H

University of
HUDDERSFIELD

University of Huddersfield Repository

Lan, Xiangqi

The Development of a Flexible Characterisation System for Surface Metrology
Original Citation

Lan, Xiangqi (2014) The Development of a Flexible Characterisation System for Surface
Metrology. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/20332/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and
* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox @hud.ac.uk.

http://eprints.hud.ac.uk/

THE DEVELOPMENT OF A FLEXIBLE CHARACTERISATION
SYSTEM FOR SURFACE METROLOGY

Xianggi Lan

A thesis submitted to the University of Huddersfield
in partial fulfilment of the requirements for
the degree of Doctor of Philosophy

School of Computing and Engineering
University of Huddersfield

April 2014

Abstract

Surface texture and its measurement are becoming more and more increasingly important
in the field of high precision engineering and nano-technology. It is a significant and
efficient way to predict the functional performance of an engineering product by
characterising its surface. As the extraction and evaluation of surfaces features not only
relies on analysis algorithms but also measurement techniques, most of surface
characterisation software systems are embedded in the measurement instruments. At
present, even though a series of Geometrical Product Specification (GPS) standards are
released to guide the procedure of surface characterisation, there are no software systems
give a fully support of them. As a consequence, evaluation results from different systems
are incomparable, even worse, conflict with each other.

Surface characterisation system needs to be updated constantly with the emergence of
new algorithms and methods. However, the lack of good extensibility, reusability and
maintainability is a serious obstacle to the innovation of existing surface characterisation
systems. As functia modules in current surface characterisation systems are tightly
coupled together, it is not conducive to the reuse of function modules and innovation of
overall system. A lot of redundant and duplicate works have been raised in either
enhancing present characterisation systems or building a new characterisation system.

To improve the reusability of function modules and facilitate system extension, this
research aims to establish a flexible surface characterisation system with an open
architecture. By employing component based development technologies, the overall
characterisation system is constructed by gluing various functional components together
instead of being created from scratch. Each analysis algorithm or method is implemented
as an independent functional component, which is separated from the system framework.
And alsoit can be easily reused by other characterisation systeamsexecutable chunk

Any system functional components can be developed or maintained independently by
different organisation as long as they comply with predefined protocols (interfaces).

This thesis proposed a novel surface characterisation system, which can be reconfigured
as end users’ expectation at any time even when it has been installed and deployed

already. Functional components can be added, removed or replaced dynamically without
affecting other parts of the system. Furthermore, the system is flexible such that
researchers and developers can concentrate on characterisation algorithms and methods
themselves, and then develop their own functional components which can be easily added
to this system.

Acknowledgements

First of all, | would like to express my sincere gratitude to my supervisor, Prof.
Xianggian Jiang for setting up an appropriate research subject. She offers her unreserved
help and guidance, and leads me to finish my thesis. Her words can always inspire me
and bring me to a higher level of thinking. Many thanks also give to her for kindly
support, advice and encouragement.

Great appreciation also goes to my second supervisor, Prof. Liam Blunt, for his
exceptional support and guidance throughout my thesis. Without his kind and patient
instruction, it is impossible for me to finish this thesis. He gave lots of time helping me to
improve my academic writing and the capability of carrying out professional researches.

| am also indebted to Prof. Paul Scott, Dr. Shaojun Xiao and Dr. Feng Xie for their
valuable guidance and suggestions. Special thanks to Dr. Wenhan Zeng and Dr. Haydn
Martin. They squeeze time from their busy schedule to help me correct my thesis.

| would like to show my appreciation to Taylor Hobson Ltd. for the support and
sponsorship of my studies, and | am also grateful to the EPSRC Centre for Innovative
Manufacturing in Advanced Metrology, the Centre for Precision (CPT) and the School of
Computing and Engineering of the University of Huddersfield for providing me the
opportunity and facilities to carry out this project.

Sincere thanks tay colleagues for sharing their insights, many useful discussions and
valuable suggestions, and my friends for their kindly support and encouragements.

Finally, |1 would like to thank my family for supporting me throughout all my studies.
Their love provided my inspiration and was my driving force. | owe them everything and
wish | could show them just how much | love and appreciate them.

Y oS3 = (o PP PP PP RTPTPPPON 1
F o 0Nl =T o (o =T o Ty o RSP 2
IS 0 T USSP 7
LISt Of TADIES ...t e s 9
IS 0 ol {0)Y/ 0 0 PRSPPI 10
Chapter 1 INtrodUCHIONuiiiiiieii e e e e e 11
T = Vo (o | {0 T PR 11......
1.2 AIM And ODJECHIVESciiiiiiiiiitei ittt e e e e e e e e e 16......
1.3 APPIOACK ... 19.......
1.4 TRESIS SIIUCTUIE.oiii ittt et e e e e e r e e e e e e e e e 21......
Chapter 2 Surface Characterisation TEChNIQUES.............oovviiiiiiiiiiiiiie e, 24
2.1 INEOAUCHION. ... 24.......
2.2 Surface Verification OPeratori..........ccccoviiiiiiieiiiiii e e e e e e 24....
2.3 SUIMACE MEASUIEIMENL.....ciiii ittt ettt e e e e e e e e e e eeeeas 32.....
2.3.1 SEYIUS MELHOASo e e e e e e e eeees 32.....
2.3.2 OptiCal METNOUS.eiiiiiiiiiee e 35.....
2.3.3 Other MEetNOASciiiiiiiiiieee e 36......
2.3.4 Range and RESOIULIONuuuiiiiiieeeiiiiiiiie e 37....
2.4 Fitting TEChNIQUES.....ccooi i 38......
241 Least SQUAreS fitliNg.........oocurreieeei e 39....
24.2 Profile fitingccoviiiiiii e AD
2.4.3 Areal fitliNgcoooiiiiiiie e 42......
2.5 Filtering TECANIQUES.........ooiiiiiiiieee e 44.....
2.5.1 The Process Of FilteriNg........cccoriuiiiiiii i ee s e e e e 45....
25.2 FIltering MethOdS.coviiiiiie e ai.....
2.6 ParameteriSatiON...........cooiuiiiiiiiiiie et 49......
2.6.1 Statistical MEethOS..........ccoiiiiiiiiii e 50.....
2.6.2 Geometrical MethOOS...........oviiiiiiiiii e 52....
22 T U | 01 0 = Y2 B3.......
Chapter 3 Design and Implementation of Flexible System Architecture.................... 54
3.1 INEFOAUCTION. ...ttt e e 54.......

Contents

3

3.2 Component-Based DeVElOPMEINT.coouiiiiiiiiiiiieeee e 56...

3.2.1 (0] a1 o0 1= o | S 56......
3.2.2 Component-Based Software Development.........cccccoviiiiiiiiiiieeeeeneiiiiee B7.
3.2.3 Current Technology for Component-Based Architecture...............cccc......... 58
3.2.4 Advantages of Component-Based Development...........cccccccovivviiiniiiennneenn. 60

3.3 System ArchiteCture DESIQN.........vviiveiiiiiiiiiiiiieiieerrieirrerrrrrrrr e —————— 6qQ....
3.31 Separation of Analysis Functions and System Framewatk............cc.......... 60
3.3.2 INtEQrative STTUCTUIE.......oi e 61....
3.3.3 Semi-detached StrUCIUIE..........cooiiiiiiiii e 62....
3.34 FIEXIDIE STrUCTUIE......eeiiiiie e 63.....
3.35 Proposed Surface Characterisation System Architecture..............ccccvuveen. 64

3.4 Surfstand System Functional Component Categorisation.............cccceeeeeeeernnnnd 69
34.1 Data ACCESS COMPONENL......ciiiiieeiiii ettt e e e e eanas 69....
3.4.2 Data Processing COMPONENT..........uiiiiiiiiiiiiiiiieieee e e e e 70...
3.4.3 Data Display Component..........cccceeeeeeeiiiiiiiiiieveieeeeeeeeeeeeen L

3.5 System Development Life CYCLe.......oouviiiiiiiiiiiiiiiiieeeee e 73...
3.5.1 Waterfall MOAEL........coooiiiii e 73.....
3.5.2 Incremental MOdEl..........cceiiiiii e D
3.5.3 SPIraAl MOEL........cuiiiiiiiiiiiiiii e d D
3.54 Development Model of SurfStand..............cooiiiiiiiircce e, 78..

3.8 SUMIMIAIY. .ottt 81.......

Chapter 4 Implementation of Data Access COMPONENtS...........cceevvvvveeeeiiiiiiiiiiieeeeennn 82

4.1 Conventional Surface Data File FOrmat.............cccccooiiiiiiiiiiiiiiiiiiice e 82..

4.2 COMPONENT DESIGN....cci ittt ettt e e e e e e e e e e e anneeed 85......
4.2.1 Surface Data Structure Design for the Proposed Surface Characterisation System

85

4.2.2 Surface Data Class Design for the Proposed Surface Characterisation.Sy&%em
4.2.3 Interface Design for the Data AccesSS COMPONENLS........cevveeriiiiiivrireeieeeenn 90

4.3 Standard Surface Data Format: SDF...........coiiiiiiiiiiiiiiiieeeee e al...
4.3.1 SDF File FOIMAL........oiiiiiiiieeee oot e e 92.....
432 Interface IMpPlemMEeNtatiQn. ... 96....

T 1 | 111 = T /2 97.......

Chapter 5 Design and Implementation of Data Process Components of the Developed

System 98
5.1 Categorisation of Data Process COMPONENLS..........cccuuvvveiiieeeeiiiiiiiiiieeeeee e 98.
5.2 Component Interface Design of the Proposed System...........cccccvvvieniieeennenns 103
521 Interface of Verification OPerations..............ceeeerviiiiiiiiieiieee e 103
5.2.2 Interface for All Data Process COMPoNEnts..........ccccceeeeeeeeeeeeviiiieiieeeeeeennnns 106
5.2.3 Interface for Subtypes of Data Process Components..........ccccevvveeeenennnnes 108
5.3 Case Studies: Geometrical Analysis Component.............cccccvvvvvveveiieeieeeeeeennen, 109
5.3.1 Surface SegmMENTAtiON...........uueriiiieeeiiiiiiiiie e e 110Q..
5.3.2 Boundary curve approXimation.................eevveviveeeierrierrerrniiernirnen... 111
5.3.3 Geometrical featureS CONSIIUCTION.........ceeiiiiiiiiiiiiiiie e 114
5.3.4 Interface Implementation for Geometrical Analysis Component............... 116
LG 1 0 0 0 = Y2 118...
Chapter 6 Implementation of Surface Visualisation Componentscccccevvvenes
6.1 COMPUIET GraphiCS......uuiiiiiiiiieeiiiee et e e 119...
6.2 Computer Graphics ProgrammgDpPenGL............uuuuuiiiiiiiiiiiiiiciieee e, 121
6.2.1 MOAEITING e e e e e 121....
6.2.2 TranSfOrMALION.c.uuiiiiiiiiie e 122...
220 T O o | (o 11 | 125...
B.2.4 LIGNTING ..ttt e e 125....
6.2.5 Other Functions of OpenGL..........ccccoiiii i 126.
6.3 Component INterface DESIGI.......cuuiiieiiiiiiiiiieie e 126..
6.4 Three-Dimensional Display Component of the developed Surface Characterisation
Systeni27
6.4.1 CoOordiNAte SYSIEML.. ... e e e 1217...
6.4.2 1Y ToTe [=1 | ITo T PP TP TOPPPPPPPP 128....
6.4.3 RENAEN ...t 129....
6.4.4 Lighting and Object MaterialS. ... 130.
6.4.5 Interface IMplementation............ccooouriiiiiiiiiic e 131..
B.5 SUMIMIAIY.... e e e et e e e e e e e 132...
Chapter 7 Test and Evaluation of the Proposed Surface Characterisation System ...
% R {110 T [V Td 1T o S 133....
7.2 U TOSES. ittt e e e e e e e e e e e e e e e 133...

7.2.1 Test Case 1: SDF File COMPONENL........cc.uviiiiiieeiiiiiiiiiiieee e 134

7.2.2 Test Case 2: 3D display COMpPONENt..........ccooiieiiiiiiiiiiiii e e 135
7.3 INTEQratioN TESES. . ciiiiiiiiiiitiee ettt e e e e e e e e e e e e e aaan 138....
7.3.1 TestCase 1: SUR File COMPONENL.........ovvviiiiiriiiiiiiiiiiieiiiiniiennenn. 139
7.3.2 Test Case 2: Levelling COMPONENL..........uuiiiiiiiiiiiiiiiiiieeee e 141
7.3.3 Test case 3: TOPVIEW COMPONENL.......ccooiiiiiiiiiiiie e, 142
T4 SYSEEIM TOSES .. iiiiiiiiiiiiiiieri e 143....
7.4.1 Test Case 1 Components ConfiguratiQn............cc.ueeeeeeeeeriniiiiiinieeneeeennnnns 143
7.4.2 Test Case 2: Compound Command TeSL....ccooeeeiiiriiiiiiinii e e e eeeeens 144

48 T ©e] 1] o = [T o FO TP PP PPOPOPPPPPPPPR 147.....

4 S T U 41 0 1 = Y2 148.....
Chapter 8 Conclusions and FUture WOork ... 150

8.1 SUMIMAIY. i 150.....

8.2 Contribution t0 KNOWIEAGE.uuuuiieiccceee et 152..

8.2.1 Standardisation ANAIYSIS........cooiiiiiiiiiiiie e 152..
8.2.2 FuNCtion MOAUIAISALION..........uviiiiiiiiiii ettt 153.
8.2.3 System FIeXiDility.........cooi s 154...

8.3 FUIUIE WOTK....eiiiieieeieee ettt e e e 155....
REIEIENCES ... et e e e e e e e e e e e e e e 157
Y o 0T 0o L5 C=SPSSPPIIN 163

A Critical Code Fragments of SurfStand SDK............c.ooooiiiiiiiiiieiin e 163

B Code Fragments for the Connection between the Framework and Componerit§6

C Code Fragments for Surface Data Definition.................evvvviviiiiiiiiiiiiniiiiiii, 168

D Definition of Command Interface: ISSCommand.............ccccccveeeiiiiiiiiiiiieeeeenn. 170

E Code Fragments for Method ModifyArgument of Feature Parameters Compohéht

F Interface Definitions for the Three Subtypes of Data Process Components....172

G Related PUBICAIONS...........c..uiiiiiiiieee e 173..

List of Figures

Figure 1.1: Thesis Structure diagraml............uuciiiiiiriiiiiiiis e e e e e e e e e e e e eenaaaas 22....
Figure 2.1: Comparison of Design Intent and Verification of manufactured workpiece....25
Figure 2.2: Standard surface verification Operator.[2].............cccuuiiiiiieeiriiiiiiiieeee e 28.
Figure 2.3: F-operaterfirst order polynomial fitting..............uevvveviviiiiiiiiiiii. 29.
Figure 2.4: L-filter—Gaussian regression filtering.............occuuvviiiiiiiiiieeee e 30..
Figure 2.5: Calculation results of standard surface areal parameters............cccccceeeeeeeennee. 31
Figure 2.6: The Stylus PrinCIPLe........ .. e e 33.....
Figure 2.7: Two types of stylus—Cone and Pyramid [S1]........covvmiiimmiiiiiimiiiiiiiiiiiiiiiiees 34.
Figure 2.8: Stylus SIOPE EffECL......oiiiiiieee 4....
Figure 2.9: Path of light in Michelson interferometer [S56]...........cccccvveiiiiiiiiiiiie 36.
Figure 2.10: Amplitude-wavelength plot of different instruments for surface measurements [61].
... 38......
Figure 2.11: Roughness, waviness and form of a profile.[S51]..........cccccoviiiiiiiiiiiieiinniinnn 45.
Figure 2.12: Filtering process in two domains—Space and Frequency [51].cccovvvviviiinnnnnn. 45
Figure 2.13: Cutoffs of surface filtering [SL]......cccooiiiiiiiiiiiiiiiee e 46...
Figure 3.1: A component with provided and required interfaces...........cccccccvivniirinennnenn. 57
Figure 3.2: Integrative structure of software Systems...............ccccoeeeeiiiiiiii, 61..
Figure 3.3: Semi-detached structure of Software SYyStemS..........ccceeviiiiiiiiiiiiieeeeeeeeeeee 62.
Figure 3.4: Flexible structure of software SyStemS.........cccoovviiiiiiiiiiii e, 6a3..
Figure 3.5: Data flow within a surface characterisation SyStem..............ooccvvvviiieeeeeiininns 65
Figure 3.6: Development hierarchy chart for SurfStand...............cccoiiieiiiiiieen G7.
Figure 3.7: System architecture of SUMfStand............ccccooiiiiiiiiiiiii e, 68...
Figure 3.8: Function chart of Data Access COMPONENIS........ccovviiivriiiiieeeeeeiiiiiiiieeeeeeenn 70.
Figure 3.9: Function chat of Data Process COMPONENIS...........ccceeeeiieeirreeiiiiiin e eeeeeeennnnnnn, 71.
Figure 3.10: Data Display Components—3D Display Component...............cccuvvvuirreeerieennennnnn d 2
Figure 3.11: Software development model—Waterfall model................euvvimiiiimiiiiiiiiiiiiiiiinnns 74
Figure 3.12: Software development model—Increment model.coovuiiiiiiiiiiiiiiiiiiieeeneens 76
Figure 3.13: Software development model—Spiral model.ccooevimiiiiiiiiiiiiii s 16.
Figure 4.1: Surface data pattern—=Grid Data.uuuuiii e 82...
Figure 4.2: Data transfer between surface data file and internal data structure............... 87
Figure 5.1: Example of Data Process Components—TyPe A.ccooevvveeiiiniiiieiineeeeeeeeeeeeeeeeeeen 100
Figure 5.2: Example of Data Process Components—Type B. ... 101
Figure 5.3: Example of Data Process Comp@iefType C.cccuvvveieiieeeiiiiiiiiiiiiieeeee e 102
Figure 5.4: Internal command class inheritance hierarchy diagram of developed systed05
Figure 5.5: Relationship between commands and surface verification operators........... 106
Figure 5.6:Relationship between commands and system functional companents.......... 107
Figure 5.7: Class inheritance hierarchy diagram of data process componentis.............. 108
Figure 5.8 Demonstration of surface Segmentation..............cccuvviriiieeeerniiniiiiiiieeee e 111
Figure 5.9: One boundary curve of a geometrical feature............coooevriiiieieeeeiiiniiinen, 112
Figure 5.10: Curvature of each point on the boundary CUrVe...........ccccvvvvvvveiieiniiiieinnnns 113
Figure 5.11: Derivative of curvature along the boundary CUrVe...........cccoooiviiiiiieeenennnnnns 113
Figure 5.12: Extracted joint points of the boundary CUrMe..........cccooeiiiiiiiiiiiii e, 114

7

Figure 5.13: Characteristics list of geometrical features..............ccccovveiiiiiiiii e, 115

Figure 6.1: Computer graphics system prinCIple..........oouiiii i 119
Figure 6.2: Comparison of drawing a pentagon and five points............ccccevvvvvvvveveeennee, 122
Figure 6.3: Perspective VIEWING VOIUMIE..........uuiiiiiiiiiiiiiiiie e 123.
Figure 6.4: Orthographic viewing VOIUME............ccuiiiiiii e 124.
Figure 6.5: The geometry pipeline that achieves the coordinate transformation............. 127
Figure 6.6: Default 3D model coordinate system of OpenGL..........cccccoviiiiiiiiieeeeennnnne 128
Figure 6.7: 3D modelling of surface data................ceeeviviiiiiiiiiiiiiiiiii, 129.
Figure 6.8: Supported colour maps for surface render............cccuvveeeeeeeeiiiiiiiiiiiieeeee e 130
Figure 6.9: An example of materials rending—Brass.uuurrmmmmimmiim s 131
Figure 7.1: A SDF file opened with the SDF file COMPONeNL...........cccccovviiiiiiiiieeeeennnnns 134
Figure 7.2 The surface data that is saved with the SDF file companent........................ 135
Figure 7.3: 3D display component loaded with ActiveX Control Test Container............. 136
Figure 7.4: Surface data display with 3D mesh representationtype............cccccceeeeeernnne 136
Figure 7.5: Surface data rendered with hot colour map...............covvrviiiii e, 137
Figure 7.6: Surface data display with yellow rubber material.....................ccccvviinninnnnn, 138
Figure 7.7: Components Configuration dialog............ccoeeriiiiiiiiiiiiieeeeeiieeeee e 139.
Figure 7.8: Open file dialog with supporting SDF and SUR file formats......................... 139
Figure 7.9: An example of surface data imported with SUR file companent.................. 140
Figure 7.10: Open file dialog without supporting SUR file format.................cccevvveeennn. 140

Figure 7.11: The emerging levelling menu item after adding the levelling companent...141
Figure 7.12: The surface data that has been processed with levelling companent........ 142

Figure 7.13: The surface data that is displayed with Topview Component..................... 142
Figure 7.14:The surface data that is processed with Bearing curve analysis companerit44
Figure 7.15: Compound command creating dialog..............uuverieeeiiiiiiiiiiieieeeee e 145
Figure 7.16: Subcommands modification of Test command.............ccccoeeevviiiiiiniiennennnnn. 145
Figure 7.17: Test command occurs in the Command setting dialog.............ccccceeeeeernnne 146
Figure 7.18: Parameters setting dialog of Gaussian regression.filter.............ccccccceeee.. 146
Figure 7.19: The surface data that is processed with Test command............................ 147
Figure 8.1: Categorisation of system functional COmMpPONENtS...........ccoovviiiiiiiiiieeeeennnnnnne 151
Figure 8.2: Completed system functional components.............ccccccevviviiiiiieeceeee, 152

List of Tables

Table 2.1: Common model functions for profile fitting...........ccevviiiirii i 40.
Table 2.2: Standard surface profile parameters...........ccccveeiiiiiiiiiiiie e 50
Table 2.3: Standard surface areal ParamerLers.............coviviiiiiiiiiiiiiiie e 51
Table 2.4: Feature parameters defined in ISO 22178-..............cooooi, 52
Table 4.1: Common file formats for surface data Storage............ooovvvvviiieieeeeiiiiiiiieeenn 83
Table 4.2: Essential elements for every surface data.file..........cccciiii i 4.
Table 4.3 Internal surface data structure elements............cuvveevieeiiiiiiiiiii e 86..
Table 4.4: Arguments description of methods of interface SSFilelQ...........ccccccccvvinnnnnend 91
Table 4.5: File header description of SDF surface.file...............ccccccc 92,
Table 4.6: COMPresSioN tYPES liSL........uuuiiiiiiieeiiiiii e 94.....
Table 4.7: Supported data types list of SDF file format..........c.ccccooiiiiiiiiiiii 95.
Table 4.8: CheckSUM tYPES ISk ..., 95.....

Table 5.1: Description of member variables and methods of interface ISSCommand...104
Table 5.2: Description of arguments that occurs in SSAnalysisA, SSAnalysisB and SSAnalysisC.

... 109........
Table 5.3: Combination patterns for common geometrical features..............ccccoevunnnen. 115
Table 6.1: Property values for the brass material............cccccocviiiiiiiiiiiiiiiiccccee e, 131
Table 7.1: Comparison between Surfstand and other SyStEmS..........ccccevvviiiiiiiieneeeenn. 148

List of Acronyms

AFM Atomic Force Microscopy

API Application Programming Interface

ARB OpenGL Architecture Review Board

ASCII American Standard Code for Information Interchange
ATL Active Template Library

AXCTC ActiveX Control Test Container

CBA Component-Based Architecture

CBD Component-Based Development

CCD Charge Couple Device

COM Component Object Model

CORBA Common Object Request Broker Architecture
CPU Central Processing Unit

GPU Graphics Processing Unit

IDL Interface Definition Language

ISO International Organization for Standardization
JRMP Java Remote Method Protocol

JVM Java Virtual Machine

LS Least Squares

MC Minimum Circum scribed

Ml Maximum Inscribed

MZ Minimum Zone

OMG Object Management Group

ORB Object Request Broker

RC Resistor-Capacitor

RMI Remote Method Invocation

SDK Software Development Kit

SDLC System Development Life Cycle

SPM Scanning Probe Microscopy

STM Scanning Tunneling Microscopy

UML Unified Modelling Language

10

Chapter 1Introduction

1.1 Background

The surface of an engineering workpiece can be thought of as the boundary between the
workpiece and the surrounding environment, and it is closely related to the functional
properties of the entire workpiece, such as tribological, thermal, electrical and optical
behaviour [1]. It has been revealed that 90% of all engineering workpiece failures in
practice are surface initiated due to corrosion, erosion, fretting wear, excessive abrasive
and so on [2]. Thus surface topographical features are important factors in determining
the satisfactory performance of a workpiece, and it is significant to understand the

functional properties of swates.

Surface metrology is the science of measuring geometrical features on surfaces. The
approach is to measure and characterise surface features in order to be able to understand
how the features are influenced by its history (e.g. manufacture, wear, fracture) and how

it influences its behavioue@. adhesion, gloss, friction) [3]. From the occurrence which

can be traced back to the 1930s up to now, surface metrology has undesgoies of

huge paradigm shifts [4, 5]. Nowadayshas become one of the fastest-growing areas of
engineering and quality management, and its study is becoming more and more

commonplace in industrial and research environments [6].

To understand and analyse surface features, surface measurement is a critical and
necessary procedure to acquire surface information from engineering workpieces. The
original way to measure surfaces was using the thumbnail and the eye, both of which
were subjective and effective only if used by an experienced practitioner. However, the
texture features of surfaces are too small to be assessed quantitatively by‘®umi a

and se& way [7]. Demand for quantitative results led to two parallel branches of
instrumentationone following the tactile example of the nail, the other mimicking the
eye. Stylus profilometry and optical interferometry are two common techniques used in
carrying out surface metrology. In addition, there are also many other methods for
surface measurement such as using pneumatic technique, capacitance, ultrasound, and so
on [7].

11

Normally, the aim of surface measurement methods is to acquire the surface information
effectively and accurately. There is no one method that can be adopted to measure all
kinds of surfaces. For a certain surface, the measurement method is decided by many
factors such as precision, scale, material, etc. However, measurement results consist of a
set of coordinates, which cannot be adopted to characterise the surface directly. A series
of data processing based on the measurement data is required to extract surface features.
With the benefit from modern digital technologies, e.g. Computer, which offers adequate
speed of operations and processing, the extraction and characterisation could be realised
by software systems. Nowadays, surface characterisation systems are mainly developed
by instrument companies, and they are usually deployed in surface measurement
instruments For example, Talymap is such a software system which is primary
embedded in surface measurement instruments manufactured by Taylor Hobson [8]. With
these convenient and efficient systems, metrologists are able to carry out surface
characterisation and evaluation after measurements. Besides, some institutes also develop
their own surface characterisation syst@#nl0]. Although there are many surface
characterisation systems already, it is still necessary to implement flexible system

architecture. The reason will be elaborated from two different perspectives below.

From the point view of surface metrology, it is expected to get the same characterisation
and evaluation result for a particular measurement data. Convedisaly are always

large variations in the output results among different characterisation systems, which are
caused by a couple of reasons, such as ambiguous definitions, choices of analysis
methods and various implementagon ISO (International Organization for
Standardization) issued a series of characterisation standards which aim to standardise the
characterisation methods. For example, ISO 4287 specifies terms, definitions and
parameters for the determination of surface texture by profiling methods [11], while ISO
25178-2 specifies them by areal methods [12]. However, due to the mathematical
ambiguty of some definitions presented in these ISO standards, there is scope for
different interpretations of how to calculate the parameters. Consequently, software
engineers may design mathematically diverse algorithms to implement the definitions
[13]. That explains why it is hard to get the same result from different characterisation

systems even if they realise the algorithm strictly in accordance with ISO standards. Thus,

12

the characterisation results as the communication information of a surface are
incomparable and untraceable, and it would be meaningless to compare analysis results,

which are derived from different characterisation systems.

In addition, surface characterisation and verification results are figured out by several
sequential steps of processing. According to GPS (Geometrical Product Specification)
standards, the whole procedure is recognised as an operator, while each step of
processing is thought of as one operation [2]. In other words, a surface verification
operator is usually composed of a set of sequential operations. Verification results are
closely related to the verification operator. At present, the realisation of surface
characterisation systems primary relies on operations instead of operators. Operators
cannot be provided by existing characterisation systems, and they are generated by
metrologists during the course of surface characterisation and verification. When
evaluating a particular surface, various verification operators are likely to be used for the
same surface by different metrologists, moreover, it is inevitable even though the
metrologists are the same person, therefore, evaluation results will be greatly affected by
the subjective determination. To reduce the influence caused by human factors, it is

essential to provide verification operators for a surface characterisation system.

From the perspective of software engineering, as aforementioned, there are a number of
characterisation systems developed by various companies or research irj8titdest

is well known that most of the functions of these characterisation systems are similar,
which should be implemented according to ISO standards. As a result, a great deal of
redundant and reduplicated work has been done, and each characterisation system has to
provide such a functional implementation. These characterisation systems suffer from a

couple of insufficient capabilities, which are elaborated from following aspects:

e Reusability: Some basic and common functional modules are essential parts for
every surface characterisation system. Since they are developed to aatisfy
specific characterisation system, they cannot be reused by other systerose
thing, the development environment of a functional module, such as programming
language, tools and platform, is selected in accordance with the whole

characterisation system, which will encapsulate this functional module. For

13

another, functional modules are normally tightly coupled with the whole

characterisation system. They are not independent components and cannot
execute separately. When developing a new characterisation system, the
developer has to re-implement the similar and basic functional modules from

scratch instead of reusing existing ones, which will cost much time and effart [14]

Extensibility: Surface characterisation system is apt to be updated with the rapid
innovation of surface metrology techniques; evolving from profile to areal
characterisation, from stochastic to structured surface analysis and from simple
geometries to complex free form geometries. With the development of processing
and manufacturing technologies, novel characterisation techniques are expected to
satisfy new emerging requirements[15, 16]. Hence, not only the conventional
characterisation methods but also some state-of-the-art analysis algorithms and
techniques will be taken into account. However, it will cost too much to embed
those emerging techniques to the existing characterisation systems as developers
are supposed to have good knowledge of the characterisation system architecture
Even worse, after the extension times and times again, the characterisation system

tends to become unstable and error-prone.

Maintainability: Maintenanceas always a significant activity during the whole
life-cycle of modern software systemH. is inevitable to maintain surface
characterisation systems to keep their functionality in line with requirements and
ensure their availability [17]. For existing characterisation systems, code
modification is quite common during the procedure of maintenance as they are
tightly coupled. However, code modification can only be done assuming the
original code has been understood by maintainers. They also need to have
intimate knowledge of the system architecture, and that would cost too much time
and effort for them who have not participated in the design and development of
the system. Because of the different coding style, most software engineers prefer
writing the code themselves rather thaading others’. With the incessant
modifications, surface characterisation systems will become increasingly

complicated and hard to maintain. Another momentous drawback with respect to

14

maintenance is that any modifications may cause the recompiling and rebuilding
of the whole system, and then redeployment on target computers, even if it is just

a slight modification [18].

e Customisation Generally, functions of surface characterisation systems are
determined by developers, which cannot be changed by end users. As they do not
provide any“spacé for users to reconfigure its functions, what users can do is
just to utilise existing analysis functional modules [19]. Sometimes, not all of the
functional modules provided by a characterisation system may be really useful for
some users, and they might want to use their own algorithm or idea to analyse
surfaces. However, it is impossible to embed usatgorithms to current
characterisation systems, and they have to develop a simplified version to practise
their algorithms. In other words, users will have to implement many other
functions which are not relevant to the algorithms themselves, such as file access
and data visualisation. That could be notoriously difficult and may lead to plenty

of irrelevant work for users.

As stated above, drawbacks of current surface characterisation systems have significant
effects not only on the realisation of standard surface characterisation process, but also
the renovation of themselves. Due to the fact they are implemented by various companies
and research institutes individually, the evaluation results from different characterisation
systems are not exactly the same, and what is worse is that some of them may be
contradicted with the others. According to the intention of GPS standards, the evaluation
result should be consistent no matter which characterisation system is adopted. Hence,
reducing ambiguous of GPS standard documents and affording relevant functional
modules would conduce to acquire comparable and traceable evaluation results.
Meanwhile, the low capability of functional module reuse, system extension,
maintenance, and user customisation is also a barrier of system evolution and
characterisation technology progress. To overcome aforementioned issues, it is essential
to develop a novel and flexible characterisation system for surface metrology. This
project sets out to realise such a surface characterisation system with the state-of-the-art
techniques of software engineering, and establish an open flexible architecture with the

absolute separation between functional modules and system framework [20].

15

In the realm of surface metrology, the crucial thing is how to acquire surface features and
evaluate surfaces by qualitative or quantitative analysis of these features. Currently, some
researchers have to be involved in the development of characterisation systems, and they
need a deep knowledge of the system architecture. Even worse, they will have to spend
substantial time to evolution and maintenance of the characterisation system [14], which
is not the primary work for a researcher of surface metrology. However, with the flexible
characterisation system, researchers can throw themselves into the research of
characterisation technologies rather than the implementation and maintenance of the
characterisation software system. They just realise their own analysis algorithms or
methods and build them as executable functional modules which can be embedded into

the flexible characterisation system.

1.2 Aim and Objectives

This thesis aims to establish a flexible software system for surface evaluation based on
the investigation and improvement on present surface characterisation techniques. The
most essential difference from current characterisation systems is that the designed
system will be constructed by various independent functional components instead of
being created as a standalone chunk. Namely, the entire system will be divided into one
system framework and a number of functional components: The system framework
mainly manages the interaction between the overall system and end user, event driven
and components management; Functional components, which arly loogpled with
system framework, will be designed as independent and executable block. Both the
system framework and functional components will be developed independently and then

can be seamless connected together at run-time.

It is envisaged that this project will contribute to the provision aotommon
characterisation system for the researchers of surface metrology. Each user of the user
group can develop its own functional modules or outsource certain functional modules to
third party. The platform can provide a convenient method to share novel algorithms or
techniques and comparisons of analysis results will be realised easily. In order to achieve

this purpose, the research objectives of this project are classified as follows:

16

1)

2)

3)

4)

Investigate the standard surface characterisation techniques. Surface
parameters are widely accepted for evaluation of surface topography, and most
common parameters for profile and areal have been defined in ISO 4287 and ISO
25178-2 respectively. Generally, there a series of algorithmic operations needs to
be completed prior to calculating parameters, where the whole procedure for
evaluating surfaces can be recognised as a verification operator. To apply this
standard method to evaluate surfaces, it is therefore essential to develop and
understand the meaning of each parameter and the effect of each operation on the

resulting parametric outaoe.

Design an open architecture for the software system. Open architecture means

that the specifications of the architecture are public, and all the parts of the
architecture are loosely coupled. Specific functional analysis modules can be
added, removed or replace dynamically without affecting other parts of the
software system. Based on this open architecture, the ability to extend and
maintain the system no longer belongs to the system creators. Other developers

can also participate and share in the system innovation.

Categorise the analysis function modules. One functional module is an
implementation of certain operation, and a series of sequenced operations are
composed to be an operator. In a characterisation system, there are many
functional modules. Usually, various functional modules need to be organised and
invoked in a different way. In order to reconfigure them dynamically, it is
necessary that they are discernible for the system framework. Thus, they ought to
be categorised by distinguishing their inherent attributes such as input and output.

Formulate the interaction protocols between functional modules and the

system framework. As all analysis functional modules will be physically
separated from the system framework, in this way the system architecture will not
become increasingly complex in nature. When evaluating surfaces, the standard
interaction protocols are prerequisites to connect functional modules and the
system framework together. These protocols specify how to carry out data

exchange, process control, and message map.

17

5) Develop the system framework and functional modules. As functional modules
are independent parts and separated from others, they can be implemented without
taking into account others but only within predefined interaction protocols. The
system framework is an essential part for the entire software system, and it
functionsasa container in which functional modules can be executed. Functional
modules are responsible for practical analysis activities, and they can be

reconfigured dynamically.

6) Construct the user customisation mechanism. The development of functional
modules are not only realised by system developers but often by system end users.
Although developers can implement as many functional modules as they can, it is
still not enough for all users in that it sometimes requires specific analysis
algorithms for particular surface characterisation. Furthermore, the emergence of
novel analysis methods is ceaseless, and it is impossible for developers to cover
all of them. The customisation mechanism enables users to develop proper
algorithms or methods, foa certain surface evaluation cases, where the
developed functional module can be integrated into the software and can also be

directly distributed to other users without any modification.

The fundamental idea behind the software system is to separate functional modules from
the entire characterisation system absolutely. After achieving the above six objectives, a
novel flexible characterisation system can be established. Future end users can integrate
and customise new functional modules, yet the complexity of system architecture will not
increase when reconfiguring functional modules. In addition, establishing such a flexible
characterisation system is aimed at supplying a powerful software Sygstdraracterise
surface textures using multiple and customised functional modules. Every end user can
concentrate on individualised characterisation algorithms and methods, and then develop
his or her own functional modules and distribute them. In essence, the proposed system
will facilitate communications among different organisations and promote the deepening

use surface characterisation techniques.

18

1.3 Approach

During recent decades, with the advancement of computer technology and the consequent
software development is undergoing a huge paradigm shift: From the beginnings of
process-oriented approaches, through to object-oriented and later, to the curretnt aspe
oriented and component-oriented, software engineers have been working to simplify the

development, implementation, and maintenance of software applications [20].

At present, object-oriented programming is still widely used in software development.
Nevertheless, it is not convenient and suitable for establishing flexible architecture to
achieve fine-grained cohesio@BBD (Component-Based Developmealthe successor

of object-oriented development is normally Higlcohesive, and it has become an
increasingly popular approach to facilitate the development of evolving systems as it
promises to address some of the problems of object-edelevelopment technologies

[21]. The advantages of component-oriented development over object-oriented method

are listed as follows:

e Extensibility: Object-oriergd applicationscannormally be adaptive to additional
requirements by modifying some existing code or appending some new codes
[22]. As the generic architecture is not explicit enough, a great deal of detailed
study is requiredo find out where the amendment is needggrecompiling and
rebuilding the whole framework, an extended versian be accomplished and
rereleased. In contrast with object-oriedt CBA (Component-Based
Architecturg is very systematic and the applications are composed of components,
which are independent blocks. Without modifying the system framework, the
applicationscan be extended by adding new components or replacing improper

components.

e Reusability: It is well known that class is the elementary unit of the object-
orienied development. The reusability of the class is concentrated on, while
encapsulation and inheritance are the mechanienfacilitate reuse. However,
this is white box reuse and developers need to have a detailed understanding of
the structure of class [23, 24]. It takes much time and effort for developers to

realise the reuse. Thus the object-oeedevelopment does not giam optimal

19

solution for the reusability of software development. CBD technology has
enhanced the reusability of software. Components are thought as independent
software modules, and the applications are composed of combinations of various

components.

¢ Maintainability: As the system application is a whole chunk of binary code with
the object-orierdd development, it is quite difficult to find out where any bugs
are in the system. In addition, any code modification may casystem to be
unstable. The objective of the component based software development technology
is to take elements from a collection of reusable software components and build
applications by simplygluing” them together [25]. Thus, it is the component that
is the unit for maintenance instead of the whole system. After modifying or
replacing the incorrect component, there is no need-tompile, distribute and
deploy the system again. Each component can be connected sBamolabe

system, and so the system application is easy to maintain.

Simply, compared to the object-oriented development technique, component-oriented is
supposed to realise a coarse-grained and loosely coupled system architecture, which
supports dynamic function integration. As mentioned previguglgally system
functions need to keep pace with any innovationsurface analysis and evaluation
techniques, thus component-oriented development is supposed to ensure the fleibility o
the system architecture which facilitates the reconfiguration of system functional modules.
Therefore, the component-oriented development technique is more competent, and it is
adopted here to establish the proposed characterisation system which can satisfy the
indefinite function requirements, so that frequent changes and expansion will not affect
the stability of system architecture [26].

Currently, component based software development has already been supported by
commercial component frameworks such as COM/COM+ (Component Object Model)
[27], CORBA (Common Object Request Broker Architecture) [28] and Java/RMI
(Remote Method Invocation) [29]. The choice of a component-eddathnique that is

more suitable for the surface characterisation software system depends on the application

platform [30]. COM/COM+ is suited for software solutions developed for the windows

20

operating systems, CORBA for mission-critical and high-availability applications on
mainframe and UNIX platforms, Java/RMI is best for the Internet and e-commerce
applications that need to be ported across a large number of platforms. The proposed
surface characterisation system is designed to be a stand-alone application and executes
on the windows operating system. Hence, COM/COM+ is the primary component-
oriented technology to be adopted.

One of the most important breakthroughs in software engineering and component based
development is the UML (Unified Modelling Language) [20, 31]. UML provides a broad
and precise notation for component specification, component dependencies, and their
realization through collaborations among objects. The component diagram is used to
model the static implementation view of a system. These features make UML the best
choice to develop components and component oriented applications [32]. Therefore,
UML will be employed during the design and implementation of the proposed flexible
system. In addition, as COM/COM+ is a binary interface standardised for software
componentry, it is also language-neutral and facilitates objects being implemented by
different programming languages, all function modules of the proposed system will be
implemented as system components using the C++ programming language, while the
system framework will be implemented using C# programming language because of its

reflection mechanism [33].

1.4 Thesis Structure

This thesis starts with an extensive literature review of advanced surface characterisation
techniques in the field of surface metrology, and then constructs the flexible
characterisation system with statethe-art software development methodologies [34,
35]. There are 8 chapters in total. Figure 1.1 illustrates the relationships and the

connection between them:

Chapter 1 introduces the background and states the deficiencies of current software
systems for surface characterisation in respect to reusability, extensibility, maintainability

and customisation. The aims, objectives and approach of the research are put forward.

Chapter 2 provides a literature review and introduces common surface characterisation

techniques which are used to evaluate the quality of a surface.

21

Chapter 3 focuses on the design of flexible system architecture. Firstly, component based
development is discussed, which includes the framework of component based
architecture, current technologies for CBA and its advantages. Then, the flexible surface
characterisation system architecture is designed based on the categorisation of system
functions. Finally, the development models are discussed and afaplieridevelopment

of the system framework and functional components.

Chapter 1
Introduction
COoM Y
technology
Chapter 2 Surface
characterisation techniques
Chapter 3
Categorisation of functions
9 Data format OpenGL,GDl+ etc.
i specifications
L System Design
Y A Yy Vv Yy Vv
System framework Chapter 5 Data Chapter 4 Data Chapter 6 Data
process components access components display components
A
Chapter 7
System Test
Chapter 8 Conclusion

and futurework

Figure 1.1: Thesis structure diagram.

Chapter 4 describes the design and development of data access components. This chapter
starts with the introduction of conventional surface file formats. Then, the internal surface
data structure is designed and the interface of data access components is defined.
Moreover, the SDF file component is selected as an example to demonstrate the

implementation of data access components.

22

Chapter 5 presents the design and development of data process components. As the data
process components are more complex than the other two types of functional components
the categorisation of thens discussed first. Then, the interface of each type of data
process components is defined respectively. Similarly, a case study concerning the

geometrical analysis component is finally given.

Chapter 6 elaborates the design and development of data display components. This
chapter starts with the introduction of computer graphics. Then, the interface of data
display components is defined. Finally, the implementation of 3D display component

using OpenGL technology is presented.

Chapter 7 deals with the system test and evaluation vidicérried out by various test

cases andomparison with other systems.

Chapter 8 concludes the outcomes and contributions, and suggests possibilities for future

work.

23

Chapter 2 Surface Characterisation Techniques

2.1 Introduction

Surface metrology, which is the measurement of the deviations of a workpiece surface
from its intended shape, is one of the fastest-growing areas of engineering and quality
management [36]. Surface texture is an important factdetermining how a real object

will interact with its environment, and it has been accepted as being significant in many
fields. What happens during the interaction between two surfaces can affect the
functionality and life span of a product, understanding the role of surface features in the
function of a component is vital for creating and producing effective product designs and

manufacturing protocols.

Using the fingernail and the eye was the original way to measure and assess the quality of
surfaces. However, this subjective and arbitrary in the sense that evaluation of the
resultsis mostly determined by the tester. Surface features are usually too small to be
assessedffectively by such dtouch and sight[7]. The demand for effective methods to
extract these surface features has stimulated engineers to explore new characterisation
methods. Nowadays, surface characterisation techniques imakle considerable
progress. Many mathematical algorithms have been adopted to extract the significant
surface topographical features, andsdfeatures can be represented and quantified by a
set of characterisation parameters, which are calculated after sequential data processing.
A series of GPS standards have also been ezléaghe guarantee commonality of the
characterisation process. This chapter gives a literature review of such existing surface

characterisation and evaluation techniques.

2.2 Surface Verification Operator

It is well known that every workpiece is anticipated to satisfy all the criteria implied by
its design, and that is the natural purpose of manufacturing. Normally, a workpiece is
formed by different geometrical features and described by the inscription of sizes and
angles in its nominal form. There are many geometrical features available for the
designetto define the workpiece, these are described by various mathematical parameters

according to the principle of computer-aided manufacturing. The goal of measuring a

24

workpiece is to check whether the tolerances and specifications defined by designer are
met. Intuitively, a surface is a set of infinite points that separate a workpiece from its
surrounding. On a real workpiece only a limited number of points can be used
metrologically. Currently, the skin mode, which is a geometrical model of the physical
interface between a workpiece and its environment, is widely used for the verification

and evaluation of a workpiece [2].

The skin mode presents a description for geometrical produgtifisation and
verification with its associated details and on this basasery workpiece can be
geometrically defined and considered by applying manipulations of the workpiece
geometry. This determination is based on mathematical rules and definitions. This
therefore means that according to this determination every workpiece can be designed
and on the other hand according to the design it can be measured efficiently. The skin
model defines non-ideal features by consideration of ideal features at the workpiece
surface. A real feature is a non-ideal feature the shape which depends on the production

process and its conditions whereas ideal features exist only in theory [37].

VERIFICATION of

DESIGN INTENT Manufactured Workpieces

(Specification)

(Measurement)
SKIN-MODEL REAL SURFACE
Geometrical representation Set of features which
(infinite set of points) physically exists
\ 4 \ 4
OPERATIONS OPERATIONS
Ideal and/or non-ideal Ideal and/or non-ideal
features features
e Partition e Physical Partition
e Extraction e Physical Extraction
e Filtration e Filtration
e Association e Association
e Collection e Collection
e Construction e Construction
e Evaluation e Evaluation
l Y
Specified Charateristic | | Result of Measurement

—»{ Comparison for Conformance }4—

Figure 2.1: Comparison of Design Intent and Verification of manufactured workpiece.

25

Figure 2.1shows the parallel procedures between “Design Intent” and the “Verification

of Manufactured Wrkpieces” so that they comply with the design intent [38]. The Skin-
Model is based on some general and basic definitions and using tools, which are named
“Operation that can be compared with mathematical operations using arithmetic

techniques. The operations which are applied within the skin model are [39]:
1) Partitiorn used to identify bounded features.

2) Extraction used to identify a finite number of points from a feature, with specific

rules.
3) Filtration; used to distinguish between roughness, waviness, structure, form, etc.

4) Association; used to fit ideal feature(s) to non-ideal feature(s) according to

specific rules, which are called criteria.

5) Collection; used to identify and consider some features together, which together

play a functional role.

6) Construction; used to build ideal feature(s) from other feature(s) whilst respecting

defined constraints.

7) Evaluation; used to identify either the value of a characteristic or its nominal
value and its limit(s). The evaluation is always used after the feature operation(s)

defining one specification or one verification.

In the Skin Model, no ordering of operations is implied in the above list. Various

verification operators can be found by these feature operations applied with different
orders, which are usually determined by the effects of each operation and the actual
requirements. Although there are no perfect verification operators that can be used for all
real workpieces or products, most of them may be verified by using the common operator

consisting of all operations listed in the skin model.

The Skin Model can also be extended and applied for surface characterisation and
evaluation in theory. When verifying a surface, several data processing steps are required
to extract significant surface features. Thus, the whole procedure is considered to be
analogous t@a verification operator, while each data processing step is one operation. Not

all operations defined in the Skin Model are suitable for surface data processing and some

26

of them are not necessary. For example, the operdpartition” is not suitable for
surface data as the measured surface itself is a bounded feature of a workpiece. In the
field of surface metrology, to achieve a reasonable and logical evaluation, some
additional operations are used to extract specific features of surfaces. Regardless of
whether operations used for surface characterisation are defined in skin model or not,
these operations comprise a concrete surface verification operator. With different
operations or same operations but in different orders, various operators can be formed to

satisfyavariety of surface characterisation requirements.

Theoreticdly, any surface evaluation results should be acquired from a completed
verification operator and will be meaningtssto compare the evaluation results without
considering which verification operat@rused. Whereas, during the procedure of surface
characterisation verification operators are often less emphasised and sometimes neglected.
Instead, the techniques used in each data processing step, namely operations, are well-
developed and widely used for various kinds of surfaces. To enable traceability and
comparability of evaluation results, it is necessary to keep records of all operations
adopted in order to realise the repeatable characterisation of any surfaces. Surface
verification operators can be used to precisely save and express those operations applied
during the surface characterisation process. Therefore, appropriate verification operators
for the realisation of surface characterisation should be en@uiead promoted widely.

At present, although no operators have been defined in ISO standards explicitly, one
operation chain has already been implied in ISO 25178 and it is widely accepteddnd use
for real surface evaluation. This operation chain can be thought as a standard operator for
general surface characterisation. Each operation involved in this operator has already
been separately defined in relevant GPS standards [11, 12, 40-46]. Generally, there are
four significant kinds of operations in one surface verification operator, and they
comprise measurement, fitting, filtering and parameterisation. Figure 2.2 shows the
flowchart of the evaluation of a surface with the standard verification operator. In
addition, metrologists can also generate their own verification operators for different
kinds of characterisation cases. Therefore, surface verification operators should be
supported in the characterisation system. Unfortunately, they are neglected in present

characterisation system.

27

Surface measurement instruments

A 4

Measurement data

N
\
\
\
\

-7 1SO5436-2

""""""" 150251787
Primary surface
T 118025178-2
F-operator <~ /

Data access 4_

v

N

v

»
©
©
/ ©
S-F surface 4 %
I - 1S03274 | &%
, S . e P
L-filter ;1 _____ s 4 : Q.
-l ISO16610 series)

S-L surface) / \\‘\'\-\.\

718013565

Parameters Calculation:,\
v ~ L
7 1804287
Parameters

v

Surface verification operators
Y N Y Y Y

N

Results of evaluation

Figure 2.2: Standard surface verification operator [2].

Surface analysis and characterisation usually starts from the measurement data which is
considered to be the digital representation of the origifreal’ surface. The
measurement data acquired from metrology instruments and usually consists of a set of
discrete height information defined over the measurement plane. As various measurement
techniques and measurement environments may lead to different measurement data and
the accuracy and precision of the measurement instruments used Isaysficant
influence on the final evaluation result, it is necessary to measure a surfacanwith
appropriate instrument. In the past, a judgement was of the measurement technique
appropriateness from visual inspection of the magnified representation of the surface
which is reconstructed from measurement data. Nevertheless, it might be too simplistic to

evaluate the measured surface in this way. As surface intrinsic features are hidden in the

28

height dataa setof sequential operations are required to extract salient features from the

measurement data.

The standard surface verification operator mainly focuses on extracting surface roughness
and waviness, and quantifying them for quality assessment. For a surface characterisation
system, the initial step is to import the measured data vidgtiored in a digital file with

a specific file format. Although profile and areal data formats have already been defined
in 1SO 5436-2 and ISO 25178-71 respectively, there are still a number of file formats
widely used, in practice which are usually specified by instrument companies. For
example, SUR is a surface format used by Mountains map and Talymap, while ®PD is
Wyko specified format. It is necessary to have knowledge of the file format specification
in order to access relevant measurement data files. However the fact is that these file
formats can only be accessed by their conterpart surface characterisation systems. This is
mainly caused by two reasons: the file format is not open because of the confidentiality
of business and it is impossible to include all these file formats in a given
characterisation system. Hence, a standard file foilsrgteatly encouraged for reasons

of the compatibility and interchangeability of surface data files.

257.02um
687.04um

A
0.00

F-operator

Primary Surface S-F Surface

Figure 2.3: F-operator—first order polynomial fitting.

After importing the measurement data to a characterisation system, the reconstructed
surface without any processing is defined as the primary surface. When measuring a
surface, even after careful alignment with the measurement instrumeniststdtesome

residual slope and slight curvature. So fitting is considered to be the first step of the

process, whicltanrectify the measurement setup errors. This operation is recognised as

29

the F-operator and it removes the form component from the primary surface [12]. Figure
2.3 shows an example of using the first order polynomial fitting to remove the tilt form.

The S-F surface is derived from the primary surface by the fitting operation, and the
subsequent operation is filtering. Filtering is very important in surface analysis, and it is
mostly used as the L-filter defined in ISO 25178-2. The action of filtering is to extract the
significant information from the measurement data for further analysis. The S-F surface
topographycan be divided into two parts by filtering, and usually the more significant
part is the high-frequency band which is termed the S-L surface (as shown in Figure 2.4).
As the surface feature of interest may be varying and the requirements of the extraction
canalso be diverse, taking advantage of the suitable filter with the right parameters can

contribute to an effective extraction.

Ty AR WS \ (
‘\‘ ',: v 4 oy A s ’ A
il WA e)
At . _Ig V’,:‘ -; M;,,fv’,&;h»“v)
- 4 0.00 't B SR g
.‘_'i’*;, . i V /',3 «Kt\:,&% ’(';-'J” -
e v ' 4 ¥ _Q',\\

- T L-filter So. CTRTEN @
ey A | e
S-F Surface S-L Surface

Figure 2.4: L-filter—Gaussian regression filtering.

In the last decade, significant advances have been achieved in filtering techniques.
Although the Gaussian filter is widely used today and is referred to as the standard filter,
it suffers from several shortcomings. The profile has distortion near the edges, and it does
not follow the texture in the presamof large form deviation and is not robust against
outliers. The Spline and Gaussian regression filters overcome the problem of edge
distortion and poor performance in the presence of large form, while the robust Spline
and robust Gaussian regression filters overcome all three problems[47, 48]. Wavelet-
based filters provide an efficient way to partition a profile into multiple narrow
wavelength bands. Morphological filters provide an entirely different perspective to
filtering. They are curvature dependent instead of wavelength dependent. Features with

sharp curvatures are not touched by the morphological structuring element, while features

30

with larger curvatures are touched [48, 49]. Therefore, the selection of filter type is

critical when acquiring elements of the surface texture such as waviness and roughness.

Once the S-L surface is obtained, it is then more useful to calculate surface topography
parameters. Parameter calculation is mostly but not always based on the S-L surface
which is normally regarded as thexpected surface. Most of the profile parameters are
defined in 1ISO 4287 [11], while the areal parameters are defined in 1ISO 25178-2 [50]
Different parameters reflect the surface texture from different perspectives. There is no
universal parameter that represents the surface texture well for all cases, but there are
numerous parameters that successfully characterise the surface for special applications.
Figure 2.5 shows the result of a typical parameter calculation for the previous S-L surface

presented in Figure 2.4.

= Parameters

= AMPLITUDE
5q 19 662(um)
Szk 0641
Sku 3176
Sp 84 857 [um)
Sw B9 E75[um)
5z 154.527(um]
= SPACING
Sds 8.753(1/mm™ 2]
Str 0132
Sal 0.112(ram)
= HYBRID
Sdq 0.296
Szc 0.07001 fum)
Sdr 4.4300%)
= CURVES RELATED
Wi 1.261e+006[um ™3 mm 2]
W 1.696e+007um™3/mm"2]
v 2 572e+007[um”™3/mm"2]
Wy 1.062e+008um ™3/ mm"2)
= SK FAMILY
Spk 23.530[um)
Sk 46,758 (um)
Svk 11.165um)
Smrl 151(%)
Smi2 95.60%)
= OTHERS
5id 90.000(deg]
552 113 980(um]
Sa 15.807(um]

Figure 2.5: Calculation results of standard surface areal parameters.

These parameters are calculated according to their definitions in 1ISO 25178-2. For
example, theS, value, which is the most commonly used paramatesreal surface
texture, is the arithmetic mean of the magnitude of the deviation of the surface from the

mean plane [51]. It is defined as:

31

LL, o
Sa:ij.”f(x,y)—f‘dxdy (2.1)
00

Where f is the height of the mean plane athchndL2 are the extent of the sample. F (X,

y) is the surface height at (X, 3{)[takes the absolute value.

This standard verification operator provides a vital and effective method of quantifying
surface topography. Many practical verification operators can be derived from the
standard operator by applying different kinds of implementation technique or changing
the parameters of certain mathematical operations. Moreover, not all surfaces are suitable
to be evaluated by this standard verification operator and its derived operators. In these
cases it may be more logical to create some special verification operators for a specific
case of surface characterisation and evaluation, depending on the functions of the

surfaces to be analysed.

2.3 Surface M easur ement

The earliest methods of measuring surfaces were using the thumb nail and the eye.
Although both methods were effective, thegre completely subjective, did not provide
guantitative results and required high skill levels. Surfaces are increasingly produced by a
large variety of manufacturing processes, where each process leaves its own fingerprint
on surface of workpieces, it is impossible to utilise subjective methods to assess these
“fingerprints’ by using such crude techniques. Demands for reliable evaluation results led
to two parallel branches of instrumentation: one following the tactile example of the nail,
the other imitating the eye, namely, the stylus methods and the optical methods. Currently,
these are the two broad solutions for surface measurement, and they &voheasure
different types of surfaces [6]. There are other methods developed for surface
measurement including capacitance techniques pneumatic methods but these are now

rarely used.

2.3.1 StylusMethods

Stylus methods were the first techniques developed for surface measurement. In the
second half of the 1930s, a number of companies began to develop instruments to
generate the objective information from the original surfacel941 for example, the

first commercial instrumentTalysurf 2 emerged from Taylor Hobson in the UK, and its

32

guises was the first one to introduce a graphical chart representing the roughness profile
[6]. However, the Brush development company in the USA was the first to coin the term
profilometer [4]. From that time, the measurement of surface texture was largely based
on profile profilometr. The surface profilometers instruments did not appear until the
beginning of the 1980s and they were largely based on adaptations of existing
profilometers using extra translation stages and independent references.

Calliper
4, 4»
Calliper a
Measured Surface Measured Surface
(a) (b)

Figure 2.6: The stylus principle.

The stylus method essentially uses a form of calliper, where one arm makes contact with
the surface to be measured while the other arm contacts a reference surface [52]. The arm
contacting the measured surface ends with a diamond stylus whose tip dimension can
penetrate the detailed geometry of the measured surface. The other arm contacts the
reference surface. Figure 2.6(a) shows the basic configuration. A more common
methodology is to use the measured surface as a reference by using a much blunter stylus
and referencing the measurements to the blunter stylus (the skid) path as shown in Figure
2.6(b). Here theskid® technique provides afintrinsic’ reference. What needs to be
measured is the deviation from the intended surface shape rather than the position or
dimension, so the actual position of the reference relative to the measured surface is not

important [7].

The most important factor of a stylus measurement system is the stylus as the name
implies and it was Schmaltz pushed the idea forward the development of the mechanical
probe [53]. As the tips contattte sample surface, it is necessary to choose hard materials

to avoid tip. For this reason, diamond is widely adoptgithe stylus materiaFigure 2.7

33

shows two different stylus types. The conical form is the most common stylus type by
now [51].

Cone Pyramid
Figure 2.7: Two types of stylus—Cone and Pyramid [51].

During the measurement, stylus geometry and tip radius needs to be considered as shown
in Figure 2.8. The tip can be infinitely sharp but still not penetrate completelainto
surface groove or valley, in other words, the dimension of the features that can be
measured is determined by the stylus radius. Moreover, if the tip is too sharp, it is much
easier to scratch/damage the measured surface and wear the tip. The selection of a stylus
mainly depends on the degree of spatial resolution desired. For a rough surface whose
roughness is of the order of microns, there is no need to use a very small stylus. In fact, a
stylus with a 10 micron tip radius would ensure reliable measurements and longer tip life.

Stylus

_

Figure 2.8: Stylus slope effect.

In addition, the process of stylus measurement can be considered as a form of mechanical
filtering. Spatial features smaller than tip radius cannot be measured and consequently
this means that the user will not gain any information that is below the spatial resolution

of the stylus.

In practice for areal measurements, a scanning routine which specifies scanning
parameters such as length, speed and sampling rate needs to be applied to achieve
optimal surface measurement. The selection of these scan parameters must be carried out
very carefully, as poor selection of the scan parameters will resalh tmacceptable

measurement. For example, a slow scan speed or too small a sampling spacing will

34

dramatically affect throughput, whereas a fast scan speed may lead to the intermittent

stylus contact with the surface and excessive measurement noise.

2.3.2 Optical Methods

Optical measurement is a measurement technique which relies on the use of light to
obtain surface topographical information. Depending on the usage of light, there are
different kinds of optical methods. Some mimic the eye by using the light reflected off an

area of the surface, whereas some mimic the stylus by focusing the light to one specific

point [7].

Optical methods were first reported by Schmaltz to get the roughness of surfaces in 1927
[54]. From this time on, optical methodologies have been steadily developed as tools for
surface metrology. At present, optical techniques have become the most common method
for surface measurement metrology largely owing to the fast acquisition speeds and non
contact nature of the measurement. Optical methods encompass most typically optical
profilometers, confocal microscopes, and interferometers [55]. In the context of the

present thesis the myriad of techniques will not be presented but the method most widely

used to measure nanoscale roughness will be reviewed to illustrate its importance.

Interferometer methods utilize the coherent property of the light interference between two
identical wavelength light beams from the same light source [56]. Figure 2.9 shows the
classic Michelson interferometer set up. The light from a light source is split into two
parts by the beam splitter. One part of the light reatte test surface and reflects back

to the detector, while the other reash reference surfagesually a flat mirror) and then
travels back to the detector. After traversing these different path lengths, the light beams
are recombined to produce interference fringes. The detector is normally a camera which
contains an optical chip or CCD (Charge Couple Device) that has a light-sensitive pixel
array. This chip can convert the light-intensity value for each pixel into an electronic
signal with a corresponding value which will be stored in a computer. Following this the
reference mirror is moved to change the length of the optical path traversed by the light
beam scattered from the referentle total movement should be restricted to several
wavelengths of the light (phase shifts). Interference fringes are captured for several

positions of the reference mirror. Changes in these fringes are monitored by the intensity

35

levels recorded by the CCD camera. Using a series of standard algorithms the intensity
changes can be related to differences in the optical path length across the sample surface

and the surface topography can be recovered [57].

Detector

L]

Beam Spliter

[N —
>) >

Light Source ‘

Reference
Surface

Test Surface
Figure 2.9: Path of light in Michelson interferometer [56].

Optical measurement can bring huge benefits as long as the capabilities and limitations
are clearly understood and applied. Although optical measurement systems involve
projecting light on to the test surface, they are designed to satisfy different measurement
requirements and the cost of them varies. Hence, it is necessary to have a full knowledge
of the scope of application and limitation of the optical measurement system that will be

in use.

A competitive advantage of optical measurement is that it is non-invasiteere is no
need to contact the test surface [58]. Besides, there are many other advantages of this
type optical measurement. For example, it can collect the information of all points within

the measurement area simultaneously, so the surface can be measured quickly.

2.3.3 Other Methods

Scanning Probe Microscopy (SPM), including Atomic Force Microscopy (AFM) and
Scanning Tunneling Microscopy (STM), can also be used for qualitative surface

topography measurement. They are based on a powerful class of tools for nanometric

36

acquisition of topography data on very fine surfaces [55]. Besides, there are other
possible methods for measuring surfaces but on the whole they are matched to a
particular process or surface shape. One of them is the pneumatic technique which is
fairly insensitive compared with other methods [7, 59], and difficult shapes would cause
problems as the shape of the skirt has to match the general shape of the surface, and in
addition the air has to be dry. However, it is cheap and robust. Another possibility is the
use of capacitance based methods which are very sensitive and can be used effectively in
cetain applications [53]. Nevertheless, the signal from the transducer is susceptible to
extraneous signals, so shielding has to be used for high sensitivity. Also the electrode
shape should follow the general shape of the surface being measured. A further possible
technique is to use ultrasound, it is possible to get phase as well as amplitude information
from this technique [60]. However, it requires the very high frequencies to measure the
roughness on fine surfaces and the attenuation rate is high due to the poor propagation of
the ultrasonic wave. The directionality can also be poor.

2.3.4 Range and Resolution

The amplitude-wavelength (AW) map developed by Stedman is useful in describing the
performance characteristics of a surface topography instrument, in terms of its ability to
measure a sinusoidal surface, of a given wavelength and amplitude. An AW map shows
the limits of measurement imposed by the instrument and sensor. For example, in the
case of a mechanical stylus measurement, the operational region will be defined by the
stylus tip radius and cone angle, the instrurmevestical and horizontal resolutions and
ranges, as well as the datum accuracy. These limitations will produce polygons on AW
maps that show the range and applicability of an instrument and its sensor [61]. AW

maps are usually plotted with log-log scales since the boundaries become straight lines.

Figure 2.10 presents an amplitude-wavelength plot for different instruments for surface
topography measurements. Each polygon in the figure indicates the working area of an
instrument. The figure clearly shows that the specific working areas of the different

instruments and defines the instruméstatability for making a given measurement. The

large working area of the stylus instruments illustrates its wide applicability. It should be

37

noted that the SPM systems have the highest resolution but limited range, while optical

systems have a high resolution and a greater range than the scanning microscopes [62].

Amplitude

A

10
mm

[

0.01 - T T T T T T T T T T >
01 1 10 10> 1 10 10> 1 10 10° 10° Wavelength

mm

Figure 2.10: Amplitude-wavelength plot of different instruments for surface measurements [61].

In conclusion, there are many kinds of methods that have been designed to measure
surfaces. Each method has its own advantages and disadvantages, it is therefore necessary
to understand the most suitable technique before applying it to any given measurement
task. Among these methods, stylus and optical are most widely used techniques for
surface measurement. Almost every commercial surface instrument company produces

instrument applying these two methods.

2.4 Fitting Techniques

The aim of fitting is to establish base geometry from the collected data. Fitting is
recognised as a necessary analysis step in coordinate metrology, as features of interest
such as length, diameter, straightness etc cannot be determined directly from the data
collected by the metrology instrument. Conversely, fitting is not commonly used in
surface metrology [48]. However, there is no doubt that fitting is an important pre-

processing step especially in areal surface metrology and is usually applied prior to

38

filtering. Normally it is hard to align the sample paral internal datum of the
measuremeninstrument. Consequently fitting can involve removing any residual tilt
after alignment by fitting lines (for profile measurement) or planes (for areal
measurement). Therefore, surface fitting usually consists of the profile fitting and areal
fitting, and it is to applied to fit the set of surface data points as closely as ptssible
specified mathematical model [63]. Instead of providing information that can be used for
process control and functional analysis, the created substitute geometry of data points
mainly removes the expected form or effects of measuremeritpagpare® the part of

interest for further quantitative analysis.

It is well known that the measurement result may possess residual tilt even after careful
alignment with the datum. In the field of surface metrolddy,(Least Squares) best fit
lines and planes are the most common methods to remove this type of tilt. The following

section presents a brief review of fitting of profile and areal data using LS methods.

2.4.1 Least Squaresfitting

Fitting is the process of constructing a model function that has the best fit to a series of
data pointslt can be regarded as an over-determined problem as the unknown parameters
in the model function are less than the data points [64, 65]. During the fitting process,
fitting criteria which indicates how to establish the best fit geometry plays a critical role.
Currently, there are many criteria used for fitting techniques [48], such g&IM#num

Zone), Ml (Maximum Inscribed), MC (Minimum Circum scribed) and LS. In surface
metrology, LS is the primary used method as it is fast and can produce a stable best-fit

surface/profile.

The LS method uses a standard approach to the approximate solution of an over
determined system. The objective of LS is to find the parameter values for the model

function by minimizing the sum of squared deviations and it is defined as:

S= Z(- f(x,a)) (2.2)

Here z is the actual value of the dependent variable. The model function is defined as:

2= t(xa) (2.3)

39

The vectorx includes all independent variables and the vegetdwolds the m adjustable
parameters. The minimum & is found by setting the gradient to zero.
as _
oa.
The problem is now converted into a solution of a series of equations. According to the

0 (2.4)

relationship between the deviations and unknown parametfalls into two categories:
linear least squares and non-linear least squares. Thelllagaoblem has a closed form
solution which is any formula that can be evaluated in a finite number of standard
operations, while non-linear least squares problem does not have a closed form.solution
Therefore, the non-linedtS problem is usually solved by refinement iterations using

methods such as the Gauss-Newton algorithm.

2.4.2 Profilefitting

Presently, profile analysis is still the most common way to evaluate surfaces as in
industry profile contact analysis still predominates. However, areal optical analysis
methods are becoming widespread because of their natural advantages of speed and non
contact. In some cases, one profile is sufficient to represent the features of interested of
the test surface. To obtain better analysis results, profile fitting is an important step. The
aim of profile fitting is to remove or reduce the effects caused by measurement process
and original form of the surface, as in most instances it is the roughness that is the subject

of the analysis.

Surface profile daté usually stored as a set of sequenced heightdlatnd eacly, is
associated with an incremental distanceo the first sampling point. The fitting task is
to approximate these n pointg, (z) to a predetermined function by using the fitting

process. The predetermined curve/function is commonly known as the ideal function
which indicates the approximate shape of original profile. Most of the common profile

function equations are listed in Table 2.1.

Table 2.1: Common model functionsfor profilefitting.

Profile Equation

Straight Line z=q,+a;X

40

Parabolic Curve Z=a,+oX+a,X
Cubic Curve Z=ay+ o X+, +aX
Polynomial Curve(m-th) z=Y ax
i=0
Exponential Curve z=ab+ C
: . 1
Logarithmic Curve z=
ab‘+ C

x and z are referred to as independent and dependant variables respectively, while
others are referred to functional parameters to be determined. The polynomial equations
are mostly used within the profile fitting [66]. Suppose the order of the original profile is
m, there would need to be m+1 parameters deternwnitn the relevant polynomial

equation.

The sum of deviations is given by

S=Z(4— f(x)) = _n [z—iaj >.<1T (2.5)

S is then patrtially differentiated with respect to polynomial parameters where they are

set to zero,

0S 4 L i .
—=—22(4 —Zakxk)x' ~0,i=0%-m} (26)
805,- i=1 k=0

Equation (2.6) is rearranged and then written in matrix format,

XTXA =X"Z (2.7)
Where
o I
1 Xl X12 le 0 ZZI.
2 m al 22
1 x, X, X,
X =) : A=|a, Z=|z (2.8)
1 x x° X"
[%m] N

The equation is easily solved by employing the Gauss-Jordan elimination method.

41

A=(X"X) X Z (2.9)

Apart froma polynomial curve, other curves can also be used as model functions as long
as they are the predetermined form of the measured profile. Even if the form of the
profile is indeterminate, any of these model functions can be fitted and assessed post

fitting to establish which is the most suitable.

2.4.3 Areal fitting

Areal analysis is becoming popular in surface metrology, and it is widely accegded
better method to characterise a surface than profile analysis [67, 68]. Areal data is
considered to be a more natural way to represent a surface as it contains more
information with regard to intrinsic features. The principle of areal fitting is the same as
profile fitting, namely, to establish the best-fit form for measured areal data. It is well
known that the purpose of surface measurement is to acquire height information
pertaining to the measuring point rather with respect to position information. Surface
areal data is a form of grid data (though not real 3D data). The heightzatustored so

that it is associated with a relative coordinate, {.). Hence the measured data points
can be represented as a 3D coordinatey(, z). Similarto profile fitting, areal fitting is

achieved by approximating the data to a predetermined function of surface form.

Although many equations describing surfaces can be used as the ideal equations for the
areal fitting process, polynomial equations are most commonly adopted because of the
less than obvious shape of the measured surface. Other equations for surfaces can also be
used for areal fitting and the process principle is nearly the same. In the following section,
polynomial fitting of surface data (grid data) will be introduced, and the LS method is
used to establish the best fit surface [69].

For aM *N grid of data points, there affe (T =M *N) points in total. The n-th order

polynomial surface can be expressed as

f(x,y)=zn:§05ijx‘yj (2.10)

i=0 =0

The sum of deviations is given by

42

S= ZN:i(~f(%.y)) =ii£4|—n2ni% zs‘y’}z (2.11)

I=1 k=1 I=1k=1 i=0j=0

For simplicity, suppose
W, =2 Uy =X V=Y (p=k+(1-1)M) (2.12)

S is then partially differentiated with respect to polynomial parameters and they are set

to zero,

M xN n
—ZZU v[ZZauupva] k=0,1:--n;l=0,3--n-k) (2.13)

60‘1« i=0 j=0

Equation (2.13) can be rearranged, and then written in matrix format,

UTUA=U'W (2.14)
Where
aoo
Oy
1 Vi Vl2 Vln u, Uy, - ulvf_l Uf : W,
1, v = V' Uy Uy, - uyvyt o) %o W,
U=. o 1 R T T O I S I W=\ (2.15)
1 v VT2 VTn U v e urvrnil ur” W,
Hny
L %o |

The solution of equation can be obtained by employing the Gauss-Jordan elimination

method,

A=(UTU) UW (2.16)

Polynomial fitting, whether for the profile or areal, is the most common method used for
surface fitting. It is an indispensable tool in any surface characterisation system as correct
alignment methods cannot be guaranteed during a measurement procedure. Although

other fitting methods are not used as much as polynomial fitting, they are also important

43

for some special cases especially when the ideal form of a surface is clear and its
equation is not polynomial e.g. a parabolic surface.

2.5 Filtering Techniques

The functional properties of engineering surfaces are relevant to manufacturingggocess
used to create them and each process can be considered to té&agerarint” on the
surface in the form of a unique topography [2]. The microscopic features produced by the
manufacturing process play an important role, and they are crucial factors in determining
the functional performance of surfaces. However, these features are not obvious and
commonly cannot beé‘picked out directly from the measurement data. Filtering
techniques can solve this problem by partitioning a surface into different wavelength
bandwidths. The underlying assumption is that surfaces consist of a series surface waves
of varying wavelengths, and that certain wavelength bandwidths are related to certain
aspects of the functionality of surfaces [48]. In comparison to fitting process, filtering is
much more significant in the functionally significant wavelengths, and is a necessary step
within any surface analysis procedure.

In the early development of surface analysis, surface data (profile data) was filtered in a
graphical manner [70]. The measured profile was divided into several segments of equal
length, and then one mean line was extracted from each segment to capture the slope of
the profile. After connecting these mean lines together, the roughness profile was
obtained by considering the deviations of the points from the mean line. The graphical
method of filtering was cumbersome and time consuming. Although the method cannot
partition the original profile precisely using a specific criterion, it can approximately
extract the slope and roughness. Nowadaysas been recognized that surface textures
consist of fine texture called roughness, superimposed on more general curvature called
waviness and long range deviations called form (as shown in Figie[21]. On the

basis of signal processing theory, filtering techniques are utilised to separate surface

textures such as roughness, waviness, and form effectively.

44

Profile

Roughness W%%WWWWWMMMNWMMMNWMWMWWW

Waviiess: .. %0 s g om s e e e g e

Form /—/\

Figure 2.11: Roughness, waviness and form of a profile [51].

2.5.1 TheProcessof Filtering

According to signal processing theory, any signals can be viewed as comprising of
sinusoidal functions of different amplitudes and wavelength. Surfaces are similar as
signals, and surface textures can be considered as consisting of sinusoidal components
within a range of frequency bandwidths [67]here are two techniques available to
separate surface textures from a surface: one is applited space domain and the other

is applied in the frequency domain. As shown in Figure 2.12, path A is in the space

domain, while path B is in the frequency (wavelength) domain.

Path A

‘ Surface Filter window
I Convolunon
|
|
Space |
} Transform(FFT) Transform(FFT)
- # 77777777777777777777777777777777
| Inverse St !
Step 1 Y Transform(IFFT) ep ‘A
| |
| |
! I
| |
! !
| |
! |
| |
|

Frequency
Surface Filter Filtered
Spectrum X Spectrum Spectrum
Multiplication
- *,, —
Step 2

Figure 2.12: Filtering process in two domains—Space and Frequency [51].

45

Both methodologies are theoretically equivalent. It is more visually appealing to use path
A because the surface exists in space rather than frequency. The unique step in path A is
a convolution operation between the original surface and a filter window or weighting
function d the filtering method. For each of filtered pointise space domain method
requires a lot of multiplications and additions. In contrast, path B is more effective in
computational terms but requires more steps. The first step is the transformation of
original surface data from the space domain to the frequency domain, and then
multiplication, the second step is carried out in the frequency domain. Finally, an inverse
transform is required to obtain the filtered surface. Although there are three basic steps in
path B, the calculation speed is fast as the transformations by the FFT routine is fast
compared with a convolution operation [51]. In addition, it is relatively easy to change
the attributes of the filter when the filtering operation is carriedimuhe frequency

domain. Thus most filtering techniques are realised by using path B.

100

Figure 2.13: Cutoffs of surface filtering [51].

Surface textures are classified as roughness, waviness and form, and they consist of
certain defined wavelength bandwidths [51]. As shown in Figure 2.13, there are three

cutoffs which are required to be determined for the filtering process.

e } is defined as the wavelength band between the roughness and even shorter

wave components (often measurement noise),
o 1 is defined as the wavelength band between waviness and roughness,
e /. is defined as the wavelength band between waviness and longer wave

components such as form.

46

Currently, 1ISO 4288 and ISO 25178-3 provide guidelines for the selection of cutoff ratios,
stylus tip sizes, and traverse lengths. In practice, it is suggested that users follow the
standard guides to choose values for cutoffs. However, the selection of cutoffs might be
determined according to the application and the intended texture of surfaces for some
special cases. For example, in contact measurement, the measurement itself applies a

filter with a A, cutoff , and thei value is associated with the stylus size. In this case
there is no need to sgf again within the filtering process in most cases, therefore, a

roughness wavelength cuttoff is sufficient to extract roughness.

2.5.2 Filtering Methods

2.5.2.1 Electrical Filtering

Electrical filtering isan electrical network which transmits alternating currents of desired
frequencies while substantially attenuating all other frequencies. The first electrical
analogue filter to be used for surface metrology analysis was the single RC (Resistor-
Capacitor) network, and it was subsequently replaced with 2RC (Two Resistor-Capacitor)
filter [49]. The output of this network is not only a response of the input at any instant of

time, but also those of prior input values with given reduced weights.

Although the 2RC filter is analogue and works in time domain rather than space domain
and the implementations of this filter was through the use of electrical components, the
hardware implementation method was later replaced by digital processing equivalents
and it can be conveniently implemented in software. This digital filter became widely

accepted as ‘sstandard filtet and was introduced in many international standards [48].

2.5.2.2 Digital Filtering

In 1965, Whitehouse and Reason simulated the 2RC filter digitally [70]. The 2RC filter

was described as a weighting function according to the cutoff. The weighting function
was convolved with original surface (profile) to produce a running average mean line
which was identical to the 2RC electrical filter mean line. Furthermore, they designed a
phase correct digital filter for 2RC filter which could correct for the undesired phase shift
in its output [71].

47

Today the use of digital filtering in surface metrology is widespread. Generally, there are
three inter related steps involved in using it: specification, design and implementation.
Subsequently, the Gaussian filter was introduced,aadigital filter was designed and
implemented for it. With the improvement of computing capabilities, digital filtering

techniques have become more and more useful within the surface analysis process [48].

2.5.2.3 Gaussian Filtering
Gaussian filtering utilises a filter whose impulse response is a Gaussian function, and it is
described in ISO 11562 [43]. It is probably the most common filter in use today and it is

ideally suited for smoothing surfaces with rich textures.

For surface profiles, the weighting function which determines the transmission properties
of the filter is mathematically described by [72]

s() a%exp{—ﬁ[a%j J (2.17)

Where a=04697x is the position from the origin of the weighting function ands the

long wavelength cutoff.

The Gaussian function is non zero for angnd theoretically infinite in width. However,
it decays rapidly, so it is reasonable to truncate it and implement the filter directly for
narrow windows. In practice, the width of the weighting function is selected to be the

same as the cutoff, [51], consequently the mean line is exactly shorter than

original profile as the distortion occurs at the ends of the profile and is usually removed.

2.5.2.4 Envelope Filtering

Envelope filtering initially proposed by Von Weingraber is different from other filtering
techniques [48]. It generates the reference line (plane) by simulating the process of
rolling a ball over the profile (surface) instead of using an averaging process. The
deviations from the envelope reference line (plane) are assumed to be the texture or
roughness. This filtering technique is termed the Envelope system, while others
mentioned above are covered by the M system (averaging approach).

48

Although the M system has been generally accepted as the standard method of filtering,
the E system is still indispensable in certain instances as it emerged from a functional
standpoint. For example, it is sometimes believed to be a better representation of the
surface where the relative motion between two contacting surfaces is critical. However,
despite this the M system is usually the primary filtering choice. Fortunately, the E
system has re-emerged and found new relevancenwtiie realm of morphological
filtering which is essentially a superset and offers more tools and capabilities [73].
Morphological filtering has already been an integrated part of the ISO filtering toolbox
[74, 75].

2.5.25 Other Filters

In recent years, there have been some significant advances in filtering techniques.
Although the Gaussian filter is widely used, it still suffers from some shortcomings.
Some advanced filtering techniques are emerged to overcome these drawbacks. For
example, the Spline and Gaussian regression filters overcome the problem of edge
distortion and improve the performance in the presence of large form, while the robust
Spline and robust Gaussian regression filters sort out the problem that the waviness
profile would be distorted where a large peak or valley occurs [47, 67]. In addition,
wavelet filtering is an effective method that can partition a surface into multi wavelength
bands.

Diverse filtering techniques can be used for different applications. In practise, the
selection of the suitable filtering techniques is significant for the extraction of surface
textures. It is believed that there will be more advances in filtering techniques to satisfy
the requirements of new applications in the future such as structured and tessellated

surfaces.

2.6 Parameterisation

Parameterisation is a useful way to quantify the texture of a surface, and realise quality
control for engineering processes. Due to the diversity and complexity of surface
microstructures, it is impossible to use one parameter to give a complete presentation of
surface texture [67]. A given parameter is usually designed to indicate surface features

just from one aspect. At present, all surfaces can be roughly divided into two groups:

49

stochastic surfaces which have a random texture without any observable structures, and
non-stochastic surfaces which have clear or regular structures such as structured surfaces
[76]. Therefore, there are two primary methods used to parameterise these surface
features respectively: statisticand geometrical methods. Normally, the statistical
method aim to provide ataveragé property description of the surface, which is more
related to manufacturing processes, while the geometrical method is more appropriate

from the functional point of view.

2.6.1 Statistical Methods

Statisti@l methods were first brought in to quantify surface textures, and are still the
most widely used today. Currently, most of the surface parameters designed for profile
and areal characterisation can be regarded as statistical [50]. These parameters were
initially defined by industry for specific needs, and now they are defined in ISO standards
such as ISO 4287 and ISO 25178-2 [11, 12]. Table 2.2 lists the parameters for profile

surface, while Table 2.3 presents the parameters for areal surface.

Table 2.2: Standard surface profile parameters.

Family Name Description
Pp, Rp, Wp Maximum profile peak height
Pv, Rv, Wv Maximum profile valley depth
Pz, Rz, Wz Maximum height of profile
Pc, Rc, Wc Mean height of profile elements
Amplitude Pt, Rt,Wt Total height of profile
Pa, Ra, Wa Arithmetical mean deviation of the assessed pro
Pqg, Rg, Wq Root mean square deviation of the assessed prq
Psk, Rsk, Wsk Skewness of the assessed profile
Pku, Rku, Wku Kurtosis of the assessed profile
Spacing Psm, Rsm, Wsm Mean width of the profile elements
Hybrid Pdq, Rdg, Wdg Root mean square slope of the assessed profile
Pmr(c), Rmr(c), Wmr(c)| Material ratio of the profile
Cli;\l/gtsegnd Pdc, Rdc, Wdc Profile section height difference
Pmr, Rmr, Wmr Relative material ratio

Key:P isfor profile, R isfor roughnessand W is for waviness

50

Table 2.3: Standard surface areal parameters.

Family Name Description
Amplitude Sq Root-meansquare deviation of the surface
Ssk Skewness of Topography height distribution
Sku Kurtosis of Topography height distribution
Sp Highest Peak from the mean surface
Sv Lowest Valley from the mean surface
Sz Height between the lowest and highest points
Sa Arithmetical average of the surface
Spatial Sds Density of summits of the surface
Str Texture aspect ratio of the surface
Sal Fastest decay autocorrelation length
Hybrid Sdq Rootmeansquare slope of the surface
Ssc Average summit curvature of the surface
Sdr Developed surface area ratio
Curves vmp Peak material volume of the surface
Vmc Core material volume of the surface
Vvc Core void volume of the surface
Vwv Valley void volume of the surface
SK Family Spk Reduced peak height
Sk Core roughness depth
Svk Reduced valley height
Smrl Peak material component
sSmr2 Valley material component
Others Std Texture direction of the surface
S5z Ten point height of the surface

Statistical parameters are usually relatively easy to calculate as most of them can be
expressed by mathematical formulas. However, their value does not correspond directly
to a physical property of the surface data. Additionally they cannot reflect local features

which lie within the surface topography.

51

2.6.2 Geometrical Methods

In contrast to statistical parameters, the underlying rationale behind geometrical methods
is based on functional requirements. In practise, geometrical methods do not focus on
each data point directly, but try to extract observable geometrical features and then
describe their properties and spatial distribution. The aim of these methods is to reduce
the complex surface data sets to sets of objects which are analysed further. Hence, they
are more natural and easy to understand. Although the extraction of texture features is
very natural, the definition of suitable algorithms is very problematic and has dragged on
for more than a decade. Now ISO 25178-2 has defined feature characterisation which can
be regarded as a geometrical method [12]. Surface texture features which include areal
features (hills & dales), line features (course& ridge) and point features (peaks, pits &
saddle points) are extracted by surface segmentation algorithms. All the feature
parameters defined in ISO 25178-2 are listed in Table 2.4.

Table 2.4: Feature parameters defined in SO 25178-2.

Name Definition Explanation

sds | FC; H; Wolfprune:X% ;All; Count; Density Density of peaks

Spc | FC; P; Wolfprune:X%; All; Curvature; Mean Arithmetic mean peak curvature

Sda(c) | FC; D; Wolfprune:X%; Closed:c; Area; Mean | Closed dale area

Sha(c) | FC; H; Wolfprune:X%; Closed:c; Area; Mean | Closed hill area

Sdv(c) | FC; D; Wolfprune:X%; Closed:c; VoIE; Mean | Closed dale volume

Shv(c) | FC; H; Wolfprune:X%; Closed:c; VolE; Mean | Closed hill volume

Ssp | FC; H; Wolfprune:X%; Top:5; Ipvh; Mean Five point peak height
S5v | FC; D; Wolfprune:X%; Bot:5; Ipvh; Mean Five point pit height
S10z | S5p+S5hv Ten point height of surface

The calculation of feature parameters is far more complicated than the calculation of
statistical parameters. However, geometrical methods are irreplaceable for the
characterisation of non-stochastic surfaces. On the basis of segmentation algorithms
some geometrical features (lines, circles) on the surface can also be extracted. In some
applications, the dimension and distribution of these geometrical features are considered

to be more significant.

52

2.7 Summary

This chapter gives a brief introductitmconventional surface characterisation techniques.
Surface verification operators which consist of a series of operations are introduced and
recommendd for standardisation of the process of surface evaluation. Generally, in order
to get the analysis result, the surfaces are processed by these operations such as
Measurement, Data access, F-operator, L-filter and Parameters calculation. A number of
techniques pertaining to operations are also introduced. Although there are many surface
characterisation systems, the surface verification operators are not fully supported. In
practice, they are normally generated by metrologists during the course of surface
characterisation. As a consequence, various verification operators are likely to be created
for the same surface characterisation by different metrologists. The evaluation results
from different operator are greatly affected by the subjective determination, and they are

impossible to be compared.

Surface verification operators are essential to be supported in a characterisation system as
they can reduce the influence caused by human factors. Therefore it is necessary to
develop a novel characterisation system, which can not only provide the dtandar
verification operator but also entitle users to define their own verification operators. The
verification results will be related to certain verification operator, and it is meaningful to
be compared with those that are characterised by the same verification operator. In this
thesis, a flexible characterisation system will be proposed. As all system functional
modules are separated from the system framework and they can be reconfigured
dynamically, users are able to combine them to form verification operators as they expect
at the runtime. Meanwhile, the proposed characterisation system can also provide users
some typical verification operators such as the standard verification opeertionmad

in section 2.2.

53

Chapter 3 Design and I mplementation of Flexible System
Architecture

3.1 Introduction

Surface characterisation systems play a significant role in the field of surface metrology,
and they are developed to assist in surface analysis and are based on advanced computer
technology. All the numerical processes associated with surface metrology can be
facilitated using such systems. At present, surface characterisation systems are commonly
developed by instrument companies and some institutes, most are implemented as stand-
alone systems without adequate consideration of further functional expansion.
Consequently, the maintenance work and upgrading can become very difficult as time
passes. This is due to the fact that any minor chatgyesrtain elements within the
system may affect on other parts and lead to other unexpected issues [18]. In addition,
these surface characterisation systems are implemented for a single platform with certain
programming languages. It is almost impossible to reuse their code or transport them to a

new development environment and as consequence there is poor compatibility.

The NIST online system is developed as a web application which can be used on any
operation system [10]. However, there is no interface for users to realise the system
extension. This means all the functions can only be supplied by the system itself.
“SPIP™” of Image Metrology is easier to be extended as users are allowed to develop
their functional modules as plug-ins [77]. This software system is not designed only for
surface metrology; therefore its available surface analysis functions are not apundant
even the standard parameters cannot be calculalfadymap’ is a comprehensive
surface analysis software system which provides plenty of functions for surface
characterisation [8]. Users can also develop their functional modules for their own
purpose. The drawback of its extension method is that users have to configure all text
files manually, thus it is error-prone and may causes some conflicts with other parts of
the system. These three systems are all developed with specific programming languages,
and it is impossible to reuse their functions in other systems developed with different

programming language.

54

It is well known that surface metrology is a rdpideveloping discipline. Although many
analysis algorithms and methods have already been specified in ISO standards, there are
still some drawbacks to the present characterisation techniques with many being only
appropriate for some surfaces under certain conditions. In other words, it is hecessary to
improve existing algorithms and create new algorithms to meet emerging requirements.
Hence, as a software system in a research field, surface characterisation systems have to
be updated and extended with the developing innovatiorsurface analysis and
characterisation techniques [78]. In contrast to the algorithms of a surface
characterisation system, the system architecture is of equal importance. It is clearly
advantageous to develop a flexible system architecture that can bring huge benefits for

surface characterisation systems by easily facilitating additional functionality.

Surface characterisation systems are usually supplied together with surface measurement
instruments. After the measurement, surface characterisation can be finished directly with
the associated characterisation system of instrument. It seems a perfect solution for

surface assessment. However, there are many potential problems:

e The analysis results cannot be compared with those exported from other
instruments due to the differences and incompatibilities among surface

characterisation systems.

e Any errors of algorithms or functions in a surface characterisation system cannot

be resolved remotely by its distributor.

e It will cost too much to realise the update of a surface characterisation system

which is in use.

This chapter proposes a flexible software architectureafgurface characterisation
system. The whole system is not implemented as a stand-alone chunk, instead, it is
assembled by different functional components using the analogy of LEGO bricks [79]
Using this approach, system maintenance and extension becomes much easier. As
modifications or changes can be completed inside the component itself without affecting
other parts of the system, the deficient or redundant component can be easily removed
from the system and new components can be amended without difficulty. On the other

hand, functional components themselves can be reused directly by other systems without

55

any changes. Each component is implemented as an executable block, and it can not only
be used in a surface characterisation system but also other software systems to which the

interactive interfaces are transparent.

To implement a complete flexible system, object-oriented development method is
insufficient. As the successor of object-oriented software development, component based
development is adopted here to realise such a flexible surface characterisation system.
This chapter mainly focus on the design and implementation of a system architecture
using the component based development method, and the constructioovef flexible

surface characterisation system SurfStand.

3.2 Component-Based Development

3.2.1 Component

There are several definitions of the component based approach. A component is defined
as a‘“physical and replaceable part of a system that conforms to and provides the
realisation of a set of interface$80]. This definition is broad and considers the
component to be an organizational concept that embodies a set of functionalities that can

be reused as a unit. The emphasis in this definition Tseuse.

Microsoft Corp. has a slightly different definition. A component is defined“asfaware
package which offers services through interfa¢®8%]. The emphasis in this definition is
on‘“service providér. The service provider approach considers a component to be a piece
of software that provides a set of services to its users. Bothrélusé& and “savice
provider’ perspectives of a component introduce the important distinction between its

public interface and its implementation in a particular environment.

This distinction addresses the issue of how the component should be designed in order to
be an independent and replaceable piece of software with minimal impact on the users. In
other words, components are reusable pieces of software code that serve as building
blocks within an application framework [82]. The component is a language-neutral,

independently implemented package of software services, delivered in an encapsulated
and replaceable container, accessed via one or more published interfaces as shown in

Figure 3.1. It is not platform constrained or application bound [83].

56

Provided
Interface1

Required
Component — Cinterface
Provided

Interface2

Figure 3.1: A component with provided and required interfaces.

3.2.2 Component-Based Software Development

Component-oriented software development can greatly improve the development

efficiency and ease the extensibility and maintenance of large engineering software [84-
86]. Component-based software applications are composed from diverse software
components. Developers and sometimes end-users compose applications from often
stand-alone components in flexible ways to achieve a desired set of functions. Two key
aims of component technologies are to increase reusability of software in diverse

situations without code modifications, and to enable end users to extend and reconfigure

their applications via plug and play of components [87, 88].
The framework folCBA consists of three major parts [23]

1) The overall system includes the CBAs facilities, services, the application
components, and component managers. All the functions are separated from the
overall system, and implemented in the components. The system is more like a
container where each component can run; it takes charge of the construction,
invocation and destruction of components. The event and message map are

processed by the system.

2) The component is an isolated element, a member of an external distributed
composite system, and it interacts with the system framework through a set of
standard interfaces. Components should be designed to be independent units,
much like Lego building blocks. They can be easily added to the system, and
existing components may be detached and plugged into other systems. The
services offered by components are made public by publishing their interfaces and

contracts.

57

3) The interfacas provided for components to enable asynchronous, dynamic, and
anonymous communications. It provides proper connectivity between components
and ensures communication between components. This is crucial to implement
the dynamic connection of components rather than a statically chained function
call. The interface is not only the bridge that connects the components and client;
it also illustrates the functions, while the component is the function
implementation. The connector is transparent to the client who does not need

knowledge othe implementation of components.

The infrastructure for BD needs three main elements: uniform design notation, standard
interfaces, and repositories [23]. The uniform design notation ensuEsistent
architectural diagram to describe a compotsefitnctions and properties. This is critical

to design collaboration between components and to ease communication between
developers. A standard interface for components allows applications in any language on
any platform to access its features. Tisisichieved by an applicatian binding to the
component model or IDL (Interface Definition Language). IDL is a specification
language used to describe a software comptmenterface. IDL describes an interface in

a language-neutral way, enabling communication between software components that do
not share the same programming language. Repositories provide the runtime environment
for components. Although a component is executable, it cannot run individually. The

construction, operation and deconstruction are also managed by the repositories.

3.2.3 Current Technology for Component-Based Ar chitecture

Component-based software development has already been supported by commercial
component frameworks suesCOM [27], CORBA [28] and Java/RMI [29].

e COM is a binary interface standard for software componentry introduced by
Microsoft Corporation. The essence of COM is a language-neutral way of
implementing objects that can be used in environments different from the one
they are created in, even across machine boundaries. Since the specification is at
the binary level, any interface must follow a standard memory layout which is the
same as the C++ virtual function table. In addition it allows the integration of

binary components written in different programming languages. Although the

58

interface standard has been implemented on several platforms, COM is primarily
usedin Microsoft Windows.

e CORBA is a standard defined by the OMG (Object Management Group) which
comprises over 700 companies and organizations [89]. It enables software
components written in multiple programming language and running on multiple
computers to work together. The ORB (Object Request Broker) is the distributed
service that implements the requestat@ ORBA object.It locates the object,
communicates the request to the object and returns the results, when available,
back to the client. Exactly the same request mechargsnsed by the client
regardless of where the object is located ianghich programming language the

object is implemented.

e Java/RMI is a Java based distributed object framework that relies on a protocol
called the Java JRMP (Java Remote Method Protocol). RMI facilitates object
function calls between JVMs (Java Virtual Machine). Unlike many remote
procedure call based mechanisms which require parameters to be either primitive
data types or structures composed of primitive data types, entire objects, even new
objects whose class has never been encountered by the remote virtual machine,
can be passed and returned as parameters [90]. Since the Java object is specific to

Java, both the server object and client object have to be written in Java.

The choice of the suitable component-omehttchnology for the surface characterisation
software systens simply dependent oits application platform [30]. COM is suited for
software solutions developed for the windows operating systems, CORBA for mission-
critical and high-availability applications on mainframe and UNIX platforms, Java/RMI

is best for internet and e-commerce applications that need to be ported across a large

number of platforms.

The surface characterisation system, which is the subject of present thesis, is assumed to
be a stand-alone application executed on the windows operating system. Hence, COM is
the primary component-oriented technology to be adopted. The system components will
be implemented in the C++ programming language using the ATL (Active Template
Library) [91].

59

3.2.4 Advantages of Component-Based Development

There are many advantages using component based software development to

implement the characterisation system.

1) Reduction in development time and cost: The component, as an
independent module, that is designed and implemented separately. The
loosely coupled relationship between the components and mainframe
allows the parallel development of a system. There is no doubt that the
system development cycle will be shortened. In addition, many system
functions can be achieved by reusing existing components rather than

designing entirely new ones.

2) Reduction in maintenance csestBecause of the encapsulation of the
component, it is possible to add new components and replace or remove
the existing ones without affecting the system as a whole. Whatever the
changes in the components, it is never necessary to recompile and

reconfigure the system.

3) Enhanced extensibility and diversity: Instead of being combined into the
system statically, the component can be connected to system framework
dynamically. It means that the component is absolutglyg and play”,
and there is no need to take system architecture into account. Thus, the

userscancustomize and update the system as they see fit.

3.3 System Architecture Design

3.3.1 Separation of Analysis Functions and System Framework

Generally whether a software system is suitable@fmertain application is determined by

its functions. System functions are of vital importance and always the concern of the
users, while the infrastructure is of little interest to the end user. In a surface
characterisation system, analysis functions such as fitting, filtering and parameters
calculation are more emphasized in comparison to the design of system architecture
Therefore, most of present surface characterisation systems are equipped with abundant
analysis algorithms but in poor system structures. Functions are tightly coupled with

other functions or system framework, and it is extremely difficult to maintain the whole

60

system owning to these complex dependent relationships between functions and system

framework.

In fact, system architecture is much more crucial for research software systems because
most attributes such as the stability, maintainability and extensibility of a software system
are closely related to its architecture rather than system functions [92]. However, it is
impossible to design system architecture without considering relevant system functions,
since system functions are always embedded in system architecture and bound to the
system framework. Hence, to design and implenagitexible system architecture is to
separate system functions which are prone to change from the system framework
physically [83]. As mentioned in the last section, interfaces play the role of linking the
system functions and framework. This following section will elaborate on the step by step
implementation. For simplicity, a software system with only a few system functions is

taken as an example.

3.3.2 Integrative Structure

The basic structure of system architecture can be thought as an integrative structure, as
illustrated in Figure 3.2. The system function is implemented as a part of the system
framework, and it can be invoked directly as all implemented details are exposed [93]
Both the framework and function are coupled with each other. The system cannot work
unless every part of system is completed. Despite this, this structure is still used as it is
very easy to implement as the developers do not have to pay much attentien
communication between the framework and functions. There is no need to write any code

to organise system functions, instead they are part of the system framework.

Function 1 Function2

System Framework

Function 3 Function 4

Function N

Figure 3.2: Integrative structure of software systems.

61

Integrative structure is suitable for some small scale software systems whose functions

are relatively fixed without too many changes.

3.3.3 Semi-detached Structure

Although integrative structure is very simple amasyto realise, it is not popular for
software development. The primary reason for this is that tdaeriee problems when the
number of system functions increases significantly. For example, when a bug is found in
one system function, modifications may have to be completed within the corresponding
code segment [94]. It can be hard to locate the code which needs to be corrected and
additional bugsin other parts of the system may be generated during the process of

revising earlier bugs.

To improve the integrative structure, one obvious scheme is to divide a software system
into many independent parts. Each part is developed individually and assembled together
to build the final system. This can then be regarded as a new system structure which
could thenbe thought ofasa semi-detached structure [95]. As shown in Figure 3.3, the
system function is separated from the system framework. Thus its development and
maintenance is independent and can be easily reused by other software systems. The
system is a great improvement on most of present software systems are developed with

semi-detached structure or similar structures.

Function 1 Function 2

System Framework

Static IV \
4

Function 3 Function 4 Function N

Figure 3.3: Semi-detached structure of software systems.

Although system functions are not part of system framework, the connections between

them are indispensable. All system functions ought to be visible to the system framework,

62

while system framework is responsible for organising the system functions and invoking
them when required. Consequently, developers of the system framework have to write

extra code to deal with the system function elements.

3.3.4 Flexible Structure

In the semi-detached structure, the system framework and functions are separated from
each other and implemented individually. However, the system framework has to know
which functions are included in the whole system and provides associated codes to deal
with comunication. When the number of system functions inege#isese codes in the
system framework will increase accordingly and become harder to maintain. In addition,
the building of whole system cannot be completed until all parts of the system have been
implemented. Moreover, the whole system has to be rebuilt and redeployed when

modifications occur no matter which system framework or system functions are used [20].

Function 1 Function 2
I} i
| |
I Dynamic Link)‘(
I
B e A

System Framework

T
4 I
7
7 | N
7 |

» v RN

Function 3 Function 4 Function N

Figure 3.4: Flexible structure of software systems.

Usually, system functions need to be defined before the development of a software
system. However, system requirements may change or develop over time even after the
software system has been released for use. It is impossible to ensure that all the required
system functions have been completed during the period of development. Some new
system functions may need to be supplemented later even when the software system is in
use. How to add these new system functions with minimum modifications on existing

system is the key to realising the flexible structure [24, 96, 97]. Although system

63

functions themselves cannot be predicted, it is not difficult to find some features (the
processing of data, parameters and output data) within them that are similar to existing
functions. One feasible way to realise this is that the system framework connects with
system functions according to their features as shown in Figure 3.4. System functions
with the same features are treated in the same way and there is no need to know what the

concrete functions are.

All system functions are dividethto different types according to their interaction
features, and one virtual system function alternate is abstracted from each type of system
functions. In practise, this virtual alternate is implemented as an interface which is
regarded as a bridge between system framework and real system functions. As long as a
new system function implements the interface, it can be thoughg atorresponding

type of system function and be invoked through the interface [84]. Therefore, system
functions are not visible to the system framework anymore and they are absolutely
separated from the system framework. In other words, the system framework is realised
based on these abstracted interfaces rather than concrete system functions. Thus more
code for communication and organisation need to be written in the framework. Obviously,
the development oh system framework relies on predefined interfaces of the system
functions, and every system function parts needs to implement these interfaces. Even if
the system framework and/or system function parts are developed separately, the whole

system is established by assembling them together without any other further changes.

In the flexible structure, interfaces acts as a common protocol that every part of the
system has to comply with, and they indicate all the interactions among those
independent parts. System functions can be recognised by the system framework via their
interfaces [98]. Hence, the system becomes much easier to maintain and extend. Any
modifications within one part will not affect other parts of the software system. Moreover,
it is possible to add new function elements without any change to the original system

even when it is running.

3.3.5 Proposed Surface Characterisation System Architecture
At present, most surface characterisation systems are developed with semi-detached or

similar structures. System functions are developed first and then embedded to system

64

framework. They are all essential parts for the normal performance of the system and
mostly unable to be used in other places due to the confinement of the development
environment such as programming language and platform. In the meantime, maintenance
will be costly for such systems. For example, the system maintainers have to be very
familiar with every part of the system otherwise they will have no idea of how to deal

with a problem that emerges when the system is in use. Therefore, the flexible structure is

more suitable to establish a surface characterisation system.

Proposed SurfStand System Architecture

According to the principle that the system should be constructed instead of be created
from scratch. System functions should be implemented as components, and the global
system consists of these components which are standalone and executable entities.
Generally, data importing, fitting and filtering (or any other analygmsyameters
calculation and analysis reporting are essential tasks for a surface characterisation system.
They are the representation of surface verification operations that are used within the
surface characterisation process. The surface data flow within an ideal surface

characterisation system is shown in Figure 3.5.

Read
Data file > Untreated
Write data

|
v v v v v

AACF APSD Fitting Filtering

| | | | |
I

A 4

Processed
data v

Parameterisation

Visualisation

Parameters

Reports Screen

Figure 3.5: Data flow within a surface characterisation system.

65

After the measurement, surface data is initially stored diata file. When evaluating a
surface, surface data must be imported to the surface characterisation system from a
specific file. The surface data was stored in system meamtyntreated data Once
imported, users can select certain operations to process the untreated data according to
the specific requirements. As most of the output of these operations are still surface data
(though in a modified form) with the same format as thetreated data these
operations steps can be employed repeatedly. Following surface data treatment, the
“processed datawhich is expected to include the intended features such as surface
roughness can be displayed or parameterised. Finally, the analysis results can be exported
to screen, file reports, printer, etc.

Based on the common data process flow of a surface characterisation system, the system
functions are classified as three main types: surface data accessing, processing and
displaying. Data accessing refers to the exchange of the surface data between surface
characterisation system and data files that are exported from instrument for storing
measurement data. As different instrument companies usually specify their own file
formats, it is required to parse these file formats in order to realise the data accessing
function for the surface characterisation system. Data processing is the core function for
every characterisation system, and it includes most of algorithms that can be applied to
surface data. Data displaying is a necessary function which is used to represent surface
data or analysis results for users. The more friendly the displaying components are

designed, the better user experience will be.

As mentioned previously, either the system framework or any one system function ought
to be a standalone chunk without any real connections with others, while the interface is
the bridge between them. It is essential to define the interface before any development of
those concrete components. In Figure 3.6, SurfSsid (Software Development Kit) is

afundamental software package which plays the core role of separating system functional
components from théSurfStand framework It includes the definition of all interfaces

that will be used during the system connection, thus it is the essential package for the
development of a system framework and system functional components. In addition, the

user customisation mechanism is also based on the software package [99, 100]. Users can

66

develop their own functional components by realising those predefined interfaces. Some

critical code fragments of Surfstand SDK are listed in Appendix A.

SurfStand Data Access Data Process Data Display
Framework Components Components Components
|
SurfStand SDK
| | | LegacyCode Packages | | |
i Data Process Graphics Display I
Package Package :
I

Visual Studio Development Platform

Figure 3.6: Development hierarchy chart for SurfStand.

In one word, both the system framework and functional components are developed on the
basis of SurfStan8DK. The system framework requires these interfaces to complete the
invocation as all functional components are not available during the developing process.
All functional components are expected to derive from the predefined interfaces.

Otherwise they are unrecognisable and cannot be configured in the final system.

Figure 3.7 illustrates the whole system architecture and shows the organisation of each
part of the system. The system framework, as the interface of the entire system, takes
charge of dealing with user requests. Within the framework, there are two important
elements to enable dynamical loading of functional components, i.e. the process selector
and the configuration database. The process selector is used to choose relevant functional
components and carry out the specific actions by invoking those components. However,
as many functional components may realise the same interface, how can the process
selector find out which functional component is the correct one? The answer to this

guestion is in terms of the configuration database which keeps the records of all useful

67

information with respect to available functional components when they are first added in
the whole system. Therefore, every system functional component must be configured,
otherwise they cannot be invoked at the appropriate time. After locating the correct
functional component, the system framework can create a call out and manage this via its
interfaces. It is apparent that the concrete component is absolutely invisible from the
system framework and invoked dynamically. The only requirement is to configure these
components correctly before invoking them [96]. In this way, it is extremely convenient
to add, remove or replace any functional components even when the system is running,

and users can configure their own surface characterisation dysteer own design.

User Request (order)

|
1

User Interface Type A

Com nt1 | C ent2 | Component3
; /

- Type B

Process
Type A

Process \
Selector § N

| - : I‘
i \ 3 i
| -.\ R Component1 R Component2 Component3
Process | I'\ | _./ 3
Type B o R B
yp ' : ._/ Y
. ; 7 :

\.

|\

i / 7

o Interfaces
I definition

Configuration | '\
database N

Name

O

Type
Path

«interface» «interface»
InterfaceA InterfaceB

Command —

Component Name

Comma.ﬁ.d Table

Figure 3.7: System architecture of SurfStand.

As mentioned previously, the invocation of system functional components is performed
according to their interfaces which are determined by their types. In the proposed system
architecture for SurfStand, there are various types of system functional components, and
they are invoked in different ways within the system framework. Hence, it is necessary to
classify system functions and design their corresponding interfaces before the

development. The system functions categorisaisoneferredto Section 3.4. System

68

functional components of the same type have to implement the same interface so that
they can be invoked in the same way. Among these interfaces, a common one for all
functional components is to register some basic component attributes, such as Name,
Type, Path and so forth to the configuration database. This happens when adding a new
system functional component to the system. Similarly, there is also a dual interface which
could be used to deregister functional components.

To sum up the proposed system framewecak invoke a functional component via its
interfaces at any time. The components are absolutely separated from each other.
Obviously, it is allowable to change the quantity of system functional components
without altering the system architecture and affecting other parts. It also implies that there
is no need to rebuild and redeployment whole system when adding or removing system
functions and it is desirable for the proposed expandable system. Meanwhile, the whole
system is divided into many small individual parts which are much easier to maintain

than a single large software system.

3.4 Surfstand System Functional Component Categorisation

In the proposed surface characterisation system, there are three major types of system
functions: data accessing, data processing and data displaying. They comprise the
foundation of various data analysis chains. However, they have different 1/O properties
and cannot be treated in a unified way. It is required to classify them into different types,
so that system framework can use a unique method to invoke the functional components
with the same type. Furthermore, the categorisation of system functional components is
the prerequisite of the interface design, because interfaces are the only bridge between

them and the system framework.

3.4.1 Data Access Component

Data access components implement system I/O functions. These components acquire the
measurement data from instruments in a direct or indirect way and provide the raw data
for the system. If a data access component directly acquires measurement data from a
particular instrument, it means that this component is a customized component which is
usually bound to the instrument and cannot be used by other instruments. For the sake of

good reusability, the indirect way to acquire measurement data is encouraged as it is

69

platform independent. The measurement data file realises the connection between
instruments and data access components. As illustrated in Figure 3.8, data access
components are responsible for the data transfer between surface data files and the

system framework.

No matter which kind of techniques is used to measure a surface, the result is usually
stored in a file with specific format. The standard file format SDF [41, 101] for areal
measurement data and SMD [40] for profile data are recommended by ISO. However, not
all instruments are compatible with Heestandard file formats, and some instrument
manufacturers create their own file format for data storing. For example, SUR is used as
Mountains map surface format and Taylor Hobson surface format, while OPD is
Wyko/Bruker surface format. As there are so many kinds of file format for measurement
data, it is impossible to parse all of them. Furthermore some new file formats may be

utilised in the future.

Data Access
Components

7 j l ;
v Data Import/Export)

Surface data file

Surface topography

Figure 3.8: Function chart of Data Access Components.

3.4.2 Data Processing Component

Data processing components are the core part of the propasace characterisation
system, and they are responsible for the realisation of manipulations afuplibd

surface data. These manipulations include not only standard surface operations defined in
GPS standards but also other operations which are widely used during the process of
surface characterisation such as some basic data transformation and arithmetic. Moreover,
some novel algorithms or methods may be developed for surface characterisation in the
future, and they may also be defined as data manipulation [5]. In Surfstand, each data

manipulation will be encapsulatees anindependent data process component which

70

could be invoked by the system framework dynamically. Thus the capacity of surface
analysis and characterisation is closely rel&etie number of data process components.

As discussed in Chapter 2, surface characterisation is usually completed with a surface
verification operator which consists afseries of sequential operations, and there are
different types of operations within a complete surface characterisation procedure. Data
process componentsan be naturally categorised according to their effects on surface
data. For instangethe filtering component is the collection of all data process
components which realise certain filtering techniques such as Gaussian, Spline, Wavelet,
and so on. Figer 3.9 is an example of Robust Gaussian filtering component which
extracts the high frequency band of original surface data.

Data Process

> Components
\f. W, »
J(n 7 A)

Filtering

Input surface Output surface

Figure 3.9: Function chat of Data Process Components.

Most of data process components have the same 1/O property as the filtering component,
namely, import one surface data and export one surface data. Thus it is easy to construct
anoperation chain, which is also regardechasirface operator [2]. However, some data
process componentare different, their outputs are not surface data anymore. For
example, the output of parameter calculation components is the parameter list rather than
surface data. Therefore, further categorisation of data process components is required to
enable the dynamic connection between them and the system framework. This will be

elaborated in Chapter 5.

3.4.3 Data Display Component
Although the data display component seems to have no direct relationship with surface

characterisation process it is helpful to havean intuitive sense of surface data and

71

explicit understanding of each analysis procedure. Both the input data and output data of
the process component needs to be displayed by the display component. A variety of
ways can be used to express a surface data. For example, a data table can list all the
height values of a surface from the quantitative aspect, \ahgephical view which

often givesanend user a better idea of surface feature can supply a qualitative overview
of the topography.

A display component only has a surface data as the input and is essentially a display
control. When the system framework needs a display component to present surface data,
one of these display components can be created and then be embed to the system
framework.An integral surface data set usually includes a discrete data set which is a
matrix storing the height and position values and data instructions concerning with the
specification of intervals, offsets, units and so on. The presentation of these height values
of a surface is not simple. One simple way is to plot these discrete points and connect the
adjacent point, and form a grid graphic of the matrix data. However, this grid graphic
cannot ideally display the surface features especially when it is be viewed from the top.
Fortunately 3D graphi@l display is no longer a barrier as the development of computer
graphics technology has facilitated this process. Both OpenGL [102, 103] and DirectX
can provide a perfect view of real objects. Figure 3.10 is the interface of a 3D display
component which is implemented by utilising OpenGL technology.

3D Surface

Azimuth: 45 7(deg); Elevation: 73.7(deg)
HScale: 1.00; YScale: 1.00; ZScale: 1.00

Taylor Hobson

Figure 3.10: Data Display Components—3D Display Component.

72

3.5 System Development Life Cycle

SDLC (System Development Life Cycle) is a conceptual model which specifies how the

activities of the development process are organized in the overall system development
effort. As mentioned above, every part of the surface characterisation system can be
developed individually, thus their life cycles are independent and have no relationships

with other parts. Diverse SDLC methodologies have been developed to guide the

processes involved, including the waterfall model, spiral model, incremental model and

so on. Each model follows a particular life cycle in order to ensure success in the process
of software development. In practise, it is possible to adopt different models to develop

system parts according to their features.

3.5.1 Waterfall Model

The waterfall model is the earliest method of structured system development. The first
formal description of the waterfall model is proposed by Royce in 1970 [104], although
Royce did not use the terfiwaterfall’. The waterfall model is a sequential software
development process which is divided into separate process phases, and it emphasizes
completing a phase of the development before proceeding to the next phase. All these
phases are cascaded to each other so that second phase is started as and when a defined
set of goals are achieved for first phase. Therefore, the waterfall model should only be
used when the requirement is well understood and unlikely to change radically during the
development [105]. It is appropriate for the development of some deterministic function

components.

Although it has come under attack in recent years for being too rigid and unrealistic when
it comes to quickly meeting the custorigerequirement, the waterfall model is still
widely used. The phases in waterfall model are: Requirement Specifications phase,

Software Design, Implementation and Testing & Maintenance phase.

73

Requirements
analysis

System design

Implementation

Integrate & Testing

Maintenance

Figure 3.11: Software development model—Waterfall model.

As shown in Figure 3.11, the stages of the waterfall model are listed: below

Requirement Analysis & Definition: All possible requirements of the system to be
developed are captured in this phase. The requirements are set of functionalities and
constraints that the end-user (who will be using the system) expects from the system. The
requirements are gathered from the end-user by consultation, these requirements are
analysed for their validity and the possibility of incorporating the requirements in the
system to be development is also studied. Finally, a Requirement Specification document

is created which serves the purpose of guidance for the next phase of the model.

System & Software Design: Before starting actual coding, it is highly important to
understand what the developer going to create and what it should look like. The
requirement specifications from first phase are studied in this phase and system design is
prepared. System Design helps in specifying hardware and system requirements and
helps in defining overall system architecture. The system design specifications serve as

input for the next phase of the model.

Implementation & Unit Testing: On receiving system design documents, the work is
divided into modules/units and actual coding is started. The system is first developed in
small programs called units, which are integrated in the next phase. Each unit is
developed and tested for its functionality; this is referred to as Unit Testing. Unit testing

mainly verifies if the modules/units meet their specifications.

74

Integration & System Testing: As specified above, the system is first divitednits

which are developed and tested for their functionalities. These units are integrated into a
complete system during the Integration phase and tested to check if all modules/units
coordinate between each other and the system as a whole behaves as per the

specifications. After successfully testing the software, it is delivered to the customer.

Maintenance: This phase of the Waterfall Modelaivirtually never-ending phase.
Generally, problems with the system developed (which are not found during the
development life cycle) come up after its practical use starts, so the issues related to the
system are solved after deployment of the system. Not all the problems arise immediately
but they arise from time to time and need to be solved; hence this process is referred as

Maintenance.

3.5.2 Incremental Model

The incremental model performs the waterfall in overlapping sections (see Figure 3.12
attempting to compensate for the length of waterfall model projects by producing usable
functionality earlier. This may involve a complete upfront set of requirements that are
implemented in a series of small projects. As an alternative, a project using the
incremental model may start with general objectives. Then some portion of these
objectives is defined as requirements and is implemented, followed by the next portion of
the objectives until all objectives are implemented. But, use of general objectives rather
than complete requirements can be uncomfortable for project management. Because
some modules will be completed long before others, well-defined interfaces are required.
Also, formal reviews and audits are more difficult to implement on increments than on a
complete system. Finally, there can be a tendency to push difficult problems to the future
to demonstrate early success. If it is too risky to develop the whole system at once, then
the incremental development should be considered [106].

75

v

‘ Requirement ‘

v

‘ Requirement ‘

Design ‘ ¢
y

Requirement ‘

Implementation

Figure 3.12: Software development model—Increment model.

Implementation

Implementation

3.5.3 Spiral Model

The spiral model of software development was originally proposed by Boehm [107]. As
the name suggests, the activities in this model can be organized like a spiral. The spiral
has many cycles. The radial dimension represents the cumulative cost incurred in
accomplishing the steps completed and the angular dimension represents the progress
made in completing each cycle of the spiral. The structure of the spiral model is shown in
Figure 3.13 below. Each cycle in the spiral begins with the identification of objectives for
that cycle and the different alternatives are possible for achieving the objectives and the

imposed constraints.

Determine objectives,
alternatives and
constraints

Evaluate alternatives,
identify, resolve risks

Pratotyp

5
NG

Requirement

Plan next phase Develop, verify

next-level product

Figure 3.13: Software development model—Spiral model.

76

There are four phases in the Spiral Model which are: Objective setting, Risk Analysis,
Development and Planning [105]. These four phases are iteratively followed one after the
other in order to eliminate all the problems, which were faced in "The Waterfall Model".
Iterating the phases helps in understating the problems associated with a phase and
dealing with those problems when the same phase is repeated next time, planning and
developing strategies to be followed while iterating through the phases. The phases in the
Spiral Model are:

Objective setting: In this phase, the objectives, alternatives and constraints of the project
are determined and are documented. The objectives and other specifications are fixed in
order to decide which strategies/approaches to follow during the project life cycle.

Risk Analysis: This phase is the most important part of Spiral Model. In this phase all
possible (and available) alternatives, which can help in developing a cost effective project
are analyzed and strategies are decided on how they can be used. This phase has been
added specially in order to identify and resolve all the possible risks in the project
development. If risks indicate any kind of uncertainty in requirements, prototyping may

be used to proceed with the available data and find out possible solution in order to deal

with the potential changes in the requirements.

Development and validation: In this phase, the actual development of the project is
carried out. The output of this phase is passed through all the phases iteratively in order

to obtain improvements.

Customer/End User Evaluation and planning: In this phase, developed product is passed
on to the customer/end userorder to receive comments and suggestions which can help
in identifying and resolving potential problems/errors in the software developed. This
phase is very much similar to a testing phase. A decision is made whether to continue

with a further loop of spiral.

The Spiral model is most commonly used in very large software development
projects. While the phases above bear similarities to the Waterfall model, the project will
go through each of these four stages iteratively until the project is complete and the
customer is satisfied. This allows for flexibility that is not afforded by the Waterfall

model. Once the end user states that he is satisfied, the final system can be constructed

77

based on the very last prototype. Of course, the final system is thoroughly tested after this
to make sure there are no final glitches. As with any system or piece of software, it would

also be subject to routine maintenance.

3.5.4 Development Model of SurfStand

As outlined above, the new characterisation system SurfStand will be developed by

component development techniques. Both the system framework and system functional
component will be developed individually and they are executable chunks. This means

the life cycles are independent and not confined to any other parts. Thus each part of the
system can be developed using different development models.

3.5.4.1 Development Model for System Framework

The system framework @n indispensable part in the system, and it works as the main
system skeleton. Apart from the real surface analysis functions, all other functions that
are associated with the system are running inside the system framework. For example,
users can start the system by executing the system framework part. Subsequently, all
interactivities between users and system are available. As shown in Appendix B, the
connection between system framework and functional components are realised through
predefined interfaces. Although the system can still run smoothly, it is unable to carry out
any analysis operations without any concrete functional components. Fortunately, users
can configure system functions by adding or removing system functional components at
any time after the launch of the system framework. In other words, users can change the
configuration of system functions dynamically, and this activity would not change the

phase of system framework in its life cycle.

Since the system framework is the critical part in the new surface characterisation system,
it is necessary to improve and test it repeatedly to ensure its correctness and stability.
Thus, the spiral model is the most suitable model for the development of the system
framework. It includes four phases and they are iteratively followed one afterasther
shown in Figure 3.13. At the beginning of development, it is hard to set up all
destinations, especially for this type of complex software system. Here the system
framework is the most complex part in the surface characterisation system SurfStand, so

it is better to achieve the goals and solve the problems step by step. Supposing every four

78

phases compose a development round which starts from objective setting, there will be a
prototype system framework after each round. Developers can determine the objective of
the next round by testing the prototype and comparing it with the intended one. Also the
problems of the prototype will be solved out in next round. Therefore, the prototype of

the system framework is expected to become better though a development round. With
continuous improvement, the prototype may be released as the final system framework

eventually.

Once the system framework is distributed, it will not be modifisttequently asn the

initial stage of development. As long as there are no more significant user requirements
which are relevant with the system framework rather than surface analysis functions, it is
not necessary to start a new development round of system framewosk sunace
analysis models such as the analysis chain model are to be changed or there are

intolerable problems that exist in the current system framework.

3.5.4.2 Development Model for System Functional Components

In the new surface characterisation system SurfStand, all the system functions associated
with surface analysis processing are supposed to be separated from the system and
developed as independent componefithough they are executable chunks, they cannot

run without a compatible container (the system framework) in the new surface
characterisation system. Therefore, the test of system functional components cannot be
done before the completion of system framework. That could be thought as the only
constraint which may affect the lifecycle of system functional components. However,
there are many ways to simulate the test environment which is not required to be the final
system framework. One straightforward way is to build a replacement of the system
framework, which only realises the interactivities with system functional components and
does not involve in other actions such as user interface. Fortunately, there is a better way
to test COM objects. AXCTC (ActiveX Control Test Container) is a test tool distributed

by Microsoft Company, and it is a container where the standard COM objects can run.
Beside the final system test, all the other test activities of system functional components
can be completed in AXCTC.

79

Since system functional components could be tested individually, it is possible to develop
them with different models and they have their own lifecycle without any relationships
with other parts. The selection of the development model is based on their importance,
complexity and applicability. For example, some functional components are developed to
assist the algorithm research, and this kind of components will not be released for end
users. Thus these functional components are not so important that there is no need to
concern their stabilities. Instead, the development cycle should be as short as possible to
save more time for the research itself. Waterfall model is the most suitable development

model for this case.

In practise, various development models may be eligible for the development of system
functional components, and there are no rules to determine which development model is
the most appropriate one for a specific system functional component. System functional
components comprise data access components, data process components and data display
components. Data access components are relativelgsmaimplicated as the other two

types, it is better to use concise development models which could reduce the development
cycle. The Waterfall model is a commendable choice and it could be employed for the
development of data access components. The primary reason is that the functional

destination is clear and there are no complex algorithms or calculations inside.

However, most of the other two types of system functional components are not simple,
and here waterfall model are not suitable. The requirement or destination is ambiguous as
users are not quite clear what the component is supposed to be. Hence, those system
functional components are required to be developed and tested time and time again until
they are accepted by users. Moreover, this repeat development procedure also leads to
more stable and robust system functional components. Incremental model ahd spir
model are both the development models with iterative process, and they will be primary
employedin the development of data process and display components. The incremental
model is more appropriate for components with multiple objectives, and each objective
can be achieved step by stepan incremental way; while the spiral model is more
appropriate for components with an extended objective, and it is easier to get close to the

objective gradually. Certainly, this is not an absolute rule to determine the development

80

models, and developers of these components should take various factors into
consideration and then make the decision.

Moreover, it should not be limited to these three common development models and other
models can also be used for the development of system functional components when
most appropriate. The waterfall, incremental and spiral models are the most common and
classical development models, and they will be used for the developni&uréitand.

Other development models such as the prototype model, V-model, rapid application

model [105], etc. are not elaborated here, but they are all available for the development of

system components.

3.6 Summary

This chapter emphasises on the design and implementation of the flexible system
architecture. Component based development methods are introduced, and COM is
adopted to be the primary component development technology. The flexible system
architecture is designed by decoupling and categorising functional components. Finally,
the development models are also discussed and discussed in term of the development of

the SurfStand system framework and functional components.

81

Chapter 4 Implementation of Data Access Components

4.1 Conventional Surface Data File Format

Since the emergence of the need to evaluate a surface in a quantitative way, measurement
instruments have been developed to collect the altitude information at specified positions
of the surface. These altitude values compose the measurement result, which is known as
surface data. Surface tdaas the representation of original surface, is the basis of
subsequent analysis and evaluation. Obviously it is necessary to store the surface data
otherwise the surface must be measured every time an analysis is required. In the early
days, most surface instruments stored surface data in their own database and there are no
interfaces to export measurement data. Users could only carry out analysis and evaluation
using the embedded characterisation system of instrument. That was quite inconvenient
as surface data cannot be transferred between characterisation systems and systems were

likely to become out-dated quickly in terms of technology and standards development.

y4
A ?
*———— ~
. T
! I
* | . o [
o | [I =
| | ! ®
et Y :
| \ \ | | ! ! : 'S
| } ‘ f | ! d | E
<
| 1 Ly : ! ‘
Iy Lo
| | | | ! 1
Yo A
[|
I N
e A
/ I I 4
a X
X Spacing

Figure 4.1: Surface data pattern—Grid Data.

As the measurement occurs at the specified position of the test surface, the altitude values
are not chaotic and unordered [69]. Consequently the data needs to be stored in surface
data files with specific sequence. Besides, the relevant positional information concerning

altitude values is also needed to be stored. Therefore, surface data is composed of the

altitude values and its relevant measurement position, and it is essential to specify the file

82

format before storing the surface data. For example, surface areal data is organised as
grid data with equal intervals in two coordinate and altitude values in the third coordinate
as shown in Figure 4.1. The actual position can be defined as long as the spacing of X
and Y coordinates are known. Storage space can be saved by recording spacing
information instead of the actual measurement position. This method is widely used for

surface files [108].

Generally, surface files comprise two main parts: one is the header, and the other is the
grid data. The header part stores information on how to reconstruct the measured surface,
while the data part consists of altitude values for each sampling point. Although these
two parts are compulsory for every surface file, the contents and details ¢asithe

quite different, since they are determined by their file formats. As the aim of surface files
is to store the measurement data, their formats are normally specified by instrument
companies. This explains why there are so many file formats used for storing surface data
each having different specification and definition. Table 4.1 lists some of the more

popular surface file formats [109].

Table 4.1: Common file formats for surface data storage.

*.dat is also used by some other companies witlerdifit format specifications

File format Manufacturer Data type Encoding Type
SDF (.sdf) ISO Areal ASCII, Binary
SUR (.sur) Digital Surf Areal Binary
MAP (.map) Taylor Hobson Areal ASCII, Binary
OPD (.opd) Bruker Corporation Areal Binary
DAT (.dat)* Zygo Corporation Areal Binary
SMD (.smd) ISO Profile ASCII

PRF (.prf) Taylor Hobson Profile ASCII
PRO (.pro) Digital Surf Profile Binary

As a result of commercial confidentialitynany file formats provided by instrument
manufacturers are not open to users. Surface files with these formats can only be
accessed by the specific software developed by the instrument companies themselves.
Consequently, in order to improve the commonality and versatility of surface files, it is

necessary to specify standard surface file formats for surface measurement data. At

83

present, SMD and SDF file formats have been defined in ISO 5436-2 and I1ISO 25178-71
respectively. The former is used for profile data, the latter is for areal data. As the
standard file format, they are supported by more and more surface characterisation
systems. The use of standard file formats is strongly recommended; nevertheless, many
popular file formatasspecified by several instrument manufacturers are still widely used.
No matter what format it is, a surface file should include several key elements as listed in
Table 4.2.

Table 4.2: Essential elements for every surface data file.

Element Description

The number of total sampling data points (It is determined by the nul

Number of Points of points in each trace and that of traces for areal data)

Spacing Sample spacing for each axis

Unit Length unit of each axis (Standard umitm’ if it is not specified)
Data type The type of computer data which is used to store Altitude values
Data area A set of altitude values which is stored sequentially

One dominating distinction among different file formats is the choice of how to organise
constituents in a surface fil€he main constituent elements have already been presented
in table, and there may be other constituents in certain file formats pertaining to particular
instruments or other information associated with the specimen. In different file format
specifications, the essential constituent may exist in different positions and occupy
different memory space. For example, the altitude values can be saved as different data
types by which the size and format of one value is determined. As the result, a surface
file cannot be parsed without knowing the specification of its file format. However, since
the altitude data is the primary constituent in a surface file, some file formats can be
reconfigured easily because of its data is stored in ASCIlI (American Standard Code for
Information Interchange) code. iBlconfiguration works fairly well bus not completely
reliable, and it cannot be realised simply by programming as the size of each data set is
uncertain and the unit is not defined. In summary, the specification of file format is the
prerequisite to access a surface file, and it is also the guararsteeesing a surface file

correctly.

84

4.2 Component Design
4.2.1 Surface Data Structure Design for the Proposed Surface

Characterisation System
Surface data is a complex data type that does not exist in any computer programming
language. Instead it is composed of many individual data types. For convenience, it is
necessary to define a structure for storing the whole surface data. As mentioned in last
section, surface data from different surface files may be varying. Especially, the file
header is composed of differing elements according to its file format specification. For
example, some file formats definé'@eated timé to record the time when the surface is
measured and stored in the file, while other file formats may not contain this element.
The decision whether such an element needs be recorded in the structure is essentially
trade off between the memory space and information continuity. Within a surface file, the
elements of the header occupy very little memory space by cethpéth the altitude
values. Therefore, memory space is not a concern and the structure may contain as many

elements as much as practical or pertinent to the end use of the data.

According to common surface file formats, the data structure is designed as the
compound of many primitive data types such as float, double, char and so on. By
composing those elements together with certain orders, the data structure is designed with

the elements listed in Table 4.3.

In practise, the C++ language is the main programming language that used to create
COM obijectives, and the actual data structure is defined as shown in Appendix, C (C.1
C.2.

The order of these elements is arranged according to memory alignment rules. Data
alignment is to put the data at a memory offset equal to some multiple of the word size,
and this will increase the system performance as a result of the way that the CPU (Central
Processing Unit) handles memory. To align the memory data, there may be some
meaningless bytes between the end of the last data structure and the beginning of the next
which is called data structure padding. Hence, when designing a data structure, it is

necessary to consider this effect and arrange the order more reasonably. Otherwise, the

85

same information may occupy more memory space than necessary when the system

executes.
Table 4.3 Internal surface data structure elements.
Field Element | Data Type Description
Manufacturer | Char Array | Name of manufacturer
CreateDate | Char Array | Create Date(YYYY/MM/DD)
ModifyDate | Char Array | Last modified date (yyyy/mm/dd)
NumPoints long The number of points per profile
NumProfiles long The number of profiles
XScale float Scaling factor of X axis
YScale float Scaling factor of Y axis
Data ZScale float Scaling factor of Z axis
Information XUnit Char Array | The unit of X axis
YUnit Char Array | The unit of Y axis
ZUnit Char Array | The unit of Z axis
XOffset float Offset in X axis direction
Y Offset float Offset in Y axis direction
ZOffset float Offset in Z axis direction
IsMetricUnit bool Unit system (True: Metric; False: Imperial)
Description | Char Array | Description for surface data such as process red
NumColumns long The number of points in each row
MDa?:& NumRows long The number of rows
Data Float Array | Altitude values of all points

Although the definition given in Table 4.3 contains almost every element that appears

a surface data file, there are still some elements which are not concerned here. However,
not all elements in the surface file are necessary to restore the measured surface. A
surface can be recovered as long as the essential altitude values, scale parameters and

units are given. When accessing a surface file, there are three scenarios:

1) The element (such as Element A in Figure) £4sting ina surface file can be

found in data structure.

86

2) The element (such as Element B in Figurg éx2sting ina surface file cannot be
found in data structure.

3) The element (such as Element C in Figurg defined in data structure does not

exist in the surface file.

Element A \‘\ Element A
Data Import
Element B —— Element C
Data Export

Surface Data File Internal Data Structure

Figure 4.2: Data transfer between surface data file and internal data structure.

Also illustratedin Figure 4.2 is the fact that there are two directions of surface data
transfer between surface files and the system internal data structure. In order to import
surface data from any surface file or export surface data to a file seamlessly, three rules

have to be satisfied for the previous scenarios:

1) Elements which exist in both sides are copied directly, and essential type

conversions are sometimes required.
2) Elements which only exist in the transfer source are ignored.
3) Elements which only exist in the transfer destination are set with default values.

The first scenario is the most common and it is the simplest way to conduct the data
transfer. There are no difficulties in obtaining the element from surface file and storing

in the data structure, and vice verse. In Scenario 2, the element will be ignored when
importing the surface data from the file as there is no memory space reserved for it.

Conversely,an element is set with a default value according to its specified type. For

87

instance, if the type is ‘float’, the value is set to be ‘0’. This default setting makes the data
transfer smoothly and has no influence on the surface data because the element in
Scenario 2s notanessatial part of surface data. Scenario 3 is similar as Scenario 2. The
difference is that the element exists in the data structure instead of surface file. Thus the
element can be ignored when exporting surface data to files, while it is set with default

value when importing surface data.

Type conversion always occurs during the process of data transfer, because the specified
types of elements may be different between surface file and data structures. It is well
known that numerical values stored in computers can be expressed in different ways with
different degree of precision. Therefore, the type conversion from high precision to low
precision may lead to the loss of precision. To keep the precision of surface data in
original surface files, every element in the data structure adopts the highest precision type
as shown in Table 4.3. As long as the precision of the data structure is high enough, there
should be no issues caused by data transfer from surface files to the data structure. On the
contrary, the potential precision lose caused by data transfer from the data structure to
surface files is not so critical and can be ignored, because the exported surface data will
not used for calculation directly and the relative error is slight. Sometimes, the low
precision types are not adequate to realise some algorithms and may lead to unexpected
results. Hence, high precision types are widely selected in the data structure and are used

in the present system.

Once the rules of surface data transfer between surface files and the data structure have
been specified, there should be no problems for data exchange between surface files and
the characterisation system as long as the surface file formats are known. Therefore, no
matter what types of file format surface data are stored can be converted to be the

same data type which is defined by the data structure. For the present system the user
defined data type is the unified surface data format in the whole characterisation system,

and all functional components will use this structure to exchange surface data.

88

4.2.2 Surface Data Class Design for the Proposed Surface Characterisation

System
Based on the surface data type defined in last section, the surface data class is designed to
combine the data and the relevant data operations together. The surface data type is
defined separately instead of being defined in the surface data class directly. What is of
most relevance is that the surface data structure itself is a complex data type and it
contains many elements. Assuming that all elements and the data operations are put
together, then this is confusing and apt to bring out some unpredictable mistakes.
Moreover, the object of these operations is the surface data rather than its elements.
Setting themat the same level is much more reasonable, and then the levels of structure
are distinct and clear.

Generally, each type of numesicdata has its own operations, and surface data is n
exception. Although surface data is not a pure nurakdeta typeits main constituent is
definitely of a numerial type. Some basic operations for numartata are still suitable

for surface data such as addition and subtraction. However, these operations usually have
their own constrains, and they cannot be applied on different surface data directly. In this
case the requirements to check whether the surface data satisfies relevant operation
constrains. For instance, surface data with different spacing or units cannoteoe add

together, otherwise the result is meaningless and its spacing or units are unabletto be

Beside those basic operations, there are many other operations that are eligible for surface
data. As surface data mainly consists of a set of height values, there are some operations
such as finding the extreme value, reversing each value, truncating height values with a
threshold value, etc which are easy to implement. Regarded as the primitive operations
for surface data, they occur in many algorithms and are widely used in the analysis
process. The code fragments for the definitions of surface dat&<hssgiven by

Appendix C (C.3), which includes all those common operations.

Many operations defined in the surface data class are conductive to the implementation of
algorithms. For example, finding the extreme value of the surface data is such an

operation which is often used in many algorithms. Therefore, there is no need to

89

implement this operation any more when developing a functional component. Instead, as

aninternal operation of the surface data class, they can be called when required.

4.2.3 Interface Design for the Data Access Components

Before designing the interface of data access components, it iS necessary to take into
account common attributes of all functional components in the surface characterisation
system. In order to make functional components known by the system framework, every
functional component has to be registered to the system database. On the contrary,
deregistering a functional component from system database is imperative when it is not

an effective part of the system any more. Hence, the root interface is designed as:

//Interface of all external function components
public interface SSObject
{
bool OnRegister();
bool UnRegister();

}

SSObjectis the foundational interface for the whole system, and every functional
component has to realise this interface otherwise it cannot be added to system
environment and be executed correctly. In other words, the interface of data access
component has to inherit the root interfé&&®O0bject It is well known that every data
access component has to realise its own interface, conseq@Salyjectwill be realised

as well because of the inheritance relationship.

Data access components are designed to exchange surface data between the surface
characterisation system and external data sources. As mentioned earlier, surface data sets
are normally stored in surface files after being measured, and they are widely accepted in
various surface characterisation system. Therefore, surface files are treated as the only
data source in this section. In the future, to expand the data source of the characterisation
system, new data access interfaces can be added and implemented. For example, the
surface data can be imported to the characterisation system directly without the procedure
of storing in surface files. However, this is only a supplementary for the data source.
Accessing surface data from surface files is much more critical for the proposed
characterisation system in that it means the system is not bound to one or several kinds of

particular measurement instrumgnt

90

It is impossible to enumerate all the file formats in use at present and some new file
formats may be defined in the future. However, no matter what kind of file formats are
used to store the surface data, the operations of the surface file are nearly the same and
they all have similar attributes. Generally speaking, reading and writing surface data are
the foundation of all operations for a file. Any more complicated operation on surface
files will comprise a reading and writing operation. Therefore, reading and writing data
are two main operations for a data access component. The data access component

interface is defined as:

//Interface of data access components
public interface SSFileIO:SSObject
{
bool ReadDataFile(String fileName, int bRestoreBD, ref SSData
pdata) ;
bool SaveDataFile(String fileName, SSData pData);

}

ReadDataFil® and SaveDataFil§ are both virtual methods which should be
implemented as long as the interfaB8FilelO is implemented. Table 4.4 list the

instruction of these two methods.

Table 4.4: Arguments description of methods of interface SSFilel O.

Method Argument Description

fleName | The file name

ReadDataFile. phrestoreBD| Whether the surface data is restored when there is bad or missing ¢

pData The data which is used to keep the data from the surface file.

SaveDataFile fileName | The file name which indicates the destination of the surface data

pData The surface data which is saved

4.3 Standard Surface Data Format: SDF

There are many surface metrology instruments available, and often they have their own
surface data file formats for the storage of surface data on the instrument platform. This
situation has lead to an expensive file conversion procedure of converting one data file
format to another if cross platform characterisation is needed. To overcome the
drawbacks of the conversion of diversity of data file formats, a unified definition for a

flexible data file format has been developed.

91

ISO 25178-71 defines the standard surface file format SDF. Stmitaany standard file
formats that already exists for interchange of other popular computer based data, such as
PCX for image files, DXF for drawing files and ASCII for text files, the SDF format
facilitates interchange of surface topographic data between different surface
characterisation software packages. There are two forms of data representation: ASCII
and binary [69]. In practice, the ASCII representation is commonly used for data transfer
between computer platforms because there is no standard method of internal binary
representation between platforms. Binary representation is expected for intra-platform

use.

4.3.1 SDF File Format

The SDF file format is divided into three sections: header, data area and trailer

Table 4.5: File header description of SDF surfacefile.

Information Field ASCII Record Binary Data Type Length(Bytes
Name

Version Number unsigned char 8
Manufacturés 1D ManufaclD unsigned char 10
Creation Date and Time CreateDate unsigned char 12
Last Modification Date and Tim ModDate unsigned char 12
Number of Points per Profile NumPoints unsigned int 2
Number of Profiles NumProfiles unsigned int 2
X-Scale Xscale double 8
Y-Scale Yscale double 8
Z-Scale Zscale double 8
Z-Resolution Zresolution double 8
Compression Type Compression unsigned char 1
Data Type DataType unsigned char 1
Checksum Type CheckType unsigned char 1
TOTAL 81

92

1) Header

The header is an important part of an SDF file. It contains general information about the
measurement system such as the manufa&sui@y and the information that is necessary
for the reconstruction of original surface such as the number of points per trace. The

header occupies 81 bytes in total. Table 4.5 lists the types and lengths of its elements[41].
e Version Number

This field defines not only the version number but also the type of the data file
representation. The first character of the version number is set@&p/ber ‘b|B’. ‘a|A’
stands for ASCIl representation, whil®|B’> stands for binary representation. For
example,“blISO-1.00 means the SDF file is stored in binary format, and the format
version is 1.0. Future evolutions of this format will modify the number suc¢i.&s or
“2.0°.

e ManufacturésID

This field is used to record the source of the data, and it might be a hardware or software

identifier.
e Creation Date and Time

This is a 12 character field that store the date and time in the format
‘DDMMYYYYHHMM . Obviously, it is used to record the data and time when the
surface file is created. For instant#21020120935is interpreted as 12 October 2012 at
9:35 am.

e Last Modification Data and Time

This field indicates the data and time when the surface data is last modified. The format

is the same as thHereation Data and Time
¢ Number of Points per Profile

This field records the number of point of each profile, and it is not allowed to exceed one
Word (unsigned int) of storage (65535).

e Number of Profiles

93

This field records the number of profiles. Similar as thember of Points per profile
the maximum value is also 65535. When it is equal to 1, the surface data is stored as a

profile.
e X-scale, Y-scale and Z-scale

These three élds record the scaling factors of x, y and z axis respectively. They provide
scaling to the standard unit of the meter. Thus an X-scale value of 1.00E-6 represents a

sample spacing of lum.
e Z-resolution

When dealing with digital data it is important to recognise the problem of quantisation
rounding. After certain processing operations, the data type may be changed or re-scaled.
The value of Z resolution will be changed to realise the re-quantisation of original data. It
should be set to a negative number when it is unknown as some other file format may not

include this value.
e Compression type

This field defines the compression type used for the data. Table 4.6 lists the supported

compression types.

Table 4.6: Compression types list.

Compression Type Numbe Compression Type ASCII Compression Type
0 None None
1 Run Length Limited RLL
e Data type

This field specifies the data type used to store the surface deamlé a single character

value or an abbreviation of the base data type name as listedl&4.7

94

Table 4.7: Supported data types list of SDF file format.

Data type Abbreviation | Data type codg length Decimal value Range
unsigned char UCHAR 0 0—255

unsigned int UINTEGER 1 2 0—65535
unsigned long ULONGINT 2 4 0—4294967295

float FLOAT 3 4 -3.4E38—3.4E+38

signed char CHAR 4 1 -128—127

signed int INTEGER 5 2 -32768—32767
signed long LONGINT 6 4 -2147483648-2147483647

double DOUBLE 7 8 -1.7E-308-1.7E+308

e CheckSum Type

This field contains the value of the checksum type used for maintaining data integrity.

The supported checksum types are listed in Table 4.8.

Table 4.8: Checksum types list.

CheckSum Code CheckSum Type ASCII CheckSum Type
0 None None
1 IntegerTrace UlntTrace

2) Data area

The data area contains all the height values for measurement. It is the main part of a
surface file, and usually occupies the most space of a surface file. The height values are
stored successively in the order in which they are collected. In fact, the actual height
values are obtained by scaling the stored values by the Z-Scale factor defined in the
header.

Sometimes the height values at certain positions are invalid or cannot be measured
especially with the optical instruments. These data points are referredb@dadata or
‘missing data. Thereforeit is necessary to implement procedures which enable the
analysis software to take appropriate action when such data is encountered. Normally, the
identification of such data points may be achieved by setting them to a particular value

within the data range which is not allowable for any valid data points. For example, the

95

maximum or minimum values for the particular data type used are both available to

represent these data values. In the 1ISO 25178-7, the minimum value is recommended.
3) Trailer

The trailer is usually stored at the end of the file as a series of character values. It
contains the historical information that is useful when associated with the surface file.
Some measurement information which is not defined in hezatdye stored in the trailer,

and the process information after the measurement such as filtering could also be stored.
In a word, any informatiorcan be written in the trailer as long as it is believed to be

useful.

4.3.2 Interface | mplementation

The SDF file component is a form of data access component, thus the in8Sfal2O

has to be implemented. Meanwhile, the parent inter&8@bjectis also required to be
implemented. In other words, the SDF file component class has to override all virtual
methods defined in BotlsSFilelO and SSObject The implementation of these two

interfaces for the SDF file component is detailed below:
e Derived fromSSObject

As mentioned in Section 4.2.3, there are two methodSS@bject OnRegistef) and
UnRegiste(). They will be invoked when the component is added or removed. What
needs to be done in the methodRegistef) is to add the component information to the

components database of the system.

SSCommon .AddAssembly ("sdf", "FileAccess.FileSdf",
System.Reflection.Assembly.GetExecutingAssembly () .Location,
SSAssemblyType.FILEACCESS) ;

Similarly, it is necessary to remove the component informationUmRegister()

correspondingly.

SSCommon .RemoveAssembly ("sdf", SSAssemblyType.FILEACCESS) ; ‘

e Derived fromSSFilelO

ReadDataFil@ is invoked when a SDF file is opened, whiaveDataFil@ would be

invoked when surface data needs to be saved. These two methods involve a quantity of

96

codes to parse the file format. The critical activity is to transfer the data information
between the SDF file and the inner surface data structure.

44 Summary

This chapter gives a brief introductidn conventional surface data file format. The
internal data structure of the characterisation system is designed and the rules of surface
data exchange between surface files and the characterisation system are specified.
Additionally the interface for data access components is defined. Finally, the

implementation of one data access component for SDF file format is elaborated.

97

Chapter 5Design and I mplementation of Data Process
Components of the Developed System

5.1 Categorisation of Data Process Components

Surface analysis and characterisation are a sequential set of procedures comprising
several operations. According to the GPS standards, this analysis procedure is termed the
surface verification operator. Every verification operator consists of a series of operations,
such as fitting, filtering and parameter calculation. In a surface characterization system
such as one proposed here, each operation isea@a@s a data process component.
Therefore, data process components are no doubt the most significant and complex
constituent part of every surface analysis and characterisation process. In addition, some
data manipulation such as data transformation and data arithmetic procedures are also

often encapsulated as data process components.

Data process components can be considerétlak boxes’ which are invisibleo end

users. Users care about their I/O properties rather than their implementation details. From
the perspective of surface characterisation system, a data process component is
available for data processing as long as its 1/0 requirements are satisfied. However, there
are many surface data analysis and process operations, and their 1/O properties are not
always the same. To enable the seamless connective between data process components
and the characterisations system, it is necessary to abstract the similarity of these
operations and design standard interfaces for data process components. Hence, the
categorisation of data process components is the prerequisite to define their interfaces. As
outlined previously, their 1/O properties would be the primary factors to be considered for

categorising data process components.

It has been established that the aina dfta process component is to realise some form

of analysis and operation based on the surface data. Naturally, surface data is the same

input object of all data process components. Each data process component is required to

import one surface data at least, otherwise, it is not considered to be a real data process

component. Most data process components only need one surface data set (e.g. parameter

calculation), while some others may need two or more sets of surface data (subtraction of

98

surfaces). The number of import surface data sets is dependent on the operation itself.
Consequently, such number of the input data sets needed is an important factor that has a

great influence on the categorisation of the data process component.

Besides the import aspects of the component, differences als@etkistexport end of

data process components. Normally, the output of a data process component is supposed
to be a somewhat modified surface dsghas well. For example, the outputs of filtering

and fitting operations are still surface data sets with the same resolution and dimensions
of the input data. However, as the analysis procedure, the outputs could be of a different
form according to the procedusealgorithmic process. In certain instances these output
data sets cannot be presahasstandard display components e.g. power spectral density
visualisation. Therefore, it is necessary to output a display control which can present the

analysis results in the optimal way.

In addition, many data process components may have extra inputs in addition to the
surface data set for them to run. For example, it is required to set up the cut-off for a
filtering operation component or the polynomial order for a fitting operation component.
Given that all these parameters are considered as the inputs for the data process
component, it is impossible to abstract them as the same attributes for different data
process component, thus there will be many types of data process components.
Fortunately, there is one easy method to deal thiglse parameters. Supposing a data
process component is a production machine, its input materials would be surface data
while the output is surface data or display controls. When starting the production machine,
it is required to set up any relevant parameters correctly. Certainly, different
configurations of these parameters will lead to a product with different properties.
Similarly, all the parameters for a data process component can be regarded as attributes
of the component rather than its input. Every data process component can define its own
attributes according to its internal analysis algorithms. Hence, the categorisation of data
process components will not be affected by the parametansaoficular algorithm.

In short, the number of input surface data sets and the output result are the categorisation
criteria of the data process components. According to the requirements of the proposed

characterisation system, there are three fundamental types of data process components.

99

All surface verification operations can tepresented by these fundamental components
or their compositions.

1) Type A: One Data Set In and One Data Set Out

The operation with one input dasetand one output datsetis the main form within
surface verification operators. The goal of characterising a surface is to obtain the
intrinsic features of it, thus there is usually no need to compare with another surface
during the analysis process. Usually the comparisons are made after obtaining specified
features. Each operation could therefore be implemented“ataek boxX by hiding
intermediate data sets withthe corresponding process. As long as operations are
realised as this type of operation, thegn be employedas a constituent part of any
operator. Figure 5.1 illustrateslevelling operation, the input data of this operation can

be any output data of other operations, and vice versa.

Levelling Component

(Data Process Components :> g

—Type A)

Input Data Output Data

Figure5.1: Example of Data Process Components—Type A.

As the input data includes not only the matrix data but also the data properties such as the
data intervals and the operation is only deal with the matrix data, the output data has the
default properties which are the same as the input data. As the most critical procedures
during the surface characterisation, fitting and filtering are both considered to be this type
of operation: fitting is usually the first step of the process, often rectifying the
measurement setup errors. It is recogniseah&soperator which removes form from the
primary surface [12]; filtering is an operation to extract the significant or important

information from the measurement data for further analysis.
2) Type B: Two Surface Data Sets In and One Surface Data Set Out

In the field of surface metrology, comparison or arithmetic operations between two

surfaces are quite common, although these operations are not parts of the standard surface

100

verification chain. For example, cross-correlation which can be used to quantitatively
acquire the similarity between two surfaces is a typical operation in this category, and the
arithmetic operations such as adding and subtracting surfaces are also regarded as this

kind of operation.

This Type B operation has two operands, and it is the basic prototype for operations with
multiple operands. Usually an operation with more than two operands can be separated
into many sub-operations with two operands. For simplicity, suppose that there are three
surfaces: A, B and C to be added together, the one operation (A+B+C) wigh thre
operands could be divided into two operations (A+B and C+(result of A+B)) with two
operands.

However, there is one implicit constraint for most of these operations; namely, the input
data A and data B should have the same resolution and spacing interval. Some particular
operations which have specified the process algorithm can deal with different resolutions
and intervals. Otherwise, two surfaces with varying resolution or interval cannot be
process with this kind of operation. Figure 5.2 is an example of adding two surfaces

together.

Addition Component
Input Data A (Data Process Components—
Type B)

A et N — Output Data
="

Input‘Data B

Figure 5.2: Example of Data Process Components—Type B.

3) Type C: One Data Set In and One Display Control Out

Sometimes the input and the output of an operation are not in the same format. In the

surface characterisation system for example, surface data should be always treated as raw

101

data to be processed, but the output data is not always surface data. For example, the
parameter calculation operation to compute various parameters is based on a surface data
which has already been processed by previous operations, so the output of such an
operation is an array of parameter values. Obviously, these parameter values are quite
different from a standard surface data set, and thus they cannot be displayed by the
general graphical data display component. The display of these analysis results should be
provided by this operation component. An extra display control which is designed to
display the analysis results should be returned from this component. In Figure 5.3, a
parameters list control is implemented in the proposed system as the output of parameters
calculation components. Thus, the outputs of these components are display controls.

Input Data B

E AMPLITUDE ~
Sku 5.059
Sp 5.708(um)
Sq 0.852(um])
Ssk. -0.211
Sv 8.191[um]
Sz 13.899(um)
E CURVES RELATED
Wme 7.228E +005[um™3/mm™2)
¥mp 5.106E +004{um™3/mm™2)
Wvo 9.163E+005[um”3/mm"2)
Parameters Component Yy 8.959E +004[um"™3/mm"2)
|:“> B HYBRID
(Data Process Components— Sdg 0148
Sdi 1.679(%)
Type C) Sso 0.052(1 /um)
E OTHERS
55z 11.599(um)
EE 0.657(um)
Std 0.000([deg) v
Sa

Arithmetical sverage of the surface

Output display control

Figure 5.3: Example of Data Process Components—Type C.

Some particular analysis modules just do operations on the input data and do not output

any surface data or parameter calculation. For example, the bearing curve is the

cumulative probability density of the height afsurface and can be calculated by

integrating the profile trace. The output of bearing curve analysis is a profile, which is not

a surface data set. In order to plot sagtrofile, the component has to create a display

control for the system framework. In this category, the analysis result of a component is

not surface data which can be displayed in the system framework via a display

component. So the analysis result should be output to a new control which is provided by

a dedicated component and the system framework displays this new control.

102

5.2 Component Interface Design of the Proposed System

As a specific functional component type, data process components have to realise the

SSObjectinterface as well as data access components.

Data process components are the most significant and complex functional components in
any surface characterisation system including the proposed system. The interface design
of data process components is often supposed to be much more difficult than other
components. Since the interface can only reflect the data process components with the
same attributes, it is impossible to design a unique interface that can be used by all data
process components. Instead, it is necessary to design at least three main interfaces for

the three categories of data process components as proposed in the previous section.

5.2.1 Interfaceof Verification Operations

Functional components are fundamental elements of the characterisation system, they
provide different types of function®r surface analysis, and they play the role of
function library. They are not the same as the actual analysis actions. Since this
characterisation system is designed accord with GPS standards, most of analysis actions
are standard verification operations. Besides, there are still other actions deriving from
the software system requirements. For example, opening a surface file is an essential
action before any data analysis is carried out, but clearly this is not included in any GPS
standards as the standards only concern themselves the analysis techniques and methods.
This is the essential distinction between theory and practice in terms of system
development. In essence, opening a surface file is also a verification operation which
derives from metrology practice. Therefore, an actual surface verification operator is

certaily composed of many of these types of operations.

In the developed characterisation system, commands are designed to represent those
verification operations. When the system receives a request from users, relevant
commands will be formed and executed. Almost every command is rededetbast one
functional component by which the actual data processing work is completed. In fact,
most commands only associate with one functional component except for compound
commands. The compound commands consist of a series of sequential commands, and it

is regarded as the representative of verification operators. As there are many kinds of

103

functional components, commands are also required to be classified according to the
types of associated functional components. To invoke these commands consistently, an
interface with common properties and methods is needed and has been develaped here
No matter what command is created when the user request comes, the systematan activ
the command in a unique wagSCommands such an interface for all commands, and

the definition is listed in Appendix D. It contains four properties and two methods. The

instructions have been listed in Table 5.1.

Table 5.1: Description of member variables and methods of interface | SSCommand.

Types Name Description
Tag Link to the tag recorded in the user action list
, Name The name of the command
Variable —
DefaultArgs Specifies whether the default arguments are used.
ArgList Records all arguments of the command
Method Execute() Performs the command with appropriate arguments
etho
ModifyArgument() | Changes the arguments of the command

The implementations of different commands cannot be the same; consequently they are
classified according to the functional component they are associated with. Since there are
three main types of functional components in the whole system, the number of command
types is no less than three. In fact, there are six types of commands in the developed
characterisation system. As data process components are more complex than the other
two types of functional components, three different types of command are defined
according to the categorisation of the data process components. In addition, one more
command is defined for compound commands which are the composition of a series of
sequenced commands. Figure 5.4 shows the inheritance hierarchy structure of commands

for the developed system.

104

ISSCommand

#name : string
#defaultArgument : bool
#argList : SSArgument
#tag : object

SSArgument

>

-name : string
-Description : string
-Value : object

+Execute() : bool
+ModifyArgument() : void

SSCCommand

-cmdList : SSCommandBio

+AddCommand() : void
+Execute() : bool
+ModifyArgument() : void

+getCommand() : SSCommandBio

+getCount() : int

AN f

SSCommandOpen SSCommandShow
-ClassType : string -ClassType : string
+AddArgument() : void +AddArgumenty() : void
+Execute() : bool +Execute() : bool
+ModifyArgument() : void +ModifyArgument() : void

| | 1
SSCommandSin SSCommandTri SSCommandBio

-ClassType : string

-ClassType : string

-ClassType : string

+AddArgument() : void
+Execute() : bool
+ModifyArgument() : void

+AddArgumenty() : void
+Execute() : bool
+ModifyArgumenty() : void

+AddArgument() : void
+Execute() : bool
+ModifyArgument() : void

Figure 5.4: Internal command class inheritance hierarchy diagram of developed system.

SSCommandAcceds the command type which deals with data access components, and it

will be created when users try to open or save a surfac&8@ommandShovs defined

to meet the requirements of data display requests. Normally, this type of command will

be automatically created after all other types of commands because display components

are always used to present the results from others functional comp@g&&wsnmandSin

SSCommandBi@andSSCommandTrare desiged for commands that are associated with

data process components. According to the 1/0O properties of data process components,

these three types of commands have one, two or three surface data sets as their operands.

They are related with Type C, Type A and Type B of the data process components

respectively.SSCCommands a compound command type, and it is not relabedny

functional component directly. Instead, it is a command listSSiCommandBio

commands. Therefore, the SSCCommand is related to the implementation of verification

operators in this characterisation system. The relationship between verification operators

and operations is the same as that between simple commands and compound commands.

Figure 5.5 shows the relationships between them.

105

System Commands

SSCommandOpen

SSCommandShow

SSCCommand / Command List Operator
A

SSCommandSin

SSCommandBio

SSCommandTri /

A

Operation

il

Figure 5.5: Relationship between commands and surface verification operators.

5.2.2 Interfacefor All Data Process Components

Although the interface for each type of data process components is essentially different,
there are common attributes amstipem. In fact, the methods or operations of all data
process components are very similar. The most important method is the execution of the
algorithm, and this is similar to reading or writing surface data for data access
components. Unfortunately, the execution method cannot be regarded as a common
operation as its parameters will vary for different subtypes of data process components.

However, there is one method that is the same for all types of data process component.
This is the parameter setting, and almost every data process component has its own
parameters which are relate particular internal algorithms. Generally, these
parameters have great impact on the analysis result. To ensure the execution of internal
algorithms, it is necessary to set up all parameters before starting the execution.
Sometimes, one data process component is expected to execute many times by changing
one or more parameters setting to examine the effects caused by those parameters.
Therefore, setting algorithm parameters is no doubt an important operatiard&ba

process component.

Since the parameter setting is a common operation for all data process component, a

lower layer interface needs to be developed prior to the interface design of every concrete

106

subtype. In practise, this interface is nameds&analysis and it acts as the interlayer
interface between the root interfaB80bjectand the interface of every subtype. It is

definedas:

public interface SSAnalysis:SSObject
{

void ModifyArguments (ISSCommand command) ;

}

ModifyArgumentg) is the only method in the interfac&SAnalysis and its aim is to
invoke the parameter setting action instead of transferring parameters into the component.
In operation, the parameters are kept inside the command rather than the functional
component. Although two commands may invoke the same functional component, they
are different because they transfer different parameters into the component. Figure 5.6
illustrates the relationship between commands and functional components. Therefore, the
argument of the methododifyArgumen() is only the command which will invoke this

functional component.

Commands

Functional Components
Command A

Command Object A1 —
Nvoke Funtional

/\nvoke/ Component A

0\@
& Funtional
—

Command Object A2 — |

Component B

Command B \OK®

Command Object B1 [

| Invoke— |

Figure 5.6:Relationship between commands and system functional components.

One possible way to set up parameters for a command is to create a parameter dialog
inside the metho®lodifyArgumen{). The dialog is defined in the functional component
itself on which all parameters associated with the inner algorithms are selected or set.

These parameters are then saved in the argument list of the command. For instance, the

107

code fragments dflodifyArgumen() in the FeatureParameteimponent are listed in

Appendix E.

5.2.3 Interfacefor Subtypesof Data Process Components
As the root interface of all data process compone®®8fnalysisis supposed to be
derived by every interface for subtypes. Figure 5.7 is the inheritance hierarchy diagram of

the data process components.

SSAnalysisA SSAnalysisBand SSAnalysisCare the interfaces for three subtypes of data
process components respectively. All of them just have one méih@tuté, which is

to perform the analysis algorithm inside the functional components. With the aadition
method ModifyArguments() from the parent interfac&SAnalysis they are the same
interface in essence. However, the argumentsEskecut& are different and they are
dependent on /O properties of data process components. This is the reason why three
interfaces are designed. The definitions of these three interfaces are listed in Appendix F.

<<interface>>
SSObject

+OnRegister() : bool

+UnRegister() : bool

I

<<interface>>
SSAnalysis

+ModifyArguments() : void

i

<<interface>> <<interface>> <<interface>>
SSAnalysisA SSAnalysisB SSAnalysisC
+Execute() : bool +Execute() : bool +Execute() : bool
+GetDisplayCtrl() : object

Figure5.7: Classinheritance hierarchy diagram of data process components.

Every interface has its owxecuté) method with different arguments. The arguments
are composed of input data, output data and parameters for algorithms within the
component. In addition, a flag argumelgfaultArgshelps indicate whether the default
arguments are used for algorithms or not. All the instructions of these arguments are
listed in Table 5.2.

108

Table 5.2: Description of arguments that occursin SSAnalysisA, SSAnalysisB and SSAnalysisC.

Argument Type Description
pSrc SSData Input surface data
pSrc2 SSData Another input surface data
pOut SSData Output surface data
defaultArgs bool Whether the default arguments are used
argList List<SSArgument> | Arguments List(Dynamic linked list)

It is worth noting that there is one more method with8AnalysisC As the Type C data
process component do not return any surface data as the analysis results, the display
component is unable to be invoked to display its results. H&&®,isplayCtr() is such

a method which returns a specific control for the analysis results. Meanwhile, the
commandSSCommandSimvokes this type of function in a different wayshould use

the returned display control rather than any standard data display control to present the

analysis result.

5.3 Case Studies. Geometrical Analysis Component

Surface roughness analysis represents an attempt to quantify how surface topography
plays an important role in determining how a real object/surface interacts with its
environment. A series of parameters have been defined by ISO standards to represent the
corresponding surface texture in a quantitative way. Although roughness analysis is
accepted as an effective way to predict the performance of a surface, it is ineffective in
evaluating a surface such as structured surfaces whose functions are highly dependent on
the geometrical features of the structures rather than the surface roughness [4, 67]
Similarly, the deviations of these real geometrical features from their ideal form should

be quantified for the purpose of quality evaluation.

At present, there are no ideal instruments for the measurement of these tiny geometrical
features on a surface directly. However, they can be measured indirectly by using surface
instruments, and then be extedttusing mathematic algorithm# pattern analysis
method which is described in ISO 25178-2 [12] is proposed to extract boundaries of
geometrical features. As these boundaries are sets of discrete points, it is not convenient

to represent the characteristics of geometrical features directly. A further segmentation

109

based on these boundaries is imperative for the recognition, extraction and construction
of the geometrical features. Realising the recognition and construction of predefined
geometrical features based on these primitive segments is essential for the further
characteristics analysis. Common geometrical features to be analysed include circle, slots,
edges and combinations of these. There are two types of characteristics defined in GPS
standards, intrinsic and situation characteristics [39].

5.3.1 Surface Segmentation

Surface segmentation is an essential procedure for the geometrical features analysis. The
edge information of the microstructures on a surface cannot be acquired by measurement
directly as a surface data is a continuous cloud of data points. Although many techniques
have been implemented for edge detection, they are mainly used for image processing
and analysis. In the field of surface metrology, a pattern analysis method [12, 110] based
on morphological analysis has been developed for analysing microstructure surfaces.
This segmentation method can be used to determine regions of a scale limited surface
which define the scale limited features. Regions consisting of hills and dales on the scale
limited surface are separated from each other. The boundaries between hills are defined
as course lines, while those between dales are defined as ridge lineas lbeen
demonstrated that ridge and course lines are maximum uphill and downhill paths
emanating from saddle points and terminating at peaks and pits [12]. Therefore, a scale
limited surface can be organised by networks of critical points: peaks, pits and saddles
points in addition to critical lines: ridge lines, course lines. Unfortunately the resué of th
segmentation is initially disappointing as the surface is separated into a large number of
insignificant tiny segments. Thus it is necessary to merge these tiny segments to a few
large significant segments. Height and area pruning methods applied to the surface
networks with appropriate thresholds can be implemented to obtain a more reasonable

segmentation result.

110

8a0.00
240

200

740

Too
__ B&0
1]
— 450
—_ann
— 450
400
__ 340

(Wn)oo'000L:A

—li]i]
240
200
140

100
an
0.00

X:1000.00(um)

Figure 5.8 Demonstration of surface segmentation

As the magnitude of altitude differences between regions of microstructures and other
regions is usually much greater than that of roughness, the boundaries can be extracted
very effectively by further processing of the surface segmentation analysis. Figure 5.8
illustrates the result of surface segmentation of a surfacesdat@nd it shows that the
boundary curves of geometrical features have been extracted effectively. In fact, the
reliability and accuracy of boundaries are not only determined by the threshold used for
segmentation, but also the clarity of microstructures. If the microstructures on a surface
suffer ambiguity that may be caused by manufacture or measurement, the boundaries of
the featureobtained by surface segmentation are indicative of this.

5.3.2 Boundary curve approximation

The boundaries of geometrical features usually cannot be represented by only one
segment, so the segmentation of boundary curves is necessary before feature recognition
and shape analysis. Many techniques of planar curve segmentation have been proposed in
the literature. For instance, Biswajit Sarkar et al.(2003) use genetic algorithms to realise
the approximation of planar curves [111]. Wu Chih Hu (2005) has develaped

111

methodology for planar curve segmentation with line segments and conic arcs based on
the types of breakpoints [112]. Here boundary curves are segmented into lines and
circular arcs based on curvature variation, and ti&methods are applied for the fitting.

Figure 5.9 is a boundary curve which is the result from the surface segmentation of the

image shown in Figure 5.8.

(um)
270 | ff'rf -
.

180 + 1

135 } J,—f |

90 t ’I i 1

1] | 1 1 1
] 45 a0 135 180 225 (um)

Figure5.9: One boundary curve of a geometrical feature.

Curvature as a significant difference between lines and circular arcs is selected to
establish the junction points which separate the whole boundary curve into primitive
segments. To do this, the curvature of each point on the boundary needs to be calculated.
Practically, curvature calculation in accordance with the curvature formula cannot be
applied here directly, as the boundary curves are effectively non smooth curves and the
noise has a great impact on the result. A more successful approach to obtain the curvature

is to calculate the curve radius which is the reciprocal of curvature.

The calculation procedure of radius of curvature is described as follows. A boundary

curve can be defined using the representagidi),y()) (0<i<N), wherex(i) and

y(i) are two functions of the index variable and N is the number of points. To

112

calculate the radius of curvature of pGPr(tx(i), y(i)), sufficient adjacent points should

be taken into account. A possible choice is to take k points from each side d¢f psint

the total number of points used for circle fitting ik 1. If the boundary curve is not
closed, this number is less thak £1 for those points at the end sides of the curve. The
parameterk determines the magnitude of the variation of curvature among adjacent
points. Figure 5.10 illustrates the curvature of all points on the selected boundary curve.
After the curvature calculation, the junctions can be found out by taking the derivative of

the curvature along the curve and locating the spikes on the derivative as shown in Figure

5 . 1 1 .
ﬂw&f\
1 L 1

100 150 200 250 (pt)

iy
50

Figure 5.10: Curvature of each point on the boundary curve.

(-107%)

N |

0 50 100 150 200 250 (pt)

Figure5.11: Derivative of curvature along the boundary curve.

113

(um)

270+ E

2

3

n
I

180

135F <

90 + E

45t 4

I L |
0 45 90 135 180 225 (um)

Figure 5.12: Extracted joint points of the boundary curve.

According to the calculated junction points as shown in Figure 5.12, a boundary curve
can be divided into many short curve segments. A segment contains all the points
between two adjacent junction points. However, before the approximation of a segment
its objective function is required. In other words, whether the segment is a line or circular
arc needs to be determined in advance. The curvature of a point on a line, which is zero
theoretically, should be very close to zero. A threshold can be chosen to simplify this
determination. If the curvature is over this threshold, the segment is a circular arc;
otherwise, it is defined as a line. Thus, all segments that can be divided by junction points
can be fitted by using least-squares method, and they can be used for the recognition

and characteristics analysis of geometrical features.

5.3.3 Geometrical featuresconstruction

Various geometrical features can be constructed by combining lines and circular arcs
with different quantities and sequences. For simplicity, circles, triangles, quadrilaterals,
slots and keyholes are considered in this section. Suppose that C indicates a circular arc
and L a line. These geometrical features could be expressed by a sequence of circular arcs

and lines.

114

Table 5.3: Combination patterns for common geometrical features.

femtures Expression
Circle C
Triangle LLL
Quadrilateral LLLL
Slot CLCL(LCLC)
Keyhole CLLL(LCLL,LLCL,LLLC)

Generally, each boundary curve is a combination of line segments and circular arcs after
the processing of the boundary approximation. A boundary curve can be identified as a
form of geometrical feature by comparing their segment expressions. The boundary curve
showed in Figure 5.12 is recognised as a slot whose express@indi’. Nevertheless,

some boundary curves cannot be recognised as they are either ambiguous or beyond the
scope of this example. The geometrical features of interest which hexvvprbdefined in

Table 5.3 can be constructed from boundary curves. Furthermore, the characteristics of

these geometrical features can be quantified for the surface evaluation and verification.

Characteristic analysis of geometrical features includes their intrinsic characteristics as
well as the situation characteristics between two features. For instance, centre point and
radius are intrinsic characteristics of a circle feature. However, the distance between two
centre points can be thought of as a situation characteristic which reflects the relationship
of two geometrical features. In ISO/TS 17450-1 situation characteristics, which are
length and angle, can be separated into location characteristics and orientation
characteristics [39]. In this component, both the intrinsic characteristics and situation
characteristics are calculated and listed according to its feature type as shown in Figure
5.13.

ParaMame Type Walue Walid Morminal | Lower Upper’ Unit
52_A1Radius Radiuz | B7.8600.. - E7 0.5 s um
C4_CORadius Radiuz | E£9.0999.. - B3 05 |05 um
C3_CORadius Radiuz | E£9.0999.. - B3 05 |05 um
S2_L0lLength Length | 139.240.. - 130 B 5 um
52_AllAngle Angle 83T - 190 B] deg
52_L2Length Length | 144.119.. - 140 B 5 urn
52_AJRadius Radiuz | E7.7300.. - E7 05 |05 um

Figure5.13: Characteristics list of geometrical features.

115

5.3.4 Interface Implementation for Geometrical Analysis Component

Initially, it is essential to determine what type this geometrical feature component
belongs to. The analysis process is based on only one surface data set which is regarded
as the input data for the component, while the analysis results are geometrical features
(such as circles, slots) and their dimensions and size. Obviously, this component is a type
C data process component according to the 1/0O properties. Therefore, the interface
SSAnalysisCand all ancestor interfaces need to be implemented. This means that the

component class has to override all the methods it derived from these interfaces.
e Derived fromSSObject

There are two methods 850bject OnRegisterJandUnRegiste(). The former is called
when adding the component to the system framework, while the latter is called when

removing it. In thedDnRegistef) method, three processes are completed.

a) Add the component information to the system component list:

SSCommon .AddAssembly ("GeometricalFeatures",
"DataAnalysis.GeometricalFeatures",
System.Reflection.Assembly.GetExecutingAssembly () .Location,
SSAssemblyType.DATAANALYSIS) ;

b) Add a new command to the system command list, and the command is associated
with this component. Meanwhile, the default arguments are also configueed to

command.

SSCommandSin cmd = new SSCommandSin () ;
cmd.Name = "GeometricalFeatures";
cmd.ClassType = "GeometricalFeatures";

cmd.DefaultArgs = true;

c) Add a menu item for this component, useas invoke the command by clicking

this menu item.

SSCommon .AddMenultem (" &DataView; GeometricalFeatures ",
"GeometricalFeatures") ;

Conversely, there are also three elements in the Unregister correspondingly.

116

a) removeamenu ltem

‘SSCommon.RemoveMenuItem("&Dataview;GeometricalFeatures”); ‘

b) Removeacommand

‘SSCommon.RemoveCommand("GeometricalFeatures"); ‘

c) Remove component information

SSCommon.RemoveAssembly ("GeometricalFeatures", SSAssemblyType.DATAANALYS
IS);

e Derived fromSSAnalysis
In the interface SSAnalysis, only one method needs to be overriden.

ModifyArguments is to update the parameters setting in the command. A parameters
dialog is created, and it is initialised by the last set values saved in command. After
modifying the parameters, all values are saved to the command as shown in following
code fragment.

ParameterSetting ps = new ParameterSetting();
..//Read parameters values from the command;

ps.ShowDialog () ;

..//Save parameters values to the command;

e Derived from SSAnalysisC:

Unlike the other two types of data process component, there are two methods in
SSAnalysisC The methodExecutd) analygsthe input surface data to obtain the results
and send the result to the display control, whileGle¢DisplayCtr{) method returns the
display control. These two methods are invoked by the comr@audnetricalFeature
which is added to the system framework by this component. As the implementation of the

algorithm is very complex and lengthy, the code will not be presented here.

By overriding these methods in the component class, they are invoked correctly at the
correct time. The developers of this component do not need to worry about the
communication between it and the system framework, as these methods are predefined to

complete presupposed work.

117

5.4 Summary

This chapter emphasises the design and implementation of data process components in
the developed system software framework. As the critical functional components for
surface characterisation, data process components are much more complex and
diversified than the other two types of components. Therefore, the categorisation of them
is discussed first. Following this the interfaces of different types of data process
components are defined respectively. As an example the design and implementation of

the geometrical analysis component is finally elaborated.

118

Chapter 6 Implementation of Surface Visualisation
Components

6.1 Computer Graphics

Computer graphics is one of the most exgitaspects of computing technology, and it is
core to any work that usemputation to create or mdgliimages. The computer is
utilised to generate visual images syntheticaligl to integrate or alter visual and spatial
information sampled from the real world [113]he development of computer graphics
has made computers easier to interact &t greatly enhances data facilitating deeper
understanding and interpretatio@Gomputer graphics teclques are primarily used to
present to the end user surface data wisataptured from the measurement instrument.
Figure 6.1 presents an overview of the graplsiystem. The originaata is imported by
the Input Devices, and then be proceskgdhe CPU and GPU (Graphics Processing
Unit) in sequence. After the processing, ttaga is converted intthe image which is

saved in frame buffer, and then theame is transferred to output devices.

Input Devices

' QOutput Devices

S EE CPU — GPU —> Frame Buffer —>
{Centre Processor) (Graphics Processor)

o - | !

Memory GPU Memory

Figure 6.1: Computer graphics system principle.

The uptake of high level computer graghiis widespread,nd it includes almost
everything on computer thas not text or sound. Asechnology has improved, 3D
computer graphics have become more comnbut to date 2D computer graphics are
still widely used. Currentlymany powerful tools have been developed to achieve data
visualisation. One common and convenientyws to program with a graphics API

(Application Programming Interface) thatupports the necessary modelling and does

119

most of detailed work of rending the scene. There are a number of graphics APIs
available, both Direct3D and OpenGL are commonly used [114].

Direct3D and OpenGL are competing API both can be used in an application to render
computer graphics, and they are both implemented within the display driver. Modern
GPU may implement a particular version of one or both of these APIs. On the one hand,
DirectX is a collection of APIs for handling tasks related to multimedia, especially game
programming and video on Microsoft platforms. The name DirectX is coined as
shorthand term for all of the APIs that begin with Direct, such as Direct3D, DirectDraw,
DirectMusic, DirectSound, and so forth. Direct3D is usually used by software
applications for visualisation and graphics task. As the most widely publicised
component of DirectX, the term Direct3D is often used interchangeably with DirentX. O
the other hand, OpenGL is an open standard Application Programming Interface that
provides a number of functions for rendering of 2D and 3D graphics, and is available on
most modern operating systems including but not limited to Windows, Mac OS and

Linux.

The differences between Direct3D and OpenGL are not only their platform and
proprietary. In general, Direct3D is designed to virtualise 3D hardware interfaces.
Direct3D frees the programmer from accommodating the graphics hardware. While
OpenGL is designed to be a 3D hardware accelerated rendering system that may be
emulated in software[115]. They are fundamentally designed as a product of two separate
modes of thought. As such, there are functional differences in how the two APIs work.
Direct3D expects the application to manage hardware resources that is done by
implementations in OpenGL. Thus, OpenGL decreases difficulty in developing for the
API, but increases the complexity of creating an implementation. With Direct3D, the
implementation is simpler and the developers have the flexibility to allocate resources in

the most efficient way possible for their applications.

As the present surface characterisation system is developed on Windows system, both
Direct3D and OpenGL are eligible for the surface topography rendering. The developers

of further data display components can select any one of them according to their

120

preference. In this chapter, the development of data display components with QpenGL
elaborated.

6.2 Computer Graphics Programming—OpenGL

OpenGL is a powerful software interface used to produce high-quality computer
generated images and interactive applications using 2D and 3D objects and colou
bitmaps and images [116]. In recent years, it has become a worldwide standard for 3D
computer graphics programming. Although OpenGL was originally developed by SGI for
its high-end IRIX workstations, it has grown in scope enormously and now its
development is led by a group consisting of industry leaders such as 3DLabs, HP, Evans
& Sutherland, IBM, Inter, Microsoft, NVIDIA and SGl itself. This group is called the
ARB (OpenGL Architecture Review Board) [117]. In this section, some basic functions

as applied to the present system are elaborated.

6.2.1 Modelling

OpenGL is designed as a streamlined, hardware-independent interface to be implemented
on many different hardware platforms.consists of about 150 distinct commands that

are use to specify the objects and operations needed to produce interactive 3D
applications. OpenGL does not provide high-level commands for describing models of
3D objects such as automobiles, parts of the body, airplanes, or molecules [103, 118].
With OpenGL, the desired model is built up from a small set of geometric primitives:

points, lines, and polygons.

Primitives are defined by a group of one or more vertices. A vertex defines a point, an
endpoint of a line, or a corner of a polygon where two edges meet. Data (consisting of
vertex coordinates, colours, normal vectors, texture coordinates, and edge flags) is
associated with a vertex, and each vertex and its associated data are processed
independently, in order, and in the same way. Primitives are drawn subject to several
selectable modes. These modes are independent of each other, namely, the setting of one
mode would not affect that of others even when they may interact to determine the final
image in the frame buffer. Figure 6.2 shows an example of drawing a polygon and five

points.

121

GL_POLYGON GL_POINTS

glBegin (GL_POLYGON); glBegin (GL_POINTS);
glVertex2f(0.0, 0.0); glVertex2f(0.0, 0.0);
glVertex2f(0.0, 2.0); glVertex2f(0.0, 2.0);
glVertex2f(2.0, 2.0); glVertex2f(2.0, 2.0);
glVertex2f(3.0, 1.0); glVertex2f(3.0, 1.0);
glVertex2f(2.0, 0.0); glVertex2f(2.0, 0.0);
glEnd(); glEnd();

Figure 6.2: Comparison of drawing a pentagon and five points.

6.2.2 Transformation

6.2.2.1 The Viewing Transformation

Viewing transformation is analogous to positioning and aiming a camera, and it is
specified withgluLookAt() [103, 118]. The arguments for this function indicate where the
camera is placed, where it is aimed, and which direction is up. If the viewing
transformation is not set apparently, the camera has a default position and orientation.
The camera is placed at the origin, points down the negative z-axis, and the up vector is
(0, 1, 0). It is the same meaning as call:

gluLookAt(0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1000);

However, this may fail to specify the viewing transformation. The reason for this is that
the final viewing transformation is not only dependent on the matrix specified by
gluLookAt(), but also the current matrix. It is necessary to set the current matrix to the

identity matrix withglLoadldentity().

6.2.2.2 TheModelling Transformation

The modelling transformation is to position and orient the model rather than the camera.
The modelcan be rotated, translated and scaled. These three operations are i@alized
glRotate*() glTranslate*()and glScale*() respectively [103, 118, 119]. Usually some

combinations of these are used to realize modelling transformation.

122

It is well known that both viewing transformation and modelling transformation are
available to obtain the expected view of the mode. Sometimes it is easier to think about
the effects of transformations one way rather than the other. However, it does not make
sense to separate Heeeffects, and they are combined together to take effect

simultaneously.

6.2.2.3 The Projection Transformation

Specifying the projection transformation is simitarchoosing a lens for a camera. The
purpose of the projection transformation is to define a viewing volume, which determines
how an object is projected onto the screen and defines which objects or portions of
objects are clipped out of the final image. There are two types of projection: perspective
and orthographic [118].

e Perspective projection

One important characteristic of perspective projection is foreshortening. It means that the
farther an object is from the camera, the smaller it appears in the final image. This
method of projection is commonly used for animation, visual simulation, and any other

applications that strive for some degree of realism because it is similar to how a camera

works. @As shown in

Figure 6.3)
. >
c - L
viewpoint ¢
ov
y bottom right &

near

far

Figure 6.3: Perspective viewing volume.

123

e Orthographic projection

With orthographic projection, the viewing volume is a rectangular parallelepiped as
shown in Figure 6.4. The size of the viewing volume does not change from one end to the
other, thus an object would be the same size no matter how far it is from the camera. This
type of projection is used for applications such as creating architectural blueprints and
computer aided design. This is because the actual sizes of objects and angles between

them are crucial and need to be maintained.

top
left

viewpoint «

right

bottom

viewing volume

near

far

Figure 6.4: Orthographic viewing volume.

With no other transformations, the direction of projection is parallel to the z-axis and the
viewpoint faces toward the negative z-axis. In other words, the values of far and near are
used as negative z values if these planes are in front of the viewpoint, and positive

values if they are behind the viewpoint.

6.2.2.4 The Viewport Transformation

The viewport transformation is analogous to choosing the size of the developed
photograph [119]. Therefore, the viewport is the rectangular region of the window where
the final image is drawn. The functigiviewport() is used to specify the viewport:

Void glViewport(GLint x, GLint y, GLsizei width, Gsizei height);

The (x,y) specifies the lower-left corner of the viewport, and width and height are the size

of the viewport rectangle. The aspect ratio of a viewport should be the same as that of

124

viewing volume. Otherwise, the final image will be distorted when mapped to the

viewport.

6.2.3 Colour

On a computer screen, the colour of each pixel is formed by emitting different amounts of
red, green and blue light. In OpenGL, the colour information of each vertex is stored
either in RGBA mode or Colour-index mode [118, 119].

¢ RGBA mode

In RGBA mode, the values of R, G and B are required to be specified. The R, G and B
values can range from 0.0(none) to 1.0(maximum). For example, the set (0.0, 0.0, 1.0)
represents the brightest possible blue. Any types of colour can be composed of

appropriate R, G and B values. Functig@olor*() is used to set a current colour.
e Colour-index mode

Unlike RGBA mode, there is only one single number to specify the colour. This value is
an index which indicates an entry in a table that defines a particular set of R, G and B
values. Such a table is called a colour map. However, colour maps are controlled by the
window system, and there are no OpenGL functions to do this. There would also be a
great deal of variation among the different graphics hardware platforms. Function

glindex*() is used to set a colour index as the current colour index.

6.2.4 Lighting

In the real world, the colour of an object depends on the distribution of photon energies
that arrive and trigger cone cells. Those photons come from a light source or combination
of sources, some of which are absorbed and some of which are reflected by the surface.
OpenGL approximates light and lighting as if light can be broken into red, green and blue
components. The light in a scene comes from several light sources that can be turned on
and off individually. In the OpenGL model, the light source has an effect only when there
are surfaces that absorb and reflect light. An object might emit its own light, scatter some
incoming light in all directions, and reflect some portion of the incoming light in a
preferential direction [103, 118].

125

6.2.5 Other Functions of OpenGL

Except for the aforementioned features, OpenGL has many other advanced features such
as Blending, Antialiasing, Texture mapping, Frame buffer, and so forth [103, 118, 119]
With all these features, it is possible to make the final image appear close to the real
world. In this section, other functions of OpenGL would not be elaborated as they are
barely used in the present display components. It is sufficient to create quality surface

topography images with previous features discussed in the above section.

6.3 Component Interface Design

The aim of data display components is to present surface data on the computer screen.
Similar to the case that one idea can be expressed in different languages, data can be
presengd in different forms such as line chart, pie, histogram, and so forth. Hence, it is
possible to present surface data in different ways which may be used for various purposes
For instance, a dynamic 3D view is more suitable to revealing the surface spatially, while

a top view is better for comparing surfaces intuitively.

Surface data is a set of altitude values with certain ordinates. It is not easy to paint the
surface with these disdaeevalues. Although surface data for displayiagnot processed

any more, there are still some calculations such as coordinate transform, render, lighting,
and so on which need to be executed. Thereforés itot simple to implement a
satisfactory and perfect data display component. However, no matter how complex the
data display component is, the interface needs to be quite simple. Surface data transfer is
the only interaction between the system framework and data display components. All the
system framework needs to do is to send surface data to the data display component, and

there is only one method in the interface. Following is the definition of this interface:

public interface SSDisplayIO:SSObject

{
bool SetData (object pDhata, bool bCopy):;

}

The interface SSDisplaylO is derived from SSObject due to the fact that any data display
components belongs to functional componefi&etDatd is invoked by the system

framework which transfers the processed surface data to the data display component. The

126

first argument is the surface data which would be presented, while the second argument is
used to determine the way in which the surface data is transferred.

In general, the interface of the data display component is simpler than the other two types
of functional components. It is not hard to implement the interface. Instead, developers

can then invest more effort in creating the surface graphics.

6.4 Three-Dimensional Display Component of the developed Surface
Characterisation System
Nowadays, surface areal analysis is becoming more and more significant, and it is widely
used to evaluate surface quality. Accordantly, three-dimensional display is indispensable
for a surface characterisation system as it can present a surface spatially. Users can
develop intuitive knowledge about the surface by reproducing a surface in 3D on the
screen, and the difference between pre and post processirmp @resented naturally
Furthermore, usersan observe more details from different perspective by rotating,
translating and scaling the surface. This section details the implementation of the 3D
display component with OpenGL technology.

6.4.1 Coordinate System

A surface is a three dimensional geometry, ang fpresented ora computer screen
which is absolutelya 2D coordinate system. The transform is achieved by creating the 3D
Geometry pipeline, a collection of processes that convert 3D points from thoseethat ar

most convenient for system developers into those that are most convenient for the display
2D Screen
Coordinates

Figure 6.5: The geometry pipeline that achieves the coordinate transformation.

devices [114]. The pipeline is showed in Figure 6.5.

3D Model
Coordinates T T

Modeling Viewing Clipping &
Transformation Transformation Projection

3D World
Coordinates

3D Eye
Coordinates

2D Eye
Coordinates

T

Mapping

OpenGL has already realized this pipeline. Developers do not need to carry out the
calculation themselves. Instead, thegn use the functions introduced in Section 6.2 to

complete these processes step by step. Thus the coordinate transforms become much

127

easier for developers, and they need only concern themselves with how to build up the
surface model in 3D model coordinates. OpenGL uses a Right-Handed coordinate system

by default as shown in Figure 6.6.

+Y

b

X Origin (0,0,0) ,x

+Z

Figure 6.6: Default 3D model coordinate system of OpenGL.

6.4.2 Modelling

A surface is a physically continuous face with an infinite numbers of points. After the
measurement, the number of points is reduced to a finite discrete @aliyea limited
number of points are captured, and their height values are recorded in a surface file.
Modelling a surface is to build up the surface prototype based on these values which are

regarded as surface data.

Surface data is grid data with height values. It is not difficult to convert each height value
to 3D points as the height value is related to a 2D coordinate which indicates the position
where the height value is captured. The most critical issue is how to connect these points
to form a complete surface. In this section, surface is divided into many triangles
according to the position coordinates as shown in Figure 6.7. Hence, the sariéee
created as long as each sntadingle is filled with gradient colag[120].

128

Surface X-Y Plane

Triangle

Figure 6.7: 3D modelling of surface data.

The above method of modelling is to build up the surface as natamibpssible
However, the requirement of the display may sometimes be different. For example, users
may want to see the mesh view or point view. It is then necessary to model the surface in
a different way. Certainly, developetan also create a new data display component to

meet the new requirement.

6.4.3 Render

The colour is a significant property of each vertex in OpenGL. Speci&oudpur value

for a 3D point thais converted fromts height value is necessary. Otherwise, all the
points are plotted with the same colour, and the surface could not be viewed as expected.
To make the 3D objects stereoscopic, the colour of a point is normally determined by its
height information. Points with the same height value are plotted with the same colour. It
is very convenient for understanding function for the surface data to be a collection of
height values.

For surface analysis, it is insufficient to define the actual colour for a point based on
height information. This transform could be readisby establishing a mapping
relationship between the height and the colour. On the one hand, it is hard to define a
unique range that is suitable for any surface data as the range of height values is
indeterminate. Therefore, height values are required to be unitized first, and then the unit
height value could be used for colour mapping. Also, one colour consisting of R, G and B
values needs to be mapped with a numerical value. The best way is to set up a colour map

which records all potential colour values. The more colour values used, the better colour

129

effects are produced. In addition, the colour values efctiiour map should change
gradually to make the 3D object looks smooth. At present, there are many colour maps
designed for different colour effects [121]. Grey, Jet, cool, hot and Green are

implemented in the presently developed 3D data display component, andamsszkect

Hot

Green

any one of them to render the surface.
Jet

Figure 6.8: Supported colour maps for surface render.

Gray Cool

As shown in Figure 6.8, they have different colour components in the colour map.
e Grey is a liner greyscale colour map;

e Jetranges from blue to red, and passes through the colours cyan, yellow, and

orange.
e Cool consists of colours that are shades of cyan and magenta;

e Hot varies smoothly from black through shades of red, orange, and yellow, to

white;
e Green varies smoothly from black though shades of green to white.

6.4.4 Lightingand Object Materials

In OpenGL, the object material can be simulatedappreciate light and materials

variations. As discussed in section 6.2, it is possible to make the surface more vivid as a

130

real surface by setting its materials properties when the lighting is enabled. In this data
display component, many materials are available such as brass, ruby, jade, pearl and so
forth [122]. As an example, the properties of brass are listed in Table 6.1.

Table 6.1: Property values for the brass material.

Property Name Value
GL_AMBIENT (0.0215f,0.1745f,0.0215f,1.0f)
GL_DIFFUSE (0.07568f,0.61424f,0.07568f,1.0f)
GL_SPECULAR (0.633f,0.727811f,0.633f,1.0f)
GL_SHININESS 0.6f

As long as the material properties of an object are specified, the surface looks like it is
made from that kind of material. Figure 6.9 shows an example of surface data with brass

as a material selected.

nm

868.13
0

800
750
700
650
— 600
— 550
— 500
— 450
— 400
350
300
250
200
150
100

0.00

Figure 6.9: An example of materials rending—Brass.

6.4.5 Interface | mplementation

As a data display component, the 3D display component has to be derived from the
interface SSDisplaylO Thus, it is required to implement two interfac88Objectand

131

SSDisplaylO All the virtual methods defined in these two interfaces ought to be
overriden:

e Derived fromSSObject

There are two methods BSObject OnRegister()and UnRegiste(). The OnRegistef)

method only needs to add the component information to system component list:

SSCommon .AddAssembly ("3DDisplay", "DataDisplay.DataDisplay3D",
System.Reflection.Assembly.GetExecutingAssembly () .Location,
SSAssemblyType .DATADISPLAY) ;

On the contrary, it is necessary to remove the component informationreyister()

correspondingly.

SSCommon.RemoveAssembly ("3DDisplay", SSAssemblyType.DATADISPLAY) ; ‘

e Derived fromSSDisplaylO

As outlined, the interfac8SDisplaylOis quite simple, and it only has one virtual method
that needs to be implemented. There is not too much work in implementing the function
SetData() It only needs to confirm the data passed in is real 3D data and then transfer it
to the actual painting control. All the real drawing and calculating codes are not presented
here due to their enormous size.

6.5 Summary

This chapter places emphasis on the design and implementation of data display
components. It firstly gives a brief introductioto computer graphics and its
programming technique OpenGL. Then the interface of the data display components is
defined. Finally, the 3D display component is selected as a case study to illustrate the

implementation of data display components with OpenGL technology.

132

Chapter 7 Test and Evaluation of the Proposed Surface
Characterisation System

7.1 Introduction

System test and evaluation is ess#msthe process of validating and verifying whether

the software system works as expected and meets the intended requirements. This process
comprises a significant activity within the life cycle of a software system. According to
differences of test objectives, the test of a systanbe classified to many types such as

unit tests, integration tests, system tests and acceptance tests [105, 123]. Different system
development models will focus the test effort at different points in the development
process. Generally they occur after the requirements have been defined and the coding
process has been completed. This chapter will discuss the test of the new surface
characterisation system and the evaluation of the system by comparing it with other
systems. Testing the whole system involved many tests, for the sake of brevity a selection
of case study tests are presented here.

7.2 Unit Tests

Unit tests usually refer to tests that verify the functionality of a specific section of code.
In an object-oriented environment, it is usually at the class level. It means that this type of
test happens whenever any tiny section of code is completed, and there is no need to
elaborate them [124]. In this section, the unit test refers to the test at component level.

All the system functions related surface analysis are implemented as an independent
functional component, areachfunctional component is a standalone unit. Since they are
developed individually, it is necessary to test them before adding them into the system
framework. However, functional components cannot be executed in the operating system
environment directly even if they are executable. They need a container in which all the
functions can be invoked. There are many ways to simulate such a container. One
possible way is to write the test code for each component respectively. The drawback of
this method is that too much extra code has to be written, and this code would be useless
when the test is completed. The simplest way is to add functional components to the

system framework which could invoke their methods and modify their properties. The

133

prerequisite of using the method is the test can only be completed when the system
framework is completed. In addition, Microsoft provides a tool AXCTC which is able to
test ActiveX controls by changing their properties, invoking their methods, and firing

their events [125]. Most of the data display components are tested with this tool.

7.21 Test Case l: SDF File Component

Data access components are designed to access surface data files, and there are two main
requirements for them: read and save surface data. Thisakestxamines whether the

SDF file component works as expedtnamely, reading the SDF file to import surface

data and saving a surface data to a file. The test is completed with the assistances of both
the system framework and the 3D display component. To make the system framework be

aware of SDF file component, it should be added in before the test.

1. OpenaSDF file to check whether the surface data could be displayed.

SurfStand2010

File ¥iew Tools ‘Window Help Dataview
D@ FREAE]
_DemosSkint:1-1 | ~ x | Operstions v & X
% =l Demoskint..sdf(1)
display(1-1)

3D Surface

Aczimuth: 135 3(dleg); Elevation: 56.0(deg)
¥Scale: 1.00; YScale: 1.00; ZScale: 1.00 Teylor Hobson || ¢ 5

Figure7.1: A SDF file opened with the SDF file component.
Actually, the surface data could be displayed correctly no matter which SDF file is
opened. Figure 7.1 shows the output result when opening an SDF file.

2. Save current surface data to a SDF file, and opened the saved file to check
whether the surface data is displayed as the same as the original one. Figure 7.2

show the test result.

134

SurfStand2010 Q@@

File View Tools Window Help Dataview
Oz #xa8|R=

Demoskinl:1-1 ' DemoSkinicopy:2-1 |

v X | [Operations w53
= DemoSkin1,sdf(1)
display(1-1)

3D Surface = Demoskinicopy.sdf(
display(2-1)

Azimuth: 45 0(deg), Elevation: 70.0(deg)
XScale: 1.00; YScale: 1.00; ZScale: 1.00 Teptor Hobson||@ .

Figure 7.2 The surface data that is saved with the SDF file component.

3. Repeat the test step 1 and 2 on other SDF files to check whether every surface

data could be displayed correctly.

During the test process, there is an evidence of problems. Hence, the SDF file

component is supposed to be correct, and it can be used to access SDF data files.

7.2.2 Test Case2: 3D display component

Unlike other functional components, the 3D display component is an ActiveX control
which could be tested with AXCTC. This case is designed to test whether the surface data
could be presented by the component correctly, and all requirements of the 3D display
component are satisfied. For example, the displayed surface should be presented correctly

and rendered with corresponding colours.

1. Load the 3D display component to AXCTC, and then invoke s®ata()
function which accepts a file path as the input argument. Note that it is an

override function which is different from the one introduced in Chapter 6

135

i Untitled - ActiveX Control Test Container g@@

File Edit Container Control Yiew Options Tools Help

Dl st of D s 112 Run Macio v

3D Surface

Azimuth 47 7(deq; Elevation: 75 7(deg)
¥Scale: 1.00; YSeale: 1.00; ZSeale: 1.00 Taylor Hobson

LActive Windowed HUM

Figure 7.3: 3D display component loaded with ActiveX Control Test Container.

As shown in Figure 7.3, the surface data is correctly displayed on the 3D display control

with the default component properties.

ISES

m

0 bl -3 Fiun Maci:| -
- THGraphics3D Control Properties @
SR
B Sile | Setting | Light Source | Fonts | Extended |
EF Graphics Types Display Propeties
L 3D Surface ¥ Frame Sampling i
08 (" 3D Mesht W s Contaur 3
3D Mash? ¥ RHCS Operation [Rotate ~|
s
o
chbeans K Leder) Colot Scheme: [0:Jet ~
04 30 Flot W S
Black Calour = ~
02 £ el [Inwersion |
20 Mesh I Perspective TR ﬁ j'
L_0.00
© Cortour ¥ Hidden Border Stie: 1-Single v
Azimuth: 45 O(deg); Elevation: 70.0(deg) v
¥Scale: 1.00, YScale: 1.00, ZScale: 1.00 Taylor Habson £l Lol sory | Hee |
For Help, press Fi UlActive Windawed UM

Figure 7.4: Surface data display with 3D mesh representation type.

136

2. Open the properties dialog, and then change the properties to check whether the
surface data is still presented as expected. As there are many properties of the 3D

display component, only three of them are selected as examples.

1) Change the graphics type from 3D surface to 3D mesh, the result is showed in

Figure 7.4.

2) Change the colour map from Jet which is used by default to hot as shown in

Figure 7.5.

= e
Dl s BREE s BR0F|i2 Run Macia: -

3D Surface

THGraphics3D Control Properties

14 Style | Setting | Light Source | Fonts | Extended
i Graphics Types Display Praperties
) & B0 Sliace W Frame Sampling 4
55 3D Mesh W duis Contour i
30 Mesh2 ¥ RHCS Operation Rotate _+
08 o
£ lblenhs K Legzad Cobw Scheme: [3Hot =
04 3D Flot ¥ State
Back Colour /= -
02 ™ Topiew I lwversion =
i © 2D Mesh ™ Perspective e [=
© Contour ¥ Hidden BrrdelGhle: 1-Single_v|
Azimuth; 45Dy, Elevation: 70.0(deg) &
XSoale: 100, ‘¥3sale: 1.00: 7Scale: 100 ok Cancel Apply ‘ Help J

Taylor Hobsan

For Help, press FL UlActive Windowed nUM

Figure 7.5: Surface data rendered with hot colour map.

3) Change the object material from colour scheme to yellow rubber as shown in

Figure 7.6

137

- [o]x]|

DEd sBie o6& BDF| 2 o |
r= 4
‘3D Surface
.
'1':1 Style | Setting Light Source \Funts | Extended |
[1 2 Light Sowce Light Model-
= Ambient — I~ TwoSides

I Local Viewer

I Global Ambient

04
05 Object Materiak
0.00 [¥ Enabls Lighting

'y
Azimuth: 45 D(des); Elevation: 70.0deg) o |
¥3cale: 1.00; Y3cale: 1.00; Z5cale: 1.00 Taylor Hobson 2 Coet) Apoly Hep

For Help, press F1 LActive windowed UM

Figure 7.6: Surface data display with yellow rubber material.

The display results are the same as expected after changing properties of the 3D display

component. Therefore, it could be thought as a qualified data display component.

7.3 Integration Tests

Integration tests work to expose defects in the interfaces and interaction between
integrated components. During the unit test process, only the component functions are
tested to check if they work as expgttHowever, it is necessary to test their interfaces

in order to ensure that they are connected together and work correctly. The purpose of
integration testing is to detect any inconsistencies between the software units that are
integrated together [105, 123]. In the surface characterization system, all functional
components are developed independently, thus they all need to be tested as to whether
theycanexecute successfully after being added to the system framework. In other words,
integration testing aims to test whether the component is compatible with the system

framework.

Integration is essential for every functional component before it could be released for use.
Three examples are selected to demonstrate the integration test for each type of

functional components.

138

7.3.1 Test Case 1. SUR File Component
This test case is designed to check whether the SUR file component could be added and
removed to the system successfully, and then SUR data files could be accessed by system

or not.

1. Add the SUR file component to the system framework with the components
configuration dialog as shown in Figure 7.7. The listbox on this dialog lists out all

functional components which have already beeredtithe system framework.

Components Configuration ﬁ
M arme: Path S
FileSdf.dll [O:Mizual Studio 200845 urfStand projectSurfStanc

Dratalizplay2D . dil [r:Mizual Studio 200845 urfStand projectsSurfStanc
FobustPolpnomial. dl - D:YWisual Studio 2008485 ufStand projectsSurfStanc
Lewelling3D.dll Dr:Mizual Studio 2008%5urfStand projectsSurfStanc
Autocorrelation. dil [%izual Studio 200855 urfStand projectSurfStanc
DataDizplap00M . D:WWisual Studio 200885 urfStand projectsS urfStanc
ParametersCalcula.. D:WWisual Studio 200885 urfStand projectsS urfStanc
GeneralPolpnomial.... DoWWisual Studio 200845 urfStand pru|ect‘\5 urfStanc

ual Studio 200855 urfStand projectSurkStan:
BearingCurve.dl [r:%izual Studio 200845 urfStand projectSurfStanc
FeatureParameters... D:%Wisual Studio 2008M\5urfStand projectsS urfStanc
GauszianFegressi.. D:WWisual Studio 2008M5 urfStand projectsS urfStanc i

£ | ¥

Figure 7.7: Components Configuration dialog.

Flle. Vew Tools Window Help DataView

D@ =H2EHHEH

Laok in: | 1 bin

ty Recent
Documents

Q File pame: | Vl L Open]

MyMetwok Flesoftpe: | SUR Files [5UR) [cancel |

Figure 7.8: Open file dialog with supporting SDF and SUR file formats.

139

After adding the BR File component ‘filesur.dll’, the SUR file becomes a support file
format whichcanbe found in the open file dialog, as shown in Figure 7.8.

2. Opena SUR file and then save it to check whether the function could be invoked
successfully. As shown in Figure 7.9 the SUR file could be read and the surface

data was display correctly.

(8 SurfStand2010

| Fle Vew Tods Window Help Dakabien
D@ FROHHE
HipHeaddemo:1-1 - X
display(1-1)
3D Surface
nm
8EF13
800
750
700
650
600
—550
—500
—450
—400
350
300
250
200
150
100
50
0.00
Azimuth: 43 3(deg); Elevation: 70.0(deg)
KScale: 1.00; YScale: 1.00; ZScale: 1.00 Taylor Hobson || 4| m | 8|

My Recent
Documents

File name: |

My Mebwark Files of bipe: |AII Suppart Files [*.5DF;)

SDF Files [.5DF)
All Support Files [5DE]

Figure 7.10: Open file dialog without supporting SUR file format.

140

3. Remove the SUR file component from the system framework to check whether
the SUR file format is still supported by the system. As shown in Figure 7.10

there is no SUR file format in the open file dialog any more.

7.3.2 Test Case2: Levelling Component
Similar to the test of the file access component, the aim of testing data process
components is to check whether they could be added and removed successfully and work

as expedd

1. Add the levelling component with the Component configuration dialog. Then the
new menu item ‘Levelling’ states the component is added successfully (See
Figure 7.11). Similarly, this menu item will disappear when removing the

levelling component.

E®] surfStand2010

File

wiew | Tools | Window Help Dataview
i 0 &

Show Document It Icon

Schema: ¥S2005
Schema: YS2003

oooooo I Style: Docking MDI
Documen I Style: Docking SDI
Documen I Style: Docking Window

nnnnnn I Style: System MDI

Load Assemblies. ..
Assembly Setting
System Setting

Create Composite Command
‘ Fitting
; Fitering

Figure 7.11: The emerging levelling menu item after adding the levelling component.

2. Open surface file, and execute the levelling function by clicking the menu item
‘levelling’. Figure 7.1 is the original surface data. After levelling, the analysis

result is display in a new 3D display component as shown in Figure 7.12.

141

8 SurfStand2010

Ele Wiew Tools Window Help DataView
iNw| WwREA|IFEH y
" Demoskini:1-1 " DemoSkin1:1'2-1 - X &
display(1-1)
3D Surface 12 Leveling3D(1'2)
display(1'2-1
um
48654
450
420
390
350
_330
_300
_270
_240
_210
__180
150
120
%0
60
0
000
Azimuth: 45 0(cleq); Elevation: 70.0(deg)
XScale: 1.00; YScale: 1.00; ZScale: 1.00 Tayior Hobson || 5

Figure 7.12: The surface data that has been processed with levelling component.

7.3.3 Test case 3: Topview component

SurfStand2010

Ele Mew Tools Window Help Dataview
D | @REH|FE
DemoSkintil-1 | Demoskiniil'z-t int:1'2-2 -x X
(.
layt1-1)
X Profile Jling3D(1'2)
display(1'2-1
v Wiew:2DDisp]
E
3
E
2
H Y
\
-1
‘12
Sieg
0 030808 121814 212427 3 130638 424548 51846
Length (mm) Taylor Hobson
Y Profile
A 4
|
= /
E
3
E 3
s
ki
£
-1
B
“ieg
0 030808 1218 14 212427 3 139638 42 45 48 518483
Length (mm) Taylor Hobson
< >

Figure 7.13: The surface data that is displayed with Topview Component.

The Topview component is to present a surface in a different way, and it can also display
the profiles of the surface data. Since there is no obvious changes on the user interface
after adding or removing a display component, an extra data process component ‘View in

2D’ is used to test the Topview component. After adding both of them, there is a menu
item “View in 2D” occurs in the menu. Whether the Topview component works or not
could be checked by clicking this menu item. Figure 7.13 presents the display result by
invoking Topview component.

142

7.4 System Tests

System tests are performed on the whole system, and they serves to evaluate the system's
compliance with its specified requirements [105]. The prerequisite for system tissting

that all components should pass the unit test and integration test successfully. In this
section, the primary work is to check whether the system could be configured
dynamically and used to characterise a surface conforming to GPS standards.t&imilar
integration tests, two test cases are selected to demonstrate the system tests of the surface

characterisation system.

7.4.1 Test Case 1l Components Configuration
All functional components are expected to have the ability to be added and removed
dynamically. This case is designed to check whether system could load and remove a

functional component even when the system is running.

1. Start the system, and then open a surface file. The surface data should be

successfully displayed, as shown in Figure 7.1.

2. Open the 'components configuration' dialog. Reconfigure system functions by
adding or removing functional components. For simplicity, ‘®earing curving
analysi$ function is added to test whether the system function configuration is

Success.

3. Invoke the bearing curve analysis function by clicking the new menu item

‘Bearing curvé The analysis result is displayed as in Figure 7.14.

4. Open the ‘component configuration’ dialog again, and then remove the functional
component. The system is still running and does not crash. The analysis result of

bearing curve is displayed the same as before the removal process.

143

SurfStand2010
Fle Wiew Tools ‘Window Help Dataview
0| 2B & IFE
DemoSkintii-1 " DemoSkini:1-2 - 3 | Operations. > 3 X
= Demoskinl sdf(1)
display(1-1)
BearingCurvei1-2)

Bearing Curve
73200

HE5 74
600 } oo

Height (um)

wizes

0 & 1016 20 25 30 36 40 46 60 55 60 65 70 75 &0 85 90 05 10
Percentage (%) Taylor Hhbson

Figure 7.14: The surface data that is processed with Bearing curve analysis component.

In this case, the new functional component bearing curve amaysuccessfully added
and removed dynamically. The more important thing is that this configuration would not
affect the execution of the system.

742 Test Case2: Compound Command Test

Surface characterisation ought to be realised with a surface verification operator which is
composedf a series of operations. As discussed in Chapter 5, a compound command
consisting of a number of commands is beneficial to the realisation of the surface
verification operator. This case aims to test whether the compound conuaare

created and works as expected. For instance, a compound command which is composed

of levelling and Gaussian Regression filtering will be demonstrated.

1. Open the‘command settingdialog and add a new compound commanest
command. Select ‘New View to display the analysis result for this new

command as shown in Figure 7.15.

144

Composite Command Wizard Z E| [')__<|

Welzome to Compozgite Command Wizard!

Caommand M ame: |Test Carmmand |
e Wigw
Display Type | 3DDisplay v|

[M ext][]9][Eancel]

Figure 7.15: Compound command creating dialog.

Add the levelling, Gaussian Regression filtering to subcommand list box as
shown in Figure 7.16. After clicking th&OK’ button, the new command is

created as shown in Figure 7.17. Meanwhile, a new menu item is also created for
‘Test command

Composite Command Wizard |Z| |E| [5__<|

RobustPolynomial LevelingaD
LevelingaD 3 auszianB earession
Autocornelation

[2eneralPalynomial

[3 auzzianB earezsion

[]9][Eancel]

Figure 7.16: Subcommands modification of Test command.

145

Command_5etting

R obuztPaolynarmial
LevelingaD Cormatd M ame
Autocomelation
FarameterzCalculation
GeneralPolynomial
BearngCurve
FeatureParameters L] Mew view

[3auzsianB eqression '
i d Wiew Type

2zt Command
LevelingaD
G auszianB earession

&dd

Test Command

Mone

Figure 7.17: Test command occursin the Command setting dialog.

3. Open a surface file as shown in Figure, add then check whether all arguments
of each sub command are appropriate for the surface. Arguoeerite modified

by clicking the“Edit Argument¥ button when the command is selected. Figure

7.18 shows the arguments dialog of Gaussian Regression filter.

ParameterSetting

Surface Components

(#) High Frequency

) Low Frequency

Cutoff Length
Directiaon T
Y Direction | 0.8 w [mm

(] Show zetting farm

EOX

Figure 7.18: Parameters setting dialog of Gaussian regression filter.

146

4. Execute the compound commandheFesult is displayed in Figure 7.19 andain
be used for parameters calculation directly. All the actions applied to the surface

are lisedin the right window. It isan action list which is convenient for users to

change the parameter setting of each step.

fle Yew Joos Window Help Datavew userDefine
i) & SREHNE
- Domoskni:i-1 - DemoSkint:i'2-1 | Demosiniiiz:2 v X Operstions. v 2 X

3D Surface diplay(12:1)

= DemoSkin1.sdf(1)
B display(1-1)

® = Test command(1'2)

« display(1'2-1)
ParametersCalculation(1'2-2)

Aiuthy 45 D(deg), Blevation: 70.D(deg)
XScak 1.00; YScak: 1 00, ZScale: 100

Figure 7.19: The surface data that is processed with Test command.

In a word, the surface operator is successful supported in the new surface characterisation
system. Users could create any compound command as desired, and then apply them on
different surfaces. Meanwhile, the action list is helpful to trace the actions that apply to

the surface data.

7.5 Comparison

At present, there are many surface characterisation systems developed by different
organisations. This section will give a brief comparison between the new surface
characterisation system Surfstand and other systems. One sySiynsap” which is a
powerful surface characterisation system, and it is distributed on most of surface
instruments produced by Taylor Hobson [8, 126]. The second is the online
characterisation system developed by NIST [10, 127-129]. The last o &PiF™”

which is provided by Image Metrology [77].

As shown in Table 7.1, Surfstand is superior to the other two systems in maintainability,

extensibility and reusability. It also supports hot swap which means functional

147

components could be exchanged when the system runs. The advantage of the NIST
online system is that it is compatible to a@ system as it is an internet application.
Both Surfstand and Talymap could be extended by end users. However, Surfstand is
much easier than Talymap. Instead of implementing some interfaces, the requirement
would be to adé& menu and write a script to add a new function for Talymap. Although
SPIPM has good expansibility, ISO standards are not fully supported. In the meanwhile,

the reusability of its functions is not so good.

Table 7.1: Comparison between Surfstand and other systems.

SurfStand Talymap NIST online System | SPIP
Application Type Desktop Desktop Web Desktop
Standards Support Yes Yes Yes No
Hot swap Yes No No Yes
Plug and play Yes No No Yes
Verification Operator Yes Yes No No
Compatibility Windows Windows | Window, Linux, Mac OS| Windows
Function reusability Good Mediocre Poor Poor
System extendibility Good Mediocre Poor Good
System Maintain Easy Medium Difficult Medium
User Customise Absolutely Partially No Partially

7.6 Summary

This chapter provides detailed discussions on the test and evaluation carried out on the
flexible surface characterisation system. To ensure the system works as expected, a series
of test cases are given in order to highlight the system functions from different
perspectives. After these testing, it is ensured that the proposed characterisation system
can run normally as designed. All system functional components can be added, removed
or replaced dynamically, and all bugs found during the test process have already been
fixed. Users can customise their own functional components according the predefined
interfaces. Moreover, they can also define their own verification operators by combing

relevant operations.

The final comparison section shows that the system has the distinctive capability of

dynamic reconfiguration. The proposed characterisation system supports the standard

148

surface verification operator and each operation is strictly accordance with GPS standards.
In addition, as all functional components work iffpdug and play way, the system is

very easy to be extended and maintained. Meanwhile, functional components themselves
are apt to be reused in other systems because they are developed as COM objects which
are executable and language-neutral. With the flexible architecture, the functions of the
system are no longer determined at the development stage, instead they can be

reconfigured by users after the system is deployed.

149

Chapter 8 Conclusions and Future Work

In this thesis, a novel flexible software system SurfStand was designed and implemented
for the purpose of characterising surface metrology. The fundamental philosophy behind
developing this system in the manner described is construction rather than creation. All
system functions related with surface analysis processing are separated from the system
framework and developed individually as functional components. The system is
established by assembling these independent components off-the-shelf. Consequently the
philosophical approach facilitates expansion, customisation and user led development.
This is a unique feature for such metrology systems. This chapter summarises the
outcomes and highlights the contribution to knowledge in the relevant research domains.

In addition, future work related to this system is also discussed.

8.1 Summary

Surface metrology as a discipline is undergoing rapid development. More and more
analysis and evaluation methods are used to quantify surface features, and additional
parameters are used to indicate these characteristics. Therefore, surface characterisation
system should ideally be constantly updated to support new characterisation technologies.
In reality however, most of the present surface characterisation systems are hard to
maintain and be extended due to their poor extendibility, reusability and maintainability.
This thesis is devoted to developing an architecture which could facilitate the system
maintenance and evolution, and then establish a novel surface characterisation system

The work of this thesis comprises:

1) Investigation of surface characterisation techniques for surface metrology; It is
necessary to have an excellent knowledge of how to characterise a surface with
relevant techniques before implementing them watlcertain programming
language. Chapter 2 gives a brief introduction concerning conventional surface

characterisation techniques.

2) Design of flexible system architecture; Normally system architecture is closely
related with system functions, and it becomes more and more complex due to the

increasing the scope of the system functions. As discussed in section 3.3, the

150

3)

4)

5)

6)

flexible system architecture is designed by separating system functions from the
system framework. All functional components are invoked dynamically piug

and play manner.

Categorisation of functional components; There are three types of functional
components classified according to their roles in the surface analysis process as

shown in Figure 8.1.

Data Access
Components

Type A: One Data In; One Data Out>

Data Process
Components

Functional

Components Type B: Two Data In; One Data Out>

Type C: One Data In; One Control O@

Data Display
Components

Figure 8.1: Categorisation of system functional components.

Design and implementation of three types of functional components; Data access
components, data process components and data display components are
elaborated in Chapter, €Chapter 5 and Chapter 6 respectively. For the reason of
brevity only one case of each type introduced. Figure 8.2 illustrates all

functional components that have been implemented.

Establishment of the user customisation mechanism; Users are able to develop
their own functional components as long as associated interfaces are implemented.
All functional components are developed in this way, and the developer of each

functional component does not have to know the system architecture itself.

Accomplishment of system tests. As discussed in Chapter 7, SurfStand is verified

to work as expected and all functional requirements are satisfied.

151

Data Access
Components

<System Functional Components>

Data Process
Components

Data Display
Components

3D Display

Profile Display

Zoom Display

Cylindrical Display

Robust Wavelet

Material Analysis

Fitting Filtration Parameters Bearing | | Correlation : .
Manipulation
SDF file
SUR file
MAP file Areal Autocorrelation
Opd file 3D ISO/TR Function(AACF)
Parameters Areal Power Spectral
Feature DenS|ty(AESD)
Levelling Parameters PSD Radial &
General Polynomial DIN Angular .
. Parameters Cross-Correlation
Robust Polynomial
Clipping
Gaussian Regression - - Erasing Defects
- Bearing Curve Analysis
Robust Gaussian — - InversFFT
Lubrication Analysis -
Wavelet Rotation

Spline

Sk Family Analysis

Sub-Form Remove

Morphological

Symmetries

Thresholding

Figure 8.2: Completed system functional components.

8.2 Contribution to Knowledge

This thesis proposes a new approach to building a surface characterisation system, which

addresses issues relating to the standardisation analysis, functions modularisation and

system flexibility. The contributions of this thesis are listed as follows:

8.2.1 Standardisation Analysis

Surface characterisation systems are mostly deployed in measurement instruments, and
they are developed by different organisatioits.is convenient and effective for
metrologists to carry out the characterisation and evaluation process after the
measurement. However, there are large variations in analysis results among different
characterisation systems, caused by diverse implementations, choices of analysis methods

and ambiguous definitions. The analysis results are always incomparable and untraceable.

152

To reduce the variations of analysis results, the standardisation analysis psocess

supported in the new characterisation system SurfStand.

1)

2)

8.2.2

The implementations of surface verification operations are in strict accordance
with GPS standards. ISO issued a series of characterisation standards which aim
to standardise the characterisation methods. For example, 1SO4287 specifies
terms, definitions and parameters for the determination of surface texture by
profiling methods, while 1ISO 25178-2 specifies them by areal methods. All of

these are implemented in the present work.

Surface verification operators are supported. According to ISO 17450-1, the
process of surface characterisation should be completed with a surface operator
which consists of a series of operations. Although most of the present surface
characterisation systems have realised plenty of surface operations, only a few of
them support surface analysis with verification operators. In most cases, the actual
surface operators are normally created by the metrologists along with the analysis
process, and they are greatly influenced by subjective factors. Thus, it is very hard
to ensure that the surface operators are absolutely the same even if they are
created by the same metrologist. The uncertainty of surface operators may lead t
huge variations of analysis results. Conversely, once surface operators are
supported, they could be defined ahead and used as a whole. Different analysis
results will not be realised as long as the same operator applied. Furthermore,
Surfstand defines several surface operators according to the GPS standards, and

they are used for standard parameters analysis.

Function Modularisation

Functions are certainly the most important properties of a software system, and they are

realised to satisfy various system requirements. Generally the complexity of software

systems is determined by the degree of coupling between the systems and their functions

Function modularisation is an effective way to achieve loose coupling which is beneficial

to simplification of the system architecture. The implementation of function

modularisation should be done according to the requirements and characteristics of the

system. In SurfStand, there are two critical design issues for function modularisation.

153

1) Determine the size of futional modules.

This point is closely related to the design of system architecture. The more functional
modules are defined, the more complex the system structure is. However, it does not
mean that the size of functional modules should be defined as large as possible, because
the complexity of functional modules will increase along with its size. Determining the
appropriate granularity is significant to keep the balance of the complexity between
functional modules and the system. In practice, the granularity of functional modules is
determined according to surface operations whilst considering the standardisation
analysis. In the present case every surface operation is defined as a single functional

module and implemented as a functional component.
2) Categorisation of system functions.

This point is the foundation of system functions reconfiguration. Functional components
are anticipated as being added or removed from the system framework dynamically.
However, the system framework cannot treat functional components with different
properties and purposes in the same way. Moreover, for the sake of system flexibility,
writing relevant codes foeachfunctional component individually is unfeasible. Hence,
categorisation is necessary to enable the consistency of invocation. As discussed in
section 3.5, all system functional components related to surface characterisation are
categorised into three types: Data access components, Data process components and Data

display components.

8.2.3 System Flexibility

Although most of present surface characterisation systems are adequate for various
surface analyses, the rigidity and lack of flexibility of the system architecture make it
difficult to maintain and evolve them to new analytical demands. Nowadays, as rdore an
more technologies are employed to evaluate the quality of surfaces, surface
characterisation systems should have the ability to be upgraded constantly. Therefore,
this thesis proposes a flexible architecture for the surface characterisation system as

discussed in section 3.3. Its advantages are concluded as below:

1) Reduction in development time and cost. The component, as an independent

module, is designed and implemented separately. The loosely coupled

154

2)

3)

relationship between the components and framework allows parallel development.
Thus, the system development cyateshortened. In addition, many system
functions can be implemented by reusing legacy codes, and they are able to be

reused by other systems directly.

Reduction in maintenance costs functional components are encapsulated as a
whole, theycan be adeéd or removed without affecting the system architecture.
Hence, the complexity of system architectisraot changed no matter how many
functional components have been configured. Meanwhile, the modification
happens in one functional component will not lead to the recompilation and
redeployment of other parts of the system.

Enhanced extendibility and diversity. Instead of being combined together at the
beginning, functional components are connected with the system framework
dynamically. This means that the component could work ipla and play’
manner. Userganreconfigure system functions as they expect. Moreover, they
are able to customise their own functional components to satisfy certain

individualised functional requirements.

8.3 FutureWork

The new flexible surface characterisation system has already been realised. With the

implementation of a number of functional components, SurfStand is able to complete

general surface characterisation. To improve the performance and enhance the

practicability, some future work to SurfStaisdsuggested below:

1)

2)

Evaluation of User interface; User interface is the space where interaction
between users and the system occurs. A good user interface usually makes it easy,
efficient and enjoyable to operate the system. During the development process of
SurfStand, user interface was not the subjecamuch developmenas the

system functions. There are still a lot of improvements which could be completed
for user interface such as layout optimisation, input convenience and output

multiplicity.

Expansion of surface data source; At present, surface data file is regarded as the

unique data source of SurfStand. To expand the usable range, it is necessary to

155

3)

4)

increase the data source. For example, surface measurement instruments are the
potential data sources as most of surface data stored in data files are captured
from them. Therefore, new types of data access components are required to be

defined to support fresh data sources.

Development of new functional components; Although many functional
components have been developed, new functional components are always in
demand as more and more characterisation techniques are developed to satisfy
various analysis requirements. Specific functional requirement such as that
concerned with ballistics metrology could be added and other function
components removed to facilitate for example a dedicated ballistics metrology
system thus illustrating the customisation capability of the overall approach

adopted.

Investigation and development based on new surface operators. SurfStand has
already defined a few standard surface verification operators which aim to

calculate parameters defined in GPS standards. They are more suitable for
stochastic surface characterisation, and new surface operators are required for
other types of surface such as structure surface. Meanwhile, creating more surface

operators would facilitate standard surface characterisation.

156

10.

11.

12.

13.

14.

15.

16.

17.

18.

References

Blunt, L., & Jiang, X. (2003)Advanced techniques for assessment surface topbgrap
Oxford: Butterworth-Heinemann.

Humienny, Z., Bialas, S., Osanna, P. H., Tamre, M., Weckenmann, A., Blunt, L., et al.
(2001).Geometrical Product Specification: Course for TechhUniversities Warsaw:
Warsaw Univ. of Technology Printing House.

Whitehouse, D. J. (1978Jurfaces— A link between manufacture and functidaper
presented at the Proceedings of the Institution of Mechanical Engineers.

Jiang, X., Scott, P. J., Whitehouse, D. J., & Blunt, L. (2007). Paradigm shifts in surface
metrology. Part I. Historical philosophproceedings of the Royal Society A:
Mathematical, Physical and Engineering Science(2@&35), 2049-2070.

Jiang, X., & Whitehouse, D. J. (2012). Technological shifts in surface metr@a¢gkp.
Annals-Manufacturing Technology, €, 815-836.

Conroy, M., & Armstrong, J. (2005\ comparison of surface metrology techniques
Paper presented at the Journal of Physics: Conference Series.
http://www.iop.org/EJ/abstract/1742-6596/13/1/106

Whitehouse, D. J. (1997). Surface metroldggasurement Science and Technology,
8(9), 955-972.

TaylorHobson. (2013)alymap SoftwareRetrieved fronhttp://taylor-
hobson.virtualsite.co.uk/talymap_software.htm

Sacerdotti, F., Porrino, A., Butler, C., Brinkmann, S., & Vermeulen, M. (2002). SCOUT-
surface characterization Open-Source universal tooMeasurement Science and
Technology, 1&). doi: 10.1088/0957-0233/13/2/401

Bui, S. H., Gopalan, V., & Raja, J. (2001). An internet based surface texture information
systemlinternational Journal of Machine Tools and Manufaet 4X13), 2171-2177.

ISO 4287. (1998)Geometrical Product Specifications (GRPS)Surface texture: Profile
method-Terms, Definitions, and Surface texture paat@rs International Organization

for Standardization.

ISO 25178-2. (2007eometrical product specifications (GRS)Surface texture: Areal
— Part 2: Terms, definitions and surface textureapaeters International Organization

for Standardization.

Leach, R. K., & Harris, P. M. (2002). Ambiguities in the definition of spacing parameters
for surface-texture characterizatideasurement Science and Technology, IR 4-

1924,

Plakosh, D., & Lewis, G. A. (2003)lodernizing legacy systems: Software technologies,
engineering process and business practigdsison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA.

Mathia, T. G., Pawlus, P., & Wieczorowski, M. (2011). Recent trends in surface
metrology.Wear, 2713), 494-508.

Lonardo, P. M., Trumpold, H., & De Chiffre, L. (1996). Progress in 3D surface
microtopography characterizatiocDIRP Annals-Manufacturing Technology, (23, 589-

598.

Lientz, B. P., & Swanson, E. B. (198@pftware maintenance management: a study of
the maintenance of computer application softwar48n data processing organizations
Reading MA: Addison-Wesley.

Lientz, B. P., & Swanson, E. B. (1981). Problems in application software maintenance.
Communications of the ACM, Z41), 763-769.

157

http://www.iop.org/EJ/abstract/1742-6596/13/1/106
http://taylor-hobson.virtualsite.co.uk/talymap_software.htm
http://taylor-hobson.virtualsite.co.uk/talymap_software.htm

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Sun, W., Zhang, X., Guo, C. J., Sun, P., & Su, H. C. (2@8jware as a service:
Configuration and customization perspectivieaper presented at the Congress on
Services Part 1, 2008. SERVICES-2. IEEE

Papajorgji, P., Beck, H. W., & Braga, J. L. (2004). An architecture for developing
service-oriented and component-based environmental méselsgical Modelling,
1791), 61-76.

Grundy, J., & Hosking, J. (2002). Developing adaptable user interfaces for component-
based systemiteracting with Computers, 13), 175-194.

Schneider, J. G., & Han, J. (200€pmponentsthe Past, the Present, and the Future.
Paper presented at the Workshop on Component-Oriented Programming.

McArthur, K., Saiedian, H., & Zand, M. (2002). An evaluation of the impact of
component-based architectures on software reusalfoymation and Software
Technology, 446), 351-359.

Qureshi, M. R. J., & Hussain, S. A. (2008). A reusable software component-based
development process modativances in Engineering Software, (29 88-94.

Heineman, G. T., & Councill, W. T. (200Jomponent-based software engineering:
putting the pieces togethdd SA: Addison-Wesley

Crnkovic, I. (2004). Component-based software engineering-new challenges in software
developmentJournal of Computing and Information Technology(3)1151-161.
Microsoft. (2009) COM: Component Object Model Technologi&etrieved from
http://www.microsoft.com/com/default.mspx

OMG. (2009).Catalog of OMG CORBA/IIOP SpecificationRetrieved from
http://www.omg.org/technology/documents/corba_spec_catalog.htm

Sun. (2009)Remote Method Invocation (RMIRetrieved from
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

Emmerich, W., & Tai, S. (2000Engineering distributed objectdK: Wiley Chichester.
OMG. (2009)Unified Modeling Language (UML)Retrieved from
http://www.omg.org/technology/documents/formal/uml.htm

Papajorgji, P., & Shatar, T. M. (2004). Using the Unified Modeling Language to develop
soil water-balance and irrigation-scheduling modetsironmental Modelling &

Software, 1¢5), 451-459.

Deitel, H. (2008)Visual c# 2008 how to prograriarlow: Prentice Hall Press.
Szyperski, C., Gruntz, D., & Murer, S. (200€pmponent software: beyond object-
oriented programmingJSA: Addison-Wesley.

Wolfgang, P. (1994Design patterns for object-oriented software dgwelent Reading,
MA: Addison-Wesley.

Whitehouse, D. J. (1994landbook of surface metrologBristol: Institute of Physics.
Srinivasan, V. C. (2001pn integrated view of geometrical product specifica and
verification. Paper presented at the Proceedings th Cirp International Seminar on
Computer Aided Tolerancing.

Durakbasa, M. N., Afjehi-Sadat, A., & Nomak, A. (2001). Dimensional and Geometrical
Measurements and Interperation of Measuring results on the Basis of the Skin Model.
Measurement Science Reviev(l}), 89-92.

ISO/TS 17450-1. (2000Eeometrical Product Specifications (GRS)General concepts
— Part 1: Model for geometrical specification andifigation. International

Organization for Standardization.

ISO 5436-2. (2001)eometrical Product Specifications (GRS)Surface texture:

Profile method; Measurement standard$art 2: Software measurement standards
International Organization for Standardization.

158

http://www.microsoft.com/com/default.mspx
http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://www.omg.org/technology/documents/formal/uml.htm

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.
52.

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

63.

ISO 25178-7. (2009:eometrical Product Specifications (GRS)Surface texture:
Areal— Part 7: Software measurement standahuternational Organization for
Standardization.

ISO 3274. (1998)Geometric product specifications (GRS)Surface texture: Profile
method— Nominal characteristics of contact (stylus) instants International
Organization for Standardization.

ISO 11562. (1998)Geometrical Product Specifications (GRS)Surface texture: Profile
method— Metrological characteristics of phase correcefid International
Organization for Standardization.

ISO 13565-1. (1998zeometric product specifications (GRS)Surface texture: Profile
method— Surfaces having stratified functional propertiePart 1: Filtering and
general measurement conditiomsternational Organization for Standardization.

ISO 13565-2. (1998)zeometric product specifications (GRS)Surface texture: Profile
method. Surfaces having stratified functional propesti- Part 2: Height
characterization using the linear material ratianve. International Organization for
Standardization.

ISO 13565-3. (1998:eometrical Product Specifications (GRS)Surface texture:
Profile method; Surfaces having stratified funcdbproperties— Part 3: Height
characterization using the material probabilityvaiinternational Organization for
Standardization.

Krystek, M. P. (2005). Spline Filters for Surface Texture Analy&g.Engineering
Materials, 295441-446.

Muralikrishnan, B., & Raja, J. (2008)omputational Surface and Roundness Metralogy
New York: Springer.

Raja, J., Muralikrishnan, B., & Fu, S. (2002). Recent advances in separation of roughness,
waviness and formPrecision Engineering, 2B), 222-235.

Blateyron, F. (2006 New 3D parameters and filtration techniquBaper presented at
the Proceedings of the JSPE.

Whitehouse, D. J. (20023urfaces and their measuremdmndon: Hermes Peor.
Leach, R. (2001)The measurement of surface texture using stylustuinents London:
National Physical Laboratory.

Whitehouse, D. J. (1987). Surface metrology instrumentatimur.nal of Physics E:
Scientific Instruments, 220), 1145. doi: 10.1088/0022-3735/20/10/001

Schlesinger, G. (1942%urface finish: report of the Research Departmeandon:
Institution of Production Engineers.

Czichos, H., Saito, T., & Smith, L. E. (2018pringer handbook of metrology and
testing New York: Springer.

Guenther, R. D. (1990Modern opticyVol. 1). New York: Wiley.

Leach, R. K. (2011)Optical measurement of surface topogragtgndon: Springer.
Whitehouse, D. J. (1988). Comparison between stylus and optical methods for measuring
surfacesCIRP Annals-Manufacturing Technology, (2§, 649-653.

Grandy, D., Koshy, P., & Klocke, F. (2009). Pneumatic non-contact roughness
assessment of moving surfac€$RkRP Annals-Manufacturing Technology, 88, 515-518.
Robertson, T. J., Hutchins, D. A., Billson, D. R., Rakels, J. H., & Schindel, D. W. (2002).
Surface metrology using reflected ultrasonic signals irldirasonics, 397), 479-486.
Mainsah, E., Greenwood, J. A., & Chetwynd, D. G. (20®Exrology and properties of
engineering surface®ew York: Springer.

Griffiths, B. (2001) Manufacturing surface technology: surface integaityg functional
performancelLondon: Elsevier.

Lancaster, P., & Salkauskas, K. (198BJrve and surface fitting. An introduction
Waltham, Massachusetts: Academic Press.

159

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

Bjorck, A. (1996) Numerical methods for least squares probledfSA: Society for
Industrial and Applied Mathematics.

WIKIPEDIA. (2012).Least squaredRetrieved from
http://en.wikipedia.org/wiki/Least_squares

Guest, P. G. (2012Numerical methods of curve fittingcambridge Cambridge
University Press.

Jiang, X., Scott, P. J., Whitehouse, D. J., & Blunt, L. (2007). Paradigm shifts in surface
metrology. Part Il. The current shiRroceedings of the Royal Society A: Mathematical,
Physical and Engineering Science, @815), 2071-2099.

Gruen, A., & Akca, D. (2005). Least squares 3D surface and curve matiSRmR$s
Journal of Photogrammetry and Remote Sensin(3)5951-174.

Stout, K. J., Sullivan, P. J., Dong, W., Mainsah, E., Luo, N., Mathia, T., et al. (2000).
Development of methods for the characterisatioroafjhness in three dimensi®
London: Penton press.

Whitehouse, D. J., & Reason, R. E. (196%)e equation of the mean line of surface
texture found by an electric wave filtdRank Organisation (Rank Taylor Hobson
Division).

Raja, J., & Radhakrishnan, V. (1979). Digital filtering of surface profésar, 571),
147-155.

Yuan, Y. B., Vorburger, T. V., Song, J. F., & Renegar, T. B. C. (2008mplified
realization for the Gaussian filter in surface ro&igy. Paper presented at the
International Colloquium on Suridas

Kumar, J., & Shunmugam, M. S. (2006). A new approach for filtering of surface profiles
using morphological operationsternational Journal of Machine Tools and
Manufacture, 4@), 260-270.

ISO/TS 16610-40. (2006eometrical product specifications (GRS)Filtration—

Part 40: Morphological profile filters: Basic comte International Organization for
Standardization.

ISO/TS 16610-41. (2006eometrical product specifications (GRS)Filtration—

Part 41: Morphological profile filters: Disk and fimontal line-segment filters
International Organization for Standardization.

Schmabhling, J. (2006%tatistical characterization of technical surfaderostructure.
(Doctoral thesis), Heidelberg University. Retrieved frottp://www.ub.uni-
heidelberg.de/archiv/6792

ImageMetrology. (2013BPIP-3D Image Processingetrieved from
http://www.imagemet.com/index.php?main=products&sub=modules&id=3

Dolenc, M. (2004). Developing extendible component-oriented finite element software.
Advances in Engineering Software,(38-11), 703-714.

Won, M., Stiemerling, O., & Wulf, V. (2006 omponent-based approaches to
tailorable systemdNew York: Springer.

Booch, G., Rumbaugh, J., & Jacobson, I. (1998& Unified Modeling Language User
Guide USA: Addison-Wesley Professional.

Bernstein, P. A., Bergstraesser, T., Carlson, J., Pal, S., Sanders, P., & Shutt, D. (1999).
Microsoft repository version 2 and the open information mddé&rmation Systems,
24(2), 71-98.

Crnkovic, 1., & Larsson, M. P. H. (200Building reliable component-based software
systemsLondon: Artech House Publishers.

Mclnnis, K. (2000) Component-based development: The concepts, tecgyalod
methodology Castek Software Factory.

160

http://en.wikipedia.org/wiki/Least_squares
http://www.ub.uni-heidelberg.de/archiv/6792
http://www.ub.uni-heidelberg.de/archiv/6792
http://www.imagemet.com/index.php?main=products&sub=modules&id=3

84. Chen, V. W, Thakur, D. S., & Leister, K. J. (1999). Systems Development Strategy: A
Component Based Approach, The Architectuirnal of the Association for
Laboratory Automation, %), 34-43.

85. Thakur, D. S., Chen, V. W., & Leister, K. J. (1999). Systems Development Strategy: A
Component Based Approach, The Overvidaurnal of the Association for Laboratory
Automation, 45), 44-49.

86. Thakur, D. S., Chen, V. W., & Leister, K. J. (1999). Systems Development Strategy: A
Component-based Approach, The Prototyjmeirnal of the Association for Laboratory
Automation, 45), 28-33.

87. Papajorgji, P. (2005). A plug and play approach for developing environmental models.
Environmental Modelling & Software, 200), 1353-1357.

88. Bobda, C. (2007)ntroduction to reconfigurable computing: Architeots, algorithms,
and applicationsSpringer Publishing Company, Incorporite

89. Henning, m., & Vinoski, S. (1999Advanced CORBA programming with C+tJSA:
Addison Wesley.

90. Reilly, D. (2006)Java RMI & CORBA: A comparison of two competing tacklogies
Retrieved fromhttp://www.javacoffeebreak.com/articles/rmi_corba/index.html

91. Rector, B. E., & Sells, C. (1999TL internals Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA.

92. Shaw, M., & Garlan, D. (1996%oftware architecture: perspectives on an emerging
discipline Upper Saddle River, New Jersey: Prentice Hall Englewood Cliffs.

93. Al-Mudimigh, A., Zairi, M., & Al-Mashari, M. (2001). ERP software implementation: an
integrative frameworkEuropean Journal of Information Systems(4)0216-226.

94. Smith, B. L. (2002). Software development cost estimation for infrastructure systems.
Journal of Management in Engineering{3)8 104-110.

95. McCormick, B. (1996)Software Design and Implementation using the RealeT
Object-Oriented Modeling Languagaper presented at the Electrical Computer
Engineering, Canadian

96. Polakovic, J., & Stefani, J. B. (2008). Architecting reconfigurable component-based
operating systemsournal of Systems Architecture, (84, 562-575.

97. Mennie, D., & Pagurek, B. C. (200 architecture to support dynamic composition of
service component®aper presented at the Proceedings of the th international workshop
on component-oriented programming.

98. Ferron, J. R., Penaflor, B., Walker, M. L., Moller, J., & Butner, D. C. (1998xible
software architecture for tokamak discharge congystemsPaper presented at the
Fusion Engineering Sofe "Seeking a New Energy Era".

99. Sun, W., Zhang, X., Guo, C. J., Sun, P., & Su,H.C. C. 0. S. P. I. I. S.-I. (Z0@8)are
as a service: Configuration and customization pecspes

100. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (199d3ign patterns: elements of
reusable object-oriented softwatdpper Saddle River, New Jersey. Pearson Education.

101. ISO 25178-71. (2012¥%:eometrical Product Specifications (GRS)Surface texture:

Areal Part 71: Software measurement standdmndsrnational Organization for
Standardization.

102. Hill, F. S., & Kelley, S. M. (2000)Computer graphics: using Open@Upper Saddle
River, NJ: Prentice Hall

103. Wright, R. S., & Lipchak, B. (2004DpenGL superbibldndianapolis: Sams Publishing.

104. Royce, W. W. (1970Managing the development of large software systétaper
presented at the Proceedings of IEEE Wescon.

105. Sommerville, I. (2004)Software Engineering.Addison-Wesley.

106. Whitgift, D. (1991).Methods and tools for software configuration mamaget John
Wiley & Sons, Inc. New York, NY, USA.

161

http://www.javacoffeebreak.com/articles/rmi_corba/index.html

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.
118.

1109.

120.

121.

122.

123.

124.
125.

126.

127.

128.

129.

Boehm, B. (1986). A spiral model of software development and enhancé@ént.
SIGSOFT Software Engineering Notes(4)] 14-24.

Stout, K., Blunt, L., Dong, W. P., Mainsah, E., Luo, N., Mathia, T., et al. (2000).
Development of methods for the characterisatioroafhness in three dimensions
London: Penton press.

NanoScience. (2011%upported File FormatfRetrieved from
http://www.nanoscience.com/products/spip/SPIP_formats.html

Scott, P. J. (2004). Pattern analysis and metrology: the extraction of stable features from
observable measuremer®soceedings of the Royal Society of London. Sefies
Mathematical, Physical and Engineering Science8(250), 2845-2864.

Sarkar, B., Singh, L. K., & Sarkar, D. (2003). Approximation of digital curves with line
segments and circular arcs using genetic algoritfragern Recognition Letters, @4%),
25852595.

Hu, W. C. (2005). Multiprimitive segmentation based on meaningful breakpoints for
fitting digital planar curves with line segments and conic dnesge and Vision
Computing, 289), 783-789.

Shirley, P., Ashikhmin, M., Gleicher, M., Marschner, S., Reinhard, E., Sung, K., et al.
(2005).Fundamentals of computer graphidiatick, Massachusetts: AK Peters
Wellesley.

Cunningham, S. (2006L.omputer graphics: programming, problem solving] sisual
communicationUpper Saddle River, New Jersey: Prentice Hall.

WIKIPEDIA. (2012).Comparison of OpenGL and Direct3Betrieved from
http://en.wikipedia.org/wiki/Comparison_of OpenGL_and_Direct3D

Shreiner, D. (20090penGL programming guide: the official guide torleimg OpenGL,
versions 3.0 and 3.Boston: Addison-Wesley Professional.

Martz, P. (2006)OpenGL distilled Boston: Addison-Wesley Professional.

Astle, D., & Hawkins, K. (2004Beginning OpenGL game programmir@ambridge,
Massachusetts: Course Technology.

Hawkins, K., & Astle, D. (2001 0penGL game programmin@ambridge,
Massachusetts: Course Technology PTR.

Farin, G. E. (1996)Curves and Surfaces for Computer-Aided Geometrisidgre A
Practical CodeWaltham, Massachusetts: Academic Press, Inc.

MathWorks. (2012)Set and Get current colormaRetrieved from
http://www.mathwaorks.co.uk/help/matlab/ref/colormap.html

Schreiner, D., Woo, M., Neider, J., & Davis, T. (20@BpenGL programming guide
Boston: Addison-Wesley.

WIKIPEDIA. (2012).Software testingRetrieved from
http://en.wikipedia.org/wiki/Software_testing

Patton, R. (20055oftware testingIndianapolis: Sams Publishing.

Microsoft. (2013)ActiveX Control Test Container (tstcon32.exRetrieved from
http://msdn.microsoft.com/en-GB/library/ms241446(v=vs.80).aspx

DigitalSurf. (2013)Mountains surface imaging & metrology softwaRetrieved from
http://www.digitalsurf.fr/fen/mntkey.html

Bui, S. H., & Vorburger, T. V. (2007). Surface metrology algorithm testing system.
Precision Engineering, 83), 218-225.

Bui, S. H., Renegar, T. B., Vorburger, T. V., Raja, J., & Malburg, M. C. (2004). Internet-
based surface metrology algorithm testing sysiar, 25712), 1213-1218.

Bui, S. H., Muralikrishnan, B., & Raja, J. (2005). A framework for Internet-based surface
texture analysis and information systéhecision Engineering, 28), 298-306.

162

http://www.nanoscience.com/products/spip/SPIP_formats.html
http://en.wikipedia.org/wiki/Comparison_of_OpenGL_and_Direct3D
http://www.mathworks.co.uk/help/matlab/ref/colormap.html
http://en.wikipedia.org/wiki/Software_testing
http://msdn.microsoft.com/en-GB/library/ms241446(v=vs.80).aspx
http://www.digitalsurf.fr/en/mntkey.html

Appendixes

A Critical Code Fragments of SurfStand SDK

A1 Static methods for addition and removement of sgdtenctional components

public static bool AddAssembly (String fileType, String className, String
asmPath, SSAssemblyType asmType)
{
List<SSAssembly> asmList=null;
switch (asmType)
{
case SSAssemblyType.FILEACCESS:
asmList = m listCollection.m fileAccessList;
break;
case SSAssemblyType.DATADISPLAY:
asmList = m listCollection.m displayList;
break;
case SSAssemblyType.DATAANALYSIS:
asmList = m listCollection.m analysisList;
break;
}
foreach (SSAssembly ssasm in asmList)
{
if (ssasm.m Type.Equals(fileType))
return false;
}
SSAssembly newasm = new SSAssembly();
newasm.m_Type = fileType;
newasm.m Name = className;
newasm.m_ Path = asmPath;
asmList.Add (newasm) ;
return true;
}
public static bool RemoveAssembly (String type, SSAssemblyType asmType)
{
List<SSAssembly> asmList=null;
switch (asmType)
{
case SSAssemblyType.FILEACCESS:
asmList = m listCollection.m fileAccessList;
break;
case SSAssemblyType.DATADISPLAY:
asmList = m listCollection.m displayList;
break;
case SSAssemblyType.DATAANALYSIS:
asmList = m_listCollection.m_analysisList;
break;
}
foreach (SSAssembly ssasm in asmList)
{
if (ssasm.m Type.Equals (type))
{
asmList.Remove (ssasm) ;
return true;

}

return false;

163

A.2 Static methods of adding and removing system conasian

public static bool AddCommand(String command, String classType, bool newView,
String displayType)
{
if (IsCommandExist (command))
return false;
SSCommandBio newCommand = new SSCommandBio () ;
newCommand.Name = command;
newCommand.ClassType = classType;
m listCollection.m commandList.Add(newCommand) ;
return true;
}
//
public static bool AddCommand(String command, List<SSCommandBio> cmdList, bool
newView, String displayType)
{
if (IsCommandExist (command))
return false;
SSCCommand newCommand = new SSCCommand () ;
newCommand.Name = command;

for (int i = 0; 1 < cmdList.Count; i++)
{
newCommand .AddCommand (cmdList [1]) ;
}
m listCollection.m commandList.Add(newCommand) ;
return true;
}
public static bool AddCommand (ISSCommand cmd)
{
if (IsCommandExist (cmd.Name))
return false;
m listCollection.m commandList.Add (cmd) ;
return true;
}
public static bool RemoveCommand (String command)
{
foreach (ISSCommand cmd in m_listCollection.m commandList)
{
if (cmd.Name.Equals (command))
{
m listCollection.m commandList.Remove (cmd) ;
return true;

}

return false;

A.3 Static methods of adding and removing system mtamsi.

private static bool AddNewMenultem(String menuContent, String command)
{
ToolStripItemCollection currentMenu =
m mainForm.MainMenuStrip.Items;//.Menultems;
String menultemText = null;
ToolStripMenultem addItem;
bool IsExist = false;
int index;
while ((index = menuContent.IndexOf(';')) >= 0)
{
IsExist = false;
menultemText = menuContent.Remove (index) ;
menuContent = menuContent.Substring(index + 1);
foreach (ToolStripItem menultem in currentMenu)
{
if (menultem.Text.Equals (menultemText))

{

164

IsExist = true;
currentMenu = ((ToolStripMenultem)menultem) .DropDownltems;

break;

}
if (!IsExist)
{
addItem = new ToolStripMenultem (menultemText) ;
currentMenu.Add (addItem) ;
currentMenu = addItem.DropDownItems;
}
}
IsExist = false;
foreach (ToolStripItem menultem in currentMenu)
{
if (menultem.Text.Equals (menuContent))
{
IsExist = true;
return false;

}

addItem = new ToolStripMenultem(menuContent) ;
addItem.Name = command;
addItem.Click += OnClickMenultem;
currentMenu.Add (addItem) ;
return true;
}
public static bool RemoveMenultem(String menuContent)
{

if (RemoveOldMenultem (menuContent))

{

foreach (SSMenultem smenu in SSListCollection.GetInstance().m menuList)

{

if (menuContent.Equals (smenu.Path))

{

SSListCollection.GetInstance().m menuList.Remove (smenu) ;
break;

}

return true;

}

return false;

165

B Code Fragmentsfor the Connection between the Framework and
Components

B.1 Method of loading components in the framework

//Loading function components
private void loadAssemblies()
{
AssemblyConfiguration aCog = new AssemblyConfiguration();
ArraylList pathList = aCog.getAssembliesPath();
foreach (String path in pathList)
{
Assembly fileAssembly = Assembly.LoadFrom(path);
if (fileAssembly == null)
continue;
Type[] types = fileAssembly.GetTypes|();
foreach (Type ty in types)
{
Type[] interfaces = ty.GetInterfaces();
foreach (Type inface in interfaces)
{
if (inface.Equals (typeof (SSObject)))
{
SSObject a = (SSObject)Activator.Createlnstance (ty);
a.OnRegister();
break;

B.2 Methods of adding and removing components in thenework

//Add a new function component
private void buttonAdd Click(object sender, EventArgs e)
{
OpenFileDialog fileDlg = new OpenFileDialog();
fileDlg.RestoreDirectory = true;

if (fileDlg.ShowDialog() != DialogResult.OK)

return;
Assembly fileAssembly Assembly.LoadFrom(fileDlg.FileName) ;
if (fileAssembly == null)

return;

Type[] types = fileAssembly.GetTypes();
foreach (Type ty in types)
{
Type[] interfaces=ty.GetInterfaces();
foreach (Type inface in interfaces)
{
if (inface.Equals (typeof (SSObject)))
{
SSObject a = (SSObject)Activator.Createlnstance (ty);
if (a.OnRegister())
{

AssemblyConfiguration aCog = new AssemblyConfiguration();
aCog.AddFileAssembly (fileDlg.FileName) ;
updateAssemblies (sender,e);

}

break;

166

//Remove an existing function component

{

private void buttonDelete Click(object sender, EventArgs e)

foreach

(ListViewItem 1lvi in this.listViewAssembliesManage.SelectedItems)
{

Assembly asmbly = Assembly.LoadFrom(lvi.SubItems[1l].Text);
Type[] types = asmbly.GetTypes();

foreach (Type ty in types)

{

Type[] interfaces=ty.GetInterfaces();
foreach (Type inface in interfaces)
{

if (inface.Equals (typeof (SSObject)))
{

SSObject a = (SSObject)Activator.Createlnstance(ty);
if (a.UnRegister())
{

AssemblyConfiguration aCog = new AssemblyConfiguration();
aCog.DeleteFileAssembly (1lvi.SubItems[1].Text);
updateAssemblies (sender, e);

}

break;

167

C CodeFragmentsfor Surface Data Definition

C.1 Definition of surface data structure CSurfObject

class CSurfObject
{
public:
CSurfObject (void) ;
CSurfObject (CSurfObject& m SurfObj);
CSurfObject (CMatrix& m DataOther, THSurfObjInfo& m InfoOther);
virtual ~CSurfObject (void);

//Data members

public:
CMatrix m DataSurf;
THSurfObjInfo m_InfoSurf;

//function members
public:
bool CopyFrom(CSurfObjects& m SurfObj);
bool CopyFrom(CMatrix& m DataOther, THSurfObjInfo& m InfoOther);
bool CastFrom(CSurfObject& m SurfObj) ;
bool CastFrom(CMatrixé& m DataOther, THSurfObjInfo& m InfoOther);

bool IsValidSurfObj () ;
void Clear();
}i

C.2 Definition of surface data information THsurfObjinf

typedef /* [helpstring] [version] [uuid] */ DECLSPEC_UUID("A43EF600-B02A-11D6-9BCF-
00DOB74C4D6A") struct THSurfObjInfo
{
TCHAR cFileName|[256 1;
TCHAR cFileExt[16];
TCHAR cFileVersion[16];
TCHAR cManufacture[16];
TCHAR cCreateDate[16];
TCHAR cModifyDate[16 1;
long sNumPoints;
long sNumProfiles;
float fXscale;
TCHAR cXunit[16 1;
float f¥Yscale;
TCHAR cYunit[16];
float fZscale;
TCHAR cZunit[16 1;
float fXOffset;
float fYOffset;
float fZOffset;
boolean bMetricUnit;
TCHAR cDescription[256 1;

} THSurfObjInfoy,

C.3 Definition of surface data class CTH3DData

class ATL_NO_VTABLE CTH3DData
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CTH3DData, &CLSID TH3DData>,
public ISupportErrorInfo,
public IDispatchImpl<ITH3DData, &IID ITH3DData, &LIBID TH3DDataProcessLib,
/*wMajor =*/ 1, /*wMinor =*/ 0>
{
public:
CTH3DData ()

168

{
}

DECLARE REGISTRY RESOURCEID (IDR TH3DDATA)

BEGIN COM MAP (CTH3DData)
COM INTERFACE ENTRY (ITH3DData)
COM_INTERFACE_ENTRY (IDispatch)
COM INTERFACE ENTRY (ISupportErrorInfo)
END COM MAP ()

// ISupportsErrorInfo
STDMETHOD (InterfaceSupportsErrorInfo) (REFIID riid);

DECLARE PROTECT_ FINAL CONSTRUCT ()

HRESULT FinalConstruct()
{

Clean();

return S_OK;

}

void FinalRelease ()
{
Clean();
}
BOOL Clean();

public:

STDMETHOD (IsDataValid) (/* [out, retval]*/BOOL* m bValid);

STDMETHOD (UnitSystem) (/*[in] */BOOL m_bMetricUnit) ;

STDMETHOD (MinMax) (/* [out]*/float* Min, /*[out]*/float* Max);

STDMETHOD (Cast) (/*[in] */ITH3DData* source) ;

STDMETHOD (Copy) (/* [in]*/ITH3DData* source);
STDMETHOD (CopyToSafeArray) (/* [out] */THSurfObjInfo *pDatalnfo, /*[out]*/VARIANT
*pDataMatrix) ;

STDMETHOD (CopyFromSafeArray) (/* [in] */THSurfObjInfo *pDataInfo, /*[in]*/VARIANT
*pDataMatrix) ;

STDMETHOD (CopyFromVariant) (/*[in]*/THSurfObjInfo *pDatalInfo, /*[in]*/VARIANT
*pDataMatrix) ;

STDMETHOD (CastFromVariant) (/*[in]*/THSurfObjInfo *pDataInfo, /*[in]*/VARIANT
*pDataMatrix) ;

STDMETHOD (CastToVariant) (/* [out]*/THSurfObjInfo *pDatalnfo, /*[out]*/VARIANT
*pDataMatrix) ;

STDMETHOD (get DatalInfo) (/*[out, retval]*/ THSurfObjInfo *pVval);

STDMETHOD (put_DatalInfo) (/*[in]*/ THSurfObjInfo newVal);

STDMETHOD (HasMissingData) (BOOL* m bMissingData) ;

STDMETHOD (GetThumbnailData) (SHORT nWidth, SHORT nHeight, BYTE** pbData);

STDMETHOD (ThumbnailDataToSafeArray) (LONG m nWidth, LONG m nHeight, VARIANT*
pbataMatrix) ;

STDMETHOD (ShiftX) (LONG m offsetX);

CSurfObject m_objSurf;

public:
STDMETHOD (CheckSum) (LONG* CHKSum) ;
STDMETHOD (ReleaseData) (void) ;
STDMETHOD (Subtract) (ITH3DData* subtracter);
STDMETHOD (Addition) (ITH3DData* addend) ;

169

D Definition of Command Interface: | SSCommand.

public abstract class ISSCommand
{
protected String m Name;
protected bool m_defaultArgs;
protected List<SSArgument> m_argList;

protected Object m Tag = null;
public Object Tag
{
get { return m Tag; }
set { m Tag = value; }
}
public String Name
{
get { return m Name; }
set { m Name = value; }

}

public bool DefaultArgs
{
set { m_defaultArgs = value; }
get { return m defaultArgs; }
}
public List<SSArgument> ArgList
{
get { return m_arglList; }
}
public abstract bool Execute(List<SSData> operands);
public abstract void ModifyArgument () ;

170

E CodeFragmentsfor Method M odifyArgument of Feature
Parameter s Component

public void ModifyArguments (ISSCommand command)
{
//THDataSegmentLib.THFeatureParas

ParameterSetting ps = new ParameterSetting();

ps.m_reset = command.DefaultArgs;

ps.m bHillFeatures = (int)command.ArgList[0].Value;
ps.m_fWolfPrune = (float)command.ArgList[1].Value;
ps.m_fVolumePrune = (float)command.ArgList[2].Value;
ps.m_fAreaPrune = (float)command.ArgList[3].Value;
ps.m_fCircumferencePrune = (float)command.ArgList[4].Value;

ps.ShowDialog () ;

command.DefaultArgs=ps.m reset;
command.ArgList[0].Value = ps.m bHillFeatures;
command.ArgList[1l].Value ps.m_fWolfPrune;
command.ArgList[2].Value ps.m_fVolumePrune;
command.ArgList[3].Value ps.m_fAreaPrune;
command.ArgList[4].Value = ps.m_fCircumferencePrune;

171

F Interface Definitionsfor the Three Subtypes of Data Process
Components

public interface SSAnalysisA : SSAnalysis //bioA
{
bool Execute (SSDhata pSrc, ref SSData pOut,ref bool defaultArgs, List<SSArgument>
argList);
}
public interface SSAnalysisB : SSAnalysis
{
bool Execute(SSDhata pSrcl, SSDhata pSrc2, ref SSDhata pOut, ref bool defaultArgs,
List<SSArgument> argList);
}
public interface SSAnalysisC : SSAnalysis //single

{
bool Execute (SSDhata pSrc,ref bool defaultArgs, List<SSArgument> argList);

object GetDisplayCtrl();

172

G Reélated Publications
Lan, X., Jiang, X., Blunt, L., & Xiao, S. (2009An adaptive system framework for surface

characterisationPaper presented at the The Proceedings of Computing and Engineering Annual

Researchers' Conference 2009, Huddersfield.

Lan, X., Jiang, X., Blunt, L., Xiao, S., & Zeng, W. (2011A. feasible way to analysis
microstructures on a surface based on the extnracind construction of geometrical featsire

Paper presented at the The 10th International Symposium on Measurement Technology and
Intelligent Instruments, Daejeon, S. Korea.

173

