

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination. The definitive version is available at <u>http://dx.doi.org/10.1016/j.watres.2014.04.023</u>

Lee, E., Ryan, U.M., Monis, P., McGregor, G.B., Bath, A., Gordon, C. and Paparini, A. (2014) Polyphasic identification of cyanobacterial isolates from Australia. Water Research, 59 . pp. 248-261.

http://researchrepository.murdoch.edu.au/22386/

Copyright: © 2014 Elsevier Ltd.

It is posted here for your personal use. No further distribution is permitted.

Accepted Manuscript

Polyphasic identification of cyanobacterial isolates from Australia

Elvina Lee, Una M. Ryan, Paul Monis, Glenn B. McGregor, Andrew Bath, Cameron Gordon, Andrea Paparini

PII: S0043-1354(14)00308-X

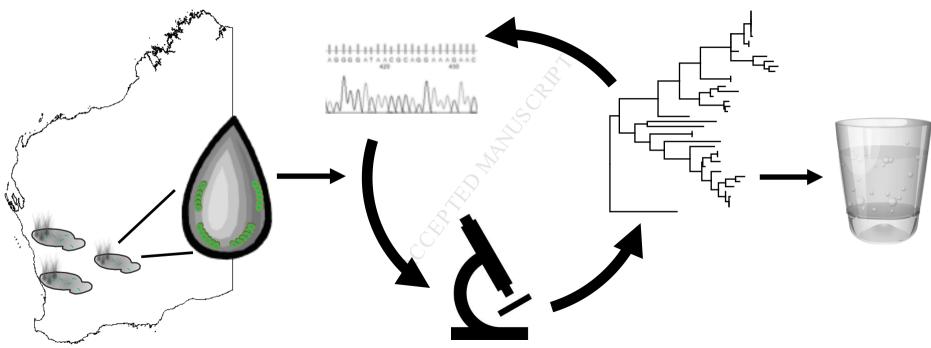
DOI: 10.1016/j.watres.2014.04.023

Reference: WR 10625

To appear in: Water Research

Received Date: 15 November 2013

Revised Date: 10 April 2014


Accepted Date: 12 April 2014

Please cite this article as: Lee, E., Ryan, U.M, Monis, P., McGregor, G.B, Bath, A., Gordon, C., Paparini, A., Polyphasic identification of cyanobacterial isolates from Australia, *Water Research* (2014), doi: 10.1016/j.watres.2014.04.023.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Polyphasic identification of cyanobacterial isolates from
2	Australia
3	
4	Elvina Lee ^a , Una M Ryan ^a , Paul Monis ^b , Glenn B McGregor ^c ,
5	Andrew Bath ^d , Cameron Gordon ^d , Andrea Paparini ^{a,*}
6	
7	^a School of Veterinary and Life Sciences, , Murdoch
8	University, Murdoch, Western Australia, 6150
9	^b Australian Water Quality Centre, South Australian Water
10	Corporation, 250 Victoria Square, Adelaide, 5000
11	^c Department of Science, Information Technology, Innovation
12	and the Arts, GPO Box 5078, Brisbane Queensland 4001
13	^d Drinking Water Quality Branch, Water Corporation, 629
14	Newcastle Street, Leederville, Western Australia 6007
15	Corresponding author. Mailing address: School of Veterinary
16	and Life Sciences, Murdoch University, 90 South Street,
17	Murdoch, Western Australia 6150, Australia. Tel.: +61 89360
18	6650; Fax: +61 89360 6628. E-mail address:
19	a.paparini@murdoch.edu.au
20	

21	Abstract
22 23	Reliable identification of cyanobacterial isolates has significant
24	socio-economic implications as many bloom-forming species
25	affect the aesthetics and safety of drinking water, through the
26	production of taste and odour compounds or toxic metabolites.
27	The limitations of morphological identification have promoted
28	the application of molecular tools, and encouraged the adoption
29	of combined (polyphasic) approaches that include both
30	microscopy- and DNA-based analyses. In this context, the
31	rapid expansion of available sequence data is expected to allow
32	increasingly reliable identification of cyanobacteria, and
33	ultimately resolve current discrepancies between the two
34	approaches.
35	In the present study morphological and molecular
36	characterisations of cyanobacterial isolates (n=39), collected
37	from various freshwater sites in Australia, were compared.
38	Sequences were obtained for the small ribosomal subunit RNA
39	gene (16S rDNA) (n=36), the DNA-dependent RNA
40	polymerase gene (rpoC1) (n=22), and the phycocyanin operon,
41	with its intergenic spacer region ($cpcBA$ -IGS) (n= 19).
42	Phylogenetic analyses identified three cyanobacterial orders:
43	the Chroococcales (n=8), Oscillatoriales (n=6), and Nostocales
44	(n=25). Interestingly, multiple novel genotypes were identified,
45	with 22% of the strains (17/77) having <95% similarity to
46	available sequences in GenBank.

- 47 Morphological and molecular data were in agreement at the
- 48 species level for only 26% of the isolates obtained (10/39),
- 49 while agreement at the genus level was obtained for 31%
- 50 (12/39). Confident identification of the remaining 44% of the
- 51 strains (17/39) beyond the order level was not possible. The
- 52 present study demonstrates that, despite the taxonomic
- 53 revisions, and advances in molecular-, and bioinformatics-
- 54 tools, the lack of reliable morphological features, culture-
- 55 induced pleomorphism, and proportion of misidentified or
- 56 poorly described sequences in GenBank, still represent
- 57 significant factors, impeding the confident identification of
- 58 cyanobacteria species.
- 59

60 Keywords

- 61 Cyanobacteria, morphology, molecular phylogeny,
- 62 identification, 16S rDNA, *rpo*C1, phycocyanin operon

63	1. Introduction
64 65	Cyanobacteria are a group of ubiquitous photosynthetic
66	prokaryotes, found in all types of aquatic environments
67	(Whitton and Potts, 2000). Interest in this phylum has increased
68	due to (i) their ancient evolutionary origins (Tomitani et al.,
69	2006), (ii) their ecological role as oxygen producers, and
70	atmospheric nitrogen- and carbon-fixers (Reynolds, 2006),
71	(iii) the socio-economic impact on various industries (e.g.
72	water, tourism and food) of bloom-forming producers of toxins
73	and/or odorous metabolites (Granéli and Turner, 2006), and
74	(iv) their application as a source of biofuels and
75	pharmaceuticals (Borowitzka, 1995; Li et al., 2008).
76	Cyanobacteria identification, enumeration and classification
77	have traditionally been based on light-microscopy observations,
78	using morphological characteristics such as cell size, cell
79	fission type, trichome width, shape of the terminal cells, shape,
80	size and position of specialised cells such as akinetes and
81	heterocytes, presence of aerotopes etc. (Castenholz, 2001).
82	However, this approach requires considerable operator skill and
83	time; with distinctive phenotypic characteristics varying
84	significantly within species, or even being lost, due to
85	environmental or culture conditions, growth phase, use of
86	fixatives etc. (Lyra et al., 2001; Whitton and Potts, 2000).
87	Furthermore, manifestation of ecotypes, or microbial
88	pleomorphism during long-term cultivation, has resulted in a

89	large number of strains being misidentified, with disagreeing
90	nomenclature and morphological descriptions (Komárek, 2006;
91	Komárek, 2010).
92	The well-known limitations to morphology-based identification
93	promoted the development of DNA-based approaches, as a
94	means of reliably identifying cyanobacterial isolates (Valério et
95	al., 2009; Willame et al., 2006). The small ribosomal subunit
96	RNA gene (16S rDNA), together with its internal transcribed
97	spacer (ITS) region, have been widely used for taxonomic
98	purposes, to profile complex prokaryotic communities, and
99	infer phylogenetic relationships (Castenholz, 2001; Coenye and
100	Vandamme, 2003; Komárek, 2006). Other commonly used loci
101	include the more discriminatory protein-coding gamma subunit
102	of the DNA-dependent RNA polymerase (rpoC1) (Fergusson
103	and Saint, 2000), and the phycocyanin operon, consisting of the
104	two cpcB-cpcA genes with their variable intergenic region (PC-
105	IGS) (Neilan et al., 1995).
106	Previous studies have shown that identification of unknown
107	isolates can be hampered by incomplete (or unreliable)
108	morphological descriptions being provided for the sequenced
109	strains, incorrect identification of strains in culture collections,
110	and/or simply, by the lack of proper reference strains tout court
111	(Komárek, 2006; Komárek, 2010; Rajaniemi et al., 2005).
112	Much has been done to overcome these problems, such as the
113	proposal of the International Code of Nomenclature for algae,

114	fungi, and plants (Castenholz and Norris, 2005; McNeill et al.,
115	2012; Oren, 2004; 2011; Oren and Tindall, 2005), and the
116	International Code of Nomenclature of Bacteria which groups
117	cyanobacteria into subsections (Castenholz, 2001), and the
118	resulting revisions to cyanobacteria nomenclature and
119	classification (Anagnostidis, 2001; Otsuka et al., 2001;
120	Rajaniemi et al., 2005; Suda et al., 2002). However, this has
121	also resulted in new taxa being described using a combination
122	of both codes, causing further confusion (Komárek, 2010).
123	With time, the rapid expansion of available sequence data (Fig.
124	1) is expected to allow increasingly accurate molecular
125	identification of cyanobacteria, and help in resolving the
126	discrepancies between the microscopy and molecular
127	approaches. In light of the current maturity of sequence
128	databases, taxonomy and molecular tools (Komárek et al.,
129	2011; Siegesmund et al., 2008; Strunecky et al., 2011; Wacklin
130	et al., 2009), the aim of this study was to determine how well
131	morphological and molecular tools for the identification of
132	cyanobacteria isolates corroborate. To this end, cyanobacteria
133	were isolated from randomly selected locations in Western
134	Australia, from which there have been few cyanobacteria
135	studies, for use in this study.

136 **2. Materials and Methods**

137 **2.1 Isolation and cultivation of cyanobacterial strains**

- 138 Freshwater samples (n=50; 1 L each) were collected between
- 139 November 2010 and June 2011, from various randomly
- 140 selected locations in Western Australia, including: (i) protected
- 141 freshwater reservoirs in the Great Southern region, with
- restricted access and excellent water quality (GS samples;
- 143 n=6); (ii) urban lentic systems, in the Perth metropolitan area,
- 144 with free public access (n=3); (iii) shallow, rural, lotic systems,
- 145 which included a drain and a river (n=2) (Table 1). For sample
- 146 enrichment, water was pre-filtered through qualitative filter
- 147 paper Number 1 (Advantec, Japan), and sterile 0.2 µm and 0.45
- 148 µm mixed cellulose ester (MCE) filter membranes (Advantec,
- 149 Japan). Each filter was divided into thirds and placed into
- ASM-1 medium (Gorham et al., 1964) (pH adjusted to 7.6), or
- 151 modified ASM-1 medium (with no, or 200 µM sodium nitrate),
- and were allowed to grow for a fortnight. Strains were isolated
- using traditional *ad hoc* methods such as: i) serial dilution to
- 154 extinction, ii) micromanipulation (Narishige, Japan), iii)
- 155 sequential centrifugation, iv) differential filtration, and v) agar156 plate streaking. After repeated passages, isolates were finally
- 157 transferred into 75 cm³ culture flasks (Greiner Bio-One,
- 158 Germany) for long-term cultivation, when a single morphotype
- 159 was stably observed.

160	In addition to the Western Australian isolates, strains from the
161	culture collection at the Australian Water Quality Centre
162	(AWQC), which were mostly collected in the early-mid 1990s
163	during surveys of Australian freshwater sources, were also
164	included in the study. The surveys included: protected and open
165	freshwater reservoirs from New South Wales, Victoria and
166	South Australia (n=6), open rural lentic systems from New
167	South Wales (n=2), and open rural lotic systems from New
168	South Wales and Victoria (n=2) (Table 1). AWQC isolates
169	were grown in 50 cm ³ tissue culture flasks with vented lids
170	(Greiner Bio-one, Germany), containing 20-30 mL of ASM-1
171	medium (pH adjusted to 7.6). Cultures were incubated at 20°C
172	under a photon irradiance of 20 μ Mm ⁻¹ s ⁻¹ provided by cool
173	white light (16 h/8 h light/dark cycle).
174	2.2 Microscopic identification and molecular analyses
175	After obtaining a stable homogenous phenotype and steady
176	growth, each isolate was subcultured into 50 cm ³ tissue culture
177	flasks, containing, approximately, the same number of
178	cells/filaments, and the same medium. Microscopic
179	identification of these sister cultures was performed, by two
180	independent laboratories. Observations were performed by light
181	microscopy at various magnifications on a large number of live
182	cells (i.e., unfixed), either directly in the culture flask, or by
183	making multiple fresh mounts of the cultures.

184	For molecular analyses, aliquots of cyanobacterial biomass (25
185	mL of cell suspension, or ~5 g of microbial mats) were
186	transferred into sterile 50 mL polypropylene tubes (Greiner
187	Bio-One, Germany). The tubes were centrifuged at maximum
188	speed (4,050 rcf, 30 min) using an Allegra X-15R (Beckman
189	Coulter, USA), and DNA was extracted from the pellet, using
190	commercially available DNA extraction kits (Promega, USA or
191	Qiagen, USA) according to the manufacturers' protocols,
192	except that the pellet was digested with proteinase-K overnight.
193	All PCR reactions were run on a G-Storm GS1 standard block
194	thermal cycler (Kapa Biosystems, USA). A partial fragment
195	(313 bp) of the 16S rDNA hypervariable region was amplified
196	using the cyanobacterial-specific PCR protocol previously
197	described (McGregor and Rasmussen, 2008), except that the
198	reverse primers 781R(a) and 781(b) (Nübel et al., 1997) were
199	used instead. Amplification of rpoC1 (409bp) was performed
200	using cyanobacteria-specific primers rpoC1-1 and rpoC1-T
201	(Palenik and Haselkorn, 1992). A partial fragment (423bp) of
202	the phycocyanin intergenic spacer region (cpcBA-IGS) and
203	corresponding flanking regions cpcB and cpcA was amplified
204	using the primers cpcBF (UPF) and cpcAR (URP) as described
205	by Robertson et al. (2001). Amplicons were visualised by 1%
206	agarose gel electrophoresis containing SYBR Safe Gel Stain
207	(Invitrogen, USA) in a dark reader trans-illuminator (Clare
208	Chemical Research, USA). Band products corresponding to the

- 209 expected length were excised from the gel, using a new scalpel
- 210 blade for each sample. These products were then purified using
- a MO BIO UltraClean DNA purification kit (MOBIO
- 212 Laboratories, USA), and sequenced, bi-directionally, using an
- 213 ABI Prism Terminator Cycle Sequencing kit (Applied
- 214 Biosystems, USA), on an Applied Biosystem 3730 DNA
- 215 Analyzer. Sequencing chromatograms were then analysed by
- 216 FinchTV 1.4
- 217 (http://www.geospiza.com/Products/finchtv.shtml), and
- 218 imported into Bioedit Sequence Alignment Editor (Hall, 1999)
- to generate one consensus sequence (per locus) for each isolate.
- 220

221 2.3 Phylogenetic analysis

- 222 Phylogenetic analyses were conducted on the sequences
- 223 obtained during the present study (GenBank accession numbers
- JQ811771 to JQ811820) and retrieved from GenBank, using
- the Basic Local Alignment Search Tool (BLAST). MEGA 5
- 226 (Tamura et al., 2011) was used for sequence manipulations,
- alignments by CLUSTAL W (Larkin et al., 2007) and the p-
- 228 distance model (Kimura, 1980) was used for the calculation of
- 229 the pair-wise evolutionary distances. Phylogenetic analyses of
- aligned sequences were conducted using distance (Neighbour-
- 231 Joining), maximum parsimony (MP) and maximum likelihood
- 232 (ML) methods, in MEGA 5 (Kimura, 1980); tree reliability was
- evaluated with bootstrap analysis of 500 replicates. For the

- 234 purpose of molecular identification, a percentage molecular
- similarity cutoff of 98% and 95% for species and genus
- 236 identification respectively was used for the 16S rDNA
- 237 (Stackebrandt and Goebel, 1994). As a result of the much
- smaller number of sequences available (Fig. 1), 95% and 90%
- similarity values respectively were used for species and genus
- 240 identification for the *rpo*C1 and *cpc*BA-IGS loci. These values
- 241 were chosen based on the genetic distance for species and
- 242 genus measured from the dataset used to generate the trees
- (Fig. 4 and 5).

3. Results

- From the 11 Western Australia sampling sites, 29 isolates were
 obtained; of these, 12 were obtained from the protected
 reservoirs, five from urban lentic systems, and 12 from rural
 lotic waters. The Western Australian isolates were studied
- together with the 10 cyanobacteria isolates from the AWQC
- 250 (Table 1).
- 251

252 **3.1 Comparison of morphological data**

- 253 All 39 isolates were examined and identified morphologically:
- 254 17 isolates were analysed by two independent taxonomists
- 255 (replicate identifications), while 22 isolates were analysed by
- 256 either one of the two taxonomists (unique identifications) (Fig
- 257 2, Table 2).

258	Overall, only 46%	of the isolates $(18/39)$	were morphologically

- 259 identified to species level by at least one taxonomist; the
- remaining isolates (54%; 21/39) were identified only to the
- 261 genus level (Table 2). For the 17 isolates that were analysed by
- 262 both taxonomists, morphological identifications were in
- 263 complete agreement for three isolates (18%, 3/17): Buayanup
- drain type 2 (Anabaena torulosa), Hyde Park type 1
- 265 (Anabaenopsis elenkinii), and Vasse River type 6
- 266 (Sphaerospermopsis aphanizomenoides) (Fig. 2, Table 2).
- 267 Baldwin Park type 3 was also identified to the species level by
- 268 both taxonomists, but as different species (Anabaena
- 269 oscillaroides vs. Sp. aphanizomenoides). For six further
- isolates (35%, 6/17), morphological identifications were in
- agreement at the genus level, while, with the exception of
- 272 Baldwin Park type 3, the lack of identifying features allowed
- identification of the remaining seven isolates (41%), only at
- either family, or order–level (Fig. 2, Table 2).
- 275
- 276 **3.2 Comparison of molecular identification and**
- 277 phylogenetic analysis at different loci.
- 278 Partial sequences were successfully obtained for the 16S rDNA
- 279 (n=36), *rpo*C1 (n=22) and PC-IGS (n=19) loci. Amplification
- at all three loci was successful for 23% (9/39) of the isolates
- 281 (Table 2). Of the remaining isolates, 33% (10/30) amplified
- successfully at both the 16S rDNA and *cpc*BA-IGS loci, 33%

283 (10/30) were successful at the 16S rDNA and <i>rpo</i> C1 loci, whil	(10/30)	/30) were successful a	at the 16S rDNA	and rpoC1 loci, while
--	---------	------------------------	-----------------	-----------------------

- the remaining 33% (10/30) successfully amplified at only one
- 285 locus (Table 2). Tree topologies for all three loci were
- relatively similar (Fig. 3, 4 and 5), with the isolates included in
- 287 distinct clusters according to their orders (Table 2, Fig. 3, 4 and
- 288 5).
- 289 Based on the percentage similarity threshold set (in the
- 290 Materials and Methods), when all three loci were successfully
- sequenced from any given isolate and compared, molecular
- 292 identifications agreed at the species level for only one isolate
- 293 (Vasse River type 6), and at the genus level for one other
- isolate (Vasse River type 13). Where successful amplification
- 295 was obtained for only two loci, agreement at the species level
- for 25% (5/20) of the isolates was obtained. A further 50%
- (10/20) of the isolates agreed at the genus level, while the
- remaining 25% either agreed at the order level, or had no
- agreement at the loci amplified (Table 2, Fig. 6).
- 300 Analysis of the 16S rDNA data (313 characters; 110 parsimony
- 301 informative sites) showed the existence of six major clusters,
- 302 within the three major cyanobacterial orders: the Chroococcales
- 303 (subsection I; n=8), Oscillatoriales (subsection III; n=6) and
- 304 Nostocales (subsection IV; n=22) (Fig. 3) (Castenholz, 2001).
- 305 The Chroococcales included sequences from planktic,
- 306 unicellular coccoids, isolated mainly from the Vasse River, and
- 307 from two isolates (GS3-1 and MIC058-B), which were multi-

308	cellular planktic colonies. The Oscillatoriales included benthic,
309	non-heterocystous, filamentous (non-branching) strains, from a
310	variety of locations. All other 16S rDNA sequences were
311	obtained from cultures of filamentous (non-branching) strains
312	clustering within the Nostocales, of which several genera were
313	paraphyletic (Fig. 3).
314	At the <i>rpo</i> C1 locus (409 characters; 335 parsimony informative
315	sites), the genotypes identified belonged to the Nostocales
316	(n=17), Oscillatoriales (n=1), and Chroococcales (n=4) (Fig. 4).
317	Interestingly, GS2-1 grouped distinctly with Pseudanabaena
318	sp. (Oscillatoriales) (bootstrap value $> 50\%$), while Baldwin
319	Park type 2, although on an isolated branch, was found well
320	within the Nostocales. This is in contrast to the 16S locus,
321	where GS2-1 and Baldwin Park type 2, respectively grouped
322	with <i>Nostoc commune</i> (bootstrap > 70%; well within the
323	Nostocales), or formed a clearly distinct branch, basal to the
324	order (Fig. 3). As with the 16S tree (Fig. 3), multiple clusters of
325	the Chroococcales were also evident from the <i>rpo</i> C1 tree (Fig.
326	4), with four sequences grouped within this order: MIC058-B,
327	Vasse River types 9, and 13 and GS6-1. Apart from GS2-1, the
328	remaining 17 sequences clustered within the Nostocales, which
329	was characterized by the distinct positions of Vasse River type
330	2, Buayanup drain type 2 and GS5-2.
331	Analysis of the cpcBA-IGS locus (423 characters; 396
332	parcimony informative sites) showed that apart from GS2 1

332 parsimony informative sites) showed that, apart from GS2-1,

333	which grouped strongly (bootstrap value >80%) with
334	Pseudanabaena sp. (Oscillatoriales) on an isolated branch, the
335	overall topology was similar to that obtained for the 16S rDNA
336	(Fig. 5). As with the 16S and <i>rpo</i> C1 loci, the Nostocales (10
337	sequences) and the Chroococcales (2 sequences) formed
338	monophyletic groups, while the Oscillatoriales (7 sequences)
339	were paraphyletic (Fig. 5).
340	As the majority of cpcBA-IGS sequences available from
341	GenBank to date mainly belong to relatively few genera (e.g.,
342	Arthrospira, Synechococcus, Phormidium etc.), large distance
343	values and the presence of isolated branches were observed for
344	the tree based on this locus (Fig. 5). Baldwin Park type 2 could
345	not be successfully amplified at this locus, and only GS4-1,
346	GS4-2, Baldwin Park type 1 and Vasse River type 3 exhibited
347	almost complete (\geq 99%) homology with available sequences
348	(Fig. 5, Table 2).
349	
350	3.3 Comparison between morphological and molecular
351	identifications
352	Discrepancies between morphological and molecular
353	identifications were observed for several isolates (Table 2). For
354	example, Hyde Park type 1 was identified, at the cpcBA-IGS
355	locus and morphologically, as An. elenkinii. However, at the
356	16S rDNA it was closest to An. circularis. Further molecular
357	identification of Hyde Park type 1 was hampered by the paucity

- 358 of An. circularis and An. elenkinii sequences at both the rpoC1
- and *cpc*BA-IGS loci which prevented confident identification
- at these loci.
- 361 The isolate Buayanup drain type 2, which was identified
- 362 morphologically as *A. torulosa* was most similar to *A*.
- 363 oscillaroides at the 16S rDNA locus, and to A. spherica at the
- 364 *cpc*BA-IGS locus (no *A. oscillaroides* sequences were available
- at this locus). Isolates GS6-1 and Vasse River types 9, 12 and
- 366 13 were identified as *Aphanothece* sp. based on morphology.
- 367 However, using molecular methods, they were phylogenetically
- 368 more similar to *Synechococcus* sp. (HE975005) than
- 369 Aphanothece minutissima (FM177488) (Fig. 3).
- 370 Morphologically, ANA196-A was identified as
- 371 *Dolichospermum circinale*, but was phylogenetically placed
- 372 with Aphanizomenon gracile, using the 16S rDNA and rpoC1
- 373 sequence data (Table 2). This was also observed for GS4-2,
- 374 which was identified morphologically as a *Nostoc* sp. or *Sp*.
- 375 *aphanizomenoides*, but was found to be most closely related to
- 376 An. bergii (100% similarity) at both the 16S rDNA and cpcBA-
- 377 IGS loci. Similarly, although Baldwin Park type 1 and GS4-1
- 378 were identified morphologically as *Planktolyngbya* and
- 379 *Oscillatoriales/Geitlerinema* sp., they showed 100% similarity
- to various *Limnothrix* spp. and *Planktothrix* spp., at the 16S
- 381 rDNA locus, and to Geitlerinema amphibium (FJ545644), at
- 382 the cpcBA-IGS locus.

383	Overall, for the nine isolates that amplified at all loci studied,
384	microscopic and molecular data from at least one locus, were in
385	agreement at genus level for all isolates, except Vasse River
386	type 13 (Table 2). However, agreement between morphological
387	and molecular identifications, from all three loci, was obtained
388	for only one isolate (Vasse River type 6) (Table 2). When
389	morphology was compared with two loci for all isolates (16S
390	rDNA plus, either <i>rpo</i> C1, or <i>cpc</i> BA-IGS), species identities for
391	ANA150-A (D. circinale) and AWQC318 (D. circinale) were
392	in agreement. When morphological data was combined with
393	molecular identification from any one locus, a further seven
394	isolates could be identified to the species level. These included
395	ANA118-AR, ANA131-CR, ANA148-CR, ANA335-C (D.
396	circinale), Hyde Park type 1 (An. elenkinii), MIC-058-B
397	(Microcystis flos-aquae), and Vasse River type 1 (D. flos-
398	aquae). Of the remaining isolates, 31% (12/39) were in
399	agreement at the genus level, 28% (11/39) to the order level,
400	while no agreement was obtained for the remaining 15% (6/39)
401	(Table 2).
402	
403	3.4 Identification of novel isolates
404	Based on their unique/variable phylogenetic positions and large
405	genetic distances from available sequences, two potentially
406	new members of the Nostocales (Baldwin Park type 2 -
407	morphologically Anabaena sp. 1, and GS2-1 – morphologically

- 408 *Nostoc* sp.) were identified. These new strains had no
- 409 particularly atypical morphology, and could only be
- 410 morphologically identified to genus level (Anabaena sp. 1, and
- 411 *Nostoc* sp., respectively). Noteworthy, 17 novel sequences with
- 412 <95% similarity to previously published sequences were
- 413 obtained during this study, with the majority of the novel
- 414 sequences being observed at the *rpo*C1 locus.
- 415

416 **4. Discussion**

417	This study has shown that even with the changes to
418	cyanobacteria taxonomy and the vast increase in sequences
419	available, identifying cyanobacteria isolates using a
420	combination of molecular and/or morphological methods still
421	remains problematic. This becomes even more evident when,
422	as done in this study, multiple loci and morphological
423	identifications of a single isolate are compared.
424	Despite major revisions to the taxonomy and systematics of
425	cyanobacteria, of the 17 isolates microscopically examined in
426	duplicate, agreement at species level was obtained for three
427	isolates, with another seven isolates agreeing to the genus level.
428	This clearly highlights the current difficulties in morphological
429	identification of cyanobacteria from environmental samples. As
430	such, when monitoring water bodies, it may be beneficial to
431	have more than one taxonomist. Furthermore, to maintain
432	consistency and integrity of the morphological identifications,

433	having morphological identifications done by the same
434	taxonomist for the duration of the study is also of importance.
435	Overall, tree topologies for the 16S rDNA and rpoC1 were
436	similar to previous publications (Fergusson and Saint, 2000;
437	Litvaitis, 2002; Lyra et al., 2001; Tomitani et al., 2006; Valério
438	et al., 2009). Although the 16S rDNA alignment was relatively
439	short (313 characters), using full-length reference sequences
440	from GenBank did not alter the clustering patterns and tree
441	topology (data not shown). Moreover, an rpoC1 amino acid
442	alignment produced a similar tree to that obtained in Fig. 5
443	(data not shown).
444	The strictly qualitative nature of this study discourages the
445	application of a statistically meaningful analysis or inference of
446	ecological and water quality parameters of the sampled sites. In
447	particular, the isolation methods implemented may have
448	favoured isolation of particular species, and cannot therefore be
449	used to comprehensively survey the original cyanobacteria
450	communities. Even so, 22% of the total number of sequences
451	obtained had less than 95% similarity to previously published
452	sequences (at any of the three loci studied), confirming the
453	presence of unexplored molecular varieties of freshwater
454	cyanobacteria in Western Australia.
455	Although there have been investigations on cyanobacterial
456	diversity in Australia (Fergusson and Saint, 2000; McGregor
457	and Rasmussen, 2008; Papineau et al., 2005; Saker et al.,

19

458	2009), this is the first study to compare morphological and
459	molecular identification of freshwater cyanobacteria from
460	Western Australia. In contrast to previous studies done in this
461	region, where Oscillatoriales and/or Chroococcales were found
462	to predominate (Garby et al., 2013; Gordon et al., 1981; Kemp
463	and John, 2006; Lund and Davis, 2000), majority of the isolates
464	obtained in this study belonged to the Nostocales.
465	The present study identified two potentially new strains of
466	cyanobacteria; of these, GS2-1 was the most interesting,
467	grouping with either the Nostocales or Oscillatoriales,
468	depending on the locus considered. Generally speaking, these
469	observed differences can be due to: (i) the lack of sequences
470	available in GenBank for the <i>rpo</i> C1 and <i>cpc</i> BA-IGS loci; (ii)
471	preferential amplification of contaminating strains; (iii)
472	horizontal gene transfer, or (iv) presence of habitat specific
473	gene pools (Komárek, 2010). Baldwin Park type 2 was also of
474	interest, as it was basal to the Nostocales at the well-studied
475	16S rDNA locus, but fell on an isolated branch on the <i>rpo</i> C1
476	tree. Minimum genetic distances for this isolate at either locus
477	were also considerable (6% and 14%, for the 16S rDNA and
478	rpoC1 locus respectively, from A. oscillaroides and Anabaena
479	sp. respectively), indicating a potentially previously
480	uncharacterized Anabaena species.
481	Despite its wide usage, the 16S rDNA has been found to be too
482	conserved to reliably differentiate closely related bacterial

20

483	species (Coenye and Vandamme, 2003; Lyra et al., 2001), and
484	to have an evolutionary pattern that is not reflective of the
485	entire genome (Seo and Yokota, 2003). Consequently,
486	alternative loci such as the protein coding <i>rpo</i> C1, the <i>cpc</i> BA-
487	IGS, the nitrogenase genes (Kumari et al., 2009) and the 16-
488	23S ITS region (and its structure) have also been used for
489	phylogenetic reconstructions, identification and discrimination
490	of species (Johansen et al., 2011; Palenik and Haselkorn, 1992).
491	Although polyphasic approaches, combining morphological
492	and molecular identifications, have been proposed (Komárek,
493	2006; Litvaitis, 2002; Robertson et al., 2001; Seo and Yokota,
494	2003), a number of authors have demonstrated inconsistent
495	phylogenetic and morphological classifications (Litvaitis, 2002;
496	Robertson et al., 2001; Seo and Yokota, 2003). Thus,
497	incorporating data from multiple sources (e.g. morphology,
498	nucleotide sequences from multiple loci, biochemical
499	composition) for the identification of unknown environmental
500	genotypes has been recommended as a standard taxonomic
501	practice (Komárek, 2006). Furthermore, apart from the 97% –
502	98% sequence similarity for the 16S rDNA (Stackebrandt and
503	Goebel, 1994), there is no consensus percentage sequence
504	similarity for species delimitation using other loci. Hence, as a
505	reflection of the rpoC1 and cpcBA-IGS sequence numbers
506	available (Fig. 1), a less stringent criterion was used for the
507	determination of species and genus for these loci. Despite this,

508	molecular agreement between three loci was still lower than
509	between two loci. The combination of cpcBA-IGS and rpoC1,
510	however, showed no agreement among all pairs; conformity
511	was found only when a third locus (i.e. 16S rDNA) was
512	included (Fig. 6). These trends can be explained by the effects
513	of two intertwined factors (which are ultimately responsible for
514	the successful molecular identification of a given isolate): the
515	total number of sequences available at a specific locus, and the
516	number of species represented at that same locus.
517	Amplification efficiency of certain primer sets can potentially
518	be affected by large genetic variations, possibly explaining why
519	none of the isolates belonging to the Oscillatoriales
520	successfully amplified at the <i>rpo</i> C1 locus. Furthermore,
521	alignment length and gap treatment options adopted are known
522	to affect phylogenetic reconstructions including the resolution
523	of some areas of the tree (Lindgren and Daly, 2007). Where
524	alignments of protein-coding genes should present fewer gaps,
525	regions which are subject to less stringent genetic constraints
526	(e.g., 16S hyper-variable regions and intergenic spacers) may
527	produce numerous positions with gaps, requiring ad hoc
528	strategies different from protein-coding data sets (Talavera and
529	Castresana, 2007). This, potentially, accounts for some of the
530	topological differences observed in the trees produced. To
531	overcome such limitations stemming from sequence variability,
532	the use of cyanobacterial 16S-23S ITS secondary structure may

22

533	provide an alternative method to identifying intergenic, and
534	possibly intragenic, diversity which is congruent with that of
535	the 16S rDNA as demonstrated by Johansen et al. (2011).
536	Similarly, the choice of algorithms for generating trees and
537	alignments, as well as the nucleotide substitution models used,
538	can potentially affect the successful identification of isolates
539	(Eddy and Durbin, 1994; Lindgren and Daly, 2007). This could
540	explain, for instance, the high similarity of MIC058-B-derived
541	16S and rpoC1 sequences with M. aeruginosa and M. flos-
542	aquae reference sequences, despite the morphological
543	identification as M. flos-aquae (Fig 3 and 4). On the other
544	hand, however, this observation is in agreement with the
545	recommendation by Otsuka et al. (2001) that M. flos-aquae be
546	regarded as a morphological variant of <i>M. aeruginosa</i> .
547	In addition, it is well known that cyanobacteria frequently
548	undergo morphological changes during cultivation (Gugger et
549	al., 2002; Komárek and Anagnostidis, 1989; Lyra et al., 2001),
550	resulting in potential loss of taxon-defining features (Gugger et
551	al., 2002). Not only have the discrepancies between molecular
552	and microscopic characterizations been well documented
553	(Komárek, 2010; Willame et al., 2006), but it has also been
554	shown that incorrectly identified species exist in GenBank
555	(Komárek, 2010) (e.g. A. variabilis EF488831). Strains within
556	culture collections have also been incorrectly named and are
557	present in both GenBank and various culture collections under

558	different designations	(e.g. A.	variabilis ATCC29413 which

- also appears as Nostoc sp. PCC7937, A. variabilis UTCC 105,
- 560 Anabaena PCC 7937, A. flos-aquae UTEX144 etc.).
- 561 Furthermore, with the many revisions to cyanobacteria
- taxonomy and nomenclature (Fig. 1), there is no method for
- these corrections to be easily incorporated into databases
- 564 (Komárek, 2006), causing further confusion when attempting to
- 565 identify environmental cyanobacteria isolates.
- 566 Finally, as pointed out by Castenholz and Norris (2005),
- 567 species identification is still blurred, this, together with the
- 568 difficulties discussed when identifying cyanobacteria, questions
- the need for cyanobacteria identification to the species level.
- 570 This is especially true in water monitoring situations where
- 571 identifications to the genus level would usually be sufficient for
- 572 initiation of remediation strategies.
- 573 In recent years, the use of mass spectrometry namely matrix
- 574 assisted laser desorption/ionisation- time of flight (MALDI-
- 575 TOF) has seen increasing use in various fields. Its applicability
- to detecting cyanotoxins (Welker et al., 2002), chemotypes
- 577 (Welker and Erhard, 2007) and determining cyanobacteria
- 578 spatial distribution has also been shown, allowing for the
- 579 possible future use of this technology for cyanobacteria
- 580 identification, with the development of a standardised and
- 581 regularly updated database.
- 582

583 **5. Conclusion**

- 584 As highlighted by various authors (Castenholz and Norris,
- 585 2005; Komárek, 2006; Oren, 2011), a polyphasic approach is
- still currently the most reliable option for identifying
- 587 cyanobacteria. The present study however has highlighted that
- 588 despite the application of molecular techniques and the
- 589 subsequent increase in publicly available sequences, the ability
- 590 to accurately and definitively identify environmental
- 591 cyanobacteria isolates is still challenging. It is expected that
- 592 whole genome sequencing data from an ever increasing number
- 593 of species, should make misidentified sequences in GenBank
- 594 increasingly recognisable, allowing for a prompter exclusion or
- revision. This combination of whole genome sequences,
- 596 together with alternative methods of cyanobacteria
- identification (e.g. mass spectrometry) will facilitate the
- 598 process of cyanobacteria identification. However, until then,
- 599 accurate identification of these organisms will remain
- 600 problematic.
- 601

602 Acknowledgments

- 603 The authors would like to thank Stuart Helleren, Mitchell
- 604 Ranger and Ling Hau (Dalcon Environmental), for microscopic
- 605 identifications, useful discussions and invaluable support. They
- also wish to thank Steven Giglio (Healthscope Pathology) for
- 607 providing cyanobacterial DNA preparations, and Maninder S
- 608 Khurana for his assistance with the data analysis. This project
- 609 was funded under the Australian Research Council Linkage
- 610 Project scheme (LP100100160, UR), with financial- and in-
- 611 kind-support from the Water Corporation of Western Australia,
- 612 and Murdoch University.
- 613

References

615	Anagnostidis, K., 2001. Nomenclatural changes in
616	cyanoprokaryotic order Oscillatoriales. Preslia (Prague)
617	73(4), 359-375.
618	Borowitzka, M.A., 1995. Microalgae as sources of
619	pharmaceuticals and other biologically active compounds.
620	Journal of Applied Phycology 7(1), 3-15.
621	Castenholz, R.W., 2001. Phylum BX. Cyanobacteria. In:
622	Boone, D.R., Castenholz, R.W., Garrity, G.M. (eds),
623	Bergey's Manual of Systematic Bacteriology 2 nd edn.
624	Springer, New York. p. 473-599
625	Castenholz, R.W., Norris, T.B., 2005. Revisionary concepts of
626	species in the cyanobacteria and their applications. Archiv
627	für Hydrobiologie Supplement 159, 53-69.
628	Coenye, T., Vandamme, P., 2003. Intragenomic heterogeneity
629	between multiple 16S ribosomal RNA operons in
630	sequenced bacterial genomes. FEMS Microbiology Letters
631	228(1), 45-49.
632	Eddy, S.R., Durbin, R., 1994. RNA sequence-analysis using
633	covariance-models. Nucleic Acids Research 22(11), 2079-
634	2088.
635	Fergusson, K.M., Saint, C.P., 2000. Molecular phylogeny of
636	Anabaena circinalis and its identification in environmental
637	samples by PCR. Applied and Environmental Microbiology
638	66(9), 4145-4148.
639	Garby, T.J., Walter, M.R., Larkum, A.W.D., Neilan, B.A.,
640	2013. Diversity of cyanobacterial biomarker genes from the
641	stromatolites of Shark Bay, Western Australia.
642	Environmental Microbiology 15(5), 1464-1475.
643	Gordon, D.M., Finlayson, C.M., McComb, A.J., 1981.
644	Nutrients and phytoplankton in three shallow, freshwater
645	lakes of different trophic status in Western Australia.
646	Australian Journal of Marine and Freshwater Research
647	32(4), 541-553.
648	Gorham, P.R., McLachlan, R.W., Hammer, U.T., 1964.
649	Isolation and culture of toxic strains of Anabaena flos-
650	aquae. Verhandlungen der Internationalen Vereinigung für
651	Theoretische und Angewandte Limnologie 19, 796-804.
652	Granéli, E., Turner, J.T., 2006. Ecology of harmful algae,
653	Springer, Germany.
654	Gugger, M., Lyra, C., Henriksen, P., Couté, A., Humbert, JF.,
655	Sivonen, K., 2002. Phylogenetic comparison of the
656	cyanobacterial genera Anabaena and Aphanizomenon.
657	International Journal of Systematic and Evolutionary
658	Microbiology 52(5), 1867-1880.
659	Hall, T.A., 1999. BioEdit: a user-friendly biological sequence
660	alignment editor and analysis program for Windows
661	95/98/NT. Nucleic Acids Symposium Series 41, 95-98.

662	Johansen, J.R., Kovacik, L., Casamatta, D.A., Fucikova, K.,
663	Kastovsky, J., 2011. Utility of 16S-23S ITS sequence and
664	secondary structure for recognition of intrageneric and
665	intergeneric limits within cyanobacterial taxa: Leptolyngbya
666	corticola sp. nov (Pseudanabaenaceae, Cyanobacteria).
667	Nova Hedwigia 92(3-4), 283-302.
668	Kemp, A., John, J., 2006. Microcystins associated with
669	microcystis dominated blooms in the southwest wetlands,
670	Western Australia. Environmental Toxicology 21(2), 125-
671	130.
672	Kimura, M., 1980. A simple method for estimating
673	evolutionary rates of base substitutions through
674	comparative studies of nucleotide sequences. Journal of
675	Molecular Evolution 16(2), 111-120.
676	Komárek, J., 2006. Cyanobacterial taxonomy: Current
677	
	problems and prospects for the integration of traditional and
678	molecular approaches. Algae 21(4), 349-375.
679	Komárek, J., 2010. Recent changes (2008) in cyanobacteria
680	taxonomy based on a combination of molecular background
681	with phenotype and ecological consequences (genus and
682	species concept). Hydrobiologia 639(1), 245-259.
683	Komárek, J., Anagnostidis, K., 1989. Modern approach to the
684	classification system of Cyanophytes 4 - Nostocales.
685	Archiv für Hydrobiologie - Algological Studies,
686	Supplement Volumes 56, 247-345.
687	Komárek, J., Kastovsky, J., Jezberova, J., 2011. Phylogenetic
688	and taxonomic delimitation of the cyanobacterial genus
689	Aphanothece and description of Anathece gen. nov.
690	European Journal of Phycology 46(3), 315-326.
691	Kumari, N., Srivastava, A.K., Bhargava, P., Rai, L.C., 2009.
692	Molecular approaches towards assessment of
693	cyanobacterial biodiversity. African Journal of
694	Biotechnology 8(18), 4284-4298.
695	Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R.,
696	McGettigan, P.A., McWilliam, H., Valentin, F., Wallace,
697	I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J.,
698	Higgins, D.G., 2007. Clustal W and Clustal X version 2.0.
699	Bioinformatics 23(21), 2947-2948.
700	Li, Y., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N.,
701	2008. Biofuels from microalgae. Biotechnology Progress
702	24(4), 815-820.
703	Lindgren, A.R., Daly, M., 2007. The impact of length-variable
704	data and alignment criterion on the phylogeny of
705	Decapodiformes (Mollusca: Cephalopoda). Cladistics
706	23(5), 464-476.
707	Litvaitis, M.K., 2002. A molecular test of cyanobacterial
708	phylogeny: inferences from constraint analyses.
709	Hydrobiologia 468(1-3), 135-145.
710	Lund, M.A., Davis, J.A., 2000. Seasonal dynamics of plankton
711	communities and water chemistry in a eutrophic wetland
, 	commentation and water entermony in a cattophic would a

712	(Lake Monger, Western Australia): implications for
713	biomanipulation. Marine and Freshwater Research 51(4),
714	321-332.
715	Lyra, C., Suomalainen, S., Gugger, M., Vezie, C., Sundman, P.,
716	Paulin, L., Sivonen, K., 2001. Molecular characterization of
717	planktic cyanobacteria of <i>Anabaena</i> , <i>Aphanizomenon</i> ,
718	Microcystis and Planktothrix genera. International Journal
719	of Systematic and Evolutionary Microbiology 51(2), 513-
720	526.
721	McGregor, G.B., Rasmussen, J.P., 2008. Cyanobacterial
722	composition of microbial mats from an Australian thermal
723	spring: a polyphasic evaluation. FEMS Microbiology
724	Ecology 63(1), 23-35.
725	McNeill, J., Barrie, F.R., Buck, W.R., Demoulin, V., Greuter,
726	W., Hawkworth, D.L., Herendeen, P.S., Knapp, S., Turland,
727	N.J., 2012. International Code of Botanical Nomenclature
728	for Algae, Fungi and Plants (Melbourne Code): Adopted by
729	the 18th International Botanical Congress Melbourne
730	Australia July 2011, Koeltz Scientific Books.
731	Neilan, B.A., Jacobs, D., Goodman, A.E., 1995. Genetic
732	diversity and phylogeny of toxic cyanobacteria determined
733	by DNA polymorphisms within the phycocyanin locus.
734	Applied and Environmental Microbiology 61(11), 3875-
735	3883.
736	Nübel, U., Garcia-Pichel, F., Muyzer, G., 1997. PCR primers to
737	amplify 16S rRNA genes from cyanobacteria. Applied and
738	Environmental Microbiology 63(8), 3327-3332.
739	Oren, A., 2004. A proposal for further integration of the
740	cyanobacteria under the Bacteriological Code. International
741	Journal of Systematic and Evolutionary Microbiology
742	54(5), 1895-1902.
743	Oren, A., 2011. Cyanobacterial systematics and nomenclature
744	as featured in the International Bulletin of Bacteriological
745	Nomenclature and Taxonomy/ International Journal of
746	Systematic Bacteriology/ International Journal of
747	Systematic and Evolutionary Microbiology. International
748	Journal of Systematic and Evolutionary Microbiology
749	61(1), 10-15.
750	Oren, A., Tindall, B.J., 2005. Nomenclature of the cyanophyta/
751	cyanobacteria/ cyanoprokaryotes under the International
752	Code of Nomenclature of Prokaryotes. Archiv für
753	Hydrobiologie Supplement 159, 39-52.
754	Otsuka, S., Suda, S., Shibata, S., Oyaizu, H., Matsumoto, S.,
755	Watanabe, M.M., 2001. A proposal for the unification of
756 757	five species of the cyanobacterial genus <i>Microcystis</i>
757 759	Kutzing <i>ex</i> Lemmermann 1907 under the rules of the
758 759	Bacteriological Code. International Journal of Systematic
139	and Evolutionary Microbiology 51, 873-879.

760	Palenik, B., Haselkorn, R., 1992. Multiple evolutionary origins
761	of prochlorophytes, the chlorophyll b-containing
762	prokaryotes. Nature 355(6357), 265-267.
763	Papineau, D., Walker, J.J., Mojzsis, S.J., Pace, N.R., 2005.
764	Composition and structure of microbial communities from
765	stromatolites of Hamelin Pool in Shark Bay, Western
766	Australia. Applied and Environmental Microbiology 71(8),
767	4822-4832.
768	Rajaniemi, P., Hrouzek, P., Klára, K., Willame, R., Rantala, A.,
769	Hoffmann, L., Komárek, J., Sivonen, K., 2005.
770	Phylogenetic and morphological evaluation of the genera
771	Anabaena, Aphanizomenon, Trichormus and Nostoc
772	(Nostocales, Cyanobacteria). International Journal of
773	Systematic and Evolutionary Microbiology 55(1), 11-26.
774	Reynolds, C.S., 2006. Ecology of phytoplankton, Cambridge
775	University Press, New York. p. 93-151
776	Robertson, B.R., Tezuka, N., Watanabe, M.M., 2001.
777	Phylogenetic analyses of Synechococcus strains
778	(cyanobacteria) using sequences of 16S rDNA and part of
779	the phycocyanin operon reveal multiple evolutionary lines
780	and reflect phycobilin content. International Journal of
781	Systematic and Evolutionary Microbiology 51(3), 861-871.
782	Saker, M., Moreira, C., Martins, J., Neilan, B., Vasconcelos,
783	V.M., 2009. DNA profiling of complex bacterial
784	populations: toxic cyanobacterial blooms. Applied
785	Microbiology and Biotechnology 85(2), 237-252.
786	Seo, P.S., Yokota, A., 2003. The phylogenetic relationships of
787	cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and
788	rpoD1 gene sequences. Journal of General and Applied
789	Microbiology 49(3), 191-203.
790	Siegesmund, M.A., Johansen, J.R., Karsten, U., Friedl, T.,
791	2008. Coleofasciculus Gen. Nov (Cyanobacteria):
792	Morphological and molecular criteria for the revision of the
793	genus Microcoleus gomont. Journal of Phycology 44(6),
794	1572-1585.
795	Stackebrandt, E., Goebel, B.M., 1994. Taxonomic Note: A
796	place for DNA-DNA reassociation and 16S rRNA sequence
797	analysis in the present species definition in bacteriology.
798	International Journal of Systematic Bacteriology 44(4),
799	846-849.
800	Strunecky, O., Elster, J., Komárek, J., 2011. Taxonomic
801	revision of the freshwater cyanobacterium " <i>Phormidium</i> "
802	murrayi = Wilmottia murrayi. Fottea 11(1), 57-71.
803	Suda, S., Watanabe, M.M., Otsuka, S., Mahakahant, A.,
804	Yongmanitchai, W., Nopartnaraporn, N., Liu, Y.D., Day,
805	J.G., 2002. Taxonomic revision of water-bloom-forming
806	species of oscillatorioid cyanobacteria. International
807	Journal of Systematic and Evolutionary Microbiology 52,
808	1577-1595.

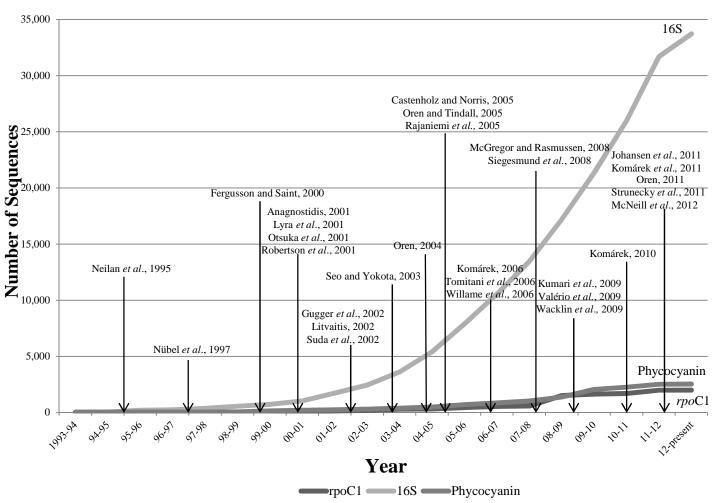
809 810 811	Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology
812	56(4), 564-577.
813	Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M.,
814	Kumar, S., 2011. MEGA5: Molecular evolutionary genetics
815	analysis using maximum likelihood, evolutionary distance,
816	and maximum parsimony methods. Molecular Biology and
817	Evolution 28(10), 2731-2739.
818	Tomitani, A., Knoll, A.H., Cavanaugh, C.M., Ohno, T., 2006.
819	The evolutionary diversification of cyanobacteria:
820	Molecular-phylogenetic and paleontological perspectives.
821	Proceedings of the National Academy of Sciences of the
822	United States of America 103(14), 5442-5447.
823	Valério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P.,
824	Tenreiro, R., 2009. Molecular identification, typing and
825	traceability of cyanobacteria from freshwater reservoirs.
826	Microbiology 155(2), 642-656.
827	Wacklin, P., Hoffmann, L., Komárek, J., 2009. Nomenclatural
828	validation of the genetically revised cyanobacterial genus
829	Dolichospermum (RALFS ex BORNET et FLAHAULT)
830	comb. nova. Fottea 9(1), 59-64.
831	Welker, M., Erhard, M., 2007. Consistency between
832	chemotyping of single filaments of <i>Planktothrix rubescens</i>
833	(cyanobacteria) by MALDI-TOF and the peptide patterns of
834	strains determined by HPLC-MS. Journal of Mass
835	Spectrometry 42(8), 1062-1068.
836	Welker, M., Fastner, J., Erhard, M., von Dohren, H., 2002.
837	Applications of MALDI-TOF MS analysis in cyanotoxin
838	research. Environmental Toxicology 17(4), 367-374.
839	Whitton, B.A., Potts, M., 2000. Introduction to the
840	Cyanobacteria. In: Whitton, B.A., Potts, M. (eds), The
841	ecology of Cyanobacteria. Their diversity in time and
842	space. Springer, Berlin. p. 1-9
843	Willame, R., Boutte, C., Grubisic, S., Wilmotte, A., Komárek,
844	J., Hoffmann, L., 2006. Morphological and molecular
845	characterization of planktonic cyanobacteria from Belgium
846	and Luxembourg. Journal of Phycology 42(6), 1312-1332.
847	
848	

Туре	Sampling site	Isolates obtained	Isolate identities
	Great Southern Region 1	2	GS1-1, GS1-2
	Great Southern Region 2	1	GS2-1
Protected <i>freshwater reservoirs</i> (WA)	Great Southern Region 3	2	GS3-1, GS3-2,
(n=6)	Great Southern Region 4	2	GS4-1, GS4-2
	Great Southern Region 5	3	GS5-1, GS5-2, GS5-3
	Great Southern Region 6	2	GS6-1, GS6-2
	Chaffey Dam	1	ANA019-BR
rotected <i>freshwater reservoirs</i> (NSW)	Burrinjuck Reservoir	1	ANA150-A
(n=4)	Copeton Dam	1	ANA278-FR
	Pejar Dam	1	AWQC318
Protected <i>freshwater reservoir</i> (VIC) (n=1)	Fish Creek Farm Dam	1	ANA148-CR
Open <i>freshwater reservoir</i> (SA) (n=1)	Millbrook Reservoir		MIC058-B
Open urban <i>lentic</i> systems (WA)	Chelodina Wetland Reserve	1	Chelodina wetland type 1
(n=3)	Frederick Baldwin Park	3	Baldwin park types 1, 2, 3
(11-5)	Hyde Park	1	Hyde Park type 1
Open rural <i>lentic</i> systems (NSW)	Lachlan River, Booligal	1	ANA118-AR
(n=2)	Willandra Creek	1	ANA196-A
Open rural <i>lotic</i> systems (WA)	Buayanup Drain	2	Buayanup drain types 2, 4
(n=2)	Vasse River	10	Vasse River types 1, 2, 3, 6, 8, 9, 12, 13, 14, 1
Open rural <i>lotic</i> systems (NSW) (n=1)	Lake Cargelligo	1	ANA131-CR
Open rural <i>lotic</i> systems (VIC) (n=1)	Murrary River, Swan Hill	1	ANA335-C
Grand-total			

Table 1 – Collection sites and identities of the 39 cyanobacterial isolates used in this study

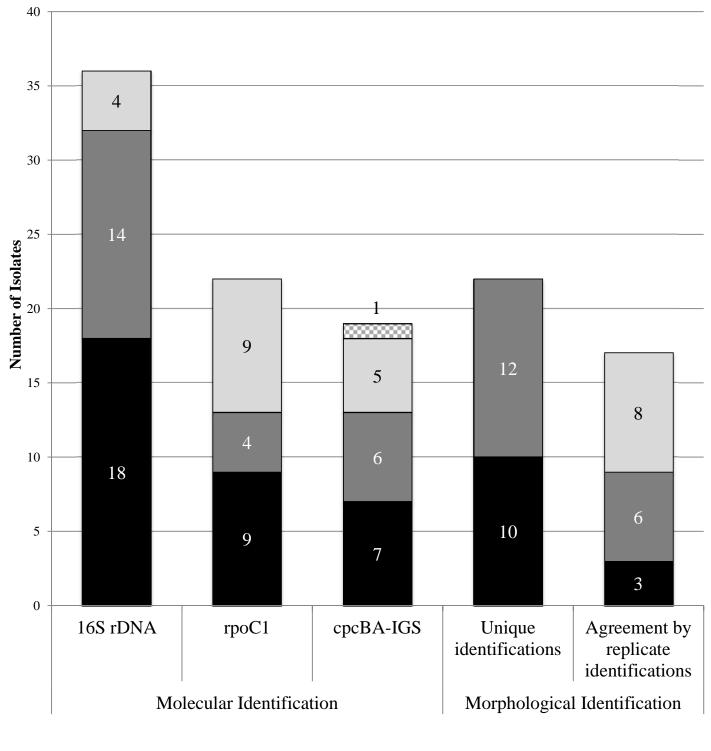
Table 2: Cyanobacteria identification based on 16S, *rpo*C1, Phycocyanin (Cpc) DNA sequences and isolate morphology. Percentage similarity at each locus was calculated in MEGA 5 (Tamura et al., 2011), as the pairwise evolutionary divergence, with a p-distance model (Kimura, 1980).

		Molecular Identification Morphological identification				
Sub-group	Isolate	Related sequence (percentage similarity)				
		16S rDNA (n=36)	<i>rpo</i> C1 (n=22)	CpcBA-IGS (n=19)	Taxonomist 1	Taxonomist 2
	ANA019-BR	D. affine FN691906 (100%)	_		D. circinale	N.A.
	ANA118-AR	-	D. circinale AF199423 (100%)	-	D. circinale	N.A.
	ANA131-CR	_	D. circinale AF199423 (100%)		D. circinale	N.A.
	ANA148-CR	-	D. circinale AF199423 (100%)	_	D. circinale	N.A.
	ANA150-A*	(D. circinale AWQC150-A AF247573)	D. circinale AF199423 (100%)		D. circinale	N.A.
25)	ANA196-A	Ap. gracile HQ157688 (100%)	Ap. gracile EU078450 (97%)	_	D. circinale	N.A.
es (n=	ANA278-FR	D. flos-aquae AB551438 (100%)		_	D. circinale	N.A.
Nostocales (n=25)	ANA335-C	D. circinale AF247588 (100%)	_	_	D. circinale	N.A.
No	AWQC318	<i>D. circinale</i> AF247581(100%)	D. circinale AF199425 (100%)	_	D. circinale	N.A.
	Baldwin Park type 2	A. oscillaroides AJ630428 (94%)	Anabaena sp. AF199432 (86%) Anabaena sp. AF199433 (86%)	-	N.A.	Anabaena sp. 1
	Baldwin Park type 3	Nostoc sp. PCC8976 AM711525 (100%) Nostoc sp. AB087403 (100%)	Nostoc sp. AY242997 (88%)	_	Sp. aphanizomenoides	A. oscillaroides
	Buayanup drain type 2	A. oscillaroides AJ630428 (99%)	Sp. aphanizomenoides FJ234841 (86%)	A. sphaerica DQ439645 (92%)	A. torulosa	A. torulosa


		Sp. aphanzomenoides FJ234848 (86%)			
Chelodina wetlands type 1	Ap. gracile EU078532 (99%)	_	Ap. gracile FN552318 (97%) D. compacta AY702239 (97%)	Anabaena sp.	Anabaena sp.
GS1-2	N. punctiforme GQ287652 (97%)	A. variabilis CP000117 (89%)	_	Anabaena sp.	Anabaena sp.
GS2-1	N. commune DQ185223 (99%) N. commune AB251863 (99%)	<i>Pseudanabaena</i> sp. PCC7367 CP003592 (76%)	Pseudanabaena sp. EF680776 (80%)	Nostocales	Nostoc sp.
GS4-2	A.bergii FR822617 (100%)	_	A. bergii FJ234863 (100%)	Sp. aphanizomenoides	Nostoc sp.
GS5-1	Nostocaceae cyanobacterium GQ389643 (100%)	C. stagnale PCC7417 CP003642 (87%)	_	Cylindrospermum sp.	Anabaena sp
GS5-2	T. variabilis AJ630456 (100%) T. variabilis JQ390607 (100%)	A. cylindrica PCC7144 CP003659 (84%)	<i>Anabaena</i> sp. GU935369 (97%)	N.A.	<i>Anabaena</i> sp
GS5-3	Nostoc sp. FJ948088 (99%)	<u> </u>	Nostoc sp. PCC6720 JF740673 (94%)	Anabaena sp.	<i>Anabaena</i> sp
Hyde Park type 1	An. circularis GQ859629 (100%)	An. circularis EU078479 (89%)	An. elenkinii FN552383 (96%)	An. elenkinii	An. elenkini
Vasse River type 1	D. flos-aquae AY701573 (100%)	Anabaena sp. AF199432 (98%)	Sp. aphanizomenoides GU197719 (99%)	Anabaena sp.	D. flos-aqua
Vasse River type 2	Anabaena sp. PCC9109 AY768408 (99%)	Anabaena sp. EU078475 (87%)	<i>Anabaena</i> sp. PCC 9109 AY768473 (96%)	N.A.	<i>Anabaena</i> sp
Vasse River type 3	A. sphaerica GQ466513 (100%)	A. variabilis AB074795 (100%)	N. linckia AY466120 (99%)	N.A.	<i>Anabaena</i> sp

	Vasse River type 6	Sp. aphanizomenoides FM177473 (100%)	Sp. aphanizomenoides FJ830555 (96%)	Sp. aphanizomenoides GU197719 (97%)	Sp. aphanizomenoides	Sp. aphanizomenoides
	Vasse River type 8	Calothrix sp. GQ859627 (98%)	_	- 2	Gloeotrichia sp.	<i>Rivularia</i> sp.
	Baldwin Park type 1	Planktothrix sp. AF212922 (100%) L. redekei EU078512 (100%) Limnothrix sp. EF088338 (100%)	_	G. amphibium FJ545644 (100%)	Oscillatoriales	Planktolyngbya sp. 1
(9=	Buayanup drain type 4	<i>Leptolyngbya</i> sp. EU729062 (98%)	- ^	Cyanobacterium txid129981 AJ401183 (75%)	N.A.	Trichocoleus sp
Oscillatoriales (n=6)	GS1-1	<i>Leptolyngbya</i> sp. HM217044 (100%)	-	Spirulina laxissima DQ393286 (84%)	N.A.	Planktolyngbya sp.
llatori	GS3-2	<i>Pseudanabaena</i> sp. GU935355 (100%)	-	<i>Pseudanabaena</i> sp. PCC 7409 M99426 (82%)	Pseudanabaena sp.	Ps. galeata
Oscij	GS4-1	Planktothrix sp. [AF212922 (100%) L. redekei [EU078512 (100%) Limnothrix sp. [EF088338 (100%)	_	G. amphibium FJ545644 (100%)	Geitlerinema sp.	Planktolyngbya sp. 1
	GS6-2	Ps. mucicola GQ859642 (99%)		<i>Pseudanabaena</i> sp. PCC7409 M99426 (83%)	Pseudanabaena sp.	Ps. galeata
les	GS3-1	<i>M. flos-aquae</i> /AF139328 (98%)	_	_	N.A.	Microcystis sp.
oococca (n=8)	MIC058-B	M. flos-aquae AF139328 (100%)	<i>M. aeruginosa</i> AP009552 (98%)	_	M. flos-aquae	N.A.
Chroococcales (n=8)	GS6-1	<i>Synechococcus</i> sp. HE975005 (100%)	Synechococcus sp. PCC7920 AF245158 (96%)	_	N.A.	Aphanothece sp.

Vasse River type 9	<i>Synechococcus</i> sp. HE975005 (100%)	Synechococcus sp. PCC7920 AF245158 (96%)	-	Aphanothece sp.	Aphanothece sp.
Vasse River type 12	<i>Synechococcus</i> sp. HE975005 (100%)	_	Synechococcus sp. PCC7918 AF223462 (97%)	N.A.	Aphanothece sp. 1
Vasse River type 13	<i>Synechococcus</i> sp. HE975005 (100%)	Synechococcus sp. PCC7920 AF245158 (96%)	<i>Synechococcus</i> sp. PCC7918 AF223462 (96%)	N.A.	Aphanothece sp. 1
Vasse River type 14	<i>Synechococcus</i> sp. HE975005 (100%)	-	_	N.A.	Aphanothece sp.
Vasse River type 15	<i>Synechococcus</i> sp. HE975005 (100%)	-	<u> </u>	N.A.	Aphanothece sp. 1


*16S rDNA sequence previously available (GenBank Acc. No AF247573); - = No sequence data obtained; N.A.= Not examined; A.= Anabaena; An.=Anabaenopsis; Ap.=Aphanizomenon; C.=Cylindrospermum; D.=Dolichospermum; G.=Geitlerinema; L.=Limnothrix; M.=Microcystis; N.=Nostoc; O.=Oscillatoria; P.=Planktothrix; Ps.=Pseudanabaena; Sp.=Sphaerospermopsis; T.=Trichormus. Sequences with percentage molecular similarity above the threshold used for identification are in bold. For species identification, the threshold was 98% for the 16S rDNA, and 95% for the *rpo*C1 and *cpc*BA-IGS loci. For genus, the threshold was 95% for the 16S rDNA, and 90% for *rpo*C1 and *cpc*BA-IGS.

CERTE

Sequences in Genbank

Fig. 1 – Number of sequences within GenBank for the 16S, *rpo*C1 and phycocyanin loci over time. Data obtained from NCBI Nucleotide Database (<u>http://www.ncbi.nlm.nih.gov/nuccore</u>). References indicate papers characterising or reporting changes to cyanobacteria taxonomy and nomenclature.

■ Species ■ Genus □ Family/Order □ Unclassified

Fig. 2 – Number of cyanobacterial isolates identified at order, genus or species-level, using molecular and morphological methods. Depending on the isolate, morphological identifications were carried out by either one (unique identifications), or two independent taxonomists (replicate identifications). Where isolates were examined in duplicate, the number of isolates providing agreement between the replicate identifications is shown.

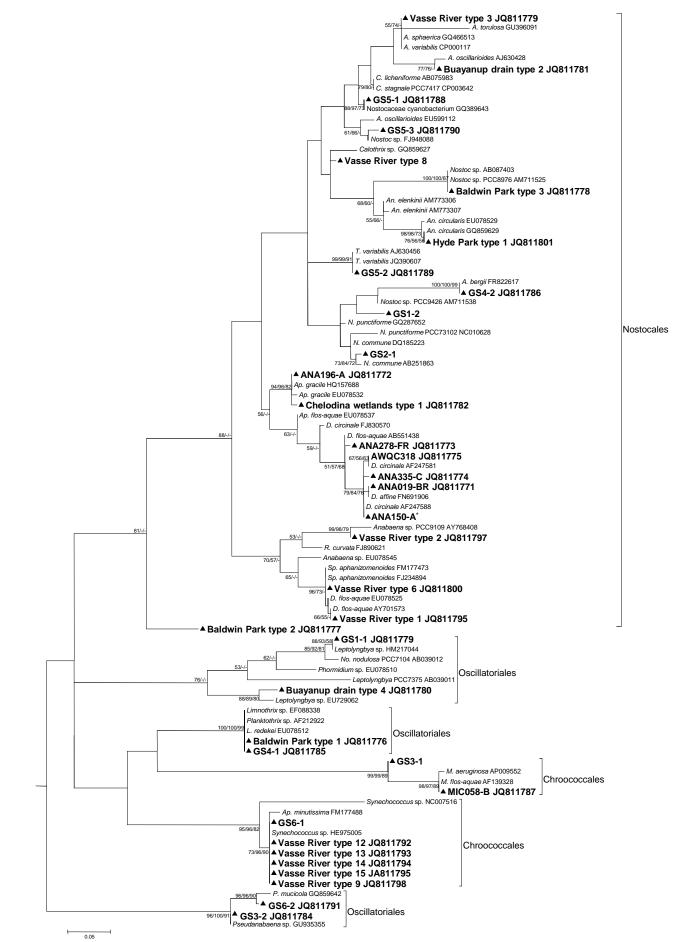


Fig. 3 – Maximum Likelihood tree based on the 16S rDNA sequences (313 bp) showing the clustering of isolates obtained. Branch support values greater than 50% for Maximum Likelihood, Maximum Parsimony, and Distance analyses respectively are indicated left of the nodes. Bar, 0.05 substitutions per site. The outgroup was removed to facilitate the visualisation of the isolates. Sequence previously submitted to GenBank with accession number AF247573

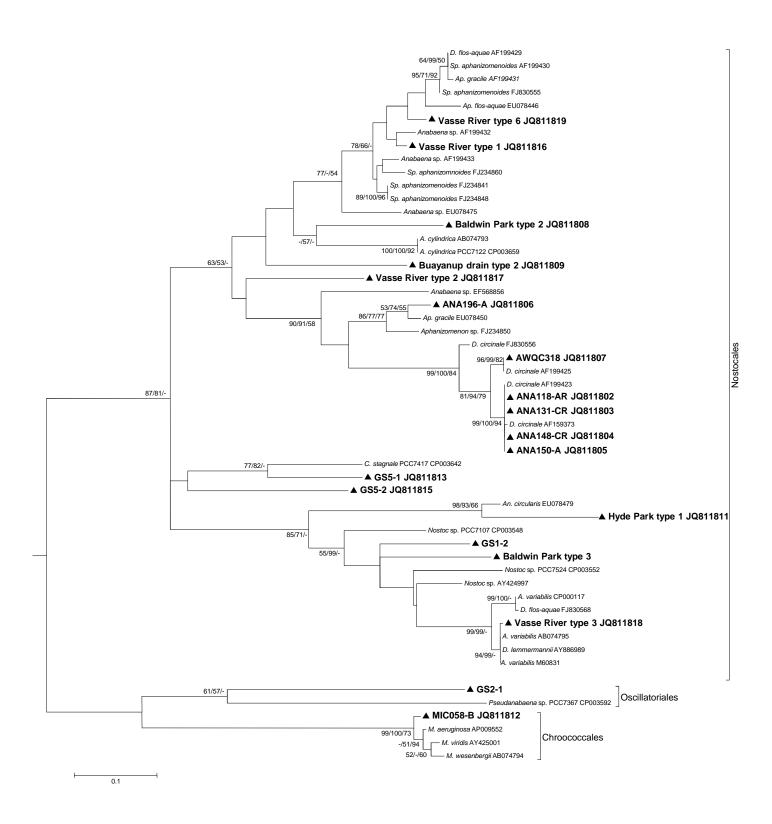


Fig. 4 – Maximum Likelihood tree based on the *rpo*C1 sequences (409 bp) showing the clustering of isolates obtained. Branch support values greater than 50% for Maximum Likelihood, Maximum Parsimony, and Distance analyses respectively are indicated left of the nodes. Bar, 0.1 substitutions per site. The *Synechococcus* cluster containing GS6-1, Vasse River types 9 and 13 were removed to facilitate visualisation of the other isolates

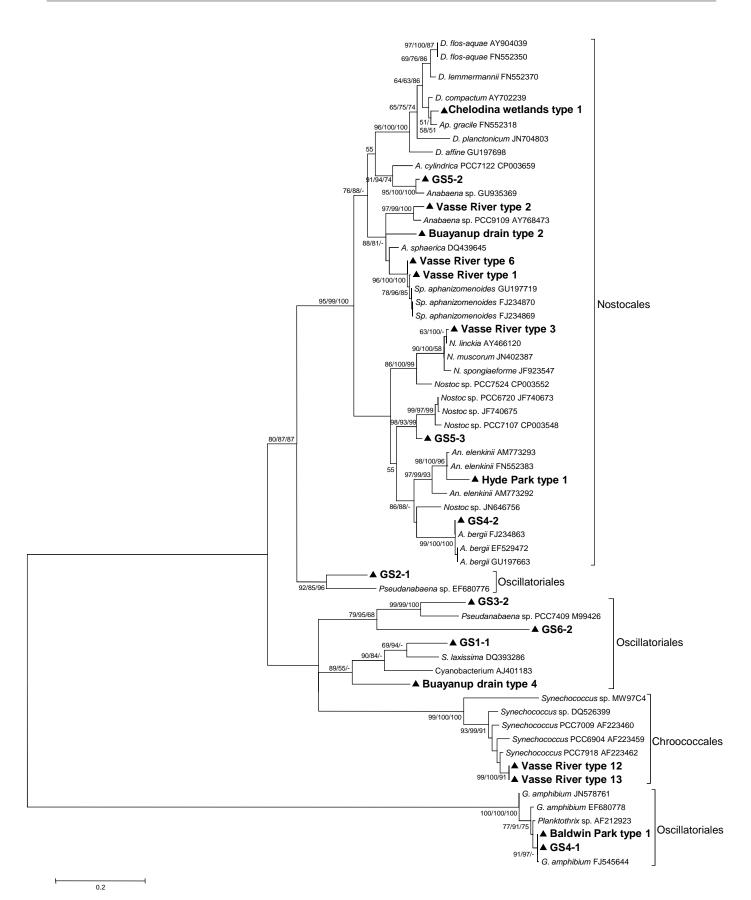
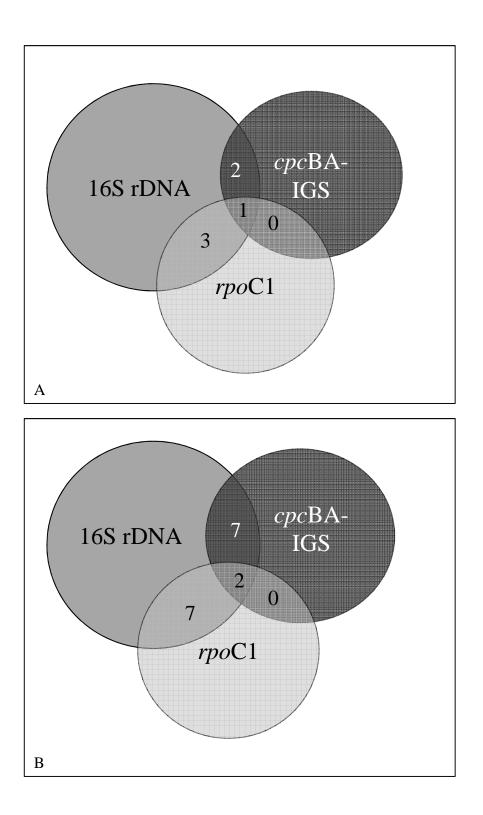



Fig. 5 – Maximum Likelihood tree based on the cpcBA-IGS sequences (423 bp) showing the clustering of isolates obtained. Branch support values greater than 50% for Maximum Likelihood, Maximum Parsimony, and Distance analyses respectively are indicated left of the nodes. Bar, 0.2 substitutions per site.

Fig. 6 – Extent of agreement between the molecular identifications, of various cyanobacterial isolates, obtained by the analysis of three loci: 16S rDNA, rpoC1, and cpcBA-IGS. The numbers indicate the isolates for which agreement between the loci was found at species level (panel A), or at least genus level (i.e. agreement at either species or genus level) (panel B).

- Molecular and morphological agreement was obtained for only 26% of isolates
- Molecular agreement at multiple loci does not necessarily occur
- Polyphasic characterization does not necessarily lead to conclusive identification
- Despite recent advances, cyanobacteria identification remains problematic
- Two potentially new species of Nostocales from Western Australia identified