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Homogenisation of Slender Periodic Composite Structures 

Julian Dizy, Rafael Palacios* , and Silvestre T. Pinho 

Department of Aeronautics, Imperial College, London, SW7 2AZ, United Kingdom 

A homogenisation technique is introduced to obtain the equivalent 1-D stiffness properties of complex slender 

periodic composite structures, that is, without the usual assumption of constant cross sections. The problem is posed 

on a unit cell with periodic boundary conditions such that the small-scale strain state averages to the large-scale 

conditions and the deformation energy is conserved between scales. The method can be implemented in standard 

finite-element packages and allows for local stress recovery and also for local (periodic) nonlinear effects such as 

skin wrinkling to be propagated to the large scale. Numerical examples are used to obtain the homogenised 

properties for several isotropic and composite beams, with and without transverse reinforcements or thickness 

variation, and for both linear and geometrically-nonlinear deformations. The periodicity in the local post-buckling 

response disappears in the presence of localisation in the solution and this is also illustrated by a numerical example. 

Nomenclature 

b = unit cell depth, m 

����� = material elasticity tensor 

�� = large scale local rotations, rad 

E = Young’s modulus, Pa 

� = beam strains 

��� = infinitesimal strain tensor 

G = shear modulus, Pa 

ν = Poisson’s ratio 

L = length of the beam, m 

Ω = volume of the unit cell, m3 
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	 = homogenised 4 � 4 stiffness matrix 


 = elastic strain energy, J/m 

�� = large scale local displacements, m 

�� = small scale displacement field, m 

�� = warping field, m 

1. Introduction 

Despite significant advances in computational power in the last decade, which allow direct solid modelling of most 

engineering structures, there is still a practical interest in dimensionally-reduced structural models. Beam models, in 

particular, provide excellent approximations of the primary structures for low-frequency aeroelastic analysis of high-

aspect-ratio wings, helicopter rotor blades or wind turbines. A review of the available analysis methods was 

presented by Palacios et al., (2010). They have also proved to be very useful in the study of carbon nanotubes (Li 

and Chou, 2003), marine riser pipes (Kaewunruen et al., 2005) and proteins (Leamy and Lee, 2009), among others. 

The simplicity of construction of the models also makes them essential tools in many other applications for 

conceptual studies. A great deal of effort has been put into developing composite beam models (Hodges, 2005), able 

to account for elastic couplings in reduced one-dimensional models. In general, the modelling process can be split 

into two different stages: Firstly, there is a homogenisation step, which determines the constitutive relations of the 

reduced model (i.e., beam sectional properties); secondly, there is a solution step, in which one evaluates the 

response of the dimensionally-reduced model to the set of applied loads. Both stages are interrelated as assumptions 

on one affect the other. The equations of motion in the solution stage have been well developed, including 

geometrically-nonlinear effects, in the works of, for instance, Simo and Vu-Quoc (1986); Cardona and Geradin 

(1988) and Hodges (1990; 2003). The constitutive relations in that first stage, which will be the focus of this work, 

have been mostly obtained under the assumption of constant (or slowly-varying) cross sections. 

 For composite beams, one of the most successful approaches in dealing with arbitrary sectional properties is the 

Variational Asymptotic Method (VAM) (Cesnik and Hodges, 1997). The analysis asymptotically approximates the 

3-D warping of the displacement field that minimizes the cross-sectional deformation energy for each beam strain 

state and thus finds the constitutive relations for the 1-D beam analysis. After the global deformation from the 1-D 

(possibly nonlinear) beam analysis is obtained, the original 3-D displacements, stresses and strains can also be 
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recovered using those 3-D warping influence coefficients. It is worth noting that solutions based on VAM only 

apply to the interior solutions in constant-section beams.. Very recently, Lee and Yu (2011) have proposed, as a 

partial remedy to that shortcoming, to use the smallness of the heterogeneity and incorporate a spanwise dimensional 

reduction, in the homogenisation step of the variational asymptotic method. The resulting formulation is then similar 

to that obtained by the Formal Asymptotic Method (Buannic and Cartraud, 2001a, b; Kim and Wang, 2010), which 

exploits the existence of two scales in the original dynamic 3D equations governing the elastic response of the beam 

structure to perform an asymptotic homogenisation. However, it is not always apparent in the original formulation 

how to define an adequate set of boundary conditions, implementing it numerically or adapting it to conventional 

engineering models. This was later remedied by Cartraud and Messager (2006), which restricted the solution to the 

four “classical” beam elastic states (axial, torsion and bending in two directions). The resulting problem was then 

implemented in a commercial finite-element package (Samcef). This work resulted in an approach similar to that of 

Ghiringhelli and Mantegazza (1994), who had modified a finite element software’s matrix solving procedure in 

order to obtain the beam section properties. 

A further possibility is that proposed by Kennedy and Martins (2012), which builds a kinematic description of the 

beam from a linear combination of fundamental state solutions. The first fundamental solutions are axially-invariant, 

and their corresponding deformation state is calculated at the mid plane of the beam by using a 2D finite-element 

method to obtain the stresses and strains due to the Saint-Venant (axial, bending, torsion and shear) (Ieşan, 1986a) 

and Almansi-Michell (distributed surface load) loadings (Ieşan, 1986b). This method yields solutions with accuracy 

comparable to that of full 3-D analysis using the Finite-Element Method (FEM) as long as the sections do not vary 

along the axis of the beam and the loads are statically determined. A similar superposition method is used by 

Jonnalagadda and Whitcomb (2011) to calculate the transverse shear components of the stiffness matrix. Their 

approach is based on applying to the section a bending moment equal in magnitude, but with opposite sign, than that 

created by the shear force. This is presented for isotropic structures of constant cross sections. 

 The previous solutions either were limited to constant-section geometries, required dedicated –and often quite 

involved– implementations, or user-created modules or subroutines in a standard finite-element solution package. 

Furthermore, the mentioned methodologies are linear approaches that therefore only provide strength estimates 

based on linear stress and strain distributions. Due to their high strength-stiffness ratio, composite thin wall 

structures usually exhibit local or distortional buckling before material failure (Qiao and Shan, 2005) and this is 
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often a design constraint. Consequently, the objective of the present work is twofold: 1) to introduce a general 

methodology to evaluate both the elastic constants and local buckling characteristics, such as skin wrinkling (Su and 

Cesnik, 2011), of composite beams with spanwise periodic properties; and 2) to define in such a way that can be 

implemented into a general-purpose finite-element code, thus taking advantage of all the advanced modeling 

features of the leading commercial packages. Similarly to the work of Lee and Yu (2011) and Cartraud and 

Messager (2006), the methodology will be based on the static analysis of a unit cell, which will be assumed to be  

much smaller than the characteristic wavelength in the beam response. The final equations to obtain the beam 

stiffness matrix have been solved using periodic boundary conditions in an off-the-shelf finite-element solver 

(Abaqus) and with models which are assembled using tie constraints from substructures with non-coincident nodes, 

which considerably simplifies model generations with a negligible impact on the homogenised properties. The 

solution method is finally extended to certain geometrically-nonlinear (but still periodic) problems. 

2. Theory 

Consider a slender prismatic solid made by repeating a periodic cell along its longitudinal dimension  

(see Figure 1). The transverse dimensions of the structure, h are much smaller than the characteristic longitudinal 

dimension . The coordinate y in the reference configuration defines the reference line for the 1-D large scale 

(beam) which coincides with the neutral axis. The longitudinal dimension of the cell is . To obtain the 

homogenised elastic constants, linear assumptions are used for the kinematics and the local material properties. 

The adopted solution relies on two assumptions made between scales to deduce a set of periodic boundary 

conditions and obtain the beam stiffness constants (Geers et al., 2010). These assumptions are: a) the large scale 

(macroscopic) variables ( ) are averages of the small scale (microscopic) ones ( , and b) the deformation 

 
Figure 1: Schematic diagram of a slender periodic 

structure with unit cell representation. 
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energy is conserved between scales. The large scale is associated with the 1-D beam level as described above, and 

the small scale is associated with the dimensions of the cross section (x2 and x3) and the unit cell (x1). The 

formulation described here is a first-order theory and does not include the effects from transverse shear. All 

throughout this section, Einstein notation is used for repeated indices, with Latin indices assuming values from 1 to 

3 and Greek ones assuming values of 2 and 3.  

2.1. Kinematics 

Under linear assumptions, the deformation of the reference line can be described by three local displacements 

����� and three local rotations ����� along the axes �� of the coordinate system in Figure 1. The beam strain 

measures are obtained from linearization of the strain-displacement kinematic relations in Palacios et al. (2010), as 

 

����� � ��� , 

����� � ��� � �����, 

  ����� � ��
�, 

(1)  

with ��� being the Levi-Civita or permutation symbol. If we further assume ����� � 0, i.e., a first-order theory, that 

implies 

 �� � �� 
� ;  � � ��

� . (2)  

We define the vector of first-order beam strains containing extensional strain ��, bending curvatures in two 

directions ��, �  and torsional curvature ��, as 

 �# � $�� �� �� � % . (3)  

At the small scale level, we consider the 3-D deformation of a cell of volume Ω centred at y (see Figure 1). The 

undeformed position within the cell will be given by coordinates ��, where �� is parallel to �, but measures lengths 

at cell scales (i.e.,
&'(
&) � *

+) and it can be seen as magnified coordinate system. The three components of the small 

scale displacement field are ����; ��, ��, � �. The two longitudinal dependencies are introduced to separate between 

small scale �~��� and large scale fluctuations �~�� of the structural deformations (Lee and Yu, 2011). The warping 

field, ��, is then defined as the difference between the small and large scale displacement fields, as 
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����; ��, ��, � � � ����� � ���������� - ����; ��, ��, � �, 

����; ��, ��, � � � ����� � ���������� - ����; ��, ��, � �, 
(4)  

 Note that if the warping field is zero, Eq. (4) is the kinematic assumption used in Timoshenko beam theory (or 

Euler-Bernoulli theory if the condition of Eq. (2) is enforced) which has been referred to as the fundamental solution 

in asymptotic theories (Kim and Wang, 2010). In general the warping field will depend on the cell and 

correspondingly it was explicitly written as a function of the spanwise coordinate, �.  

 The independent large scale variables are defined from averages in the cell, as 

 

����� � 〈��〉, 

 ����� � �
� 〈� ,� � ��, 〉, 

(5)  

where 〈•〉 � (
1 2 • 3��3��3� 1  and •,�� 4•

4'5
. If we take the reference axis at the centroid, i.e. 〈��〉 � 0, then these 

definitions impose four constraints on the warping field, 

 

〈��〉 � 0, 

 〈��, � � ,�〉 � 0. 

(6)  

2.2. Equilibrium conditions 

Our interest is in the interior solution of the problem to obtain the 4 � 4 homogenised stiffness matrix, 	, and these 

can be obtained simply by assuming constant large scale strains, that is, ���� � ϵ7. We then postulate constitutive 

relations in the homogenised problem such that the strain energy is conserved between the small and large scale 

levels (Geers et al., 2010). Due to the periodicity of the problem, the small scale strain energy per unit beam length 

is independent of the cell in the interior solution, and it is 

 
 � �
� ϵ78	ϵ7 � �

�* 2 �����������3��3��3� Ω
, (7)  

with ��������, ��, � � being the material elasticity tensor and ��� � �
� ���,� - ��,�� the components of the small scale  

strain tensor. Define now the magnitudes Δ�� � �� :�; *
� , ��, � ; � �� :�; � *

� , ��, � ;. Eq. (4) becomes 
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Δ����; ��, � � � �̅�= � ������̅�= - Δ����; ��, � � 

Δ����; ��, � � � �������̅�= - Δ����; ��, � �. 

(8)  

For this solution to be independent of the cell, it must be Δ����; ��, � � � 0, i.e., the warping field is periodic. This 

can also be concluded arguing that, due to periodicity, the strain field must be compatible and the only difference in 

displacement allowed between both faces of the cell is a rigid body motion, which does not create strain. We are 

finally left with the problem of obtaining the static equilibrium conditions on a generic cell under an applied 

displacement field given by 

 

�� :*
�, ��, � ; �  �� :� *�, ��, � ; - �̅�= � ������̅�=, 

��>?
@, ��, � A �  ��>� ?

@, ��, � A � ������̅�=. 

 

(9)  

where the reference to the long-scale coordinate, �, is no longer necessary. This problem can be set up in any 

standard FEM solver using multipoint constraints to enforce the periodic boundary conditions defined by Eq. (9)  

Ten different combinations of loading cases are then considered, corresponding to unit values in each of the four 

components of the beam strain �,̅ and unit value in each of the six possible different pairs of strains (e.g., coupled 

axial/torsion, axial/��-bending, and so on). For each load state, the strain energy per unit length is then computed 

from the solved model using the right hand side of Eq. (7), which is then used to solve the 10 independent 

coefficients of the stiffness matrix, 	.  

2.3. Extension to geometrically nonlinear, periodic formulation 

The previous formulation can be directly extended to geometrically-nonlinear problems in two situations: Firstly, 

when the nonlinear effects appear in the macroscopic scale but relative displacements are still small at the local 

(cross-sectional) scale; and secondly, when there are geometrically-nonlinear effects at the cell level but the solution 

is still periodic. The first problem can then be seen as a linearization around a different reference condition but it 

remains fundamentally unchanged. This is the problem encountered in geometrically-nonlinear beam modelling with 

constant (elastic) stiffness matrices (Cesnik et al., 1996). A more interesting situation appears in the second scenario, 

when there are geometrically-nonlinear effects at the cell level and all the cells in the structure deform equally. A 
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relevant example of this corresponds to the panel buckling (or skin wrinkling) in aircraft wings. If all cells are under 

the same loading, as it is assumed in the homogenisation procedure, then buckling will simultaneously initiate in all 

cells. The periodicity will then hold until localisation occurs (Pinho et al., 2006). This will be numerically 

exemplified in the section 4.3. 

Assuming that the cell undergoes large local displacements (relative to the typical cell dimension, B) but that the 1-

D beam displacements are still linear (the length scale there, C, is still very large), then the local 3-D strains obtained 

from the geometrically-nonlinear solution on the cell can be used to obtain the current beam stiffness. In this case, 

the local 3D strains are calculated in the deformed geometry and the volume integral in the strain energy calculation 

of Eq. 7 corresponds to the current configuration. In this paper, we will further assume that the end sections of the 

cell, at �� � D *
�, do not have large relative rotations, and therefore the periodic boundary conditions defined by Eq. 

(9) remain unchanged (this occurs, for instance for the local buckling analysed in section 4.3). For the more general 

cases that still show periodicity of the warping field, but also include large relative rotations between the end cell 

sections, a more general formulation would be required. This is however beyond the scope of this work. 

3. Numerical implementation 

There are four basic steps involved in the implementation of the homogenisation procedure described above into the 

finite element software Abaqus (SIMULIA, 2010). The solution process has been schematized in Figure 2:  

I. The geometry of the cell is created using a Python script whose inputs are cell dimensions, mesh density, 

material properties and type of analysis. Using this data, an Abaqus standard input file is generated 

including a set of periodic boundary conditions from Eq. (9). Each loading case is introduced via a different 

(fictitious) master node for which prescribed displacements are applied. 

II. The model is meshed using ‘C3D8R’ (3D-cuboid-8node) elements with reduced integration for the 

calculation of the linear stiffness properties and full integration ‘C3D8’ in the case of a buckling analysis or 

complicated geometries. This is due to the complexity of buckling deformed shapes and hence the 

likelihood of hourglassing and other convergence problems. For the anisotropic cases, each element has its 

own local coordinate system that defines the ply orientation (each composite ply is modelled with a layer of 

elements). For the homogenisation step, details such as stress concentrations at joints have a very small 

effect in the beam stiffness constants and therefore the meshing can be done independently for the various 
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subcomponents of the cells (e.g. rib, spars, skin in a wing example),  which are finally linked via tie 

constraints in the Abaqus model (SIMULIA, 2010). This gives a big flexibility to the generation of the 

FEM model. 

III.  The requested set of analyses is then performed: standard linear elastic with ten load cases –corresponding 

to each of the loadings (extension, twist, bending in both directions) and the pair-wise combinations of 

these–, a linear perturbation buckling analysis or a fully nonlinear analysis. 

IV.  Then the Abaqus output database (.odb) file generated from the analysis is read automatically. This step 

further justifies the use of Python as Abaqus uses this language internally for analysis and database 

organization. Finally, the elastic strain energy is integrated for the whole model and using Eq. (7) the 

stiffness matrix is calculated for the unit cell. 

Note that this approach is however independent of the particular scripting language or FEM package used. All 

the information can be written into a standard Abaqus model and the solution procedure requires no user-

defined modules in the FE solver. 

4. Numerical studies 

The methodology described above is exemplified here via four case studies of increasing complexity. The first 

case (section 4.1) is a model of a prismatic isotropic box-beam that includes transverse reinforcements. The second 

case is based on a laminated thin-walled cylinder used to substantiate the implementation of composite materials and 

 

Figure 2: Flow of information between the large and small scales 

FE: PBC’s

LARGE SCALE

SMALL SCALE

EFF�GHIJKL:
� � � �̅

NLOK: P, QNLOK: S

EFF�GHIJKL:

RST�� RUT�V � 
�TWXV RUT�V

I

II

III

y



 

compare the results to those obtained 

considered with periodic variations of 

strain prediction and evaluates the residual 

blade section that is used to illustrate effective complex sectional modelling 

4.1. Isotropic prismatic box beam with transverse reinforcements

This first model is a ribbed prismatic 

E=70GPa, ν=0.3) with width and height equal to 2m

distance between ribs is b=1m, which 

beam of length L=20m is built-in on one end and 

constraint and a reference point at the other end. 

nodes and is partially shown in Figure 

a twentieth of that number. There are ten elements along the height, width and span of one cell

the thickness. The transverse reinforcements in both models (full and unit cell) are added to the model via tie 

constraints, which avoids local mesh refinement in the joints between rib and outer skin

Mises stress contour of the full structure subject to a 

Stiffness results are summarized in 

results from thin-walled beam theory

shows the effect of adding a transverse 

Figure 3: Vertical cut-out of the deformed reinforced box
( 3

10 

obtained using UM/VABS (Palacios and Cesnik, 2005); then,

with periodic variations of the wall thickness. The third case (section 4.3) introduces

the residual post-buckling stiffness. Finally, section 4.4 shows 

that is used to illustrate effective complex sectional modelling using tie constraints.

beam with transverse reinforcements 

prismatic box beam made out of homogenous isotropic material (

and height equal to 2m and 1m, respectively, and with 0.025

which defines the unit cells. In order to define a reference for comparison,

in on one end and all the loads or moments are applied via a

constraint and a reference point at the other end. The full model is meshed using 10400 C3D8R elements 

Figure 3 (a cut-out has been included for better visualization)

There are ten elements along the height, width and span of one cell

The transverse reinforcements in both models (full and unit cell) are added to the model via tie 

, which avoids local mesh refinement in the joints between rib and outer skin. The geometry 

structure subject to a tip bending moment (3=0.1m-1) are shown in 

results are summarized in Table 1 and compared with results without ribs obtained by

walled beam theory; b) full 3D FEM analysis using static loading; c) UM/

shows the effect of adding a transverse rib of the same thickness of the outer walls at the cells

out of the deformed reinforced box-beam model under tip moments 
3=0.1m-1). Contour plot shows von Mises stress 

, 3D solutions are 

introduces the local buckling 

shows a composite rotor 

using tie constraints. 

made out of homogenous isotropic material (aluminium: 

0.025m-thick walls. The 

In order to define a reference for comparison, a full box-

all the loads or moments are applied via a rigid body node-

is meshed using 10400 C3D8R elements with 17421 

out has been included for better visualization). The unit cell mesh has 

There are ten elements along the height, width and span of one cell, and three through 

The transverse reinforcements in both models (full and unit cell) are added to the model via tie 

The geometry and the von 

) are shown in Figure 3.  

results without ribs obtained by: a) analytical 

UM/VABS. The last column 

cells’ mid-span position.  

 

beam model under tip moments 
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The agreement of the results produced by this homogenisation method is excellent both with the theory and the 

current available tools. The small discrepancy that thin-wall theory has, in the case of torsion, with both UM/VABS 

(Palacios and Cesnik, 2005) and the proposed method, is due to the thin-wall assumption of the former. The addition 

of the transverse wall results in a small change, which can nevertheless be estimated with the present approach. 

 

4.2. Laminated cylinder with constant ply angle and span-wise variable thickness 

Two subcases are considered: a 2-ply, constant-fibre-orientation-angle circular cylinder, which will be used to 

demonstrate the stiffness variation as the ply angle changes; and a modified section of this, that will be used to 

exemplify the approach for cross sections of varying thickness along the span. Material orientations are taken 

clockwise around the circumferential direction of the tube, with the x1 direction as the reference for a zero degree 

ply angle. 

Table 1: Homogenised stiffness constants for the prismatic box beam. 

Stiffness  

constant 

No ribs  With ribs 

Analytical 

(Thin 

wall) 

FE 

(full 

beam) 

UM/VAB

S 

Present 

method 

FE 

(full 

beam) 

Present 

method 

S11(EA) [GN] 10.3 10.3 10.3 10.3 10.5 10.5 

S22(GJ) [GNm2] 1.79 1.71 1.71 1.71 1.72 1.72 

S33(EI33) [GNm2] 1.91 1.91 1.91 1.91 1.94 1.94 

S44(EI22) [GNm2] 5.58 5.58 5.58 5.58 5.62 5.62 
 

Table 2: Ply properties of the laminated cylinder 

E11=1.42×1011 Pa E22= E33=9.8×109 Pa 

G12=G13=6.0×109 Pa G23=4.8×109 Pa 

ν12= ν13=0.3 ν23=0.3 
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For the reference (constant-section) case, the cylinder has unit radius, R=1m, measured to the outer wall, and 5% 

thickness (t=0.05m), as depicted in Figure 4. The length of the unit-cell model, which does not affect the 

homogenised results, is b=0.1m. This has been meshed with 320 C3D8R elements (724 nodes). There are two 

elements per 9 degrees, one per ply and two in the span direction (only one is needed). The material properties of the 

composite used are given in Table 2. 

The non-zero terms of the 4x4 stiffness matrix have been plotted in Figure 5 together with the results obtained 

using UM/VABS (Palacios and Cesnik, 2005). These terms include: extensional (S11), torsional (S22), and bending 

(S33) stiffnesses plus the coupling between the first two (S12). Only one bending stiffness is shown in the figure, as 

the section is symmetric. The evolution of these constants with the ply angle agrees very well between both methods 

and the error is always less than 0.1%. 

 

 

Figure 4: Cross-sectional discretization and dimensions of the 
reference laminated cylinder. (Cell model is 3-D.) 

 



 13 

 

Figure 5: Stiffness constants as a function of the ply angle for the laminated cylinder with constant wall 

thickness. 

A modified version of the previous example will be used next to explore the capabilities of the method to model 

3D cells that include heterogeneity along the x1 direction. For that purpose, the outer radius will remain the same, 

but the thickness of the section will vary as a function of the span-wise position, as shown in Figure 6. This change 

consists of a 25% reduction in thickness of the inner sections (length a) with a linear variation region joining the 

outermost sections which remain the same thickness. The material properties are those from Table 2. The composite 

layup is now a [45,-45,0,90]s. The new mesh has 6 elements in the spanwise direction, one per ply (8 plies) and 50 in 

the azimuth coordinate. The unit-cell results will be compared to a full size linear FE analysis of a 10-cell beam 

created with a tessellation of the cell just described, which results in a rather large mesh with 24000 C3D8R 

elements. It is clamped on one end and loaded with a 3=0.1 m-1 equivalent bending moment applied on the other 
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Figure 6: Longitudinal cut of the cell of the laminated cylinder showing the thickness variation 
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end. It is worth noting that the unit cell model runs in seconds but the full-size model requires over 16GB of RAM 

and takes two orders of magnitude longer to run. Figure 7 shows how the top nodes (x2=R, x3=0) deflect as a 

function of x1 in the full model as compared to the deflection of a beam of the homogenised stiffness under the same 

load. Both solutions are very close with minor discrepancies at the boundaries of the beam, since end effects are not 

accounted for in the homogenised model. Table 3 contains the von Mises stress values through the thickness of all 

the plies at a 45º angle cut (x2=x3=√2/2m) at the mid-span location (x1=b/2). It corroborates that the technique not 

only predicts homogenised stiffness and displacements correctly, but it also provides small scale stress levels across 

the plies of the periodic structure. 

 

 

 

 
Figure 7: Vertical deflection of the top nodes of the 

varying-thickness cylinder  
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Table 3: Interpolated von Mises stress values across plies at mid-

span nodes on varying-thickness cylinder  

Ply angle [deg] von Mises stress [MPa] 

 Homogenized 
FE (full beam, 

centre cell) 

45 400.0 400.5 

-45 386.0 386.5 

0 910.1 910.3 

90 211.2 210.9 

90 209.1 208.8 

0 780.2 780.9 

-45 283.7 278.9 

45 233.4 239.0 
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Given the level of automation of the mesh generation it is easy to perform a parametric analysis to check the 

sensitivity of the structure to variations of one (or more) of its variables. In this case, the effect of the thickness of 

the wall has been studied. This is done by increasing the relative length of the thin region (25%-reduced thickness 

part) with respect to the total length, b. The results are plotted in Figure 8. Note that in the limit when a/b=1 this 

corresponds to a cylinder of constant thickness 0.75t. The evolution of the stiffness constants follows an expected 

mild decrease as the thickness is reduced. 

 

 

4.3. Local buckling of a reinforced prismatic box beam 

This case explores the suitability of a unit cell analysis to obtain local buckling loads under compressive forces 

when the solution is still periodic. Global buckling is not accounted for here but could instead be computed by the 

homogenised beam model. The model used is similar, in shape, to that of the first case (section 4.1), a prismatic box 

beam with perpendicular wall reinforcements, but the thicknesses of the skin and the reinforcement have been 

modified to ensure skin-buckling response. The new thicknesses are hence: 1mm for the skin and 10cm for the 

transverse reinforcement. All other model properties are kept the same as in the aforementioned case. From a 

convergence test, the full beam mesh is created with 24000 C3D8R elements, while the model of unit cell one is a 

sixth of that, that is, 4000 elements. All elements have a characteristic length of 10cm and there is 3 through the 

thickness in the skin and 2 in the wall. As it can be seen from Figure 9(b), the buckling mode of the structure is 

 

Figure 8: Effect of local thickness reduction on the stiffness of the laminated cylinder 
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coincident in both models –the unit cell and the full 3D one. 

to one, and the magnitude of the axial strain at which local buckling occurs (eigenvalue) is found to be very 

close: =3.042 10-3 for the full 3D model and 

approaches find the same solution for the first buckling 

A geometrically-nonlinear analysis is then

compute its post-buckling stiffness. 

same and hence the periodicity of the structure is not broken. 

Figure 9: a) Vertical displacement in a 
; b) Contour plot of the first eigenshape of a ribbed prismatic beam under compressive 

loads. Full 3-D model

a) 

b) 

16 

the unit cell and the full 3D one. The maximum displacement is in both cases normalised 

, and the magnitude of the axial strain at which local buckling occurs (eigenvalue) is found to be very 

for the full 3D model and =3.058 10-3 for the unit cell

approaches find the same solution for the first buckling mode. 

is then performed on the same model (with C3D8, full

buckling stiffness. Please note that this is only valid on the assumption that all cells deform the 

same and hence the periodicity of the structure is not broken. Figure 10 shows the vertical displacement at the centre 

a) Vertical displacement in a linear ribbed prismatic beam subject to a compressive load of 
ontour plot of the first eigenshape of a ribbed prismatic beam under compressive 

D model (with a cut-out) shown on the left and unit cell on the right.

acement is in both cases normalised 

, and the magnitude of the axial strain at which local buckling occurs (eigenvalue) is found to be very 

for the unit cell It is clear that both 

 

(with C3D8, full-integration elements) to 

Please note that this is only valid on the assumption that all cells deform the 

shows the vertical displacement at the centre 

 

ribbed prismatic beam subject to a compressive load of 
ontour plot of the first eigenshape of a ribbed prismatic beam under compressive 

shown on the left and unit cell on the right. 
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top node of the horizontal top wall, as a function of the axial strain. Note that the displacement shown in Figure 10 is 

relative to the displacement at the end of the application of the perturbation load (if any is applied). Results are 

normalized with  of the unit cell. The deflection at that node starts to diverge shortly after the normalised 

strain is unity, in agreement with the linear buckling analysis. The plot depicts three different load paths: one for the 

original structure and two corresponding to configurations with point normal loads of 500N and 1000N (positive 

inwards). The point forces are applied at the node where the displacement is measured, and in an antisymmetric 

manner; that is, the reciprocal node in the lower wall has the same load magnitude but opposite sign. The buckling 

of the original structure occurs with the horizontal walls buckling outwards and the side walls inwards (see Figure 

9b) naturally, that is, without the need of a perturbation load. The deformation before buckling, shown in Figure 9a 

for a linear analysis with , leads to a non-uniform displacement field which triggers the 

bifurcation shown in Figure 10. For large enough perturbation loads (1000N in the example) vertical displacements 

in the opposite direction are obtained but the bifurcation load remains unchanged.  

 
Figure 10: Nonlinear load path as a function of axial strain 

The same energy-based procedure used in the linear case can be applied to each increment in the nonlinear step in 

order to calculate the stiffness constants as a function of a given loading or strain. In Figure 11, the axial (secant) 

stiffness, S11,secant, has been computed for the axial deformations of up to 10% strain and three different wall 

thicknesses. This stiffness is calculated applying the same procedure described at the end of section 2.2 to each of 
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the increments in the nonlinear analysis in absolute terms. As the thick transverse reinforcements act as essentially 

rigid supports, the buckling strain is almost independent of the wall thickness. The nominal-thickness unit cell has 

also been compared with a full 3-D model, created with seven cells. As in previous cases, the boundary conditions 

on the full 3-D model are: encastre on one side and rigid body plus reference point (to apply the loading 

displacement and measure the reaction force) on the other. The results agree well but, as expected, the full model is 

slightly stiffer than the unit cell. This can be partially attributed to end effects in the full beam model. In addition, it 

can be observed that a negative tangent stiffness (slope of the load strain curves in Figure 12) is obtained at high 

strains, which implies that localisation has occurred (Pinho et al., 2006). Consequently, past this point (��greater 

than ~0.1), the assumption of periodicity is broken and the cell-based solution diverges from the actual response. In 

this particular example, with very thick transverse reinforcements, the cell model still gives a reasonable 

approximation, but this will not be the case in general. Continuing with the analysis of this example, when the 

tangent stiffness becomes zero, the beam response is no longer periodic and one of its cells will greatly deform, 

without increasing the load, while the others relax and go back to a lesser strain. In Figure 12, the reaction force and 

the axial component of the tangent stiffness have been plotted versus the axial strain in order to better understand the 

sequence of events in this localisation process. Before localisation, the strain in all unit cells (depicted in Figure 13a-

b for �� � 0.05) is the same. The load is always constant through the cells. When the tangent stiffness becomes 

negative (�� ≅0.1), one of the cells will continue loading (growing ��, see Figure 13c) and the others will unload 

(decreasing ��, see Figure 13d). Note that after localisation has occurred, for a given load, various strain states are 

possible.  
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Figure 11: Post-buckling axial softening of the reinforced prismatic beam for various wall thicknesses 

Note that a single unit cell with periodic boundary conditions predicts the conditions of the centre cell rather 

accurately thanks to the thickness of the transverse reinforcements, which prevents warping information to be 

transferred from cell to cell. It is stressed that this is a special case given the wall thickness. As described above, the 

choice of wall thickness was made for the local buckling to occur prior to the column buckling.  

 

 
Figure 12: Load (left axis) and tangent stiffness (right axis) as a function of strain  
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Figure 13: Deformed shapes, with
box beam at different stages of the localisation process

 

4.4. Active Twist Rotor blade
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of the current solution method, as the details in the connection between spar and skin have a small effect in the 

homogenized stiffness. The mesh used consists of 3912 C3D8 elements and 6171 nodes which is very similar to that 

used in UM/VABS (Palacios and Cesnik, 2005). Full integration was used here to mitigate a problem of artificial 

strain energy creation. The stiffness constants obtained through this method have been summarised in Table 5 and 

compared to those of Cesnik and Ortega (1999) (VABS-A) and those in UM/VABS (Palacios and Cesnik, 2005). 

The direct terms are in full agreement with UM/VABS model, and the coupling terms are very accurate. When 

compared to the results from VABS-A we find a down-to-discretisation agreement for most terms except the 

torsional stiffness. For this coefficient, the observed discrepancy is ~5% but this has been identified in Palacios and 

Cesnik (2005) as a ply angle orientation error. As it can be seen, the tie constraints introduced to link the various 

model parts have a negligible effect on the solution. 

 

Table 4: Mechanical properties of the ATR wing (Cesnik and Ortega-Morales, 1999) 

Material 

Property 
Units 

E-Glass (Style 

120 Fabric) 

S-Glass 

(Unitape) 
Active-Fibre 

Composite  

EL GPa 20.7 46.9 22.18 
ET GPa 20.7 12.1 14.91 
GLT GPa 4.1 3.6 5.13 
νLT - 0.13 0.28 0.454 
tPLY mm 0.114 0.229 0.203 

 

 

 
 

Figure 14: Dimensions (in mm) of the ATR blade with the 
composite layups 
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Table 5: Stiffness constants comparison between different methods 

Stiffness constant 

(% diff w.r.t. present method) 
VABS-A UM/VABS Present method 

S11 [N] 1.684 -0.42% 1.677 -0.06% 1.676 

S22 [Nm2] 34.7 0.06% 34.79 -0.06% 34.77 

S33 [Nm2] 41.64 -1.18% 41.18 -0.07% 41.15 

S44 [kNm2] 1.031 5.04% 1.086 -0.28% 1.083 

S12 [Nm] -13.07 -1.68% -12.89 -0.31% -12.85 

S14 [Nm] 250.7 -0.76% 249.6 -0.32% 248.8 

 

5. Conclusion 

An approach to obtaining homogenised properties of slender periodic composite structures has been presented. It 

is based on the equivalence between the strain states at the large and small scales and the conservation of strain 

energy between both and it can be implemented via periodic boundary conditions in an off-the-shelf finite element 

code. The use of a 3-D unit cell does not require the assumption of constant cross sections and leads to a more 

sophisticated analysis of complex-geometry slender structures at a preliminary stage at a very low computational 

cost. The modelling of the geometry in our implementation is fully parametric which allows sensitivity analysis to 

be done. The way the loadings are introduced into the model and the final outputs exported make this approach 

readily compatible with engineering beam models. The numerical examples show excellent agreement with other 

available methods and have also demonstrated the suitability of the approach to calculate local buckling strain and 

the associated reduction of beam tangent stiffness in a beam’s unit cell using nonlinear analysis. Overall, this 

method is a very flexible alternative to obtain the homogenised first-order stiffness constants and local buckling 

loads of an arbitrarily-shaped periodic composite beam. Application of this approach to high-aspect ratio air vehicle 

analysis is expected to improve the accuracy of the results in the conceptual stage of design, reducing the time and 

cost of the whole design process and bringing project inception and flight readiness closer together. 
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