

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 329

Usage of Call Graph for Representing Software Component

Interactions

Nor Laily Hashim
1
,

and Noraini Ismail

2

1School of Computing, Universiti Utara Malaysia, laily@uum.edu.my
1School of Computing, Universiti Utara Malaysia, mail.noraini@gmail.com

ABSTRACT

A call graph is a ubiquitous representation in most

aspect in software engineering. This paper presents

an initial proposed technique to represent

components relationships in the form of a call

graph. To support this study, this paper will cover

types of component, a technique used to extract

information of component integration, and a

process of constructing a call graph, in order to

represents the relationship of the component in the

software.

Keywords: component, call graph representation,

static analysis technique.

I INTRODUCTION

A software component can be a single part of

software that can be integrated with each other.

Two components are integrated if they can

potentially react to the same events (Fiege, 2005),

which is by passing messages through their

interfaces when the components provide or require

for specific events (Inverardi & Tivoli, 2003). The

communication between components is typically

realized by procedure calls or any kind of

messaging.

When new components are integrated, the newly

added component has an impact to another

component, and it can also be used by other

components. Due to this situation, the program

may crash or immediately stop the execution of the

system. For this reason, a programmer must scan

through the program and investigate which

components are causing the errors.

To show the flow of the system, the programmers

need to refer to the software program to check the

program line of code. This task will become more

complex and time consuming when it requires

scanning through the line of codes as it requires

knowledge of the developers to handle this

problem.

To assist the programmer to overcome this

difficulty, this research presents a call graph to

display the information flow of the program without

referring to the line of codes.

The organization of this paper is structured as

follows. Section 2 presents a brief about software

component which is applied in this study. Section 3

explain other technique that to represent software

component. Section 4 explained the detail of call

graph representation. Section 5 proposes the

process of constructing call graph to represent

component relation, and finally Section 6 contains

the conclusion.

II SOFTWARE COMPONENT

This section covers software components which is

related concepts of this work that includes the

definition of component, component integration

and the techniques to extract the component

integration

There have been many discussions about

component specification. The common definition

for component has been stated by (Briand et al.,

2006 and Wu & Woodside, 2004), is the most used

today is as follows:

“A unit of composition with contractually specified

interfaces and explicit context dependencies only.

A software component can be deployed

independently and is subject to composition by

third parties”.

The two components are related if they can

potentially react to the same events (Fiege, 2005),

which is by passing the message through its

interface when component provides or requires

specify events (Inverardi and Tivoli, 2003). The

communication between components is typically

realized by procedure calls or any kind of

messaging.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UUM Repository

https://core.ac.uk/display/20366002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 330

Component can be a single part of software that

can be integrated to each others. Reekie, & Lee

(2002) defined software components as “binary

units of independent production, acquisition, and

deployment that interact to form a functioning

system". He also clarifies that “binary" means any

format that can be executed by a target machine.

This may be serial coded for a specific processor,

or virtual machine code, or in some cases even

source code (as in some scripting languages).

A. Component Integration

Software component integration is the one of the

main problems in the development of software

system. It can be approached from different views

including infrastructures and characteristics of

individual components which might support

integrations (Rader, 1997).

When designing integrated systems, components

are required to refer to other components using

simple object oriented techniques to create an

interaction between components. To detect the

most wanted behaviors, components will need to

call up each other. When the interactions succeed

in the dependence between components, it results

in coupling which prevents separate compilation of

integrated component (Rajan & Sullivan, 2005).

The main purpose of integration is to ensure the

interactions between their environment and

components are properly working. The integration

of system must be assessed on the final platform,

either when the system is modified or system is

starting (Piel & Gonzalez-Sanchez, 2009). For this

study, the integration between components is very

important to ensure that call graph will be created

correctly in order to identify the relationship of the

components in the system.

B. Technique to Extract Component

Integration

This section explains the techniques used in

extracting software component. There are two

types of extraction techniques: static analysis and

dynamic analysis. Static analysis is a method of a

computer program debugging that is conducted by

examining the code without executing the program

Dynamic analysis is conducted by examining the

code when the program is executed. Both

techniques provide an understanding of the code

structure, and can assist to ensure that the code

adhere to industry standards (Bergeron et al.,

2001). In this study, static analysis is used to

extract the component from the source code to

construct the call graph, as time is not important

factor to consider in this study.

By extracting component interaction information

using static analysis technique, the call graph can

be constructed from the source code of the

program. However, discovering the static call

graph from the source code would involve two

steps: (1) finding the source code of the program

(which may sometime not be available), (2)

scanning and parsing of the code, which may be

written in several languages. But in some condition

where source code is available, to obtain the graph

is still a challenging task, as it needs high

understanding when observing system call trace,

which requires time and expertise (Eick et el.,

2002). The comparison between static analysis and

dynamic analysis are as follows:

Table 1 Comparison of static and dynamic analysis (Bergeron et

al., 2001)

Characteristics of static

analysis

Characteristics of

dynamic analysis

Allows complete analysis,

because they are not bound

to a specific execution of a

program and can guarantee

all executions of the

program.

Allows examination of

behaviors that

correspond to selected

test cases.

Judgment can be given

before execution.

Judgment cannot be

given before execution.

There is no run-time

overhead.

Perform on execution

programs.

III REPRESENTING SOFTWARE

COMPONENT

This section explained the technique to

representing software component. In order to show

the component relation in a program, programmers

have to understand the operations of the program.

Understanding the operation is one of the most

time-consuming activities especially when the

programs are complex, all relevant information

must be extracted from the system.

However, buy using different techniques, it will

help work become easier, software representation

allows the building of a system for critical code

review, which can support process relatively easier

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 331

for formalization and understanding. Some of

techniques to represent software are shown in the

figure 1.

Figure 1. Different techniques in representing software

Base on Figure 1, to identify the software

components representation, two different

techniques have been studied which are through

principal visualization metaphors, and model.

A. Principal Visualization Metaphors

Principal visualization metaphors are an effective

visual representation to represent the software. The

five primary forms of visualization are matrix

views, cityscape views, bar and pie charts, data

sheets and network views that are related to

software structure (Eick et el., 2002, Lanza, 2001).

It collects the data about the software routinely and

shows it based on colours, different aspects of the

data will use the different visual metaphor for each.

The details of each form of representation software

are base on the analysis by [12] on their studied on

visualization.

B. Model

The model of software is necessary use for the

development of complex and large systems, and it

is very useful when dealing with firsthand. Beside,

software models are abstractions from code. It can

serve as input for program generators and provide

documentation to developers as well (ClauÃŸ,

2001).

The main purpose of engineering models is to

make possible for developer to understand the

important aspects of a complex system before

going actual constructing. A quality of the model

can help developer on features of a system where

there is uncertainty either about requirements or

about the capability of a proposed solution. Base

on figure 2.3, there are four models to be studied to

identify the technique to choose for representing

component in software which are Unified Model

Language (UML), Finite state machine, Markov

chain and dependence graph.

For this study, dependence graph is used as a

model to representing component software. A

dependence graph relates a variable at one

program, point to a variable at another program. In

the other words, the dependence graph is

represented the dependencies between operations

in a program.

The model introduces a node and edge to represent

its dependencies. The nodes of the graph represent

functions in the program, and edges connecting the

nodes represent call paths in the program

(Hashemi, 1997). Furthermore, the dependence

graph also can be used to determine which

functions are called by a particular function.

IV CALL GRAPH REPRESENTATION

Call graph is one types of dependence graph. This

section describes call graph in representing

component software. In Graph theory, a graph

represents a collection of nodes that may or may

not connect among each other by lines (Deo, 2004).

It never considers the size of the nodes, how long

the paths are, or whether the paths are straight, or

curved. The study of graph properties can be

helpful in understanding the characteristics of the

software systems (Chatzigeorgiou, 2006), as well

as representing any pair of relations between

objects from a certain collection (Deo, 2004).

There are many graph representations that have

been proposed in recent years to represent variety

of features of a program. Basically, a

representation of a program can capture

characteristics of the program that are of interest in

the area of studies (Mall & Samanta, 2009).

Besides, this representation is also another way to

display information; it helps to break the size and

complexity of the software.

Unified Model

Language (UML)

Finite state

machine

Markov chain

Dependence
graph

Matrix views

Cityscape views

Bar and pie charts

Data sheets

Representation

Model

Principal

Visualization
Metaphors

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 332

Call graph also represents the connectivity of

interactions between the components in their

relationships. Moreover, it provides binary relation

over selected entities in a program, such as

methods, classes, subsystem, modules or files. Call

graph shows the relation that could be made from

one to another entity in any possible execution of

the program (Xie & Memon, 2008). Moreover, the

call graph is suitable in analyzing tracks of the

flow’s values between various modules of a

program.

By constructing a call graph, nodes of the graph

represent functions in the program, and edges

connecting the nodes represent call paths

(Hashemi, 1997). When trying to understand a

system, using the call graph is one of the

techniques that are used in software engineering, to

ensure that the functions of the system are correctly

executed. Call graph is a basic program

analysis result that can be used for human

understanding of programs, or as a basis for future

analysis [18]. To represent component, the call

graph is directed, from a caller to a callee.

Specifically, each node represents a procedure and

each edge (a,b) indicates that procedure a calls

procedure b. Thus, a cycle in the graph indicates

recursive procedure calls.

V PROCESS CONSTRUCTING CALL

GRAPH

This section contains a proposed process of

constructing a call graph that represents

components software. To construct a call graph,

tools are necessary to use to extract component

information and to constructing a call graph. The

processes of the overall call graph creation a

components level is shown as follow (see Figure

2):

Figure 2. Process in creating a call graph

The first activity requires a software application

which has different as an input. The applications of

the components must be working properly.

Next, this process requires collecting component

information from source code from the sample.

This program is developed to extract the

information of component’s interactions which are

selected from the program source code. The

component interaction information is extracted

using static analysis technique. This program will

produced a text file in dotty format, which is graph

text format.

This method uses filter that exclude Java APIs

component library’s method names. Therefore, any

methods that are not listed as interface operations,

such as execution of Java APIs methods, private

methods, or any public methods that are not

defined in the component interface are ignored.

The technique to extract traces of the software

components interaction used in this research is a

static analysis which examines code without

performing the program execution.

Lastly, based on the information of component

interaction in previous process, this phase will used

tool name Graphviz (which can be freely

download) to represent a call graph to show the

interaction of component in software.

VI EXPECTED CONTRIBUTIONS

It is expected that this work will contribute to

produce a call graph representation that will

provide the information of components relating to

their interactions, positions and the name of the

component that are involved in the software. This

information is useful to identify the flow of the

system in software.

Furthermore, to produce a call graph also will

provide an effective way for those who are

unfamiliar with the location of software

components by showing them in the form of a call

graph which makes it easier for them to understand

the flow of software systems when compared to

code review. Code review requires careful

examination of each line of code in order to find

the component in software.

Existing software

which is developed

by using components

Extracting components

by using static analysis

technique

Produce a call graph

to show components

relationship

Input

Process

Output

Software 1

Parse Source

Code
2

Create Call

Graph
3

Knowledge Management International Conference (KMICe) 2012, Johor Bahru, Malaysia, 4 – 6 July 2012 333

VIII CONCLUSION

As a conclusion, this paper highlights the definition

of component, component integration and the static

analysis use as a technique to extract the

component which is applied in this study. This

paper also covers other techniques in representing

software component either by using principal

visualization metaphor or by using a model. For

this study, model is use to represent component

software in form of call graph. The call graph is

referred base on graph theory which is used by

Mall & Samanta, (2009). In order to archive an

objective to representing a call graph, process in

creating a call graph also has been proposed.

REFERENCES

Ayewah, N., Hovemeyer, D., Morgenthaler, J. D., Penix, J., & Pugh,

W. (2008). Using static analysis to find bugs. Software, IEEE,
25(5), 22-29.

Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M. M., Lavoie, Y.,

& Tawbi, N. (2001). Static detection of malicious code in
executable programs. Int. J. of Req. Eng, 2001, 184-

189.Briand, L. C., Labiche, Y., and SÃ³wka, M. M. (2006).

Automated, contract-based user testing of commercial-off-the-
shelf components.

Chatzigeorgiou, A., Tsantalis, N., & Stephanides, G. (2006).

Application of graph theory to OO software engineering.
Paper presented at Proceedings of the 2006 International

Workshop on Workshop on Interdisciplinary Software

Engineering Research.
ClauÃŸ, M. (2001). Generic modeling using UML extensions for

variability. Paper presented at the Workshop on Domain

Specific Visual Languages at OOPSLA.
Deo, N. (2004). Graph theory with applications to engineering and

computer science: PHI Learning Pvt. Ltd.

Eick, S. G., Graves, T. L., Karr, A. F., Mockus, A., & Schuster, P.
(2002). Visualizing software changes. Software Engineering,

IEEE Transactions on, 28(4), 396-412.

Fiege, L. (2005). Visibility in Event-Based Systems. Unpublished Phd,
Technische University at Darmstadt, Darmstadt, Germany.

Hashemi, A., Kaeli, D., & Calder, B. (1997). Procedure mapping

using static call graph estimation. Paper presented at Proc.
Workshop Interaction Between Compiler and Computer

Architecture.
Inverardi, P and Tivoli M. (2003). Software architecture for correct

components assembly. Formal Methods for Software

Architectures, 92-121.
Lanza, M. (2001). The evolution matrix: Recovering software

evolution using software visualization techniques. Paper

presented at the Proceedings of the 4th international workshop
on principles of software evolution.

Mall, R., & Samanta, D. (2009). A dependence graph-based

representation for test coverage analysis of object-oriented
programs. ACM SIGSOFT Software Engineering Notes, 34(2),

1-8.Xie, Q., & Memon, A. M. (2008). Using a pilot study to

derive a GUI model for automated testing. ACM Transactions
on Software Engineering and Methodology (TOSEM), 18(2),

7.

Piel, E and Gonzalez-Sanchez, A. (2009). Data-flow integration
testing adapted to runtime evolution in component-based

systems. Paper presented at the Proceedings of the ESEC/FSE

workshop on Software integration and evolution@ runtime.
Rader, J. A. (1997). Mechanisms for integration and enhancement of

software components. Paper presented at the Proceedings Fifth

International Symposium on Assessment of Software Tools
and Technologies.

Rajan, H and Sullivan, K. (2005). Classpects: unifying aspect-and

object-oriented language design. Paper presented at the

Proceedings of 27th International Conference on Software
Engineering (ICSE).

Reekie, H. J., & Lee, E. A. (2002). Lightweight component models for

embedded systems. Electronics Research Laboratory, College
of Engineering, University of California.

Wu, X., & Woodside, M. (2004). Performance modeling from

software components. ACM SIGSOFT Software Engineering
Notes, 29(1), 290-301.H. Reekie, and E. Lee. Lightweight

Component Models for Embedded Systems: Electronics

Research Laboratory, College of Engineering, University of
California, 2002.

Xie, Q., & Memon, A. M. (2008). Using a pilot study to derive a GUI

model for automated testing. ACM Transactions on Software
Engineering and Methodology (TOSEM), 18(2), 7.

Xue, J., Hu, C., Wang, K., Ma, R., & Leng, B. (2009). Constructing a

Knowledge Base for Software Security Detection Based on
Similar Call Graph. Paper presented at 2009 Second

International Conference on Computer and Electrical

Engineering.

