. 

PAX8-PPARγ rearrangements and RAS  oint mutations rarely overlap in the same tumor, 

suggesting that follicular carcinomas may develop via at least two distinct molecular 

pathways, initiated by either PAX8-PPARγ or RAS mutation [51].  

 

 

1.7 Other molecular events 
 

Distinct alterations in gene expression have been observed in papillary carcinomas and other 

types of thyroid cancers [12, 1, 57, 58]. These alterations include down regulation of genes 

responsible for specialized thyroid function (such as thyroid hormone synthesis), up 

regulation of many genes involved in cell adhesion, motility and cell-cell interaction, and 

different patterns of deregulation of the expression of genes that encode cytokines and other 

proteins involved in inflammation and immune response. 

Among papillary carcinomas, different mRNA expression profiles have been observed in the 

classic papillary, follicular and tall-cell variants [57-60]. Moreover significant correlations 

have been observed between BRAF, RAS, RET/PTC and TRK (tyrosine receptor kinases) 

mutations and specific patterns of gene expression. This information has shed light on the 

molecular basis for the distinct phenotypic and biological features associated with each 

mutation type [12]. Acquisition of more invasive tumor characteristics and dedifferentiation 

of BRAF- mutated cancers seems to coincide with profound deregulation of the expression 

of genes that encode proteins involved in cell adhesion and the inter-cellular junction, which 

provides evidence for induction of an epithelial-mesenchimal transition along with increased 

cell motility and invasiveness [61, 62]. 
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Moreover, several miRNAs have been found to be deregulated in thyroid cancer [63-66]. 

Generally miRNA expression profiles of papillary carcinoma are different from those of 

follicular carcinoma and other thyroid tumors [67]. Several specific miRNAs, such as miR-

146b, miR-221 and miR-222, are highly up regulated in papillary carcinomas and many 

have a pathogenic role in the development of these tumors [64, 66, 67].   Alterations in gene 

expression owing to aberrant methylation of gene promoter regions or histone modification 

also occur in thyroid cancer. These epigenetic events can alter the function of tumor 

suppressor genes and thus contribute to activation of important signaling pathways, such as 

PI3K-AKT and MAPK cascade. Changes in epigenetic regulation might also result in down 

regulation of thyroid specific genes during tumor progression and dedifferentiation [68-69]. 

Hypermethylation of the metalloproteinase inhibitor gene TIMP3 and other tumor 

suppressor genes is frequently observed in thyroid cancers with the BRAF V600E 

substitution, which may contribute to the aggressive biological behavior of tumors carrying 

this mutation [71]. 

 

1.8 Fine-needle aspiration cytology to management of a patient with a 

thyroid nodule: limitations and clinical utility of molecular markers 
 

The best available test in the evaluation of a patient with a thyroid nodule is fine needle 

aspiration biopsy (FNA) followed by cytologic examination, which together reliably 

establish the diagnosis in 70% to 80% of cases. FNA of thyroid nodules has greatly reduced 

the need for thyroid surgery and has increased the percentage of malignant tumors among 

excised nodules [72].  In addition, the diagnosis of malignant thyroid tumors, combined with 

effective therapy, has led to a marked decrease in morbidity due to thyroid cancer. Although 

FNA biopsy of thyroid nodule is very sensitive in the detection of malignancy, 

unfortunately, many thyroid FNAs are not definitively benign or malignant, yielding an 

indeterminate or suspicious diagnosis in 20-30% of cases. In general, thyroid FNAs are 

indeterminate because of overlapping or undefined morphological criteria for benign versus 

malignant lesions or focal nuclear atypia within otherwise benign specimens. Therefore, 

when the diagnosis is unclear on FNA, these patients are classified as having a suspicious or 

indeterminate lesion only.  The question then arises: should the surgeon perform a thyroid 

lobectomy, which is appropriate for benign lesions or a total thyroidectomy, which is 

appropriate for malignant lesions when the diagnosis is uncertain both preoperatively and 

intraoperatively? Thyroid lobectomy as the initial procedure for every patient with a 
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suspicious FNA could result in the patient with cancer having to undergo a second operation 

for completion thyroidectomy. Conversely, total thyroidectomy for all patients with 

suspicious FNA would result in a majority of patients undergoing an unnecessary surgical 

procedure, requiring lifelong thyroid hormone replacement and exposure to the inherent 

risks of surgery [73]. There is a compelling need to develop more accurate initial diagnostic 

tests for evaluating a thyroid nodule. New approaches to diagnosis of cancer in thyroid 

nodules are based on mutational and other molecular markers, which can be reliably 

detected in cells aspirated during the FNA procedure. These markers offer significant 

improvement in the diagnostic accuracy of FNA cytology and are poised to make a profound 

effect on the management of patients with thyroid nodules to distinguish benign from 

malignant thyroid nodules [72]. Diagnostic use of mutational markers for the analysis of 

thyroid FNA samples has been explored for single genes and for a panel of mutations. 

Among single genes, the majority of studies have focused on BRAF mutations, molecular 

testing of samples classified as malignant by cytology can identify BRAF-positive tumors. 

Recently, several studies have demonstrated that the BRAF gene V600E mutation represents 

a diagnostic and prognostic biomarker in PTC, with a prevalence of 40-66%, whereas it is 

never found in benign lesion. However, despite high specificity for cancer, testing for BRAF 

mutation alone misses many thyroid cancers that are negative for this mutation. The 

discovery of single genetic mutations remains important for understanding cancer formation, 

but single mutations are not practical clinical biomarkers for thyroid cancer. The 

performance of molecular testing can be improved by including other frequently occurring 

mutations in the analysis. Use of a panel of mutations including BRAF and RAS point 

mutations and RET/PTC and PAX8/PPARγ rearrangements, with the possible addition of 

the TRK rearrangement, for analysis of thyroid FNA samples has been explored [74-77]. 

Studies that evaluated the use of this panel in a setting of the clinical diagnostic laboratory 

demonstrated that finding any mutation was a strong predictor of malignancy in thyroid 

nodules irrespective of the cytological diagnosis (Figure 1.9). 
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Figure 1.9: Potential clinical management of patients with thyroid nodules on the basis of a 

combination of cytological examination and molecular analysis. (Nikiforov,Y.E. & Nikiforova, M. 

N., Nature Reviews, 2011) 

 

Up to 30% of thyroid cancers will have no currently known mutations, thus decreasing the 

utility of current DNA mutation panels [78].  

Thus molecular testing can be particularly helpful for nodules with indeterminate cytology, 

but a certain percentage of malignant nodules still remains indeterminate, t at’s     some 

malignant tumors are negative for mutations and might require a repeated FNA and 

diagnostic lobectomy, urging the finding of other specific tumour markers. 

 

1.9 C-kit 
 

Based on studies (Tomei S. at al) conducted in our laboratory by real-time PCR the c-KIT 

gene, that codes for is a type III receptor thyrosine-kinase activated by SCF (Stem Cell 

Factor), is another tumor marker that was proven to be useful in the preoperative diagnosis 

of thyroid tumors being statistically downregulated in malignant versus benign thyroid 

lesions [79]. 

The proto-oncogene KIT is cellular homologue of the viral oncogene of the feline sarcoma 

retrovirus HZ4-FeSV. It plays various roles in haematopoiesis, melanogenesis and 

spermatogenesis, and in the development of the interstitial cells of Cajal. The role of KIT in 

human neoplasia is not fully cleared yet. A number of tumor types are associated with 

activation of KIT through its over expression or through activating mutations [80-82], while 

in highly metastatic melanomas, breast cancer and thyroid carcinoma the progression into a 

malignant phenotype correlates mostly with loss of KIT expression [83, 84]. Among the few 

papers studying KIT status in thyroid cancer, Natali et al. in 1995 [85] reported the loss of 
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the receptor during the transformation of normal thyroid epithelium to papillary carcinoma. 

Similarly, in 2004 Mazzanti et al. [65], by using microarray assay, were able to identify out 

of thousand of genes, KIT as one of the most significant down expressed gene in PTC 

compared to benign lesions. Other laboratories confirmed this result by using qPCR [86]. 

Moreover, multiple miRNAs, predicted to target KIT, have been reported to be up regulated 

in PTC [87]. These findings indicate that KIT receptor may be involved in the growth 

control of thyroid epithelium and that this function may be lost in malignant transformation.  

Based on recent studies conducted in our lab (Tomei S. at al) was found a highly preferential 

decrease rather than increase in transcript of c-KIT in malignant thyroid lesions compared to 

the benign ones. To explore the diagnostic utility of c-KIT expression in thyroid nodules, its 

expression values were divided in four arbitrarily defined classes, with class I characterized 

by the complete silencing of the gene. Class I and IV represented the two most informative 

groups, with 100% of the samples found malignant or benign respectively (Figure 1.10)  

 

 A 

 

B 

 

Figure 1.10: a) For each group (malignant and benign) the mean of all sample ratios between c-KIT 

expression value and B2M expression value was calculated. There is a highly significant statistical 

difference between the two groups with a p-value of < 0.0001. b) Classes of KIT expression value 

(KIT ev: KIT expression value. PTC: papillary thyroid carcinoma. BN: benign nodule).  
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2 AIM 
 

The biological meaning of c-KIT down-regulation in thyroid epithelium trasformation is 

unknown. Based on our previous results it is suggested that c-KIT, being downregulated, is 

involved in the differiantion rather than in the proliferation during thyroid malignant 

transformation. (Figure 1.11) 

 The aim of the present study is mainly to investigate thoroughly the role of the c-KIT 

gene in thyroid cancerogenesis and to understand the cause of its down-regulation in 

malignant thyroid lesions. We intend also to use computational approaches and to identify 

new biomarkers, in order to improve the preoperative cytological diagnosis and to better 

understand the mechanisms underlying thyroid epithelium transformation. 

 

 

 

 

 

Figure 1.11: Molecular pathway of thyroid epithelium 

 

 

 

2.1 The cause of c-kit down-regulation in malignant thyroid lesions:  

2.1.1 Methylation status of c-KIT promoter 

 

Since it’s  ell kno n from t e literature t at a errant gene met  lation  la s an im ortant 

role in human tumorigenesis, including thyroid tumorigenesis, we have investigated if 

down-expression of c-KIT is due to the methylation of its promoter.  

Differentiation 

? 
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DNA methylation is an epigenetic regulatory mechanism involved in silencing gene 

expression that is particularly important in normal embryogenesis. It occurs by adding a 

methyl group to the cytosine residue of a CpG dinucleotide. Regions of DNA that contain 

multiple copies of CpG dinucleotides are termed CpG islands and are usually located at the 

 ’ end of gene  romoters. Gene silencing after met  lation of a C G island occurs    eit er 

blocking the binding of transcription factors to the promoter region or by recruitment of 

methyl-binding DNA transcription repressors to the promoter. Aberrant gene methylation, or 

hypermethylation, has been identified in many human tumors including thyroid tumors, 

leading to inappropriate silencing of genes. Such methylation in human cancers has been 

frequently found in tumor suppressor genes that are silenced and plays a fundamental role in 

human tumorigenesis. Many tumor suppressor genes are aberrantly methylated in thyroid 

cancer, and some even in benign thyroid tumors, suggesting a role of this epigenetic event in 

early thyroid tumorigenesis. Hypermethylation of multiple genes has been identified in 

association with the PIK3/AKT pathway in follicular thyroid cancers, and of the MAPK 

pathway in papillary thyroid cancers [88].  

 

2.1.2 MicroRNAs and SNP 

 

MicroRNAs (miRNAs) are endogenous noncoding RNAs that negatively regulate gene 

ex ression     inding t e  ’ noncoding region of t e messenger RNA targets inducing t eir 

cleavage or blocking the protein translation (Figure 1.12) [89]. They play important roles in 

multiple biological and metabolic processes, including developmental timing, signal 

transduction, and cell maintenance and differentiation. Their deregulation can predispose to 

diseases and cancer; miRNA expression has been demonstrated to be deregulated in many 

types of human tumors, including thyroid cancers, and could be responsible for tumor 

initiation and progression. The overexpression of specific miRNAs could lead to the 

repression of tumor suppressor gene expression, and conversely the downregulation of 

specific miRNAs could result in an increase of oncogene expression; both these situations 

induce subsequent malignant effects on cell proliferation, differentiation, and apoptosis that 

lead to tumor growth and progress [90].  
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Figure 1.12: Illustrative overview of the miRNA network. RNA polymerase II (Pol II) produces a 

500 3,000 nucleotide transcript, called the primary microRNA (miRNA), or pri- miRNA, that is then 

cropped to form a pre-miRNA hairpin by a multi-protein complex that includes DROSHA (~60 100 

nucleotides) (a simplified view is shown here). This double- stranded hairpin structure is exported 

from the nucleus by RAN GTPase and exportin 5 (XPO5)112. Finally, the pre-miRNA is cleaved by 

DICER1 to produce two miRNA strands, a mature miRNA sequence, approximately 20 nucleotides 

in length, and its short-lived complementary sequence, which is denoted miR* and sometimes called 

the passenger strand or 3p strand 159. The thermodynamic stability of the miRNA duplex termini 

and the identity of the nucleotides in the 3 overhang determines which of the strands is incorporated 

into the RNA-inducing silencing complex (RISC)160. In some cases, in which both the lead and 

passenger strands have a similar thermodynamic stability, both strands will be loaded. The single 

stranded miRNA is incorporated into RISC, which then targets it to the target 3 untranslated region 

mRNA sequence to facilitate repression and cleavage. AA, poly A tail; m7G, 7-methylguanosine 

cap; ORF, open reading frame [89]. 

 

Computational predictions and experimental approaches support the idea that different 

miRNAs target the same mRNA. Multiple miRNAs have been predicted to target KIT, 

including those overexpressed in PTC [91].  Infact in PTC tissues in which miR-146b, miR-

221, and miR-222 were strongly overexpressed there was a downregulation of KIT 

transcript and KIT protein, in conclusion the upregulation of miR-146b, miR-221, and miR-

222, and the subsequent downregulation of KIT seem to be involved in PTC pathogenesis. 

The binding of microRNA to mRNA can be affected by single-nucleotide polymorphisms 

that can reside in the microRNA target site, which can either abolish existing binding sites 

or create illegitimate binding sites. The increase or decrease in microRNA binding caused by 
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the SNP variation would probably lead to a corresponding decrease or increase in protein 

translation. Single nucleotide polymorphisms may fall within coding sequences of genes, 

non coding regions of genes, or in the intergenic regions between genes. SNPs within a 

coding sequence will not necessarily change the aminoacid sequence of the protein that is 

produced, due to degeneracy of the genetic code. A SNP in which both forms lead to the 

same polypeptide sequence is termed synonymous (sometimes called a silent mutation) - if a 

different polypeptide sequence is produced they are non-synonymous. SNPs that are not in 

protein coding regions may still have consequences for gene splicing, transcription factor 

binding, or the sequence of non-coding RNA. Several studies indicate that some SNPs in 

both miRNA genes and miRNA target genes increase the risk of specific types of cancers. 

The synonymous G–C SNP rs3733542 in exon 18 of the KIT mRNA affects the binding of 

miR-146a and miR-146b by changing miRNA–mRNA duplex conformation and results in 

hybridization with a different region (Figure 1.13) [92]. We decided therefore to analyze the 

presence or absence of the SNP rs3733542 in our population of malignant and benign FNA 

samples and evaluate a possible correlation with c-KIT gene expression. Moreover, we 

evaluated the correlation of the expression levels of miR-146b and miR-222 with c-KIT 

expression in order to better understand the cause of the down-expression of c-KIT in PTC 

lesion. 

 
 
Figure 1.13: Computational modeling of the interaction of miR-221 and miR-146 with the KIT gene. 

(A) Hybridization of miR-221 (green color) and KIT mRNA(red color); arrows highlight a 

polymorphic site within the binding domain (SNP rs17084733). Mfe, minimum free energy. (B) 

Hybridization of miR-146b (green color) and KIT mRNA (red color); arrows highlight a 

polymorphic site within the binding domain (SNP rs3733542).   
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2.2 Investigating the role of the c-KIT gene in thyroid cancerogenesis: 
 

In order to demonstrate an hypothetical role of c-KIT in the differentiation pathway of 

thyroid epithelium, we compared expression levels of c-KIT in thyroid malignant and 

benign samples with the expression levels of genes known to be thyroid-specific 

differentiation markers from the literature such as PAX8, TTF1 (tissue-specific transcription 

factors expressed in the thyroid follicular cells, contributing to the maintenance of the 

differentiated phenotype), which are possible downstream targets of the c-kit pathway.  

In the thyroid gland, TTF-1 (also known as NKX2-1, T/EBP or TITF-1) is expressed in the 

follicular cells and, together with Pax8, controls the expression of Tg, thyroperoxydase 

(TPO), thyrotropin receptor (TSH), the sodium/iodide symporter (NIS) and calcitonin. 

TTF-1 mRNA is detected in papillary carcinomas (PTC) but not in anaplastic carcinomas; 

therefore TTF-1 is considered as a marker to distinguish between these two types of thyroid 

neoplasms [93].  

PAX8 is a paired-box gene important in embryogenesis of the thyroid and its expression has 

been previously described in Thyroid carcinomas. 

Moreover, in order to evaluate a possible role of c-kit in thyroid neoplastic transformation, 

we have performed functional studies by over expressing this gene in thyroid cell lines that 

do not express the gene, expecting therefore to revert the malignant phenotype; and different 

functional studies were performed such as proliferation, migration, and survival assays.  

 
 

2.3 New molecular markers to improve cytological diagnostic accuracy 
 

We evaluated NIS, TC1, miRNA146b, miRNA222 expression as a new pre-operative 

diagnostic biomarker. Because of the lack of useful pre-operative diagnostic biomarkers, we 

sought to determine whether the expression profile of these genes on FNA cytological 

smears, could be performed on a routine basis so to improve the diagnostic sensitivity for 

malignancy in indeterminate or suspicious thyroid nodules without adding time and 

discomfort to the patient after a FNA procedure. Moreover in order to discover new 

molecular markers we performed receptor and non-receptor tyrosine kinase gene PCR Array 

analysis. 
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2.3.1 NIS and TC1 gene:   

 

  e Na+/I− s m orter (NIS) is a ke   lasma mem rane protein, located at the basolateral 

portion of the thyroid follicular cell, that mediates active iodide transport in the thyroid. 

Altered expression of the gene encoding the sodium iodine symporter (NIS) may be an 

important factor that leads to the reduced iodine accumulation characteristic of most benign 

and malignant thyroid nodules. Some studies have demonstrated a decrease or loss on NIS 

expression in thyroid cancer cells suggesting a possible role of this gene in the pathway of 

thyroid cell transformation [94], while either increased or decreased NIS expression in 

benign lesions has been reported [95].  

Regarding TC1, the expression of the thyroid cancer-1 (TC1) gene resulted to be related to 

malignant transformation in thyroid, and the potential use of TC1 gene expression as a 

marker of malignancy in thyroid nodules is also shown in literature [96]; therefore the 

overexpression of TC-1 in papillary carcinoma suggests that it may have an important role in 

thyroid carcinogenesis. 

 

2.3.2 miRNA as biomarker in Thyroid cancer: 

 

Several independent studies have analyzed miRNA expression in numerous and different 

types of thyroid tumors, evidencing a miRNA deregulation in cancer tissues compared to 

their normal counterparts; in thyroid tumors 32% of all known human miRNAs resulted in 

being upregulated and 38% to be downregulated with more than a 2-fold change as 

compared to normal tissues [97]. Moreover, the miRNA expression profile presents a 

significant variability between different kinds of thyroid cancers, even if they originate from 

the same type of thyroid cells. 

At the moment the exact biological roles of miRNAs in thyroid carcinogenesis remain to be 

fully elucidated but it seems reasonable that the distinctive pattern of miRNA expression in 

thyroid tumors compared to normal thyroid tissue may be useful in diagnosis and/or therapy 

of thyroid neoplasia and that different miRNA expression patterns in different types of 

thyroid tumors could be useful tools for their classification. 

Comparing global miRNA expression in human PTCs versus unaffected thyroid tissue He et 

al. [98] individuated a set of five miRNAs (miR-146, miR-221, miR-222, miR-21, and miR-

181a) that were significantly overexpressed in PTCs compared to the adjacent normal tissue. 

Particularly, three of them, miR-146, miR-221, and miR-222, showed 11- to 19-fold higher 
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level in tumor tissues. Deregulation of miR-146b, miR-221, and miR-222 in the thyroid may 

be a crucial component of PTC initiation and development. In my study, we analyzed the 

expression levels of miRNA146b and miRNA222 to better understand the relationships of 

their expression between malignant and benign FNA samples and the possibility to use them 

as biomarker in thyroid cancer. 

 

2.3.3 Molecular computational model 

 
Several biomarkers data were used to perform Discriminant Analysis and to build Bayesian 

Neural Networks (BNN) in order to obtain a molecular computational model able to 

preoperatively diagnose malignant and benign thyroid nodules. 

 

2.3.3.1 Bayesian Neural Networks: clinical utility 

 

Several attempts to use Bayesian Neural Networks in the clinical setting are described in 

literature [99-100], more specifically Liu and colleagues [101] have shown the clinical 

utility of a Bayesian network for differentiating benign from malignant thyroid nodules 

using sonographic and demographic features. 

The procedure uses a Probabilistic Neural Network (PNN) to implement a nonparametric 

method for classifying cases into groups of data based on a set of p observed quantitative 

variables. Rather than making any assumption about the nature of the distribution of the 

variables within each group, it constructs a nonparametric estimate of eac  grou ’s densit  

function at a desired location based on neighboring observations from that group. 

Observations are assigned to groups based on the product of three factors: 1) the estimated 

density function in the neighborhood of the point; 2) the prior probabilities of belonging to 

each group; 3) the costs of misclassifying cases that belong to a given group. 

The approach to classifying cases can be formulated as a neural network, whose basic setup 

consists of four layers: input layer, with p neurons, one for each of the input variables; 

pattern layer, with n neurons, one for each case that will be used to train the network; 

summation layer, with g neurons, one for each output class; output layer, also having one 

binary neuron for each output class that turns on or off depending on whether or not a case is 

assigned to the corresponding group. The input layer provides the information from the 

predictor variables by feeding their values (standardized by subtracting the mean and 

dividing by the standard deviation) to the neurons in the pattern layer. The pattern layer 
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 asses t e values t roug  an “activation function”,   ic  uses t e in ut values to estimate 

(nonparametrically) the probability density function for each group at a given location. The 

density estimates are then passed to the summation layer, which combines the information 

from the training cases with prior probabilities and misclassification costs to derive a score 

for each group. The scores are then used to turn on the binary neuron in the output layer 

corresponding to the group with the largest score and turn off all other output neurons. 

 

2.3.3.2 Discriminant analysis 

 

Discriminant Analysis is a statistical classification method used to distinguish between two 

or more groups of data based on a set of p observed quantitative variables. It can help to 

describe observed cases mathematically in a manner that separates them into groups as well 

as possible, but also it can be used to classify new observations as belonging to one or 

another of the groups (prediction).  

  e classification is im lemented    constructing “discriminant functions”,   ic  are linear 

combinations of the p quantitative variables. Prior probabilities of belonging to each group 

may be defined according to some prior knowledge of the phenomenon, or directly derived 

from the observed data, by considering the proportions of the groups in the data. For an 

observation, the discriminant functions are used to assign a score to each group and, 

combining it with the prior probabilities, we will label the new observation as belonging to 

the group with the largest value of score*prior, i.e. the group which is the most likely to 

belong to. In particular, if the data are assumed to come from multivariate normal 

distributions, then the scores are related to the probabilities that an observation belongs to a 

particular group. 

In order to estimate the discriminant functions, the p quantitative variables should be 

standardized by subtracting the sample means and dividing by the sample standard 

deviations. The discriminant functions are derived so as to maximize the separation of the 

groups. Sometimes, it could be useful to use a stepwise selection procedure (forward or 

backward) to select only those variables that are statistically significant discriminators 

amongst the groups. 

2.3.4 Data analysis 

 

The present study evaluates the expression of the analyzed markers (TC1, PAX8, NIS, TF1, 

miRNA 222, miRNA 146b, Tyrosine Kinases Array) in a molecular diagnostic approach to a 
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series of thyroid FNAC, together with the study of BRAF gene status. 

First of all we stratified, through the Histological diagnosis, our casistic of FNA in 

malignant or benign lesions. Then, we stratified the samples by means of BRAF V600E 

mutational status. 

Afterwards, we analyzed the expression levels of TC1, PAX8, NIS, TF1, miRNA 222, 

miRNA 146b, Tyrosine Kinases Array on FNA smears. 

We conducted an association analysis between the expression level of each single marker 

with benign and malignant samples, and the expression level of single marker and BRAF 

status. 

Based on the results we have conducted a molecular stratification of our population to 

evaluate the biological importance and diagnostic potential of the analyzed biomarkers. 

 

2.5 Human Tyrosine Kinases RT Profiler PCR Array 
 

R ² Profiler™ PCR Arra s are t e most relia le and sensitive gene ex ression  rofiling 

technology for analyzing a panel of genes in signal transduction pathways, biological 

process or disease related gene networks.  

In this present study we have used Human Tyrosine Kinase PCR Array, which profiles the 

expression of 84 receptor and non-receptor tyrosine kinase genes. The protein tyrosine 

kinase superfamily includes roughly 60 receptor tyrosine kinases (RTKs) and about 30 

intracellular tyrosine kinases. Tyrosine kinases are involved in many basic biological 

processes, such as cell growth, proliferation and differentiation. These processes are 

commonly dysregulated during oncogenesis, often due to mutation of key tyrosine kinases 

or regulators.  These oncogenic processes make the tyrosine kinase superfamily members 

attractive drug targets, and there are several chemotherapeutics targeting tyrosine kinases 

already on the market (e.g., imatinib mesylate). Since in our laboratory we have already 

conducted deep studies on the expression of a tyrosine kinase gene, c-kit, whose expression 

was found strictly associated with the biological behaviour of thyroid nodules, studying the 

arrays of other tyrosine kinases could be really interesting. In fact they could yield new 

insights into the expression of more tyrosine kinase in our FNA samples, in order to 

investigate their involvement in the carcinogenesis of the thyroid.  
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3. MATERIALS AND METHODS  
 

 

3.1 Thyroid specimens   
 

Pre-operative thyroid FNAs of 169 patients (Tab 1) were selected from archived materials in 

the Section of Cytopathology,
 
Division of Surgical, Molecular and Ultrastructural Pathology. All 

patients had a thyroidectomy with histopathological examination based on clinical elements or of a 

cytological diagnosis of malignancy, suspected malignancy, or if indeterminate. 

For ethical reasons, we used only cases with two or more slides per patient, and the 

molecular analysis was performed on only one of the available smears. In all cases FNA has been 

performed using ultrasonographic guidance. 

 

Table 3.1 Cytology, sex, and BRAF status of 169 thyroid nodules 

 
 

Histological 

Diagnosis 

SEX BRAF 

 56 M WT        V600E 

MN: 103 cases 47 F   39           64 

 26 M   WT       V600E 

BN: 66 cases 40 F    66           0 

 

MN:  malignant nodule, BN: benign nodule, M: male, F: female, WT: wild type. 

 

 

3.2 Ethical Board 
This study was approved by the Internal Review Board (IRB) of the University of Pisa. All 

patients gave their consent for the participation to the study. 
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3.3 FNA slides  
 The slides were obtained from FNA samples and fixed in ethyl alcohol for Papanicolaou 

staining. Smears were reviewed by a senior cytopathologist. All archival FNA slides were kept in 

xylene for 1 to 3 days, depending on the time of storage, to detach slide coverslips. Slides were then 

hydrated in a graded series of ethanol baths, followed by a wash in distilled H2O for 1 minute and 

finally air-dried. The processing of the slides was performed in a range of few days to a maximum 

of 10 years after FNA procedure. 

 

3.4 DNA extraction  
 DNA extraction was performed using a commercial kit (Nucleospin; Macherey-Nagel, 

Düren, German ) mainl  follo ing manufacturer’s instruction. A modification  as added to t e 

first step: 50% of the lysis solution with no Proteinase K was initially poured on the slides to scrape 

off the cytological stained sample using a single-edged razor blade. Any scraped tissue was then 

collected in a microcentrifuge tube containing the other half of the lysis solution with the Proteinase 

K. The extracted DNA was kept at -20 °C until used. The quantity/quality of extracted DNA was 

estimated  it  Nanodro  1000 s ectro  otometer    using 1 μl of undiluted DNA solution . 

 

 

3.5 RNA extraction and cDNA synthesis     
 RNA extraction was performed by using a commercial kit (High Pure RNA Paraffin kit, 

Roche) mainly following the manufacturer’s instructions and adding t e same modification ste  as 

for DNA extraction. The lysis solution was poured on the slide to scrape off the cytological stained 

sample by using a single edged razor blade. Whole scraped material was then collected in a 

microcentrifuge tube and processed for RNA extraction. The quantity/quality of extracted RNA was 

estimated  it  Nanodro  1000 s ectro  otometer    using 1 μl of undiluted RNA solution. RNA 

 as treated  it  DNase Ι recom inant, RNase-free (Roche). RNA was reverse transcribed in a final 

volume of 20 μl, containing  X R   uffer, 10 mM dN Ps,  0 ng/μl Random Primers, 0.1M D  , 

40 U/μl RNaseOU ,  0 μM oligo(d ), DEPC-  reated Water, 1  U/μl Cloned AMV reverse 

transcriptase (Invitrogen, Carlsbad, CA). 

 

 

3.6 BRAF V600E detection   
 

BRAF exon 15 was analyzed by polymerase chain reaction (PCR) followed by direct 

sequencing. Primers were selected using Primer3 software (Tm 56
0
C): 
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      BRAF 1  F:  ’-TCATAATGCTTGCTCTGATAGGA- ’ 

      BRAF 1  R:  ’-GGCCAAAAATTTAATCAGTGGA- ’ 

 

PCR reactions were run on agarose gel to check the presence of the specific amplification products. 

PCR bands were cut and purified using the Genelute Gel Extraction Kit (St. Louis, MO). Purified 

products were then sequenced on the ABI PRISM 3100 Genetic Analyzer (Applied Biosystem). 

 

 

3.7 Primer Design 
 3.7.1 Designing and optimization of primers using Primer 3 software  

 

Table 3.2 

 

         PRIMERS FOR EXPRESSION STUDY  

  NAME                    SEQUENCE ( ’- ’) Annealing temperature 

              (C
0
) 

KIT F GCACCTGCTGCTGAAATGTATGACATAAT                 60 

KIT R TTTGCTAAGTTGGAGTAAATATGATTGG  60 

PAX8 F  GTGGCAGATCCTCACTCACC 60 

PAX8 R ATGGGGAAAGGCATTGAAG 60 

TFF1 F GATGTCCTCGGAAAGTCAGC  60 

TFF1 R CTCCAGGGGACTCAAGATGT 60 

TC1 F AAATCTTCTGACTAATGCTAAAACG  60 

TC1 R TTATTGTTGCATGACATTTGC  60 

NIS F CCCTCATCCTGAACCAAGTG  60 

NIS R AACCCAGAAGCCACTTAGCA 60 

B2M F CATTCCTGAAGCTGACAGCATTC 60 

B2M R TGCTGGATGACGTGAGTAAACC 60 
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Table 3.3 

 

 PRIMERS USED DURING 

SUBCLONING AND SCRENING BY 

PCR OF THE COLONIES 

 

  NAME                    SEQUENCE ( ’- ’) Annealing temperature 

              (C
0
) 

C-KIT_B_LONG F AGCTGGAACGTGGACCAGAG               58 

C-KIT_B_LONG R TGTGCTCAGAAAGACAGGATTG 58 

C-KIT 1F AGCTGGAACGTGGACCAGAG 59 

C-KIT 1R ACGTTGCCTGACGTTCATAA 59 

C-KIT 2 F AGGGAAGGGGAAGAATTCAC 59 

C-KIT 2 R AAGGAGTGAACAGGGTGTGG 59 

C-KIT 3 F AGTGCATTCAAGCACAATGG 59 

C-KIT 3 R AGTCTAGGGCCAACTCGTCA 59 

C-KIT 4 F GCCGACAAAAGGAGATCTGT 59 

C-KIT 4 R TGTGCTCAGAAAGACAGGATTG 59 

  

 

Table 3.4 

    PRIMERS FOR REFLP ANALYSIS   

  NAME                    SEQUENCE ( ’- ’) Annealing temperature 

              (C
0
) 

C-KIT-EXON8 F 

     (DNA) 

TAGTATTTTTTGGTTTGGGAA                60 

C-KIT-EXON8 R 

     (DNA) 

CTAACCCCTACTCTTTCAACAT 60 

C-KIT-EXON8 F 

     (cDNA) 

 TGACTTACGACAGGCTCGTG 

 

60 

C-KIT-EXON8 R 

    (cDNA) 

CTCTGCTCAGTTCCTGGACA 

 

60 
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 3.7.2 Designing and optimization of primers using MSP (methylation-specific 

PCR) tool 

 

Table 3.5 

 PRIMERS METHYLATION STATUS OF 

C-KIT PROMOTOR  

 

  NAME                    SEQUENCE ( ’- ’) Annealing temperature 

              (C
0
) 

C-KIT_MSP _U F TAGTATTTTTTGGTTTGGGAA                59 

C-KIT_MSP_U R CTAACCCCTACTCTTTCAACAT 59 

C-KIT_MSP_M F  TATTTTTTTGGTTCGGGAAC 59 

C-KIT_MSP_M R ACCCCTACTCTTTCGACGTA 59 

 

 

3.8  PCR protocol  
PCR  ere   erformed in a  0 μl final volume, containing 1 0 ng of genomic DNA or 2 μl of 

cDNA, 0.0  mM dN P (Invitrogen, Carls ad, CA), 2. ng/μl of eac  primer (Invitrogen), 1.5 mM 

MgCl2, 1x PCR Gold Buffer, and 0.75U AmpliTaq Gold (Applied Byosistems, Foster City, CA). 

PCRs were performed on a 9700 GenAmp PCR System (Applera Corporation, Foster City, CA) 

with the following cycling conditions at 94 °C for 7 minutes; 40 cycles at 94 °C for 45 seconds, 

56/60/59 °C (t e  m for eac   airs of  rimers are s o n in t e section “Designing and o timization 

of  rimers”)  for 4  seconds, and 72 °C for 1 minute; and final ste  at 72 °C for 10 minutes 

 

 

3.8.1 Quantitative Real-Time PCR (qPCR)    

 The level of KIT, PAX8, NIS, TC1, TFF1, expression was analyzed by quantitative Real-

Time PCR (qPCR) on the Rotor-Gene 6000 real time rotary analyzer (Corbett, Life Science, 

Australia) following the manufacturing instructions. Endogenous reference gene (B2M, beta 2 

microglobulin) was used to normalize each gene expression level. PCR products were previously 

sequenced on an Applied Biosystems 3130xl Genetic Analyzer (Foster City, CA) to confirm gene 

sequence. PCR was performed in 2  μl final volume, containing   μl of cDNA, 12.  μl of MESA 

GREEN qPCR MasterMix Plus (EUROGENTEC, San Diego, CA), 40 pmol of each primer 

(Invitrogen, Carlsbad, CA) per reaction with the following cycling conditions: initial denaturation 
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95°C for 5 min; 40 cycles at 95 °C for 15 sec and 60 °C for 40 sec and 72 °C for 40 sec; final step 

25 °C for 1 min. Primers were selected using Primer3 software (primer sequences and Tm are 

shown in the Table 3.2). A first PCR run was performed on control sample expressing the markers 

and run on 2% agarose gel. The PCR product was excised from the gel, purified by using 

GenEluteTM PCR Clean-Up (Sigma-Aldrich) and measured spectrophotometrically at 260 and 280 

nm. The purified product was diluted in a 10-fold series to create the standards for a ten-point 

standard curve that was run in triplicate. Standard curves were generated for each gene and B2M 

and showed a good linearity with consistent correlation coefficient (R2 = 0.999). Ct was determined 

by the Rotor-Gene 6000 software and exported for analysis after background subtraction. Threshold 

was set by standard curve and then imported in all the runs for data analysis. PCR efficiencies 

resulted similar for the marker genes and B2M in each experiment and ranged between 98-102%. 

The experiment was run in duplicate for each sample. For each cDNA sample the ratio between the 

gene of interest expression value and B2M expression value was calculated. The expression ratio 

mean values and standard deviations of malignant and benign groups were calculated. To verify 

primers specificities, melting curve analysis was performed. Fluorescent data were acquired during 

the extension phase. After 40 cycles a melting curve for each gene was generated by slowly 

increasing (0.1°C/s) the temperature from 60°C to 95°C, while the fluorescence was measured. For 

each experiment a no-template reaction was included as a negative control. The expression of all the 

markers was ultimately represented as the ratio of absolute quantification by standard curve of the 

expression of the markers and B2M expression. 

 

  

3.9 Methylation status of c-KIT promoter after bisulfite treatment 
 

Total DNA (500 ng) was modified with sodium
 
bisulfite, which converts all unmethylated 

cytosines
 

to uracil and the methylated cytosines remain unchanged using the EZ DNA 

Met  lation™ Kit (Zymo Research) according to t e manufacturer’s  rotocol.  

Namely, Dna was denatured by the addition of Zymo M-Dilution buffer and incubated for 15 min at 

37
0 

C. CT-conversion reagent (bisulfite-containing) was added to the denatured DNA and incubated 

for 16 h at 50
0 

C. After bisulfite conversion, the DNA was bound to Zymo spin column and 

desulfonated on the column using M-desulfonation reagent  er manufacturer’s  rotocol.   e 

bisulfite-converted DNA was eluted from the column in 10  l of elution buffer. 

PCR was conducted on bisulfite treated DNA with primers designed by means MSP (methylation-

specific PCR) primer design tool (primer sequences and Tm are shown in the Table 3.5): 

particularly two pairs of primers were designed, one is specific for methylated DNA (M pair), and 
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the other for unmethylated DNA (U pair). For each sample to be studied, two PCRs were performed 

with each pair of primers to amplify methylated and unmethylated c-KIT promoter sequences and after 

the PCR products were run on 3% agarose gel. The Amplification with M pair indicates methylation 

of CpG site(s) within the primer sequences, U pair no methylation, and both pairs partial 

methylation. 

To confirm c-KIT promoter sequence, PCR products were purified and sequenced by means an 

Applied Biosystems 3130xl Genetic Analyzer (Foster City, CA)  

 

 

3.10 c-KIT SNP rs3733542 genotyping by restriction fragment length 

polimprphisms RFLP analysis 
 

  We genotyped 118 samples: in some case DNA was available and in some case only the 

cDNA was available therefore for each analysis we designed primers appropriate for cDNA and 

DNA. The PCR primers  (C-KIT-EXON 8 F [DNA], C-KIT-EXON 8 R [DNA], C-KIT-EXON 8 F 

[cDNA], C-KIT-EXON 8 R [cDNA] ),were designed upstream and downstream of the restriction 

site in exon 18 of C-KIT using Primer3 software ( primer sequences and Tm are shown in the Table 

3.4). 

To verify the c-KIT sequence the PCR products were purified by ABI PRISM 3100 Genetic 

Analyzer (Applied Biosystems). The PCR products were subjected to restriction enzyme digest in 

20 μl final volume, containing 0.2  l of Restriction Enzyme SAC I (10 U/  l), 0.2  l BSA (10 mg/ 

ml), 2  l NEBuffer (10X) (Promega Comporation), 5.1  l water and 12.5  l PCR product. The 

Restriction Enzyme SAC I recognizes t e sequence “ GAGC C” and t e digestion occurs  et een 

the thymine and cytosine nucleotide. After incubation at 37°C overnight DNA fragments were 

separated by electrophoresis on 3% agarose gel: one single fragment represents a non-digestion 

equal to a wild type, 2 different fragments represent the SNP in homozygosity, while 3 different 

fragments represent the SNP in heterozygosity.  

 

 

3.11 miRNA extraction from FNA samples and miRNA expression assay by  

RT-PCR 
Purification of miRNA was performed by using miRNeasy Mini Kit (Qiagen) according to 

t e manufacturer’s instructions. Quantitative reverse transcription (RT) was performed   using 

miScript II RT Kit that is an integral component of the miScript PCR System for miRNA detection 

and quantification (Qiagen). cDNA generated with the miScript II RT Kit was used as a template 
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for real-time PCR with the miScript SYBR Green PCR Kit with miRNA specific primers for miR-

146b and miR-222 (Qiagen). 

These 2 miRNAs were chosen based on previous reports of miRNA expression in thyroid cancer 

specimens.   Quantitative polymerase chain reaction was run on an Rotor-Gene 6000 (Corbett, 

Qiagen), the  cycling conditions were: 1 cycle at 95 °C for 15 minutes, 40 cycle at 94 °C for 15 

seconds, 55 °C for 30 seconds and 70 °C for 30. After 40 cycles a melting curve was generated by 

slowly increasing (0.1°C/s) the temperature from 55°C to 99°C, while the fluorescence was 

measured. Samples were detected in duplicate and relative expression levels were calculated using 

U61 small nuclear RNA (SNORD61, Qiagen) as the endogenous control. 

 

 

 

 

3.12 Human Tyrosine Kinases RT² Profiler PCR Array  
The clearance of genomic DNA contamination in RNA samples and cDNA Synthesis was 

conducted  using the RT² First Strand Kit (Qiagen). The cDNA generated with RT² First Strand  

Kit was preamplified by RT² PreAMP Pathway Primer Mix and after was used as a template for  

Real-Time PCR Array in Rotor-Disc 100 format with RT² SYBER Green Mastermix. Real-Time 

PCR Array in Rotor-Disc 100 contains primer assays for 84 genes and 5 housekeeping genes, and in 

addition one well contain a genomic DNA control, 3 wells contain reverse-transcription controls, 

and 3 wells contain a positive PCR control (the list of the 84 Tyrosine analyzed are shown in Table 

3.6). Cycling conditions for Rotor-Gene cyclers were:  

1 cycle at 95 °C for 10 minutes, 40 cycle at 95 °C for 15 seconds, and 60 °C for 30 seconds. 

Melting curva was perfermed to verify the PCR specificity. 

Afterwards the threshold cycle (Ct) was calculated manually by using the log view of the 

amplification plots, and the treshold value was chosen above the background signal. 

All CT values was exported to a blank Excel spreadsheet for use with the PCR Array Data Analysis 

Template Excel on Qiagen website; in order to analyze the date was used the 2 -ΔΔCT 
. 
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Table 3.6 List of the 84 Human Tyrosine Kinases analyzed 

Receptor Tyrosine Kinases 

 

ALK Family: ALK, LTK. 

AXL Family: AXL, MERTK, TYRO3. 

DDR Family: DDR1, DDR2. 

EGFR Family: EGFR, ERBB2 (HER2), ERBB3, 

ERBB4. 

EPH Family: EPHA1, EPHA2, EPHA3, EPHA4, 

EPHA5, EPHA7, EPHA8, EPHB1, EPHB2, 

EPHB3, EPHB4, EPHB6. 

FGFR Family: FGFR1, FGFR2, FGFR3, FGFR4 

INSR Family: IGF1R, IGF2R, INSR, INSRR. 

MET Family: MET, MST1R (RON). 

PDGFR Family: CSF1R, FLT3, KIT (CD117), 

PDGFRA, PDGFRB. 

ROR Family: ROR1, ROR2 

TIE Family: TIE1, TEK (TIE2). 

TRK Family: NTRK1, NTRK2, NTRK3 

VEGF Family: FLT1 (VEGFR1), FLT4 

(VEGFR2), KDR (VEGFR3). 

Other Genes: MUSK, PTK7, RET, ROS1, RYK. 

 

 

Non-Receptor Tyrosine Kinases 

ABL Family: ABL1, ABL2 (ARG). 

ACK Family: TNK1, TNK2 (ACK1). 

AXL Family: AXL, MERTK, TYRO3. 

CSK Family: CSK, MATK. 

FAK Family: PTK2 (FAK), PTK2B (PYK2). 

FES Family: FER, FES. 

FRK Family: FRK, PTK6 (BRK), SRMS. 

JAK Family: JAK1, JAK2, JAK3, TYK2. 

SRC-A Family: FGR, FYN, SRC, YES1. 

SRC-B Family: BLK, HCK, LCK, LYN. 

TEC Family: BTK, ITK, TEC, TXK 

SYK Family: SYK, ZAP70. 
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3.13 Functional studies 
 

 3.13.1 Cell culture, RNA isolation and RT-qPCR  

K1 cells  (Human papillary thyroid carcinoma cell line from SIGMA-ALDRICH, St Louis, MO, 

USA)  ere gro n in DMEM:Ham′s F12 (2:1) medium supplemented with 10% FBS, 1% L-

glutamine, 1% penicillin-streptomycin (Life  Technologies). SKMEL-28 cells (Human Melanoma 

Cell Line ) were grown in Dulbecco's Modified Eagle Medium supplemented with 10% FBS, 1% L-

glutamine, 1% penicillin-streptomycin (Life  Technologies). Cells were kept at 37°C in a 5%  

CO2/95% humidified air environment.  

To extract the RNA, cells were spun for 5 min at 12000 rpm, the supernatant was removed and cells 

were resuspended in PBS 1X. Then, the resuspended pellet was spun at 12000 rpm for 5 min, the 

supernatant was removed and total cellular RNA was isolated using TRIZOL reagent (Gibco-BRL) 

according to the manufacturer's protocol and precipitated with isopropanol.  

The RNA pellet was washed in 80% ethanol and resuspended in H2O.  

The RNA was retro-transcribed to cDNA and the level expression of c-kit was conducted in K1 and 

SKML-28 cell lines by Quantitative Real-Time PCR as described in previous section. 

 

3.13.2 Immunocytochemistry 

 K1 and SKMEL cancer cell lines where grown in the appropriate media and after reaching 

confluency incubated with trypsin. The collected cells were used to prepare the slides by means of 

monolayer THIN PREP technique. Afterwards we followed the immunocytochemistry protocol: we 

fixed and permeabilized the slides in acetone for 10 min at -20 °C, we washed 2 times 5 min each 

with PBS 1X and dried on air; the slides were incubated with citrate buffer for antigen retrieval and 

washed 3 times with PBS 1X. Then we have incubated with blocking solution (PBS 1X, 0,1% 

Triton X100, 1% albumin) to eliminate background for 1h at room temperature. After we have 

incubated with primary anti-c-kit antibody (Ab81) (Santa Cruz Biotechnology) in blocking solution 

at 4°C over night. The day after we have conducted washes with PBS1X and Triton X100 for 3 

times 5 min each, subsequently we have incubate with secondary antibody anti-human CD117 

polyclonal rabbit (DAKO) in PBS1X 1 h at room temperature. Then we have washed with PBS 1X 

for 3 times 5 min each and we have conducted ABC (avidin-biotin complex) detection system for 

30 minutes, washed with PBS1X for 3 times 5 min each, and we have treated the slides with DAB 

for 2 min and washed with water. We immersed the slides in hematoxylin 5-10 times and washed 

with water. Finally we dehydrated the slides 
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 (95% ethanol 5 min, 100% ethanol 5 min, xylene 10 min) and were mounted with a drop of balm 

and viewed under a fluorescence microscope. 

 

3.13.3 Subcloning  

The purified Plasmid (pBluescriptR vector: IRATp970H0287D), containing the cDNA sequence of 

c-kit (2031 bp), was purchased form Source BioScience (GenomeCube); the c-kit sequence was 

amplified by PCR using primer  (C-KIT_B_LONG F, C-KIT_B_LONG R) designed with Primer 3 

software (primer sequences and Tm are shown in the Table 3). Then the PCR product was purified 

(QIAquick PCR Purification Kit, Qiagen) and validated by sequencing on ABI PRISM 3130XL 

Genetic Analyzer. 

Afterwards the C-KI  cDNA  as su cloned into t e mammalian ex ression vector   ARGE ™ 

(Promega) with ampicillin and neomycin resistance genes, according to t e manufacturer’s 

 rotocol.   e com etent E.coli DH α cells  ere transformed,     eat-shock treatment, with the 

recom inant vector   ARGE ™-C-KIT and selected on ampicillin agar plates. 

Screening by PCR and validation by sequencing were conducted on colonies, with a percentage of 

correct recombinant clones greater than 80%. The primers were designed by Primer 3 software : 

C-KIT 1F, C-KIT 1R, C-KIT 2 F, C-KIT 2 R, C-KIT 3 F, C-KIT 3 R, C-KIT 4 F, C-KIT 4 R 

(primers sequences and Tm are shown in the Table 3.3). 

The sequencing was conducted with a first step of purification of the PRC products with one Multi 

Screen PCR Plates (Milli ore) and t e sequencing reactions  ere  erformed in 20 μl final volume 

using Big Dye Terminator kit v3.1 (Applied Biosystems) and 2.   mol/μl of eac   rimer, and t en 

purified with Multi Screen PCR Plates (Millipore). The sequence reactions were loaded on ABI 

PRISM 3100 Genetic Analyzer (Applied Biosystems) and analyzed using the Sequencing Analysis 

software 3.4 version. 

 

 

 

3.14 Statistical analyses 
Statistical analyses were carried out by specific computer programs. 

 Quantitative data were expressed as mean ± standard deviation. The expression levels of NIS, 

Pax8, TTF1 and TC1, miRNA 146b, miRNA 222, KIT among benign and malignant samples were 

statisticall  anal zed    Student’s t-test and linear regression. The Kruskal-Wallys test was 

performed to study the association between c-KIT classes distribution and expression values of the 

afore mentioned genes. Data sets were also screened by one-way analysis of variance (ANOVA), 
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and a Tukey test was used for post hoc analysis. Chi-square test was used to compare two groups 

(dependent samples) expressed as a percentage.  

A significant difference was considered for p-value < 0.05. Several computational models (Neural 

Network Bayesian Classifiers, Discriminant analysis) were built in order to find the best 

combination of markers able to discriminate benign from malignant thyroid samples. 

 The Neural Network is used to classify cases into malignant and benign categories and to classify 

BRAF mutational status, based on 4 input variables (KIT, miRNA 222, miRNA 146b, TC-1 

expressions) by implementing a nonparametric method for classifying observations into one of 

benign and malignant groups, and into one of malignant BRAFV600E and malignant BRAFWT 

groups, based on the observed expression variables. The Discriminant analysis is used to determine 

which variables discriminate between two or more groups, given several quantitative (independent) 

variables (KIT, miRNA 222, miRNA 146b, TC-1) and a categorical (dependent) variable 

(malignant and benign; BRAF WT and BRAFV600E). These analyses were all performed by using 

MedCalc for Windows, version 12 (MedCalc Software, Mariakerke, Belgium) and Statgraphics, 

version 15. 

Principal Component Analysis (PCA) and k-means clustering were conducted as descriptive tools 

   using a R soft are (code “ rincom ”), and  as used a logarit mic transformation of t e data to 

stabilize the variances of the variables, since the PCA is sensitive to the relative scaling of the data. 

To determine the diagnostic accuracy of the molecular computational model, we calculated the area 

under the curve (AUC) of the receiver operating characteristic (ROC) curve for each gene 

individually by using logistic regression analysis (Medcalc 11, Medcalc Software, Stata Software). 

In this analysis the true positive rate (Sensitivity) is plotted in function of the false positive rate 

(100-Specificity) for different cut-off points. Each point on the ROC plot represents a 

sensitivity/specificity pair corresponding to a particular decision threshold. A test with perfect 

discrimination (no overlap in the two distributions) has a ROC plot that passes through the upper 

left corner (100% sensitivity, 100% specificity). Therefore the closer the ROC plot is to the upper 

left corner, the higher the overall accuracy of the test [103]. 

In order to evaluate the biological importance of the markers analyzed, a multiple variable analysis 

was performed to analyze the correlation between the markers. These analyses were all performed 

by using Statgraphics Centurion (V. 15, StatPoint, Inc.). 
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4 RESULTS 
 

  

4.1 BRAF status characterization 
       

All 169 FNA samples analyzed in this study were molecularly characterized for the presence of 

the V600E BRAF mutation in exon 15: 64/103 malignant samples carried the V600E mutation 

(62%) while all 66 benign samples were wild type for BRAF exon15 as shown in figure 1. 

 

 

Figure 4.1: BRAF V600E distribution in our FNA sample dataset 

 

 

 

4.2 c-KIT gene in thyroid transformation 

 

Previous studies have been conducted in our laboratory to evaluate the expression levels of 

the c-KIT gene from 82 FNA smears, 46 malignant and 36 benign at the histology. The value of KIT 

expression resulted to range between 0 and 9.34. To evaluate a possible relationship with the 
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biological behaviour of lesions, KIT expression values (ev) were arbitrarily organized in four 

classes. Class I and IV contain 100% of the samples malignant or benign respectively. In class II the 

percentage of malignant cases resulted higher than benign (65% vs 35%) and the class III had a 

higher percentage of benign cases than malignant ones (86% vs 14%) (Table 4.1) 

 

Table 4.1: Classes of KIT expression value. KIT ev: KIT expression value. PTC: papillary thyroid 

carcinoma. BN: benign nodule. 
 

 

4.2.1 Methylation status of c-KIT promoter: 

 

 Investigation of the methylation status of c-KIT promoter was conducted on 68 FNA smears 

histologically diagnosed as 26 benign and 42 malignant thyroid nodules. We conducted an 

association analysis between promoter methylation and benign/malignant status, c-kit classes of 

expression and presence/absence of c-kit gene expression. The results showed no significative 

association between promoter methylation and benign/malignant status (results not shown). 

However the presence of methylation decreased as the c-kit gene expression increased ( 2
 test, p-

value = 0.06). In fact, in c-kit class-1 the methylation was present in 4/14 (28.57%), in c-kit class-2 

it was present in 13/20 (65%), and in c-kit class-3 it was present in 5/7 (71.42%) samples (Figure 

4.2A). Moreover the group of samples with no c-kit expression had a significantly higher frequency 

of methylated cases (10 out of 14, i.e. 71.43%) than samples with c-kit expression (9 out 27, i.e. 

33.34% methylated) ( 2
 test p-value = 0.02) (Figure 4.2B) 
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A 

 

B 

 

 

Figure 4.2: (A) correlation between methylation and c-kit classes of expression; (B) association between 

methylation status and presence or absence of c-kit gene expression 

 

4.2.2 c-KIT SNP rs3733542 analysis: 

 The analysis of L862L [G/C] in c-KIT exon 18 from 125 FNA smears: 32 benign and 86 

malignant samples. The digestion occurs between the thymine and cytosine nucleotide. We obtained 

after enzymatic digestion with SAC I that DNA/CDNA samples with polymorphism showed 3 

fragments of different lengths: 
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 Fragment I Fragment II Fragment III 

DNA 229 bp 195 bp 34 bp 

CDNA 131 bp 108 23 bp 

(Figure 4.3A) 

The SNP rs3733542 was present in 10/86 (11.6%) and in 6/32 (18.7%) malignant and benign 

thyroid lesions respectively. The distribution difference between groups was not statistically 

significant. The level of c-KIT expression was slightly lower in the samples carrying the 

polymorphism as expected but did not reach any statistical significance (Figure 4.3B). 

 A 

 

B                                         

 

Figure 4.3: (A) SAC1 Digestion is represented in sample No. 5:intact DNA 229 bp, digested DNA 195 bp 

fragment and 34 bp fragment. Samples 1-4 and 6-8 are not digested by SAC1. L: Ladder. B: Blank; (B) c-

KIT expression level and presence of c-KIT ex18 SNP rs3733542 
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4.2.3 Correlation among miRNA 146b, miRNA 222 and c-KIT expression: 

The miRNA 146b and 222 expression was analyzed by qPCR in 57 FNA samples and 

correlated to the expression of c-KIT.  

The group of samples with no c-kit expression (n= 16, 28%) showed a significant up-regulation of 

both miRNAs compared with the group of samples with c-kit expression (n= 41, 72%)  

(miRNA146b: mean 250.99 vs  103.74 ; miRNA222:  mean 38.50 vs 6.62 respectively) (Figure 4.4 

A, B).  In order to assess the sign of the relationship of miRNA146b and miRNA222 with c-kit, we 

looked at the correlation coefficient: both miRNA146b and miRNA222 are negatively correlated 

with c-kit (r = -0.29, r = -0.12, respectively). 

Moreover, based on c-kit classes distribution (Class I: KI  ev = 0; Class II: KI  ev > 0 and ≤ 0. ;  

Class III: KI  ev > 0.  and ≤  ; Class IV: KI  ev >  )  e o tained,    ANOVA and  uke  test, 

that in class I the expression level of miRNA 146b was significantly higher compared to class 4 (p-

value <0.05) (Figure 4. 5).  

 

 

 

 

A 
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Figure 4.4: Expression levels of (A) miRNA146b and (B) miRNA222 compared with c-KIT expression:  

c-KIT =0 and c-KIT>0 (p-value = 0.01693; p-value = 0.0008 respectively) 

 

 

 

 

Figure 4.5: Expression levels of miRNA146b in c-kit classes.  

 

 

 

4.2.4 PAX8 and TTF1 expression levels: 

We analysed the expression levels of PAX8 (69 FNA smears) and TTF1 (54 FNA smears) 

genes to study the relationships of the expression of these genes in malignant and benign samples 

and we evaluated the possible correlation to c-KIT expression. 
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Studies conducted on PAX8 gene showed that expression level was significantly higher in the 

benign group (n=39, mean=61,58) compared to the malignant group (n=30, mean=25) (p=0.03) 

(Figure 4.6A).  

Based on c-kit classes distribution, PAX8 gene expression values were significantly higher in class 

2 and 3 compared to class 1 (p<0.05) (the comparison analysis with c-kit class 4 was not conducted 

due the lack of samples) (Figure 4.6B). C-kit gene expression resulted to be significantly correlated 

to pax8 gene expression (r
2
 =0.1319) (p=0.003) (Figure 4.6C). 

 As regards TTF1 gene we found a lower expression in the benign group (n=33, 

mean=27.29) compared to the malignant group (n=21,mean=74.15) (p=0.06) (Figure 4.7A). There 

was neither significant difference between TTF1 gene expression values based on c-kit classes 

distribution nor correlation between c-KIT and TTF1 gene expression (r
2
 =0.017) (the comparison 

analysis with c-kit class 4 was not conducted due the lack of samples) (Figure 4.7B,C).  

 

 

 

A 
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B 

 

 

 

C 

 

Figure 4.6: A) expression levels of pax8 in benign and malignant thyroid lesions; B) expression levels of 

PAX 8 in c-kit classes. C) linear regression analysis.  
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B 

 

Figure 4.7: A) expression levels of TTF1 gene in benign and malignant thyroid lesions; B) correlation 

between expression of TTF1 gene and c-kit classes.  

 

 

 

4.2.5 C-KIT functional studies: 

 We have grown K1 and SKMEL 3 cell lines and, by Real-Time PCR, we have obtained K1 cell 

line with no c-KIT gene expression and SKMEL cell line that expressed c-KIT mRNA.  
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 By means of immunocytochemistry, we confirmed the absence of c-KIT in K1 cells and the 

presence of c-KIT in SKMEL cells, also at the protein level (Figure 4.8A,B). SKMEL cells were 

used as positive controls for c-KIT expression. We successfully subcloned the c-kit gene into the 

pTarget Vector apt to transfect eukaryotic cells. The sequence of the whole transcript was checked 

correctly by cycle sequencing. The transfection in K1 cells is ongoing and no results of functional 

studies have been obtained yet. These experiments belong to our future perspectives. 

  

 

Figure 4.8: Immunocytochemistry analysis. (A) SKMEL cells positive for c-KIT protein, (B) K1 thyroid 

carcinoma cells negative for c-KIT protein. 

 

 

 

4.3 Other molecular markers to improve cytological diagnostic accuracy 
 

4.3.1 NIS gene expression level: 

Analyzing 50 (24 benign and 26 malignant) of the 82 FNA smears, previously analyzed for c-kit 

expression, we found that NIS mRNA expression level was higher in benign (mean=0.27) thyroid 

tumours in comparison to the malignant ones (mean=0.026), even though it didn’t reach statistical 

significance (p=0.06) (Figure 4.9) 

 

B A 
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Figure 4.9: Expression levels of Nis gene in benign and malignant thyroid lesions 

 

4.3.2 TC1 gene expression level: 

We tested TC1 gene expression in a total of 109 patients (65 malignant, 44 benign).  We found that 

TC1 was significantly over-expressed in malignant lesions (mean= 0.28) compared to the benign 

ones (mean= 0.08) (p-value 0.04) (Figure 4.10). 

 

 

 

Figure 4.10: TC1 expression in benign and malignant thyroid samples  
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4.3.3 miRNA 146b and miRNA222 expression levels: 

We have evaluated miRNA146b and miRNA222 expression 58 FNA smears (41 malignant and 17 

benign) to better understand the relationships of their expression between malignant and benign 

FNA samples.  

Comparing the expression values for each miRNA relative to SNORD61 in malignant and benign 

samples, we found that miRNA146b was significantly higher in the malignant group 

(mean=205.839) than in the benign group (mean=2.09) (p-value = 0.0005) (Figure 4.11A). 

Specificity and sensitivity of the diagnostic performance of miR-146b were evaluated by ROC 

analysis, which showed 100% of specificity and 87.8% of sensitivity, the AUC was 0.9 with C.I 

95% 0,8 -0,9 and p <0.0001. (Figure 4.11B) 

As regards the miRNA222, we saw a higher expression in the malignant group compared to the 

benign group, but there was no significance (results not shown).  
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Figure 4.11: (A) miRNA146b expression in benign and malignant thyroid samples. (B) ROC analysis for 

miRNA146b expression. The true positive rate (Sensitivity) is plotted in function of the false positive rate 

(100-Specificity) for different cut-off points. Each point on the ROC plot represents a sensitivity/specificity 

pair corresponding to a particular decision threshold. (AUC = 0.9, C.I 95% 0.8 -0.9; p <0.0001)  
 

 

4.4 Building Molecular computational models 

 

4.4.1 Classification of malignant and benign samples 

Different gene expression data was used to build Bayesian Neural Networks (BNN) and to 

perform Discriminant Analysis in order to estimate the probability of thyroid malignancy. 

We built several BNNs in order to find the most predictive one. This procedure uses a Probabilistic 

Neural Network (PNN) to classify cases into malignant and benign categories, based on 7 input 

variables (KIT, TC1, miRNA222, miRNA146b, NIS, PAX8, TTF1) by implementing a 

nonparametric method for classifying observations into one of benign and malignant groups based 

on the observed expression variables. After different tests we obtained that the Neural Network 

Bayesian Classifier made up of KIT, TC1, miRNA222, miRNA146b on 51 FNA (38 malignant and 

13 benign) (Table 4.2), resulted to have the highest predictive power of 94.12%, it is interesting to 

notice that this model correctly classifies 95% of the samples in the malignant group and 92.31% of 

the samples in the benign group (Figure 4.12). 
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CASE HD CD BRAF 

1 PTC MCP WT 

2 PTC CP V600E 

3 PTC CA WT 

4 PTC CP V600E 

5 PTC SCP V600E 

6 PTC SCP V600E 

7 PTC CP WT 

8 PTC CP WT 

9 PTC CP WT 

10 PTC SCP WT 

11 PTC MCP V600E 

12 PTC SCP V600E 

13 PTC SCP V600E 

14 PTC CP V600E 

15 PTC SCP V600E 

16 PTC CP V600E 

17 PTC CP V600E 

18 PTC MCP WT 

19 PTC MI WT 

20 PTC SCP V600E 

21 PTC CP V600E 

22 PTC CP V600E 

23 PTC CP V600E 

24 PTC CP V600E 

25 PTC MCP WT 

26 PTC CP V600E 

27 PTC CP WT 

28 PTC CP V600E 

29 PTC MCP WT 

30 BN BN WT 

31 BN BN WT 
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32 BN MI WT 

33 BN BN WT 

34 BN BN WT 

35 BN BN WT 

36 BN MIO WT 

37 BN MI WT 

38 BN MI WT 

39 BN MI WT 

40 PTC MIB WT 

41 BN MI WT 

42 PTC CP WT 

43 PTC SCP WT 

44 PTC SCP WT 

45 PTC MCP WT 

46 PTC SCP V600E 

47 PTC SCP WT 

48 PTC MI WT 

49 PTC MIO WT 

50 BN BN WT 

51 BN BN WT 

 

Table 4.2: Morphological and molecular diagnosis in 51 thyroid nodules 

HD: histological diagnosis. CD: cytological diagnosis. PTC: papillary thyroid carcinoma. SPTC: suspicious 

for PTC. CP = papillary carcinoma. CA = anaplastic carcinoma. MIO = microfollicolare with cells ossifile. 

MCP = metastatic papillary carcinoma. MI =microfollicolare. BN: benign nodule. WT: wild type. 
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Classification Table 

 

Actual Group Predicted  

mal_ben Size 0 1 

0 13 12 1 

  ( 92.31%) ( 7.69%) 

1 38 2 36 

  (  5.26%) ( 94.74%) 

 

Percent of training cases correctly classified: 94.12% 

 

 Actual Highest Highest 2nd Highest 2nd Highest 

Row Group Group Score Group Score 

3 1 0* 0.824696 1 0.175304 

20 1 0* 0.660876 1 0.339124 

43 0 1* 0.751332 0 0.248668 

* = incorrectly classified. 

 

Figure 4.12: Predictive power of KIT, TC1, miRNA222, miRNA146b in discriminating malignant 

from benign  by  ANN.  

(A) ANN uses a probabilistic neural network (PNN) to classify cases into different Malignant vs Benign, 

based on 4 input variables. (B) Classification table shows the results of using the trained neural network to 

classify observations. Amongst the 51 cases used to train the model, 94.12% were correctly classified. 
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The predictive power of KIT, TC1, miRNA222, miRNA146b expression to discern malignant from 

benign patients was confirmed also by  means of the Discriminant Analysis analysis that showed 

a predictive power 92.16%, so slightly less than Neural Network Bayesian and, more important, it 

correctly classifies 100,00% of the samples in the malignant group and 69.23% of the samples in 

the benign group (Figure 4.13). 

 

Classification variable: Malignant vs Benign 

Independent variables:  

     c_kit 

     tc1 

     miRNA222 

     miRNA146 

 

Number of complete cases: 51 

Number of groups: 2 
 

Discriminant Eigenvalue Relative Canonical 

Function  Percentage Correlation 

1 1.04361 100.00 0.71461 

 

Functions Wilks    

Derived Lambda Chi-Square DF P-Value 

1 0.489331 33.5917 4 0.0000 

 

 
Classification Table 

 

Actual Group Predicted mal_ben 

mal_ben Size 0 1 

0 13 9 4 

  ( 69.23%) ( 30.77%) 

1 38 0 38 

  (  0.00%) (100.00%) 

Percent of cases correctly classified: 92.16% 

 

 

 Prior 

Group Probability 

1 0,5000 

2 0,5000 

 

 Actual Highest Highest Squared  2nd Highest 2nd Highest Squared  

Row Group Group Value Distance Prob. Group Value Distance Prob. 

1 1 1 -0.996281 0.0704307 0.8839 0 -3.02616 4.13018 0.1161 

2 1 1 -1.24553 0.126248 0.8610 0 -3.06878 3.77276 0.1390 

3 1 1 -1.13294 0.995233 0.5860 0 -1.4804 1.69015 0.4140 

4 1 1 -0.146934 0.0000101817 0.9329 0 -2.77925 5.26464 0.0671 

5 1 1 0.444883 0.0586689 0.9607 0 -2.7513 6.45104 0.0393 

6 1 1 0.959299 0.116463 0.9684 0 -2.46447 6.964 0.0316 

7 1 1 -0.0437119 0.0456246 0.8956 0 -2.19258 4.34336 0.1044 

8 1 1 -0.35565 0.0060648 0.9213 0 -2.81636 4.92749 0.0787 

9 1 1 -0.772161 0.236599 0.8208 0 -2.29419 3.28065 0.1792 

10 1 1 -0.909852 0.173664 0.8432 0 -2.59199 3.53794 0.1568 

11 1 1 -0.978737 0.0830749 0.8784 0 -2.95613 4.03787 0.1216 

12 1 1 -0.0884061 0.000111853 0.9318 0 -2.70375 5.23081 0.0682 

13 1 1 2.95808 0.500472 0.9861 0 -1.30703 9.0307 0.0139 
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14 1 1 4.42059 3.26349 0.9989 0 -2.36984 16.8443 0.0011 

15 1 1 -1.18884 0.124011 0.8618 0 -3.01936 3.78505 0.1382 

16 1 1 0.893555 0.0104766 0.9466 0 -1.98127 5.76013 0.0534 

17 1 1 -0.768977 0.0310464 0.9033 0 -3.00378 4.50064 0.0967 

19 1 1 1.50373 0.117109 0.9685 0 -1.92221 6.96899 0.0315 

20 1 1 -1.33819 0.566862 0.7129 0 -2.24791 2.38631 0.2871 

21 1 1 -0.644114 0.0165925 0.9124 0 -2.98779 4.70395 0.0876 

22 1 1 -1.00743 0.0899351 0.8755 0 -2.95803 3.99113 0.1245 

23 1 1 -0.614894 0.0297171 0.9041 0 -2.85845 4.51684 0.0959 

25 1 1 -0.83946 0.0455392 0.8956 0 -2.98879 4.34419 0.1044 

26 1 1 1.28208 0.247275 0.9777 0 -2.50012 7.81169 0.0223 

28 1 1 -0.355491 0.000281892 0.9309 0 -2.95656 5.20242 0.0691 

29 1 1 -1.23095 0.141747 0.8550 0 -3.00554 3.69093 0.1450 

30 1 1 -0.809608 0.0373955 0.8998 0 -3.00494 4.42805 0.1002 

31 1 1 1.39246 0.073457 0.9631 0 -1.86993 6.59823 0.0369 

32 1 1 2.73132 1.06855 0.9934 0 -2.28344 11.0981 0.0066 

33 0 0 10.64 14.3598 1.0000 1 -0.706503 37.0528 0.0000 

34 0 0 -0.462702 1.20031 0.5306 1 -0.585055 1.44501 0.4694 

36 0 0 0.644535 0.145789 0.8535 1 -1.11781 3.67048 0.1465 

38 0 0 7.67354 5.9752 0.9997 1 -0.582584 22.4875 0.0003 

40 0 *1 -1.19548 1.03641 0.5746 0 -1.496 1.63745 0.4254 

41 0 0 8.1872 7.8541 0.9999 1 -0.891717 26.0119 0.0001 

42 0 0 0.546552 0.166674 0.8457 1 -1.15506 3.56989 0.1543 

43 0 *1 -1.33338 0.177548 0.8418 0 -3.00488 3.52053 0.1582 

45 0 *1 -1.31058 0.713334 0.6680 0 -2.00964 2.11145 0.3320 

46 1 1 -0.965599 0.0847317 0.8777 0 -2.93642 4.02638 0.1223 

47 0 0 2.60575 0.00221143 0.9263 1 0.0741535 5.06541 0.0737 

48 1 1 0.0980452 0.0137514 0.9483 0 -2.81104 5.83193 0.0517 

49 1 1 0.122645 0.00124895 0.9382 0 -2.5982 5.44295 0.0618 

50 1 1 -0.62535 0.0207164 0.9096 0 -2.93429 4.6386 0.0904 

51 1 1 2.17636 0.60257 0.9881 0 -2.24687 9.44902 0.0119 

52 1 1 -0.715366 0.0282095 0.9050 0 -2.9691 4.53569 0.0950 

53 1 1 1.13048 0.33086 0.9813 0 -2.8308 8.25342 0.0187 

54 1 1 -1.31618 0.161647 0.8476 0 -3.03204 3.59337 0.1524 

55 1 1 -0.200962 0.00208922 0.9265 0 -2.73559 5.07134 0.0735 

56 0 0 -0.517045 0.922166 0.6066 1 -0.950252 1.78858 0.3934 

57 0 0 0.835918 0.100527 0.8711 1 -1.07523 3.92283 0.1289 

58 0 *1 -1.31641 1.16719 0.5393 0 -1.47373 1.48184 0.4607 

* = incorrectly classified. 

Figure 4.13: Predictive power of KIT, TC1, miRNA222, miRNA146b in discriminating malignant 

from benign by Discriminant Analysis. 

This procedure is designed to develop a set of discriminating functions which can help predict Malignant vs 

Benign based on the values of other quantitative variables. 51 cases were used to develop a model to 

discriminate among the 2 levels of Malignant vs Benign. 4 predictor variables were entered. The one 

discriminating function with P-value less than 0,05 is statistically significant at the 95.0% confidence level. 

To plot the discriminating functions, select Discriminant Functions from the list of Graphical Options. 

Classification table shows the results of using the derived discriminant functions to classify observations. It 

lists the two highest scores amongst the classification functions for each of the 51 observations used to fit the 

model, as well as for any new observations. Amongst the 51 observations used to fit the model, 47 or 92.16% 

were correctly classified. 

 

Then the analysis was conducted on 11 unknown samples, with both discrimination analysis and 

neural network analysis (Table 4.3, 4.4), in order to confirm the accuracy of the model. The 

pathological diagnosis for each sample was kept blinded until the analysis was completed. When 

the blind was broken, we found that all 11 unknown samples were diagnosed by the model as 

malignant in concordance with the diagnosis determined by standard pathological criteria. The 

samples correctly classified were diagnosed as indeterminate samples (SPTC) at the cytological 
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level and were moved to the diagnostic group of malignant after pathological diagnosis.  7 out of 

the 11 SPTC samples used in this analysis were BRAF mutated. Therefore 4 BRAF wild-type 

patients remained SPTC. Our model assigned these 4 patients to the malignant group with a 

probability of 0.9065, 0.8631, 0,7890, 0.9585 by Discriminant analysis and 0.999, 0.824, 0,799, 1 

by Neural network. 

Unknown 

samples 

Benign 

probability 

Malignant 

probability 

Predicted 

diagnosis 

Cytological 

diagnosis 

Pathological 

diagnosis 

A 0.0700 0.9300 Malignant SPTC Malignant 

B 0.0530 0.9470 Malignant SPTC Malignant 

C 0.1075 0.8925 Malignant SPTC Malignant 

D 0.0177 0.9823 Malignant SPTC Malignant 

E 0.1964 0.8036 Malignant SPTC Malignant 

F 0.1380 0.8620 Malignant SPTC Malignant 

G 0.0935 0.9065 Malignant SPTC Malignant 

H 0.1369 0.8631 Malignant SPTC Malignant 

I 0.1458 0.8542 Malignant SPTC Malignant 

L 0.2110 0.7890 Malignant SPTC Malignant 

M 0.0415 0.9585 Malignant SPTC Malignant 

Table 4.3: Probability values of the prediction model for the unknown samples by Discriminant Analysis 

 

Unknown 

samples 

Benign 

probability 

Malignant 

probability 

Predicted 

diagnosis 

Cytological 

diagnosis 

Pathological 

diagnosis 

A 3.01989E-7 1.0 Malignant SPTC Malignant 

B 1.08387E-8 1.0 Malignant SPTC Malignant 

C 0.000446425 0.999554 Malignant SPTC Malignant 

D 4.73155E-98 1.0 Malignant SPTC Malignant 

E 0.32423 0.67577 Malignant SPTC Malignant 

F 0.0223083 0.977692 Malignant SPTC Malignant 

G 0.000936203 0.999064 Malignant SPTC Malignant 

H 0.175866 0.824134 Malignant SPTC Malignant 

I 0.0846736 0.915326 Malignant SPTC Malignant 

L 0.200675 0.799325 Malignant SPTC Malignant 

M 6.97178E-14 1.0 Malignant SPTC Malignant 

Table 4.4: Probability values of the prediction model for the unknown samples by Neural Network 
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4.4.2 Principal Component Analysis 

We then performed Principal Component Analysis
1
 in order to visualize in a 3-dimensional 

space the discriminative power of all the four markers according to malignant and benign status 

(Figure 4.14). A separation between malignant and benign samples can be visually identified 

(Figure 4.14, left plot). A similar grouped structure is identified by an unsupervised analysis 

 erformed via “k-means” clustering (Figure 4.14, right plot). 

 

 
 

Figure 4.14: Principal Component analysis and k-means clustering. We plot the first 3 principal 

components of the space of the four log transformed
2
 features TC1, c-KIT, miRNA146, miRNA222 in the 

context of classifying Malignant Vs Benign. The data points in the plots on the left are labelled according to 

t eir condition (“Malignant vs Benign”).   e  lots on t e rig t s o  instead t e clusters identified    t e 

unsupervised analysis performed via k-means clustering. We can see that the separation induced by the 

conditions “Malignant vs Benign” a  roximatel  re roduces/reflects t e intrinsic grouped structure of the 

data. This suggests that classifications based on the four discussed features should have a good discriminant 

 o er in classif ing “Malignant vs Benign”. 
 

 

The comparison of the expression values between malignant and benign groups of each single gene 

(KIT, TC-1, miRNA222, and miRNA146b), taken singularly from the dataset used for the 

computational model and the PCA analysis (Table 4.2), is showed by box-plots in Figure 4.15. We 

obtained that c-KIT mRNA expression levels were significantly higher in benign thyroid tumours 

                                                 
1
Principal component analysis (PCA) is a classic tool for data analysis, visualization or compression that, starting 

from a multivariate data set, finds linear combinations of the variables called “principal components”, corresponding 

to orthogonal directions maximizing variance in the data [d'Aspremont, Alexandre, Francis Bach, and Laurent El 

Ghaoui. "Optimal solutions for sparse principal component analysis." The Journal of Machine Learning Research 9 

(2008): 1269-1294.]  
2
Here, for “log transformed” we mean “log(a+x)”, where a>0 and x is the nonnegative variable that we want to 

transform. We need to introduce the constant a since in our case x can be equal to zero. In particular we chose a=0.05. 
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compared to the malignant ones (p(KIT) = 0.00092). Instead the miRNA 146b and TC1 were 

significantly over-expressed in malignant lesions compared to the benign ones (p(miRNA146b) < 

0.00001,  p(TC1) = 0.015)  and we found the same difference but not significant in miRNA222.  

These results confirm previous ones 

 

 
 

Figure 4.15. Differential expression of each single marker between malignant/benign group in the dataset 

used for the building of the computational model (Table 4.2). 

 
 

4.4.3 ROC curve analysis 

We finally employed receiver-operated characteristics (ROC) curve analyses using the 

expression of each marker individually (TC1, c-KIT, miRNA 146b, miRNA222), in order to 

determine model robustness for predicting malignancy in thyroid samples. (Figure 4.16, Table 4.5). 

Among the markers, KIT and miRNA146b showed the highest AUC (0.9) for malignant versus 

benign. 
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Figure 4.16: Singular ROC analysis for KIT, TC1, miRNA146b, miRNA222 in Malignant vs Benign  

 

 

 Sensitivity Specificity AUC
a
 SE

b
 95% CI

c
 p-value 

TC1 38.5 92.9 0.634 0.0816 0.487 to 0.764 0.0953 

c-KIT* 95.7 88.2 0.973 0.0261 0.883 to 0.998 <0.0001 

miRNA146b* 87.8 100.00 0.931 0.0364 0.824 to 0.983 <0.0001 

miRNA222 48.8 68.7 0.551 0.0955 0.405 to 0.690 0.9171 

 

Table 4.5: Individual ROC analysis for each marker in Malignant vs Benign. The asterisks indicate the genes 

with significant p-value: c-KIT p<0.0001; miRNA p<0.0001. 

 

 

4.4.4 Correlation analysis 

 

A multiple variable analysis was performed to analyze the correlation between the markers; the 

statistical correlation may reflect biologically correlation between markers. 

We observed a significant correlation of c-KIT with miRNA146b (p<0.0001) (Figure 4.17) 
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Figure 4.17: Correlation graph: the indicated variables (TC1, c-KIT, miRNA146b, miRNA222) are 

displayed on the vertical axis of every plot in that row and on the horizontal axis of every plot in that 

column. Each pair of variables is thus shown twice, once above the diagonal and once below it. This table 

shows Pearson product moment correlations between each pair of variables. Correlation coefficients range 

between -1 and +1 and measure the strength of the linear relationship between the variables. In parentheses is 

the number of pairs of data values used to compute each coefficient. 

P-values < 0.05 indicate statistically significant non-zero correlations at the 95.0% confidence level. The 

following pairs of variables have P-values below 0.05: miRNA146b and c-KIT 

 

 

 

 

 

4.5 Molecular stratification of the malignant population according to BRAF 

molecular status: multi-approach analysis of the genetic background related to 

BRAF V600E presence 

 
 

4.5.1 Differential gene expression analysis approach: 

 In order to better characterize and stratify the group of malignant samples we analyzed the 

differential expression of different markers singularly according to V600E BRAF mutational status: 

 

- We found a lower expression of NIS in BRAF V600E malignant samples (n= 14) 

(mean= 0,002) than BRAF wild type malignant samples (n= 11) (mean= 0,056), but the 

difference was not statistically significant (Figure 4.18). 

 

 

 

 

 TC1 c-KIT miRNA146b miRNA222 

TC1  -0.1026 0.0979 -0.1577 

  (52) (53) (52) 

  0.4691 0.4854 0.2640 

c-KIT -0.1026  -0.7142 -0.0607 

 (52)  (57) (56) 

 0.4691  0.0000 0.6565 

miRNA146b 0.0979 -0.7142  -0.0622 

 (53) (57)  (57) 

 0.4854 0.0000  0.6456 

miRNA222 -0.1577 -0.0607 -0.0622  

 (52) (56) (57)  

 0.2640 0.6565 0.6456  



 68 

 

Figure 4.18. NIS expression in BRAF wild type versus V600E malignant lesions  

 

 - TC1 expression resulted significantly (p= 0.01) higher in BRAF wild type malignant samples 

(n=31) (mean= 0.46) as compared to the V600E ones (n= 34) (mean= 0.10) (Figure 4.19). 

 

 

Figure 4.19: TC1 expression in BRAF wild type versus V600E malignant lesions  

 

 

- We have also correlated the expression of miRNAs 146b e 222 in 41 malignant FNAs: 20/41 

carried the V600E mutation on BRAF exon 15. We found that miRNA146b and miRNA222 were 

significantly down-regulated (p-value = 0.036; p-value = 0.037, respectively) in the malignant 
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samples with BRAF WT (mean= 146.56; mean= 7.62 respectively) compared to the malignant 

group with BRAF V600E (mean= 381.73; mean= 29.07 respectively) (Figure 4.20A,B) 

 

A 

 

 

B 

 

Figure 4.20. (A) miRNA222 and (B) miRNA146b expression in BRAF wild type versus V600E malignant 

lesions. 

 

4.5.2 Computational model approach: 

 

To better characterize and stratify the group of malignant samples, we also performed a 

Bayesian Neural Networks (BNN) and Discriminant Analysis built on the most predictive markers-
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based model showed above (KIT, TC1, miRNA222, miRNA146b) in order to classify BRAF 

mutational status. We conducted this analysis only on malignant samples (n=38: 19WT and 19 

BRAF V600e): the best results were provided by Discriminant Analysis showing a predictive power 

of 76.32%. In the BRAF V600E group, 94.74% of the samples were correctly classified while only 

57.89% of the samples were correctly assigned to the BRAF WT group (Figure 4.21). 

 

Classification variable: v600e_wt 

Independent variables:  

     tc1 

     c_kit 

     miRNA146 

     miRNA222 

 

Number of complete cases: 38 

Number of groups: 2 

 

Discriminant Eigenvalue Relative Canonical 

Function  Percentage Correlation 

1 0.553878 100.00 0.59703 

 

Functions Wilks    

Derived Lambda Chi-Square DF P-Value 

1 0.643551 14.9856 4 0.0047 

 

Classification Table 

Actual Group Predicted v600e_wt 

v600e_wt Size 0 1 

0 19 11 8 

  ( 57.89%) ( 42.11%) 

1 19 1 18 

  (  5.26%) ( 94.74%) 

Percent of cases correctly classified: 76.32% 

 

 Actual Highest Highest Squared  2nd Highest 2nd Highest Squared  

Row Group Group Value Distance Prob. Group Value Distance Prob. 

1 0 *1 -1.09056 0.104515 0.6413 0 -1.67165 1.26669 0.3587 

2 1 1 -1.34502 0.148666 0.6203 0 -1.83587 1.13037 0.3797 

3 0 0 4.18975 4.6182 0.9847 1 0.0269081 12.9439 0.0153 

4 1 1 -0.149836 0.000552366 0.7341 0 -1.16524 2.03136 0.2659 

5 1 1 0.494869 0.0360129 0.7899 0 -0.829516 2.68478 0.2101 

6 1 1 1.1574 0.230769 0.8514 0 -0.588018 3.7216 0.1486 

7 0 0 2.25427 1.44518 0.9422 1 -0.536817 7.02735 0.0578 

8 0 *1 -0.328426 0.000791609 0.7328 0 -1.33712 2.01817 0.2672 

9 0 0 0.99444 0.0289092 0.7851 1 -0.301341 2.62047 0.2149 

10 0 0 -0.0829684 0.113083 0.6370 1 -0.645236 1.23762 0.3630 

11 1 1 -1.03037 0.203303 0.5978 0 -1.42659 0.995741 0.4022 

12 1 1 -0.0150955 0.053638 0.6713 0 -0.729017 1.48148 0.3287 

13 1 1 3.75507 2.6764 0.9683 0 0.33549 9.51556 0.0317 

14 1 1 4.56902 1.10138 0.9289 0 1.99914 6.24113 0.0711 

15 1 1 -1.25624 0.192205 0.6021 0 -1.67054 1.0208 0.3979 

16 1 1 1.35593 0.581776 0.8961 0 -0.798551 4.89074 0.1039 

17 1 1 -0.856647 0.0685026 0.6616 0 -1.52692 1.40904 0.3384 
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19 0 0 3.61227 2.29101 0.9624 1 0.369955 8.77564 0.0376 

20 0 0 1.32014 0.494877 0.8878 1 -0.74848 4.63212 0.1122 

21 1 1 -0.72044 0.0474461 0.6757 0 -1.45432 1.51521 0.3243 

22 1 1 -1.10632 0.317259 0.5581 0 -1.33975 0.784115 0.4419 

23 1 *0 -0.620426 0.135428 0.6263 1 -1.13673 1.16803 0.3737 

25 1 1 -0.908063 0.12557 0.6309 0 -1.44413 1.19771 0.3691 

26 0 0 1.87213 0.962312 0.9221 1 -0.598519 5.90361 0.0779 

28 1 1 -0.464895 0.0654439 0.6635 0 -1.14373 1.42311 0.3365 

29 0 *1 -1.29292 0.114881 0.6361 0 -1.85133 1.2317 0.3639 

30 1 1 -0.874915 0.0818357 0.6536 0 -1.50992 1.35185 0.3464 

31 1 1 1.85044 0.745829 0.9089 0 -0.45018 5.34708 0.0911 

32 0 0 3.3671 2.29504 0.9625 1 0.122867 8.78351 0.0375 

33 0 *1 -0.99412 0.0563999 0.6694 0 -1.69951 1.46718 0.3306 

34 0 *1 -0.186732 0.119995 0.6336 0 -0.734329 1.21519 0.3664 

35 0 0 0.622404 0.0786225 0.8109 1 -0.833277 2.98998 0.1891 

36 0 *1 -0.98779 0.375886 0.5402 0 -1.14901 0.698336 0.4598 

37 0 0 3.4125 3.55706 0.9777 1 -0.369342 11.1207 0.0223 

38 1 1 -0.891801 0.186759 0.6043 0 -1.31516 1.03348 0.3957 

39 0 *1 1.11251 0.0656648 0.8054 0 -0.308193 2.90706 0.1946 

40 0 *1 -1.39684 0.231807 0.5871 0 -1.74877 0.935664 0.4129 

41 0 0 -0.56526 0.344331 0.5497 1 -0.764584 0.742979 0.4503 

* = incorrectly classified. 

 

Figure 4.21: Predictive power of KIT, TC1, miRNA222, miRNA146b in classifying BRAF mutational 

status by Discriminant Analysis (StatGraphics software). 

 

 

Instead we obtained by BNN a predictive power of 73.68% with 68.42% of the samples in the 

BRAF V600E group and 78.95% of the samples with BRAF WT group were correctly classified 

(Figure 4.22A,B). 

A 
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Classification Table 

Actual Group Predicted  

v600e_wt Size 0 1 

0 19 15 4 

  ( 78.95%) ( 21.05%) 

1 19 6 13 

  ( 31.58%) ( 68.42%) 

Percent of training cases correctly classified: 73.68% 

 

 

 

 Actual Highest Highest 2nd Highest 2nd Highest 

Row Group Group Score Group Score 

1 0 1* 1.0 0 1.64536E-130 

4 1 0* 1.0 1 5.4036E-213 

5 1 0* -1.#IND 1 -1.#IND 

6 1 0* -1.#IND 1 -1.#IND 

8 0 1* 1.0 0 0.0 

13 1 0* -1.#IND 1 -1.#IND 

14 1 0* -1.#IND 1 -1.#IND 

23 1 0* -1.#IND 1 -1.#IND 

36 0 1* 1.0 0 2.86169E-97 

40 0 1* 1.0 0 1.00686E-43 

* = incorrectly classified. 

Figure 4.22: (A). Predictive power of KIT, TC1, miRNA222, miRNA146b in discriminating malignant 

BRAF V600E from malignant BRAF WT by ANN. ANN uses a probabilistic neural network (PNN) to 

classify cases into different malignant BRAF V600E vs BRAF WT, based on 4 input variables. (B) 

Classification table shows the results of using the trained neural network to classify observations. Amongst 

the 38 cases used to train the model, 73.68% were correctly classified.  

 

4.5.3 Principal Component Analysis (PCA) approach: 

 

We then performed Principal Component Analysis in order to visualize in a 3-dimensional 

space the discriminative power of all the four markers according to BRAF mutational status (Figure 

4.23). A separation between BRAF V600E and wild type samples can be visually identified (Figure 

4.23, left plot). A similar grouped structure is identified by an unsupervised analysis performed via 

“k-means” clustering (Figure 4.23, right plot). 
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Figure 4.23. Principal Component analysis and k-means clustering: We plot the first 3 principal 

components of the space of the four log transformed features TC1, c-KIT, miRNA146, miRNA222 in the 

context of classifying BRAF mutational status. The data points in the plots on the left are labeled according 

to t eir condition (“V600B malignant vs W  malignant”).   e  lots on t e rig t s o  instead t e clusters 

identified by the unsupervised analysis performed via k-means clustering. We can see that the separation 

induced b  t e condition “V600B malignant vs W  malignant” a  roximatel  re roduces/reflects t e 

intrinsic grouped structure of the data. This suggests that classifications based on the four discussed features 

s ould  ave a good discriminant  o er in classif ing “V600B malignant vs W  malignant”. 

 

The comparison of the expression values between BRAF V600E and WT malignant group of each 

single gene (KIT, TC-1, miRNA222, and miRNA146b), taken singularly from the dataset used for 

the building of the computational model and the PCA analysis (Table 4.2), is showed by box-plots 

in Figure 4.24. 

TC1 and c-KIT expression resulted significantly over-regulated in BRAF wild type malignant than 

BRAF V600E malignant samples (p(TC1) = 0.00334, p(c-KIT) = 0.00341), the opposite was found 

for miRNA222 and miRNA146b (p(miRNA146b) = 0.036, p(miRNA222) = 0.037); this confirm 

what we found in the previous section. 
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Figure 4.24. Differential expression of each single marker according to BRAF mutational status in the 

malignant samples analyzed on the dataset used for the building of the computational model (Tab3) 

 

 

4.5.4 ROC curve analysis approach 

 

We finally employed receiver-operated characteristics (ROC) curve analyses using the 

expression of each marker individually (TC1, c-KIT, miRNA 146b, miRNA222), in order to 

determine model robustness for predicting BRAF status. (Figure 4.25, Table 4.6). Among the 

markers, miRNA146b showed the highest AUC (0.7) for V600E versus WT malignant. 
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Figure 4.25: ROC analysis for KIT, TC1, miRNA146b, miRNA222 separately in V600E vs WT malignant. 

 

 

 Sensitivity Specificity AUC
a
 SE

b
 95% CI

c
 p-value 

TC1* 90 52.6 0.684 0.0904 0.513 to 0.825 0.0260 

c-KIT* 100 42.9 0.633 0.0907 0.461 to 0.783 0.0491 

miRNA146b* 65 81 0.729 0.0836 0.560 to 0.860 0.0005 

miRNA222 35 90.05 0.558 0.0989 0.388 to 0.719 0.6798 

 

Table 4.6. ROC analysis for each marker individually in WT malignant vs V600E. The asterisks indicate the 

genes with significant p-value: TC1 p=0.0260; c-KIT p=0.0491; miRNA 146b p =0.0005. 

 

 

 

4.6 Gene expression analysis of a panel of 84 Human Tyrosine Kinases gene 

array 
 
 

Quantitative PCR array technology was exploited to examine the transcript levels of 84 

Tyrosine genes, on 8 benign samples and 12 malignant samples, and the processing of the data was 

obtained by means of several kinds of comparisons between samples. In order to expose the results, 

we have used the Fold-Regulation, which represents fold-change results in a biologically 

meaningful way, and the Fold-Change (2^(- Delta Delta Ct)) is the normalized gene expression 

(2^(- Delta Ct)) in the Test Sample divided the normalized gene expression (2^(- Delta Ct)) in the 

Control Sample. 
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 Initially we compared all benign samples as a single group with all malignant samples as a single 

group. Transcript quantification by the 2 -ΔΔCT 
method showed that, with the exception of KIT and 

EPHA5 that were down regulated with p>0.05, 53 tyrosine kinase genes were up regulated at least 

two fold times in malignant group than in the benign group, and particularly 14 of these with a 

significant p-value: ALK, AXLC, CSK, EPHA2, EPHA4, ERBB3, FGFR3, FGR, HCK, IGF1R, 

JAK3, LYN, MERTK, MST1R (Table 4.7, Figure 4.26A,B). 

 

 Malignant samples 

vs Benign samples 

 

Tyrosine Kinases 

name 

            p-value fold up or down 

ABL1 0,078733 3,5095 

ABL2 0,090759 5,0078 

ALK 0,02089 4,5683 

AXL 0,023475 3,2052 

BLK 0,364858 1,8093 

BTK 0,142424 1,4069 

CSF1R 0,337199 2,6906 

CSK 0,015 6,3975 

DDR1 0,335951 3,4802 

DDR2 0,342303 1,4053 

EGFR 0,927169 2,1911 

EPHA1 0,079751 2,8081 

EPHA2 0,026185 11,2258 

EPHA3 0,503131 1,0145 

EPHA4 0,044067 4,9674 

EPHA5 0,247184 -2,269 

EPHA7 0,050713 -1,96 

EPHA8 0,72647 -1,1557 

EPHB1 0,283071 2,2352 

EPHB2 0,210557 2,5359 

EPHB3 0,184338 2,2928 

EPHB4 0,091108 3,1113 

EPHB6 0,602841 1,5489 

ERBB2 0,224554 4,8302 

ERBB3 0,042713 25,0994 

ERBB4 0,053654 7,021 

FER 0,090949 2,2828 

FES 0,248551 2,488 

FGFR1 0,170782 5,2613 

FGFR2 0,434054 2,0485 

FGFR3 0,034528 4,2945 

FGFR4 0,325155 2,2032 

FGR 0,0471 3,5936 

FLT1 0,461141 1,694 

FLT3 0,892472 -1,2864 

FLT4 0,311998 2,4333 

FRK 0,441031 1,1319 

FYN 0,065814 12,6224 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1969
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1969
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HCK 0,028615 2,1791 

IGF1R 0,027255 3,866 

IGF2R 0,072264 11,8899 

INSR 0,202495 9,3152 

INSRR 0,224744 1,488 

ITK 0,864426 -1,0911 

JAK1 0,14329 2,9223 

JAK2 0,38949 1,6803 

JAK3 0,040946 2,6674 

KDR 0,432088 1,1006 

KIT 0,192859 -5,461 

LCK 0,832743 1,2927 

LTK 0,915645 1,3325 

LYN 0,029164 8,1681 

MATK 0,062273 5,5645 

MERTK 0,037934 6,9023 

MET 0,073381 16,0416 

MST1R 0,027979 6,7136 

MUSK 0,537506 1,617 

NTRK1 0,434666 1,1032 

NTRK2 0,800117 1,4948 

NTRK3 0,134752 2,4418 

PDGFRA 0,921158 2,2967 

PDGFRB 0,479187 1,0029 

PTK2 0,786393 1,8774 

PTK2B 0,555445 2,6042 

PTK6 0,254569 1,2805 

PTK7 0,309666 4,4038 

RET 0,483323 1,3751 

ROR1 0,5567 2,8879 

ROR2 0,253785 -1,3368 

ROS1 0,84381 -1,0392 

RYK 0,536358 2,4305 

SRC 0,793006 5,5774 

SRMS 0,168092 -1,8618 

SYK 0,227986 1,2842 

TEC 0,245954 -1,0003 

TEK 0,421818 -1,1647 

TIE1 0,222614 -1,5355 

TNK1 0,109385 1,3539 

TNK2 0,91698 2,6231 

TXK 0,076006 3,0791 

TYK2 0,273992 3,5216 

TYRO3 0,537825 1,8698 

YES1 0,253332 1,5833 

ZAP70 0,238128 -1,0184 

 

Table 4.7. Up-Down Regulation in Malignant samples vs Benign samples: Fold-regulation values < 0 

indicate a negative or down-regulation and the fold-regulation values > 0 indicate a positive- or an up-

regulation; Fold-regulation values greater than 2 are indicated in red; fold-regulation values less than -2 are 

indicated in blue; p values less than 0.05 are indicated in red. 
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Figure 4.26: Comparison between malignant group and benign group: (A) The Histogram shows the 

genes that are significantly up-expressed and down-expressed (p<0.05) in malignant group than benign 

group, with the exception of KIT and EPHA5 p>0.05. (B) In the scatter plot the red dots indicate in 

malignant group the over-ex ressed genes  it  fold ≥ 2 and t e green dots indicate t e do n-expressed 

genes  it  fold ≤ -2 (KIT, EPHA5) respect to benign group.  
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Afterwards we compared the benign group versus two groups: the group of malignant samples with 

BRAF WT (n=6) and the group of malignant samples with BRAF V600E (n=6). Lastly we 

compared the malignant group with BRAF WT versus the malignant group with BRAF V600E. 

The comparison of the Tyrosine Kinases expression profile among the benign group versus group of 

malignant samples with BRAF WT and the group of malignant samples with BRAF V600E 

demonstrated a 2 fold up-regulation of 50 genes in BRAF V600E group and 48 genes in BRAF WT 

compared to the benign group. Particularly we obtained 22 genes significantly (p<0.05) over-

expressed in BRAF V600E and 7 significantly overexpressed in BRAF WT compared to the benign 

group. The genes significantly overexpressed that are in common in these two groups respect to the 

benign group were: ALK, CSK, HCK, MST1R. On the other hand, only 5 genes (EPHA5/7, KIT, 

SRMS, TIE1) in the BRAF V600E   group and 3 genes (EPHA5/7, KIT) in BRAF WT were 2 fold 

down-regulated in respect to the benign group with no statistical significance (Table 4.8, Figure 

4.27) 

Finally the comparison of the Tyrosine Kinases expression profile between the BRAF V600E 

malignant group and the BRAF WT malignant group, showed in malignant group BRAF V600E  

36 genes with at least 2 fold down-regulation and 12 genes with at least 2 fold up-regulation 

compare to the malignant BRAF WT group. Four genes were significantly down-expressed 

(p<0,05): INSR, KIT, PTK2, TNK1 (Table 4.9, Figure 4.28). 

By means of Venn diagram, we found the genes with significantly altered expression in common to 

all conducted comparisons:  in particular, in the comparison among V600E vs benign and V600E vs 

WT malignant there was one gene in common (INSR); the comparison among V600E vs benign 

and all malignant vs benign had twelve genes in common (ALK, ERBB3, FGR3, FGR, IGF1, 

JAK3, LYN, MERTK, ALK, CSK, HCK, MST1R); instead the comparison among WT malignant 

vs benign and V600E vs benign had four genes in common (ALK, CSK, HCK, MSTIR); finally the 

comparison among WT malignant vs benign and all malignant vs benign had five genes in common     

(EPHA2, ALK, CSK, HCK, MS 1R). We didn’t find genes in common among V600E vs W  

malignant and WT malignant vs benign, and between V600E vs WT malignant and all malignant vs 

benign. 

Moreover in three (all malignant vs benign; V600E vs benign; WT malignant vs benign) of the four 

conducted comparisons, we found four genes (ALK, CSK, HCK e MSTR1) in common that had a 

significantly altered expression (Figure 4.29). 
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  Malignant 

samples BRAF 

V600E and BRAF 

WT vs benign 

group 

  

                   BRAF V600E                   BRAF WT 

Tyrosine Kinases 

name 

fold up or down      p-value fold up or down      p-value 

ABL1 4,3232 0,023592 2,8489 0,072369 

ABL2 4,6214 0,011912 5,4264 0,068446 

ALK 6,3386 0,02176 3,2925 0,034481 

AXL 6,2495 0,002608 1,6439 0,279645 

BLK 1,3476 0,779615 2,4291 0,225088 

BTK 1,5819 0,101747 1,2512 0,29074 

CSF1R 2,0533 0,276445 3,5257 0,241102 

CSK 5,6863 0,019216 7,1975 0,017377 

DDR1 4,0723 0,112888 2,9742 0,24157 

DDR2 1,3503 0,478986 1,4624 0,279587 

EGFR 2,662 0,638007 1,8035 0,795498 

EPHA1 4,3057 0,061891 1,8314 0,234122 

EPHA2 10,8184 0,055475 11,6486 0,021246 

EPHA3 -1,1968 0,369534 1,2319 0,871874 

EPHA4 11,801 0,001316 2,091 0,162923 

EPHA5 -3,3048 0,066703 -1,5579 0,798417 

EPHA7 -2,9332 0,104683 -1,3096 0,253086 

EPHA8 -1,0864 0,873932 -1,2294 0,704124 

EPHB1 1,843 0,384627 2,7109 0,244456 

EPHB2 2,6882 0,30459 2,3922 0,177012 

EPHB3 2,2769 0,255582 2,3087 0,174216 

EPHB4 2,3227 0,201964 4,1675 0,031282 

EPHB6 2,1779 0,661374 1,1016 0,642793 

ERBB2 4,4704 0,058554 5,2189 0,129126 

ERBB3 52,6338 0,000138 11,9692 0,088103 

ERBB4 6,8093 0,097668 7,2392 0,025826 

FER 4,5683 0,020287 1,1408 0,228267 

FES 2,7352 0,399167 2,2632 0,206907 

FGFR1 4,5961 0,063994 6,0227 0,13303 

FGFR2 2,3984 0,702566 1,7497 0,313353 

FGFR3 7,3615 0,030316 2,5053 0,10728 

FGFR4 1,8229 0,141493 2,6627 0,197683 

FGR 6,1706 0,013232 2,0928 0,189061 

FLT1 1,1793 0,320611 2,4333 0,25265 

FLT3 -1,8446 0,15719 1,1147 0,494982 

FLT4 1,5897 0,608539 3,7246 0,169118 

FRK -1,3728 0,688182 1,7588 0,272829 

FYN 15,9585 0,034164 9,9838 0,105085 

HCK 2,0855 0,015677 2,2769 0,046454 

IGF1R 8,2249 0,001222 1,8171 0,117181 

IGF2R 22,4322 0,007332 6,3021 0,089558 

INSR 9,1604 0,000789 9,4725 0,12004 

INSRR 1,521 0,239213 1,4557 0,242195 

ITK -1,0383 0,680427 -1,1467 0,971951 
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JAK1 3,5894 0,023342 2,3791 0,130989 

JAK2 1,491 0,784548 1,8938 0,285669 

JAK3 5,6226 0,005677 1,2654 0,265372 

KDR -1,127 0,869769 1,3653 0,255384 

KIT -10,2556 0,310593 -2,9079 0,424885 

LCK 1,3237 0,712179 1,2625 0,931707 

LTK 1,8372 0,899905 -1,0347 0,75667 

LYN 16,8246 0,013714 3,9655 0,104384 

MATK 4,525 0,038403 6,8428 0,06481 

MERTK 12,3841 0,04082 3,847 0,069857 

MET 38,1978 0,056689 6,7369 0,057 

MST1R 8,8945 0,037007 5,0674 0,036017 

MUSK 1,7932 0,698999 1,4582 0,484047 

NTRK1 1,1454 0,362805 1,0625 0,630251 

NTRK2 1,571 0,874373 1,4224 0,818104 

NTRK3 5,9158 0,026135 1,0078 0,717821 

PDGFRA 2,5264 0,979606 2,0879 0,909712 

PDGFRB -1,5404 0,387412 1,5494 0,856608 

PTK2 1,6334 0,453283 2,1578 0,856535 

PTK2B 2,7559 0,614571 2,4609 0,750886 

PTK6 1,0601 0,415616 1,5467 0,449108 

PTK7 3,757 0,463564 5,162 0,504321 

RET 1,1958 0,465537 1,5815 0,781164 

ROR1 4,5132 0,693012 1,8478 0,67132 

ROR2 -1,5435 0,413321 -1,1577 0,449601 

ROS1 -1,1457 0,408158 1,061 0,775109 

RYK 1,6794 0,598422 3,5176 0,256186 

SRC 4,2933 0,566533 7,2455 0,896966 

SRMS -3,9222 0,325696 1,1316 0,356901 

SYK -1,1681 0,404186 1,9263 0,407752 

TEC -1,0777 0,415131 1,077 0,432811 

TEK -1,2731 0,399503 -1,0656 0,731902 

TIE1 -2,3929 0,399969 1,0148 0,40095 

TNK1 -1,1424 0,246089 2,094 0,28954 

TNK2 1,9459 0,421707 3,5359 0,575643 

TXK 2,7007 0,189869 3,5105 0,072921 

TYK2 3,4037 0,445766 3,6437 0,456509 

TYRO3 1,6649 0,607475 2,1 0,728531 

YES1 2,4291 0,422076 1,032 0,440036 

ZAP70 1,8505 0,421395 -1,9191 0,411084 

 

Table 4.8. Up-Down Regulation in Malignant samples BRAF V600E and BRAF WT vs benign group: 

Fold-regulation values < 0 indicate a negative or down-regulation and the fold-regulation values > 0 indicate 

a positive- or an up-regulation; Fold-regulation values greater than 2 are indicated in red; fold-regulation 

values less than -2 are indicated in blue; p values less than 0.05 are indicated in red. 
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 Malignant samples 

BRAF V600E 

  vs BRAFWT 

 

Tyrosine Kinases 

name 

            p-value fold up or down 

ABL1 0,364223 -1,1054 

ABL2 0,103815 -1,9696 

ALK 0,526697 1,1477 

AXL 0,375407 2,2664 

BLK 0,31046 -3,0236 

BTK 0,443858 -1,3268 

CSF1R 0,555035 -2,8804 

CSK 0,137852 -2,1232 

DDR1 0,253266 -1,2251 

DDR2 0,645331 -1,8166 

EGFR 0,384843 -1,1365 

EPHA1 0,864424 1,4016 

EPHA2 0,230345 -1,8061 

EPHA3 0,36368 -2,473 

EPHA4 0,73816 3,3646 

EPHA5 0,299458 -3,5585 

EPHA7 0,143035 -3,757 

EPHA8 0,191771 -1,4824 

EPHB1 0,311231 -2,4673 

EPHB2 0,154073 -1,4927 

EPHB3 0,177157 -1,7008 

EPHB4 0,110635 -3,0096 

EPHB6 0,741172 1,1786 

ERBB2 0,092467 -1,9583 

ERBB3 0,941266 2,6215 

ERBB4 0,376938 -1,7833 

FER 0,227588 2,3874 

FES 0,212904 -1,3879 

FGFR1 0,302402 -2,1981 

FGFR2 0,52584 -1,2237 

FGFR3 0,801802 1,7517 

FGFR4 0,278838 -2,4502 

FGR 0,43829 1,7578 

FLT1 0,051706 -3,4611 

FLT3 0,208707 -3,4492 

FLT4 0,05047 -3,9301 

FRK 0,193248 -4,05 

FYN 0,340007 -1,0494 

HCK 0,256826 -1,8314 

IGF1R 0,243558 2,6984 

IGF2R 0,741609 2,122 

INSR 0,030354 -1,7346 

INSRR 0,396327 -1,6054 

ITK 0,379769 -1,5188 

JAK1 0,404274 -1,1118 

JAK2 0,213766 -2,1306 

JAK3 0,527017 2,6489 

KDR 0,333918 -2,581 
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KIT 0,031272 -5,9158 

LCK 0,443672 -1,5998 

LTK 0,52867 1,1332 

LYN 0,420109 2,5293 

MATK 0,093166 -2,5366 

MERTK 0,738393 1,9191 

MET 0,926933 3,3801 

MST1R 0,460688 1,0464 

MUSK 0,419616 -1,3641 

NTRK1 0,349541 -1,5561 

NTRK2 0,464462 -1,5188 

NTRK3 0,827937 3,4993 

PDGFRA 0,813023 -1,3863 

PDGFRB 0,147041 -4,0035 

PTK2 0,017917 -2,2159 

PTK2B 0,086696 -1,4979 

PTK6 0,263465 -2,4474 

PTK7 0,1499 -2,3047 

RET 0,172113 -2,2185 

ROR1 0,172252 1,4561 

ROR2 0,30149 -2,2365 

ROS1 0,262511 -2,0391 

RYK 0,074706 -3,5135 

SRC 0,229916 -2,8309 

SRMS 0,265488 -7,4449 

SYK 0,318883 -3,7744 

TEC 0,334845 -1,947 

TEK 0,096757 -2,004 

TIE1 0,149684 -4,0734 

TNK1 0,017853 -4,0127 

TNK2 0,333986 -3,0481 

TXK 0,275567 -2,1804 

TYK2 0,285261 -1,7957 

TYRO3 0,159373 -2,1159 

YES1 0,985257 1,4032 

ZAP70 0,248808 2,1171 

 

Table 4.9: Up-Down Regulation in Malignant samples BRAF V600E vs BRAFWT: Fold-regulation 

values < 0 indicate a negative or down-regulation and the fold-regulation values > 0 indicate a positive- or an 

up-regulation; Fold-regulation values greater than 2 are indicated in red; fold-regulation values less than -2 

are indicated in blue; p values less than 0.05 are indicated in red. 
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Figure 4.27 A-B: Tyrosine Kinases genes in malignant samples,V600E and WT, vs Benign samples. (A) 

The Histogram shows the genes that are significantly different expressed in malignant V600E group and 

malignant WT group than benign group; in malignant WT group the are shown also the genes that are 

different expressed in malignant V600E group than benign group, in order to compare the difference of this 

genes in both groups, malignant V600E group and malignant WT group. (B) Expression matrix of Tyrosine 

Kinases genes in malignant samples, V600E (Group 1) and WT (Group 2), vs Benign samples (Group 3): 2 

fold up-regulated genes are in red, 2 fold down-regulated genes are in green, according to the bar shown 

below the matrix. Each row represents the colour coded expression of a specific gene; the column represents 

the colour coded Tyrosine Kinases profiles, obtained for each type of comparison between groups: Group 1= 

V600E malignant vs Group 3=benign; Group 2 = WT malignant vs Group 3=benign; V600E malignant vs 

WT malignant. 
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Figure 4.28: Comparison between malignant samples BRAF V600E and malignant samples BRAF 

WT: The Histogram shows the genes that are significantly differentially expressed in malignant BRAF 

V600E group than malignant BRAF WT group. 

 

 

Figure 4.29. Venn diagram: the venn diagram was build on 4 comparisons: malignant vs benign (blue), 

V600E vs benign (green), WT malignant vs benign (red), V600E vs WT malignant (brown). The diagram 

shows the genes with significantly altered expression that are in common to various combinations of the 

conducted comparisons (black).  
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5. DISCUSSION 
 

Papillary thyroid carcinoma (PTC) is the most common malignancy in thyroid tissue; 

about 80% of incident thyroid cancers are PTC. Although PTC is usually associated 

with alterations in the RET/PTC-RAS-BRAF signalling pathway [9, 46], the detailed 

molecular mechanism is unclear. A few papers mentioning a role for c-KIT in thyroid 

malignancies suggested to perform an analysis of c-KIT expression on thyroid cells 

obtained by FNAC from benign and malignant thyroid nodules, with the double aim to 

study a human model of thyroid cancer and, at the same time, to verify if c-KIT 

expression analysis could be of any clinical interest.  

To date, the biological significance of loss of c-KIT in thyroid tumors is not elucidated. 

Surprisingly, the depletion of c-KIT expression in thyroid tumors in contrast with the 

gain of function of other tyrosine kinase receptors such as c-RET and c-MET or of 

oncogenes such as c-RAS, suggesting that different tyrosine kinase receptor signaling 

pathways may exert opposite biological effects in a given cell type, alternatively 

controlling mitogenesis or cell differentiation. SCF, the c-KIT ligand, is not mitogenic 

in primary cultures of thyrocytes even in conjunction with thyroid-stimulating hormone 

[103], a result which would indicate that SCF/c-KIT pathway may control some aspects 

of the thyrocyte differentiated phenotype rather than cell division. 

 

 

In the present study the aim was to investigate thoroughly the role of the c-KIT gene in 

thyroid cancerogenesis, to characterize in details the c-KIT signaling pathway and the 

cause of its down-regulation in thyroid cancer; because of this down-regulation, we 

wanted to demonstrate that c-KIT is involved in the differentiation rather than in the 

proliferation during thyroid malignant transformation. 

To understand the cause of the down expression of c-KIT gene in malignant than benign 

thyroid lesions, we have investigated the presence of the SNP in exon 18 of c-KIT and 

c-KIT promoter methylation status. As shown in our results, the c-KIT SNP located in 

exon 18 was not associated neither to the biological behavior of thyroid lesions nor the 

c-KIT expression levels, while the c-KIT promoter methylation could account for part 

of the c-KIT down-expression in malignant lesions. In fact, we found that the group of 

samples with no c-KIT expression had a significantly higher frequency of methylated 

cases than samples with c-KIT expression (p-value = 0.02) (Figure 4.2 B). Moreover if 

we correlate the frequency of methylation with the c-kit expression level, which was 
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previously divided in 4 classes, there is a trend of correlation between c-kit expression 

and methylation status, showing a decrease of methylation with an increase of c-KIT 

gene express (Figure 4.2 A). This correlation could become significant if we increment 

the number of samples for each class and if we have approximately the same number of 

observations, in particular in class 3 where there were only seven samples. 

The results of methylation analysis could be a really important cause of the knockdown 

of c-KIT gene in thyroid carcinogenesis since it is known in literature that the silencing 

of thyroid-specific genes often occurs with progression and dedifferentiation of thyroid 

cancer [104] 

In this sense, methylation, and hence silencing, of these genes might be a driving force 

for thyroid cancer pathogenesis and progression, albeit through an undefined 

mechanism [105]. Regardless of its biological mechanism and relevance in thyroid 

tumorigenesis, methylation-mediated silencing of thyroid-specific genes is clearly 

clinically relevant because it is a cause of the loss of radioiodine avidity and hence 

radioiodine treatment failure and consequent progression of thyroid cancer [106]. An 

important question remains unanswered as to whether silencing of these thyroid specific 

genes, which are not classical tumor suppressor genes, plays some primary role in 

driving thyroid tumorigenesis or is simply a secondary event of aberrant activation of 

other signaling pathways, such as the BRAF/ MEK/MAPK pathway in PTC [68]. 

 

Several miRNAs have been predicted to target KIT, including those over-expressed in 

PTC, in fact it was demonstrated that in PTC tissues, in which miR-146b, miR-221, and 

miR-222 were strongly over-expressed, there was a down-regulation of KIT transcript 

and protein [91]; therefore, in order to investigate the possible cause of the c-KIT down-

expression, we have also conducted expression study of miRNA (146b and 222) in our 

FNA samples.  

This study showed that the expressions of miRNA146b, miRNA222 by qPCR were 

significantly up-regulated in the group of samples with no c-kit expression compared 

with the group of samples with c-kit expression (p-value = 0.01693; p-value = 0.0008 

respectively) (Figure 4.4 A, B).  

C-KIT and miRNAs expressions were inversely correlated, as demonstrated by the 

higher expression of the miRNA 146b in c-kit class I with no expression of the gene 

than class IV with the highest expression of the gene (p-value <0.05) (Figure 4.5). This 

observation indicates that these miRNAs, and mostly miRNA146b, could be involved in 
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the regulation of c-KIT in thyroid cancer and that a novel therapeutic target for the 

treatment of thyroid cancer could be the regulation of this miRNAs for c-KIT negative 

in thyroid cancer 

 

In order to demonstrate the hypothetical role of c-KIT in differentiation during thyroid 

malignant transformation, we wanted to investigate if there are genetic markers, usually 

expressed in the differentiated thyrocyte, which could be involved as downstream 

targets of the signal transduction pathways of c-KIT. In order to do this, we correlated 

the expression level of c-KIT with some known differentiation markers of the thyroid 

[107]. By expression analysis for PAX8 gene, we found that c-KIT gene expression 

resulted to be directly correlated to PAX8 gene expression significantly (r
2
 =0.1319) 

(p=0.003) (Figure 4.6 C). Moreover we correlated the PAX8 gene expression with  

c-KI  classes’ distri ution, and  e o tained t at PAX8 gene ex ression values  ere 

significantly higher in class 2 and 3 compared to class 1 (p<0.05) (Figure 4.6 B). The 

significant correlation of c-KIT expression with PAX8 expression supports the 

hypothesis of c-kit involvement in the differentiation pathway during thyroid 

cancerogenesis, nevertheless their reciprocal placement in the pathway architecture is 

not clearly known. 

PAX8 is expressed in various thyroid cancers but the pattern of expression is somewhat 

controversial [108]; one study showed that the nuclear PAX8 staining is correlated with 

the thyroid differentiation phenotype, while others demonstrated that PAX8 is a useful 

marker for the diagnosis of anaplastic carcinomas. More studies are required to 

determine the expression pattern and the role of PAX8 in thyroid cancers [107]. In light 

of what, we also valuated the relationship of PAX8 expression with our malignant and 

benign FNA samples, and we found that the expression level was significantly higher in 

the benign group compared to the malignant group (p=0.03) (Figure 4.5 A), so the same 

difference that we found previously for c-KIT expression. Those results indicate as  

c-KIT and PAX8 genes seem to follow the same direction during the epithelium thyroid 

transformation, and once again c-KIT could be involved in the differentiation pathway, 

but further functional studies are needed to understand the underlying mechanisms. 

We also conducted the same analysis described above with another differentiation 

thyrocyte marker: TTF1 [109]. The correlation between TTF1 and c-KIT seems to be 

inverse and it  asn’t statistically significant. Moreover we found (not statistically 

significant) an over-expression of TTF1 in malignant samples than benign, this is 
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agreement with it is known in literature [93]. TTF-1 is one of the most commonly used 

markers in diagnostic pathology [110]. It has shown a very high sensitivity and 

specificity in the diagnosis of tumors of pulmonary and thyroid lineage.  

Diffuse and strong TTF-1 nuclear staining was seen in all papillary carcinomas, 

follicular adenomas, follicular carcinoma, and poorly differentiated carcinomas, 

whereas its expression in medullary carcinomas was variable and TTF-1 was generally 

negative in anaplastic carcinomas [108]. 

Many candidate markers of thyroid cancer have been identified in microarray studies 

that require analytic and clinical validation in a cohort large enough to permit evaluation 

of the clinical utility of these markers. Another aim of my study is to identify new 

molecular markers to improve cytological diagnostics accuracy. By RT-PCR of NIS 

mRNA we found that the expression level was higher in benign thyroid tumors in 

comparison to the malignant ones, even though it didn't show any statistical 

significance; it is difficult to compare our data to the literature because studies 

addressing NIS gene expression are sparse. Some studies have demonstrated a decrease 

or loss on NIS expression in thyroid cancer cells suggesting a possible role of this gene 

in the pathway of thyroid cell transformation [94], while either increased or decreased 

NIS expression in benign lesions has been reported [95]. Based on our results, the NIS 

expression is associated to the biological behavior of thyroid nodules because the gene 

is more expressed in benign lesions, this confirms what we expected since the NIS gene 

codes for a functional symporter in normal thyrocytes. 

 

Regarding TC1, several studies reported a higher expression of this protein in thyroid 

malignancies compared to benign nodules [96, 111]. Concordant to the literature, we 

observed that TC1 was significantly over-expressed in malignant lesions compared to 

the benign ones (p-value 0.04) (Figure 4.10). The exact function of the protein coded by 

this gene is still unknown. 

 

miRNA expression profiles resulted in being different not only between tumors and 

healthy tissues but also between different histopathological lesions of the same tissue, 

between tumors at different stages of malignancy, and between primary tumors and 

metastases. Different studies were conducted to compare global miRNA expression in 

human PTCs versus unaffected thyroid tissue [65]. 

Therefore, we investigated in our study the diagnostic ability of a two miRNAs 
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(miRNA222 and miRNA146b) in the discrimination of malignancy and benignity in our 

FNA samples. 

We found that miRNA146b was significantly over-expressed in malignant group 

compared to the benign group according to the literature (p-value = 0.0005) (Figure 

4.11 A). Moreover, a ROC analysis was performed to measure the specificity and 

sensitivity of the diagnostic performance of miR-146b showing its good efficacy in 

predicting the malignant and benign events with 100% of specificity and 87.8% of 

sensitivity (AUC = 0.9 C.I 95% 0.8 -0.9; p < 0.0001), respectively (Figure 4.11 B). 

Regarding miRNA222, its expression was higher in the malignant group compared to 

the benign group, but there was no significance, while miRNA 146b is more accurate at 

differentiating malignant from benign thyroid lesions on FNA, and it suggests that FNA 

miRNA 146b analysis could be a useful adjunct in the management of patients with 

thyroid nodules. 

 

 

Among the purposes of the present study there is the search for a diagnostically accurate 

preoperative assay able to help the discrimination of the benign from malignant thyroid 

neoplasms. Currently, the diagnosis of thyroid nodules relies primarily on cytology. For 

the majority of patients with PTC, FNA-based cytology can make a diagnosis with high 

accuracy. However, there is a significant proportion of neoplasm in which the FNA-

based preoperative cytological diagnosis fails. 

 

Computation model like Discriminant Analysis and Bayesian Neural Networks (BNN) 

have been used as a supplement or alternative to standard statistical techniques [112]. 

Bayesian classification has been applied across the spectrum of medicine, from 

optimization of pharmacotherapy dosing [113,114], predicting cancer screening [115] 

and diagnostic test results [116,117], to determining injury severity [118], assessing 

operative risk [119] and predicting surgical outcomes [120-123].  

The Bayesian Artificial Neural Network and Discriminant Analysis, made up of KIT, 

TC1, miRNA222, miRNA146b on data collected from FNA samples, showed a very 

strong predictive value (94.12 % and 92.16 % respectively) in discriminating malignant 

from benign patients. It is interesting to notice that Discriminant Analysis showed a 

correct classification of 100.00 % of the samples in the malignant group, and 95.00 % 

by BNN (Figure 4.12, 4.13). Based on the Discriminant Analysis results, the probability 
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of the prediction of diagnosis for almost all the samples resulted to range between 85% 

and 100%, thus, although the general prediction value is 88.23%, the predictive power 

to assess each sample individually can reach a value of 100%. Moreover no 

classification errors came out when the probability of diagnosis was higher than 85%; 

thus allowing us to use this model as a correct predictor of samples with a probability 

score >85% (p < 0.0001), and these data strengthen the importance of the 4-markers 

model as an adjunctive tool for the preoperative diagnosis of thyroid nodules.  

It’s im ortant to notice t at  e  ave  ut in t e models also miRNA222 t at  as not a 

significant marker in discrimination of malignant from benign samples, while its 

contribution in the discriminative power seems to be relevant. In fact, even though a 

variable is not significant, its combination with other variables may be significant 

The neural network and discriminant analysis was then validated on 11 unknown 

samples. The models determined the accurate diagnosis of 11 unknown samples tested, 

based on a comparison to the gold standard pathological diagnosis as determined by 

clinical pathologists (Table 4.3, 4.4). 

The samples correctly classified were diagnosed as indeterminate samples (SPTC) at the 

cytological level; 7 out of the 11 SPTC samples used in this analysis were BRAF 

mutated.  Therefore there were four patients left out that even after BRAF mutational 

analysis remained SPTC. The use of our model could have assigned also these 4 

patients to the malignant group making the diagnosis of malignancy more certain for the 

surgeon with a probability of 0.9065, 0.8631, 0,7890, 0.9585 by Discriminant analysis 

and 0.999, 0.824, 0.8, 1 by Neural network. We had a 36.36% improvement of the 

diagnostic accuracy. It is important to point out that SPTC lesions are often very 

difficult to diagnose and in this study we developed a molecular approach that is able to 

correctly classify as certain malignant 100% (11/11) of SPTC lesions, so this model 

could be very useful to help the diagnosis in the preoperative setting of indeterminate 

lesions such as SPTC. Because our markers panel is 100% sensitive for malignant 

pathology of indeterminate FNA lesions, it would be reasonable to recommend a total 

thyroidectomy if malignancy is predicted. 

 

In order to visualize in a 3-dimensional space the discriminative power of all the four 

markers, we applied the Principal Component Analysis to the benign and malignant 

samples. We obtained an overall separation among them according to the expression of 

the 4 markers in the study, this suggests that the four markers can together discriminate 
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between benign and malignant status (Figure 4.14). 

 

Using the dataset of the computational model and the PCA analysis, we took singularly 

the expression values of each single gene (KIT, TC-1, miRNA222, and miRNA146b), 

in comparison between malignant and benign group, and we showed the results into 

boxplots (Figure 4.15). We obtained the same results reported in the previous sections, 

namely the marker significantly over-expressed in benign samples was c-kit, while 

malignant samples were characterized by an over-expression of both miRNAs (p > 0.05 

as for miRNA 222) and TC1.  

 

We also performed the receiver operating characteristic (ROC) curves analysis in order 

to optimize the model for negative and positive predictive value in our thyroid cohort. 

The ROC curve of c-KIT and miRNA146b had a high diagnostic accuracy 

FNAsamples, therefore they alone and in combination, can be used to distinguish 

between malignants and benigns. On the other hand the ROC curve of TC1 had a high 

specificity (92.9), this means that when tc1 is over-expressed in our samples it has a 

high probability to identify correctly the samples as malignant, so a low risk of false 

positive, but it had a low sensitivity (38.5) so when the value of TC1 is low there is a 

high probability to have a false benign (Table 4.5). 

We have also performed a multiple variable analysis among all the markers analyzed, 

independently on the diagnostic classification, in order to evaluate a possible functional 

correlation among the markers. We observed a significant correlation of c-KIT with 

miRNA146b (p<0.0001), this is in accord with the previously section. 

 

In conclusion, in this study we were able to develop a statistical model that accurately 

differentiates malignant from benign indeterminate lesions on thyroid FNAs using a 

panel of 2 miRNAs and 2 genes (miRNA146b, miRNA222, c-KIT, TC1); We want to 

propose in this study the using of BRAF molecular analysis (after uncertain cytological 

diagnosis) to assess the malignancy of thyroid nodules in the first place, followed by the 

use of the 4-markers model (miRNA222, miRNA146b, TC1 and c-KIT) to help the 

diagnosis of the nodules that otherwise would remain suspicious. 
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Finally we have conducted molecular stratification of the malignant population 

according to BRAF status through different approaches. 

As reported in literature [23, 25], we find a dysregulation of NIS in the samples carrying 

the mutation V600E. This dysregulation is showed as a down-regulation of NIS 

expression in the BRAFV600E samples compared with the BRAF WT ones; even if it 

was not significant, maybe due to a small number of the samples analyzed. 

By gene expression analysis we found that the expression of TC1 was significantly 

higher in the malignant BRAF WT as compared to thyroid cancers bearing BRAF 

V600E mutation (p-value= 0.01). This result suggests a potential influence of BRAF 

status in modulating TC1 expression. Otherwise we can suggest two kinds of malignant 

transformations driven by the two genes: when the malignant transformation is driven 

by mutated BRAF, TC1 expression seems to not influence the transformation; when 

BRAF is WT instead, TC1 has a major role in the neoplastic transformation and its 

expression becomes significative.  

 

Moreover, as shown in the results of the comparison between miRNAs expression and 

BRAF status in malignant samples, miRNA146b and miRNA222 were over-expressed 

when BRAF was mutated (V600E) (p-value = 0.036; p-value = 0.037, respectively): this 

let us to better characterized and stratify the group of malignant samples and confirms, 

as for TC1, that miRNA 146b and miRNA 222 expressions may be involved in the 

collateral molecular alterations due to the expression of the mutated oncogene BRAF. 

This is an important finding; in fact since BRAF V600E has been shown to be 

associated with higher tumor aggressiveness [124-126], the high expression of this 

miRNAs markers emerges as sign of more malignant tumor behaviour and should be 

prospectively evaluated. 

The mechanisms underlying TC1 down expression and miRNA 146b-222 over 

expressions in BRAF V600E malignant samples are currently unknown and further 

studies are warranted to exploit this phenomenon. Discriminant analysis and artificial 

neural network were performed using the 4 gene model to show how it exists a clear 

differential genetic background related to presence or absence of the BRAF V600E 

mutation. As a matter of fact the model was able to classify BRAF mutational with a 

predictive power of about 75%. In particular 94.74% of the samples in the BRAF 

V600E group were correctly classified by Discriminant Analysis and 68.42% by BNN. 

Instead 57.89% of the samples in BRAF WT group were correctly classified by 
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Discriminant Analysis and 78.95% by BNN. Therefore we can classified correctly more 

samples in the BRAF V600E group by Discriminant analysis, and more samples in the 

BRAF WT group by BNN. 

 

 

Moreover also the Principal Component Analysis showed an overall separation among 

the two groups, confirming that the markers have a good discriminant power in 

classifying V600B malignants versus WT malignants (Figure 4.23) 

 

ROC curves analysis discriminated the malignant BRAF V600E from malignant WT 

samples in our dataset of FNA samples. The AUC for each significant marker was for 

TC1 0.684, c-KIT 0.633, miRNA146b 0.729 all with significant p-value (p= 0.0260; 

0.0491; 0.0005, respectively) and for miRNA222 0.558 (table 4.6). Observing the 

sensitivity and specificity of the curve for each gene, TC1 and c-KIT have an excellent 

capacity to correctly identify the sample as WT with a low risk of false negative. On the 

other hand miRNA 146b and miRNA 222 have a high capacity to correctly identify the 

sample as BRAF mutated with a low risk of false positives. 

 

Finally, we have investigated possible news biomarkers in thyroid cancer by Human 

Tyrosine Kinases RT² Profiler PCR Array. 

Quantitative PCR array technology was conduced to examine the transcript levels of 84 

Tyrosine genes, on 8 benign samples and 12 malignant samples, and the processing of 

the data was obtained by means of several kinds of comparisons between sample: 

malignant vs benign, V600E malignant vs benign, malignant WT vs benign, V600E 

malignant vs malignant WT.  

Based on the conducted comparisons, it was shown that most of the differences in the 

expressions profile were driven by the group of malignant BRAF V600E, in fact BRAF 

V600E had 22 significantly alterated genes in comparison with benigns, while the 

malignant WT group had only 7 compared to benigns, and 4 of them are in common 

with V600E group suggesting a driving influence on the thyroid malignant 

transformation process (Table 4.8, Figure 4.27) 

As shown in the Venn diagram analysis, the 4 genes (ALK, CSK, HCK and MSTR1) in 

common to all comparisons except for BRAF V600E vs BRAF WT, can be defined as 

the thyroid specific malignant genes (Figure 4.29). These genes seemed to be correlated 
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to thyroid neoplastic processes. We found that many of the analyzed gene, that were 

differentially expressed in the conducted comparisons, have or may have a role in 

thyroid cancer giving additional value to our study. One of the genes that is always 

differentially expressed in our study is ALK (Anaplastic Lymphoma Receptor Tyrosin) 

that encodes a insulin receptor tyrosine kinase. It was recently reported the discovery 

of ALK activation, via point mutation, in thyroid cancer with high level of expression of 

endogenous ALK [127]. Furthermore, in one study conducted by Nikiforov was 

reported STRN-ALK rearrangement in dedifferentiated types of thyroid cancer [128]. 

HCK  (Hemopoietic cell kinase) encodes for a protein a protein-tyrosine kinase hat is 

predominantly expressed in hemopoietic cell types, and belongs to the Src family of 

tyrosine. The aberrant activation of Src family kinases (SFK) plays a critical role in 

tumorigenesis by driving a number of cellular events including proliferation, adhesion, 

survival, and invasion. Given its prevalent role in tumorigenesis, Src offers an attractive 

therapeutic target for the treatment of a wide variety of cancer. Recently studied 

characterized a tyrosine kinome profile in tumors relative to matched normal thyroid 

tissue, showing that tyrosine kinome profiling of thyroid tumors identified upregulation 

of Src activity in the majority of invasive thyroid cancers and functional experiments 

confirm that Src inhibition is effective in decreasing proliferation and invasion in human 

PTC cell lines [123]. Tyrosine-protein kinase CSK also known as C-Src kinase or C-

terminal Src kinase is an enzyme that in humans is encoded by the CSK gene.  

This enzyme phosphorylates tyrosine residues located in the C-terminal en of Src-family 

kinases (SFKs) including SRC, HCK, FYN, LCK, LYN and YES1, resulting in the 

suppression of their activities. MSTR1 Macrophage Stimulating 1 Receptor encodes a 

cell surface receptor for macrophage-stimulating protein (MSP) with tyrosine kinase 

activity. This receptor has been identified as an important mediator of KRAS oncogene 

addiction and is overexpressed in the majority of pancreatic cancers, Moreover the 

overexpression and/or activation of MSTR1 has been implicated in the progression and 

metastasis of diverse epithelial cancers, where it plays a causal role in tumor 

development by promoting growth, survival, and motility of tumor cells. Studied 

conducted of thyroid tissues by immunohistochemistry showed that MSTR1 was hardly 

detected in normal thyroid cells, moderately expressed in adenoma samples, but 

overexpressed in about half of papillary and follicular cancer specimens. Moreover, in 

cultured thyroid cancer cells, MSTR1 was highly expressed, with constitutive 

phosphorylation. Activation of MSTR1 increased cell growth and migration via the 
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http://en.wikipedia.org/wiki/Src-family_kinase
http://en.wikipedia.org/wiki/Src-family_kinase
http://en.wikipedia.org/wiki/Proto-oncogene_tyrosine-protein_kinase_Src
http://en.wikipedia.org/wiki/HCK
http://en.wikipedia.org/wiki/FYN
http://en.wikipedia.org/wiki/Lck
http://en.wikipedia.org/wiki/LYN
http://en.wikipedia.org/wiki/YES1


 96 

MAP kinase and AKT pathways. Silencing MSTR1expression significantly prevented 

cell growth and increased cell apoptotic death [124]. 

 

Amog genes that are significant different expressed in our study we can mention Eph-

A2 and Eph-A4. The Ephrin receptors (Ephs) are frequently overexpressed in a wide 

variety of human malignant tumors, being associated with tumor growth, invasion, 

metastasis and angiogenesis [131]. Recent studies showed Eph-A2 to be widely 

expressed in highly proliferating human tissues and overexpressed in several types of 

malignancy, such as melanoma, prostate, breast, ovarian, esophageal, liver, lung and 

gastrointestinal cancer [133-136]. Moreover was showed that Eph-A2 but not Eph-A4 

expression was enhanced in cases with malignant compared to those with benign 

thyroid lesions, and especially in papillary carcinomas compared to hyperplastic nodules 

[137]. Expression of mutant inactive Eph-A2 variants resulted in tumor mass reduction, 

whereas Eph-A2 upregulation was correlated with tumor stage and progression in 

several cancers [131]. 

 

IGFR1 receptor binds insulin-like growth factor with a high affinity and it plays a 

critical role in transformation events. IGFR1 is highly overexpressed in most malignant 

tissues where it functions as an anti-apoptotic agent by enhancing cell survival. In this 

study, showed that a blocking anti-insulin-like growth factor 1 receptor (IGF1R) 

monoclonal antibody (mAb) inhibited colony formation in correlation with IGF1R 

expression and decreased P-AKT, and a blocking anti-stem cell factor (SCF) mAb also 

inhibited colony formation of two cell lines expressing C-KIT and SCF, and decreased 

P-AKT. Moreover was showed that primary cells frequently co-expressed IGF1R/IGF1 

but not C-KIT/SCF, suggesting that in vivo autonomous growth could be possible via 

IGF1R. Despite their similar role in clonogenic growth and shared signaling pathway, 

IGF1R and C-KIT had opposite prognostic values, suggesting that they were surrogate 

markers. This study could suggest as the proliferation cells is conduct by insulin 

receptor in papillary thyroid and instead the c-KIT follows the path of differentiation 

[138]. 

 . 
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6. CONCLUSIONS 
  

The results of this research support the idea that c-KIT is driving a thyroid cell 

differentiation pathway which results altered in thyroid neoplasm transformation. 

However specific functional studies are still needed to clarify the molecular mechanisms 

underlying c-KIT differentiation. Different molecular events have been investigated and 

methylation and miRNA transcriptional activity have been identified as some of the 

possible causes of c-KIT down-regulation in thyroid cancer. 

In the same study a 4 gene model was build able to discriminate with high 

probability between benign and malignant FNAs. The model is proposed to be added to 

the routinely BRAF diagnostic test in order to improve FNA diagnostic accuracy 

solving the problems of the nodules that otherwise would remain suspicious. 

  To identify other possible genes involved in thyroid cancer 84 gene expression 

array were analysed. The results showed statistically significant differential expression 

of several tyrosine kinase genes, related and not related to c-KIT, between malignant 

and benign thyroid nodules. Many of the genes have been already involved in cancer 

and all need to be investigated further. Moreover the present study shows clearly how 

the presence of the BRAF V600E mutation is accompanied by a specific genetic 

scenario in which sets of genes specifically discriminate the mutational and wild-type 

status, supporting the hypothesis of a higher tumor aggressivity associated to the 

BRAFV600E mutation. 

 

 

7. FUTURE PERSPECTIVES: 
 

The transfection of pTarget-c-kit in K1 cells is ongoing and our future goal will be to 

perform functional studies such as proliferation, migration, and survival assays to better 

understand the involvement of c-KIT in thyroid malignant transformation. 

Furthermore, we also intend to perform functional studies on thyroid tumor cell lines, 

with the genes that we found dysregulated by gene expression analysis, such as TC1 and 

PAX8. In addiction we will further characterize, through functional studies, the genes 

(e.g. ALK, CSK, HCK, MSTR1) that seemed more interesting in the array analysis, 

validate their role in the malignant transformation pathway of the thyroid and evaluate 

the possibility to exploit them as a potential therapeutic target for thyroid cancer. 
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