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A homogenisation technique is introduced to obthia equivalent 1-D stiffness properties of compsender
periodic composite structures, that is, withoutukaal assumption of constant cross sections. Tdit#degm is posed
on a unit cell with periodic boundary conditionsclsuthat the small-scale strain state averagesedattye-scale
conditions and the deformation energy is consehettveen scales. The method can be implementedivdatd
finite-element packages and allows for local strex®very and also for local (periodic) nonlineffeets such as
skin wrinkling to be propagated to the large scdemerical examples are used to obtain the homegdni
properties for several isotropic and composite kwawith and without transverse reinforcements acktress
variation, and for both linear and geometricallyatiwear deformations. The periodicity in the lopalst-buckling

response disappears in the presence of localisatithe solution and this is also illustrated bywanerical example.

Nomenclature

b = unit cell depth, m

Cijia = material elasticity tensor

0; = large scale local rotations, rad
E = Young’s modulus, Pa

€ = beam strains

& = infinitesimal strain tensor

G = shear modulus, Pa

v = Poisson’s ratio

L = length of the beam, m

Q = volume of the unit cell, fn
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S = homogenised x 4 stiffness matrix

Uu = elastic strain energy, J/m

u; = large scale local displacements, m
v; = small scale displacement field, m
w; = warping field, m

1. Introduction

Despite significant advances in computational powéhe last decade, which allow direct solid médglof most
engineering structures, there is still a practictdrest in dimensionally-reduced structural modBEam models, in
particular, provide excellent approximations of gignary structures for low-frequency aeroelastialgsis of high-
aspect-ratio wings, helicopter rotor blades or wimbines. A review of the available analysis methwas
presented by Palacios et al., (2010). They hawemltsved to be very useful in the study of carbanatubes (Li
and Chou, 2003), marine riser pipes (Kaewunruexh. €2005) and proteins (Leamy and Lee, 2009), aputhers.
The simplicity of construction of the models alsakes them essential tools in many other application
conceptual studies. A great deal of effort has lpadrinto developing composite beam models (Hod2@85), able
to account for elastic couplings in reduced oneeatisional models. In general, the modelling procassbe split
into two different stages: Firstly, there ifi@nogenisation step, which determines the constitutive relations of the
reduced model (i.e., beam sectional propertiespradly, there is golution step, in which one evaluates the
response of the dimensionally-reduced model ta#t®f applied loads. Both stages are interrelasegissumptions
on one affect the other. The equations of motiothé@solution stage have been well developed, including
geometrically-nonlinear effects, in the works af;, instance, Simo and Vu-Quoc (1986); Cardona amdn
(1988) and Hodges (1990; 2003). The constitutilaions in that first stage, which will be the facof this work,
have been mostly obtained under the assumptioaratant (or slowly-varying) cross sections.

For composite beams, one of the most succesgubaphes in dealing with arbitrary sectional prtiperis the
Variational Asymptotic Method (VAM) (Cesnik and Hgek, 1997). The analysis asymptotically approxisitte
3-D warping of the displacement field that miningzbe cross-sectional deformation energy for eaembstrain
state and thus finds the constitutive relationgtier1-D beam analysis. After the global defornmafiom the 1-D

(possibly nonlinear) beam analysis is obtainedpotiginal 3-D displacements, stresses and strainsatso be



recovered using those 3-D warping influence coigffits. It is worth noting that solutions based ddWonly

apply to the interior solutions in constant-secti@ams.. Very recently, Lee and Yu (2011) have gsegd, as a
partial remedy to that shortcoming, to use the brass of the heterogeneity and incorporate a sg@ngimensional
reduction, in the homogenisation step of the viamal asymptotic method. The resulting formulatiethen similar
to that obtained by the Formal Asymptotic Method#Bnic and Cartraud, 2001a, b; Kim and Wang, 2040ich
exploits the existence of two scales in the origilymamic 3D equations governing the elastic respaf the beam
structure to perform an asymptotic homogenisatitowever, it is not always apparent in the origiioamulation
how to define an adequate set of boundary conditionplementing it numerically or adapting it toneentional
engineering models. This was later remedied byr@adtand Messager (2006), which restricted thetisolto the
four “classical” beam elastic states (axial, tansémd bending in two directions). The resultinghppea was then
implemented in a commercial finite-element packg@pmcef). This work resulted in an approach sintdahat of
Ghiringhelli and Mantegazza (1994), who had modifefinite element software’s matrix solving progeslin
order to obtain the beam section properties.

A further possibility is that proposed by KenneaylaMartins (2012), which builds a kinematic destioip of the
beam from a linear combination of fundamental statations. The first fundamental solutions arealyiinvariant,
and their corresponding deformation state is catedl at the mid plane of the beam by using a 2ifefilement
method to obtain the stresses and strains duetBamt-Venant (axial, bending, torsion and sh@esan, 1986a)
and Almansi-Michell (distributed surface load) loegb (Iean, 1986b). This method yields solutions with aacyr
comparable to that of full 3-D analysis using thate-Element Method (FEM) as long as the sectm#ot vary
along the axis of the beam and the loads are aligtidetermined. A similar superposition methodsed by
Jonnalagadda and Whitcomb (2011) to calculatertimsterse shear components of the stiffness matmiir
approach is based on applying to the section aibbgmdoment equal in magnitude, but with oppositm sthan that
created by the shear force. This is presentedsfrdpic structures of constant cross sections.

The previous solutions either were limited to ¢anssection geometries, required dedicated —ateh qfuite
involved- implementations, or user-created modatesubroutines in a standard finite-element sofugackage.
Furthermore, the mentioned methodologies are linpproaches that therefore only provide strengimages
based on linear stress and strain distributiong Ouheir high strength-stiffness ratio, compo#tiia wall

structures usually exhibit local or distortionakhkling before material failure (Qiao and Shan, 208&d this is



often a design constraint. Consequently, the objedf the present work is twofold: 1) to introduegeneral
methodology to evaluate both the elastic constamdslocal buckling characteristics, such as skinkling (Su and
Cesnik, 2011), of composite beams with spanwisegierproperties; and 2) to define in such a wat ttan be
implemented into a general-purpose finite-elemendeg thus taking advantage of all the advanced timgde
features of the leading commercial packages. Sityifa the work of Lee and Yu (2011) and Cartrand a
Messager (2006), the methodology will be basederstatic analysis of a unit cell, which will besased to be
much smaller than the characteristic wavelengthénbeam response. The final equations to obtaitbéfam
stiffness matrix have been solved using periodigigiary conditions in an off-the-shelf finite-elerhenlver
(Abaqgus) and with models which are assembled ugngpnstraints from substructures with non-coieaithodes,
which considerably simplifies model generationshweétnegligible impact on the homogenised properiibs

solution method is finally extended to certain getnoally-nonlinear (but still periodic) problems.

2. Theory

Consider a slender prismatic solid made by repegatiperiodic cell along its longitudinal dimensior -

(see Figure 1). The transverse dimensions of thetste,h are much smaller than the characteristic longitaidi
dimension . The coordinatein the reference configuration defines the refeedime for the 1-D large scale
(beam) which coincides with the neutral axis. Tévegitudinal dimension of the cell is . To obtaie th

homogenised elastic constants, linear assumptiengsed for the kinematics and the local materigperties.

Unit Cell, Q

Reference
Line
-

h

Figure 1: Schematic diagram of a slender periodic
structure with unit cell representation.

The adopted solution relies on two assumptions rbatleeen scales to deduce a set of periodic boyndar
conditions and obtain the beam stiffness consi{@uers et al., 2010). These assumptions are: duipe scale

(macroscopic) variables () are averages of thelsoale (microscopic) ones ( , and b) the defornmatio



energy is conserved between scales. The largeiscadeociated with the 1-D beam level as descidbede, and
the small scale is associated with the dimensibiiseocross sectiorx{ andxz) and the unit cell). The
formulation described here is a first-order theamg does not include the effects from transversarsill
throughout this section, Einstein notation is usgdepeated indices, with Latin indices assumialygs from 1 to

3 and Greek ones assuming values of 2 and 3.

2.1. Kinematics
Under linear assumptions, the deformation of tieremce line can be described by three local digpleents
u;(y) and three local rotatiorés (y) along the axes; of the coordinate system in Figure 1. The beagirstr

measures are obtained from linearization of trerstlisplacement kinematic relations in Palacioal e2010), as

() =,
ya(y) = u;t - eaﬁgﬁ: (1)
ki(y) = 6],

with €ag being the Levi-Civita or permutation symbol. If feether assume, (y) = 0, i.e., a first-order theory, that
implies

We define the vector of first-order beam strainstaiming extensional strain, bending curvatures in two

directionsk,, k; and torsional curvatune,, as
el={r1 K1 Kz Ks3}. (3)
At the small scale level, we consider the 3-D defation of a cell of volume& centred ay (see Figure 1). The

undeformed position within the cell will be givegy toordinates;, wherex, is parallel tay, but measures lengths
at cell scales (i.é%l = %) and it can be seen as magnified coordinate systbmthree components of the small
scale displacement field avg(y; x4, x5, x3). The two longitudinal dependencies are introduceskparate between

small scale (~x;) andlarge scale fluctuations(~y) of the structural deformations (Lee and Yu, 20The warping

field, w;, is then defined as the difference between thdl smd large scale displacement fields, as



v1 (¥ X1, %2, x3) = w (¥) — ea/;xaeﬁ()’) + wy (¥ X1, X2, X3),
(4)

Ve (V5 X1, X2, %3) = Ug(¥) — eaﬁxﬁb’l(y) + Wo (¥; X1, X2, X3),

Note that if the warping field is zero, Eq. (4}l kinematic assumption used in Timoshenko béaory (or
Euler-Bernoulli theory if the condition of Eq. () enforced) which has been referred to asuhdamental solution
in asymptotic theories (Kim and Wang, 2010). Ingyahthe warping field will depend on the cell and
correspondingly it was explicitly written as a ftino of the spanwise coordinate,

The independent large scale variables are defioed averages in the cell, as

w; (y) = (vy),
(5)
6.(y) = %(Vg,z — V23),

where(e) = f- dx,dx,dx; ande j= :7 If we take the reference axis at the centroid(kg) = 0, then these
J

definitions impose four constraints on the warietd,

(Wi> = 0,
(6)

<W2,3 - W3,2> = 0.

2.2. Equilibrium conditions
Our interest is in the interior solution of the Ipiem to obtain thd x 4 homogenised stiffness matrik, and these
can be obtained simply by assuming constant lazgke strains, that ig(y) = €. We then postulate constitutive
relations in the homogenised problem such thastian energy is conserved between the small age kcale
levels (Geers et al., 2010). Due to the periodiaftthe problem, the small scale strain energyumétrbeam length

is independent of the cell in the interior solutiand it is
N | 7
U= EeTSe = 5_[9 Cijri€ijEridx, dx,dxs, (7)

with C; ., (x1, X2, x3) being the material elasticity tensor apg= %(Ui,j + v;;) the components of the small scale

strain tensor. Define now the magnitudes = v; (y;s,xz,x3) - (y; —g,xz,x3). EqQ. (4) becomes



Avi(¥; x2,x3) = V1b — eqpxqipgh + Aw, (¥; x5, X3)
(8)

Avg (y; x2,x3) = —eqpxpiyh + Awy (V; X2, X3).

For this solution to be independent of the celiitst beAw; (y; x,, x3) = 0, i.e., the warping field is periodic. This
can also be concluded arguing that, due to peitgdibe strain field must be compatible and théy alifference in
displacement allowed between both faces of theicallrigid body motion, which does not createistid/e are
finally left with the problem of obtaining the staequilibrium conditions on a generic cell underagplied

displacement field given by

b b _ _
121 (E’ xz,xg) = v (— > xz,xg) + V1b — eqpxqKph,

_ 9
va(g, x2,%3) = va(— g,xz,xg) — eqpxgkyb. )

where the reference to the long-scale coordinais,no longer necessary. This problem can be s&t apy
standard FEM solver using multipoint constrainteméorce the periodic boundary conditions defingdq. (9)
Ten different combinations of loading cases are twnsidered, corresponding to unit values in edthe four
components of the beam stranand unit value in each of the six possible déferpairs of strains (e.g., coupled
axial/torsion, axialf,-bending, and so on). For each load state, thmmstreergy per unit length is then computed
from the solved model using the right hand sideef(7), which is then used to solve the 10 inddpah

coefficients of the stiffness matri&,

2.3. Extension to geometrically nonlinear, periodic formulation
The previous formulation can be directly extendedy¢ometrically-nonlinear problems in two situatiofirstly,
when the nonlinear effects appear in the macroscepile but relative displacements are still sratlthe local
(cross-sectional) scale; and secondly, when thrergeometrically-nonlinear effects at the cell lewat the solution
is still periodic. The first problem can then beseas a linearization around a different referecmadition but it
remains fundamentally unchanged. This is the prol#acountered in geometrically-nonlinear beam miodelvith
constant (elastic) stiffness matrices (Cesnik etl@96). A more interesting situation appeardhidecond scenario,

when there are geometrically-nonlinear effectshatdell leveland all the cells in the structure deform equally. A



relevant example of this corresponds to the pamekling (or skin wrinkling) in aircraft wings. Ifllacells are under
the same loading, as it is assumed in the homaoggmisprocedure, then buckling will simultaneousiijiate in all
cells. The periodicity will then hold until locatison occurs (Pinho et al., 2006). This will be rmrcally

exemplified in the section 4.3.

Assuming that the cell undergoes large local dispigents (relative to the typical cell dimensibhput that the 1-
D beam displacements are still linear (the lengtiestherel, is still very large), then the local 3-D straiistained
from the geometrically-nonlinear solution on thd can be used to obtain the current beam stiffnkesthis case,
the local 3D strains are calculated in the deforigeoimetry and the volume integral in the strairrgyealculation

of Eq. 7 corresponds to the current configuratlarthis paper, we will further assume that the sadtions of the
cell, atx; = ig, do not have large relative rotations, and theeefbe periodic boundary conditions defined by Eq.

(9) remain unchanged (this occurs, for instancetferlocal buckling analysed in section 4.3). Far tmore general
cases that still show periodicity of the warpingldi but also include large relative rotations hestw the end cell

sections, a more general formulation would be meguiThis is however beyond the scope of this work.

3. Numerical implementation

There are four basic steps involved in the impletatéon of the homogenisation procedure describedainto the
finite element software Abaqus (SIMULIA, 2010). Téalution process has been schematized in Figure 2:

l. The geometry of the cell is created using a PySwipt whose inputs are cell dimensions, mesh tensi
material properties and type of analysis. Using tldta, an Abaqus standard input file is generated
including a set of periodic boundary conditionsfir&q. (9). Each loading case is introduced vidfamdint
(fictitious) master node for which prescribed displacements are applied.

Il. The model is meshed using ‘C3D8R’ (3D-cuboid-8naalejnents with reduced integration for the
calculation of the linear stiffness properties &utintegration ‘C3D8’ in the case of a bucklingalysis or
complicated geometries. This is due to the comple{i buckling deformed shapes and hence the
likelihood of hourglassing and other convergenaebfams. For the anisotropic cases, each elemerntshas
own local coordinate system that defines the pigraation (each composite ply is modelled withysetaof
elements). For the homogenisation step, details asstress concentrations at joints have a veajl sm

effect in the beam stiffness constants and thezafer meshing can be done independently for tHewsar



subcomponents of the cells (e.g. rib, spars, skanwing example), which are finally linked via ti
constraints in the Abaqus model (SIMULIA, 2010)isTgives a big flexibility to the generation of the
FEM model.

Il The requested set of analyses is then performaadatd linear elastic with ten load cases —corredipg
to each of the loadings (extension, twist, bendnigoth directions) and the pair-wise combinatiohs
these—, a linear perturbation buckling analysia fully nonlinear analysis.

V. Then the Abaqus output database (.odb) file gee@fadm the analysis is read automatically. Thépst
further justifies the use of Python as Abaqus tisisdanguage internally for analysis and database
organization. Finally, the elastic strain energintegrated for the whole model and using Eq. [{é) t

stiffness matrix is calculated for the unit cell.

Note that this approach is however independertie@particular scripting language or FEM packagel uaé
the information can be written into a standard Alsamodel and the solution procedure requires ne use

defined modules in the FE solver.

LARGE SCALE

!
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usmall scale = ularge scale E()’) =€

Figure 2: Flow of information between the large and small scales

4. Numerical studies

The methodology described above is exemplified kierdour case studies of increasing complexitye Tibst
case (section 4.1) is a model of a prismatic igdtrbox-beam that includes transverse reinforcemérite second

case is based on a laminated thin-walled cylindeduo substantiate the implementation of composéterials and



compare the results to thogktainecusing UM/VABS (Palacios and Cesnik, 2005); thgD solutions are
consideredvith periodic variations cthe wall thickness. The third case (section th8pduce the local buckling
strain prediction and evaluatée residuapost-buckling stiffness. Finally, section 4dowsa composite rotor

blade sectiotthat is used to illustrate effective complex sewianodellingusing tie constraint

4.1. lIsotropic prismatic box beam with transver se reinforcements

This first model is a ribbegrismaticbox beanmade out of homogenous isotropic mateialuminium:
E=70GPay=0.3) with widthand height equal to z and 1m, respectively, and with02tm-thick walls. The
distance between ribslis=1m, which defines the unit cell$n order to define a reference for compari a full box-
beam of lengtthL=20m is builtin on one end anall the loads or moments are applied \ rigid body node-
constraint and a reference point at the other The full modelis meshed using 10400 C3D8R elemewith 17421

nodes and is partially shown Figure3 (a cuteut has been included for better visualizal. The unit cell mesh has

Figure 3: Vertical cut-out of the deformed reinforced box-beam model under tip moments
( 3=0.1m™). Contour plot shows von Mises stress

a twentieth of that numbefhere are ten elements along the height, widthspadh of one c¢, and three through
the thicknessThe transverse reinforcements in both models &l unit cell) are added to the model vie
constraintswhich avoids local mesh refinement in the jolm$ween rib and outer sl. The geometrand the von
Mises stress contour of the fsliructure subject totip bending moment ¢=0.1m") are shown itFigure 3.
Stiffnessresults are summarized Table 1 and compared withsults without ribs obtained : a) analytical
results from thinwalled beam theo; b) full 3D FEM analysis using static loading;)M/VABS. The last column

shows the effect of adding a transverib of the same thickness of the outer walls atct#ll’ mid-span position.
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The agreement of the results produced by this hemiegtion method is excellent both with the thezorgl the
current available tools. The small discrepancy thitwall theory has, in the case of torsion, witith UM/VABS
(Palacios and Cesnik, 2005) and the proposed meitdde to the thin-wall assumption of the formigre addition

of the transverse wall results in a small chandgclvcan nevertheless be estimated with the preggrbach.

Table 1: Homogenised stiffness constants for the prismatic box beam.

No ribs With ribs
Stiffness Analytical FE FE
constant (Thin (full UM/VAB | Present (full Present
S method method
wall) beam) beam)

S11(EA) [GN] 10.3 10.3 10.3 10.3 10.5 10.5

S22(GJ) [GNm?] 1.79 1.71 1.71 1.71 1.72 1.72

S33(El33) [GNm?] 191 1.91 1.91 1.91 1.94 1.94

S14(El22) [GNm?] 5.58 5.58 5.58 5.58 5.62 5.62

4.2. Laminated cylinder with constant ply angle and span-wise variable thickness

Two subcases are considered: a 2-ply, constarg-Gilientation-angle circular cylinder, which wik lnsed to
demonstrate the stiffness variation as the plyeaobghnges; and a modified section of this, thdtheilused to
exemplify the approach for cross sections of vayyhickness along the span. Material orientatioegaken

clockwise around the circumferential directiontod tube, with the; direction as the reference for a zero degree
ply angle.

Table 2: Ply properties of the laminated cylinder

E11=1.42><1011 Pa Ezz= E33=9.8><109 Pa
G12:G13:6.0X 109Pa 623:4.8X109 Pa
V12= V13:0.3 V23:0.3
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For the reference (constant-section) case, thadstihas unit radiu&=1m, measured to the outer wall, and 5%

thickness t=0.05m), as depicted in Figure 4. The length ofuthig-cell model, which does not affect the

Figure 4: Cross-sectional discretization and dimensions of the
reference laminated cylinder. (Cell model is 3-D.)
homogenised results, lis=0.1m. This has been meshed with 320 C3D8R elenfé2tsnodes). There are two
elements per 9 degrees, one per ply and two isghe direction (only one is needed). The materigbgrties of the
composite used are given in Table 2.

The non-zero terms of the 4x4 stiffness matrix ha&en plotted in Figure 5 together with the resoittgined
using UM/VABS (Palacios and Cesnik, 2005). Thesmsanclude: extensiona$(;), torsional &,), and bending
(S39) stiffnesses plus the coupling between the fisst (Sy2). Only one bending stiffness is shown in the feguas
the section is symmetric. The evolution of thesestants with the ply angle agrees very well betwaeth methods

and the error is always less than 0.1%.
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Figure 5: Stiffness constants as a function of the ply angle for the laminated cylinder with constant wall

thickness.

A modified version of the previous example will liged next to explore the capabilities of the metioathodel
3D cells that include heterogeneity along xhéirection. For that purpose, the outer radius kgithain the same,

but the thickness of the section will vary as acfion of the span-wise position, as shown in Figur&his change

b=1m

X, | ~~— Linear variation

Figure 6: Longitudinal cut of the cell of the laminated cylinder showing the thickness variation

consists of a 25% reduction in thickness of theirsections (length) with a linear variation region joining the
outermost sections which remain the same thickddss material properties are those from Table 2 ddmposite
layup is now a [45,-45,0,90]The new mesh has 6 elements in the spanwisdidimeone per ply (8 plies) and 50 in
the azimuth coordinate. The unit-cell results Wwélcompared to a full size linear FE analysis daell beam
created with a tessellation of the cell just ddmadi which results in a rather large mesh with 2408D8R

elements. It is clamped on one end and loadedavit0.1 m* equivalent bending moment applied on the other
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end. It is worth noting that the unit cell modehstin seconds but the full-size model requires 48&B of RAM

and takes two orders of magnitude longer to ruguie 7 shows how the top nodes=R, xs=0) deflect as a

function ofx; in the full model as compared to the deflectiom dieam of the homogenised stiffness under the same
load. Both solutions are very close with minor dég@ncies at the boundaries of the beam, sndeffects are not
accounted for in the homogenised model. Table 3atg1the von Mises stress values through the tieisk of all

the plies at a 45° angle cop$x;=V2/2m) at the mid-span locatior £b/2). It corroborates that the technique not
only predicts homogenised stiffness and displacésmaarrectly, but it also provides small scalesgtrevels across

the plies of the periodic structure.

Table 3: Interpolated von Mises stress values across plies at mid-
span nodes on varying-thickness cylinder - —

Ply angle [deg] von Mises stress [MPa]
. FE (full beam,
Homogenized centre cell)

45 400.0 400.5
-45 386.0 386.5
0 910.1 910.3
90 211.2 210.9
90 209.1 208.8
0 780.2 780.9
-45 283.7 278.9
45 233.4 239.0

— 0.5 +

E

504+

% 0.3

g

#Fo02+

&)

E 01 - = &l= Homogenized
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> 0D i |

o
(€]

10
Beam axis, x, [m]

Figure 7: Vertical deflection of the top nodes of the

varying-thickness cylinder - —
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Given the level of automation of the mesh genenati@s easy to perform a parametric analysis &c&tthe
sensitivity of the structure to variations of ooe ihore) of its variables. In this case, the eftddhe thickness of
the wall has been studied. This is done by incregitie relative length of the thin region (25%-reeldithickness
part) with respect to the total length,The results are plotted in Figure 8. Note thahalimit whena/b=1 this
corresponds to a cylinder of constant thicknes5t0The evolution of the stiffness constants follamsexpected

mild decrease as the thickness is reduced.
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Figure 8: Effect of local thickness reduction on the stiffness of the laminated cylinder

4.3. Local buckling of areinforced prismatic box beam

This case explores the suitability of a unit celhlysis to obtain local buckling loads under corspiee forces
when the solution is still periodic. Global bucldiis not accounted for here but could instead Imepeed by the
homogenised beam model. The model used is sinmlahape, to that of the first case (section aJrismatic box
beam with perpendicular wall reinforcements, bettthicknesses of the skin and the reinforcemeng baen
modified to ensure skin-buckling response. The tiggknesses are hence: 1mm for the skin and 10ctinéo
transverse reinforcement. All other model properéiee kept the same as in the aforementioned Ees®. a
convergence test, the full beam mesh is creatdd 249000 C3D8R elements, while the model of unit@eé is a
sixth of that, that is, 4000 elements. All elemérdase a characteristic length of 10cm and theBetisough the

thickness in the skin and 2 in the wall. As it tenseen from Figure 9(b), the buckling mode ofstinecture is
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coincident in both modelgthke unit cell and the full 3D onThe maximum disgicement is in both cases normali
to one and the magnitude of the axial strain at whiadalduckling occurs (eigenvalue) is found to ben
close: =3.042 18 for the full 3D model an =3.058 10’ for the unit cel It is clear that both

approaches find the same solution for the firskbng mode.

U, 2
a) +5.50-04
+4 6604
| 437e-04
+2.8c-04
+1.9e-04

- —1.8¢-04
—2.8e—04
—3.7c04
—4.60—04
—5.5¢-04

b)

U, Magnitude

Figure 9: a) Vertical displacement in a linear ribbed prismatic beam subject to a compressive load of
; b) Contour plot of the first eigenshape of aribbed prismatic beam under compressive
loads. Full 3-D model (with a cut-out) shown on the left and unit cell on the right.

A geometrically-nonlinear analysis ther performed on the same modefth C3D8, ful-integration elements) to
compute its posbuckling stiffnessPlease note that this is only valid on the asswnytiat all cells deform tr

same and hence the periodicity of the structurmibrokenFigure 10shows the vertical displacement at the ce
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top node of the horizontal top wall, as a functidhe axial strain. Note that the displacementghim Figure 10 is
relative to the displacement at the end of theiegfibn of the perturbation load (if any is applieResults are
normalized with of the unit cell. The deflectiantlat node starts to diverge shortly after themadised
strain is unity, in agreement with the linear bireglanalysis. The plot depicts three different Ipaths: one for the
original structure and two corresponding to configions with point normal loads of 500N and 100@Ngtive
inwards). The point forces are applied at the ngdere the displacement is measured, and in anyamtigtric
manner; that is, the reciprocal node in the lowall vas the same load magnitude but opposite Siga.buckling
of the original structure occurs with the horizantalls buckling outwards and the side walls inveafsee Figure
9b) naturally, that is, without the need of a pdgation load. The deformation before buckling, shawFigure 9a
for a linear analysis with , leads to a non-unifatisplacement field which triggers the
bifurcation shown in Figure 10. For large enoughyrbation loads (LO00N in the example) verticapficements
in the opposite direction are obtained but therbdtion load remains unchanged.

0.05 +

0.04 -

0.03 -

0.02 -
0.01

Vertical Displacement, u, [m]
o

-0.04 -+ ~

-0.05 -+
Unperturbed x Unperturbed full beam

-------- Perturbation load=500N o Perturbation load=500N, full beam
= = =Perturbation load=1000N a  Perturbation load=1000N, full beam

oy,
~
-~ -

Figure 10: Nonlinear load path as a function of axial strain

The same energy-based procedure used in the asarcan be applied to each increment in the remistep in
order to calculate the stiffness constants as etifimof a given loading or strain. In Figure 1He @xial (secant)
stiffness,S;1 secant NS been computed for the axial deformationgodbul 0% strain and three different wall

thicknesses. This stiffness is calculated applyfregsame procedure described at the end of sex@ao each of
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the increments in the nonlinear analysis in absdiefms. As the thick transverse reinforcementasessentially
rigid supports, the buckling strain is almost inglegent of the wall thickness. The nominal-thicknass cell has
also been compared with a full 3-D model, creatét seven cells. As in previous cases, the boundangitions
on the full 3-D model are: encastre on one siderayid body plus reference point (to apply the liogd
displacement and measure the reaction force) oathiez. The results agree well but, as expectedfulhmodel is
slightly stiffer than the unit cell. This can betlly attributed to end effects in the full beanodel. In addition, it
can be observed that a negative tangent stiffrebssg of the load strain curves in Figure 12) imoted at high
strains, which implies thabcalisation has occurred (Pinho et al., 2006). Consequenrdlst, this pointy, greater
than~0.1), the assumption of periodicity is broken and¢bk-based solution diverges from the actual respom
this particular example, with very thick transversmforcements, the cell model still gives a reesdie
approximation, but this will not be the case ingrah Continuing with the analysis of this exampléen the
tangent stiffness becomes zero, the beam respenseldonger periodic and one of its cells will ghgdeform,
without increasing the load, while the others redar go back to a lesser strain. In Figure 12re¢hetion force and
the axial component of the tangent stiffness haenlplotted versus the axial strain in order téebeinderstand the
sequence of events in this localisation procesgrBdocalisation, the strain in all unit cells figted in Figure 13a-
b fory, = 0.05) is the same. The load is always constant thrahgleells. When the tangent stiffness becomes
negative ¢, =0.1), one of the cells will continue loading (growyiy,, see Figure 13c) and the others will unload
(decreasing;, see Figure 13d). Note that after localisationdw@sirred, for a given load, various strain states

possible.
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Figure 11: Post-buckling axial softening of the reinforced prismatic beam for various wall thicknesses

Note that a single unit cell with periodic boundaonditions predicts the conditions of the cenek mather
accurately thanks to the thickness of the transveamforcements, which prevents warping infornrato be
transferred from cell to cell. It is stressed ttiéd is a special case given the wall thicknessdéscribed above, the

choice of wall thickness was made for the localking to occur prior to the column buckling.
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Figure 12: Load (left axis) and tangent stiffness (right axis) as a function of strain
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Figure 13: Deformed shapes, with scale factor of one, for the unit cell and the full model of the reinforced
box beam at different stages of the localisation process (contour plot shows corresponding von Mises stress)

4.4. Active Twist Rotor blade modelled with tie constraints
The ATR bladérom NASA and MITbrings a higher level of complexity (baththe material and geometric
definitions) which allowdurther verification of the approaciThe dimensions of the cross sectiondepicted in
Figure 14and its material properties describe(Table 4. Moraletails can be found in Cesrand Ortega (1999).
The cros section has been modelled without the foam eoré extruded to a total depth of 20% the maxin
cross-sectional dimension. Notgweve, that the results are independent of that sesefettiol. It is worth noting
the current method allows fearioLs features of the FEM package toused in the solution. In this case,
various parts of the section (skin, spars, joiats,)were meshed independently ,without the neecoincident
meshes orhe interface, and were asseml using Abaqus tie constraintSIMULIA, 2010) for a mesh

transitioning between pairs sfirfacesAs it was already mentionedhi$ enhances the scalability and possibili
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of the current solution method, as the detailh@donnection between spar and skin have a snfiedtt éf the
homogenized stiffness. The mesh used consistsldf B3D8 elements and 6171 nodes which is very airtul that
used in UM/VABS (Palacios and Cesnik, 2005). Futiégration was used here to mitigate a problenttiicial
strain energy creation. The stiffness constantainét through this method have been summarisedhite™ and
compared to those of Cesnik and Ortega (1999) (VABSnd those in UM/VABS (Palacios and Cesnik, 2005
The direct terms are in full agreement with UM/VAB®del, and the coupling terms are very accurateetwv
compared to the results from VABS-A we find a dotwrdiscretisation agreement for most terms exdept t
torsional stiffness. For this coefficient, the alveel discrepancy is ~5% but this has been idedtifiPalacios and
Cesnik (2005) as a ply angle orientation erroritAsn be seen, the tie constraints introducethtothe various

model parts have a negligible effect on the sotutio

Mid-Section
N P
_ose E-Glass 0/90
E-Glass 0/90 AFC 45 Fairing
S-Glass 0 E-Glass 45/-45 e on
E-Glass 45/-45 AFC 45 ECEsSI000
E-Glass 0/90 E-Glass 0/90
»\ r& 4.85 /
‘ Web
47.75 \ E-Glass 0/90
E-Glass 0/90
107.70

Figure 14: Dimensions (in mm) of the ATR blade with the
composite layups

Table 4: Mechanical properties of the ATR wing (Cesnik and Ortega-M orales, 1999)

Material Units E-Glass (Style S-Glass Active-Fibre
Property 120 Fabric) (Unitape) Composite
E, GPe¢ 20.7 46.¢ 22.1¢
Er GPs 20.7 12.1 14.91
Gt GPs 4.1 3.€ 5.12
Ut - 0.1< 0.2¢ 0.45¢
tpLy mm 0.11¢ 0.22¢ 0.20¢
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Table 5: Stiffness constants comparison between different methods

Stiffness constant
(% diff w.r.t. present method) VABS-A UM/VABS Present method

S11[N] 1.684 | -042% | 1.677 | -0.06% 1.676

S22 [NmZ2] 34.7 | 0.06% | 34.79 | -0.06% 34.77

S33 [NmZ2] 41.64 | -1.18% | 41.18 | -0.07% 41.15

S44 [KNM?] 1.031 | 5.04% | 1.086 | -0.28% 1.083

S12 [Nm] -13.07 | -1.68% | -12.89 | -0.31% -12.85

S14 [Nm] 250.7 | -0.76% | 249.6 | -0.32% 248.8

5. Conclusion

An approach to obtaining homogenised propertiedesfder periodic composite structures has beerpies. It
is based on the equivalence between the stragssaaithe large and small scales and the consamnvattistrain
energy between both and it can be implementedersi@gic boundary conditions in an off-the-shelfititnelement
code. The use of a 3-D unit cell does not reqliesassumption of constant cross sections and teadsore
sophisticated analysis of complex-geometry slesttectures at a preliminary stage at a very low patational
cost. The modelling of the geometry in our impletaéon is fully parametric which allows sensitiviyalysis to
be done. The way the loadings are introduced mtariodel and the final outputs exported make thiscach
readily compatible with engineering beam models mbhmerical examples show excellent agreementatiitér
available methods and have also demonstrated tadiity of the approach to calculate local buokjistrain and
the associated reduction of beam tangent stiffilteadeam’s unit cell using nonlinear analysis. @itethis
method is a very flexible alternative to obtain bwenogenised first-order stiffness constants andllbuckling
loads of an arbitrarily-shaped periodic composéarh. Application of this approach to high-aspetibrair vehicle
analysis is expected to improve the accuracy oféhalts in the conceptual stage of design, reduitia time and

cost of the whole design process and bringing ptapeeption and flight readiness closer together.
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