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Abstract

Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) are

non-invasive techniques that provide fundamental information for

tissue characterization in normal and diseased myocardium. Indeed,

quantitative MRI gives insight into different pathophysiological con-

ditions of myocardial tissue, like inflammation, edema and fibrosis,

while MRS allows the quantification of crucial compounds involved

in myocardial energy metabolism, such as triglycerides (TGs) and

creatine (CR).

The purpose of this thesis is to address several methodological

challenges that have limited so far the application of these techniques

in clinical settings, such as the low signal-to-noise ratio (SNR), the

susceptibility to motion, the long scan times and the reproducibility

of quantitative parameters.

To achieve this purpose, the use of large coil arrays for SNR

enhancement in cardiac MRS was investigated and advanced mo-

tion compensation strategies were implemented to increase the re-

producibility of metabolite quantification. Moreover, in order to

assess the regional distribution of myocardial TGs and CR in short

scan times, a fast spectroscopic imaging technique was proposed and

1



Abstract

validated on healthy volunteers. Finally, a quantitative MRI method

was implemented on a 3.0 Tesla MRI system for mapping T1 relax-

ation times in the human heart.

The results achieved by the methods proposed in this thesis may

facilitate the use of cardiac MRI and MRS in clinical routine for an

accurate characterization of myocardial tissue.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) are

noninvasive techniques that provide complementary information for

myocardial tissue characterization. MRI takes advantage of the dif-

ferent magnetic properties of water protons (relaxation times, proton

density) for the generation of image contrast between tissues. On

the other hand, MRS allows the detection and the quantification

of other molecules, by exploiting the fact that protons of different

compounds resonate at different frequencies and thus they can be

discriminated in a MR spectrum.

In particular, proton MRS (1H-MRS) allows the noninvasive de-

tection in vivo of metabolites associated to cardiac diseases. Cardiac
1H-MRS studies [1,2] reported that a link between the accumulation

of myocardial triglycerides (TGs) and cardiac dysfunction exists,

and that a reduction of creatine (CR) can be observed in the failing

heart [3].

3
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However, several methodological challenges limited the repro-

ducibility and the application of cardiac MRS in clinical settings.

Firstly, MRS signals are inherently characterized by low signal-

to-noise ratios (SNRs) due to the low concentration of cardiac

metabolites, which is several orders of magnitude lower than those of

water protons. Also, a proper suppression of the water signal during

acquisition [4] and/or post-processing [5] is necessary for an accurate

quantification of the metabolite concentrations.

Secondly, cardiac and respiratory movements further reduce the

SNR and degrade the quality of the acquired spectra, thus limiting

the reproducibility of cardiac 1H-MRS experiments.

Furthermore, single-element receiver coils are traditionally used

in cardiac MRS studies [1, 6]. Since these coils are characterized by

a limited spatial coverage, the SNR of MRS signals can be affected

by imperfect coil positioning over the chest of the patients. Coil

repositioning has been reported in literature to reach sufficient SNR

levels [6]. A possible solution would be the use of multi-element

receiver coils, named coil arrays, which are routinely adopted in

cardiac MRI for their increased spatial coverage.

Another main issue of cardiac proton spectroscopy concerns spa-

tial information. Cardiac 1H-MRS studies reported in literature are

based on single-voxel (SV) spectroscopy techniques [2, 6, 7]. Using

these techniques, the signal is received from a relatively large single-

volume of interest (VOI), which is typically placed in the interven-

tricular septum to avoid the signal contamination from blood and

pericardial fat. Since SV techniques are unable to measure het-

erogeneous distributions of metabolite content across the VOI, only

4
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alterations with global effects on the heart can be studied. In order

to study alterations distributed locally rather than diffusely, multi-

voxel spectroscopic techniques should be adopted.

The most common multi-voxel spectroscopic technique is the

Chemical Shift Imaging (CSI), which is based on the phase encod-

ing concept used in MRI for spatial localization. Conventional CSI

is the optimal technique in terms of sensitivity per unit time [8],

but the extremely long acquisition times limited the application in

vivo. Although several approaches have been proposed to accelerate

CSI acquisitions, including k-space undersampling and volume pre-

localization methods [9], CSI experiments still require too long scan

times to obtain adequate spatial resolutions and field on views for

cardiac 1H-MRS.

A fast alternative to CSI is the Echo Planar Spectroscopic Imag-

ing (EPSI) technique, in which oscillating gradients during signal ac-

quisition encode simultaneously the spatial and the spectral dimen-

sion [10]. EPSI data acquisition is then much faster than CSI, since

one spatial dimension is encoded in a single-shot. However, EPSI

studies reported in literature are limited to the human brain [11] or

other non-moving organs [12].

Quantitative Magnetic Resonance Imaging (MRI) techniques can

provide complementary information to MRS in the field of myocar-

dial tissue characterization [13,14].

The purpose of quantitative MRI is the measurement of mag-

netic properties of tissues, such as the relaxation times. Longitudi-

nal relaxation time or spin-lattice relaxation time (T1) is the time

constant that rules the exponential recovery of longitudinal magne-

5
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tization equilibrium. Since T1 relaxation time depends on the chem-

ical and physical environments of water protons [15], T1 values vary

significantly among different tissues, but also among different phys-

iopathological conditions in the same tissue, like infarction, edema

and fibrosis.

Initial attempts to myocardial T1 quantification were limited to

region of interest (ROI) analysis [16], rather than a pixel-by-pixel T1

estimation, i.e. T1 mapping. The first successful implementation of

myocardial pixel-wise T1 mapping was based on the Modified Look-

Locker Inversion Recovery (MOLLI) method [17], which allowed the

acquisition of several images at different inversion times but in the

same cardiac phase and in a single breath-hold, and thus to obtain T1

maps of the heart. The MOLLI approach inspired the development

of several variants of the original method, based on either on inver-

sion recovery [18] or saturation recovery sequences [19]. However,

differences in T1 values obtained either from different protocols or

from different regions of the myocardium have not been well investi-

gated. Moreover, most of myocardial T1 mapping studies have been

performed with 1.5 Tesla MRI systems, since several disadvantages

at higher field strengths, like increased field inhomogeneities, longer

T1 and power deposition, make T1 mapping more challenging.

The PhD project is focused on the development of new methods

in Cardiac Magnetic Resonance Imaging and Spectroscopy for the

noninvasive myocardial tissue characterization in vivo.

The purpose of the first part of the thesis, described in Chapter

2, was twofold: 1) to explore the use of multi-element coils, com-

monly used in MRI, for the SNR enhancement of cardiac 1H-MRS

6
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signals; 2) to develop respiratory motion compensation strategies to

increase the reproducibility of cardiac metabolite quantification in

single-voxel 1H-MRS.

The objective of the second part of the thesis, described in Chap-

ter 3, was the implementation of a fast spectroscopic imaging tech-

nique, based on the EPSI sequence, able to provide regional distri-

bution of cardiac metabolites. This technique was tested on healthy

volunteers and quantification results were compared with those ob-

tained using single voxel spectroscopy.

The third part of thesis, described in Chapter 4, is focused on

the development of a myocardial T1 mapping technique based on

the MOLLI approach. Numerical simulations showed the influence

of pulse sequence parameters on T1 estimation and in vivo results

obtained with a 3.0 Tesla MRI system are presented.
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Chapter 2

Cardiac Proton

Spectroscopy using Large

Coil Arrays

The first part of the PhD work was focused on the use of coil arrays

for cardiac proton spectroscopy (1H MRS). The respiratory navi-

gator techniques was integrated into a single-voxel spectroscopy se-

quence for reducing respiratory motion effects. Different reconstruc-

tion techniques of (1H MRS) from coil arrays were compared, and

in-vivo results were obtained with 32- and 5-element coil arrays in

healthy volunteers.

The results of this work have been published in the following

article: K. Weiss, N. Martini, P. Boesiger, S. Kozerke. “Cardiac

proton spectroscopy using large coil arrays”, NMR Biomed. 2013

Mar; 26(3): 276-84 [20].

9
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2.1 Cardiac Magnetic Resonance Spec-

troscopy

Magnetic resonance spectroscopy (MRS) can provide fundamental

insights into the role of cardiac metabolism in normal and diseased

hearts [21, 22]. Localized proton MRS (1H-MRS) in particular has

been demonstrated to be a valuable technique for the noninvasive

measurement of human myocardial triglyceride (TG) and total cre-

atine (CR) content [1, 3, 6, 23]. Recent studies based on 1H-MRS

have highlighted correlations between lipid accumulation in the my-

ocardium and reduced cardiac function, and they have revealed the

role of steatosis in the pathogenesis of type 2 diabetes mellitus [1,2,7]

Assessment of total CR content, which reflects the sum of creatine

and its phosphorylated form phosphocreatine, has been reported and

depletion in the failing heart demonstrated [3, 23].

Several technical and practical issues have, however, limited the

widespread use of cardiac 1H MRS in clinical routine so far. Car-

diac and respiratory motions degrade the spectral quality because

of inhomogeneous B0 and B1 fields, outer voxel contamination and

phase changes as a result of motion of the spins during localization

gradients. Although electrocardiogram (ECG) triggering to end-

systole is commonly used to synchronize volume selection and data

acquisition with cardiac motion, several approaches have been pro-

posed to compensate for respiratory motion. Triggering based on

respiratory signals provided by air-pressure sensors has been shown

to improve the quality of cardiac spectra [24]. Breath-holding has

been used to assess myocardial TG content [25, 26]. However, re-

10
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2.1 Cardiac Magnetic Resonance Spectroscopy

stricted breath-hold durations inherently limit the number of signal

averages, and hence the sensitivity for the detection of myocardial

CR. An alternative method used to synchronize the acquisition to

end-respiration is based on navigator echoes to measure the position

of the diaphragm [27, 28]. Navigator gating has been found to be a

prerequisite for the reproducible assessment of myocardial TGs [6].

Other practical issues of cardiac MRS concern radiofrequency

(RF) coil selection and coil placement for signal reception. Tradi-

tionally, single-element surface coils are positioned on the chest wall

of the subject. However, the use of single-loop coils has drawbacks.

The limited spatial coverage requires careful positioning of the coil

as close as possible to the region of interest to maximize the signal-

to-noise ratio (SNR). Coil repositioning is necessary in some cases

to accurately place the coil center over the mitral valve level of the

heart [6]. At the same time, single channel receive coils continue to

be replaced by coil arrays on modern MR systems, providing larger

spatial coverage and permitting accelerated acquisition using paral-

lel imaging techniques. Coil arrays with 32 elements are becoming a

standard for highly accelerated cardiovascular imaging [29,30]. The

large spatial coverage provided by these coil arrays renders coil repo-

sitioning during examinations unnecessary. Accordingly, it would be

desirable to use large coil arrays for both imaging and spectroscopy

of the heart, and thereby facilitate the integration of cardiac 1H MRS

into clinical workflow.

11
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2.2 Multichannel Magnetic Resonance

Spectroscopy

The use of a set of receive coils, called phased array [31], is com-

monly adopted in MRI to increase spatial coverage and to accelerate

the acquisition through parallel imaging techniques [32]. As mag-

netic resonance spectroscopy is characterized by low sensitivity, the

use of phased arrays can be exploited to improve the signal-to-noise

ratio (SNR). To this end, individual coil signals have to be properly

combined taking into account coil sensitivity and noise to maximize

the resulting SNR.

2.2.1 Signal modelling

The MRS signal acquired by a phased array can be modelled in time

domain as follows:

xm(n) = sm expιϕm x̂(n) + εm(n) = sm expιϕm

K∑
k=1

ak expιθk exp(−dk+ι2πfk)n∆t +εm(n)

with n = 0, 1, . . . , N − 1 and k = 1, . . . , K

(2.1)

where N is the number of samples, M is the number of coils, K is

the number of metabolites, εm(n) is a complex Gaussian noise term.

Each metabolite is modelled with a complex damped sinusoid with

amplitude, phase, damping factor and resonance frequency denoted

by ak, θk, dk, and fk respectively.

The gain factor sm takes into account the amplitude variations

due to the different sensitivity of each m coil, while ϕm is the phase

12
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2.2 Multichannel Magnetic Resonance Spectroscopy

1 4

s1
s4

φ1

φ4

φ3

2 3

s2

s3

φ3

φ2

X

Figure 2.1: Model of the MRS signal acquired by a four-element

phased array coil.

shift dependent on the receiver position.

To introduce in the model the effect of noise coupling between the

receivers, correlated noise ε among coils is generated by mixing M

circular complex white noise sources, using a square M ×M matrix

with appropriate non-zero elements off the diagonal [33].

2.2.2 Coil combination

The optimization of the SNR in multichannel spectroscopy requires

the proper combination of the individual signals. The combined

signal optimized signal xc is given by the weighted summation of the

individual signals xi

13
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xc =
M∑
i=1

wixi =
M∑
i=1

|wi| expιϕi xi (2.2)

where wi are complex weighting factors with magnitude |wi| that

explains the gain of the i-th coil, and angle ϕi that reflects its phase

shift.

In the following, three different coil combination strategies for

multichannel cardiac 1H MR spectroscopy are presented.

SNR weighting

In the first approach the amplitude of the coil weights are propor-

tional to the SNR [34]. The SNR of every coil is calculated as the

ratio of the signal amplitude and the standard deviation (SD) of the

noise in the time domain. The phase and amplitude of the water-

unsuppressed signals were estimated from the first points of the FID

(Free Induction Decay); the SD of the background noise was esti-

mated from the last points of the FID when the signal had already

decayed.

The SNR and phase of every coil were used to estimate the com-

plex weighting factors wi. The coil signals were subsequently com-

bined according to Equation 2.2.

PCA combination

The second approach is based on principal component analysis (PCA)

of the coil signals [35,36]. PCA is used to reduce the dimensionality

of a problem by projection onto a subspace.

14
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2.2 Multichannel Magnetic Resonance Spectroscopy

In the case of coil combination for single-voxel spectroscopy, the

Hermitian matrix Q was calculated according to:

Q =
∑

tŜ(t)Ŝ(t)H (2.3)

where Ŝ(t) contains the data from all M coils for time point t of the

FID. PCA was used to perform a singular value decomposition of Q

such that:

Q = UFV H (2.4)

with F containing the sorted eigenvalues as described in ref. [37]

for coil array compression. The complex coil weights wi were ap-

proximated by the first column of U and the signals were combined

according to Equation 2.2.

Two different coil combination strategies based on the PCA ap-

proach were compared. PCA combination of water unsuppressed

reference scans (PCAw) and PCA combination of the mean signals

of the water suppressed reference scans (PCAs).

Image-based combination

In this approach, complex coil weights were estimated from complex

valued reference images that are usually acquired for the optimal of

the acquisition volume. Typically, reference images were localized

in short-axis (SA) and four-chamber view (4CH) to accurately place

the single-voxel volume in the inter-ventricular septum.

All pixels within the region of the SV (red box in Figure 2.2) were

averaged and normalized, leading directly to the complex coil weights

wi which were used for coil combination according to Equation 2.2.

15
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Figure 2.2: Single-voxel in short-axis (left) and four-chamber (right)

view images.

2.2.3 Numerical simulations

Numerical simulations were carried out to investigate the noise de-

pendence of the PCAs, PCAw and SNRw coil combination methods.

Water unsuppressed and water suppressed spectra including three

lipid resonances with chemical shifts of 0.9, 1.3 and 2.1 ppm, the

CR resonance at 3.01 ppm and the resonance of TMA at 3.2 ppm

were simulated using parameters obtained from an in vivo scan. To

simulate the 32-channel array, the simulated FIDs were split into 32

channels using complex coil weighting factors wi estimated from an

in vivo scan using the SNRw approach. Random noise was added

to the individual coil signals to provide SNR values of the main TG

peak at 1.3 ppm of 3, 4, 5, 6, 8, 13, 23, 38 and 50 in the coil-

combined water suppressed signals and associated SNR values of

100, 150, 200, 250, 300, 500, 900, 1500 and 2000 of the water peak

in the coil-combined water-unsuppressed signals. To optimize the

PCAs coil combination strategy, the Hermitian matrix Q in Equa-

16
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2.3 Respiratory motion compensation

tion 2.3 was calculated from a filtered subset of the FIDs which were

filtered using a matched filter and cropped to an acquisition time of

TFID = 2 T ∗
2 according to ref. [38], where T ∗

2 is the exponential decay

time estimated from the FID of the coil with the highest signal.

Complex coil weighting factors wi were estimated using the PCAs,

PCAw and SNRw approaches and the signals were subsequently com-

bined according to Equation 2.2. As a reference standard, the sim-

ulated signals were additionally combined using the known correct

complex coil weights wi used for simulating the signals of the indi-

vidual coils. All simulations were repeated 100 times.

2.3 Respiratory motion compensation

ECG triggering, i.e. triggering the acquisition in a fixed phase of

cardiac cycle using the ECG signal, effectively removes the effects

of cardiac motion. However, with breathing the heart is subject

to substantial displacement, especially in the superior-inferior (SI)

direction.

Respiratory motion causes several negative effects on the reliabil-

ity of cardiac 1H MR spectroscopy. Firstly, the acquisition volume

can be contaminated by the blood pool, yielding inaccurate quan-

tification of myocardial metabolites. Secondly, the displacement of

the acquisition volume often impairs the shimming procedure, lead-

ing to spectral line broadening. Moreover, phase differences between

individual scans increases with motion, thus degrading the overall

SNR.

In this study respiratory motion compensation was performed

17
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using two complementary techniques. During acquisition, the res-

piratory navigator was used to collect 1H-MRS data in the same

phase of the breathing cycle. In post-processing, constructive aver-

aging was used to compensate residual respiratory motion.

2.3.1 Respiratory Navigator

Respiratory navigator (RNAV) collects data of a circular column

of spins in the superiorinferior (SI) direction through the interface

between the liver and the lung. The position of the diaphragm along

the SI direction is quantified in real-time. During the calibration

phase a number of RNAVs are sequentially acquired to estimate the

excursion of the diaphragm in the breathing cycle, as shown in Figure

2.3 (a).

Lung

Acceptance
window

Liver

RNAV PRESS sequenceCalibration Data acquisition

(a) (b)

Figure 2.3: (a) Position of the pencil beam navigator (adapted from

[6]). (b) Respiratory navigator pulse sequence.

For data acquisition, there are two main RNAV strategies: trig-

gering and gating. With triggering the position of the diaphragm is

18
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2.3 Respiratory motion compensation

continuously monitored with RNAVs until it reaches the expiration

level and then the acquisition starts. In gating, the edges in mm of

the expiration phase are estimated during the calibration phase, thus

defining the acceptance window of Figure 2.3 (a). Then, the RNAV

is performed just before each acquisition and data are accepted or

discarded whether the RNAV is within or outside the acceptance

window respectively.

Respiratory navigator was integrated in point-resolved spectroscopy

(PRESS) sequence for single-voxel 1H-MR spectroscopy. 2D pencil

beam excitation was obtained using a spiral k-space trajectory as

shown in Figure 2.3 (b). The RNAV was also inserted into the

preparation phases commonly used in spectroscopy as a part of the

prescan: F0 determination, shimming and automatic water suppres-

sion optimization (AWSO). Pulse sequence development was per-

formed using the Pulse Programming Environment for the Philips

Achieva MRI scanner (PARADISE version 2.6.3). Figure 2.4 shows

the modified user interface of the MRI system, where RNAV pa-

rameters were enable in the PRESS sequence and in its preparation

phases (F0 determination, shimming and AWSO).

2.3.2 Constructive Averaging

A common method to increase the SNR in magnetic resonance spec-

troscopy experiments is the averaging of N acquisitions which, in

case of uncorrelated noise, leads to a theoretical
√
N -fold SNR gain.

However, motion in the presence of field gradients (used for PRESS

localization) changes the phase of the echo signal, resulting in de-

structive interference when consecutive signals are averaged [39].
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Figure 2.4: MRI system User interface with the integration of the

respiratory navigator in the PRESS sequence.

The SNR loss is proportional to the phase dispersion of the signal

due to motion.

It has been shown [39] that in case of uniform distribution of the

phase over the interval [Φ1,Φ2], the SNR loss proportional to the

standard deviation SD of the phase variation:

SNRloss = sinc (Φp/π) = sinc
(
σφ
√

3/π
)

(2.5)

where Φp = (Φ1 − Φ2) /2 is half of the range of the phase variation

and σφ is the SD of the phase variation.

The constructive averaging method is based on the zero-order

phase correction of each individual spectrum before averaging. The

phase correction of the entire spectrum is performed after the esti-

mation the phase of a reference peak, i.e. a peak in the spectrum

with sufficient SNR. Theoretically, if the phase of the reference peak

is correctly estimated, the SNR gain after constructive averaging is

given by the reciprocal of 2.5.
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2.3 Respiratory motion compensation

In this work, a constructive averaging procedure was implemented

as final step of the workflow of the reconstruction of multichannel

cardiac 1H-MRS signals. The chosen reference peak was the wa-

ter peak in water-unsuppressed spectra and the triglyceride peak,

located at 1.3 ppm, in water-suppressed spectra. To get a more re-

liable estimation of the phase and to avoid false artifacts peaks, the

phase was computed by averaging M =
√

(N) samples around the

triglyceride peak [39], where N is the total number of acquisition.

Figure 2.5 shows an example of constructive averaging applied

to N = 128 free-breathing cardiac 1H-MRS acquisitions. The large

phase variation among individual spectral is corrected using the

triglyceride peak as reference, providing an averaged spectrum with

a significant SNR improvement, where even the creatine peak is well

detectable as shown in fig. 2.5 c.
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Figure 2.5: The large phase variation among individual spectral

shown in a) is corrected in b) using the triglyceride peak as refer-

ence. Comparison between raw averaging and constructive averaging

is shown in c).
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2.4 Results

2.4.1 Experimental protocol

In vivo experiments

A short-TE (33 ms) navigator-gated point-resolved spectroscopy se-

quence (PRESS) [40] was used for single-voxel (SV) localization in

the interventricular septum to avoid epicardial fat contamination.

Pencil-beam navigator echoes were implemented for respiratory mo-

tion compensation [28]. Prior to data acquisition, iterative shimming

was performed during a breath-hold using a voxel slightly larger

than the SV. Navigator triggering was employed for water suppres-

sion optimization. The PRESS sequence was ECG triggered to the

end-systolic phase, the minimum TR was set to 2000 ms and voxel di-

mensions were 10mm×20mm×40mm, resulting in an 8-mL volume.

Water suppression was implemented using two frequency-selective

RF pulses, each followed by a gradient spoiler; 1024 complex data

points were collected with a spectral width of 2000Hz.

In vivo experiments were performed using a 1.5-T Philips Achieva

system (Philips Healthcare, Best, the Netherlands) on a total of 15

volunteers who gave their written informed consent before participat-

ing in the study. Cine images in four-chamber (4CH) and short-axis

(SA) views were acquired to accurately place the SV volume in the

septum and to determine the trigger delay of the end-systolic phase.

A balanced steadystate free precession sequence was used with the

following parameters: TR = 3 ms; TE = 1.5 ms; flip angle, 60◦ spa-

tial resolution, 2mm×2mm; slice thickness, 8 mm; 40 heart phases.

Data were collected during free breathing using navigator gating in
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2.4 Results

end-expiration to plan the SV volume.

Two different protocols were used for the 1H MRS acquisitions.

For the comparison of the 5- and 32-element cardiac coil arrays, ex-

periments were performed on 11 volunteers (seven men, four women;

mean age ± standard deviation (SD), 33±11 years; range, 20-54

years; mean body mass index±SD, 23±3kg/m2; range, 17-27 kg/m2).

In every acquisition, eight water-unsuppressed scans and 128 water-

suppressed scans were acquired, resulting in an overall scan time

of 11 min 20 s with a gating efficiency of about 40%. Both the 5-

and 32-element cardiac coil arrays were used consecutively for signal

reception in the same session, changing the order of both coils for

every other volunteer.

To test reproducibility for each coil array, experiments were per-

formed on four volunteers (two men, two women; mean age SD,

30±12 years; range, 21-47 years; mean body mass index SD, 24±2

kg/m2; range, 21-25 kg/m2). In every acquisition, eight water un-

suppressed scans and 64 water-suppressed scans were acquired, re-

sulting in an overall scan time of 6 min with a gating efficiency of

about 40%. The volunteers were taken out of the scanner and were

repositioned in between two subsequent scans using either the 5- or

32-element cardiac coil array for signal reception. The measurement

was repeated using the other coil array for signal reception on the

same volunteer in a second session. The time between the two ses-

sions was approximately 1 week. Each session, including subject

preparation, acquisition of MRI cine images and acquisition of MRS

data, took approximately 1 h in total.

23



Cardiac Proton Spectroscopy using Large Coil Arrays

MRS data processing

For each dataset, offline reconstruction of multichannel MRS data

was performed using Matlab (The Mathworks, Natick, MA, USA).

Data reconstruction steps are listed in Fig. 2.6. Noise covariance

matrices were estimated from a separate noise scan and were used

to decorrelate the coil channels before coil combination. This step

has been shown to be a prerequisite for the optimal combination of

spectra from receive coil arrays at low SNRs [33,36].

DC correction

Noise decorrelation

Estimation of complex coil weights

Coil combination

Raw water signals
Raw water-suppressed

signals

(b)

Coil combination

Phase correction
(water peak)

Phase correction
(TG peak)

Constructive averaging

Water signals Water-suppressed
signals

(a) (c)

Figure 2.6: (a) Overview of the reconstruction steps of multichannel

single-voxel data. (b) Noise correlation matrix of the 32-element coil

signals before and after noise decorrelation. (c) Coil element weights

for the 32-element and 5-element coil arrays are given as a function

of the coil element number.

For subsequent coil combination, four strategies to estimate com-

plex coil weights wi were compared (see section 2.2.2): SNR weight-
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2.4 Results

ing (SNRw), PCA combination of water unsuppressed reference scans

(PCAw), PCA combination of the mean signals of the water sup-

pressed reference scans (PCAs) and image-based combination from

from cine images in SA and 4CH orientations.

Data analysis

Water-unsuppressed and water-suppressed spectra were fitted in the

time domain using the AMARES function of the Java-based MR

user interface software (jMRUI version 3.0) [41]. The full width at

half-maximum (FWHM) of the water peak in water unsuppressed

spectra was calculated. Three lipid resonances with chemical shifts

of 0.9, 1.3 and 2.1 ppm, the CR resonance at 3.01 ppm and the

resonance of the trimethylammonium (TMA) compound at 3.2 ppm

were fitted in water-suppressed spectra. The sum of the amplitudes

of the TG resonances at 0.9 and 1.3 ppm and the resonance of CR

were divided by the amplitude of the water peak and multiplied by

100 to yield the percentage of myocardial TG and CR content [6].

Correction for longitudinal and transverse relaxation was applied

using T1 = 1100 ms and T2 = 40 ms for myocardial water [15],

T1 = 280 ms and T2 = 86 ms for TG estimated in skeletal muscle

[42–44], and T1 = 1500 ms and T2 = 135 ms for myocardial CR

[23,42].

The SNR of the signals after coil combination was calculated

from time domain amplitudes of the fitted water and main TG sig-

nals at 1.3 ppm and the SD of the last 128 points of the FID. To

test differences between the individual measurements obtained with

the 5- and 32-element coil arrays and the different coil combination

25



Cardiac Proton Spectroscopy using Large Coil Arrays

strategies, a two-tailed paired t-test was used. For comparison of

the quantification results of TG content using the 5- and 32-channel

coil arrays, intraclass correlation coefficients were calculated using a

mixed effect analysis of variance. A level of p<0.05 was considered

to be statistically significant.

2.4.2 Simulation results

Figure 2.7 shows the results of the numerical simulations. The sig-

nals were reconstructed with the PCAs, PCAw and SNRw combina-

tion strategies and, after fitting in time domain, SNR values were

calculated. SNR values in Fig. 2.7 are plotted against the reference

SNR values for coil combination using the known weights wi.

(a) (b)

Figure 2.7: (a) Estimated SNR after coil combination using PCAs

employing a filtered subset and all points of the FIDs to estimate

the complex coil weights wi. (b) Comparison of the PCAs, PCAw

and SNRw combination approaches.

For low SNR signals (SNR<10), the results of the numerical sim-
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ulations revealed significant differences in the SNR after coil combi-

nation using the PCAs approach. However, no significant differences

were found when only filtered subsets of the FIDs were used to cal-

culate the complex coil weights wi employing the PCAs approach.

Differences in the resulting SNR when the full FIDs or filtered sub-

sets of the FIDs were used are shown in Figure 2.7a. However, no

significant differences were found for high SNR values (SNR>10).

Figure 2.7b compares the SNR of the three different coil combina-

tion strategies (PCAs, PCAw, SNRw) relative to the SNR of the

coil combination using known complex coil weights. No significant

differences were found between the combination strategies.

2.4.3 In vivo results

Figure 2.8 shows representative spectra acquired with both coil ar-

rays in three different volunteers.

Spectra obtained with the 32- and 5-channel coil arrays were

found to agree well. In all spectra, the TG resonance at 1.3 ppm,

the CR resonance at 3.01ppm and the resonance of TMA at 3.2 ppm

were clearly visible. Spectral quality and sensitivity were found to

be comparable for both coils.

In vivo spectra obtained with the 32- and 5-channel arrays for

the four coil combination strategies are shown in Fig. 2.9. In all

spectra, the resonances of TG, CR and TMA are well defined. Spec-

tral quality and sensitivity appear to be similar in the spectra of the

investigated coil combination strategies.

A quantitative estimation of the resulting SNRs using the PCAw,

PCAs and SNRw approaches for coil combination and the two coil
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Figure 2.8: Position of the point-resolved spectroscopy (PRESS)

voxel (inner box) and the shimming volume (outer box) in short-

axis view (a) and four chamber orientation (b). (c-e) Spectra from

three different volunteers acquired with the 32- and 5-channel coil

arrays showing the resonances of myocardial trimethylammonium

(TMA) compound, total creatine (CR) and triglycerides (TG).
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2.4 Results

Figure 2.9: Spectra of one healthy volunteer. The signals of the

individual coil elements were combined using SNRw, PCAw, PCAs

and the image-based approach.
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Table 2.1: Comparison of signal-to-noise ratio (SNR) performance of

the different coil combination strategies using 5- and 32- channel coil

array data. SNR was determined using the water and triglyceride

(TG) peaks. For the PCAs approach, only the SNR of the TG peak

was estimated, as no water reference is available for this method.

All values are reported as the mean ± standard deviation.

Reference Coil SNRw PCAw PCAs

Water 5 2181±1067 2180±1067 -

32 2698±1392 2700±1379

TG 5 47.3±33.5 47.2±33.5 47.4±33.7

32 53.8±33.9 54.0±33.9 54.1±33.8

arrays is given in Table 2.1. Differences between the mean values

of the SNR for the combination approaches were found to be small

for both coils, and not significantly different. SNR values obtained

with the 32-element coil were 24% higher than those obtained with

the 5-element coil array, on average (Table 2.1), although the differ-

ences did not reach statistical significance. SNR variations between

subjects were found to be large, as reflected by the large SDs (Table

2.1).

Figure 2.10 shows the comparison between the complex coil

weights wi estimated from water unsuppressed spectra using the

SNRw approach and from images in SA and 4CH view orientations.

For both coils, combination weights estimated from spectroscopic

(SNRw) and imaging data were found to be highly correlated.

Mean values of the FWHM of the water peak across all subjects
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Figure 2.10: Comparison of complex coil weighting factors estimated

using the signal-to-noise ratio (SNR) weighting (SNRw) approach

and the image-based approach for the 5-channel (a) and 32-channel

(b) coil arrays. Angles reflect phase differences with respect to the

coil element with maximum SNR. The line of identity is shown in

gray.

31



Cardiac Proton Spectroscopy using Large Coil Arrays

Table 2.2: Full width at half-maximum (FWHM) of the water line,

myocardial triglyceride (TG) and total creatine (CR) content esti-

mated from 5- and 32-coil array data.d. All values are reported as

the mean ± standard deviation.

Coil FWHM water TG (%) CR (%)

5 8.6±1.5 0.45±0.17 0.05±0.01

32 9.8±2.0 0.44±0.19 0.05±0.02

and estimated values for myocardial TG and CR content after cor-

rection for T1 and T2 relaxation are shown in Table 2.2.

A close agreement is seen between the mean values across sub-

jects obtained with the two coil arrays. In particular, the percentage

of TG content was very consistent between the coil arrays, showing

an intraclass correlation coefficient of 0.76 (p<0.003). No significant

differences in the CR and TG contents between the two coil arrays

were detected.

The test-retest reliability measurements on four healthy volun-

teers (n = 4) showed a higher SNR for the 32-channel array relative

to the 5-channel array in both measurements (Fig. 2.11a).

However, no significant differences were found for estimated my-

ocardial TG and CR content, either between two subsequent mea-

surements with the same coil array or between the two coil ar-

rays (Fig. 2.11b). Differences between coil combination approaches

(PCAs, PCAw, SNRw) were statistically nonsignificant.

For the 5-element coil, the two elements with the highest signal

provided 99% of the SNR (Fig. 2.12a). For the 32-element coil, 16
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(a) (b)

Figure 2.11: (a) Signal-to-noise ratio (SNR) of the main triglyceride

(TG) peak at 1.3 ppm of the 5- and 32-channel coil arrays in the re-

producibility experiments on four healthy volunteers. (b) Estimated

myocardial TG content of the repeated measurements with both coil

arrays given as a percentage of the water reference.

elements with the highest signals provided 99% of the SNR (Fig.

2.12b).

2.5 Discussion

The feasibility of 1H cardiac spectroscopy using large coil arrays has

been demonstrated on healthy volunteers. The performance of a 32-

channel coil array was assessed relative to a 5-channel array in the

same scanning session. In all volunteers and with both coil arrays,

spectral quality allowed for the estimation of CR and TG contents.

The TG content showed a high correlation for both coil arrays, and

no statistically significant variation of the estimated CR and TG

contents was found between data obtained with the different arrays.
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(a) (b)

Figure 2.12: Relative signal-to-noise ratio (SNR) depending on the

number of coils used for the reconstruction of the 5-channel (a) and

32-channel (b) coil array data. The data presented are the mean

over all 11 volunteers reconstructed using the water-unsuppressed

principal component analysis (PCAw) approach.

Furthermore, estimated values for myocardial CR and TG contents

are in good agreement with the values reported previously [6].

Four different strategies for coil combination were implemented

and compared in terms of SNR performance using numerical simu-

lations and in vivo measurements. The test-retest reliability of the

measurements was evaluated on four healthy volunteers using both

coil arrays and the presented coil combination strategies. No signifi-

cant differences were found. Hence, the reproducibility of navigator-

gated and cardiac-triggered SV spectroscopy reported previously [6]

was confirmed. All coil combination approaches showed compara-

ble SNR values and quality in the resulting spectra. However, the

numerical simulations revealed a dependence of the PCAs approach

on the number of points of the FIDs used to estimate the complex

coil weights for low SNR (SNR<10). When a large number of points
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2.5 Discussion

of low SNR FIDs are used, the PCA is dominated by noise and the

PCAs coil combination approach may fail, as shown in Fig. 2.7a. For

low SNR data, it is beneficial to restrict the PCA to a small number

of points at the beginning of the FIDs, where the signal is still high,

before it decays into the noise level. To address this issue, a matched

filter was applied and only a subset of the points of the FIDs [38] was

used to estimate the complex coil weights wi. Given these considera-

tions, the numerical simulations did not reveal significant differences

between the PCAs, PCAw and SNRw approaches (Fig. 2.7b). In

general, spectral quantification of TG becomes unreliable at SNRs

below 10 and CR resonances approach noise level.

The investigated coil combination strategies differ in the amount

of information required to estimate the complex coil weights wi.

Both the SNRw and PCAw approaches are based on water unsup-

pressed reference scans, which need to be acquired in addition. The

PCAs approach, estimating the complex coil weights wi from the

water-suppressed data, does not require additional data. Likewise,

image-based coil weight estimation utilizes cine images, and hence

makes use of survey images acquired in any case for SV planning

purposes. Both PCAs and the image-based coil combination allow a

shortening of the examination time if alternative quantification ap-

proaches are applied [45], and water reference data are not required

as internal reference. However, for the estimation of the complex

coil weights wi from images, the exact position of SV needs to be

known and translated into the orientation of the image itself, adding

some complexity to the reconstruction process when compared with

the PCAs approach. Furthermore, the images need to be exported

as complex data for every coil element, which is usually not part of
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standard imaging workflow.

On average, the mean SNR of the 32-element array was about

24% higher (Table 2.1) than that of the 5-element coil. However, no

statistically significant difference was found. This is related to the

fact that a high variation of SNR between volunteers was detected,

which led to large SDs of the mean SNR values. Parts of this large

variation may be explained by variations in the cardiac trigger delay

of the PRESS sequence as reported in [46].

In SV coil combination methods, only spectral correlations can

be utilized, as demonstrated with the PCAw and PCAs combination

strategies. In contrast, multivoxel techniques can take advantage of

the spatial variation of coil sensitivities for optimal signal combina-

tion. To this end, the presented coil combination approaches can be

applied on a voxel-by-voxel basis for spectroscopic imaging data.

Figure 2.13 shows the SNR after coil combination as a function

of the size of the area of interest of a spectroscopic imaging scan

using the 32-channel coil array. Three approaches were used for coil

combination; voxel-wise SNRw and PCAw of a spectroscopic imaging

scan [47] and, to simulate an SV, the PCAw coil combination after

summing over all voxels in the area of interest. Voxel-wise SNRw and

PCAw coil combinations showed similar performance. For a small

number of voxels, the difference between the voxel-wise coil combina-

tion and the combination after averaging over all voxels, mimicking

an SV, was found to be small. In the case of a single spatial point,

all methods will give the same results. However, losses caused by

spatial phase variations cannot be recovered in SV acquisitions and,

accordingly, extended single volumes may compromise the optimal

coil combination, as can be seen in Fig. 2.13. For typical SV sizes as
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Figure 2.13: Signal-to-noise ratio (SNR) of the 32-channel coil array

data as a function of the size of the area of interest in a spectroscopic

imaging experiment. The two-dimensional spectroscopic imaging

data were acquired using an echo planar spectroscopic imaging se-

quence with a 3mm × 3mm × 15mm resolution [47]. (a) Short-axis

view image illustrating the different sizes of the areas of interest.

(b) SNR for voxel-wise coil combination using the SNR weighting

(SNRw, voxel wise) and water-unsuppressed principal component

analysis (PCAw, voxel wise) approaches, and for coil combination

after summing over all pixels in the area of interest using the PCAw

approach, mimicking a single voxel (PCAw, single voxel). Typical

voxel sizes for 1H and 31P spectroscopy are indicated by the vertical

broken lines.
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used for 1H-MRS, losses caused by spatially varying coil phases are

minimal and may be neglected. However, for MRS of less sensitive

nuclei, such as phosphorus, larger voxels are used and losses caused

by spatial variations of coil phases may become more prominent.

Given the availability of large coil arrays in cardiovascular imag-

ing today, these results of this work will contribute towards the in-

tegration of cardiac spectroscopy into clinical protocols. In addition

to an advantage in SNR performance, large coil arrays also provide

sufficient coverage, and hence render coil repositioning during exam-

inations unnecessary.
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Chapter 3

Echo-planar spectroscopic

imaging of the heart

The objective of this part of the PhD work was the development

of an Echo-Planar Spectroscopic Imaging (EPSI) technique for the

regional quantification of myocardial triglycerides (TG) and creatine

(CR) content in vivo. Suitable reconstruction methods of cardiac

EPSI data were implemented to perform coil combination, artifact

ghost correction and B0 correction. The EPSI technique was tested

on healthy volunteers and compared to single voxel spectroscopy.

The results of this work have been published in the following ar-

ticle: K. Weiss, N. Martini, P. Boesiger, S. Kozerke. “Metabolic MR

imaging of regional triglyceride and creatine content in the human

heart”. Magn Reson Med. 2012 Dec; 68(6): 1696-704 [47].
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3.1 Introduction

Single voxel proton magnetic resonance has been shown to be a

promising tool for assessing total creatine (CR) and triglyceride

(TG) content in the myocardial muscle in humans [1, 3, 48]. The

specificity of in vivo proton magnetic resonance spectroscopy to

probe myocardial TGs in humans has recently been validated [49].

Myocardial TGs,a cellular storage form of fatty acids, are indi-

rectly connected to myocardial energy metabolism [50]. Therefore,

one focus of interest is the correlation between myocardial TG con-

tent and cardiac dysfunction [2]. Total CR, which reflects the sum of

CR and its phosphorylated form phosphocreatine, gives insight into

the myocardial CR kinase reaction [3]. Being the primary energy

reserve in myocardial tissues during periods of ischemia, hypoxia,

and stress [22, 51], the CR kinase reaction reversibly transfers high-

energy phosphate between phosphocreatine and adenosine triphos-

phate. It has been found that total CR content is depleted in the

failing heart [3, 23].

Although spectral information from a single volume is sufficient

when alterations with global effects on the heart are studied, a de-

mand for higher and flexible spatial resolution exists when probing

local changes, like in ischemic heart disease [22,52].

Spectroscopic imaging has been used previously for studying high

energy phosphates using 31P spectroscopy in humans in vivo [53–55].

Because of the low sensitivity of this nucleus, spatial resolution is

very limited and methods utilizing protons as a signal source are

preferred. To this end, implementation of 1H spectroscopic imag-

ing of the heart can give insight into regional differences of total
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CR and TG content and hence potentially allows for detection of

heterogeneous myocardial pathologies.

Technically, 1H spectroscopic imaging of the heart is challenging.

Results of earlier attempts of spectroscopic imaging of myocardial

TG content were found to be dominated by epicardial lipids [48].

Parts of the problem have been associated with motion sensitivity

and the long scan times. To compensate for cardiac and respiratory

motion, navigator-based dual triggering has been proposed [27, 28],

which has been found to be a prerequisite for reproducible proton

spectroscopy of the heart [1,6]. However, long scan times of conven-

tional phase encoded chemical shift imaging techniques make cardiac

spectroscopic imaging with sufficient resolution and size of the field

of view not feasible. Therefore, fast spectroscopic imaging techniques

trading signal-to-noise ratio per unit time and effective scan time are

needed [8].

The objective of this work was to implement and optimize an

echo-planar spectroscopic imaging (EPSI) technique [10, 56], which

permits mapping of spatial distribution of TG and total CR content

of the in vivo heart during free breathing acquisitions.

3.2 EPSI sequence

A local-look navigator gated spin-echo EPSI (Fig. 3.1) sequence was

implemented on a 1.5 T Philips Achieva system (Philips Healthcare,

Best, The Netherlands).

For all experiments, an equatorial slice in short axis view was

acquired (Fig. 3.2 a,b). To avoid signal contamination from tissue
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Figure 3.1: a: Schematic representation of the local-look navigator

gated EPSI sequence. The ECG trigger is followed by the acquisition

of the pencil beam navigator for respiratory motion compensation

and the water-suppression pulses. The signal is acquired using an

echo planar readout train. b: Schematic drawing of the spin echo-

based orthogonal excitation using a 90◦ and a 180◦ pulse. The 90◦

excitation pulse is selective in phase encoding direction. Slice se-

lection is achieved by the selective 180◦ refocusing pulse. The echo

maximum is centered on the first readout of the echo planar readout

train. The signal is sampled during gradient plateaus only.
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3.2 EPSI sequence

outside the region of interest, FOX reduction based on an optimized

selective excitation pulse in phase encoding direction and a slice

selective refocusing pulse was implemented (Fig. 3.1b and Fig. 3.2

c,d).

Figure 3.2: Position of the PRESS voxel (solid line) and the FOX

of the EPSI acquisitions (dashed line). a: Short axis view with the

limited FOX in phase encoding direction of the EPSI acquisitions.

b: Four-chamber view with the EPSI slice prescribed. c: Excitation

profile of the FOX in phase encoding direction. d: Refocusing profile

in slice direction.

Pencil-beam navigator echoes were integrated for respiratory gat-

ing purposes. To minimize both scan time and residual respiratory

motion, weighted gating was incorporated with a gating window

of 4 and 3 mm for 70% of the outer k-space and 30% of the in-

ner k-space, respectively. Water suppression was implemented using
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two frequency selective excitation pulses each followed by a gradi-

ent spoiler just before signal excitation. ECG triggering during an

end-systolic phase was used to have maximum thickening of the car-

diac muscle, as can be seen in Fig. 3.2 a,b. In every experiment,

water-suppressed and -unsuppressed EPSI data were acquired with

a five-channel coil array .

3.3 EPSI Recostruction

A flow chart of the EPSI reconstruction steps with illustrations of

their effect on water-unsuppressed data are shown in Fig. 3.3.

3.3.1 Coil combination

Coil sensitivity maps were calculated using the water-unsuppressed

data. Taking into account the noise variances Ψi of coil i, the sum-

of-squares SoS(~x), and the phase-corrected signal maps Φi(~x) at

spatial positions ~x are given by:

SoS(~x) =
∑
i

ρ
′

i(~x)2

Φi(~x) = ρ
′

iΘ
∗(~x)

with Θ∗(~x) =
∑
i

ρ
′

i(~x)

(3.1)

where ρ
′
i = ψ−

i 1ρi refers to the noise variance weighted maximum

signal in each coil’s free induction decay (FID) and ∗ denotes com-

plex conjugate. Coil sensitivity maps §i(~x) can then be computed
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3.3 EPSI Recostruction

Figure 3.3: a) Flow chart of the EPSI reconstruction. Correction

steps are shown for water-unsuppressed data in (b-l); (b) data be-

fore and (c) after coil combination, (d) spectrum before and (e)

after spectral N/2 ghost correction, (f) spatial point-spread function

(PSF) before and (g) after Hamming filtering, (h) spectrum before

and (i) after B0 correction, (j) segmentation of the myocardium, and

(k) spectrum before and (l) after phase correction.
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according to:

Si(~x) =

√
ρ
′
i(~x)ρ

′∗
i (~x)

Φi(~x)Φ∗
i (~x)SoS(~x)

Φi(~x) (3.2)

Using the coil sensitivity maps Si(~x), the actual time domain signals

ρi~x, t of the water-suppressed and -unsuppressed EPSI data were

combined using [31]:

ς(~x, t) =
∑
i

ρi(~x, t)S
∗
i (~x) (3.3)

3.3.2 Ghost correction

Spectral N/2 ghosts resulting from delays between even and odd

readout gradients were corrected for by maximizing the water and

fat signals in the water-unsuppressed scans [57]. The delays of the

gradients cause a linear phase shift along the readout direction in

image domain after spatial Fourier transformation according to the

Fourier shift theorem. To estimate this phase shift, a trial set of

phase shifts between 0 and 2π were applied to every second point

of the FIDs to every pixel of the spectroscopic images, and the shift

with the lowest N/2 ghost was detected. The estimated optimal

phase shifts were then fitted with a linear function along the readout

direction as, shown in Fig. 3.4.

Finally, the linear phase shifts were applied to every second read-

out of the FIDs to minimize the spectral N/2 ghosts in both the

water-suppressed and -unsuppressed scans.
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3.3 EPSI Recostruction
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Figure 3.4: a) Example of spectral N/2 ghosts resulting from delays

between even and odd readout gradients. (b) Linear fitting of the

phase shifts along the readout direction.

3.3.3 Spatial filtering

To reduce effects of the point-spread function side lobes, k-space data

were filtered using a Hamming function in the spatial dimensions

resulting in an effective spatial resolution of 4.4 × 4.4 mm2 [58].

3.3.4 B0 correction

For B0 correction, the position of the water and fat peaks was de-

tected using a model spectrum for every pixel in the spectroscopic

images of the water-unsuppressed scans. From the position of the

water peak, B0 maps were estimated. Using the B0 maps, correc-

tions were performed on a pixel-by-pixel basis using linear phase

shifts applied to the time-domain signals of the water-suppressed

and -unsuppressed signals.
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3.3.5 Cardiac segmentation

For analysis, the myocardial muscle was divided into six segments

(Fig. 3.5a,b). As spatial reference, the water image of the water-

unsuppressed scan was used. A fat image from the water-suppressed

scan was utilized as a second spatial reference (Fig. 3.5b) to accu-

rately draw the epicardial contour, hence avoiding the contamination

from epicardial fat in the segments.

Figure 3.5: a) Six segments for the midcavity region. b) Water

image from the non-water suppressed reference scan (gray) and a fat

image from the water suppressed scan (green overlay). c) B0 map

as estimated from the position of the water resonance in the water-

unsuppressed scans. d) Linewidth map of the water resonance in the

water unsuppressed scan.

3.3.6 Constructive averaging

To ensure phase coherent averaging, all spectra within each of the

six regions of interest and all averages of the water-suppressed scans

were phased using the fat resonance at 1.3 ppm [39]. The water-

unsuppressed scans were phased using the first points of the FIDs.

All spectra from the selected regions were subsequently averaged.
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3.3 EPSI Recostruction

3.3.7 Quantification and statical analysis

For quantification of both the EPSI and the PRESS data, the res-

onance of trimethyl ammonium (TMA) compound at 3.2 ppm, the

resonance of CR at 3.01 ppm, and the fat resonances at 2.1, 1.3, and

0.9 ppm in the water-suppressed spectra of the six defined segments

were fitted using the AMARES function of the jMRUI software pack-

age [41,59]. Before fitting of the water-suppressed spectra, the resid-

ual water peak was filtered using a Hankel-Lanczos singular value

decomposition method [60]. In addition, the water peak was fitted

using AMARES in the same segments of the water-unsuppressed

reference scans.

All estimated signal amplitudes were corrected for longitudinal

and transversal relaxation effects and the Ernst angle excitation used

for the water-suppressed EPSI scans. Relaxation values were taken

from literature as follows: T1 = 1100 ms and T2 = 40 ms for my-

ocardial water [15], T1 280 ms and T2 86 ms for TG estimated

in skeletal muscle [42–44], and T1 = 1500 ms and T2 = 135 ms for

myocardial CR [23,42].

The TG signal was estimated as the sum of the fat resonances

at 0.9 and 1.3 ppm [6]. TG and CR intensities were then calculated

as a fraction of the unsuppressed water peak in the same region of

interest. Moreover, the water peak was fitted on a voxel-by-voxel

basis to assess the linewidth distribution of the waterline over the

myocardial muscle.

For comparison of the quantification results of TG content with

EPSI and PRESS, intraclass correlation coefficients (ICCs) were cal-

culated using a mixed effect analysis of variance. To test differences
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between mean values of linewidths and concentrations of the EPSI

and PRESS measurements, a two-tailed paired t-test was used. A

level of P < 0.05 was considered statistically significant. The analy-

ses were performed using IBM SPSS (IBM SPSS, version 19; SPSS,

Chicago, IL).

3.4 Motion effects in EPSI

The effect of cardiac motion on on signal encoding in EPSI se-

quence was investigated through numerical simulations. Indeed,

since the EPSI sequence uses a bipolar gradient for simultaneous

spatial-spectral encoding (as shown in Fig. 3.1), moving spins along

the direction of the gradient accumulate a net phase that is linearly

proportional to their velocity. To explore the influence of cardiac

motion on signal encoding in the readout direction of the EPSI se-

quence, a Bloch’s equations simulator has been developed.

3.4.1 EPSI Bloch simulator

The EPSI sequence was simulated using a geometrical model of the

heart. The contraction of the left ventricle has been simulated with

a ring model used to reproduce wall thickening and heart rotation,

as described in [61]. Static field (B0) maps have been used to simu-

late magnetic field inhomogeneity. Cardiac motion during gradients

was neglected given the short duration of each individual gradient

(< 1 ms), while motion between gradients was considered. To this

end, the heart phase of the geometrical model was changed during

the train of bipolar gradients as shown in Fig 3.6.
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3.4 Motion effects in EPSI

Gx
t

t

kx

Figure 3.6: Geometrical model used to simulate cardiac motion dur-

ing the readout (Gx) gradient of the EPSI sequence.

EPSI datasets were simulated by computing the signal evolution

in k-space domain as following:

S(kFE, kPE) =

∫
x

∫
y

e
−t
T2∗ ρ(x, y)ej2π(kFEx+kPEy)ej2πf(x,y)t (3.4)

where kFE and kPE are the k-space coordinates in the frequency (FE)

and phase encoding (PE) direction, ρ(x, y) is the map of metabolite

amplitudes, and f(x, y) is the spatial distribution of resonance fre-

quencies.

Table 3.1: Metabolite parameters used in the EPSI simulation.

Peak frequency (Hz) T2∗ (ms) ρ (a.u.)

Water 0 45 100

TG 220 25 0.5

The simulated EPSI datasets were reconstructed using the pro-

cessing steps described in section 3.3. Fitting estimates were used

to quantify the influence of heart motion on water and fat resonance

parameters (amplitude, linewidth and resonance frequency).
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3.5 Results

3.5.1 Experimental protocol

The parameters of the EPSI sequence were as follows: field of view

300× 150 mm2, FOX 65-85 mm, nominal resolution 3× 3 mm2 , slice

thickness 15 mm, spectral bandwidth 1064 Hz, spectral resolution

4.2 Hz, echo time (TE) 12 ms, pulse repetition time (TR) 750-1250

ms depending on heart rate, eight signal averages for water sup-

pressed scans, and nominal acquisition time for water-suppressed/–

unsuppressed scans: 6:40 / 0:50 min resulting in a total acquisition

time of about 18:45 min with a navigator efficiency of 40%.

The cardiac trigger delay to peak systole was estimated using

cine scans at approximately 320 ms after the R-wave. To optimize

signal-to-noise ratio of the CR resonance at 3.01 ppm, Ernst angle

excitation for the water-suppressed scans was used leading to an

excitation angle of 115-125◦ combined with the 180◦ refocusing pulse,

depending on heart rate.

For comparison, a navigator gated and cardiac triggered point-

resolved spectroscopy (PRESS) sequence was implemented and ap-

plied in the same session ( [6]). Both water and water-suppressed

spectra were acquired. To avoid contamination from epicardial fat,

the single voxel was placed in the septum (Fig. 3.2 a,b.). For PRESS,

only data from this single position were acquired. The parameters of

the PRESS sequence were as follows: voxel size 10 × 20 × 40 mm3,

TE/TR 33/2000 ms, 128 signal averages for water suppressed and

eight signal averages for the water unsuppressed scans. Nominal ac-

quisition time for water-suppressed/-unsuppressed scans: 4:16/0:16
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3.5 Results

min, resulting in a total acquisition time of 11:20 min with a gating

efficiency of 40%.

For all experiments, the body coil was used for signal excitation

and a five-channel cardiac array was used for signal reception. A

total of 12 healthy volunteers (mean age: 29 years; range 23-46

years) were measured after informed consent was obtained according

to institutional guidelines.

3.5.2 Simulation results

Figure 3.7 shows the simulation results of the EPSI sequence. With-

out motion (upper panels of Fig. 3.7), fitting results were consis-

tent with the resonance parameters imposed in the simulation (see

Tab. 3.1), estimated TG content of 0.483 ± 0.003a.u., and linewidths

of 7.7 ± 0.2 Hz.

In presence of motion (lower panels of Fig. 3.7), a small under-

estimation of the TG/W percentage (0.462 ± 0.010) was observed,

which was associated to increased linewidths (10.3 ± 1.6 Hz), espe-

cially in the readout direction. Also, a small variation of the fre-

quency difference between water and TG peaks was found in the

readout direction (219.95 ± 0.76).

3.5.3 In-vivo results

Results of the reconstruction steps are shown in Fig. 3.8. Spectral

N/2 ghosts were reduced by 90.9 ± 6.1% (Fig. 3.8b,c) resulting in a

remaining ghost signal of 1.54 ± 0.57% of the water-peak height.

Line broadening due to B0 inhomogeneity in the regions of inter-
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Figure 3.7: EPSI simulation results. a) TG content (TG/W) ex-

pressed as percentage of water fraction. b) Linewidth of the water

peak expressed as Full-Width at Half Maximum (FWHM). c) Fre-

quency difference between water and TG peak.
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3.5 Results

est was reduced from 12.3± 3.8 to 9.7± 1.8 Hz (Fig. 3.8a,c). Overall

field map values across the myocardium showed variations of 29.6 ±
7.6 Hz (Fig. 3.5c). However, the actual linewidths of the water-

unsuppressed resonance in the individual voxels varied between 5

and 25 Hz (Fig. 3.5d).

Figure 3.8: Water-unsuppressed spectra of one segment in the lateral

wall of the EPSI scans showing different reconstruction steps of the

EPSI data. a) Spectrum without the B0 correction step, (b) without

spectral N/2 ghost correction, (c) with all correction steps.

Linewidth variations in the six regions of interest from the EPSI

data and the single voxel of the PRESS scan across all 12 subjects are

shown in Table 3.2. The small linewidths and the small variations

in the septal region (segment 2 and 3) allowed for detection and a

good discrimination of the resonances of TMA at 3.2 ppm and CR at

3.01 ppm. However, the increased linewidths and variations in the

lateral segments 5 and 6 caused a degradation of the spectral quality

in these regions. In particular, the linewidths of the water resonance

were significantly higher in the lateral segment 5 compared to every

other segment.

Figure 3.9 shows spectra from six regions of interest located in the

55



Echo-planar spectroscopic imaging of the heart

Figure 3.9: (a) PRESS (SV) and EPSI regions of interest. b) Spectra

from the regions of interest indicated in (a) in test-retest reliability

study on a single volunteer.
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3.5 Results

midcavity region of the heart and a PRESS spectrum from the septal

wall for comparison. Spectra from two measurements of a single

volunteer are shown for every segment. Between the two scans, the

subject was taken out of the scanner and subsequently repositioned.

The mean values of all segments for the two measurements were

0.42 ± 0.06% and 0.41 ± 0.08% for TG content and 0.063 ± 0.025%

and 0.081 ± 0.024% for CR content. The spectral quality of the

EPSI spectra was found to be comparable to the PRESS spectrum

in the septum (Fig. 3.9).

Table 3.2: Measured Line Width (Hz) of the Water Resonance in

Water-Unsuppressed EPSI Reference Scans for the Six Regions of

Interest (Fig. 3.5a,b) and of the PRESS Measurements (N = 12).

Segment Mean over subjects Mean over intrasubjects SD

1 9.0 ± 1.6 2.70 ± 0.91

2 9.1 ± 1.5 2.08 ± 0.91

3 8.7 ± 1.0 1.94 ± 0.54

4 9.6 ± 1.3 2.11 ± 0.69

5 11.6 ± 2.3 3.33 ± 1.65

6 10.2 ± 1.6 2.42 ± 0.61

PRESS 11.2 ± 1.8 -

Mean values overall subjects and mean values of the SD across voxels of the

individual subjects are shown for the EPSI data.
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3.5 Results

Table 3.4: Quantification Results for the Different Segments for

EPSI and Single Septal PRESS Voxel.

Segment TG/W % ICCPRESS TG/W % Na

1 0.45 ± 0.20 0.64 0.04 ± 0.03 10

2 0.52 ± 0.21 0.72 0.07 ± 0.03 11

3 0.44 ± 0.16 0.67 0.06 ± 0.03 12

4 0.42 ± 0.21 0.65 0.06 ± 0.03 9

5 0.37 ± 0.14 0.34 0.07 ± 0.05 11

6 0.36 ± 0.16 0.52 0.06 ± 0.04 12

PRESS 0.52 ± 0.17 − 0.07 ± 0.02 11

Values for TG content (TG/W) and CR content (CR/W) are given as

percentage of water fraction. ICC to PRESS is given.
aNumber of volunteers where CR was successfully fitted using jMRUI

The quantification results of all 12 volunteers are summarized in

Tab. 3.3 and Tab. 3.4. The ICC for the TG content estimated with

PRESS and EPSI was found to be 0.72 (95% confidence interval:

0.27, 0.91; P < 0.004) for the septal segment 2 and 0.67 (95% confi-

dence interval: 0.12, 0.90; P < 0.001) for the mean overall segments.

Within the subjects, a mean coefficient of variation of 21 ± 6% was

found for the different segments.

Because of line broadening in the lateral wall and the region of

the posterior vein of the left ventricle (Fig. 3.5c), spectra from the

lateral segments 5 and 6 revealed lower effective spectral resolution

and a lower spectral quality.

Moreover, coil sensitivities were lowest in this region (Tab. 3.5).

As a result, the correlation and significance of the correlation rel-
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Table 3.5: Comparison of sensitivity in the six myocardial segments.

Segment Relative SNRa

1 0.91 ± 0.13

2 1

3 0.88 ± 0.12

4 0.70 ± 0.08

5 0.68 ± 0.10

6 0.81 ± 0.11
aRelative SNRs are calculated from water-unsuppressed signals and compared

with segment 2, which had the highest mean SNR.

ative to the PRESS measurements found for segment 5 (ICC 0.32,

95% confidence interval: -0.29, 0.74; P < 0.05) was comparably low

Tab. 3.4. No significant differences were found between the septal

region of the EPSI (segments 2 and 3) and the PRESS scans, demon-

strating good agreement of the two measurements (P = 0.35 for TG,

P = 0.40 for CR, Tab. 3.3). However, significant differences were de-

tected between the mean of all segments of the EPSI measurements

and the PRESS measurements in the septal region (P = 0.021).

The lower mean TG content measured with EPSI indicates that the

EPSI measurements underestimate the TG content compared with

the PRESS measurements.

3.6 Discussion

An optimized EPSI sequence has been proposed to map relative

CR and TG content in the heart in a study including 12 healthy
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volunteers.

EPSI spectra showed significant correlation with single-voxel data

acquired in the septum for all segments. The values measured for

TG with EPSI and PRESS agree with values reported earlier by van

der Meer et al. [6].

The CR content as measured in this study, however, was found

to be lower compared with previous data from single voxel mea-

surements [3, 23]. Although T1 and T2 was not measured in this

study, absolute CR concentrations, based on a mean tissue water

content of 76.4% [3], literature T1 and T2 values [15, 23, 42–44],

and nominal scanner flip angles, are projected to be about 17.2 ±
8.6 µmol/g and 20.0 ± 5.7 µol/g wet weight for EPSI and PRESS,

respectively. These values are smaller than previous estimates of

28 ± 6 µmol/g [3] and 28.9 ± 4.4 µmol/g wet weight [23] possi-

bly reflecting uncertainties in the relaxation corrections, differences

between time and frequency domain spectral analysis and partial

contamination of the CR signal if the TMA resonance at 3.2 ppm

is not fitted independently. However, when comparing the data of

this work against biochemical analysis of CR concentrations (17.9

µmol/g [62] and 20.8 ± 4.5 µmol/g [63]) very good correspondence

is noted.

The lateral segment in the region of the posterior vein of the

left ventricle was found to be compromised with significantly lower

correlation when compared with both EPSI and PRESS data from

the septal region. This finding is associated with strong B0 inhomo-

geneities induced by the vicinity of deoxygenated blood inside the

posterior vein. Significant stronger line broadening compared with

all other segments was detected in the related segment 5 (11.6 ± 2.3
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Hz, Tab. 3.2) in agreement with previous data by Reeder et al. [64].

B0 inhomogeneities also compromised the individual estimation of

TMA and CR resonances.

These resonances are separated by 0.19 ppm, which corresponds

to 12.1 Hz at 1.5 T. Furthermore, coil sensitivity drop-off due to

greater distance between the lateral wall and the coil array (Tab. 3.5)

relates to the reduced sensitivity in the lateral area. Relative to the

anteroseptal segment, the signal-to-noise ratio in the posterolateral

segment was reduced by 30%.

Overall, shimming was found to be a limiting factor. Voxel vol-

umes were 0.290 mL for EPSI and 8 mL for PRESS. Accordingly,

significantly smaller linewidths were detected in the septal region for

the EPSI scan compared with the PRESS scans (Tab. 3.2). With

the availability of higher order shims, the linewidth limitations in the

regions of the lateral wall and the posterior vein of the left ventricle

can be addressed in future work. Multiple channel coil arrays are

expected to leverage the limited sensitivity in lateral and posterior

regions alongside translating the work to higher B0 field strengths.

High-field application will also improve the separation of the TMA

and CR resonances, which was found to be limiting in this study at

1.5 T.

The quantification of TG and CR was corrected for longitudinal

and transversal relaxation effects based on literature values for T1

and T2. The effect of T2 correction on the quantitative results was

found to be small for EPSI given the short TEs used. The TE of the

double spin echo PRESS sequence, however, was almost three times

longer and hence inaccuracies in T2 may have resulted in significant

differences in the quantitative results of the PRESS measurements.
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3.6 Discussion

The T2 correction factors for TE of 33 ms (PRESS) / 12 ms

(EPSI) did change relative TG and CR content by 36%/15% and

44%/19%, respectively. Assuming a 10% uncertainty in T2, the cor-

rection factors for PRESS/EPSI are offset by 12%/5% and 11%/4%

for TG and CR and thus may explain in parts the difference seen

between PRESS and EPSI in the septal region. Correction for lon-

gitudinal relaxation did change the relative TG and CR content by

26 ± 5% and 9 ± 4% depending on heart rate. A 10% uncertainty

in the estimated T1 relaxation time would result in an offset for TG

and CR content of 6.7 and 11%, respectively. As the influence of T1

relaxation for EPSI and PRESS is comparable, differences of TG and

CR content measured with EPSI and PRESS are not explained by

the uncertainty in T1 values. However, they may partly explain dif-

ferences compared with CR content reported in the literature [3,23].

In other applications, it was demonstrated that corrections for lon-

gitudinal and transversal relaxation effects can introduce systematic

errors [42, 43]. Accordingly, subject-specific measurements of relax-

ation constants seem warranted and need to be included in future

studies.

The variance found across all segments of the EPSI data is at-

tributed in parts to the reduced coil sensitivity for lateral and pos-

terior segments and to a loss in spectral resolution given strong B0

gradients in particular close to the posterior vein of the left ventricle.

In summary, the presented EPSI technique allows assessing my-

ocardial CR and TG content from several regions of interest in rea-

sonable scan times, thus demonstrating to be a promising tool for

investigating spatial alterations of myocardial metabolism.
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Chapter 4

Myocardial T1 mapping

Besides magnetic resonance spectroscopy (MRS), quantitative mag-

netic resonance imaging (MRI) techniques based on relaxation times

mapping provide fundamental information for myocardial tissue char-

acterization. Longitudinal relaxation time (T1) is altered in various

cardiac diseases like myocardial infarction and diffuse fibrosis. T1

quantification is based on the acquisition of a series of images that

sample the recovery curve of the longitudinal relaxation. Several

pulse sequence have been proposed to collect images suitable for

pixel-wise T1 mapping. However, differences in T1 values obtained

either from different protocols or from different regions of the my-

ocardium have not been well investigated, especially at 3.0 T. The

objective of this study is to implement and optimize a pulse sequence

for myocardial T1 mapping at 3.0 T.
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4.1 Myocardial T1 measurement

Longitudinal relaxation time or spin-lattice relaxation time (T1) is

the time constant that rules the exponential recovery of longitudinal

magnetization equilibrium. Since T1 relaxation time depends on the

chemical and physical environments of water protons [15], T1 values

vary significantly among different tissues, but also among different

physiopathological conditions in the same tissue. Examples of phys-

iopathological processes that cause T1 changes are inflammation,

infarction, edema and fibrosis [15].

T1 relaxation time can also be altered artificially by injecting

contrast media. Gadolinium-based contrast agents (GBCA) shorten

T1 in tissues where are accumulated, thus producing postcontrast

T1-weighted images with enhanced signals in these tissues. The late

gadolinium enhancement (LGE) technique is now routinely used in

cardiac MRI to detect myocardial infarction (MI). Indeed, fibrotic

tissues experience a prolonged wash-out of the gadolinium, leading

to bright signal intensity in conventional inversion-recovery (IR) gra-

dient echo images [65]. However, there are two main limitations of

the LGE technique. Firstly, the degree of enhancement also depends

on the inversion time (TI)of the IR sequence chosen for nulling the

signal of noninfarcted myocardium [66]. Secondly, diffuse myocar-

dial fibrosis is more difficult to assess with LGE since image con-

trast relies on the difference in signal intensity between fibrotic and

“normal” myocardium, and such differences is eliminated when the

process is diffuse [67].

To overcome these limitations new approaches for the quantita-

tive measurement of myocardial T1 have been developed. In gen-
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4.1 Myocardial T1 measurement

eral, a method for T1 quantification is based three main steps: 1)

the perturbation of the longitudinal magnetization using either a

180◦ (inversion) or a 90◦ (saturation) radiofrequency pulse; 2) the

acquisition of a series of images that sample the recovery curve of

the longitudinal relaxation; 3) the fitting of the sampled curve with

a proper T1-recovery mathematical model for the extraction of the

T1 value.

The cine inversion recovery approach (Cine-IR) is based on the

application of a inversion pulse is followed by a fast a cine acquisi-

tion where each cardiac phase experiences a different time delay after

the inversion pulse and thus a different T1 weighting [68]. Although

Cine-IR was shown to be reliable in the estimation of myocardial T1

values after contrast agent administration, this method only allows

a region of region of interest (ROI) analysis rather than a pixel-by-

pixel T1 fitting [16]. The first successful implementation of myocar-

dial pixel-wise T1 mapping was based on the Modified Look-Locker

Inversion Recovery (MOLLI) pulse sequence [17]. MOLLI sequence

allows the acquisition of several images at different inversion times

but in the same cardiac phase and in a single breath-hold. Thus,

the spatial co-registration of the acquired images allows to perform

the signal fitting for the T1 quantification in a pixel-wise fashion,

i.e. T1 mapping.

The MOLLI approach inspired the development of several meth-

ods for T1 mapping based on either on inversion recovery [18] or

saturation recovery sequences [19]. The aim of this study is to imple-

ment and optimize through numerical simulations a pulse sequence

based on MOLLI for myocardial T1 mapping at 3.0 T.
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4.2 MOLLI sequence

The MOLLI pulse sequence was implemented on a 3.0 T Philips

Ingenia system (Philips Healthcare, Best, The Netherlands). The

sequence consists of three Look-Locker experiments, i.e. three in-

version pulses each followed by the single-shot acquisitions triggered

at a fixed cardiac phase in successive heartbeats. The single-shot

acquisition is performed with a balance steady state free precession

(b-SSFP) sequence [69].

The number of images acquired after each of the three inversion

pulses is three, three and five respectively (3-3-5 scheme), yielding

a total of eleven images, each one acquired with a different inver-

sion time. In the original version of MOLLI, a resting period of

three heartbeats is inserted before the next inversion pulse to allow

the recovery of the longitudinal magnetization [17]. This causes a

significant dependence of the magnetization, and hence of the T1 es-

timation, on the heart rate. To reduce this effect, the implemented

MOLLI sequence implemented in this study adopted a resting pe-

riod independent on the heart rate, by setting a minimum delay of

six seconds between inversion pulses.

Figure 4.1 shows the implemented MOLLI sequence. In each k

Look-Locker experiment, the effective inversion time t of each image

depends on the delay time between the inversion pulse and the ac-

quisition in the first heartbeat (TIk) and on the RR interval for the

successive n heartbeats according to:

t = TIk + (n− 1)RR interval (4.1)

where TIk was set to 100 ms, 200 ms and 350 ms for k = 1, 2, 3
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4.2 MOLLI sequence

180° 180°180°

TI 2 TI 3TI 1

6 s

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 4.1: Schematic representation of the MOLLI pulse sequence.

A minimum delay of six second was set between the inversion pulses.

respectively.

The images are then sorted by their effective inversion time be-

fore pixel-wise fitting. Figure 4.2 shows a schematic representation

of the MOLLI method for T1 mapping. The three sets of images

that sample the recovery curve of the longitudinal magnetization

are merged in a single set according to their effective inversion time.

The three-parameter monoexponential model used for T1 esti-

mation is the following:

y = A−Be−t/T ∗1 (4.2)

where y is the pixel intensity of the MOLLI images and T ∗
1 is called

apparent T1. Since pixel intensities can assume only positive values

in magnitude MR images, the sign for negative values of the mag-

netization need to be restored. To identify these values, the fitting

procedure was repeated changing iteratively the sign of the first im-

ages. The fitting result with the minimum residual error was chosen

to correct the signal polarity [70].

To take into account that the recovery curve of the longitudinal
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MOLLI 3-3-5 scheme

TI = [100 200 350] ms + RR interval

0 5000 10000 15000

Figure 4.2: Schematic representation of the MOLLI method for T1

mapping.
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4.3 Bloch simulation

magnetization is perturbed by the readouts used for image acquisi-

tion, the Look-Locker correction [17] was then applied according to

the following formula:

T1 = T ∗
1

(
B

A
− 1

)
(4.3)

where T1 is the corrected estimated of the T1 relaxation time con-

stant.

4.3 Bloch simulation

In order to investigate the influence of different parameters (flip an-

gle, TR/TE, k-space sampling, B0-field inhomogeneity) of the im-

plemented MOLLI sequence on T1 estimation, a Bloch’s equation

simulator was developed. The simulation calculated the magnetiza-

tion during the MOLLI experiment, taking into account both the

spin evolution during each single-shot SSFP readout and relaxation

between SSFP readouts.

α α ααTR
TE

RF

Gread

Figure 4.3: Schematic representation of the SSFP readout used for

MOLLI image acquisition.

A simplified version (without slice and phase encoding gradients)

of the SSFP readout is shown in Fig. 4.3. The single-shot SSFP read-
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out is composed by a train of low flip angle α radiofrequency pulses

at a repetition time (TR) distance. The echo time (TE) correspond-

ing to the center of each k-space line is equidistant between α pulses,

i.e. TR/2. As shown in Fig. 4.3 in SSFP the readout gradient is bal-

anced, that is the area of the positive lobe is equal to area of the

negative lobes.

The evolution of the magnetization during the SSFP readout was

calculated using the framework described in [71].

The rotation matrix that describe the RF nutation about the

x -axis by an angle α is the following:

Rα =

1 0 0

0 cosα sinα

0 − sinα cosα

 (4.4)

Between α excitation the magnetization undergoes a precession by

an angle θ = 2π∆fTR about the z -axis, where ∆f is the spin off-

resonance due to B0-inhomogeneity. The rotation matrix that de-

scribes the precession over a period τ is:

P(τ) =

 cos(2π∆fτ) sin(2π∆fτ) 0

− sin(2π∆fτ) cos(2π∆fτ) 0

0 0 1

 (4.5)

The T1 and T2 relaxation over a period τ can be represented by a

multiplication by the matrix:

C(τ) =

e−τ/T2 0 0

0 e−τ/T2 0

0 0 e−τ/T1

 (4.6)

72



i
i

i
i

i
i

i
i

4.3 Bloch simulation

and an addition of the vector:

D(τ) = (I−C(τ))

 0

0

M0

 (4.7)

Using this notation, it has been shown [71] that the magnetization

change from one excitation to the following can be expressed in the

form of a discrete-time system:

Mk+1 = AMk + B (4.8)

where Mk is a 3D vector representing the magnetization at the k -th

excitation (Mx,Mx,Mz), A is a 3 x 3 matrix A = P1C1RαP2C2

and B is a 3D vector B = P1C1RαD2 + D1, where

P1 = P(TE) and P2 = P(TR− TE)

C1 = C(TE) and C2 = C(TR− TE)

D1 = D(TE) and D2 = D(TR− TE)

To reduce transient oscillations of the magnetization at the be-

ginning of the SSFP readout, a series of dummy excitations was

included in the simulation. To this end, two different preparation

scheme were simulated: the α/2 train [69] and the linear flip angle

(LFA) preparation [72].

For T1 estimation, the value of the longitudinal magnetization

at the k -th excitation corresponding to the central k-space line was

used as input of the three-parameter model fitting described by Eq.

4.2.
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4.4 Results

4.4.1 Simulation results

Figure 4.4 shows the evolution of the longitudinal magnetization

during the MOLLI experiment for three different values of the flip

angle α (15◦, 30◦ and 45◦). The recovery of the of the longitudinal

magnetization after each inversion pulse is perturbed by the SSFP

readouts used for the image acquisition. This perturbation becomes

noticeable as the flip angle increases.
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Figure 4.4: Evolution of the longitudinal magnetization during three

MOLLI experiments with different flip angle.

A detailed representation of the evolution of the longitudinal

magnetization during a SSFP readout is shown in Fig. 4.5. As de-

picted, initial α−excitations are characterized by remarkable tran-

sient oscillations. The use of dummy excitations with the α/2 train

or the LFA preparation largely reduce the oscillations, thus accel-
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4.4 Results

erating the reaching of a transient steady state. In the following

simulations, the LFA was adopted because of its robustness to field

inhomogeneities [72], a feature extremely important at 3T.
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Figure 4.5: Reduction of transient oscillations using α/2 and linear

flip angle preparation schemes.

Figure 4.6 shows the results obtained by the MOLLI simulation

using two different resting periods between the Look-Locker (LL)

experiments of the 3-3-5 scheme (see Fig. 4.1): 3 RR and 6 sec.

In the first case three heartbeats separate the last readout of a LL

and the inversion pulse of the successive LL (as in original version

of MOLLI, see Ref. [17]). In the second case, a minimum delay

of six seconds is retained between two inversion pulses. The 6 sec

approach achieved a smaller error percentage in T1 estimation than

3 RR, especially for increasing values of T1 as shown in Fig. 4.6 (a).

In addition, this approach was demonstrated to be more insensitive
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Figure 4.6: Comparison between 3 RR and 6 sec resting periods. (a)

Error in T1 estimation as a function of the real T1 of the simulated

tissue (HR=60 bpm). (b) Error in T1 estimation as a function of

the heart rate (T1=1100 ms).

to the heart rate (HR), providing accurate results even for elevated

values of the cardiac frequency, as shown in Fig. 4.6 (b).

The influence of the flip angle α of the SSFP readout in T1

estimation is shown in Fig. 4.7. A systematic underestimation of

T1 was observed for all T1 values. This systematic underestimation

can be explained by the fact that the longitudinal relaxation curve

more rapidly reaches an asymptotic value due the perturbation of

the SSFP readouts, as shown in Fig. 4.4. Notably, this negative

bias increased with larger flip angles. Although, very low flip angles

provide the most accurate T1 estimation, limitations in terms of

SNR lead to the choice of flip angles not below 20◦.

The influence of of the SSFP readout was also found to be T2-

dependent, as shown in the simulation results of Fig. 4.8, where the
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Figure 4.7: Influence of flip angle α of the SSFP readout in T1

estimation. The negative bias of T1 estimation increases with larger

flip angles.
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Figure 4.8: T1 underestimation due to the perturbation of the SSFP

readout increases for shorter T2 (T1=1100 ms, HR=60 bpm).
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T1 underestimation increased for shorter T2 values. This resulted

in a larger negative bias of the myocardial tissue (about 7% with

α = 30◦), which normally has T2=45 ms [73], compared to the

blood tissue (about 3% with α = 30◦), which has T2 of 250 ms.

Off-resonance effects

Since balance–SSFP sequences are typically influenced by off-

resonances, i.e. spins with different resonance frequencies due to

local static B0-inhomogeneities, the sensitivity of the MOLLI se-

quence to off-resonance effects was investigated.
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Figure 4.9: (a) Magnetization of the MOLLI images as a function of

the off-resonance frequencies for a T1 value of the normal myocardial

tissue (1100 ms). (b) T1 recovery curves for on-resonance (0 Hz) and

off-resonance (100 Hz) spins, and estimated (T̂1) values.

Figure 4.9 (a) shows the magnetization of the MOLLI images as

a function of the off-resonance frequencies for a simulated T1 value

of the normal myocardial tissue (1100 ms). Figure 4.9 (b) depicts

the T1 recovery curves for on-resonance (0 Hz) and off-resonance
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(100 Hz) spins. The different level of magnetization influenced the

estimated T1 after model fitting (T̂1).
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Figure 4.10: Influence of the flip angle on T1 underestimation due

to off-resonance effects for simulated T1 values typical of myocardial

tissue before (left panel) and after (right panel) gadolinum contrast

agent administration.

T1 underestimation due to off-resonance effects was also found

to be influenced by the flip angle choice, as shown in Figure 4.10.

Sensitivity to off-resonance increased for larger flip angles and for

higher T1 values. In addition, the choice of the repetition time

(TR) of the SSFP readout affected the sensitivity to off-resonance

as demonstrated by the simulation results shown in Figure 4.11.

4.4.2 In-vivo results

The MOLLI pulse sequence was implemented on 3T Philips Inge-

nia system (Philips Healthcare, Best, the Netherlands). A short-

axis slice was acquired using the following parameters: field of view
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Figure 4.11: Influence of the repetition time (TR) of the SSFP read-

out in the T1 underestimation due to off-resonance effects.

(FOV) 350 × 300 mm, slice thickness 10 mm, in-plane resolution

1.8 × 2.1 mm, flip angle 30◦, TR/TE 2.4/1.2 ms, SENSE factor 2

and partial Fourier acquisition. The inversion time (TI) of the first

MOLLI images of the three LL experiments were 100, 200 and 350

ms, respectively (see Fig. 4.2. The effective inversion time of the

other images was calculated using the Eq. 4.1 where the R-R in-

terval was estimated from the metadata of the DICOM file of each

image. Pixel-wise T1 mapping was performed by data fitting with

the three-parameter model of Eq. 4.2 was performed using a custom

written Matlab (The Mathworks, Natick, MA, USA) software.

Figure 4.12 shows an example of the eleven MOLLI images ac-

quired on a healthy volunteer. Spatial co-registration between im-

ages allows to perform pixel-wise T1 mapping. Figure 4.13 depicts

the polar map of the mean T1 values after the segmentation of the

T1 map in six myocardial regions according to short-axis model of

the mid-cavity of the American Heart Association [74].

The mean T1 value across segments of 1082.6± 22.7 ms (Tab.4.1)
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Figure 4.12: MOLLI T1 mapping in healthy volunteer.
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Figure 4.13: T1 mapping in a healthy volunteer using the imple-

mented MOLLI sequence.
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Table 4.1: T1 values in six myocardial segments (Mean ± standard

deviation) obtained in a healthy volunteer.

N◦ Segment T1 value [ms]

7 anterior 1081.3 ± 118.5

8 anteroseptal 1081.9 ± 61.1

9 inferoseptal 1100.0 ± 42.4

10 inferior 1112.5 ± 86.6

11 inferolateral 1046.4 ± 32.8

12 anterolateral 1073.8 ± 45.3

Mean over segments 1082.6 ± 22.7

is in good agreement with T1 values reported recently at 3T [73].

Figure 4.14 (a) shows the T1 map obtained in a patient with

acute myocardial infarction in the anteroseptal region. T1 value in

a ROI in this region (1483 ± 32 ms) was significantly higher than

in a ROI in the inferoseptal region (1263 ± 56 ms). T1 underesti-

mation in the lateral wall, indicated by red arrows in Fig. 4.14, was

found to be correlated to large B0-field inhomogeneities as depicted

in Fig. 4.14 (b). B0-field map was calculated as in [64] from phase

images acquired using a dual-echo gradient echo sequence.

4.5 Discussion

In this study a MOLLI pulse sequence for myocardial T1 mapping

has been implemented on a 3.0 T MRI system. A Bloch’s equation

simulator has been developed to investigate the influence of pulse
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4.5 Discussion

Figure 4.14: (a) T1 map in a patient with myocardial infarction in

the anteroseptal region. (b) Field map calculated from phase images

acquired using a dual-echo gradient echo sequence.

sequence parameters on T1 estimation. Simulation results showed

a complex dependence of the estimated T1 on scan parameters (flip

angle, TR), tissue relaxation times (T1,T2) and acquisition condi-

tions (heart rate, B0-field inhomogeneity).

The use of minimum delay of six seconds between inversion pulses,

instead of a resting period of three heartbeats between LL experi-

ments as in the original version of MOLLI [17], was demonstrated

to be a useful strategy to reduce the dependence of the heart rate

on T1 estimation, as shown in Fig. 4.6.

The perturbation of the longitudinal recovery due to the SSFP

readouts used for MOLLI image acquisition was shown to cause sys-

tematic T1 underestimation. Simulation results showed that this

negative bias is increased for larger flip angles, for tissues with shorter

T2 and longer T1.

The presence of B0-inhomogeneities was demonstrated to cause a

further T1 underestimation which depends on off-resonance values.
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Thus, B0-inhomogeneities can result in artifactual regional variation

of T1. In addition, sensitivity to off-resonance was found to increase

for larger flip angles, longer repetition times (TR) and for higher T1

values.

In-vivo results showed that the implemented pulse sequence al-

lowed the acquisition of images with different effective inversion

times in a single breath-hold. This ensured the spatial co-registration

between images, a fundamental prerequisite for performing pixel-

wise T1 mapping. T1 mapping obtained in a healthy volunteer

showed T1 values (mean value 1082 ms) in good agreement with

previous literature at 3.0 T [73], with low standard deviation across

myocardial segments (SD = 22.7 ms). In a patient with acute my-

ocardial infarction, the T1 was found higher (of about 200 ms) in

the infarcted than in a remote area, coherently with values previ-

ously reported at 1.5 [66]. However, B0-inhomogeneity was shown

to produce an artefactual regional variation of the estimated T1, as

anticipated by the simulation results on off-resonance effects. Since

3.0 Tesla MRI systems often encountered B0-inhomogeneity issues,

future efforts will be focused on the development of strategies for

compensation of the T1 underestimation by exploiting the simula-

tion results and B0-field maps acquired in-vivo.
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Chapter 5

Conclusions

Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) tech-

niques can provide fundamental information for tissue characteriza-

tion in normal and diseased myocardium. Cardiac MRS allows the

quantification of crucial compounds involved in myocardial energy

metabolism, such as triglycerides (TGs) and creatine (CR). On the

other hand, quantitative MRI methods, as T1 mapping, can give

insights into different physiopathological conditions (inflammation,

edema, fibrosis) of myocardial tissue. However, several methodologi-

cal challenges have limited the reproducibility of the studies and the

application of these techniques in clinical settings.

The PhD project focused on the development of new methods

in Cardiac Magnetic Resonance Imaging and Spectroscopy for the

noninvasive myocardial tissue characterization in vivo.

In the first part of the thesis (Chapter 2) the problem of the

optimal reconstruction of multichannel cardiac MRS data has been

investigated. Different coil combination strategies have been imple-
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mented: SNR weighting, PCA combination and image-based com-

bination. Simulations on synthetic datasets have been carried out

to evaluate the SNR performance of the different coil combination

algorithms.

Respiratory compensation strategies have been implemented both

in the acquisition stage and in the post–processing of the acquired

spectra. In particular, the respiratory navigator (RNAV) technique

was integrated in a point-resoveld spectroscopy (PRESS) sequence

for single-voxel 1H-MRS.

The feasibility of 1H cardiac spectroscopy using two coil arrays

with 5 and 32 elements has been demonstrated in a volunteer study.

The spectral quality allowed for the estimation of TG and CR con-

tents with values in good agreement with previous literature and a

high correlation between the quantification results obtained by the

two coil arrays. All coil combination strategies showed comparable

SNR values and quality in the resulting spectra. On average, the

mean SNR of the 32-element array was about 24% higher than that

of the 5-element coil. In addition to an advantage in SNR perfor-

mance, large coil arrays also provide sufficient coverage, rendering

coil repositioning during examinations unnecessary.

Since large coil arrays are today widespread in cardiovascular

MRI, these results will contribute towards the integration of cardiac

proton spectroscopy into clinical protocols.

The second part of the thesis (Chapter 3) focused on the imple-

mentation of a fast spectroscopic imaging method able to provide

regional distribution of cardiac metabolites.

To this end, an optimized Echo-Planar Spectroscopic Imaging
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(EPSI) technique was developed. Respiratory navigator gating and

ECG triggering were integrated in the EPSI sequence for respiratory

and cardiac motion compensation, respectively.

A suitable software package was developed for the reconstruction

of EPSI data, with water unsuppressed data used for coil complex

sensitivity maps estimation, spectral Nyquist ghost artifact removal

and static field inhomogeneity (B0) correction. In addition a Bloch’s

equations simulator was developed in order to explore the influence

of cardiac motion on signal encoding in the readout direction of the

EPSI sequence.

Experiments were carried on healthy volunteers to validate the

EPSI technique in vivo. For comparison single voxel 1H-MRS mea-

surements were performed with a PRESS sequence in a volume in

the interventricular septum. Results showed that the spectral qual-

ity of the EPSI was found to be comparable to the PRESS in the

septum. The small spectral linewidths allowed a good discrimina-

tion of the resonances of trimethyl ammonium (TMA) at 3.2 ppm

and CR at 3.01 ppm. Concerning quantification, a high correlation

between EPSI and PRESS was found in the estimated concentration

of TG and CR in the septum. A lower correlation was found in other

myocardial segments, in particular close to the posterior vein of the

left ventricle. EPSI spectra from these regions were characterized by

increased linewidths associated to B0 inhomogeneities.

In summary, the EPSI technique was demonstrated to be a valu-

able tool for the assessment of the spatial distributions of myocardial

TG and CR content.

The last part of the thesis (Chapter 4) focused on the develop-
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ment of a quantitative MRI technique for myocardial T1 quantifica-

tion based on MOLLI pulse sequence.

The influence of pulse sequence parameters on T1 estimation has

been investigated through numerical simulations of Bloch’s equa-

tions. Simulation results showed a complex dependence of the es-

timated T1 on scan parameters (flip angle, TR), tissue relaxation

times (T1,T2) and acquisition conditions (heart rate, B0-field in-

homogeneity). The use of minimum delay of six seconds between

inversion pulses reduced the dependency to heart rate on T1 estima-

tion compared to the original version of MOLLI which used a resting

period of three heartbeats between Look-Locker experiments.

Simulation results also showed that the perturbation of the lon-

gitudinal recovery due to SSFP readouts leads to a systematic T1

underestimation, and this negative bias increases for larger flip angles

and for tissues with shorter T2 and longer T1. Also, off-resonance

effects due to B0-inhomogeneities was shown to be a reason of fur-

ther T1 underestimation that increases for larger flip angles, longer

repetition times (TR) and for higher T1 values.

In-vivo results showed that the implemented pulse sequence al-

lowed the acquisition of images with different effective inversion

times in a single breath-hold. This ensured the spatial co-registration

between images, a fundamental prerequisite for performing pixel-

wise T1 mapping. T1 values obtained in healthy myocardium were

consistent with previous studies at 3.0 Tesla, with reasonable low

variations across myocardial segments. The T1 value measured in

the infarcted myocardium was found to be significantly higher, in

good agreement with values previously reported in literature. How-

ever, as anticipated by the simulation results, B0 inhomogeneities
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across myocardium led to an artefactual regional variation of T1.

Given the fact that 3.0 Tesla MRI systems often suffer from B0-

inhomogeneity issues, future work on this T1 mapping method will

be focused on the reduction of the sensitivity to off-resonance effects

and on the development of strategies for the compensation of T1 un-

derestimation, such as by incorporating the simulation results and

B0-field maps acquired in-vivo.

In this thesis, a variety of methods have been presented to address

some of the current limitations of cardiac MRI and MRS concerning

low SNR, motion sensitivity, long scan times and reproducibility

issues. The results achieved by the proposed methods may facilitate

the use of MRI and MRS in clinical settings for myocardial tissue

characterization.
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Appendix A

List of Abbreviations and

Symbols

AHA American Heart Association

AMARES Advanced Method for Accurate, Robust and

Efficient Spectral fitting

B0 Static magnetic field

B1 Radio-frequency magnetic field

CR CReatine

EPSI Echo Planar Spectroscopic Imaging

FID Free Induction Decay

FOV Field Of View

FOX Field Of EXcitation

GBCA Gadolinium-based Contrast Agents

IR Inversion Recovery

LFA Linear Flip Angle

LGE Late Gadolinium Enhancement
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List of Abbreviations and Symbols

MOLLI MOdified Look-Locker Inversion recovery

MRI Magnetic Resonance Imaging

MRS Magnetic Resonance Spectroscopy

PCA Principal Component Analysis

PRESS Point-RESolved Spectroscopy

RF Radio Frequency

RNAV Respiratory Navigator

ROI Region of Interest

SNR Signal-to-Noise Ratio

SSFP Steady State Free Precession

SV Single Voxel

T1 Longitudinal relaxation time

T2 Transverse relaxation time

TE Echo Time

TG Triglycerides

TI Inversion Time

TMA Trimethyl Ammonium

TR Repetition Time
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Appendix B

Authored and co-authored

publications

Publications in peer-reviewed journals

K. Weiss, N. Martini, P. Boesiger, S. Kozerke. “Cardiac proton

spectroscopy using large coil arrays”, NMR Biomed. 2013 Mar;

26(3): 276-84.

K. Weiss, N. Martini, P. Boesiger, S. Kozerke. “Metabolic MR

imaging of regional triglyceride and creatine content in the human

heart”. Magn Reson Med. 2012 Dec; 68(6): 1696-704.

G. Giovannetti, N. Martini, N. Di Lascio, N. Vanello, V. Posi-

tano, V. Hartwig, D. De Marchi , L. Lombardi, L. Landini, M.F.

Santarelli. “Filter design for phased-array MR image reconstruction

using super algorithm”, Concepts in Magnetic Resonance Part B
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Authored and co-authored publications

2012 Aug;41B(3), 85-93.

N. Martini, D. Menicucci, L. Sebastiani, R. Bedini, A. Pingitore, N.

Vanello, M. Milanesi, L. Landini, A. Gemignani. “The dynamics of

EEG gamma responses to unpleasant visual stimuli: from local activ-

ity to functional connectivity”. Neuroimage 2012 Apr 2;60(2):922-

32.

Publications in international conferences

N. Martini, K. Weiss, P. Boesiger, D. Chiappino and S. Koz-

erke, “Multi-channel Proton Spectroscopy of the Heart”, Proceed-

ings of the 19th Annual Meeting ISMRM, Montréal-Québec, Canada,

2011:1359.

K. Weiss, N. Martini, P. Boesiger, and S. Kozerke, “Two-

dimensional mapping of triglyceride and creatine content of the

human heart”, Proceedings of the 19th Annual Meeting ISMRM,

Montréal–Québec, Canada, 2011:619.

K. Weiss, N. Martini, P. Boesiger, and S. Kozerke, “Three–

Dimensional Local–Look Spectroscopic Imaging of the Heart”, Pro-

ceedings of the 19th Annual Meeting ISMRM, Montréal–Québec,

Canada 2011:620.

K. Weiss, N. Martini, P. Boesiger, and S. Kozerke, “Local-look nav-

igator gated and cardiac triggered echo-planar spectroscopic imaging

of the heart”, J Cardiovasc Magn Reson. 2011; 13(Suppl 1): O78.
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