
University of Huddersfield Repository

Lan, Xiangqi

The Development of a Flexible Characterisation System for Surface Metrology

Original Citation

Lan, Xiangqi (2014) The Development of a Flexible Characterisation System for Surface

Metrology. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/20332/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

THE DEVELOPMENT OF A FLEXIBLE CHARACTERISATION

SYSTEM FOR SURFACE METROLOGY

Xiangqi Lan

A thesis submitted to the University of Huddersfield

 in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

School of Computing and Engineering

University of Huddersfield

April 2014

1

Abstract

Surface texture and its measurement are becoming more and more increasingly important
in the field of high precision engineering and nano-technology. It is a significant and
efficient way to predict the functional performance of an engineering product by
characterising its surface. As the extraction and evaluation of surfaces features not only
relies on analysis algorithms but also measurement techniques, most of surface
characterisation software systems are embedded in the measurement instruments. At
present, even though a series of Geometrical Product Specification (GPS) standards are
released to guide the procedure of surface characterisation, there are no software systems
give a fully support of them. As a consequence, evaluation results from different systems
are incomparable, even worse, conflict with each other.

Surface characterisation system needs to be updated constantly with the emergence of
new algorithms and methods. However, the lack of good extensibility, reusability and
maintainability is a serious obstacle to the innovation of existing surface characterisation
systems. As functional modules in current surface characterisation systems are tightly
coupled together, it is not conducive to the reuse of function modules and innovation of
overall system. A lot of redundant and duplicate works have been raised in either
enhancing present characterisation systems or building a new characterisation system.

To improve the reusability of function modules and facilitate system extension, this
research aims to establish a flexible surface characterisation system with an open
architecture. By employing component based development technologies, the overall
characterisation system is constructed by gluing various functional components together
instead of being created from scratch. Each analysis algorithm or method is implemented
as an independent functional component, which is separated from the system framework.
And also it can be easily reused by other characterisation systems as an executable chunk.
Any system functional components can be developed or maintained independently by
different organisation as long as they comply with predefined protocols (interfaces).

This thesis proposed a novel surface characterisation system, which can be reconfigured
as end users‘ expectation at any time even when it has been installed and deployed
already. Functional components can be added, removed or replaced dynamically without
affecting other parts of the system. Furthermore, the system is flexible such that
researchers and developers can concentrate on characterisation algorithms and methods
themselves, and then develop their own functional components which can be easily added
to this system.

2

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Prof.
Xiangqian Jiang for setting up an appropriate research subject. She offers her unreserved
help and guidance, and leads me to finish my thesis. Her words can always inspire me
and bring me to a higher level of thinking. Many thanks also give to her for kindly
support, advice and encouragement.

Great appreciation also goes to my second supervisor, Prof. Liam Blunt, for his
exceptional support and guidance throughout my thesis. Without his kind and patient
instruction, it is impossible for me to finish this thesis. He gave lots of time helping me to
improve my academic writing and the capability of carrying out professional researches.

I am also indebted to Prof. Paul Scott, Dr. Shaojun Xiao and Dr. Feng Xie for their
valuable guidance and suggestions. Special thanks to Dr. Wenhan Zeng and Dr. Haydn
Martin. They squeeze time from their busy schedule to help me correct my thesis.

I would like to show my appreciation to Taylor Hobson Ltd. for the support and
sponsorship of my studies, and I am also grateful to the EPSRC Centre for Innovative
Manufacturing in Advanced Metrology, the Centre for Precision (CPT) and the School of
Computing and Engineering of the University of Huddersfield for providing me the
opportunity and facilities to carry out this project.

Sincere thanks to my colleagues for sharing their insights, many useful discussions and
valuable suggestions, and my friends for their kindly support and encouragements.

Finally, I would like to thank my family for supporting me throughout all my studies.
Their love provided my inspiration and was my driving force. I owe them everything and
wish I could show them just how much I love and appreciate them.

3

Contents

Abstract ... 1

Acknowledgements ... 2

List of Figures ... 7

List of Tables .. 9

List of Acronyms .. 10

Chapter 1 Introduction ... 11

1.1 Background ... 11

1.2 Aim and Objectives ... 16

1.3 Approach ... 19

1.4 Thesis Structure ... 21

Chapter 2 Surface Characterisation Techniques .. 24

2.1 Introduction ... 24

2.2 Surface Verification Operator ... 24

2.3 Surface Measurement .. 32

2.3.1 Stylus Methods .. 32

2.3.2 Optical Methods .. 35

2.3.3 Other Methods ... 36

2.3.4 Range and Resolution .. 37

2.4 Fitting Techniques ... 38

2.4.1 Least Squares fitting .. 39

2.4.2 Profile fitting ... 40

2.4.3 Areal fitting ... 42

2.5 Filtering Techniques .. 44

2.5.1 The Process of Filtering ... 45

2.5.2 Filtering Methods .. 47

2.6 Parameterisation .. 49

2.6.1 Statistical Methods .. 50

2.6.2 Geometrical Methods .. 52

2.7 Summary ... 53

Chapter 3 Design and Implementation of Flexible System Architecture 54

3.1 Introduction ... 54

4

3.2 Component-Based Development ... 56

3.2.1 Component .. 56

3.2.2 Component-Based Software Development ... 57

3.2.3 Current Technology for Component-Based Architecture 58

3.2.4 Advantages of Component-Based Development ... 60

3.3 System Architecture Design .. 60

3.3.1 Separation of Analysis Functions and System Framework 60

3.3.2 Integrative Structure .. 61

3.3.3 Semi-detached Structure .. 62

3.3.4 Flexible Structure .. 63

3.3.5 Proposed Surface Characterisation System Architecture 64

3.4 Surfstand System Functional Component Categorisation ... 69

3.4.1 Data Access Component .. 69

3.4.2 Data Processing Component .. 70

3.4.3 Data Display Component .. 71

3.5 System Development Life Cycle ... 73

3.5.1 Waterfall Model ... 73

3.5.2 Incremental Model ... 75

3.5.3 Spiral Model .. 76

3.5.4 Development Model of SurfStand ... 78

3.6 Summary ... 81

Chapter 4 Implementation of Data Access Components ... 82

4.1 Conventional Surface Data File Format .. 82

4.2 Component Design .. 85

4.2.1 Surface Data Structure Design for the Proposed Surface Characterisation System
 85

4.2.2 Surface Data Class Design for the Proposed Surface Characterisation System 89

4.2.3 Interface Design for the Data Access Components ... 90

4.3 Standard Surface Data Format: SDF ... 91

4.3.1 SDF File Format .. 92

4.3.2 Interface Implementation ... 96

4.4 Summary ... 97

5

Chapter 5 Design and Implementation of Data Process Components of the Developed
System 98

5.1 Categorisation of Data Process Components ... 98

5.2 Component Interface Design of the Proposed System .. 103

5.2.1 Interface of Verification Operations .. 103

5.2.2 Interface for All Data Process Components .. 106

5.2.3 Interface for Subtypes of Data Process Components .. 108

5.3 Case Studies: Geometrical Analysis Component .. 109

5.3.1 Surface Segmentation .. 110

5.3.2 Boundary curve approximation ... 111

5.3.3 Geometrical features construction ... 114

5.3.4 Interface Implementation for Geometrical Analysis Component 116

5.4 Summary ... 118

Chapter 6 Implementation of Surface Visualisation Components 119

6.1 Computer Graphics .. 119

6.2 Computer Graphics Programming―OpenGL ... 121

6.2.1 Modelling .. 121

6.2.2 Transformation .. 122

6.2.3 Colour .. 125

6.2.4 Lighting ... 125

6.2.5 Other Functions of OpenGL .. 126

6.3 Component Interface Design ... 126

6.4 Three-Dimensional Display Component of the developed Surface Characterisation
System 127

6.4.1 Coordinate System ... 127

6.4.2 Modelling .. 128

6.4.3 Render ... 129

6.4.4 Lighting and Object Materials ... 130

6.4.5 Interface Implementation ... 131

6.5 Summary ... 132

Chapter 7 Test and Evaluation of the Proposed Surface Characterisation System ... 133

7.1 Introduction ... 133

7.2 Unit Tests .. 133

6

7.2.1 Test Case 1: SDF File Component .. 134

7.2.2 Test Case 2: 3D display component .. 135

7.3 Integration Tests .. 138

7.3.1 Test Case 1: SUR File Component .. 139

7.3.2 Test Case 2: Levelling Component ... 141

7.3.3 Test case 3: Topview component .. 142

7.4 System Tests .. 143

7.4.1 Test Case 1 Components Configuration .. 143

7.4.2 Test Case 2: Compound Command Test ... 144

7.5 Comparison ... 147

7.6 Summary ... 148

Chapter 8 Conclusions and Future Work .. 150

8.1 Summary ... 150

8.2 Contribution to Knowledge ... 152

8.2.1 Standardisation Analysis ... 152

8.2.2 Function Modularisation ... 153

8.2.3 System Flexibility .. 154

8.3 Future Work .. 155

References ... 157

Appendixes ... 163

A Critical Code Fragments of SurfStand SDK .. 163

B Code Fragments for the Connection between the Framework and Components 166

C Code Fragments for Surface Data Definition .. 168

D Definition of Command Interface: ISSCommand. .. 170

E Code Fragments for Method ModifyArgument of Feature Parameters Component ... 171

F Interface Definitions for the Three Subtypes of Data Process Components 172

G Related Publications .. 173

7

List of Figures

Figure 1.1: Thesis structure diagram. .. 22
Figure 2.1: Comparison of Design Intent and Verification of manufactured workpiece. 25
Figure 2.2: Standard surface verification operator [2]. ... 28
Figure 2.3: F-operator—first order polynomial fitting. ... 29
Figure 2.4: L-filter—Gaussian regression filtering. .. 30
Figure 2.5: Calculation results of standard surface areal parameters. ... 31
Figure 2.6: The stylus principle. .. 33
Figure 2.7: Two types of stylus―Cone and Pyramid [51]. ... 34
Figure 2.8: Stylus slope effect. .. 34
Figure 2.9: Path of light in Michelson interferometer [56]. .. 36
Figure 2.10: Amplitude-wavelength plot of different instruments for surface measurements [61].
 ... 38
Figure 2.11: Roughness, waviness and form of a profile [51]... 45
Figure 2.12: Filtering process in two domains―Space and Frequency [51]. 45
Figure 2.13: Cutoffs of surface filtering [51]. ... 46
Figure 3.1: A component with provided and required interfaces. ... 57
Figure 3.2: Integrative structure of software systems. ... 61
Figure 3.3: Semi-detached structure of software systems. .. 62
Figure 3.4: Flexible structure of software systems. ... 63
Figure 3.5: Data flow within a surface characterisation system. ... 65
Figure 3.6: Development hierarchy chart for SurfStand. .. 67
Figure 3.7: System architecture of SurfStand. ... 68
Figure 3.8: Function chart of Data Access Components. .. 70
Figure 3.9: Function chat of Data Process Components. .. 71
Figure 3.10: Data Display Components―3D Display Component... 72
Figure 3.11: Software development model―Waterfall model. ... 74
Figure 3.12: Software development model―Increment model. ... 76
Figure 3.13: Software development model―Spiral model. .. 76
Figure 4.1: Surface data pattern―Grid Data. .. 82
Figure 4.2: Data transfer between surface data file and internal data structure............................. 87
Figure 5.1: Example of Data Process Components―Type A. .. 100
Figure 5.2: Example of Data Process Components―Type B. .. 101
Figure 5.3: Example of Data Process Components―Type C. .. 102
Figure 5.4: Internal command class inheritance hierarchy diagram of developed system. 105
Figure 5.5: Relationship between commands and surface verification operators. 106
Figure 5.6:Relationship between commands and system functional components. 107
Figure 5.7: Class inheritance hierarchy diagram of data process components. 108
Figure 5.8 Demonstration of surface segmentation ... 111
Figure 5.9: One boundary curve of a geometrical feature. .. 112
Figure 5.10: Curvature of each point on the boundary curve. ... 113
Figure 5.11: Derivative of curvature along the boundary curve. ... 113
Figure 5.12: Extracted joint points of the boundary curve. ... 114

8

Figure 5.13: Characteristics list of geometrical features. .. 115
Figure 6.1: Computer graphics system principle. .. 119
Figure 6.2: Comparison of drawing a pentagon and five points.. 122
Figure 6.3: Perspective viewing volume. .. 123
Figure 6.4: Orthographic viewing volume. ... 124
Figure 6.5: The geometry pipeline that achieves the coordinate transformation......................... 127
Figure 6.6: Default 3D model coordinate system of OpenGL... 128
Figure 6.7: 3D modelling of surface data. ... 129
Figure 6.8: Supported colour maps for surface render. ... 130
Figure 6.9: An example of materials rending―Brass. .. 131
Figure 7.1: A SDF file opened with the SDF file component. .. 134
Figure 7.2 The surface data that is saved with the SDF file component. 135
Figure 7.3: 3D display component loaded with ActiveX Control Test Container. 136
Figure 7.4: Surface data display with 3D mesh representation type. .. 136
Figure 7.5: Surface data rendered with hot colour map. ... 137
Figure 7.6: Surface data display with yellow rubber material. .. 138
Figure 7.7: Components Configuration dialog. ... 139
Figure 7.8: Open file dialog with supporting SDF and SUR file formats. 139
Figure 7.9: An example of surface data imported with SUR file component. 140
Figure 7.10: Open file dialog without supporting SUR file format. .. 140
Figure 7.11: The emerging levelling menu item after adding the levelling component. 141
Figure 7.12: The surface data that has been processed with levelling component. 142
Figure 7.13: The surface data that is displayed with Topview Component. 142
Figure 7.14:The surface data that is processed with Bearing curve analysis component. 144
Figure 7.15: Compound command creating dialog. .. 145
Figure 7.16: Subcommands modification of Test command. .. 145
Figure 7.17: Test command occurs in the Command setting dialog. .. 146
Figure 7.18: Parameters setting dialog of Gaussian regression filter. ... 146
Figure 7.19: The surface data that is processed with Test command. ... 147
Figure 8.1: Categorisation of system functional components. .. 151
Figure 8.2: Completed system functional components. .. 152

9

List of Tables

Table 2.1: Common model functions for profile fitting. ... 40
Table 2.2: Standard surface profile parameters. .. 50
Table 2.3: Standard surface areal parameters. ... 51
Table 2.4: Feature parameters defined in ISO 25178-2. .. 52
Table 4.1: Common file formats for surface data storage. .. 83
Table 4.2: Essential elements for every surface data file. ... 84
Table 4.3 Internal surface data structure elements. ... 86
Table 4.4: Arguments description of methods of interface SSFileIO. .. 91
Table 4.5: File header description of SDF surface file. ... 92
Table 4.6: Compression types list. .. 94
Table 4.7: Supported data types list of SDF file format. ... 95
Table 4.8: Checksum types list. ... 95
Table 5.1: Description of member variables and methods of interface ISSCommand. 104
Table 5.2: Description of arguments that occurs in SSAnalysisA, SSAnalysisB and SSAnalysisC.
 ... 109
Table 5.3: Combination patterns for common geometrical features. .. 115
Table 6.1: Property values for the brass material. ... 131
Table 7.1: Comparison between Surfstand and other systems. ... 148

10

List of Acronyms

AFM Atomic Force Microscopy
API Application Programming Interface
ARB OpenGL Architecture Review Board
ASCII American Standard Code for Information Interchange
ATL Active Template Library
AXCTC ActiveX Control Test Container
CBA Component-Based Architecture
CBD Component-Based Development
CCD Charge Couple Device
COM Component Object Model
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
GPU Graphics Processing Unit
IDL Interface Definition Language
ISO International Organization for Standardization
JRMP Java Remote Method Protocol
JVM Java Virtual Machine
LS Least Squares
MC Minimum Circum scribed
MI Maximum Inscribed
MZ Minimum Zone
OMG Object Management Group
ORB Object Request Broker
RC Resistor-Capacitor
RMI Remote Method Invocation
SDK Software Development Kit
SDLC System Development Life Cycle
SPM Scanning Probe Microscopy
STM Scanning Tunneling Microscopy
UML Unified Modelling Language

11

Chapter 1 Introduction

1.1 Background

The surface of an engineering workpiece can be thought of as the boundary between the

workpiece and the surrounding environment, and it is closely related to the functional

properties of the entire workpiece, such as tribological, thermal, electrical and optical

behaviour [1]. It has been revealed that 90% of all engineering workpiece failures in

practice are surface initiated due to corrosion, erosion, fretting wear, excessive abrasive

and so on [2]. Thus surface topographical features are important factors in determining

the satisfactory performance of a workpiece, and it is significant to understand the

functional properties of surfaces.

Surface metrology is the science of measuring geometrical features on surfaces. The

approach is to measure and characterise surface features in order to be able to understand

how the features are influenced by its history (e.g. manufacture, wear, fracture) and how

it influences its behaviour (e.g. adhesion, gloss, friction) [3]. From the occurrence which

can be traced back to the 1930s up to now, surface metrology has undergone a series of

huge paradigm shifts [4, 5]. Nowadays, it has become one of the fastest-growing areas of

engineering and quality management, and its study is becoming more and more

commonplace in industrial and research environments [6].

To understand and analyse surface features, surface measurement is a critical and

necessary procedure to acquire surface information from engineering workpieces. The

original way to measure surfaces was using the thumbnail and the eye, both of which

were subjective and effective only if used by an experienced practitioner. However, the

texture features of surfaces are too small to be assessed quantitatively by such a ―touch

and see‖ way [7]. Demand for quantitative results led to two parallel branches of

instrumentation; one following the tactile example of the nail, the other mimicking the

eye. Stylus profilometry and optical interferometry are two common techniques used in

carrying out surface metrology. In addition, there are also many other methods for

surface measurement such as using pneumatic technique, capacitance, ultrasound, and so

on [7].

12

Normally, the aim of surface measurement methods is to acquire the surface information

effectively and accurately. There is no one method that can be adopted to measure all

kinds of surfaces. For a certain surface, the measurement method is decided by many

factors such as precision, scale, material, etc. However, measurement results consist of a

set of coordinates, which cannot be adopted to characterise the surface directly. A series

of data processing based on the measurement data is required to extract surface features.

With the benefit from modern digital technologies, e.g. Computer, which offers adequate

speed of operations and processing, the extraction and characterisation could be realised

by software systems. Nowadays, surface characterisation systems are mainly developed

by instrument companies, and they are usually deployed in surface measurement

instruments. For example, Talymap is such a software system which is primary

embedded in surface measurement instruments manufactured by Taylor Hobson [8]. With

these convenient and efficient systems, metrologists are able to carry out surface

characterisation and evaluation after measurements. Besides, some institutes also develop

their own surface characterisation system [8-10]. Although there are many surface

characterisation systems already, it is still necessary to implement flexible system

architecture. The reason will be elaborated from two different perspectives below.

From the point view of surface metrology, it is expected to get the same characterisation

and evaluation result for a particular measurement data. Conversely, there are always

large variations in the output results among different characterisation systems, which are

caused by a couple of reasons, such as ambiguous definitions, choices of analysis

methods and various implementations. ISO (International Organization for

Standardization) issued a series of characterisation standards which aim to standardise the

characterisation methods. For example, ISO 4287 specifies terms, definitions and

parameters for the determination of surface texture by profiling methods [11], while ISO

25178-2 specifies them by areal methods [12]. However, due to the mathematical

ambiguity of some definitions presented in these ISO standards, there is scope for

different interpretations of how to calculate the parameters. Consequently, software

engineers may design mathematically diverse algorithms to implement the definitions

[13]. That explains why it is hard to get the same result from different characterisation

systems even if they realise the algorithm strictly in accordance with ISO standards. Thus,

13

the characterisation results as the communication information of a surface are

incomparable and untraceable, and it would be meaningless to compare analysis results,

which are derived from different characterisation systems.

 In addition, surface characterisation and verification results are figured out by several

sequential steps of processing. According to GPS (Geometrical Product Specification)

standards, the whole procedure is recognised as an operator, while each step of

processing is thought of as one operation [2]. In other words, a surface verification

operator is usually composed of a set of sequential operations. Verification results are

closely related to the verification operator. At present, the realisation of surface

characterisation systems primary relies on operations instead of operators. Operators

cannot be provided by existing characterisation systems, and they are generated by

metrologists during the course of surface characterisation and verification. When

evaluating a particular surface, various verification operators are likely to be used for the

same surface by different metrologists, moreover, it is inevitable even though the

metrologists are the same person, therefore, evaluation results will be greatly affected by

the subjective determination. To reduce the influence caused by human factors, it is

essential to provide verification operators for a surface characterisation system.

From the perspective of software engineering, as aforementioned, there are a number of

characterisation systems developed by various companies or research institutes [8-10]. It

is well known that most of the functions of these characterisation systems are similar,

which should be implemented according to ISO standards. As a result, a great deal of

redundant and reduplicated work has been done, and each characterisation system has to

provide such a functional implementation. These characterisation systems suffer from a

couple of insufficient capabilities, which are elaborated from following aspects:

 Reusability: Some basic and common functional modules are essential parts for

every surface characterisation system. Since they are developed to satisfy a

specific characterisation system, they cannot be reused by other systems. For one

thing, the development environment of a functional module, such as programming

language, tools and platform, is selected in accordance with the whole

characterisation system, which will encapsulate this functional module. For

14

another, functional modules are normally tightly coupled with the whole

characterisation system. They are not independent components and cannot

execute separately. When developing a new characterisation system, the

developer has to re-implement the similar and basic functional modules from

scratch instead of reusing existing ones, which will cost much time and effort [14].

 Extensibility: Surface characterisation system is apt to be updated with the rapid

innovation of surface metrology techniques; evolving from profile to areal

characterisation, from stochastic to structured surface analysis and from simple

geometries to complex free form geometries. With the development of processing

and manufacturing technologies, novel characterisation techniques are expected to

satisfy new emerging requirements[15, 16]. Hence, not only the conventional

characterisation methods but also some state-of-the-art analysis algorithms and

techniques will be taken into account. However, it will cost too much to embed

those emerging techniques to the existing characterisation systems as developers

are supposed to have good knowledge of the characterisation system architecture.

Even worse, after the extension times and times again, the characterisation system

tends to become unstable and error-prone.

 Maintainability: Maintenance is always a significant activity during the whole

life-cycle of modern software systems. It is inevitable to maintain surface

characterisation systems to keep their functionality in line with requirements and

ensure their availability [17]. For existing characterisation systems, code

modification is quite common during the procedure of maintenance as they are

tightly coupled. However, code modification can only be done assuming the

original code has been understood by maintainers. They also need to have

intimate knowledge of the system architecture, and that would cost too much time

and effort for them who have not participated in the design and development of

the system. Because of the different coding style, most software engineers prefer

writing the code themselves rather than reading others‘. With the incessant

modifications, surface characterisation systems will become increasingly

complicated and hard to maintain. Another momentous drawback with respect to

15

maintenance is that any modifications may cause the recompiling and rebuilding

of the whole system, and then redeployment on target computers, even if it is just

a slight modification [18].

 Customisation: Generally, functions of surface characterisation systems are

determined by developers, which cannot be changed by end users. As they do not

provide any ―space‖ for users to reconfigure its functions, what users can do is

just to utilise existing analysis functional modules [19]. Sometimes, not all of the

functional modules provided by a characterisation system may be really useful for

some users, and they might want to use their own algorithm or idea to analyse

surfaces. However, it is impossible to embed users‘ algorithms to current

characterisation systems, and they have to develop a simplified version to practise

their algorithms. In other words, users will have to implement many other

functions which are not relevant to the algorithms themselves, such as file access

and data visualisation. That could be notoriously difficult and may lead to plenty

of irrelevant work for users.

As stated above, drawbacks of current surface characterisation systems have significant

effects not only on the realisation of standard surface characterisation process, but also

the renovation of themselves. Due to the fact they are implemented by various companies

and research institutes individually, the evaluation results from different characterisation

systems are not exactly the same, and what is worse is that some of them may be

contradicted with the others. According to the intention of GPS standards, the evaluation

result should be consistent no matter which characterisation system is adopted. Hence,

reducing ambiguous of GPS standard documents and affording relevant functional

modules would conduce to acquire comparable and traceable evaluation results.

Meanwhile, the low capability of functional module reuse, system extension,

maintenance, and user customisation is also a barrier of system evolution and

characterisation technology progress. To overcome aforementioned issues, it is essential

to develop a novel and flexible characterisation system for surface metrology. This

project sets out to realise such a surface characterisation system with the state-of-the-art

techniques of software engineering, and establish an open flexible architecture with the

absolute separation between functional modules and system framework [20].

16

In the realm of surface metrology, the crucial thing is how to acquire surface features and

evaluate surfaces by qualitative or quantitative analysis of these features. Currently, some

researchers have to be involved in the development of characterisation systems, and they

need a deep knowledge of the system architecture. Even worse, they will have to spend

substantial time to evolution and maintenance of the characterisation system [14], which

is not the primary work for a researcher of surface metrology. However, with the flexible

characterisation system, researchers can throw themselves into the research of

characterisation technologies rather than the implementation and maintenance of the

characterisation software system. They just realise their own analysis algorithms or

methods and build them as executable functional modules which can be embedded into

the flexible characterisation system.

1.2 Aim and Objectives

This thesis aims to establish a flexible software system for surface evaluation based on

the investigation and improvement on present surface characterisation techniques. The

most essential difference from current characterisation systems is that the designed

system will be constructed by various independent functional components instead of

being created as a standalone chunk. Namely, the entire system will be divided into one

system framework and a number of functional components: The system framework

mainly manages the interaction between the overall system and end user, event driven

and components management; Functional components, which are loosely coupled with

system framework, will be designed as an independent and executable block. Both the

system framework and functional components will be developed independently and then

can be seamless connected together at run-time.

It is envisaged that this project will contribute to the provision of a common

characterisation system for the researchers of surface metrology. Each user of the user

group can develop its own functional modules or outsource certain functional modules to

third party. The platform can provide a convenient method to share novel algorithms or

techniques and comparisons of analysis results will be realised easily. In order to achieve

this purpose, the research objectives of this project are classified as follows:

17

1) Investigate the standard surface characterisation techniques. Surface

parameters are widely accepted for evaluation of surface topography, and most

common parameters for profile and areal have been defined in ISO 4287 and ISO

25178-2 respectively. Generally, there a series of algorithmic operations needs to

be completed prior to calculating parameters, where the whole procedure for

evaluating surfaces can be recognised as a verification operator. To apply this

standard method to evaluate surfaces, it is therefore essential to develop and

understand the meaning of each parameter and the effect of each operation on the

resulting parametric outcome.

2) Design an open architecture for the software system. Open architecture means

that the specifications of the architecture are public, and all the parts of the

architecture are loosely coupled. Specific functional analysis modules can be

added, removed or replace dynamically without affecting other parts of the

software system. Based on this open architecture, the ability to extend and

maintain the system no longer belongs to the system creators. Other developers

can also participate and share in the system innovation.

3) Categorise the analysis function modules. One functional module is an

implementation of certain operation, and a series of sequenced operations are

composed to be an operator. In a characterisation system, there are many

functional modules. Usually, various functional modules need to be organised and

invoked in a different way. In order to reconfigure them dynamically, it is

necessary that they are discernible for the system framework. Thus, they ought to

be categorised by distinguishing their inherent attributes such as input and output.

4) Formulate the interaction protocols between functional modules and the

system framework. As all analysis functional modules will be physically

separated from the system framework, in this way the system architecture will not

become increasingly complex in nature. When evaluating surfaces, the standard

interaction protocols are prerequisites to connect functional modules and the

system framework together. These protocols specify how to carry out data

exchange, process control, and message map.

18

5) Develop the system framework and functional modules. As functional modules

are independent parts and separated from others, they can be implemented without

taking into account others but only within predefined interaction protocols. The

system framework is an essential part for the entire software system, and it

functions as a container in which functional modules can be executed. Functional

modules are responsible for practical analysis activities, and they can be

reconfigured dynamically.

6) Construct the user customisation mechanism. The development of functional

modules are not only realised by system developers but often by system end users.

Although developers can implement as many functional modules as they can, it is

still not enough for all users in that it sometimes requires specific analysis

algorithms for particular surface characterisation. Furthermore, the emergence of

novel analysis methods is ceaseless, and it is impossible for developers to cover

all of them. The customisation mechanism enables users to develop proper

algorithms or methods, for a certain surface evaluation cases, where the

developed functional module can be integrated into the software and can also be

directly distributed to other users without any modification.

The fundamental idea behind the software system is to separate functional modules from

the entire characterisation system absolutely. After achieving the above six objectives, a

novel flexible characterisation system can be established. Future end users can integrate

and customise new functional modules, yet the complexity of system architecture will not

increase when reconfiguring functional modules. In addition, establishing such a flexible

characterisation system is aimed at supplying a powerful software system to characterise

surface textures using multiple and customised functional modules. Every end user can

concentrate on individualised characterisation algorithms and methods, and then develop

his or her own functional modules and distribute them. In essence, the proposed system

will facilitate communications among different organisations and promote the deepening

use surface characterisation techniques.

19

1.3 Approach

During recent decades, with the advancement of computer technology and the consequent

software development is undergoing a huge paradigm shift: From the beginnings of

process-oriented approaches, through to object-oriented and later, to the current aspect-

oriented and component-oriented, software engineers have been working to simplify the

development, implementation, and maintenance of software applications [20].

At present, object-oriented programming is still widely used in software development.

Nevertheless, it is not convenient and suitable for establishing flexible architecture to

achieve fine-grained cohesion. CBD (Component-Based Development) as the successor

of object-oriented development is normally highly cohesive, and it has become an

increasingly popular approach to facilitate the development of evolving systems as it

promises to address some of the problems of object-oriented development technologies

[21]. The advantages of component-oriented development over object-oriented method

are listed as follows:

 Extensibility: Object-oriented applications can normally be adaptive to additional

requirements by modifying some existing code or appending some new codes

[22]. As the generic architecture is not explicit enough, a great deal of detailed

study is required to find out where the amendment is needed. By recompiling and

rebuilding the whole framework, an extended version can be accomplished and

re-released. In contrast with object-oriented, CBA (Component-Based

Architecture) is very systematic and the applications are composed of components,

which are independent blocks. Without modifying the system framework, the

applications can be extended by adding new components or replacing improper

components.

 Reusability: It is well known that class is the elementary unit of the object-

oriented development. The reusability of the class is concentrated on, while

encapsulation and inheritance are the mechanisms to facilitate reuse. However,

this is white box reuse and developers need to have a detailed understanding of

the structure of class [23, 24]. It takes much time and effort for developers to

realise the reuse. Thus the object-oriented development does not give an optimal

20

solution for the reusability of software development. CBD technology has

enhanced the reusability of software. Components are thought as independent

software modules, and the applications are composed of combinations of various

components.

 Maintainability: As the system application is a whole chunk of binary code with

the object-oriented development, it is quite difficult to find out where any bugs

are in the system. In addition, any code modification may cause a system to be

unstable. The objective of the component based software development technology

is to take elements from a collection of reusable software components and build

applications by simply ―gluing‖ them together [25]. Thus, it is the component that

is the unit for maintenance instead of the whole system. After modifying or

replacing the incorrect component, there is no need to re-compile, distribute and

deploy the system again. Each component can be connected seamlessly to the

system, and so the system application is easy to maintain.

Simply, compared to the object-oriented development technique, component-oriented is

supposed to realise a coarse-grained and loosely coupled system architecture, which

supports dynamic function integration. As mentioned previously, ideally system

functions need to keep pace with any innovation in surface analysis and evaluation

techniques, thus component-oriented development is supposed to ensure the flexibility of

the system architecture which facilitates the reconfiguration of system functional modules.

Therefore, the component-oriented development technique is more competent, and it is

adopted here to establish the proposed characterisation system which can satisfy the

indefinite function requirements, so that frequent changes and expansion will not affect

the stability of system architecture [26].

Currently, component based software development has already been supported by

commercial component frameworks such as COM/COM+ (Component Object Model)

[27], CORBA (Common Object Request Broker Architecture) [28] and Java/RMI

(Remote Method Invocation) [29]. The choice of a component-oriented technique that is

more suitable for the surface characterisation software system depends on the application

platform [30]. COM/COM+ is suited for software solutions developed for the windows

21

operating systems, CORBA for mission-critical and high-availability applications on

mainframe and UNIX platforms, Java/RMI is best for the Internet and e-commerce

applications that need to be ported across a large number of platforms. The proposed

surface characterisation system is designed to be a stand-alone application and executes

on the windows operating system. Hence, COM/COM+ is the primary component-

oriented technology to be adopted.

One of the most important breakthroughs in software engineering and component based

development is the UML (Unified Modelling Language) [20, 31]. UML provides a broad

and precise notation for component specification, component dependencies, and their

realization through collaborations among objects. The component diagram is used to

model the static implementation view of a system. These features make UML the best

choice to develop components and component oriented applications [32]. Therefore,

UML will be employed during the design and implementation of the proposed flexible

system. In addition, as COM/COM+ is a binary interface standardised for software

componentry, it is also language-neutral and facilitates objects being implemented by

different programming languages, all function modules of the proposed system will be

implemented as system components using the C++ programming language, while the

system framework will be implemented using C# programming language because of its

reflection mechanism [33].

1.4 Thesis Structure

This thesis starts with an extensive literature review of advanced surface characterisation

techniques in the field of surface metrology, and then constructs the flexible

characterisation system with state-of-the-art software development methodologies [34,

35]. There are 8 chapters in total. Figure 1.1 illustrates the relationships and the

connection between them:

Chapter 1 introduces the background and states the deficiencies of current software

systems for surface characterisation in respect to reusability, extensibility, maintainability

and customisation. The aims, objectives and approach of the research are put forward.

Chapter 2 provides a literature review and introduces common surface characterisation

techniques which are used to evaluate the quality of a surface.

22

Chapter 3 focuses on the design of flexible system architecture. Firstly, component based

development is discussed, which includes the framework of component based

architecture, current technologies for CBA and its advantages. Then, the flexible surface

characterisation system architecture is designed based on the categorisation of system

functions. Finally, the development models are discussed and applied to the development

of the system framework and functional components.

.

Chapter 1

Introduction

Chapter 2 Surface

characterisation techniques

Categorisation of functions

COM

technology

System Design

System framework Chapter 4 Data

access components
Chapter 5 Data

process components

Chapter 6 Data

display components

Data format

specifications
OpenGL,GDI+,etc.

Chapter 7

System Test

Chapter 8 Conclusion

and futurework

Chapter 3

Figure 1.1: Thesis structure diagram.

Chapter 4 describes the design and development of data access components. This chapter

starts with the introduction of conventional surface file formats. Then, the internal surface

data structure is designed and the interface of data access components is defined.

Moreover, the SDF file component is selected as an example to demonstrate the

implementation of data access components.

23

Chapter 5 presents the design and development of data process components. As the data

process components are more complex than the other two types of functional components,

the categorisation of them is discussed first. Then, the interface of each type of data

process components is defined respectively. Similarly, a case study concerning the

geometrical analysis component is finally given.

Chapter 6 elaborates the design and development of data display components. This

chapter starts with the introduction of computer graphics. Then, the interface of data

display components is defined. Finally, the implementation of 3D display component

using OpenGL technology is presented.

Chapter 7 deals with the system test and evaluation which is carried out by various test

cases and comparison with other systems.

Chapter 8 concludes the outcomes and contributions, and suggests possibilities for future

work.

24

Chapter 2 Surface Characterisation Techniques

2.1 Introduction

Surface metrology, which is the measurement of the deviations of a workpiece surface

from its intended shape, is one of the fastest-growing areas of engineering and quality

management [36]. Surface texture is an important factor in determining how a real object

will interact with its environment, and it has been accepted as being significant in many

fields. What happens during the interaction between two surfaces can affect the

functionality and life span of a product, understanding the role of surface features in the

function of a component is vital for creating and producing effective product designs and

manufacturing protocols.

Using the fingernail and the eye was the original way to measure and assess the quality of

surfaces. However, this is subjective and arbitrary in the sense that evaluation of the

results is mostly determined by the tester. Surface features are usually too small to be

assessed effectively by such a ―touch and sight‖ [7]. The demand for effective methods to

extract these surface features has stimulated engineers to explore new characterisation

methods. Nowadays, surface characterisation techniques have made considerable

progress. Many mathematical algorithms have been adopted to extract the significant

surface topographical features, and these features can be represented and quantified by a

set of characterisation parameters, which are calculated after sequential data processing.

A series of GPS standards have also been released to the guarantee commonality of the

characterisation process. This chapter gives a literature review of such existing surface

characterisation and evaluation techniques.

2.2 Surface Verification Operator

It is well known that every workpiece is anticipated to satisfy all the criteria implied by

its design, and that is the natural purpose of manufacturing. Normally, a workpiece is

formed by different geometrical features and described by the inscription of sizes and

angles in its nominal form. There are many geometrical features available for the

designer to define the workpiece, these are described by various mathematical parameters

according to the principle of computer-aided manufacturing. The goal of measuring a

25

workpiece is to check whether the tolerances and specifications defined by designer are

met. Intuitively, a surface is a set of infinite points that separate a workpiece from its

surrounding. On a real workpiece only a limited number of points can be used

metrologically. Currently, the skin mode, which is a geometrical model of the physical

interface between a workpiece and its environment, is widely used for the verification

and evaluation of a workpiece [2].

The skin mode presents a description for geometrical product specification and

verification with its associated details and on this basis―every workpiece can be

geometrically defined and considered by applying manipulations of the workpiece

geometry. This determination is based on mathematical rules and definitions. This

therefore means that according to this determination every workpiece can be designed

and on the other hand according to the design it can be measured efficiently. The skin

model defines non-ideal features by consideration of ideal features at the workpiece

surface. A real feature is a non-ideal feature the shape which depends on the production

process and its conditions whereas ideal features exist only in theory [37].

DESIGN INTENT

(Specification)

VERIFICATION of

Manufactured Workpieces
(Measurement)

SKIN-MODEL

Geometrical representation

(infinite set of points)

REAL SURFACE

Set of features which

physically exists

OPERATIONS

Ideal and/or non-ideal

features

 Partition Extraction Filtration Association Collection Construction Evaluation

Specified Charateristic Result of Measurement

Comparison for Conformance

OPERATIONS

Ideal and/or non-ideal

features

 Physical Partition Physical Extraction Filtration Association Collection Construction Evaluation

Figure 2.1: Comparison of Design Intent and Verification of manufactured workpiece.

26

Figure 2.1 shows the parallel procedures between ―Design Intent‖ and the ―Verification

of Manufactured Workpieces‖ so that they comply with the design intent [38]. The Skin-

Model is based on some general and basic definitions and using tools, which are named

―Operations‖ that can be compared with mathematical operations using arithmetic

techniques. The operations which are applied within the skin model are [39]:

1) Partition; used to identify bounded features.

2) Extraction; used to identify a finite number of points from a feature, with specific

rules.

3) Filtration; used to distinguish between roughness, waviness, structure, form, etc.

4) Association; used to fit ideal feature(s) to non-ideal feature(s) according to

specific rules, which are called criteria.

5) Collection; used to identify and consider some features together, which together

play a functional role.

6) Construction; used to build ideal feature(s) from other feature(s) whilst respecting

defined constraints.

7) Evaluation; used to identify either the value of a characteristic or its nominal

value and its limit(s). The evaluation is always used after the feature operation(s)

defining one specification or one verification.

In the Skin Model, no ordering of operations is implied in the above list. Various

verification operators can be found by these feature operations applied with different

orders, which are usually determined by the effects of each operation and the actual

requirements. Although there are no perfect verification operators that can be used for all

real workpieces or products, most of them may be verified by using the common operator

consisting of all operations listed in the skin model.

The Skin Model can also be extended and applied for surface characterisation and

evaluation in theory. When verifying a surface, several data processing steps are required

to extract significant surface features. Thus, the whole procedure is considered to be

analogous to a verification operator, while each data processing step is one operation. Not

all operations defined in the Skin Model are suitable for surface data processing and some

27

of them are not necessary. For example, the operation ―partition‖ is not suitable for

surface data as the measured surface itself is a bounded feature of a workpiece. In the

field of surface metrology, to achieve a reasonable and logical evaluation, some

additional operations are used to extract specific features of surfaces. Regardless of

whether operations used for surface characterisation are defined in skin model or not,

these operations comprise a concrete surface verification operator. With different

operations or same operations but in different orders, various operators can be formed to

satisfy a variety of surface characterisation requirements.

Theoretically, any surface evaluation results should be acquired from a completed

verification operator and it will be meaningless to compare the evaluation results without

considering which verification operator is used. Whereas, during the procedure of surface

characterisation verification operators are often less emphasised and sometimes neglected.

Instead, the techniques used in each data processing step, namely operations, are well-

developed and widely used for various kinds of surfaces. To enable traceability and

comparability of evaluation results, it is necessary to keep records of all operations

adopted in order to realise the repeatable characterisation of any surfaces. Surface

verification operators can be used to precisely save and express those operations applied

during the surface characterisation process. Therefore, appropriate verification operators

for the realisation of surface characterisation should be encouraged and promoted widely.

At present, although no operators have been defined in ISO standards explicitly, one

operation chain has already been implied in ISO 25178 and it is widely accepted and used

for real surface evaluation. This operation chain can be thought as a standard operator for

general surface characterisation. Each operation involved in this operator has already

been separately defined in relevant GPS standards [11, 12, 40-46]. Generally, there are

four significant kinds of operations in one surface verification operator, and they

comprise measurement, fitting, filtering and parameterisation. Figure 2.2 shows the

flowchart of the evaluation of a surface with the standard verification operator. In

addition, metrologists can also generate their own verification operators for different

kinds of characterisation cases. Therefore, surface verification operators should be

supported in the characterisation system. Unfortunately, they are neglected in present

characterisation system.

28

Surface measurement instruments

Results of evaluation

Measurement data

Primary surface

S-F surface

S-L surface

Parameters

S
u

rf
a

c
e

 v
e

ri
fi
c
a

ti
o

n
 o

p
e

ra
to

rs

Data access

F-operator

L-filter

Parameters Calculation

ISO5436-2

ISO25178-7

ISO3274

ISO25178-2

ISO13565

ISO16610 series

ISO4287

G
P

S
 S

ta
n

d
a

rd
s

Figure 2.2: Standard surface verification operator [2].

Surface analysis and characterisation usually starts from the measurement data which is

considered to be the digital representation of the original ―real‖ surface. The

measurement data is acquired from metrology instruments and usually consists of a set of

discrete height information defined over the measurement plane. As various measurement

techniques and measurement environments may lead to different measurement data and

the accuracy and precision of the measurement instruments used have a significant

influence on the final evaluation result, it is necessary to measure a surface with an

appropriate instrument. In the past, a judgement was of the measurement technique

appropriateness from visual inspection of the magnified representation of the surface

which is reconstructed from measurement data. Nevertheless, it might be too simplistic to

evaluate the measured surface in this way. As surface intrinsic features are hidden in the

29

height data, a set of sequential operations are required to extract salient features from the

measurement data.

The standard surface verification operator mainly focuses on extracting surface roughness

and waviness, and quantifying them for quality assessment. For a surface characterisation

system, the initial step is to import the measured data which is stored in a digital file with

a specific file format. Although profile and areal data formats have already been defined

in ISO 5436-2 and ISO 25178-71 respectively, there are still a number of file formats

widely used, in practice which are usually specified by instrument companies. For

example, SUR is a surface format used by Mountains map and Talymap, while OPD is a

Wyko specified format. It is necessary to have knowledge of the file format specification

in order to access relevant measurement data files. However the fact is that these file

formats can only be accessed by their conterpart surface characterisation systems. This is

mainly caused by two reasons: the file format is not open because of the confidentiality

of business; and it is impossible to include all these file formats in a given

characterisation system. Hence, a standard file format is greatly encouraged for reasons

of the compatibility and interchangeability of surface data files.

5.98m
m

5.9
8m

m

687.04um

0.00

257.02um

0.00

F-operator
5.98m

m
5.9

8m
m

Primary Surface S-F Surface

Figure 2.3: F-operator—first order polynomial fitting.

After importing the measurement data to a characterisation system, the reconstructed

surface without any processing is defined as the primary surface. When measuring a

surface, even after careful alignment with the measurement instrument, there is still some

residual slope and slight curvature. So fitting is considered to be the first step of the

process, which can rectify the measurement setup errors. This operation is recognised as

30

the F-operator and it removes the form component from the primary surface [12]. Figure

2.3 shows an example of using the first order polynomial fitting to remove the tilt form.

The S-F surface is derived from the primary surface by the fitting operation, and the

subsequent operation is filtering. Filtering is very important in surface analysis, and it is

mostly used as the L-filter defined in ISO 25178-2. The action of filtering is to extract the

significant information from the measurement data for further analysis. The S-F surface

topography can be divided into two parts by filtering, and usually the more significant

part is the high-frequency band which is termed the S-L surface (as shown in Figure 2.4).

As the surface feature of interest may be varying and the requirements of the extraction

can also be diverse, taking advantage of the suitable filter with the right parameters can

contribute to an effective extraction.

L-filter
5.98m

m
5.98m

m5.9
8m

m

5.9
8m

m

0.00 0.00

257.02um
154.53um

S-F Surface S-L Surface

Figure 2.4: L-filter—Gaussian regression filtering.

In the last decade, significant advances have been achieved in filtering techniques.

Although the Gaussian filter is widely used today and is referred to as the standard filter,

it suffers from several shortcomings. The profile has distortion near the edges, and it does

not follow the texture in the presence of large form deviation and is not robust against

outliers. The Spline and Gaussian regression filters overcome the problem of edge

distortion and poor performance in the presence of large form, while the robust Spline

and robust Gaussian regression filters overcome all three problems[47, 48]. Wavelet-

based filters provide an efficient way to partition a profile into multiple narrow

wavelength bands. Morphological filters provide an entirely different perspective to

filtering. They are curvature dependent instead of wavelength dependent. Features with

sharp curvatures are not touched by the morphological structuring element, while features

31

with larger curvatures are touched [48, 49]. Therefore, the selection of filter type is

critical when acquiring elements of the surface texture such as waviness and roughness.

Once the S-L surface is obtained, it is then more useful to calculate surface topography

parameters. Parameter calculation is mostly but not always based on the S-L surface

which is normally regarded as the ―expected‖ surface. Most of the profile parameters are

defined in ISO 4287 [11], while the areal parameters are defined in ISO 25178-2 [50].

Different parameters reflect the surface texture from different perspectives. There is no

universal parameter that represents the surface texture well for all cases, but there are

numerous parameters that successfully characterise the surface for special applications.

Figure 2.5 shows the result of a typical parameter calculation for the previous S-L surface

presented in Figure 2.4.

Figure 2.5: Calculation results of standard surface areal parameters.

These parameters are calculated according to their definitions in ISO 25178-2. For

example, the Sa value, which is the most commonly used parameter in areal surface

texture, is the arithmetic mean of the magnitude of the deviation of the surface from the

mean plane [51]. It is defined as:

32

 1 2

1 2

1

0 0

,
L L

a L LS f x y f dxdy (2.1)

Where f is the height of the mean plane and L1 and L2 are the extent of the sample. F (x,

y) is the surface height at (x, y). takes the absolute value.

This standard verification operator provides a vital and effective method of quantifying

surface topography. Many practical verification operators can be derived from the

standard operator by applying different kinds of implementation technique or changing

the parameters of certain mathematical operations. Moreover, not all surfaces are suitable

to be evaluated by this standard verification operator and its derived operators. In these

cases it may be more logical to create some special verification operators for a specific

case of surface characterisation and evaluation, depending on the functions of the

surfaces to be analysed.

2.3 Surface Measurement

The earliest methods of measuring surfaces were using the thumb nail and the eye.

Although both methods were effective, they were completely subjective, did not provide

quantitative results and required high skill levels. Surfaces are increasingly produced by a

large variety of manufacturing processes, where each process leaves its own fingerprint

on surface of workpieces, it is impossible to utilise subjective methods to assess these

―fingerprints‖ by using such crude techniques. Demands for reliable evaluation results led

to two parallel branches of instrumentation: one following the tactile example of the nail,

the other imitating the eye, namely, the stylus methods and the optical methods. Currently,

these are the two broad solutions for surface measurement, and they evolve to measure

different types of surfaces [6]. There are other methods developed for surface

measurement including capacitance techniques pneumatic methods but these are now

rarely used.

2.3.1 Stylus Methods

Stylus methods were the first techniques developed for surface measurement. In the

second half of the 1930s, a number of companies began to develop instruments to

generate the objective information from the original surface. In 1941 for example, the

first commercial instrument ―Talysurf 1‖ emerged from Taylor Hobson in the UK, and its

33

guises was the first one to introduce a graphical chart representing the roughness profile

[6]. However, the Brush development company in the USA was the first to coin the term

profilometer [4]. From that time, the measurement of surface texture was largely based

on profile profilometr. The surface profilometers instruments did not appear until the

beginning of the 1980s and they were largely based on adaptations of existing

profilometers using extra translation stages and independent references.

α

Reference Surface

Measured Surface

Calliper

(a) (b)

α

Measured Surface

Calliper

Figure 2.6: The stylus principle.

The stylus method essentially uses a form of calliper, where one arm makes contact with

the surface to be measured while the other arm contacts a reference surface [52]. The arm

contacting the measured surface ends with a diamond stylus whose tip dimension can

penetrate the detailed geometry of the measured surface. The other arm contacts the

reference surface. Figure 2.6(a) shows the basic configuration. A more common

methodology is to use the measured surface as a reference by using a much blunter stylus

and referencing the measurements to the blunter stylus (the skid) path as shown in Figure

2.6(b). Here the ‗skid‘ technique provides an ‗intrinsic‘ reference. What needs to be

measured is the deviation from the intended surface shape rather than the position or

dimension, so the actual position of the reference relative to the measured surface is not

important [7].

The most important factor of a stylus measurement system is the stylus as the name

implies and it was Schmaltz pushed the idea forward the development of the mechanical

probe [53]. As the tips contact the sample surface, it is necessary to choose hard materials

to avoid tip. For this reason, diamond is widely adopted as the stylus material. Figure 2.7

34

shows two different stylus types. The conical form is the most common stylus type by

now [51].

Cone Pyramid

Figure 2.7: Two types of stylus―Cone and Pyramid [51].

During the measurement, stylus geometry and tip radius needs to be considered as shown

in Figure 2.8. The tip can be infinitely sharp but still not penetrate completely into a

surface groove or valley, in other words, the dimension of the features that can be

measured is determined by the stylus radius. Moreover, if the tip is too sharp, it is much

easier to scratch/damage the measured surface and wear the tip. The selection of a stylus

mainly depends on the degree of spatial resolution desired. For a rough surface whose

roughness is of the order of microns, there is no need to use a very small stylus. In fact, a

stylus with a 10 micron tip radius would ensure reliable measurements and longer tip life.

Stylus

Figure 2.8: Stylus slope effect.

In addition, the process of stylus measurement can be considered as a form of mechanical

filtering. Spatial features smaller than tip radius cannot be measured and consequently

this means that the user will not gain any information that is below the spatial resolution

of the stylus.

In practice for areal measurements, a scanning routine which specifies scanning

parameters such as length, speed and sampling rate needs to be applied to achieve

optimal surface measurement. The selection of these scan parameters must be carried out

very carefully, as poor selection of the scan parameters will result in an unacceptable

measurement. For example, a slow scan speed or too small a sampling spacing will

35

dramatically affect throughput, whereas a fast scan speed may lead to the intermittent

stylus contact with the surface and excessive measurement noise.

2.3.2 Optical Methods

Optical measurement is a measurement technique which relies on the use of light to

obtain surface topographical information. Depending on the usage of light, there are

different kinds of optical methods. Some mimic the eye by using the light reflected off an

area of the surface, whereas some mimic the stylus by focusing the light to one specific

point [7].

Optical methods were first reported by Schmaltz to get the roughness of surfaces in 1927

[54]. From this time on, optical methodologies have been steadily developed as tools for

surface metrology. At present, optical techniques have become the most common method

for surface measurement metrology largely owing to the fast acquisition speeds and non

contact nature of the measurement. Optical methods encompass most typically optical

profilometers, confocal microscopes, and interferometers [55]. In the context of the

present thesis the myriad of techniques will not be presented but the method most widely

used to measure nanoscale roughness will be reviewed to illustrate its importance.

Interferometer methods utilize the coherent property of the light interference between two

identical wavelength light beams from the same light source [56]. Figure 2.9 shows the

classic Michelson interferometer set up. The light from a light source is split into two

parts by the beam splitter. One part of the light reaches the test surface and reflects back

to the detector, while the other reaches a reference surface (usually a flat mirror) and then

travels back to the detector. After traversing these different path lengths, the light beams

are recombined to produce interference fringes. The detector is normally a camera which

contains an optical chip or CCD (Charge Couple Device) that has a light-sensitive pixel

array. This chip can convert the light-intensity value for each pixel into an electronic

signal with a corresponding value which will be stored in a computer. Following this the

reference mirror is moved to change the length of the optical path traversed by the light

beam scattered from the reference. The total movement should be restricted to several

wavelengths of the light (phase shifts). Interference fringes are captured for several

positions of the reference mirror. Changes in these fringes are monitored by the intensity

36

levels recorded by the CCD camera. Using a series of standard algorithms the intensity

changes can be related to differences in the optical path length across the sample surface

and the surface topography can be recovered [57].

Light Source

Beam Spliter

Test Surface

Reference

Surface

Detector

Figure 2.9: Path of light in Michelson interferometer [56].

Optical measurement can bring huge benefits as long as the capabilities and limitations

are clearly understood and applied. Although optical measurement systems involve

projecting light on to the test surface, they are designed to satisfy different measurement

requirements and the cost of them varies. Hence, it is necessary to have a full knowledge

of the scope of application and limitation of the optical measurement system that will be

in use.

A competitive advantage of optical measurement is that it is non-invasive i.e. there is no

need to contact the test surface [58]. Besides, there are many other advantages of this

type optical measurement. For example, it can collect the information of all points within

the measurement area simultaneously, so the surface can be measured quickly.

2.3.3 Other Methods

Scanning Probe Microscopy (SPM), including Atomic Force Microscopy (AFM) and

Scanning Tunneling Microscopy (STM), can also be used for qualitative surface

topography measurement. They are based on a powerful class of tools for nanometric

37

acquisition of topography data on very fine surfaces [55]. Besides, there are other

possible methods for measuring surfaces but on the whole they are matched to a

particular process or surface shape. One of them is the pneumatic technique which is

fairly insensitive compared with other methods [7, 59], and difficult shapes would cause

problems as the shape of the skirt has to match the general shape of the surface, and in

addition the air has to be dry. However, it is cheap and robust. Another possibility is the

use of capacitance based methods which are very sensitive and can be used effectively in

certain applications [53]. Nevertheless, the signal from the transducer is susceptible to

extraneous signals, so shielding has to be used for high sensitivity. Also the electrode

shape should follow the general shape of the surface being measured. A further possible

technique is to use ultrasound, it is possible to get phase as well as amplitude information

from this technique [60]. However, it requires the very high frequencies to measure the

roughness on fine surfaces and the attenuation rate is high due to the poor propagation of

the ultrasonic wave. The directionality can also be poor.

2.3.4 Range and Resolution

The amplitude-wavelength (AW) map developed by Stedman is useful in describing the

performance characteristics of a surface topography instrument, in terms of its ability to

measure a sinusoidal surface, of a given wavelength and amplitude. An AW map shows

the limits of measurement imposed by the instrument and sensor. For example, in the

case of a mechanical stylus measurement, the operational region will be defined by the

stylus tip radius and cone angle, the instruments‘ vertical and horizontal resolutions and

ranges, as well as the datum accuracy. These limitations will produce polygons on AW

maps that show the range and applicability of an instrument and its sensor [61]. AW

maps are usually plotted with log-log scales since the boundaries become straight lines.

Figure 2.10 presents an amplitude-wavelength plot for different instruments for surface

topography measurements. Each polygon in the figure indicates the working area of an

instrument. The figure clearly shows that the specific working areas of the different

instruments and defines the instruments‘ suitability for making a given measurement. The

large working area of the stylus instruments illustrates its wide applicability. It should be

38

noted that the SPM systems have the highest resolution but limited range, while optical

systems have a high resolution and a greater range than the scanning microscopes [62].

0.01

0.1 1 10210 1 1 1010 103102
102

nm μm mm

0.1

1

1

1

10

10

10

102

102

nm

μm

mm

Amplitude

Wavelength

SPM

Optical

Stylus

Figure 2.10: Amplitude-wavelength plot of different instruments for surface measurements [61].

In conclusion, there are many kinds of methods that have been designed to measure

surfaces. Each method has its own advantages and disadvantages, it is therefore necessary

to understand the most suitable technique before applying it to any given measurement

task. Among these methods, stylus and optical are most widely used techniques for

surface measurement. Almost every commercial surface instrument company produces

instrument applying these two methods.

2.4 Fitting Techniques

The aim of fitting is to establish a base geometry from the collected data. Fitting is

recognised as a necessary analysis step in coordinate metrology, as features of interest

such as length, diameter, straightness etc cannot be determined directly from the data

collected by the metrology instrument. Conversely, fitting is not commonly used in

surface metrology [48]. However, there is no doubt that fitting is an important pre-

processing step especially in areal surface metrology and is usually applied prior to

39

filtering. Normally it is hard to align the sample parallel an internal datum of the

measurement instrument. Consequently fitting can involve removing any residual tilt

after alignment by fitting lines (for profile measurement) or planes (for areal

measurement). Therefore, surface fitting usually consists of the profile fitting and areal

fitting, and it is to applied to fit the set of surface data points as closely as possible to a

specified mathematical model [63]. Instead of providing information that can be used for

process control and functional analysis, the created substitute geometry of data points

mainly removes the expected form or effects of measurement and ―prepares‖ the part of

interest for further quantitative analysis.

It is well known that the measurement result may possess residual tilt even after careful

alignment with the datum. In the field of surface metrology, LS (Least Squares) best fit

lines and planes are the most common methods to remove this type of tilt. The following

section presents a brief review of fitting of profile and areal data using LS methods.

2.4.1 Least Squares fitting

Fitting is the process of constructing a model function that has the best fit to a series of

data points. It can be regarded as an over-determined problem as the unknown parameters

in the model function are less than the data points [64, 65]. During the fitting process,

fitting criteria which indicates how to establish the best fit geometry plays a critical role.

Currently, there are many criteria used for fitting techniques [48], such as MZ (Minimum

Zone), MI (Maximum Inscribed), MC (Minimum Circum scribed) and LS. In surface

metrology, LS is the primary used method as it is fast and can produce a stable best-fit

surface/profile.

The LS method uses a standard approach to the approximate solution of an over

determined system. The objective of LS is to find the parameter values for the model

function by minimizing the sum of squared deviations and it is defined as:

 2
,

n

i i
i i

S z f

 x α (2.2)

Here iz is the actual value of the dependent variable. The model function is defined as:

 ,z f x α (2.3)

40

The vector x includes all independent variables and the vector α holds the m adjustable

parameters. The minimum of S is found by setting the gradient to zero.

 0
S α (2.4)

The problem is now converted into a solution of a series of equations. According to the

relationship between the deviations and unknown parameters, LS falls into two categories:

linear least squares and non-linear least squares. The linear LS problem has a closed form

solution which is any formula that can be evaluated in a finite number of standard

operations, while non-linear least squares problem does not have a closed form solution.

Therefore, the non-linear LS problem is usually solved by refinement iterations using

methods such as the Gauss-Newton algorithm.

2.4.2 Profile fitting

Presently, profile analysis is still the most common way to evaluate surfaces as in

industry profile contact analysis still predominates. However, areal optical analysis

methods are becoming widespread because of their natural advantages of speed and non

contact. In some cases, one profile is sufficient to represent the features of interested of

the test surface. To obtain better analysis results, profile fitting is an important step. The

aim of profile fitting is to remove or reduce the effects caused by measurement process

and original form of the surface, as in most instances it is the roughness that is the subject

of the analysis.

Surface profile data is usually stored as a set of sequenced height data iz , and each iz is

associated with an incremental distance ix to the first sampling point. The fitting task is

to approximate these n points (ix , iz) to a predetermined function by using the fitting

process. The predetermined curve/function is commonly known as the ideal function

which indicates the approximate shape of original profile. Most of the common profile

function equations are listed in Table 2.1.

Table 2.1: Common model functions for profile fitting.

Profile Equation

Straight Line 0 1z x

41

Parabolic Curve 2
0 1 2z x x

Cubic Curve 2 3
0 1 2 3z x x x

Polynomial Curve(m-th)
0

m
i

i
i

z x

Exponential Curve xz ab C

Logarithmic Curve
1

x
z

ab C

x and z are referred to as independent and dependant variables respectively, while

others are referred to functional parameters to be determined. The polynomial equations

are mostly used within the profile fitting [66]. Suppose the order of the original profile is

m, there would need to be m+1 parameters determined within the relevant polynomial

equation.

The sum of deviations is given by

 2
2

1 1 0

n n m
j

i i i j i
i i j

S z f x z x

 (2.5)

S is then partially differentiated with respect to polynomial parameters where they are

set to zero,

1 0

2 0,(0,1, ,)
n m

k j
i k i i

i kj

S
z x x j m

 (2.6)

Equation (2.6) is rearranged and then written in matrix format,

 T TX XA X Z (2.7)

Where

2
1 1 1

2
2 2 2

2

1

1

1

m

m

m
n n n

x x x

x x x
X

x x x

0

1

2

m

A

1

2

3

n

z

z

Z z

z

 (2.8)

The equation is easily solved by employing the Gauss-Jordan elimination method.

42

 1T TA X X X Z
 (2.9)

Apart from a polynomial curve, other curves can also be used as model functions as long

as they are the predetermined form of the measured profile. Even if the form of the

profile is indeterminate, any of these model functions can be fitted and assessed post

fitting to establish which is the most suitable.

2.4.3 Areal fitting

Areal analysis is becoming popular in surface metrology, and it is widely accepted as a

better method to characterise a surface than profile analysis [67, 68]. Areal data is

considered to be a more natural way to represent a surface as it contains more

information with regard to intrinsic features. The principle of areal fitting is the same as

profile fitting, namely, to establish the best-fit form for measured areal data. It is well

known that the purpose of surface measurement is to acquire height information

pertaining to the measuring point rather with respect to position information. Surface

areal data is a form of grid data (though not real 3D data). The height value iz is stored so

that it is associated with a relative coordinate (ix , iy). Hence the measured data points

can be represented as a 3D coordinate (ix , iy , iz). Similar to profile fitting, areal fitting is

achieved by approximating the data to a predetermined function of surface form.

Although many equations describing surfaces can be used as the ideal equations for the

areal fitting process, polynomial equations are most commonly adopted because of the

less than obvious shape of the measured surface. Other equations for surfaces can also be

used for areal fitting and the process principle is nearly the same. In the following section,

polynomial fitting of surface data (grid data) will be introduced, and the LS method is

used to establish the best fit surface [69].

For a M N grid of data points, there are T (T M N) points in total. The n-th order

polynomial surface can be expressed as

0 0

,
n n i

i j
ij

i j

f x y x y

 (2.10)

The sum of deviations is given by

43

 2
2

1 1 1 1 0 0

,
N M N M n n i

i j
kl k l kl ij k l

l k l k i j

S z f x y z x y

 (2.11)

For simplicity, suppose

p klw z

, p ku x
, p lv y

,
 1p k l M (2.12)

S is then partially differentiated with respect to polynomial parameters and they are set

to zero,

1 0 0

2
M N n n i

k l i j
p p p ij p p

p i jkl

S
u v w u v

 0,1, ; 0,1,k n l n k (2.13)

Equation (2.13) can be rearranged, and then written in matrix format,

 T TU UA U W (2.14)

Where

2 1
1 1 1 1 1 1 1 1 1

2 1
2 2 2 2 2 2 2 2 2

2 1

1

1

1

n n n

n n n

n n n
T T T T T T T T T

v v v u u v u v u

v v v u u v u v u
U

v v v u u v u v u

00

01

0

10

1 1

0

n

n

n

A

1

2

T

w

w
W

w

 (2.15)

The solution of equation can be obtained by employing the Gauss-Jordan elimination

method,

 1T TA U U U W
 (2.16)

Polynomial fitting, whether for the profile or areal, is the most common method used for

surface fitting. It is an indispensable tool in any surface characterisation system as correct

alignment methods cannot be guaranteed during a measurement procedure. Although

other fitting methods are not used as much as polynomial fitting, they are also important

44

for some special cases especially when the ideal form of a surface is clear and its

equation is not polynomial e.g. a parabolic surface.

2.5 Filtering Techniques

The functional properties of engineering surfaces are relevant to manufacturing processes

used to create them and each process can be considered to leave a ―finger print‖ on the

surface in the form of a unique topography [2]. The microscopic features produced by the

manufacturing process play an important role, and they are crucial factors in determining

the functional performance of surfaces. However, these features are not obvious and

commonly cannot be ―picked out‖ directly from the measurement data. Filtering

techniques can solve this problem by partitioning a surface into different wavelength

bandwidths. The underlying assumption is that surfaces consist of a series surface waves

of varying wavelengths, and that certain wavelength bandwidths are related to certain

aspects of the functionality of surfaces [48]. In comparison to fitting process, filtering is

much more significant in the functionally significant wavelengths, and is a necessary step

within any surface analysis procedure.

In the early development of surface analysis, surface data (profile data) was filtered in a

graphical manner [70]. The measured profile was divided into several segments of equal

length, and then one mean line was extracted from each segment to capture the slope of

the profile. After connecting these mean lines together, the roughness profile was

obtained by considering the deviations of the points from the mean line. The graphical

method of filtering was cumbersome and time consuming. Although the method cannot

partition the original profile precisely using a specific criterion, it can approximately

extract the slope and roughness. Nowadays, it has been recognized that surface textures

consist of fine texture called roughness, superimposed on more general curvature called

waviness and long range deviations called form (as shown in Figure 2.11) [51]. On the

basis of signal processing theory, filtering techniques are utilised to separate surface

textures such as roughness, waviness, and form effectively.

45

Figure 2.11: Roughness, waviness and form of a profile [51].

2.5.1 The Process of Filtering

According to signal processing theory, any signals can be viewed as comprising of

sinusoidal functions of different amplitudes and wavelength. Surfaces are similar as

signals, and surface textures can be considered as consisting of sinusoidal components

within a range of frequency bandwidths [67]. There are two techniques available to

separate surface textures from a surface: one is applied in the space domain and the other

is applied in the frequency domain. As shown in Figure 2.12, path A is in the space

domain, while path B is in the frequency (wavelength) domain.

Path B Surface Filter window
Filtered

Surface

Surface

Spectrum

Filter

Spectrum

Filtered

Spectrum

*Convolution

×
Multiplication

Transform(FFT)

Inverse

Transform(IFFT)

Transform(FFT)

Path A

Step 1

Step 1

Step 2

Step 3

Space

Frequency

Figure 2.12: Filtering process in two domains―Space and Frequency [51].

46

Both methodologies are theoretically equivalent. It is more visually appealing to use path

A because the surface exists in space rather than frequency. The unique step in path A is

a convolution operation between the original surface and a filter window or weighting

function of the filtering method. For each of filtered points, the space domain method

requires a lot of multiplications and additions. In contrast, path B is more effective in

computational terms but requires more steps. The first step is the transformation of

original surface data from the space domain to the frequency domain, and then

multiplication, the second step is carried out in the frequency domain. Finally, an inverse

transform is required to obtain the filtered surface. Although there are three basic steps in

path B, the calculation speed is fast as the transformations by the FFT routine is fast

compared with a convolution operation [51]. In addition, it is relatively easy to change

the attributes of the filter when the filtering operation is carried out in the frequency

domain. Thus most filtering techniques are realised by using path B.

Figure 2.13: Cutoffs of surface filtering [51].

Surface textures are classified as roughness, waviness and form, and they consist of

certain defined wavelength bandwidths [51]. As shown in Figure 2.13, there are three

cutoffs which are required to be determined for the filtering process.

 s is defined as the wavelength band between the roughness and even shorter

wave components (often measurement noise),

 c is defined as the wavelength band between waviness and roughness,

 f is defined as the wavelength band between waviness and longer wave

components such as form.

47

Currently, ISO 4288 and ISO 25178-3 provide guidelines for the selection of cutoff ratios,

stylus tip sizes, and traverse lengths. In practice, it is suggested that users follow the

standard guides to choose values for cutoffs. However, the selection of cutoffs might be

determined according to the application and the intended texture of surfaces for some

special cases. For example, in contact measurement, the measurement itself applies a

filter with a s cutoff , and the s value is associated with the stylus size. In this case

there is no need to set s again within the filtering process in most cases, therefore, a

roughness wavelength cuttoff c is sufficient to extract roughness.

2.5.2 Filtering Methods

2.5.2.1 Electrical Filtering

Electrical filtering is an electrical network which transmits alternating currents of desired

frequencies while substantially attenuating all other frequencies. The first electrical

analogue filter to be used for surface metrology analysis was the single RC (Resistor-

Capacitor) network, and it was subsequently replaced with 2RC (Two Resistor-Capacitor)

filter [49]. The output of this network is not only a response of the input at any instant of

time, but also those of prior input values with given reduced weights.

Although the 2RC filter is analogue and works in time domain rather than space domain

and the implementations of this filter was through the use of electrical components, the

hardware implementation method was later replaced by digital processing equivalents

and it can be conveniently implemented in software. This digital filter became widely

accepted as a ―standard filter‖ and was introduced in many international standards [48].

2.5.2.2 Digital Filtering

In 1965, Whitehouse and Reason simulated the 2RC filter digitally [70]. The 2RC filter

was described as a weighting function according to the cutoff. The weighting function

was convolved with original surface (profile) to produce a running average mean line

which was identical to the 2RC electrical filter mean line. Furthermore, they designed a

phase correct digital filter for 2RC filter which could correct for the undesired phase shift

in its output [71].

48

Today the use of digital filtering in surface metrology is widespread. Generally, there are

three inter related steps involved in using it: specification, design and implementation.

Subsequently, the Gaussian filter was introduced, and a digital filter was designed and

implemented for it. With the improvement of computing capabilities, digital filtering

techniques have become more and more useful within the surface analysis process [48].

2.5.2.3 Gaussian Filtering

Gaussian filtering utilises a filter whose impulse response is a Gaussian function, and it is

described in ISO 11562 [43]. It is probably the most common filter in use today and it is

ideally suited for smoothing surfaces with rich textures.

For surface profiles, the weighting function which determines the transmission properties

of the filter is mathematically described by [72]

 2
1

exp
c c

x
S x

 (2.17)

Where a=04697, x is the position from the origin of the weighting function and c is the

long wavelength cutoff.

The Gaussian function is non zero for any x and theoretically infinite in width. However,

it decays rapidly, so it is reasonable to truncate it and implement the filter directly for

narrow windows. In practice, the width of the weighting function is selected to be the

same as the cutoff c [51]， consequently the mean line is exactly c shorter than

original profile as the distortion occurs at the ends of the profile and is usually removed.

2.5.2.4 Envelope Filtering

Envelope filtering initially proposed by Von Weingraber is different from other filtering

techniques [48]. It generates the reference line (plane) by simulating the process of

rolling a ball over the profile (surface) instead of using an averaging process. The

deviations from the envelope reference line (plane) are assumed to be the texture or

roughness. This filtering technique is termed the Envelope system, while others

mentioned above are covered by the M system (averaging approach).

49

Although the M system has been generally accepted as the standard method of filtering,

the E system is still indispensable in certain instances as it emerged from a functional

standpoint. For example, it is sometimes believed to be a better representation of the

surface where the relative motion between two contacting surfaces is critical. However,

despite this the M system is usually the primary filtering choice. Fortunately, the E

system has re-emerged and found new relevance within the realm of morphological

filtering which is essentially a superset and offers more tools and capabilities [73].

Morphological filtering has already been an integrated part of the ISO filtering toolbox

[74, 75].

2.5.2.5 Other Filters

In recent years, there have been some significant advances in filtering techniques.

Although the Gaussian filter is widely used, it still suffers from some shortcomings.

Some advanced filtering techniques are emerged to overcome these drawbacks. For

example, the Spline and Gaussian regression filters overcome the problem of edge

distortion and improve the performance in the presence of large form, while the robust

Spline and robust Gaussian regression filters sort out the problem that the waviness

profile would be distorted where a large peak or valley occurs [47, 67]. In addition,

wavelet filtering is an effective method that can partition a surface into multi wavelength

bands.

Diverse filtering techniques can be used for different applications. In practise, the

selection of the suitable filtering techniques is significant for the extraction of surface

textures. It is believed that there will be more advances in filtering techniques to satisfy

the requirements of new applications in the future such as structured and tessellated

surfaces.

2.6 Parameterisation

Parameterisation is a useful way to quantify the texture of a surface, and realise quality

control for engineering processes. Due to the diversity and complexity of surface

microstructures, it is impossible to use one parameter to give a complete presentation of

surface texture [67]. A given parameter is usually designed to indicate surface features

just from one aspect. At present, all surfaces can be roughly divided into two groups:

50

stochastic surfaces which have a random texture without any observable structures, and

non-stochastic surfaces which have clear or regular structures such as structured surfaces

[76]. Therefore, there are two primary methods used to parameterise these surface

features respectively: statistical and geometrical methods. Normally, the statistical

method aim to provide an ―average‖ property description of the surface, which is more

related to manufacturing processes, while the geometrical method is more appropriate

from the functional point of view.

2.6.1 Statistical Methods

Statistical methods were first brought in to quantify surface textures, and are still the

most widely used today. Currently, most of the surface parameters designed for profile

and areal characterisation can be regarded as statistical [50]. These parameters were

initially defined by industry for specific needs, and now they are defined in ISO standards

such as ISO 4287 and ISO 25178-2 [11, 12]. Table 2.2 lists the parameters for profile

surface, while Table 2.3 presents the parameters for areal surface.

Table 2.2: Standard surface profile parameters.

Key:P is for profile, R is for roughness and W is for waviness

Family Name Description

Amplitude

Pp, Rp, Wp Maximum profile peak height

Pv, Rv, Wv Maximum profile valley depth

Pz, Rz, Wz Maximum height of profile

Pc, Rc, Wc Mean height of profile elements

Pt, Rt, Wt Total height of profile

Pa, Ra, Wa Arithmetical mean deviation of the assessed profile

Pq, Rq, Wq Root mean square deviation of the assessed profile

Psk, Rsk, Wsk Skewness of the assessed profile

Pku, Rku, Wku Kurtosis of the assessed profile

Spacing Psm, Rsm, Wsm Mean width of the profile elements

Hybrid Pdq, Rdq, Wdq Root mean square slope of the assessed profile

Curves and
related

Pmr(c), Rmr(c), Wmr(c) Material ratio of the profile

Pdc, Rdc, Wdc Profile section height difference

Pmr, Rmr, Wmr Relative material ratio

51

Table 2.3: Standard surface areal parameters.

Statistical parameters are usually relatively easy to calculate as most of them can be

expressed by mathematical formulas. However, their value does not correspond directly

to a physical property of the surface data. Additionally they cannot reflect local features

which lie within the surface topography.

Family Name Description

Amplitude Sq Root-mean-square deviation of the surface

Ssk Skewness of Topography height distribution

Sku Kurtosis of Topography height distribution

Sp Highest Peak from the mean surface

Sv Lowest Valley from the mean surface

Sz Height between the lowest and highest points

Sa Arithmetical average of the surface

Spatial Sds Density of summits of the surface

Str Texture aspect ratio of the surface

Sal Fastest decay autocorrelation length

Hybrid Sdq Root-mean-square slope of the surface

Ssc Average summit curvature of the surface

Sdr Developed surface area ratio

Curves Vmp Peak material volume of the surface

Vmc Core material volume of the surface

Vvc Core void volume of the surface

Vvv Valley void volume of the surface

SK Family Spk Reduced peak height

Sk Core roughness depth

Svk Reduced valley height

Smr1 Peak material component

Smr2 Valley material component

Others Std Texture direction of the surface

S5z Ten point height of the surface

52

2.6.2 Geometrical Methods

In contrast to statistical parameters, the underlying rationale behind geometrical methods

is based on functional requirements. In practise, geometrical methods do not focus on

each data point directly, but try to extract observable geometrical features and then

describe their properties and spatial distribution. The aim of these methods is to reduce

the complex surface data sets to sets of objects which are analysed further. Hence, they

are more natural and easy to understand. Although the extraction of texture features is

very natural, the definition of suitable algorithms is very problematic and has dragged on

for more than a decade. Now ISO 25178-2 has defined feature characterisation which can

be regarded as a geometrical method [12]. Surface texture features which include areal

features (hills & dales), line features (course& ridge) and point features (peaks, pits &

saddle points) are extracted by surface segmentation algorithms. All the feature

parameters defined in ISO 25178-2 are listed in Table 2.4.

Table 2.4: Feature parameters defined in ISO 25178-2.

Name Definition Explanation

Sds FC; H; Wolfprune:X% ;All; Count; Density Density of peaks

Spc FC; P; Wolfprune:X%; All; Curvature; Mean Arithmetic mean peak curvature

Sda(c) FC; D; Wolfprune:X%; Closed:c; Area; Mean Closed dale area

Sha(c) FC; H; Wolfprune:X%; Closed:c; Area; Mean Closed hill area

Sdv(c) FC; D; Wolfprune:X%; Closed:c; VolE; Mean Closed dale volume

Shv(c) FC; H; Wolfprune:X%; Closed:c; VolE; Mean Closed hill volume

S5p FC; H; Wolfprune:X%; Top:5; lpvh; Mean Five point peak height

S5v FC; D; Wolfprune:X%; Bot:5; lpvh; Mean Five point pit height

S10z S5p+S5v Ten point height of surface

The calculation of feature parameters is far more complicated than the calculation of

statistical parameters. However, geometrical methods are irreplaceable for the

characterisation of non-stochastic surfaces. On the basis of segmentation algorithms,

some geometrical features (lines, circles) on the surface can also be extracted. In some

applications, the dimension and distribution of these geometrical features are considered

to be more significant.

53

2.7 Summary

This chapter gives a brief introduction to conventional surface characterisation techniques.

Surface verification operators which consist of a series of operations are introduced and

recommended for standardisation of the process of surface evaluation. Generally, in order

to get the analysis result, the surfaces are processed by these operations such as

Measurement, Data access, F-operator, L-filter and Parameters calculation. A number of

techniques pertaining to operations are also introduced. Although there are many surface

characterisation systems, the surface verification operators are not fully supported. In

practice, they are normally generated by metrologists during the course of surface

characterisation. As a consequence, various verification operators are likely to be created

for the same surface characterisation by different metrologists. The evaluation results

from different operator are greatly affected by the subjective determination, and they are

impossible to be compared.

Surface verification operators are essential to be supported in a characterisation system as

they can reduce the influence caused by human factors. Therefore it is necessary to

develop a novel characterisation system, which can not only provide the standard

verification operator but also entitle users to define their own verification operators. The

verification results will be related to certain verification operator, and it is meaningful to

be compared with those that are characterised by the same verification operator. In this

thesis, a flexible characterisation system will be proposed. As all system functional

modules are separated from the system framework and they can be reconfigured

dynamically, users are able to combine them to form verification operators as they expect

at the runtime. Meanwhile, the proposed characterisation system can also provide users

some typical verification operators such as the standard verification operator mentioned

in section 2.2.

54

Chapter 3 Design and Implementation of Flexible System
Architecture

3.1 Introduction

Surface characterisation systems play a significant role in the field of surface metrology,

and they are developed to assist in surface analysis and are based on advanced computer

technology. All the numerical processes associated with surface metrology can be

facilitated using such systems. At present, surface characterisation systems are commonly

developed by instrument companies and some institutes, most are implemented as stand-

alone systems without adequate consideration of further functional expansion.

Consequently, the maintenance work and upgrading can become very difficult as time

passes. This is due to the fact that any minor changes to certain elements within the

system may affect on other parts and lead to other unexpected issues [18]. In addition,

these surface characterisation systems are implemented for a single platform with certain

programming languages. It is almost impossible to reuse their code or transport them to a

new development environment and as consequence there is poor compatibility.

The NIST online system is developed as a web application which can be used on any

operation system [10]. However, there is no interface for users to realise the system

extension. This means all the functions can only be supplied by the system itself.

―SPIPTM‖ of Image Metrology is easier to be extended as users are allowed to develop

their functional modules as plug-ins [77]. This software system is not designed only for

surface metrology; therefore its available surface analysis functions are not abundant,

even the standard parameters cannot be calculated. ―Talymap‖ is a comprehensive

surface analysis software system which provides plenty of functions for surface

characterisation [8]. Users can also develop their functional modules for their own

purpose. The drawback of its extension method is that users have to configure all text

files manually, thus it is error-prone and may causes some conflicts with other parts of

the system. These three systems are all developed with specific programming languages,

and it is impossible to reuse their functions in other systems developed with different

programming language.

55

It is well known that surface metrology is a rapidly developing discipline. Although many

analysis algorithms and methods have already been specified in ISO standards, there are

still some drawbacks to the present characterisation techniques with many being only

appropriate for some surfaces under certain conditions. In other words, it is necessary to

improve existing algorithms and create new algorithms to meet emerging requirements.

Hence, as a software system in a research field, surface characterisation systems have to

be updated and extended with the developing innovation in surface analysis and

characterisation techniques [78]. In contrast to the algorithms of a surface

characterisation system, the system architecture is of equal importance. It is clearly

advantageous to develop a flexible system architecture that can bring huge benefits for

surface characterisation systems by easily facilitating additional functionality.

Surface characterisation systems are usually supplied together with surface measurement

instruments. After the measurement, surface characterisation can be finished directly with

the associated characterisation system of instrument. It seems a perfect solution for

surface assessment. However, there are many potential problems:

 The analysis results cannot be compared with those exported from other

instruments due to the differences and incompatibilities among surface

characterisation systems.

 Any errors of algorithms or functions in a surface characterisation system cannot

be resolved remotely by its distributor.

 It will cost too much to realise the update of a surface characterisation system

which is in use.

This chapter proposes a flexible software architecture for a surface characterisation

system. The whole system is not implemented as a stand-alone chunk, instead, it is

assembled by different functional components using the analogy of LEGO bricks [79].

Using this approach, system maintenance and extension becomes much easier. As

modifications or changes can be completed inside the component itself without affecting

other parts of the system, the deficient or redundant component can be easily removed

from the system and new components can be amended without difficulty. On the other

hand, functional components themselves can be reused directly by other systems without

56

any changes. Each component is implemented as an executable block, and it can not only

be used in a surface characterisation system but also other software systems to which the

interactive interfaces are transparent.

To implement a complete flexible system, object-oriented development method is

insufficient. As the successor of object-oriented software development, component based

development is adopted here to realise such a flexible surface characterisation system.

This chapter mainly focus on the design and implementation of a system architecture

using the component based development method, and the construction of a novel flexible

surface characterisation system SurfStand.

3.2 Component-Based Development

3.2.1 Component

There are several definitions of the component based approach. A component is defined

as a ―physical and replaceable part of a system that conforms to and provides the

realisation of a set of interfaces‖ [80]. This definition is broad and considers the

component to be an organizational concept that embodies a set of functionalities that can

be reused as a unit. The emphasis in this definition is on ―reuse‖.

Microsoft Corp. has a slightly different definition. A component is defined as a ―software

package which offers services through interfaces‖ [81]. The emphasis in this definition is

on ―service provider‖. The service provider approach considers a component to be a piece

of software that provides a set of services to its users. Both the ―reuse‖ and ―service

provider‖ perspectives of a component introduce the important distinction between its

public interface and its implementation in a particular environment.

This distinction addresses the issue of how the component should be designed in order to

be an independent and replaceable piece of software with minimal impact on the users. In

other words, components are reusable pieces of software code that serve as building

blocks within an application framework [82]. The component is a language-neutral,

independently implemented package of software services, delivered in an encapsulated

and replaceable container, accessed via one or more published interfaces as shown in

Figure 3.1. It is not platform constrained or application bound [83].

57

Provided

Interface1

Component
Provided

Interface2

Required

Interface

Figure 3.1: A component with provided and required interfaces.

3.2.2 Component-Based Software Development

Component-oriented software development can greatly improve the development

efficiency and ease the extensibility and maintenance of large engineering software [84-

86]. Component-based software applications are composed from diverse software

components. Developers and sometimes end-users compose applications from often

stand-alone components in flexible ways to achieve a desired set of functions. Two key

aims of component technologies are to increase reusability of software in diverse

situations without code modifications, and to enable end users to extend and reconfigure

their applications via plug and play of components [87, 88].

The framework for CBA consists of three major parts [23]:

1) The overall system includes the CBAs facilities, services, the application

components, and component managers. All the functions are separated from the

overall system, and implemented in the components. The system is more like a

container where each component can run; it takes charge of the construction,

invocation and destruction of components. The event and message map are

processed by the system.

2) The component is an isolated element, a member of an external distributed

composite system, and it interacts with the system framework through a set of

standard interfaces. Components should be designed to be independent units,

much like Lego building blocks. They can be easily added to the system, and

existing components may be detached and plugged into other systems. The

services offered by components are made public by publishing their interfaces and

contracts.

58

3) The interface is provided for components to enable asynchronous, dynamic, and

anonymous communications. It provides proper connectivity between components

and ensures communication between components. This is crucial to implement

the dynamic connection of components rather than a statically chained function

call. The interface is not only the bridge that connects the components and client;

it also illustrates the functions, while the component is the function

implementation. The connector is transparent to the client who does not need

knowledge of the implementation of components.

The infrastructure for CBD needs three main elements: uniform design notation, standard

interfaces, and repositories [23]. The uniform design notation ensures a consistent

architectural diagram to describe a component‘s functions and properties. This is critical

to design collaboration between components and to ease communication between

developers. A standard interface for components allows applications in any language on

any platform to access its features. This is achieved by an application in binding to the

component model or IDL (Interface Definition Language). IDL is a specification

language used to describe a software component‘s interface. IDL describes an interface in

a language-neutral way, enabling communication between software components that do

not share the same programming language. Repositories provide the runtime environment

for components. Although a component is executable, it cannot run individually. The

construction, operation and deconstruction are also managed by the repositories.

3.2.3 Current Technology for Component-Based Architecture

Component-based software development has already been supported by commercial

component frameworks such as COM [27], CORBA [28] and Java/RMI [29].

 COM is a binary interface standard for software componentry introduced by

Microsoft Corporation. The essence of COM is a language-neutral way of

implementing objects that can be used in environments different from the one

they are created in, even across machine boundaries. Since the specification is at

the binary level, any interface must follow a standard memory layout which is the

same as the C++ virtual function table. In addition it allows the integration of

binary components written in different programming languages. Although the

59

interface standard has been implemented on several platforms, COM is primarily

used in Microsoft Windows.

 CORBA is a standard defined by the OMG (Object Management Group) which

comprises over 700 companies and organizations [89]. It enables software

components written in multiple programming language and running on multiple

computers to work together. The ORB (Object Request Broker) is the distributed

service that implements the request to a CORBA object. It locates the object,

communicates the request to the object and returns the results, when available,

back to the client. Exactly the same request mechanism is used by the client

regardless of where the object is located and in which programming language the

object is implemented.

 Java/RMI is a Java based distributed object framework that relies on a protocol

called the Java JRMP (Java Remote Method Protocol). RMI facilitates object

function calls between JVMs (Java Virtual Machine). Unlike many remote

procedure call based mechanisms which require parameters to be either primitive

data types or structures composed of primitive data types, entire objects, even new

objects whose class has never been encountered by the remote virtual machine,

can be passed and returned as parameters [90]. Since the Java object is specific to

Java, both the server object and client object have to be written in Java.

The choice of the suitable component-oriented technology for the surface characterisation

software system is simply dependent on its application platform [30]. COM is suited for

software solutions developed for the windows operating systems, CORBA for mission-

critical and high-availability applications on mainframe and UNIX platforms, Java/RMI

is best for internet and e-commerce applications that need to be ported across a large

number of platforms.

The surface characterisation system, which is the subject of present thesis, is assumed to

be a stand-alone application executed on the windows operating system. Hence, COM is

the primary component-oriented technology to be adopted. The system components will

be implemented in the C++ programming language using the ATL (Active Template

Library) [91].

60

3.2.4 Advantages of Component-Based Development

There are many advantages to using component based software development to

implement the characterisation system.

1) Reduction in development time and cost: The component, as an

independent module, that is designed and implemented separately. The

loosely coupled relationship between the components and mainframe

allows the parallel development of a system. There is no doubt that the

system development cycle will be shortened. In addition, many system

functions can be achieved by reusing existing components rather than

designing entirely new ones.

2) Reduction in maintenance costs: Because of the encapsulation of the

component, it is possible to add new components and replace or remove

the existing ones without affecting the system as a whole. Whatever the

changes in the components, it is never necessary to recompile and

reconfigure the system.

3) Enhanced extensibility and diversity: Instead of being combined into the

system statically, the component can be connected to system framework

dynamically. It means that the component is absolutely ―plug and play‖,

and there is no need to take system architecture into account. Thus, the

users can customize and update the system as they see fit.

3.3 System Architecture Design

3.3.1 Separation of Analysis Functions and System Framework

Generally whether a software system is suitable for a certain application is determined by

its functions. System functions are of vital importance and always the concern of the

users, while the infrastructure is of little interest to the end user. In a surface

characterisation system, analysis functions such as fitting, filtering and parameters

calculation are more emphasized in comparison to the design of system architecture.

Therefore, most of present surface characterisation systems are equipped with abundant

analysis algorithms but in poor system structures. Functions are tightly coupled with

other functions or system framework, and it is extremely difficult to maintain the whole

61

system owning to these complex dependent relationships between functions and system

framework.

In fact, system architecture is much more crucial for research software systems because

most attributes such as the stability, maintainability and extensibility of a software system

are closely related to its architecture rather than system functions [92]. However, it is

impossible to design system architecture without considering relevant system functions,

since system functions are always embedded in system architecture and bound to the

system framework. Hence, to design and implement a flexible system architecture is to

separate system functions which are prone to change from the system framework

physically [83]. As mentioned in the last section, interfaces play the role of linking the

system functions and framework. This following section will elaborate on the step by step

implementation. For simplicity, a software system with only a few system functions is

taken as an example.

3.3.2 Integrative Structure

The basic structure of system architecture can be thought as an integrative structure, as

illustrated in Figure 3.2. The system function is implemented as a part of the system

framework, and it can be invoked directly as all implemented details are exposed [93].

Both the framework and function are coupled with each other. The system cannot work

unless every part of system is completed. Despite this, this structure is still used as it is

very easy to implement as the developers do not have to pay much attention to the

communication between the framework and functions. There is no need to write any code

to organise system functions, instead they are part of the system framework.

Function 1

Function 4Function 3

Function2

System Framework

Function N

Figure 3.2: Integrative structure of software systems.

62

Integrative structure is suitable for some small scale software systems whose functions

are relatively fixed without too many changes.

3.3.3 Semi-detached Structure

Although integrative structure is very simple and easy to realise, it is not popular for

software development. The primary reason for this is that there can be problems when the

number of system functions increases significantly. For example, when a bug is found in

one system function, modifications may have to be completed within the corresponding

code segment [94]. It can be hard to locate the code which needs to be corrected and

additional bugs in other parts of the system may be generated during the process of

revising earlier bugs.

To improve the integrative structure, one obvious scheme is to divide a software system

into many independent parts. Each part is developed individually and assembled together

to build the final system. This can then be regarded as a new system structure which

could then be thought of as a semi-detached structure [95]. As shown in Figure 3.3, the

system function is separated from the system framework. Thus its development and

maintenance is independent and can be easily reused by other software systems. The

system is a great improvement on most of present software systems are developed with

semi-detached structure or similar structures.

Function 1

Function 4Function 3

Function 2

System Framework

Function N

Static Link

Figure 3.3: Semi-detached structure of software systems.

Although system functions are not part of system framework, the connections between

them are indispensable. All system functions ought to be visible to the system framework,

63

while system framework is responsible for organising the system functions and invoking

them when required. Consequently, developers of the system framework have to write

extra code to deal with the system function elements.

3.3.4 Flexible Structure

In the semi-detached structure, the system framework and functions are separated from

each other and implemented individually. However, the system framework has to know

which functions are included in the whole system and provides associated codes to deal

with comunication. When the number of system functions increases, these codes in the

system framework will increase accordingly and become harder to maintain. In addition,

the building of whole system cannot be completed until all parts of the system have been

implemented. Moreover, the whole system has to be rebuilt and redeployed when

modifications occur no matter which system framework or system functions are used [20].

Function 1

Function 4Function 3

Function 2

System Framework

Function N

Dynamic Link X

Figure 3.4: Flexible structure of software systems.

Usually, system functions need to be defined before the development of a software

system. However, system requirements may change or develop over time even after the

software system has been released for use. It is impossible to ensure that all the required

system functions have been completed during the period of development. Some new

system functions may need to be supplemented later even when the software system is in

use. How to add these new system functions with minimum modifications on existing

system is the key to realising the flexible structure [24, 96, 97]. Although system

64

functions themselves cannot be predicted, it is not difficult to find some features (the

processing of data, parameters and output data) within them that are similar to existing

functions. One feasible way to realise this is that the system framework connects with

system functions according to their features as shown in Figure 3.4. System functions

with the same features are treated in the same way and there is no need to know what the

concrete functions are.

All system functions are divided into different types according to their interaction

features, and one virtual system function alternate is abstracted from each type of system

functions. In practise, this virtual alternate is implemented as an interface which is

regarded as a bridge between system framework and real system functions. As long as a

new system function implements the interface, it can be thought of as a corresponding

type of system function and be invoked through the interface [84]. Therefore, system

functions are not visible to the system framework anymore and they are absolutely

separated from the system framework. In other words, the system framework is realised

based on these abstracted interfaces rather than concrete system functions. Thus more

code for communication and organisation need to be written in the framework. Obviously,

the development of a system framework relies on predefined interfaces of the system

functions, and every system function parts needs to implement these interfaces. Even if

the system framework and/or system function parts are developed separately, the whole

system is established by assembling them together without any other further changes.

In the flexible structure, interfaces acts as a common protocol that every part of the

system has to comply with, and they indicate all the interactions among those

independent parts. System functions can be recognised by the system framework via their

interfaces [98]. Hence, the system becomes much easier to maintain and extend. Any

modifications within one part will not affect other parts of the software system. Moreover,

it is possible to add new function elements without any change to the original system

even when it is running.

3.3.5 Proposed Surface Characterisation System Architecture

At present, most surface characterisation systems are developed with semi-detached or

similar structures. System functions are developed first and then embedded to system

65

framework. They are all essential parts for the normal performance of the system and

mostly unable to be used in other places due to the confinement of the development

environment such as programming language and platform. In the meantime, maintenance

will be costly for such systems. For example, the system maintainers have to be very

familiar with every part of the system otherwise they will have no idea of how to deal

with a problem that emerges when the system is in use. Therefore, the flexible structure is

more suitable to establish a surface characterisation system.

Proposed SurfStand System Architecture

According to the principle that the system should be constructed instead of be created

from scratch. System functions should be implemented as components, and the global

system consists of these components which are standalone and executable entities.

Generally, data importing, fitting and filtering (or any other analysis), parameters

calculation and analysis reporting are essential tasks for a surface characterisation system.

They are the representation of surface verification operations that are used within the

surface characterisation process. The surface data flow within an ideal surface

characterisation system is shown in Figure 3.5.

Data file Untreated

data

Fitting Filtering

Parameterisation

Processed

data

Parameters

AACF APSD ...

Screen PrinterReports

Read

Write

Visualisation

Figure 3.5: Data flow within a surface characterisation system.

66

After the measurement, surface data is initially stored in a data file. When evaluating a

surface, surface data must be imported to the surface characterisation system from a

specific file. The surface data was stored in system memory as ―untreated data‖. Once

imported, users can select certain operations to process the untreated data according to

the specific requirements. As most of the output of these operations are still surface data

(though in a modified form) with the same format as the ―untreated data‖, these

operations steps can be employed repeatedly. Following surface data treatment, the

―processed data‖ which is expected to include the intended features such as surface

roughness can be displayed or parameterised. Finally, the analysis results can be exported

to screen, file reports, printer, etc.

Based on the common data process flow of a surface characterisation system, the system

functions are classified as three main types: surface data accessing, processing and

displaying. Data accessing refers to the exchange of the surface data between surface

characterisation system and data files that are exported from instrument for storing

measurement data. As different instrument companies usually specify their own file

formats, it is required to parse these file formats in order to realise the data accessing

function for the surface characterisation system. Data processing is the core function for

every characterisation system, and it includes most of algorithms that can be applied to

surface data. Data displaying is a necessary function which is used to represent surface

data or analysis results for users. The more friendly the displaying components are

designed, the better user experience will be.

As mentioned previously, either the system framework or any one system function ought

to be a standalone chunk without any real connections with others, while the interface is

the bridge between them. It is essential to define the interface before any development of

those concrete components. In Figure 3.6, SurfStand SDK (Software Development Kit) is

a fundamental software package which plays the core role of separating system functional

components from the ―SurfStand framework‖. It includes the definition of all interfaces

that will be used during the system connection, thus it is the essential package for the

development of a system framework and system functional components. In addition, the

user customisation mechanism is also based on the software package [99, 100]. Users can

67

develop their own functional components by realising those predefined interfaces. Some

critical code fragments of Surfstand SDK are listed in Appendix A.

Data Process

Package

Graphics Display

Package

Visual Studio Development Platform

SurfStand

Framework

SurfStand SDK

Data Access

Components
Data Process

Components

Data Display

Components

Legacy Code Packages

Figure 3.6: Development hierarchy chart for SurfStand.

In one word, both the system framework and functional components are developed on the

basis of SurfStand SDK. The system framework requires these interfaces to complete the

invocation as all functional components are not available during the developing process.

All functional components are expected to derive from the predefined interfaces.

Otherwise they are unrecognisable and cannot be configured in the final system.

Figure 3.7 illustrates the whole system architecture and shows the organisation of each

part of the system. The system framework, as the interface of the entire system, takes

charge of dealing with user requests. Within the framework, there are two important

elements to enable dynamical loading of functional components, i.e. the process selector

and the configuration database. The process selector is used to choose relevant functional

components and carry out the specific actions by invoking those components. However,

as many functional components may realise the same interface, how can the process

selector find out which functional component is the correct one? The answer to this

question is in terms of the configuration database which keeps the records of all useful

68

information with respect to available functional components when they are first added in

the whole system. Therefore, every system functional component must be configured,

otherwise they cannot be invoked at the appropriate time. After locating the correct

functional component, the system framework can create a call out and manage this via its

interfaces. It is apparent that the concrete component is absolutely invisible from the

system framework and invoked dynamically. The only requirement is to configure these

components correctly before invoking them [96]. In this way, it is extremely convenient

to add, remove or replace any functional components even when the system is running,

and users can configure their own surface characterisation system to their own design.

Name

Type

Path

...

Component2 Component3Component1

«interface»

InterfaceA

User InterfaceUser Interface

Component Table

...

Command Table

«interface»

InterfaceB

User Request (order)

Process
Type A

Process

Selector

Process

Type B

Component2 Component3Component1

Command

Component Name

...

Type A

Type B

Interfaces

definition

Configuration

database

Figure 3.7: System architecture of SurfStand.

As mentioned previously, the invocation of system functional components is performed

according to their interfaces which are determined by their types. In the proposed system

architecture for SurfStand, there are various types of system functional components, and

they are invoked in different ways within the system framework. Hence, it is necessary to

classify system functions and design their corresponding interfaces before the

development. The system functions categorisation is referred to Section 3.4. System

69

functional components of the same type have to implement the same interface so that

they can be invoked in the same way. Among these interfaces, a common one for all

functional components is to register some basic component attributes, such as Name,

Type, Path and so forth to the configuration database. This happens when adding a new

system functional component to the system. Similarly, there is also a dual interface which

could be used to deregister functional components.

To sum up the proposed system framework can invoke a functional component via its

interfaces at any time. The components are absolutely separated from each other.

Obviously, it is allowable to change the quantity of system functional components

without altering the system architecture and affecting other parts. It also implies that there

is no need to rebuild and redeployment whole system when adding or removing system

functions and it is desirable for the proposed expandable system. Meanwhile, the whole

system is divided into many small individual parts which are much easier to maintain

than a single large software system.

3.4 Surfstand System Functional Component Categorisation

In the proposed surface characterisation system, there are three major types of system

functions: data accessing, data processing and data displaying. They comprise the

foundation of various data analysis chains. However, they have different I/O properties

and cannot be treated in a unified way. It is required to classify them into different types,

so that system framework can use a unique method to invoke the functional components

with the same type. Furthermore, the categorisation of system functional components is

the prerequisite of the interface design, because interfaces are the only bridge between

them and the system framework.

3.4.1 Data Access Component

Data access components implement system I/O functions. These components acquire the

measurement data from instruments in a direct or indirect way and provide the raw data

for the system. If a data access component directly acquires measurement data from a

particular instrument, it means that this component is a customized component which is

usually bound to the instrument and cannot be used by other instruments. For the sake of

good reusability, the indirect way to acquire measurement data is encouraged as it is

70

platform independent. The measurement data file realises the connection between

instruments and data access components. As illustrated in Figure 3.8, data access

components are responsible for the data transfer between surface data files and the

system framework.

No matter which kind of techniques is used to measure a surface, the result is usually

stored in a file with specific format. The standard file format SDF [41, 101] for areal

measurement data and SMD [40] for profile data are recommended by ISO. However, not

all instruments are compatible with these standard file formats, and some instrument

manufacturers create their own file format for data storing. For example, SUR is used as

Mountains map surface format and Taylor Hobson surface format, while OPD is

Wyko/Bruker surface format. As there are so many kinds of file format for measurement

data, it is impossible to parse all of them. Furthermore some new file formats may be

utilised in the future.

Data Access

Components

Data Import/Export

Surface data file
Surface topography

9.9
8m

m
9.98mm

0.00

1.53mm

Figure 3.8: Function chart of Data Access Components.

3.4.2 Data Processing Component

Data processing components are the core part of the proposed surface characterisation

system, and they are responsible for the realisation of manipulations applied to the

surface data. These manipulations include not only standard surface operations defined in

GPS standards but also other operations which are widely used during the process of

surface characterisation such as some basic data transformation and arithmetic. Moreover,

some novel algorithms or methods may be developed for surface characterisation in the

future, and they may also be defined as data manipulation [5]. In Surfstand, each data

manipulation will be encapsulated as an independent data process component which

71

could be invoked by the system framework dynamically. Thus the capacity of surface

analysis and characterisation is closely related to the number of data process components.

As discussed in Chapter 2, surface characterisation is usually completed with a surface

verification operator which consists of a series of sequential operations, and there are

different types of operations within a complete surface characterisation procedure. Data

process components can be naturally categorised according to their effects on surface

data. For instance, the filtering component is the collection of all data process

components which realise certain filtering techniques such as Gaussian, Spline, Wavelet,

and so on. Figure 3.9 is an example of Robust Gaussian filtering component which

extracts the high frequency band of original surface data.

Figure 3.9: Function chat of Data Process Components.

Most of data process components have the same I/O property as the filtering component,

namely, import one surface data and export one surface data. Thus it is easy to construct

an operation chain, which is also regarded as a surface operator [2]. However, some data

process components are different, their outputs are not surface data anymore. For

example, the output of parameter calculation components is the parameter list rather than

surface data. Therefore, further categorisation of data process components is required to

enable the dynamic connection between them and the system framework. This will be

elaborated in Chapter 5.

3.4.3 Data Display Component

Although the data display component seems to have no direct relationship with surface

characterisation processes, it is helpful to have an intuitive sense of surface data and

72

explicit understanding of each analysis procedure. Both the input data and output data of

the process component needs to be displayed by the display component. A variety of

ways can be used to express a surface data. For example, a data table can list all the

height values of a surface from the quantitative aspect, while a graphical view which

often gives an end user a better idea of surface feature can supply a qualitative overview

of the topography.

A display component only has a surface data as the input and is essentially a display

control. When the system framework needs a display component to present surface data,

one of these display components can be created and then be embed to the system

framework. An integral surface data set usually includes a discrete data set which is a

matrix storing the height and position values and data instructions concerning with the

specification of intervals, offsets, units and so on. The presentation of these height values

of a surface is not simple. One simple way is to plot these discrete points and connect the

adjacent point, and form a grid graphic of the matrix data. However, this grid graphic

cannot ideally display the surface features especially when it is be viewed from the top.

Fortunately, 3D graphical display is no longer a barrier as the development of computer

graphics technology has facilitated this process. Both OpenGL [102, 103] and DirectX

can provide a perfect view of real objects. Figure 3.10 is the interface of a 3D display

component which is implemented by utilising OpenGL technology.

Figure 3.10: Data Display Components―3D Display Component.

73

3.5 System Development Life Cycle

SDLC (System Development Life Cycle) is a conceptual model which specifies how the

activities of the development process are organized in the overall system development

effort. As mentioned above, every part of the surface characterisation system can be

developed individually, thus their life cycles are independent and have no relationships

with other parts. Diverse SDLC methodologies have been developed to guide the

processes involved, including the waterfall model, spiral model, incremental model and

so on. Each model follows a particular life cycle in order to ensure success in the process

of software development. In practise, it is possible to adopt different models to develop

system parts according to their features.

3.5.1 Waterfall Model

The waterfall model is the earliest method of structured system development. The first

formal description of the waterfall model is proposed by Royce in 1970 [104], although

Royce did not use the term ―waterfall‖. The waterfall model is a sequential software

development process which is divided into separate process phases, and it emphasizes

completing a phase of the development before proceeding to the next phase. All these

phases are cascaded to each other so that second phase is started as and when a defined

set of goals are achieved for first phase. Therefore, the waterfall model should only be

used when the requirement is well understood and unlikely to change radically during the

development [105]. It is appropriate for the development of some deterministic function

components.

Although it has come under attack in recent years for being too rigid and unrealistic when

it comes to quickly meeting the customer‘s requirement, the waterfall model is still

widely used. The phases in waterfall model are: Requirement Specifications phase,

Software Design, Implementation and Testing & Maintenance phase.

74

Requirements

analysis

System design

Implementation

Integrate & Testing

Maintenance

Figure 3.11: Software development model―Waterfall model.

As shown in Figure 3.11, the stages of the waterfall model are listed below:

Requirement Analysis & Definition: All possible requirements of the system to be

developed are captured in this phase. The requirements are set of functionalities and

constraints that the end-user (who will be using the system) expects from the system. The

requirements are gathered from the end-user by consultation, these requirements are

analysed for their validity and the possibility of incorporating the requirements in the

system to be development is also studied. Finally, a Requirement Specification document

is created which serves the purpose of guidance for the next phase of the model.

System & Software Design: Before starting actual coding, it is highly important to

understand what the developer going to create and what it should look like. The

requirement specifications from first phase are studied in this phase and system design is

prepared. System Design helps in specifying hardware and system requirements and

helps in defining overall system architecture. The system design specifications serve as

input for the next phase of the model.

Implementation & Unit Testing: On receiving system design documents, the work is

divided into modules/units and actual coding is started. The system is first developed in

small programs called units, which are integrated in the next phase. Each unit is

developed and tested for its functionality; this is referred to as Unit Testing. Unit testing

mainly verifies if the modules/units meet their specifications.

75

Integration & System Testing: As specified above, the system is first divided into units

which are developed and tested for their functionalities. These units are integrated into a

complete system during the Integration phase and tested to check if all modules/units

coordinate between each other and the system as a whole behaves as per the

specifications. After successfully testing the software, it is delivered to the customer.

Maintenance: This phase of the Waterfall Model is a virtually never-ending phase.

Generally, problems with the system developed (which are not found during the

development life cycle) come up after its practical use starts, so the issues related to the

system are solved after deployment of the system. Not all the problems arise immediately

but they arise from time to time and need to be solved; hence this process is referred as

Maintenance.

3.5.2 Incremental Model

The incremental model performs the waterfall in overlapping sections (see Figure 3.12)

attempting to compensate for the length of waterfall model projects by producing usable

functionality earlier. This may involve a complete upfront set of requirements that are

implemented in a series of small projects. As an alternative, a project using the

incremental model may start with general objectives. Then some portion of these

objectives is defined as requirements and is implemented, followed by the next portion of

the objectives until all objectives are implemented. But, use of general objectives rather

than complete requirements can be uncomfortable for project management. Because

some modules will be completed long before others, well-defined interfaces are required.

Also, formal reviews and audits are more difficult to implement on increments than on a

complete system. Finally, there can be a tendency to push difficult problems to the future

to demonstrate early success. If it is too risky to develop the whole system at once, then

the incremental development should be considered [106].

76

Requirement

Design

Implementation

Requirement

Design

Implementation

Requirement

Design

Implementation

Figure 3.12: Software development model―Increment model.

3.5.3 Spiral Model

The spiral model of software development was originally proposed by Boehm [107]. As

the name suggests, the activities in this model can be organized like a spiral. The spiral

has many cycles. The radial dimension represents the cumulative cost incurred in

accomplishing the steps completed and the angular dimension represents the progress

made in completing each cycle of the spiral. The structure of the spiral model is shown in

Figure 3.13 below. Each cycle in the spiral begins with the identification of objectives for

that cycle and the different alternatives are possible for achieving the objectives and the

imposed constraints.

Determine objectives,

alternatives and

constraints

Evaluate alternatives,

identify, resolve risks

Plan next phase Develop, verify

next-level product

Prototype

Concept

Requirement

Desgin

Implement

Figure 3.13: Software development model―Spiral model.

77

There are four phases in the Spiral Model which are: Objective setting, Risk Analysis,

Development and Planning [105]. These four phases are iteratively followed one after the

other in order to eliminate all the problems, which were faced in "The Waterfall Model".

Iterating the phases helps in understating the problems associated with a phase and

dealing with those problems when the same phase is repeated next time, planning and

developing strategies to be followed while iterating through the phases. The phases in the

Spiral Model are:

Objective setting: In this phase, the objectives, alternatives and constraints of the project

are determined and are documented. The objectives and other specifications are fixed in

order to decide which strategies/approaches to follow during the project life cycle.

Risk Analysis: This phase is the most important part of Spiral Model. In this phase all

possible (and available) alternatives, which can help in developing a cost effective project

are analyzed and strategies are decided on how they can be used. This phase has been

added specially in order to identify and resolve all the possible risks in the project

development. If risks indicate any kind of uncertainty in requirements, prototyping may

be used to proceed with the available data and find out possible solution in order to deal

with the potential changes in the requirements.

Development and validation: In this phase, the actual development of the project is

carried out. The output of this phase is passed through all the phases iteratively in order

to obtain improvements.

Customer/End User Evaluation and planning: In this phase, developed product is passed

on to the customer/end user in order to receive comments and suggestions which can help

in identifying and resolving potential problems/errors in the software developed. This

phase is very much similar to a testing phase. A decision is made whether to continue

with a further loop of spiral.

The Spiral model is most commonly used in very large software development

projects. While the phases above bear similarities to the Waterfall model, the project will

go through each of these four stages iteratively until the project is complete and the

customer is satisfied. This allows for flexibility that is not afforded by the Waterfall

model. Once the end user states that he is satisfied, the final system can be constructed

78

based on the very last prototype. Of course, the final system is thoroughly tested after this

to make sure there are no final glitches. As with any system or piece of software, it would

also be subject to routine maintenance.

3.5.4 Development Model of SurfStand

As outlined above, the new characterisation system SurfStand will be developed by

component development techniques. Both the system framework and system functional

component will be developed individually and they are executable chunks. This means

the life cycles are independent and not confined to any other parts. Thus each part of the

system can be developed using different development models.

3.5.4.1 Development Model for System Framework

The system framework is an indispensable part in the system, and it works as the main

system skeleton. Apart from the real surface analysis functions, all other functions that

are associated with the system are running inside the system framework. For example,

users can start the system by executing the system framework part. Subsequently, all

interactivities between users and system are available. As shown in Appendix B, the

connection between system framework and functional components are realised through

predefined interfaces. Although the system can still run smoothly, it is unable to carry out

any analysis operations without any concrete functional components. Fortunately, users

can configure system functions by adding or removing system functional components at

any time after the launch of the system framework. In other words, users can change the

configuration of system functions dynamically, and this activity would not change the

phase of system framework in its life cycle.

Since the system framework is the critical part in the new surface characterisation system,

it is necessary to improve and test it repeatedly to ensure its correctness and stability.

Thus, the spiral model is the most suitable model for the development of the system

framework. It includes four phases and they are iteratively followed one after other as

shown in Figure 3.13. At the beginning of development, it is hard to set up all

destinations, especially for this type of complex software system. Here the system

framework is the most complex part in the surface characterisation system SurfStand, so

it is better to achieve the goals and solve the problems step by step. Supposing every four

79

phases compose a development round which starts from objective setting, there will be a

prototype system framework after each round. Developers can determine the objective of

the next round by testing the prototype and comparing it with the intended one. Also the

problems of the prototype will be solved out in next round. Therefore, the prototype of

the system framework is expected to become better though a development round. With

continuous improvement, the prototype may be released as the final system framework

eventually.

Once the system framework is distributed, it will not be modified as frequently as in the

initial stage of development. As long as there are no more significant user requirements

which are relevant with the system framework rather than surface analysis functions, it is

not necessary to start a new development round of system framework unless surface

analysis models such as the analysis chain model are to be changed or there are

intolerable problems that exist in the current system framework.

3.5.4.2 Development Model for System Functional Components

In the new surface characterisation system SurfStand, all the system functions associated

with surface analysis processing are supposed to be separated from the system and

developed as independent components. Al though they are executable chunks, they cannot

run without a compatible container (the system framework) in the new surface

characterisation system. Therefore, the test of system functional components cannot be

done before the completion of system framework. That could be thought as the only

constraint which may affect the lifecycle of system functional components. However,

there are many ways to simulate the test environment which is not required to be the final

system framework. One straightforward way is to build a replacement of the system

framework, which only realises the interactivities with system functional components and

does not involve in other actions such as user interface. Fortunately, there is a better way

to test COM objects. AXCTC (ActiveX Control Test Container) is a test tool distributed

by Microsoft Company, and it is a container where the standard COM objects can run.

Beside the final system test, all the other test activities of system functional components

can be completed in AXCTC.

80

Since system functional components could be tested individually, it is possible to develop

them with different models and they have their own lifecycle without any relationships

with other parts. The selection of the development model is based on their importance,

complexity and applicability. For example, some functional components are developed to

assist the algorithm research, and this kind of components will not be released for end

users. Thus these functional components are not so important that there is no need to

concern their stabilities. Instead, the development cycle should be as short as possible to

save more time for the research itself. Waterfall model is the most suitable development

model for this case.

In practise, various development models may be eligible for the development of system

functional components, and there are no rules to determine which development model is

the most appropriate one for a specific system functional component. System functional

components comprise data access components, data process components and data display

components. Data access components are relatively not as complicated as the other two

types, it is better to use concise development models which could reduce the development

cycle. The Waterfall model is a commendable choice and it could be employed for the

development of data access components. The primary reason is that the functional

destination is clear and there are no complex algorithms or calculations inside.

However, most of the other two types of system functional components are not simple,

and here waterfall model are not suitable. The requirement or destination is ambiguous as

users are not quite clear what the component is supposed to be. Hence, those system

functional components are required to be developed and tested time and time again until

they are accepted by users. Moreover, this repeat development procedure also leads to

more stable and robust system functional components. Incremental model and spiral

model are both the development models with iterative process, and they will be primary

employed in the development of data process and display components. The incremental

model is more appropriate for components with multiple objectives, and each objective

can be achieved step by step in an incremental way; while the spiral model is more

appropriate for components with an extended objective, and it is easier to get close to the

objective gradually. Certainly, this is not an absolute rule to determine the development

81

models, and developers of these components should take various factors into

consideration and then make the decision.

Moreover, it should not be limited to these three common development models and other

models can also be used for the development of system functional components when

most appropriate. The waterfall, incremental and spiral models are the most common and

classical development models, and they will be used for the development of ―SurfStand‖.

Other development models such as the prototype model, V-model, rapid application

model [105], etc. are not elaborated here, but they are all available for the development of

system components.

3.6 Summary

This chapter emphasises on the design and implementation of the flexible system

architecture. Component based development methods are introduced, and COM is

adopted to be the primary component development technology. The flexible system

architecture is designed by decoupling and categorising functional components. Finally,

the development models are also discussed and discussed in term of the development of

the SurfStand system framework and functional components.

82

Chapter 4 Implementation of Data Access Components

4.1 Conventional Surface Data File Format

Since the emergence of the need to evaluate a surface in a quantitative way, measurement

instruments have been developed to collect the altitude information at specified positions

of the surface. These altitude values compose the measurement result, which is known as

surface data. Surface data, as the representation of original surface, is the basis of

subsequent analysis and evaluation. Obviously it is necessary to store the surface data,

otherwise the surface must be measured every time an analysis is required. In the early

days, most surface instruments stored surface data in their own database and there are no

interfaces to export measurement data. Users could only carry out analysis and evaluation

using the embedded characterisation system of instrument. That was quite inconvenient

as surface data cannot be transferred between characterisation systems and systems were

likely to become out-dated quickly in terms of technology and standards development.

X

Y

Z

X Spacing

Y S
pa

ci
ng

A
lt
it
u

d
e

 v
a

lu
e

Figure 4.1: Surface data pattern―Grid Data.

As the measurement occurs at the specified position of the test surface, the altitude values

are not chaotic and unordered [69]. Consequently the data needs to be stored in surface

data files with specific sequence. Besides, the relevant positional information concerning

altitude values is also needed to be stored. Therefore, surface data is composed of the

altitude values and its relevant measurement position, and it is essential to specify the file

83

format before storing the surface data. For example, surface areal data is organised as

grid data with equal intervals in two coordinate and altitude values in the third coordinate

as shown in Figure 4.1. The actual position can be defined as long as the spacing of X

and Y coordinates are known. Storage space can be saved by recording spacing

information instead of the actual measurement position. This method is widely used for

surface files [108].

Generally, surface files comprise two main parts: one is the header, and the other is the

grid data. The header part stores information on how to reconstruct the measured surface,

while the data part consists of altitude values for each sampling point. Although these

two parts are compulsory for every surface file, the contents and details inside can be

quite different, since they are determined by their file formats. As the aim of surface files

is to store the measurement data, their formats are normally specified by instrument

companies. This explains why there are so many file formats used for storing surface data

each having different specification and definition. Table 4.1 lists some of the more

popular surface file formats [109].

Table 4.1: Common file formats for surface data storage.

*.dat is also used by some other companies with different format specifications

As a result of commercial confidentiality, many file formats provided by instrument

manufacturers are not open to users. Surface files with these formats can only be

accessed by the specific software developed by the instrument companies themselves.

Consequently, in order to improve the commonality and versatility of surface files, it is

necessary to specify standard surface file formats for surface measurement data. At

File format Manufacturer Data type Encoding Type

SDF (.sdf) ISO Areal ASCII, Binary

SUR (.sur) Digital Surf Areal Binary

MAP (.map) Taylor Hobson Areal ASCII, Binary

OPD (.opd) Bruker Corporation Areal Binary

DAT (.dat)* Zygo Corporation Areal Binary

SMD (.smd) ISO Profile ASCII

PRF (.prf) Taylor Hobson Profile ASCII

PRO (.pro) Digital Surf Profile Binary

84

present, SMD and SDF file formats have been defined in ISO 5436-2 and ISO 25178-71

respectively. The former is used for profile data, the latter is for areal data. As the

standard file format, they are supported by more and more surface characterisation

systems. The use of standard file formats is strongly recommended; nevertheless, many

popular file formats as specified by several instrument manufacturers are still widely used.

No matter what format it is, a surface file should include several key elements as listed in

Table 4.2.

Table 4.2: Essential elements for every surface data file.

One dominating distinction among different file formats is the choice of how to organise

constituents in a surface file. The main constituent elements have already been presented

in table, and there may be other constituents in certain file formats pertaining to particular

instruments or other information associated with the specimen. In different file format

specifications, the essential constituent may exist in different positions and occupy

different memory space. For example, the altitude values can be saved as different data

types by which the size and format of one value is determined. As the result, a surface

file cannot be parsed without knowing the specification of its file format. However, since

the altitude data is the primary constituent in a surface file, some file formats can be

reconfigured easily because of its data is stored in ASCII (American Standard Code for

Information Interchange) code. This configuration works fairly well but is not completely

reliable, and it cannot be realised simply by programming as the size of each data set is

uncertain and the unit is not defined. In summary, the specification of file format is the

prerequisite to access a surface file, and it is also the guarantee of accessing a surface file

correctly.

Element Description

Number of Points The number of total sampling data points (It is determined by the number
of points in each trace and that of traces for areal data)

Spacing Sample spacing for each axis

Unit Length unit of each axis (Standard unit is ‗m‘ if it is not specified)

Data type The type of computer data which is used to store Altitude values

Data area A set of altitude values which is stored sequentially

85

4.2 Component Design

4.2.1 Surface Data Structure Design for the Proposed Surface
Characterisation System

Surface data is a complex data type that does not exist in any computer programming

language. Instead it is composed of many individual data types. For convenience, it is

necessary to define a structure for storing the whole surface data. As mentioned in last

section, surface data from different surface files may be varying. Especially, the file

header is composed of differing elements according to its file format specification. For

example, some file formats define a ―created time‖ to record the time when the surface is

measured and stored in the file, while other file formats may not contain this element.

The decision whether such an element needs be recorded in the structure is essentially a

trade off between the memory space and information continuity. Within a surface file, the

elements of the header occupy very little memory space by compared with the altitude

values. Therefore, memory space is not a concern and the structure may contain as many

elements as much as practical or pertinent to the end use of the data.

According to common surface file formats, the data structure is designed as the

compound of many primitive data types such as float, double, char and so on. By

composing those elements together with certain orders, the data structure is designed with

the elements listed in Table 4.3.

In practise, the C++ language is the main programming language that used to create

COM objectives, and the actual data structure is defined as shown in Appendix C (C.1,

C.2).

The order of these elements is arranged according to memory alignment rules. Data

alignment is to put the data at a memory offset equal to some multiple of the word size,

and this will increase the system performance as a result of the way that the CPU (Central

Processing Unit) handles memory. To align the memory data, there may be some

meaningless bytes between the end of the last data structure and the beginning of the next

which is called data structure padding. Hence, when designing a data structure, it is

necessary to consider this effect and arrange the order more reasonably. Otherwise, the

86

same information may occupy more memory space than necessary when the system

executes.

Table 4.3 Internal surface data structure elements.

Although the definition given in Table 4.3 contains almost every element that appears in

a surface data file, there are still some elements which are not concerned here. However,

not all elements in the surface file are necessary to restore the measured surface. A

surface can be recovered as long as the essential altitude values, scale parameters and

units are given. When accessing a surface file, there are three scenarios:

1) The element (such as Element A in Figure 4.2) existing in a surface file can be

found in data structure.

Field Element Data Type Description

Data
Information

Manufacturer Char Array Name of manufacturer

CreateDate Char Array Create Date(YYYY/MM/DD)

ModifyDate Char Array Last modified date (yyyy/mm/dd)

NumPoints long The number of points per profile

NumProfiles long The number of profiles

XScale float Scaling factor of X axis

YScale float Scaling factor of Y axis

ZScale float Scaling factor of Z axis

XUnit Char Array The unit of X axis

YUnit Char Array The unit of Y axis

ZUnit Char Array The unit of Z axis

XOffset float Offset in X axis direction

YOffset float Offset in Y axis direction

ZOffset float Offset in Z axis direction

IsMetricUnit bool Unit system (True: Metric; False: Imperial)

Description Char Array Description for surface data such as process records

Data
Matrix

NumColumns long The number of points in each row

NumRows long The number of rows

Data Float Array Altitude values of all points

87

2) The element (such as Element B in Figure 4.2) existing in a surface file cannot be

found in data structure.

3) The element (such as Element C in Figure 4.2) defined in data structure does not

exist in the surface file.

Element A Element A

Element B Element C

Surface Data File Internal Data Structure

… …

Data Import

Data Export

Figure 4.2: Data transfer between surface data file and internal data structure.

Also illustrated in Figure 4.2 is the fact that there are two directions of surface data

transfer between surface files and the system internal data structure. In order to import

surface data from any surface file or export surface data to a file seamlessly, three rules

have to be satisfied for the previous scenarios:

1) Elements which exist in both sides are copied directly, and essential type

conversions are sometimes required.

2) Elements which only exist in the transfer source are ignored.

3) Elements which only exist in the transfer destination are set with default values.

The first scenario is the most common and it is the simplest way to conduct the data

transfer. There are no difficulties in obtaining the element from surface file and storing it

in the data structure, and vice verse. In Scenario 2, the element will be ignored when

importing the surface data from the file as there is no memory space reserved for it.

Conversely, an element is set with a default value according to its specified type. For

88

instance, if the type is ‗float‘, the value is set to be ‗0‘. This default setting makes the data

transfer smoothly and has no influence on the surface data because the element in

Scenario 2 is not an essential part of surface data. Scenario 3 is similar as Scenario 2. The

difference is that the element exists in the data structure instead of surface file. Thus the

element can be ignored when exporting surface data to files, while it is set with default

value when importing surface data.

Type conversion always occurs during the process of data transfer, because the specified

types of elements may be different between surface file and data structures. It is well

known that numerical values stored in computers can be expressed in different ways with

different degree of precision. Therefore, the type conversion from high precision to low

precision may lead to the loss of precision. To keep the precision of surface data in

original surface files, every element in the data structure adopts the highest precision type

as shown in Table 4.3. As long as the precision of the data structure is high enough, there

should be no issues caused by data transfer from surface files to the data structure. On the

contrary, the potential precision lose caused by data transfer from the data structure to

surface files is not so critical and can be ignored, because the exported surface data will

not used for calculation directly and the relative error is slight. Sometimes, the low

precision types are not adequate to realise some algorithms and may lead to unexpected

results. Hence, high precision types are widely selected in the data structure and are used

in the present system.

Once the rules of surface data transfer between surface files and the data structure have

been specified, there should be no problems for data exchange between surface files and

the characterisation system as long as the surface file formats are known. Therefore, no

matter what types of file format surface data are stored in, it can be converted to be the

same data type which is defined by the data structure. For the present system the user

defined data type is the unified surface data format in the whole characterisation system,

and all functional components will use this structure to exchange surface data.

89

4.2.2 Surface Data Class Design for the Proposed Surface Characterisation
System

Based on the surface data type defined in last section, the surface data class is designed to

combine the data and the relevant data operations together. The surface data type is

defined separately instead of being defined in the surface data class directly. What is of

most relevance is that the surface data structure itself is a complex data type and it

contains many elements. Assuming that all elements and the data operations are put

together, then this is confusing and apt to bring out some unpredictable mistakes.

Moreover, the object of these operations is the surface data rather than its elements.

Setting them at the same level is much more reasonable, and then the levels of structure

are distinct and clear.

Generally, each type of numerical data has its own operations, and surface data is no

exception. Although surface data is not a pure numerical data type, its main constituent is

definitely of a numerical type. Some basic operations for numerical data are still suitable

for surface data such as addition and subtraction. However, these operations usually have

their own constrains, and they cannot be applied on different surface data directly. In this

case the requirements to check whether the surface data satisfies relevant operation

constrains. For instance, surface data with different spacing or units cannot be added

together, otherwise the result is meaningless and its spacing or units are unable to be set.

Beside those basic operations, there are many other operations that are eligible for surface

data. As surface data mainly consists of a set of height values, there are some operations

such as finding the extreme value, reversing each value, truncating height values with a

threshold value, etc which are easy to implement. Regarded as the primitive operations

for surface data, they occur in many algorithms and are widely used in the analysis

process. The code fragments for the definitions of surface data classes are given by

Appendix C (C.3), which includes all those common operations.

Many operations defined in the surface data class are conductive to the implementation of

algorithms. For example, finding the extreme value of the surface data is such an

operation which is often used in many algorithms. Therefore, there is no need to

90

implement this operation any more when developing a functional component. Instead, as

an internal operation of the surface data class, they can be called when required.

4.2.3 Interface Design for the Data Access Components

Before designing the interface of data access components, it is necessary to take into

account common attributes of all functional components in the surface characterisation

system. In order to make functional components known by the system framework, every

functional component has to be registered to the system database. On the contrary,

deregistering a functional component from system database is imperative when it is not

an effective part of the system any more. Hence, the root interface is designed as:

//Interface of all external function components
 public interface SSObject
 {
 bool OnRegister();
 bool UnRegister();
 }

SSObject is the foundational interface for the whole system, and every functional

component has to realise this interface otherwise it cannot be added to system

environment and be executed correctly. In other words, the interface of data access

component has to inherit the root interface SSObject. It is well known that every data

access component has to realise its own interface, consequently, SSObject will be realised

as well because of the inheritance relationship.

Data access components are designed to exchange surface data between the surface

characterisation system and external data sources. As mentioned earlier, surface data sets

are normally stored in surface files after being measured, and they are widely accepted in

various surface characterisation system. Therefore, surface files are treated as the only

data source in this section. In the future, to expand the data source of the characterisation

system, new data access interfaces can be added and implemented. For example, the

surface data can be imported to the characterisation system directly without the procedure

of storing in surface files. However, this is only a supplementary for the data source.

Accessing surface data from surface files is much more critical for the proposed

characterisation system in that it means the system is not bound to one or several kinds of

particular measurement instruments.

91

It is impossible to enumerate all the file formats in use at present and some new file

formats may be defined in the future. However, no matter what kind of file formats are

used to store the surface data, the operations of the surface file are nearly the same and

they all have similar attributes. Generally speaking, reading and writing surface data are

the foundation of all operations for a file. Any more complicated operation on surface

files will comprise a reading and writing operation. Therefore, reading and writing data

are two main operations for a data access component. The data access component

interface is defined as:

 //Interface of data access components
 public interface SSFileIO:SSObject
 {
 bool ReadDataFile(String fileName, int bRestoreBD, ref SSData
pdata);
 bool SaveDataFile(String fileName, SSData pData);
 }

ReadDataFile() and SaveDataFile() are both virtual methods which should be

implemented as long as the interface SSFileIO is implemented. Table 4.4 list the

instruction of these two methods.

Table 4.4: Arguments description of methods of interface SSFileIO.

Method Argument Description

ReadDataFile

fileName The file name

bRestoreBD Whether the surface data is restored when there is bad or missing data

pData The data which is used to keep the data from the surface file.

SaveDataFile fileName The file name which indicates the destination of the surface data

pData The surface data which is saved

4.3 Standard Surface Data Format: SDF

There are many surface metrology instruments available, and often they have their own

surface data file formats for the storage of surface data on the instrument platform. This

situation has lead to an expensive file conversion procedure of converting one data file

format to another if cross platform characterisation is needed. To overcome the

drawbacks of the conversion of diversity of data file formats, a unified definition for a

flexible data file format has been developed.

92

ISO 25178-71 defines the standard surface file format SDF. Similar to many standard file

formats that already exists for interchange of other popular computer based data, such as

PCX for image files, DXF for drawing files and ASCII for text files, the SDF format

facilitates interchange of surface topographic data between different surface

characterisation software packages. There are two forms of data representation: ASCII

and binary [69]. In practice, the ASCII representation is commonly used for data transfer

between computer platforms because there is no standard method of internal binary

representation between platforms. Binary representation is expected for intra-platform

use.

4.3.1 SDF File Format

The SDF file format is divided into three sections: header, data area and trailer

Table 4.5: File header description of SDF surface file.

Information Field ASCII Record
Name

Binary Data Type Length(Bytes
)

Version Number unsigned char 8

Manufacture‘s ID ManufacID unsigned char 10

Creation Date and Time CreateDate unsigned char 12

Last Modification Date and Time ModDate unsigned char 12

Number of Points per Profile NumPoints unsigned int 2

Number of Profiles NumProfiles unsigned int 2

X-Scale Xscale double 8

Y-Scale Yscale double 8

Z-Scale Zscale double 8

Z-Resolution Zresolution double 8

Compression Type Compression unsigned char 1

Data Type DataType unsigned char 1

Checksum Type CheckType unsigned char 1

 TOTAL 81

93

1) Header

The header is an important part of an SDF file. It contains general information about the

measurement system such as the manufacturer‘s ID, and the information that is necessary

for the reconstruction of original surface such as the number of points per trace. The

header occupies 81 bytes in total. Table 4.5 lists the types and lengths of its elements[41].

 Version Number

This field defines not only the version number but also the type of the data file

representation. The first character of the version number is set to be ‗a|A‘ or ‗b|B‘. ‗a|A‘

stands for ASCII representation, while ‗b|B‘ stands for binary representation. For

example, ―bISO-1.0‖ means the SDF file is stored in binary format, and the format

version is 1.0. Future evolutions of this format will modify the number such as ―1.1‖ or

―2.0‖.

 Manufacture‘s ID

This field is used to record the source of the data, and it might be a hardware or software

identifier.

 Creation Date and Time

This is a 12 character field that store the date and time in the format

‗DDMMYYYYHHMM ‘. Obviously, it is used to record the data and time when the

surface file is created. For instance, ―121020120935‖ is interpreted as 12 October 2012 at

9:35 am.

 Last Modification Data and Time

This field indicates the data and time when the surface data is last modified. The format

is the same as the ‗creation Data and Time‘.

 Number of Points per Profile

This field records the number of point of each profile, and it is not allowed to exceed one

Word (unsigned int) of storage (65535).

 Number of Profiles

94

This field records the number of profiles. Similar as the ‗number of Points per profile‘,

the maximum value is also 65535. When it is equal to 1, the surface data is stored as a

profile.

 X-scale, Y-scale and Z-scale

These three fields record the scaling factors of x, y and z axis respectively. They provide

scaling to the standard unit of the meter. Thus an X-scale value of 1.00E-6 represents a

sample spacing of 1um.

 Z-resolution

When dealing with digital data it is important to recognise the problem of quantisation

rounding. After certain processing operations, the data type may be changed or re-scaled.

The value of Z resolution will be changed to realise the re-quantisation of original data. It

should be set to a negative number when it is unknown as some other file format may not

include this value.

 Compression type

This field defines the compression type used for the data. Table 4.6 lists the supported

compression types.

Table 4.6: Compression types list.

Compression Type Number Compression Type ASCII Compression Type

0 None None

1 Run Length Limited RLL

 Data type

This field specifies the data type used to store the surface data. It can be a single character

value or an abbreviation of the base data type name as listed in Table 4.7

95

Table 4.7: Supported data types list of SDF file format.

Data type Abbreviation Data type code length Decimal value Range

unsigned char UCHAR 0 1 0―255

unsigned int UINTEGER 1 2 0―65535

unsigned long ULONGINT 2 4 0―4294967295

float FLOAT 3 4 -3.4E-38―3.4E+38

signed char CHAR 4 1 -128―127

signed int INTEGER 5 2 -32768―32767

signed long LONGINT 6 4 -2147483648―2147483647

double DOUBLE 7 8 -1.7E-308―1.7E+308

 CheckSum Type

This field contains the value of the checksum type used for maintaining data integrity.

The supported checksum types are listed in Table 4.8.

Table 4.8: Checksum types list.

CheckSum Code CheckSum Type ASCII CheckSum Type

0 None None

1 IntegerTrace UIntTrace

2) Data area

The data area contains all the height values for measurement. It is the main part of a

surface file, and usually occupies the most space of a surface file. The height values are

stored successively in the order in which they are collected. In fact, the actual height

values are obtained by scaling the stored values by the Z-Scale factor defined in the

header.

Sometimes the height values at certain positions are invalid or cannot be measured

especially with the optical instruments. These data points are referred to as ‗bad‘ data or

‗missing‘ data. Therefore, it is necessary to implement procedures which enable the

analysis software to take appropriate action when such data is encountered. Normally, the

identification of such data points may be achieved by setting them to a particular value

within the data range which is not allowable for any valid data points. For example, the

96

maximum or minimum values for the particular data type used are both available to

represent these data values. In the ISO 25178-7, the minimum value is recommended.

3) Trailer

The trailer is usually stored at the end of the file as a series of character values. It

contains the historical information that is useful when associated with the surface file.

Some measurement information which is not defined in header can be stored in the trailer,

and the process information after the measurement such as filtering could also be stored.

In a word, any information can be written in the trailer as long as it is believed to be

useful.

4.3.2 Interface Implementation

The SDF file component is a form of data access component, thus the interface SSFileIO

has to be implemented. Meanwhile, the parent interface SSObject is also required to be

implemented. In other words, the SDF file component class has to override all virtual

methods defined in Both SSFileIO and SSObject. The implementation of these two

interfaces for the SDF file component is detailed below:

 Derived from SSObject:

As mentioned in Section 4.2.3, there are two methods in SSObject: OnRegister() and

UnRegister(). They will be invoked when the component is added or removed. What

needs to be done in the method OnRegister() is to add the component information to the

components database of the system.

SSCommon.AddAssembly("sdf", "FileAccess.FileSdf",

System.Reflection.Assembly.GetExecutingAssembly().Location,

SSAssemblyType.FILEACCESS);

Similarly, it is necessary to remove the component information in UnRegister()

correspondingly.

SSCommon.RemoveAssembly("sdf",SSAssemblyType.FILEACCESS);

 Derived from SSFileIO

ReadDataFile() is invoked when a SDF file is opened, while SaveDataFile() would be

invoked when surface data needs to be saved. These two methods involve a quantity of

97

codes to parse the file format. The critical activity is to transfer the data information

between the SDF file and the inner surface data structure.

4.4 Summary

This chapter gives a brief introduction to conventional surface data file format. The

internal data structure of the characterisation system is designed and the rules of surface

data exchange between surface files and the characterisation system are specified.

Additionally the interface for data access components is defined. Finally, the

implementation of one data access component for SDF file format is elaborated.

98

Chapter 5 Design and Implementation of Data Process
Components of the Developed System

5.1 Categorisation of Data Process Components

Surface analysis and characterisation are a sequential set of procedures comprising

several operations. According to the GPS standards, this analysis procedure is termed the

surface verification operator. Every verification operator consists of a series of operations,

such as fitting, filtering and parameter calculation. In a surface characterization system

such as one proposed here, each operation is realised as a data process component.

Therefore, data process components are no doubt the most significant and complex

constituent part of every surface analysis and characterisation process. In addition, some

data manipulation such as data transformation and data arithmetic procedures are also

often encapsulated as data process components.

Data process components can be considered as ―black boxes‖ which are invisible to end

users. Users care about their I/O properties rather than their implementation details. From

the perspective of a surface characterisation system, a data process component is

available for data processing as long as its I/O requirements are satisfied. However, there

are many surface data analysis and process operations, and their I/O properties are not

always the same. To enable the seamless connective between data process components

and the characterisations system, it is necessary to abstract the similarity of these

operations and design standard interfaces for data process components. Hence, the

categorisation of data process components is the prerequisite to define their interfaces. As

outlined previously, their I/O properties would be the primary factors to be considered for

categorising data process components.

It has been established that the aim of a data process component is to realise some form

of analysis and operation based on the surface data. Naturally, surface data is the same

input object of all data process components. Each data process component is required to

import one surface data at least, otherwise, it is not considered to be a real data process

component. Most data process components only need one surface data set (e.g. parameter

calculation), while some others may need two or more sets of surface data (subtraction of

99

surfaces). The number of import surface data sets is dependent on the operation itself.

Consequently, such number of the input data sets needed is an important factor that has a

great influence on the categorisation of the data process component.

Besides the import aspects of the component, differences also exist at the export end of

data process components. Normally, the output of a data process component is supposed

to be a somewhat modified surface data set as well. For example, the outputs of filtering

and fitting operations are still surface data sets with the same resolution and dimensions

of the input data. However, as the analysis procedure, the outputs could be of a different

form according to the procedure‘s algorithmic process. In certain instances these output

data sets cannot be presented as standard display components e.g. power spectral density

visualisation. Therefore, it is necessary to output a display control which can present the

analysis results in the optimal way.

In addition, many data process components may have extra inputs in addition to the

surface data set for them to run. For example, it is required to set up the cut-off for a

filtering operation component or the polynomial order for a fitting operation component.

Given that all these parameters are considered as the inputs for the data process

component, it is impossible to abstract them as the same attributes for different data

process component, thus there will be many types of data process components.

Fortunately, there is one easy method to deal with these parameters. Supposing a data

process component is a production machine, its input materials would be surface data

while the output is surface data or display controls. When starting the production machine,

it is required to set up any relevant parameters correctly. Certainly, different

configurations of these parameters will lead to a product with different properties.

Similarly, all the parameters for a data process component can be regarded as attributes

of the component rather than its input. Every data process component can define its own

attributes according to its internal analysis algorithms. Hence, the categorisation of data

process components will not be affected by the parameters of a particular algorithm.

In short, the number of input surface data sets and the output result are the categorisation

criteria of the data process components. According to the requirements of the proposed

characterisation system, there are three fundamental types of data process components.

100

All surface verification operations can be represented by these fundamental components

or their compositions.

1) Type A: One Data Set In and One Data Set Out

The operation with one input data set and one output data set is the main form within

surface verification operators. The goal of characterising a surface is to obtain the

intrinsic features of it, thus there is usually no need to compare with another surface

during the analysis process. Usually the comparisons are made after obtaining specified

features. Each operation could therefore be implemented as a ―black box‖ by hiding

intermediate data sets within the corresponding process. As long as operations are

realised as this type of operation, they can be employed as a constituent part of any

operator. Figure 5.1 illustrates a levelling operation, the input data of this operation can

be any output data of other operations, and vice versa.

Levelling Component
(Data Process Components

—Type A)

Input Data Output Data

Figure 5.1: Example of Data Process Components―Type A.

As the input data includes not only the matrix data but also the data properties such as the

data intervals and the operation is only deal with the matrix data, the output data has the

default properties which are the same as the input data. As the most critical procedures

during the surface characterisation, fitting and filtering are both considered to be this type

of operation: fitting is usually the first step of the process, often rectifying the

measurement setup errors. It is recognised as an F-operator which removes form from the

primary surface [12]; filtering is an operation to extract the significant or important

information from the measurement data for further analysis.

2) Type B: Two Surface Data Sets In and One Surface Data Set Out

In the field of surface metrology, comparison or arithmetic operations between two

surfaces are quite common, although these operations are not parts of the standard surface

101

verification chain. For example, cross-correlation which can be used to quantitatively

acquire the similarity between two surfaces is a typical operation in this category, and the

arithmetic operations such as adding and subtracting surfaces are also regarded as this

kind of operation.

This Type B operation has two operands, and it is the basic prototype for operations with

multiple operands. Usually an operation with more than two operands can be separated

into many sub-operations with two operands. For simplicity, suppose that there are three

surfaces: A, B and C to be added together, the one operation (A+B+C) with three

operands could be divided into two operations (A+B and C+(result of A+B)) with two

operands.

However, there is one implicit constraint for most of these operations; namely, the input

data A and data B should have the same resolution and spacing interval. Some particular

operations which have specified the process algorithm can deal with different resolutions

and intervals. Otherwise, two surfaces with varying resolution or interval cannot be

process with this kind of operation. Figure 5.2 is an example of adding two surfaces

together.

Addition Component
 (Data Process Components—

Type B)

Input Data A

Input Data B

Output Data

Figure 5.2: Example of Data Process Components―Type B.

3) Type C: One Data Set In and One Display Control Out

Sometimes the input and the output of an operation are not in the same format. In the

surface characterisation system for example, surface data should be always treated as raw

102

data to be processed, but the output data is not always surface data. For example, the

parameter calculation operation to compute various parameters is based on a surface data

which has already been processed by previous operations, so the output of such an

operation is an array of parameter values. Obviously, these parameter values are quite

different from a standard surface data set, and thus they cannot be displayed by the

general graphical data display component. The display of these analysis results should be

provided by this operation component. An extra display control which is designed to

display the analysis results should be returned from this component. In Figure 5.3, a

parameters list control is implemented in the proposed system as the output of parameters

calculation components. Thus, the outputs of these components are display controls.

Parameters Component
 (Data Process Components—

Type C)

Input Data B

Output display control

Figure 5.3: Example of Data Process Components―Type C.

Some particular analysis modules just do operations on the input data and do not output

any surface data or parameter calculation. For example, the bearing curve is the

cumulative probability density of the height of a surface and can be calculated by

integrating the profile trace. The output of bearing curve analysis is a profile, which is not

a surface data set. In order to plot such a profile, the component has to create a display

control for the system framework. In this category, the analysis result of a component is

not surface data which can be displayed in the system framework via a display

component. So the analysis result should be output to a new control which is provided by

a dedicated component and the system framework displays this new control.

103

5.2 Component Interface Design of the Proposed System

As a specific functional component type, data process components have to realise the

SSObject interface as well as data access components.

Data process components are the most significant and complex functional components in

any surface characterisation system including the proposed system. The interface design

of data process components is often supposed to be much more difficult than other

components. Since the interface can only reflect the data process components with the

same attributes, it is impossible to design a unique interface that can be used by all data

process components. Instead, it is necessary to design at least three main interfaces for

the three categories of data process components as proposed in the previous section.

5.2.1 Interface of Verification Operations

Functional components are fundamental elements of the characterisation system, they

provide different types of functions for surface analysis, and they play the role of

function library. They are not the same as the actual analysis actions. Since this

characterisation system is designed accord with GPS standards, most of analysis actions

are standard verification operations. Besides, there are still other actions deriving from

the software system requirements. For example, opening a surface file is an essential

action before any data analysis is carried out, but clearly this is not included in any GPS

standards as the standards only concern themselves the analysis techniques and methods.

This is the essential distinction between theory and practice in terms of system

development. In essence, opening a surface file is also a verification operation which

derives from metrology practice. Therefore, an actual surface verification operator is

certainly composed of many of these types of operations.

In the developed characterisation system, commands are designed to represent those

verification operations. When the system receives a request from users, relevant

commands will be formed and executed. Almost every command is related to at least one

functional component by which the actual data processing work is completed. In fact,

most commands only associate with one functional component except for compound

commands. The compound commands consist of a series of sequential commands, and it

is regarded as the representative of verification operators. As there are many kinds of

104

functional components, commands are also required to be classified according to the

types of associated functional components. To invoke these commands consistently, an

interface with common properties and methods is needed and has been developed here.

No matter what command is created when the user request comes, the system can activate

the command in a unique way. ISSCommand is such an interface for all commands, and

the definition is listed in Appendix D. It contains four properties and two methods. The

instructions have been listed in Table 5.1.

Table 5.1: Description of member variables and methods of interface ISSCommand.

Types Name Description

Variable

Tag Link to the tag recorded in the user action list

Name The name of the command

DefaultArgs Specifies whether the default arguments are used.

ArgList Records all arguments of the command

Method
Execute() Performs the command with appropriate arguments

ModifyArgument() Changes the arguments of the command

The implementations of different commands cannot be the same; consequently they are

classified according to the functional component they are associated with. Since there are

three main types of functional components in the whole system, the number of command

types is no less than three. In fact, there are six types of commands in the developed

characterisation system. As data process components are more complex than the other

two types of functional components, three different types of command are defined

according to the categorisation of the data process components. In addition, one more

command is defined for compound commands which are the composition of a series of

sequenced commands. Figure 5.4 shows the inheritance hierarchy structure of commands

for the developed system.

105

+Execute() : bool

+ModifyArgument() : void

#name : string

#defaultArgument : bool

#argList : SSArgument

#tag : object

ISSCommand

+AddArgument() : void

+Execute() : bool

+ModifyArgument() : void

-ClassType : string

SSCommandOpen

+AddArgument() : void

+Execute() : bool

+ModifyArgument() : void

-ClassType : string

SSCommandShow

+AddArgument() : void

+Execute() : bool

+ModifyArgument() : void

-ClassType : string

SSCommandSin

+AddArgument() : void

+Execute() : bool

+ModifyArgument() : void

-ClassType : string

SSCommandBio

+AddArgument() : void

+Execute() : bool

+ModifyArgument() : void

-ClassType : string

SSCommandTri

+AddCommand() : void

+Execute() : bool

+ModifyArgument() : void

+getCommand() : SSCommandBio

+getCount() : int

-cmdList : SSCommandBio

SSCCommand

-name : string

-Description : string

-Value : object

SSArgument

1 *

1

*

Figure 5.4: Internal command class inheritance hierarchy diagram of developed system.

SSCommandAccess is the command type which deals with data access components, and it

will be created when users try to open or save a surface file. SSCommandShow is defined

to meet the requirements of data display requests. Normally, this type of command will

be automatically created after all other types of commands because display components

are always used to present the results from others functional components. SSCommandSin,

SSCommandBio and SSCommandTri are designed for commands that are associated with

data process components. According to the I/O properties of data process components,

these three types of commands have one, two or three surface data sets as their operands.

They are related with Type C, Type A and Type B of the data process components

respectively. SSCCommand is a compound command type, and it is not related to any

functional component directly. Instead, it is a command list of SSCommandBio

commands. Therefore, the SSCCommand is related to the implementation of verification

operators in this characterisation system. The relationship between verification operators

and operations is the same as that between simple commands and compound commands.

Figure 5.5 shows the relationships between them.

106

SSCommandOpen

SSCommandShow

SSCommandSin

SSCommandBio

SSCommandTri

SSCCommand

System Commands

Command List Operator

Operation

Figure 5.5: Relationship between commands and surface verification operators.

5.2.2 Interface for All Data Process Components

Although the interface for each type of data process components is essentially different,

there are common attributes amongst them. In fact, the methods or operations of all data

process components are very similar. The most important method is the execution of the

algorithm, and this is similar to reading or writing surface data for data access

components. Unfortunately, the execution method cannot be regarded as a common

operation as its parameters will vary for different subtypes of data process components.

However, there is one method that is the same for all types of data process component.

This is the parameter setting, and almost every data process component has its own

parameters which are related to particular internal algorithms. Generally, these

parameters have great impact on the analysis result. To ensure the execution of internal

algorithms, it is necessary to set up all parameters before starting the execution.

Sometimes, one data process component is expected to execute many times by changing

one or more parameters setting to examine the effects caused by those parameters.

Therefore, setting algorithm parameters is no doubt an important operation for a data

process component.

Since the parameter setting is a common operation for all data process component, a

lower layer interface needs to be developed prior to the interface design of every concrete

107

subtype. In practise, this interface is named as SSAnalysis, and it acts as the interlayer

interface between the root interface SSObject and the interface of every subtype. It is

defined as:

public interface SSAnalysis:SSObject
 {
 void ModifyArguments(ISSCommand command);
 }

ModifyArguments() is the only method in the interface SSAnalysis, and its aim is to

invoke the parameter setting action instead of transferring parameters into the component.

In operation, the parameters are kept inside the command rather than the functional

component. Although two commands may invoke the same functional component, they

are different because they transfer different parameters into the component. Figure 5.6

illustrates the relationship between commands and functional components. Therefore, the

argument of the method ModifyArgument() is only the command which will invoke this

functional component.

Command Object A1

Funtional

Component A

Funtional

Component B

Command A

Command Object A2

…

Command B

Command Object B1

…

Commands

…

Functional Components

…

Invoke

Invoke

In
vo

ke

Invoke

Invoke

Figure 5.6:Relationship between commands and system functional components.

One possible way to set up parameters for a command is to create a parameter dialog

inside the method ModifyArgument(). The dialog is defined in the functional component

itself on which all parameters associated with the inner algorithms are selected or set.

These parameters are then saved in the argument list of the command. For instance, the

108

code fragments of ModifyArgument() in the FeatureParameters component are listed in

Appendix E.

5.2.3 Interface for Subtypes of Data Process Components

As the root interface of all data process components, SSAnalysis is supposed to be

derived by every interface for subtypes. Figure 5.7 is the inheritance hierarchy diagram of

the data process components.

SSAnalysisA, SSAnalysisB and SSAnalysisC are the interfaces for three subtypes of data

process components respectively. All of them just have one method ―Execute‖, which is

to perform the analysis algorithm inside the functional components. With the additional

method ModifyArguments() from the parent interface SSAnalysis, they are the same

interface in essence. However, the arguments of ―Execute‖ are different and they are

dependent on I/O properties of data process components. This is the reason why three

interfaces are designed. The definitions of these three interfaces are listed in Appendix F.

+OnRegister() : bool

+UnRegister() : bool

<<interface>>

SSObject

+ModifyArguments() : void

<<interface>>

SSAnalysis

+Execute() : bool

<<interface>>

SSAnalysisA

+Execute() : bool

<<interface>>

SSAnalysisB

+Execute() : bool

+GetDisplayCtrl() : object

<<interface>>

SSAnalysisC

Figure 5.7: Class inheritance hierarchy diagram of data process components.

Every interface has its own Execute() method with different arguments. The arguments

are composed of input data, output data and parameters for algorithms within the

component. In addition, a flag argument defaultArgs helps indicate whether the default

arguments are used for algorithms or not. All the instructions of these arguments are

listed in Table 5.2.

109

Table 5.2: Description of arguments that occurs in SSAnalysisA, SSAnalysisB and SSAnalysisC.

It is worth noting that there is one more method within SSAnalysisC. As the Type C data

process component do not return any surface data as the analysis results, the display

component is unable to be invoked to display its results. Hence, GetDisplayCtrl() is such

a method which returns a specific control for the analysis results. Meanwhile, the

command SSCommandSin invokes this type of function in a different way. It should use

the returned display control rather than any standard data display control to present the

analysis result.

5.3 Case Studies: Geometrical Analysis Component

Surface roughness analysis represents an attempt to quantify how surface topography

plays an important role in determining how a real object/surface interacts with its

environment. A series of parameters have been defined by ISO standards to represent the

corresponding surface texture in a quantitative way. Although roughness analysis is

accepted as an effective way to predict the performance of a surface, it is ineffective in

evaluating a surface such as structured surfaces whose functions are highly dependent on

the geometrical features of the structures rather than the surface roughness [4, 67].

Similarly, the deviations of these real geometrical features from their ideal form should

be quantified for the purpose of quality evaluation.

At present, there are no ideal instruments for the measurement of these tiny geometrical

features on a surface directly. However, they can be measured indirectly by using surface

instruments, and then be extracted using mathematic algorithms. A pattern analysis

method which is described in ISO 25178-2 [12] is proposed to extract boundaries of

geometrical features. As these boundaries are sets of discrete points, it is not convenient

to represent the characteristics of geometrical features directly. A further segmentation

Argument Type Description

pSrc SSData Input surface data

pSrc2 SSData Another input surface data

pOut SSData Output surface data

defaultArgs bool Whether the default arguments are used

argList List<SSArgument> Arguments List(Dynamic linked list)

110

based on these boundaries is imperative for the recognition, extraction and construction

of the geometrical features. Realising the recognition and construction of predefined

geometrical features based on these primitive segments is essential for the further

characteristics analysis. Common geometrical features to be analysed include circle, slots,

edges and combinations of these. There are two types of characteristics defined in GPS

standards, intrinsic and situation characteristics [39].

5.3.1 Surface Segmentation

Surface segmentation is an essential procedure for the geometrical features analysis. The

edge information of the microstructures on a surface cannot be acquired by measurement

directly as a surface data is a continuous cloud of data points. Although many techniques

have been implemented for edge detection, they are mainly used for image processing

and analysis. In the field of surface metrology, a pattern analysis method [12, 110] based

on morphological analysis has been developed for analysing microstructure surfaces.

This segmentation method can be used to determine regions of a scale limited surface

which define the scale limited features. Regions consisting of hills and dales on the scale

limited surface are separated from each other. The boundaries between hills are defined

as course lines, while those between dales are defined as ridge lines. It has been

demonstrated that ridge and course lines are maximum uphill and downhill paths

emanating from saddle points and terminating at peaks and pits [12]. Therefore, a scale

limited surface can be organised by networks of critical points: peaks, pits and saddles

points in addition to critical lines: ridge lines, course lines. Unfortunately the result of the

segmentation is initially disappointing as the surface is separated into a large number of

insignificant tiny segments. Thus it is necessary to merge these tiny segments to a few

large significant segments. Height and area pruning methods applied to the surface

networks with appropriate thresholds can be implemented to obtain a more reasonable

segmentation result.

111

Figure 5.8 Demonstration of surface segmentation

As the magnitude of altitude differences between regions of microstructures and other

regions is usually much greater than that of roughness, the boundaries can be extracted

very effectively by further processing of the surface segmentation analysis. Figure 5.8

illustrates the result of surface segmentation of a surface data set, and it shows that the

boundary curves of geometrical features have been extracted effectively. In fact, the

reliability and accuracy of boundaries are not only determined by the threshold used for

segmentation, but also the clarity of microstructures. If the microstructures on a surface

suffer ambiguity that may be caused by manufacture or measurement, the boundaries of

the feature obtained by surface segmentation are indicative of this.

5.3.2 Boundary curve approximation

The boundaries of geometrical features usually cannot be represented by only one

segment, so the segmentation of boundary curves is necessary before feature recognition

and shape analysis. Many techniques of planar curve segmentation have been proposed in

the literature. For instance, Biswajit Sarkar et al.(2003) use genetic algorithms to realise

the approximation of planar curves [111]. Wu Chih Hu (2005) has developed a

112

methodology for planar curve segmentation with line segments and conic arcs based on

the types of breakpoints [112]. Here boundary curves are segmented into lines and

circular arcs based on curvature variation, and then LS methods are applied for the fitting.

Figure 5.9 is a boundary curve which is the result from the surface segmentation of the

image shown in Figure 5.8.

Figure 5.9: One boundary curve of a geometrical feature.

Curvature as a significant difference between lines and circular arcs is selected to

establish the junction points which separate the whole boundary curve into primitive

segments. To do this, the curvature of each point on the boundary needs to be calculated.

Practically, curvature calculation in accordance with the curvature formula cannot be

applied here directly, as the boundary curves are effectively non smooth curves and the

noise has a great impact on the result. A more successful approach to obtain the curvature

is to calculate the curve radius which is the reciprocal of curvature.

The calculation procedure of radius of curvature is described as follows. A boundary

curve can be defined using the representation ((), ())x i y i (0 i , where ()x i and

()y i are two functions of the index variable i , and N is the number of points. To

113

calculate the radius of curvature of point ,P x i y i , sufficient adjacent points should

be taken into account. A possible choice is to take k points from each side of pointP , so

the total number of points used for circle fitting is 2k +1. If the boundary curve is not

closed, this number is less than 2k +1 for those points at the end sides of the curve. The

parameter k determines the magnitude of the variation of curvature among adjacent

points. Figure 5.10 illustrates the curvature of all points on the selected boundary curve.

After the curvature calculation, the junctions can be found out by taking the derivative of

the curvature along the curve and locating the spikes on the derivative as shown in Figure

5.11.

Figure 5.10: Curvature of each point on the boundary curve.

Figure 5.11: Derivative of curvature along the boundary curve.

114

Figure 5.12: Extracted joint points of the boundary curve.

According to the calculated junction points as shown in Figure 5.12, a boundary curve

can be divided into many short curve segments. A segment contains all the points

between two adjacent junction points. However, before the approximation of a segment,

its objective function is required. In other words, whether the segment is a line or circular

arc needs to be determined in advance. The curvature of a point on a line, which is zero

theoretically, should be very close to zero. A threshold can be chosen to simplify this

determination. If the curvature is over this threshold, the segment is a circular arc;

otherwise, it is defined as a line. Thus, all segments that can be divided by junction points

can be fitted by using a least-squares method, and they can be used for the recognition

and characteristics analysis of geometrical features.

5.3.3 Geometrical features construction

Various geometrical features can be constructed by combining lines and circular arcs

with different quantities and sequences. For simplicity, circles, triangles, quadrilaterals,

slots and keyholes are considered in this section. Suppose that C indicates a circular arc

and L a line. These geometrical features could be expressed by a sequence of circular arcs

and lines.

115

Table 5.3: Combination patterns for common geometrical features.

Geometrical
features Expression

Circle C

Triangle LLL

Quadrilateral LLLL

Slot CLCL(LCLC)

Keyhole CLLL(LCLL,LLCL,LLLC)

Generally, each boundary curve is a combination of line segments and circular arcs after

the processing of the boundary approximation. A boundary curve can be identified as a

form of geometrical feature by comparing their segment expressions. The boundary curve

showed in Figure 5.12 is recognised as a slot whose expression is ‗CLCL‘. Nevertheless,

some boundary curves cannot be recognised as they are either ambiguous or beyond the

scope of this example. The geometrical features of interest which have been predefined in

Table 5.3 can be constructed from boundary curves. Furthermore, the characteristics of

these geometrical features can be quantified for the surface evaluation and verification.

Characteristic analysis of geometrical features includes their intrinsic characteristics as

well as the situation characteristics between two features. For instance, centre point and

radius are intrinsic characteristics of a circle feature. However, the distance between two

centre points can be thought of as a situation characteristic which reflects the relationship

of two geometrical features. In ISO/TS 17450-1 situation characteristics, which are

length and angle, can be separated into location characteristics and orientation

characteristics [39]. In this component, both the intrinsic characteristics and situation

characteristics are calculated and listed according to its feature type as shown in Figure

5.13.

Figure 5.13: Characteristics list of geometrical features.

116

5.3.4 Interface Implementation for Geometrical Analysis Component

Initially, it is essential to determine what type this geometrical feature component

belongs to. The analysis process is based on only one surface data set which is regarded

as the input data for the component, while the analysis results are geometrical features

(such as circles, slots) and their dimensions and size. Obviously, this component is a type

C data process component according to the I/O properties. Therefore, the interface

SSAnalysisC and all ancestor interfaces need to be implemented. This means that the

component class has to override all the methods it derived from these interfaces.

 Derived from SSObject

There are two methods in SSObject: OnRegister() and UnRegister(). The former is called

when adding the component to the system framework, while the latter is called when

removing it. In the OnRegister() method, three processes are completed.

a) Add the component information to the system component list:

SSCommon.AddAssembly("GeometricalFeatures",

"DataAnalysis.GeometricalFeatures",

System.Reflection.Assembly.GetExecutingAssembly().Location,

SSAssemblyType.DATAANALYSIS);

b) Add a new command to the system command list, and the command is associated

with this component. Meanwhile, the default arguments are also configured to a

command.

SSCommandSin cmd = new SSCommandSin();
cmd.Name = "GeometricalFeatures";
cmd.ClassType = "GeometricalFeatures";

cmd.DefaultArgs = true;

c) Add a menu item for this component, users can invoke the command by clicking

this menu item.

SSCommon.AddMenuItem("&DataView;GeometricalFeatures ",

"GeometricalFeatures");

Conversely, there are also three elements in the Unregister correspondingly.

117

a) remove a menu Item

SSCommon.RemoveMenuItem("&DataView;GeometricalFeatures");

b) Remove a command

SSCommon.RemoveCommand("GeometricalFeatures");

c) Remove component information

SSCommon.RemoveAssembly("GeometricalFeatures",SSAssemblyType.DATAANALYS

IS);

 Derived from SSAnalysis:

In the interface SSAnalysis, only one method needs to be overriden.

ModifyArguments is to update the parameters setting in the command. A parameters

dialog is created, and it is initialised by the last set values saved in command. After

modifying the parameters, all values are saved to the command as shown in following

code fragment.

ParameterSetting ps = new ParameterSetting();

…//Read parameters values from the command;

ps.ShowDialog();

…//Save parameters values to the command;

 Derived from SSAnalysisC:

Unlike the other two types of data process component, there are two methods in

SSAnalysisC. The method Execute() analyses the input surface data to obtain the results

and send the result to the display control, while the GetDisplayCtrl() method returns the

display control. These two methods are invoked by the command GeometricalFeature

which is added to the system framework by this component. As the implementation of the

algorithm is very complex and lengthy, the code will not be presented here.

By overriding these methods in the component class, they are invoked correctly at the

correct time. The developers of this component do not need to worry about the

communication between it and the system framework, as these methods are predefined to

complete presupposed work.

118

5.4 Summary

This chapter emphasises the design and implementation of data process components in

the developed system software framework. As the critical functional components for

surface characterisation, data process components are much more complex and

diversified than the other two types of components. Therefore, the categorisation of them

is discussed first. Following this the interfaces of different types of data process

components are defined respectively. As an example the design and implementation of

the geometrical analysis component is finally elaborated.

Chapter 6 Implementation of Surface Visualisation
Components

6.1 Computer Graphics

Computer graphics is one of the most exciting aspects of computing technology, and it is

core to any work that uses computation to create or modify images. The computer is

utilised to generate visual images synthetically and to integrate or alter visual and spatial

information sampled from the real world [113]. The development of computer graphics

has made computers easier to interact with and greatly enhances data facilitating deeper

understanding and interpretation. Computer graphics techniques are primarily used to

present to the end user surface data which is captured from the measurement instrument.

Figure 6.1 presents an overview of the graphics system. The original data is imported by

the Input Devices, and then be processed by the CPU and GPU (Graphics Processing

Unit) in sequence. After the processing, the data is converted into the image which is

saved in frame buffer, and then the image is transferred to output devices.

Figure 6.1: Computer graphics system principle.

The uptake of high level computer graphics is widespread, and it includes almost

everything on computer that is not text or sound. As technology has improved, 3D

computer graphics have become more common, but to date 2D computer graphics are

still widely used. Currently, many powerful tools have been developed to achieve data

visualisation. One common and convenient way is to program with a graphics API

(Application Programming Interface) that supports the necessary modelling and does

120

most of detailed work of rending the scene. There are a number of graphics APIs

available, both Direct3D and OpenGL are commonly used [114].

Direct3D and OpenGL are competing API both can be used in an application to render

computer graphics, and they are both implemented within the display driver. Modern

GPU may implement a particular version of one or both of these APIs. On the one hand,

DirectX is a collection of APIs for handling tasks related to multimedia, especially game

programming and video on Microsoft platforms. The name DirectX is coined as a

shorthand term for all of the APIs that begin with Direct, such as Direct3D, DirectDraw,

DirectMusic, DirectSound, and so forth. Direct3D is usually used by software

applications for visualisation and graphics task. As the most widely publicised

component of DirectX, the term Direct3D is often used interchangeably with DirectX. On

the other hand, OpenGL is an open standard Application Programming Interface that

provides a number of functions for rendering of 2D and 3D graphics, and is available on

most modern operating systems including but not limited to Windows, Mac OS and

Linux.

The differences between Direct3D and OpenGL are not only their platform and

proprietary. In general, Direct3D is designed to virtualise 3D hardware interfaces.

Direct3D frees the programmer from accommodating the graphics hardware. While

OpenGL is designed to be a 3D hardware accelerated rendering system that may be

emulated in software[115]. They are fundamentally designed as a product of two separate

modes of thought. As such, there are functional differences in how the two APIs work.

Direct3D expects the application to manage hardware resources that is done by

implementations in OpenGL. Thus, OpenGL decreases difficulty in developing for the

API, but increases the complexity of creating an implementation. With Direct3D, the

implementation is simpler and the developers have the flexibility to allocate resources in

the most efficient way possible for their applications.

As the present surface characterisation system is developed on Windows system, both

Direct3D and OpenGL are eligible for the surface topography rendering. The developers

of further data display components can select any one of them according to their

121

preference. In this chapter, the development of data display components with OpenGL is

elaborated.

6.2 Computer Graphics Programming―OpenGL

OpenGL is a powerful software interface used to produce high-quality computer

generated images and interactive applications using 2D and 3D objects and colour

bitmaps and images [116]. In recent years, it has become a worldwide standard for 3D

computer graphics programming. Although OpenGL was originally developed by SGI for

its high-end IRIX workstations, it has grown in scope enormously and now its

development is led by a group consisting of industry leaders such as 3DLabs, HP, Evans

& Sutherland, IBM, Inter, Microsoft, NVIDIA and SGI itself. This group is called the

ARB (OpenGL Architecture Review Board) [117]. In this section, some basic functions

as applied to the present system are elaborated.

6.2.1 Modelling

OpenGL is designed as a streamlined, hardware-independent interface to be implemented

on many different hardware platforms. It consists of about 150 distinct commands that

are use to specify the objects and operations needed to produce interactive 3D

applications. OpenGL does not provide high-level commands for describing models of

3D objects such as automobiles, parts of the body, airplanes, or molecules [103, 118].

With OpenGL, the desired model is built up from a small set of geometric primitives:

points, lines, and polygons.

Primitives are defined by a group of one or more vertices. A vertex defines a point, an

endpoint of a line, or a corner of a polygon where two edges meet. Data (consisting of

vertex coordinates, colours, normal vectors, texture coordinates, and edge flags) is

associated with a vertex, and each vertex and its associated data are processed

independently, in order, and in the same way. Primitives are drawn subject to several

selectable modes. These modes are independent of each other, namely, the setting of one

mode would not affect that of others even when they may interact to determine the final

image in the frame buffer. Figure 6.2 shows an example of drawing a polygon and five

points.

122

glBegin (GL_POLYGON);

 glVertex2f(0.0, 0.0);

 glVertex2f(0.0, 2.0);

 glVertex2f(2.0, 2.0);

 glVertex2f(3.0, 1.0);

 glVertex2f(2.0, 0.0);

glEnd();

glBegin (GL_POINTS);

 glVertex2f(0.0, 0.0);

 glVertex2f(0.0, 2.0);

 glVertex2f(2.0, 2.0);

 glVertex2f(3.0, 1.0);

 glVertex2f(2.0, 0.0);

glEnd();

GL_POLYGON GL_POINTS

Figure 6.2: Comparison of drawing a pentagon and five points.

6.2.2 Transformation

6.2.2.1 The Viewing Transformation

Viewing transformation is analogous to positioning and aiming a camera, and it is

specified with gluLookAt() [103, 118]. The arguments for this function indicate where the

camera is placed, where it is aimed, and which direction is up. If the viewing

transformation is not set apparently, the camera has a default position and orientation.

The camera is placed at the origin, points down the negative z-axis, and the up vector is

(0, 1, 0). It is the same meaning as call:

gluLookAt(0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0);

However, this may fail to specify the viewing transformation. The reason for this is that

the final viewing transformation is not only dependent on the matrix specified by

gluLookAt(), but also the current matrix. It is necessary to set the current matrix to the

identity matrix with glLoadIdentity().

6.2.2.2 The Modelling Transformation

The modelling transformation is to position and orient the model rather than the camera.

The model can be rotated, translated and scaled. These three operations are realized by

glRotate*(), glTranslate*() and glScale*() respectively [103, 118, 119]. Usually some

combinations of these are used to realize modelling transformation.

123

It is well known that both viewing transformation and modelling transformation are

available to obtain the expected view of the mode. Sometimes it is easier to think about

the effects of transformations one way rather than the other. However, it does not make

sense to separate these effects, and they are combined together to take effect

simultaneously.

6.2.2.3 The Projection Transformation

Specifying the projection transformation is similar to choosing a lens for a camera. The

purpose of the projection transformation is to define a viewing volume, which determines

how an object is projected onto the screen and defines which objects or portions of

objects are clipped out of the final image. There are two types of projection: perspective

and orthographic [118].

 Perspective projection

One important characteristic of perspective projection is foreshortening. It means that the

farther an object is from the camera, the smaller it appears in the final image. This

method of projection is commonly used for animation, visual simulation, and any other

applications that strive for some degree of realism because it is similar to how a camera

works. (As shown in

Figure 6.3)

C

top

bottom

left

right

θ

fovy

aspect

near

far

viewpoint

Figure 6.3: Perspective viewing volume.

124

 Orthographic projection

With orthographic projection, the viewing volume is a rectangular parallelepiped as

shown in Figure 6.4. The size of the viewing volume does not change from one end to the

other, thus an object would be the same size no matter how far it is from the camera. This

type of projection is used for applications such as creating architectural blueprints and

computer aided design. This is because the actual sizes of objects and angles between

them are crucial and need to be maintained.

viewpoint

left

top

right

bottom

viewing volume

near

far

Figure 6.4: Orthographic viewing volume.

With no other transformations, the direction of projection is parallel to the z-axis and the

viewpoint faces toward the negative z-axis. In other words, the values of far and near are

used as negative z values if these planes are in front of the viewpoint, and positive z

values if they are behind the viewpoint.

6.2.2.4 The Viewport Transformation

The viewport transformation is analogous to choosing the size of the developed

photograph [119]. Therefore, the viewport is the rectangular region of the window where

the final image is drawn. The function glViewport() is used to specify the viewport:

Void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

The (x,y) specifies the lower-left corner of the viewport, and width and height are the size

of the viewport rectangle. The aspect ratio of a viewport should be the same as that of

125

viewing volume. Otherwise, the final image will be distorted when mapped to the

viewport.

6.2.3 Colour

On a computer screen, the colour of each pixel is formed by emitting different amounts of

red, green and blue light. In OpenGL, the colour information of each vertex is stored

either in RGBA mode or Colour-index mode [118, 119].

 RGBA mode

In RGBA mode, the values of R, G and B are required to be specified. The R, G and B

values can range from 0.0(none) to 1.0(maximum). For example, the set (0.0, 0.0, 1.0)

represents the brightest possible blue. Any types of colour can be composed of

appropriate R, G and B values. Function glColor*() is used to set a current colour.

 Colour-index mode

Unlike RGBA mode, there is only one single number to specify the colour. This value is

an index which indicates an entry in a table that defines a particular set of R, G and B

values. Such a table is called a colour map. However, colour maps are controlled by the

window system, and there are no OpenGL functions to do this. There would also be a

great deal of variation among the different graphics hardware platforms. Function

glIndex*() is used to set a colour index as the current colour index.

6.2.4 Lighting

In the real world, the colour of an object depends on the distribution of photon energies

that arrive and trigger cone cells. Those photons come from a light source or combination

of sources, some of which are absorbed and some of which are reflected by the surface.

OpenGL approximates light and lighting as if light can be broken into red, green and blue

components. The light in a scene comes from several light sources that can be turned on

and off individually. In the OpenGL model, the light source has an effect only when there

are surfaces that absorb and reflect light. An object might emit its own light, scatter some

incoming light in all directions, and reflect some portion of the incoming light in a

preferential direction [103, 118].

126

6.2.5 Other Functions of OpenGL

Except for the aforementioned features, OpenGL has many other advanced features such

as Blending, Antialiasing, Texture mapping, Frame buffer, and so forth [103, 118, 119].

With all these features, it is possible to make the final image appear close to the real

world. In this section, other functions of OpenGL would not be elaborated as they are

barely used in the present display components. It is sufficient to create quality surface

topography images with previous features discussed in the above section.

6.3 Component Interface Design

The aim of data display components is to present surface data on the computer screen.

Similar to the case that one idea can be expressed in different languages, data can be

presented in different forms such as line chart, pie, histogram, and so forth. Hence, it is

possible to present surface data in different ways which may be used for various purposes.

For instance, a dynamic 3D view is more suitable to revealing the surface spatially, while

a top view is better for comparing surfaces intuitively.

Surface data is a set of altitude values with certain ordinates. It is not easy to paint the

surface with these discrete values. Although surface data for displaying is not processed

any more, there are still some calculations such as coordinate transform, render, lighting,

and so on which need to be executed. Therefore, it is not simple to implement a

satisfactory and perfect data display component. However, no matter how complex the

data display component is, the interface needs to be quite simple. Surface data transfer is

the only interaction between the system framework and data display components. All the

system framework needs to do is to send surface data to the data display component, and

there is only one method in the interface. Following is the definition of this interface:

 public interface SSDisplayIO:SSObject
 {
 bool SetData(object pData, bool bCopy);

}

The interface SSDisplayIO is derived from SSObject due to the fact that any data display

components belongs to functional components. ―SetData‖ is invoked by the system

framework which transfers the processed surface data to the data display component. The

127

first argument is the surface data which would be presented, while the second argument is

used to determine the way in which the surface data is transferred.

In general, the interface of the data display component is simpler than the other two types

of functional components. It is not hard to implement the interface. Instead, developers

can then invest more effort in creating the surface graphics.

6.4 Three-Dimensional Display Component of the developed Surface
Characterisation System

Nowadays, surface areal analysis is becoming more and more significant, and it is widely

used to evaluate surface quality. Accordantly, three-dimensional display is indispensable

for a surface characterisation system as it can present a surface spatially. Users can

develop intuitive knowledge about the surface by reproducing a surface in 3D on the

screen, and the difference between pre and post processing can be presented naturally.

Furthermore, users can observe more details from different perspective by rotating,

translating and scaling the surface. This section details the implementation of the 3D

display component with OpenGL technology.

6.4.1 Coordinate System

A surface is a three dimensional geometry, and it is presented on a computer screen

which is absolutely a 2D coordinate system. The transform is achieved by creating the 3D

Geometry pipeline, a collection of processes that convert 3D points from those that are

most convenient for system developers into those that are most convenient for the display

devices [114]. The pipeline is showed in Figure 6.5.

3D Model

Coordinates

3D World

Coordinates

3D Eye

Coordinates

2D Eye

Coordinates

2D Screen

Coordinates

Modeling

Transformation

Viewing

Transformation

Clipping &

Projection
Mapping

Figure 6.5: The geometry pipeline that achieves the coordinate transformation.

OpenGL has already realized this pipeline. Developers do not need to carry out the

calculation themselves. Instead, they can use the functions introduced in Section 6.2 to

complete these processes step by step. Thus the coordinate transforms become much

128

easier for developers, and they need only concern themselves with how to build up the

surface model in 3D model coordinates. OpenGL uses a Right-Handed coordinate system

by default as shown in Figure 6.6.

Origin (0,0,0) +X

+Y

+Z

-X

-Z

-Y

Figure 6.6: Default 3D model coordinate system of OpenGL.

6.4.2 Modelling

A surface is a physically continuous face with an infinite numbers of points. After the

measurement, the number of points is reduced to a finite discrete value. Only a limited

number of points are captured, and their height values are recorded in a surface file.

Modelling a surface is to build up the surface prototype based on these values which are

regarded as surface data.

Surface data is grid data with height values. It is not difficult to convert each height value

to 3D points as the height value is related to a 2D coordinate which indicates the position

where the height value is captured. The most critical issue is how to connect these points

to form a complete surface. In this section, surface is divided into many triangles

according to the position coordinates as shown in Figure 6.7. Hence, the surface can be

created as long as each small triangle is filled with gradient colours[120].

129

X-Y PlaneSurface

Triangle

Figure 6.7: 3D modelling of surface data.

The above method of modelling is to build up the surface as naturally as possible.

However, the requirement of the display may sometimes be different. For example, users

may want to see the mesh view or point view. It is then necessary to model the surface in

a different way. Certainly, developers can also create a new data display component to

meet the new requirement.

6.4.3 Render

The colour is a significant property of each vertex in OpenGL. Specifying a colour value

for a 3D point that is converted from its height value is necessary. Otherwise, all the

points are plotted with the same colour, and the surface could not be viewed as expected.

To make the 3D objects stereoscopic, the colour of a point is normally determined by its

height information. Points with the same height value are plotted with the same colour. It

is very convenient for understanding function for the surface data to be a collection of

height values.

For surface analysis, it is insufficient to define the actual colour for a point based on

height information. This transform could be realised by establishing a mapping

relationship between the height and the colour. On the one hand, it is hard to define a

unique range that is suitable for any surface data as the range of height values is

indeterminate. Therefore, height values are required to be unitized first, and then the unit

height value could be used for colour mapping. Also, one colour consisting of R, G and B

values needs to be mapped with a numerical value. The best way is to set up a colour map

which records all potential colour values. The more colour values used, the better colour

130

effects are produced. In addition, the colour values of the colour map should change

gradually to make the 3D object looks smooth. At present, there are many colour maps

designed for different colour effects [121]. Grey, Jet, cool, hot and Green are

implemented in the presently developed 3D data display component, and users can select

any one of them to render the surface.

Figure 6.8: Supported colour maps for surface render.

As shown in Figure 6.8, they have different colour components in the colour map.

 Grey is a liner greyscale colour map;

 Jet ranges from blue to red, and passes through the colours cyan, yellow, and

orange.

 Cool consists of colours that are shades of cyan and magenta;

 Hot varies smoothly from black through shades of red, orange, and yellow, to

white;

 Green varies smoothly from black though shades of green to white.

6.4.4 Lighting and Object Materials

In OpenGL, the object material can be simulated to appreciate light and materials

variations. As discussed in section 6.2, it is possible to make the surface more vivid as a

131

real surface by setting its materials properties when the lighting is enabled. In this data

display component, many materials are available such as brass, ruby, jade, pearl and so

forth [122]. As an example, the properties of brass are listed in Table 6.1.

Table 6.1: Property values for the brass material.

Property Name Value

GL_AMBIENT (0.0215f,0.1745f,0.0215f,1.0f)

GL_DIFFUSE (0.07568f,0.61424f,0.07568f,1.0f)

GL_SPECULAR (0.633f,0.727811f,0.633f,1.0f)

GL_SHININESS 0.6f

As long as the material properties of an object are specified, the surface looks like it is

made from that kind of material. Figure 6.9 shows an example of surface data with brass

as a material selected.

Figure 6.9: An example of materials rending―Brass.

6.4.5 Interface Implementation

As a data display component, the 3D display component has to be derived from the

interface SSDisplayIO. Thus, it is required to implement two interfaces: SSObject and

132

SSDisplayIO. All the virtual methods defined in these two interfaces ought to be

overriden:

 Derived from SSObject

There are two methods in SSObject: OnRegister() and UnRegister(). The OnRegister()

method only needs to add the component information to system component list:

SSCommon.AddAssembly("3DDisplay", "DataDisplay.DataDisplay3D",

System.Reflection.Assembly.GetExecutingAssembly().Location,

SSAssemblyType.DATADISPLAY);

On the contrary, it is necessary to remove the component information in Unregister()

correspondingly.

SSCommon.RemoveAssembly("3DDisplay", SSAssemblyType.DATADISPLAY);

 Derived from SSDisplayIO

As outlined, the interface SSDisplayIO is quite simple, and it only has one virtual method

that needs to be implemented. There is not too much work in implementing the function

SetData(). It only needs to confirm the data passed in is real 3D data and then transfer it

to the actual painting control. All the real drawing and calculating codes are not presented

here due to their enormous size.

6.5 Summary

This chapter places emphasis on the design and implementation of data display

components. It firstly gives a brief introduction to computer graphics and its

programming technique― OpenGL. Then the interface of the data display components is

defined. Finally, the 3D display component is selected as a case study to illustrate the

implementation of data display components with OpenGL technology.

133

Chapter 7 Test and Evaluation of the Proposed Surface
Characterisation System

7.1 Introduction

System test and evaluation is essential as the process of validating and verifying whether

the software system works as expected and meets the intended requirements. This process

comprises a significant activity within the life cycle of a software system. According to

differences of test objectives, the test of a system can be classified to many types such as

unit tests, integration tests, system tests and acceptance tests [105, 123]. Different system

development models will focus the test effort at different points in the development

process. Generally they occur after the requirements have been defined and the coding

process has been completed. This chapter will discuss the test of the new surface

characterisation system and the evaluation of the system by comparing it with other

systems. Testing the whole system involved many tests, for the sake of brevity a selection

of case study tests are presented here.

7.2 Unit Tests

Unit tests usually refer to tests that verify the functionality of a specific section of code.

In an object-oriented environment, it is usually at the class level. It means that this type of

test happens whenever any tiny section of code is completed, and there is no need to

elaborate them [124]. In this section, the unit test refers to the test at component level.

All the system functions related to surface analysis are implemented as an independent

functional component, and each functional component is a standalone unit. Since they are

developed individually, it is necessary to test them before adding them into the system

framework. However, functional components cannot be executed in the operating system

environment directly even if they are executable. They need a container in which all the

functions can be invoked. There are many ways to simulate such a container. One

possible way is to write the test code for each component respectively. The drawback of

this method is that too much extra code has to be written, and this code would be useless

when the test is completed. The simplest way is to add functional components to the

system framework which could invoke their methods and modify their properties. The

134

prerequisite of using the method is the test can only be completed when the system

framework is completed. In addition, Microsoft provides a tool AXCTC which is able to

test ActiveX controls by changing their properties, invoking their methods, and firing

their events [125]. Most of the data display components are tested with this tool.

7.2.1 Test Case 1: SDF File Component

Data access components are designed to access surface data files, and there are two main

requirements for them: read and save surface data. This test case examines whether the

SDF file component works as expected, namely, reading the SDF file to import surface

data and saving a surface data to a file. The test is completed with the assistances of both

the system framework and the 3D display component. To make the system framework be

aware of SDF file component, it should be added in before the test.

1. Open a SDF file to check whether the surface data could be displayed.

Figure 7.1: A SDF file opened with the SDF file component.

Actually, the surface data could be displayed correctly no matter which SDF file is

opened. Figure 7.1 shows the output result when opening an SDF file.

2. Save current surface data to a SDF file, and opened the saved file to check

whether the surface data is displayed as the same as the original one. Figure 7.2

show the test result.

135

Figure 7.2 The surface data that is saved with the SDF file component.

3. Repeat the test step 1 and 2 on other SDF files to check whether every surface

data could be displayed correctly.

During the test process, there is no an evidence of problems. Hence, the SDF file

component is supposed to be correct, and it can be used to access SDF data files.

7.2.2 Test Case 2: 3D display component

Unlike other functional components, the 3D display component is an ActiveX control

which could be tested with AXCTC. This case is designed to test whether the surface data

could be presented by the component correctly, and all requirements of the 3D display

component are satisfied. For example, the displayed surface should be presented correctly

and rendered with corresponding colours.

1. Load the 3D display component to AXCTC, and then invoke the setData()

function which accepts a file path as the input argument. Note that it is an

override function which is different from the one introduced in Chapter 6.

136

Figure 7.3: 3D display component loaded with ActiveX Control Test Container.

As shown in Figure 7.3, the surface data is correctly displayed on the 3D display control

with the default component properties.

Figure 7.4: Surface data display with 3D mesh representation type.

137

2. Open the properties dialog, and then change the properties to check whether the

surface data is still presented as expected. As there are many properties of the 3D

display component, only three of them are selected as examples.

1) Change the graphics type from 3D surface to 3D mesh, the result is showed in

Figure 7.4.

2) Change the colour map from Jet which is used by default to hot as shown in

Figure 7.5.

Figure 7.5: Surface data rendered with hot colour map.

3) Change the object material from colour scheme to yellow rubber as shown in

Figure 7.6

138

Figure 7.6: Surface data display with yellow rubber material.

The display results are the same as expected after changing properties of the 3D display

component. Therefore, it could be thought as a qualified data display component.

7.3 Integration Tests

Integration tests work to expose defects in the interfaces and interaction between

integrated components. During the unit test process, only the component functions are

tested to check if they work as expected. However, it is necessary to test their interfaces

in order to ensure that they are connected together and work correctly. The purpose of

integration testing is to detect any inconsistencies between the software units that are

integrated together [105, 123]. In the surface characterization system, all functional

components are developed independently, thus they all need to be tested as to whether

they can execute successfully after being added to the system framework. In other words,

integration testing aims to test whether the component is compatible with the system

framework.

Integration is essential for every functional component before it could be released for use.

Three examples are selected to demonstrate the integration test for each type of

functional components.

139

7.3.1 Test Case 1: SUR File Component

This test case is designed to check whether the SUR file component could be added and

removed to the system successfully, and then SUR data files could be accessed by system

or not.

1. Add the SUR file component to the system framework with the components

configuration dialog as shown in Figure 7.7. The listbox on this dialog lists out all

functional components which have already been added to the system framework.

Figure 7.7: Components Configuration dialog.

Figure 7.8: Open file dialog with supporting SDF and SUR file formats.

140

After adding the SUR File component ‗filesur.dll‘, the SUR file becomes a support file

format which can be found in the open file dialog, as shown in Figure 7.8.

2. Open a SUR file and then save it to check whether the function could be invoked

successfully. As shown in Figure 7.9 the SUR file could be read and the surface

data was display correctly.

Figure 7.9: An example of surface data imported with SUR file component.

Figure 7.10: Open file dialog without supporting SUR file format.

141

3. Remove the SUR file component from the system framework to check whether

the SUR file format is still supported by the system. As shown in Figure 7.10,

there is no SUR file format in the open file dialog any more.

7.3.2 Test Case 2: Levelling Component

Similar to the test of the file access component, the aim of testing data process

components is to check whether they could be added and removed successfully and work

as expected.

1. Add the levelling component with the Component configuration dialog. Then the

new menu item ‗Levelling‘ states the component is added successfully (See

Figure 7.11). Similarly, this menu item will disappear when removing the

levelling component.

Figure 7.11: The emerging levelling menu item after adding the levelling component.

2. Open surface file, and execute the levelling function by clicking the menu item

‗levelling‘. Figure 7.1 is the original surface data. After levelling, the analysis

result is display in a new 3D display component as shown in Figure 7.12.

142

Figure 7.12: The surface data that has been processed with levelling component.

7.3.3 Test case 3: Topview component

Figure 7.13: The surface data that is displayed with Topview Component.

The Topview component is to present a surface in a different way, and it can also display

the profiles of the surface data. Since there is no obvious changes on the user interface

after adding or removing a display component, an extra data process component ‗View in

2D‘ is used to test the Topview component. After adding both of them, there is a menu

item ―View in 2D‖ occurs in the menu. Whether the Topview component works or not

could be checked by clicking this menu item. Figure 7.13 presents the display result by

invoking Topview component.

143

7.4 System Tests

System tests are performed on the whole system, and they serves to evaluate the system's

compliance with its specified requirements [105]. The prerequisite for system testing is

that all components should pass the unit test and integration test successfully. In this

section, the primary work is to check whether the system could be configured

dynamically and used to characterise a surface conforming to GPS standards. Similar to

integration tests, two test cases are selected to demonstrate the system tests of the surface

characterisation system.

7.4.1 Test Case 1 Components Configuration

All functional components are expected to have the ability to be added and removed

dynamically. This case is designed to check whether system could load and remove a

functional component even when the system is running.

1. Start the system, and then open a surface file. The surface data should be

successfully displayed, as shown in Figure 7.1.

2. Open the 'components configuration' dialog. Reconfigure system functions by

adding or removing functional components. For simplicity, the ‗Bearing curving

analysis‘ function is added to test whether the system function configuration is

success.

3. Invoke the bearing curve analysis function by clicking the new menu item

‗Bearing curve‘. The analysis result is displayed as in Figure 7.14.

4. Open the ‗component configuration‘ dialog again, and then remove the functional

component. The system is still running and does not crash. The analysis result of

bearing curve is displayed the same as before the removal process.

144

Figure 7.14:The surface data that is processed with Bearing curve analysis component.

In this case, the new functional component bearing curve analysis is successfully added

and removed dynamically. The more important thing is that this configuration would not

affect the execution of the system.

7.4.2 Test Case 2: Compound Command Test

Surface characterisation ought to be realised with a surface verification operator which is

composed of a series of operations. As discussed in Chapter 5, a compound command

consisting of a number of commands is beneficial to the realisation of the surface

verification operator. This case aims to test whether the compound command can be

created and works as expected. For instance, a compound command which is composed

of levelling and Gaussian Regression filtering will be demonstrated.

1. Open the ‗command setting‘ dialog and add a new compound command ‗Test

command‘. Select ‗New View‘ to display the analysis result for this new

command as shown in Figure 7.15.

145

Figure 7.15: Compound command creating dialog.

2. Add the levelling, Gaussian Regression filtering to subcommand list box as

shown in Figure 7.16. After clicking the ‗OK‘ button, the new command is

created as shown in Figure 7.17. Meanwhile, a new menu item is also created for

‗Test command‘.

Figure 7.16: Subcommands modification of Test command.

146

Figure 7.17: Test command occurs in the Command setting dialog.

3. Open a surface file as shown in Figure 7.1, and then check whether all arguments

of each sub command are appropriate for the surface. Arguments can be modified

by clicking the ―Edit Arguments‖ button when the command is selected. Figure

7.18 shows the arguments dialog of Gaussian Regression filter.

Figure 7.18: Parameters setting dialog of Gaussian regression filter.

147

4. Execute the compound command. The result is displayed in Figure 7.19 and it can

be used for parameters calculation directly. All the actions applied to the surface

are listed in the right window. It is an action list which is convenient for users to

change the parameter setting of each step.

Figure 7.19: The surface data that is processed with Test command.

In a word, the surface operator is successful supported in the new surface characterisation

system. Users could create any compound command as desired, and then apply them on

different surfaces. Meanwhile, the action list is helpful to trace the actions that apply to

the surface data.

7.5 Comparison

At present, there are many surface characterisation systems developed by different

organisations. This section will give a brief comparison between the new surface

characterisation system Surfstand and other systems. One system is ―Talymap‖ which is a

powerful surface characterisation system, and it is distributed on most of surface

instruments produced by Taylor Hobson [8, 126]. The second is the online

characterisation system developed by NIST [10, 127-129]. The last one is ―SPIPTM‖

which is provided by Image Metrology [77].

As shown in Table 7.1, Surfstand is superior to the other two systems in maintainability,

extensibility and reusability. It also supports hot swap which means functional

148

components could be exchanged when the system runs. The advantage of the NIST

online system is that it is compatible to any OS system as it is an internet application.

Both Surfstand and Talymap could be extended by end users. However, Surfstand is

much easier than Talymap. Instead of implementing some interfaces, the requirement

would be to add a menu and write a script to add a new function for Talymap. Although

SPIPTM has good expansibility, ISO standards are not fully supported. In the meanwhile,

the reusability of its functions is not so good.

Table 7.1: Comparison between Surfstand and other systems.

 SurfStand Talymap NIST online System SPIP

Application Type Desktop Desktop Web Desktop

Standards Support Yes Yes Yes No

Hot swap Yes No No Yes

Plug and play Yes No No Yes

Verification Operator Yes Yes No No

Compatibility Windows Windows Window, Linux, Mac OS Windows

Function reusability Good Mediocre Poor Poor

System extendibility Good Mediocre Poor Good

System Maintain Easy Medium Difficult Medium

User Customise Absolutely Partially No Partially

7.6 Summary

This chapter provides detailed discussions on the test and evaluation carried out on the

flexible surface characterisation system. To ensure the system works as expected, a series

of test cases are given in order to highlight the system functions from different

perspectives. After these testing, it is ensured that the proposed characterisation system

can run normally as designed. All system functional components can be added, removed

or replaced dynamically, and all bugs found during the test process have already been

fixed. Users can customise their own functional components according the predefined

interfaces. Moreover, they can also define their own verification operators by combing

relevant operations.

The final comparison section shows that the system has the distinctive capability of

dynamic reconfiguration. The proposed characterisation system supports the standard

149

surface verification operator and each operation is strictly accordance with GPS standards.

In addition, as all functional components work in a ―plug and play‖ way, the system is

very easy to be extended and maintained. Meanwhile, functional components themselves

are apt to be reused in other systems because they are developed as COM objects which

are executable and language-neutral. With the flexible architecture, the functions of the

system are no longer determined at the development stage, instead they can be

reconfigured by users after the system is deployed.

150

Chapter 8 Conclusions and Future Work

In this thesis, a novel flexible software system SurfStand was designed and implemented

for the purpose of characterising surface metrology. The fundamental philosophy behind

developing this system in the manner described is construction rather than creation. All

system functions related with surface analysis processing are separated from the system

framework and developed individually as functional components. The system is

established by assembling these independent components off-the-shelf. Consequently the

philosophical approach facilitates expansion, customisation and user led development.

This is a unique feature for such metrology systems. This chapter summarises the

outcomes and highlights the contribution to knowledge in the relevant research domains.

In addition, future work related to this system is also discussed.

8.1 Summary

Surface metrology as a discipline is undergoing rapid development. More and more

analysis and evaluation methods are used to quantify surface features, and additional

parameters are used to indicate these characteristics. Therefore, surface characterisation

system should ideally be constantly updated to support new characterisation technologies.

In reality however, most of the present surface characterisation systems are hard to

maintain and be extended due to their poor extendibility, reusability and maintainability.

This thesis is devoted to developing an architecture which could facilitate the system

maintenance and evolution, and then establish a novel surface characterisation system.

The work of this thesis comprises:

1) Investigation of surface characterisation techniques for surface metrology; It is

necessary to have an excellent knowledge of how to characterise a surface with

relevant techniques before implementing them with a certain programming

language. Chapter 2 gives a brief introduction concerning conventional surface

characterisation techniques.

2) Design of flexible system architecture; Normally system architecture is closely

related with system functions, and it becomes more and more complex due to the

increasing the scope of the system functions. As discussed in section 3.3, the

151

flexible system architecture is designed by separating system functions from the

system framework. All functional components are invoked dynamically in a ‗plug

and play‘ manner.

3) Categorisation of functional components; There are three types of functional

components classified according to their roles in the surface analysis process as

shown in Figure 8.1.

Functional

Components

Data Access

Components

Data Process

Components

Data Display

Components

Type A: One Data In; One Data Out

Type B: Two Data In; One Data Out

Type C: One Data In; One Control Out

Figure 8.1: Categorisation of system functional components.

4) Design and implementation of three types of functional components; Data access

components, data process components and data display components are

elaborated in Chapter 4, Chapter 5 and Chapter 6 respectively. For the reason of

brevity only one case of each type is introduced. Figure 8.2 illustrates all

functional components that have been implemented.

5) Establishment of the user customisation mechanism; Users are able to develop

their own functional components as long as associated interfaces are implemented.

All functional components are developed in this way, and the developer of each

functional component does not have to know the system architecture itself.

6) Accomplishment of system tests. As discussed in Chapter 7, SurfStand is verified

to work as expected and all functional requirements are satisfied.

152

System Functional Components

Data Access

Components

Data Process

Components

Data Display

Components

BearingFitting Filtration Correlation
General

Manipulation
Parameters

Levelling

Robust Polynomial

General Polynomial

SDF file

SUR file

MAP file

Opd file

Gaussian Regression

Robust Gaussian

Wavelet

Robust Wavelet

Spline

Morphological

3D Display

Zoom Display

Profile Display

Cylindrical Display

Bearing Curve Analysis

Lubrication Analysis

Material Analysis

Sk Family Analysis

PSD Radial &

Angular

Cross-Correlation

Areal Autocorrelation

Function(AACF)

Areal Power Spectral

Density(APSD)

Clipping

Erasing Defects

InversFFT

Rotation

Sub-Form Remove

Symmetries

Thresholding

DIN

Parameters

Feature

Parameters

3D ISO/TR

Parameters

Figure 8.2: Completed system functional components.

8.2 Contribution to Knowledge

This thesis proposes a new approach to building a surface characterisation system, which

addresses issues relating to the standardisation analysis, functions modularisation and

system flexibility. The contributions of this thesis are listed as follows:

8.2.1 Standardisation Analysis

Surface characterisation systems are mostly deployed in measurement instruments, and

they are developed by different organisations. It is convenient and effective for

metrologists to carry out the characterisation and evaluation process after the

measurement. However, there are large variations in analysis results among different

characterisation systems, caused by diverse implementations, choices of analysis methods

and ambiguous definitions. The analysis results are always incomparable and untraceable.

153

To reduce the variations of analysis results, the standardisation analysis process is

supported in the new characterisation system SurfStand.

1) The implementations of surface verification operations are in strict accordance

with GPS standards. ISO issued a series of characterisation standards which aim

to standardise the characterisation methods. For example, ISO4287 specifies

terms, definitions and parameters for the determination of surface texture by

profiling methods, while ISO 25178-2 specifies them by areal methods. All of

these are implemented in the present work.

2) Surface verification operators are supported. According to ISO 17450-1, the

process of surface characterisation should be completed with a surface operator

which consists of a series of operations. Although most of the present surface

characterisation systems have realised plenty of surface operations, only a few of

them support surface analysis with verification operators. In most cases, the actual

surface operators are normally created by the metrologists along with the analysis

process, and they are greatly influenced by subjective factors. Thus, it is very hard

to ensure that the surface operators are absolutely the same even if they are

created by the same metrologist. The uncertainty of surface operators may lead to

huge variations of analysis results. Conversely, once surface operators are

supported, they could be defined ahead and used as a whole. Different analysis

results will not be realised as long as the same operator applied. Furthermore,

Surfstand defines several surface operators according to the GPS standards, and

they are used for standard parameters analysis.

8.2.2 Function Modularisation

Functions are certainly the most important properties of a software system, and they are

realised to satisfy various system requirements. Generally the complexity of software

systems is determined by the degree of coupling between the systems and their functions.

Function modularisation is an effective way to achieve loose coupling which is beneficial

to simplification of the system architecture. The implementation of function

modularisation should be done according to the requirements and characteristics of the

system. In SurfStand, there are two critical design issues for function modularisation.

154

1) Determine the size of functional modules.

This point is closely related to the design of system architecture. The more functional

modules are defined, the more complex the system structure is. However, it does not

mean that the size of functional modules should be defined as large as possible, because

the complexity of functional modules will increase along with its size. Determining the

appropriate granularity is significant to keep the balance of the complexity between

functional modules and the system. In practice, the granularity of functional modules is

determined according to surface operations whilst considering the standardisation

analysis. In the present case every surface operation is defined as a single functional

module and implemented as a functional component.

2) Categorisation of system functions.

This point is the foundation of system functions reconfiguration. Functional components

are anticipated as being added or removed from the system framework dynamically.

However, the system framework cannot treat functional components with different

properties and purposes in the same way. Moreover, for the sake of system flexibility,

writing relevant codes for each functional component individually is unfeasible. Hence,

categorisation is necessary to enable the consistency of invocation. As discussed in

section 3.5, all system functional components related to surface characterisation are

categorised into three types: Data access components, Data process components and Data

display components.

8.2.3 System Flexibility

Al though most of present surface characterisation systems are adequate for various

surface analyses, the rigidity and lack of flexibility of the system architecture make it

difficult to maintain and evolve them to new analytical demands. Nowadays, as more and

more technologies are employed to evaluate the quality of surfaces, surface

characterisation systems should have the ability to be upgraded constantly. Therefore,

this thesis proposes a flexible architecture for the surface characterisation system as

discussed in section 3.3. Its advantages are concluded as below:

1) Reduction in development time and cost. The component, as an independent

module, is designed and implemented separately. The loosely coupled

155

relationship between the components and framework allows parallel development.

Thus, the system development cycle is shortened. In addition, many system

functions can be implemented by reusing legacy codes, and they are able to be

reused by other systems directly.

2) Reduction in maintenance costs. As functional components are encapsulated as a

whole, they can be added or removed without affecting the system architecture.

Hence, the complexity of system architecture is not changed no matter how many

functional components have been configured. Meanwhile, the modification

happens in one functional component will not lead to the recompilation and

redeployment of other parts of the system.

3) Enhanced extendibility and diversity. Instead of being combined together at the

beginning, functional components are connected with the system framework

dynamically. This means that the component could work in a ‗plug and play‘

manner. Users can reconfigure system functions as they expect. Moreover, they

are able to customise their own functional components to satisfy certain

individualised functional requirements.

8.3 Future Work

The new flexible surface characterisation system has already been realised. With the

implementation of a number of functional components, SurfStand is able to complete

general surface characterisation. To improve the performance and enhance the

practicability, some future work to SurfStand is suggested below:

1) Evaluation of User interface; User interface is the space where interaction

between users and the system occurs. A good user interface usually makes it easy,

efficient and enjoyable to operate the system. During the development process of

SurfStand, user interface was not the subject of as much development as the

system functions. There are still a lot of improvements which could be completed

for user interface such as layout optimisation, input convenience and output

multiplicity.

2) Expansion of surface data source; At present, surface data file is regarded as the

unique data source of SurfStand. To expand the usable range, it is necessary to

156

increase the data source. For example, surface measurement instruments are the

potential data sources as most of surface data stored in data files are captured

from them. Therefore, new types of data access components are required to be

defined to support fresh data sources.

3) Development of new functional components; Although many functional

components have been developed, new functional components are always in

demand as more and more characterisation techniques are developed to satisfy

various analysis requirements. Specific functional requirement such as that

concerned with ballistics metrology could be added and other function

components removed to facilitate for example a dedicated ballistics metrology

system thus illustrating the customisation capability of the overall approach

adopted.

4) Investigation and development based on new surface operators. SurfStand has

already defined a few standard surface verification operators which aim to

calculate parameters defined in GPS standards. They are more suitable for

stochastic surface characterisation, and new surface operators are required for

other types of surface such as structure surface. Meanwhile, creating more surface

operators would facilitate standard surface characterisation.

157

References

1. Blunt, L., & Jiang, X. (2003). Advanced techniques for assessment surface topography.
Oxford: Butterworth-Heinemann.

2. Humienny, Z., Bialas, S., Osanna, P. H., Tamre, M., Weckenmann, A., Blunt, L., et al.
(2001). Geometrical Product Specification: Course for Technical Universities. Warsaw:
Warsaw Univ. of Technology Printing House.

3. Whitehouse, D. J. (1978). Surfaces — A link between manufacture and function. Paper
presented at the Proceedings of the Institution of Mechanical Engineers.

4. Jiang, X., Scott, P. J., Whitehouse, D. J., & Blunt, L. (2007). Paradigm shifts in surface
metrology. Part I. Historical philosophy. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science, 463(2085), 2049-2070.

5. Jiang, X., & Whitehouse, D. J. (2012). Technological shifts in surface metrology. CIRP
Annals-Manufacturing Technology, 61(2), 815-836.

6. Conroy, M., & Armstrong, J. (2005). A comparison of surface metrology techniques.
Paper presented at the Journal of Physics: Conference Series.
http://www.iop.org/EJ/abstract/1742-6596/13/1/106

7. Whitehouse, D. J. (1997). Surface metrology. Measurement Science and Technology,
8(9), 955–972.

8. TaylorHobson. (2013). Talymap Software. Retrieved from http://taylor-
hobson.virtualsite.co.uk/talymap_software.htm

9. Sacerdotti, F., Porrino, A., Butler, C., Brinkmann, S., & Vermeulen, M. (2002). SCOUT-
surface characterization Open-Source universal toolbox. Measurement Science and
Technology, 13(2). doi: 10.1088/0957-0233/13/2/401

10. Bui, S. H., Gopalan, V., & Raja, J. (2001). An internet based surface texture information
system. International Journal of Machine Tools and Manufacture, 41(13), 2171-2177.

11. ISO 4287. (1998). Geometrical Product Specifications (GPS) — Surface texture: Profile
method-Terms, Definitions, and Surface texture parameters. International Organization
for Standardization.

12. ISO 25178-2. (2007). Geometrical product specifications (GPS) — Surface texture: Areal
— Part 2: Terms, definitions and surface texture parameters. International Organization
for Standardization.

13. Leach, R. K., & Harris, P. M. (2002). Ambiguities in the definition of spacing parameters
for surface-texture characterization. Measurement Science and Technology, 13, 1924-
1924.

14. Plakosh, D., & Lewis, G. A. (2003). Modernizing legacy systems: Software technologies,
engineering process and business practices: Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA.

15. Mathia, T. G., Pawlus, P., & Wieczorowski, M. (2011). Recent trends in surface
metrology. Wear, 271(3), 494-508.

16. Lonardo, P. M., Trumpold, H., & De Chiffre, L. (1996). Progress in 3D surface
microtopography characterization. CIRP Annals-Manufacturing Technology, 45(2), 589-
598.

17. Lientz, B. P., & Swanson, E. B. (1980). Software maintenance management: a study of
the maintenance of computer application software in 487 data processing organizations.
Reading MA: Addison-Wesley.

18. Lientz, B. P., & Swanson, E. B. (1981). Problems in application software maintenance.
Communications of the ACM, 24(11), 763-769.

http://www.iop.org/EJ/abstract/1742-6596/13/1/106
http://taylor-hobson.virtualsite.co.uk/talymap_software.htm
http://taylor-hobson.virtualsite.co.uk/talymap_software.htm

158

19. Sun, W., Zhang, X., Guo, C. J., Sun, P., & Su, H. C. (2008). Software as a service:
Configuration and customization perspectives. Paper presented at the Congress on
Services Part II, 2008. SERVICES-2. IEEE

20. Papajorgji, P., Beck, H. W., & Braga, J. L. (2004). An architecture for developing
service-oriented and component-based environmental models. Ecological Modelling,
179(1), 61-76.

21. Grundy, J., & Hosking, J. (2002). Developing adaptable user interfaces for component-
based systems. Interacting with Computers, 14(3), 175-194.

22. Schneider, J. G., & Han, J. (2004). Components–the Past, the Present, and the Future.
Paper presented at the Workshop on Component-Oriented Programming.

23. McArthur, K., Saiedian, H., & Zand, M. (2002). An evaluation of the impact of
component-based architectures on software reusability. Information and Software
Technology, 44(6), 351-359.

24. Qureshi, M. R. J., & Hussain, S. A. (2008). A reusable software component-based
development process model. Advances in Engineering Software, 39(2), 88-94.

25. Heineman, G. T., & Councill, W. T. (2001). Component-based software engineering:
putting the pieces together. USA: Addison-Wesley

26. Crnkovic, I. (2004). Component-based software engineering-new challenges in software
development. Journal of Computing and Information Technology, 11(3), 151-161.

27. Microsoft. (2009). COM: Component Object Model Technologies. Retrieved from
http://www.microsoft.com/com/default.mspx

28. OMG. (2009). Catalog of OMG CORBA/IIOP Specifications. Retrieved from
http://www.omg.org/technology/documents/corba_spec_catalog.htm

29. Sun. (2009). Remote Method Invocation (RMI). Retrieved from
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

30. Emmerich, W., & Tai, S. (2000). Engineering distributed objects. UK: Wiley Chichester.
31. OMG. (2009). Unified Modeling Language (UML). Retrieved from

http://www.omg.org/technology/documents/formal/uml.htm
32. Papajorgji, P., & Shatar, T. M. (2004). Using the Unified Modeling Language to develop

soil water-balance and irrigation-scheduling models. Environmental Modelling &
Software, 19(5), 451-459.

33. Deitel, H. (2008). Visual c# 2008 how to program. Harlow: Prentice Hall Press.
34. Szyperski, C., Gruntz, D., & Murer, S. (2002). Component software: beyond object-

oriented programming. USA: Addison-Wesley.
35. Wolfgang, P. (1994). Design patterns for object-oriented software development. Reading,

MA: Addison-Wesley.
36. Whitehouse, D. J. (1994). Handbook of surface metrology. Bristol: Institute of Physics.
37. Srinivasan, V. C. (2001). An integrated view of geometrical product specification and

verification. Paper presented at the Proceedings th Cirp International Seminar on
Computer Aided Tolerancing.

38. Durakbasa, M. N., Afjehi-Sadat, A., & Nomak, A. (2001). Dimensional and Geometrical
Measurements and Interperation of Measuring results on the Basis of the Skin Model.
Measurement Science Review, 1(1), 89-92.

39. ISO/TS 17450-1. (2000). Geometrical Product Specifications (GPS) — General concepts
— Part 1: Model for geometrical specification and verification. International
Organization for Standardization.

40. ISO 5436-2. (2001). Geometrical Product Specifications (GPS) — Surface texture:
Profile method; Measurement standards — Part 2: Software measurement standards.
International Organization for Standardization.

http://www.microsoft.com/com/default.mspx
http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://www.omg.org/technology/documents/formal/uml.htm

159

41. ISO 25178-7. (2009). Geometrical Product Specifications (GPS) — Surface texture:
Areal — Part 7: Software measurement standards. International Organization for
Standardization.

42. ISO 3274. (1998). Geometric product specifications (GPS) — Surface texture: Profile
method — Nominal characteristics of contact (stylus) instruments. International
Organization for Standardization.

43. ISO 11562. (1998). Geometrical Product Specifications (GPS) — Surface texture: Profile
method — Metrological characteristics of phase correct filters. International
Organization for Standardization.

44. ISO 13565-1. (1998). Geometric product specifications (GPS) — Surface texture: Profile
method — Surfaces having stratified functional properties — Part 1: Filtering and
general measurement conditions. International Organization for Standardization.

45. ISO 13565-2. (1998). Geometric product specifications (GPS) — Surface texture: Profile
method. Surfaces having stratified functional properties — Part 2: Height
characterization using the linear material ration curve. International Organization for
Standardization.

46. ISO 13565-3. (1998). Geometrical Product Specifications (GPS) — Surface texture:
Profile method; Surfaces having stratified functional properties — Part 3: Height
characterization using the material probability curve. International Organization for
Standardization.

47. Krystek, M. P. (2005). Spline Filters for Surface Texture Analysis. Key Engineering
Materials, 295, 441-446.

48. Muralikrishnan, B., & Raja, J. (2008). Computational Surface and Roundness Metrology.
New York: Springer.

49. Raja, J., Muralikrishnan, B., & Fu, S. (2002). Recent advances in separation of roughness,
waviness and form. Precision Engineering, 26(2), 222-235.

50. Blateyron, F. (2006). New 3D parameters and filtration techniques. Paper presented at
the Proceedings of the JSPE.

51. Whitehouse, D. J. (2002). Surfaces and their measurement. London: Hermes Penton.
52. Leach, R. (2001). The measurement of surface texture using stylus instruments. London:

National Physical Laboratory.
53. Whitehouse, D. J. (1987). Surface metrology instrumentation. Journal of Physics E:

Scientific Instruments, 20(10), 1145. doi: 10.1088/0022-3735/20/10/001
54. Schlesinger, G. (1942). Surface finish: report of the Research Department. London:

Institution of Production Engineers.
55. Czichos, H., Saito, T., & Smith, L. E. (2011). Springer handbook of metrology and

testing. New York: Springer.
56. Guenther, R. D. (1990). Modern optics (Vol. 1). New York: Wiley.
57. Leach, R. K. (2011). Optical measurement of surface topography. London: Springer.
58. Whitehouse, D. J. (1988). Comparison between stylus and optical methods for measuring

surfaces. CIRP Annals-Manufacturing Technology, 37(2), 649-653.
59. Grandy, D., Koshy, P., & Klocke, F. (2009). Pneumatic non-contact roughness

assessment of moving surfaces. CIRP Annals-Manufacturing Technology, 58(1), 515-518.
60. Robertson, T. J., Hutchins, D. A., Billson, D. R., Rakels, J. H., & Schindel, D. W. (2002).

Surface metrology using reflected ultrasonic signals in air. Ultrasonics, 39(7), 479-486.
61. Mainsah, E., Greenwood, J. A., & Chetwynd, D. G. (2001). Metrology and properties of

engineering surfaces. New York: Springer.
62. Griffiths, B. (2001). Manufacturing surface technology: surface integrity and functional

performance. London: Elsevier.
63. Lancaster, P., & Salkauskas, K. (1986). Curve and surface fitting. An introduction.

Waltham, Massachusetts: Academic Press.

160

64. Bjorck, A. (1996). Numerical methods for least squares problems. USA: Society for
Industrial and Applied Mathematics.

65. WIKIPEDIA. (2012). Least squares. Retrieved from
http://en.wikipedia.org/wiki/Least_squares

66. Guest, P. G. (2012). Numerical methods of curve fitting. Cambridge Cambridge
University Press.

67. Jiang, X., Scott, P. J., Whitehouse, D. J., & Blunt, L. (2007). Paradigm shifts in surface
metrology. Part II. The current shift. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Science, 463(2085), 2071-2099.

68. Gruen, A., & Akca, D. (2005). Least squares 3D surface and curve matching. ISPRS
Journal of Photogrammetry and Remote Sensing, 59(3), 151-174.

69. Stout, K. J., Sullivan, P. J., Dong, W., Mainsah, E., Luo, N., Mathia, T., et al. (2000).
Development of methods for the characterisation of roughness in three dimensions.
London: Penton press.

70. Whitehouse, D. J., & Reason, R. E. (1965). The equation of the mean line of surface
texture found by an electric wave filter: Rank Organisation (Rank Taylor Hobson
Division).

71. Raja, J., & Radhakrishnan, V. (1979). Digital filtering of surface profiles. Wear, 57(1),
147-155.

72. Yuan, Y. B., Vorburger, T. V., Song, J. F., & Renegar, T. B. C. (2000). A simplified
realization for the Gaussian filter in surface metrology. Paper presented at the
International Colloquium on Surfaces

73. Kumar, J., & Shunmugam, M. S. (2006). A new approach for filtering of surface profiles
using morphological operations. International Journal of Machine Tools and
Manufacture, 46(3), 260-270.

74. ISO/TS 16610-40. (2006). Geometrical product specifications (GPS) — Filtration —
Part 40: Morphological profile filters: Basic concepts. International Organization for
Standardization.

75. ISO/TS 16610-41. (2006). Geometrical product specifications (GPS) — Filtration —
Part 41: Morphological profile filters: Disk and horizontal line-segment filters.
International Organization for Standardization.

76. Schmahling, J. (2006). Statistical characterization of technical surface microstructure.
(Doctoral thesis), Heidelberg University. Retrieved from http://www.ub.uni-
heidelberg.de/archiv/6792

77. ImageMetrology. (2013). SPIP-3D Image Processing. Retrieved from
http://www.imagemet.com/index.php?main=products&sub=modules&id=3

78. Dolenc, M. (2004). Developing extendible component-oriented finite element software.
Advances in Engineering Software, 35(10-11), 703-714.

79. Won, M., Stiemerling, O., & Wulf, V. (2006). Component-based approaches to
tailorable systems. New York: Springer.

80. Booch, G., Rumbaugh, J., & Jacobson, I. (1998). The Unified Modeling Language User
Guide. USA: Addison-Wesley Professional.

81. Bernstein, P. A., Bergstraesser, T., Carlson, J., Pal, S., Sanders, P., & Shutt, D. (1999).
Microsoft repository version 2 and the open information model. Information Systems,
24(2), 71-98.

82. Crnkovic, I., & Larsson, M. P. H. (2002). Building reliable component-based software
systems. London: Artech House Publishers.

83. McInnis, K. (2000). Component-based development: The concepts, technology and
methodology: Castek Software Factory.

http://en.wikipedia.org/wiki/Least_squares
http://www.ub.uni-heidelberg.de/archiv/6792
http://www.ub.uni-heidelberg.de/archiv/6792
http://www.imagemet.com/index.php?main=products&sub=modules&id=3

161

84. Chen, V. W., Thakur, D. S., & Leister, K. J. (1999). Systems Development Strategy: A
Component Based Approach, The Architecture. Journal of the Association for
Laboratory Automation, 4(5), 34-43.

85. Thakur, D. S., Chen, V. W., & Leister, K. J. (1999). Systems Development Strategy: A
Component Based Approach, The Overview. Journal of the Association for Laboratory
Automation, 4(5), 44-49.

86. Thakur, D. S., Chen, V. W., & Leister, K. J. (1999). Systems Development Strategy: A
Component-based Approach, The Prototype. Journal of the Association for Laboratory
Automation, 4(5), 28-33.

87. Papajorgji, P. (2005). A plug and play approach for developing environmental models.
Environmental Modelling & Software, 20(10), 1353-1357.

88. Bobda, C. (2007). Introduction to reconfigurable computing: Architectures, algorithms,
and applications: Springer Publishing Company, Incorporated.

89. Henning, m., & Vinoski, S. (1999). Advanced CORBA programming with C+ +. USA:
Addison Wesley.

90. Reilly, D. (2006). Java RMI & CORBA:A comparison of two competing technologies.
Retrieved from http://www.javacoffeebreak.com/articles/rmi_corba/index.html

91. Rector, B. E., & Sells, C. (1999). ATL internals: Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA.

92. Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an emerging
discipline. Upper Saddle River, New Jersey: Prentice Hall Englewood Cliffs.

93. Al -Mudimigh, A., Zairi, M., & Al-Mashari, M. (2001). ERP software implementation: an
integrative framework. European Journal of Information Systems, 10(4), 216-226.

94. Smith, B. L. (2002). Software development cost estimation for infrastructure systems.
Journal of Management in Engineering, 18(3), 104-110.

95. McCormick, B. (1996). Software Design and Implementation using the Real-Time
Object-Oriented Modeling Language. Paper presented at the Electrical Computer
Engineering, Canadian

96. Polakovic, J., & Stefani, J. B. (2008). Architecting reconfigurable component-based
operating systems. Journal of Systems Architecture, 54(6), 562-575.

97. Mennie, D., & Pagurek, B. C. (2000). An architecture to support dynamic composition of
service components. Paper presented at the Proceedings of the th international workshop
on component-oriented programming.

98. Ferron, J. R., Penaflor, B., Walker, M. L., Moller, J., & Butner, D. C. (1995). A flexible
software architecture for tokamak discharge control systems. Paper presented at the
Fusion Engineering Sofe "Seeking a New Energy Era".

99. Sun, W., Zhang, X., Guo, C. J., Sun, P., & Su, H. C. C. o. S. P. I. I. S.-I. (2008). Software
as a service: Configuration and customization perspectives.

100. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: elements of
reusable object-oriented software. Upper Saddle River, New Jersey: Pearson Education.

101. ISO 25178-71. (2012). Geometrical Product Specifications (GPS) — Surface texture:
Areal Part 71: Software measurement standards. International Organization for
Standardization.

102. Hill, F. S., & Kelley, S. M. (2000). Computer graphics: using OpenGL. Upper Saddle
River, NJ: Prentice Hall

103. Wright, R. S., & Lipchak, B. (2004). OpenGL superbible. Indianapolis: Sams Publishing.
104. Royce, W. W. (1970). Managing the development of large software systems. Paper

presented at the Proceedings of IEEE Wescon.
105. Sommerville, I. (2004). Software Engineering. : Addison-Wesley.
106. Whitgift, D. (1991). Methods and tools for software configuration management: John

Wiley & Sons, Inc. New York, NY, USA.

http://www.javacoffeebreak.com/articles/rmi_corba/index.html

162

107. Boehm, B. (1986). A spiral model of software development and enhancement. ACM
SIGSOFT Software Engineering Notes, 11(4), 14-24.

108. Stout, K., Blunt, L., Dong, W. P., Mainsah, E., Luo, N., Mathia, T., et al. (2000).
Development of methods for the characterisation of roughness in three dimensions.
London: Penton press.

109. NanoScience. (2011). Supported File Formats. Retrieved from
http://www.nanoscience.com/products/spip/SPIP_formats.html

110. Scott, P. J. (2004). Pattern analysis and metrology: the extraction of stable features from
observable measurements. Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 460(2050), 2845-2864.

111. Sarkar, B., Singh, L. K., & Sarkar, D. (2003). Approximation of digital curves with line
segments and circular arcs using genetic algorithms. Pattern Recognition Letters, 24(15),
2585-2595.

112. Hu, W. C. (2005). Multiprimitive segmentation based on meaningful breakpoints for
fitting digital planar curves with line segments and conic arcs. Image and Vision
Computing, 23(9), 783-789.

113. Shirley, P., Ashikhmin, M., Gleicher, M., Marschner, S., Reinhard, E., Sung, K., et al.
(2005). Fundamentals of computer graphics. Natick, Massachusetts: AK Peters
Wellesley.

114. Cunningham, S. (2006). Computer graphics: programming, problem solving, and visual
communication. Upper Saddle River, New Jersey: Prentice Hall.

115. WIKIPEDIA. (2012). Comparison of OpenGL and Direct3D. Retrieved from
http://en.wikipedia.org/wiki/Comparison_of_OpenGL_and_Direct3D

116. Shreiner, D. (2009). OpenGL programming guide: the official guide to learning OpenGL,
versions 3.0 and 3.1. Boston: Addison-Wesley Professional.

117. Martz, P. (2006). OpenGL distilled. Boston: Addison-Wesley Professional.
118. Astle, D., & Hawkins, K. (2004). Beginning OpenGL game programming. Cambridge,

Massachusetts: Course Technology.
119. Hawkins, K., & Astle, D. (2001). OpenGL game programming. Cambridge,

Massachusetts: Course Technology PTR.
120. Farin, G. E. (1996). Curves and Surfaces for Computer-Aided Geometric Design: A

Practical Code. Waltham, Massachusetts: Academic Press, Inc.
121. MathWorks. (2012). Set and Get current colormap. Retrieved from

http://www.mathworks.co.uk/help/matlab/ref/colormap.html
122. Schreiner, D., Woo, M., Neider, J., & Davis, T. (2006). OpenGL programming guide.

Boston: Addison-Wesley.
123. WIKIPEDIA. (2012). Software testing. Retrieved from

http://en.wikipedia.org/wiki/Software_testing
124. Patton, R. (2005). Software testing. Indianapolis: Sams Publishing.
125. Microsoft. (2013). ActiveX Control Test Container (tstcon32.exe). Retrieved from

http://msdn.microsoft.com/en-GB/library/ms241446(v=vs.80).aspx
126. DigitalSurf. (2013). Mountains surface imaging & metrology software. Retrieved from

http://www.digitalsurf.fr/en/mntkey.html
127. Bui, S. H., & Vorburger, T. V. (2007). Surface metrology algorithm testing system.

Precision Engineering, 31(3), 218-225.
128. Bui, S. H., Renegar, T. B., Vorburger, T. V., Raja, J., & Malburg, M. C. (2004). Internet-

based surface metrology algorithm testing system. Wear, 257(12), 1213-1218.
129. Bui, S. H., Muralikrishnan, B., & Raja, J. (2005). A framework for Internet-based surface

texture analysis and information system. Precision Engineering, 29(3), 298-306.

http://www.nanoscience.com/products/spip/SPIP_formats.html
http://en.wikipedia.org/wiki/Comparison_of_OpenGL_and_Direct3D
http://www.mathworks.co.uk/help/matlab/ref/colormap.html
http://en.wikipedia.org/wiki/Software_testing
http://msdn.microsoft.com/en-GB/library/ms241446(v=vs.80).aspx
http://www.digitalsurf.fr/en/mntkey.html

163

Appendixes

A Critical Code Fragments of SurfStand SDK

A.1 Static methods for addition and removement of system functional components

 public static bool AddAssembly(String fileType, String className, String
asmPath,SSAssemblyType asmType)
 {
 List<SSAssembly> asmList=null;
 switch (asmType)
 {
 case SSAssemblyType.FILEACCESS:
 asmList = m_listCollection.m_fileAccessList;
 break;
 case SSAssemblyType.DATADISPLAY:
 asmList = m_listCollection.m_displayList;
 break;
 case SSAssemblyType.DATAANALYSIS:
 asmList = m_listCollection.m_analysisList;
 break;
 }
 foreach (SSAssembly ssasm in asmList)
 {
 if (ssasm.m_Type.Equals(fileType))
 return false;
 }
 SSAssembly newasm = new SSAssembly();
 newasm.m_Type = fileType;
 newasm.m_Name = className;
 newasm.m_Path = asmPath;
 asmList.Add(newasm);
 return true;
 }
 public static bool RemoveAssembly(String type,SSAssemblyType asmType)
 {
 List<SSAssembly> asmList=null;
 switch (asmType)
 {
 case SSAssemblyType.FILEACCESS:
 asmList = m_listCollection.m_fileAccessList;
 break;
 case SSAssemblyType.DATADISPLAY:
 asmList = m_listCollection.m_displayList;
 break;
 case SSAssemblyType.DATAANALYSIS:
 asmList = m_listCollection.m_analysisList;
 break;
 }
 foreach (SSAssembly ssasm in asmList)
 {
 if (ssasm.m_Type.Equals(type))
 {
 asmList.Remove(ssasm);
 return true;
 }
 }
 return false;
 }

164

A.2 Static methods of adding and removing system commands.

 public static bool AddCommand(String command, String classType, bool newView,
String displayType)
 {
 if (IsCommandExist(command))
 return false;
 SSCommandBio newCommand = new SSCommandBio();
 newCommand.Name = command;
 newCommand.ClassType = classType;
 m_listCollection.m_commandList.Add(newCommand);
 return true;
 }
//
 public static bool AddCommand(String command, List<SSCommandBio> cmdList, bool
newView, String displayType)
 {
 if (IsCommandExist(command))
 return false;
 SSCCommand newCommand = new SSCCommand();
 newCommand.Name = command;

 for (int i = 0; i < cmdList.Count; i++)
 {
 newCommand.AddCommand(cmdList[i]);
 }
 m_listCollection.m_commandList.Add(newCommand);
 return true;
 }
 public static bool AddCommand(ISSCommand cmd)
 {
 if (IsCommandExist(cmd.Name))
 return false;
 m_listCollection.m_commandList.Add(cmd);
 return true;
 }
 public static bool RemoveCommand(String command)
 {
 foreach (ISSCommand cmd in m_listCollection.m_commandList)
 {
 if (cmd.Name.Equals(command))
 {
 m_listCollection.m_commandList.Remove(cmd);
 return true;
 }
 }
 return false;
 }

A.3 Static methods of adding and removing system menu items.

private static bool AddNewMenuItem(String menuContent, String command)
 {
 ToolStripItemCollection currentMenu =
m_mainForm.MainMenuStrip.Items;//.MenuItems;
 String menuItemText = null;
 ToolStripMenuItem addItem;
 bool IsExist = false;
 int index;
 while ((index = menuContent.IndexOf(';')) >= 0)
 {
 IsExist = false;
 menuItemText = menuContent.Remove(index);
 menuContent = menuContent.Substring(index + 1);
 foreach (ToolStripItem menuItem in currentMenu)
 {
 if (menuItem.Text.Equals(menuItemText))
 {

165

 IsExist = true;
 currentMenu = ((ToolStripMenuItem)menuItem).DropDownItems;
 break;
 }

 }
 if (!IsExist)
 {
 addItem = new ToolStripMenuItem(menuItemText);
 currentMenu.Add(addItem);
 currentMenu = addItem.DropDownItems;
 }
 }
 IsExist = false;
 foreach (ToolStripItem menuItem in currentMenu)
 {
 if (menuItem.Text.Equals(menuContent))
 {
 IsExist = true;
 return false;
 }

 }
 addItem = new ToolStripMenuItem(menuContent);
 addItem.Name = command;
 addItem.Click += OnClickMenuItem;
 currentMenu.Add(addItem);
 return true;
 }
 public static bool RemoveMenuItem(String menuContent)
 {
 if (RemoveOldMenuItem(menuContent))
 {
 foreach (SSMenuItem smenu in SSListCollection.GetInstance().m_menuList)
 {
 if (menuContent.Equals(smenu.Path))
 {
 SSListCollection.GetInstance().m_menuList.Remove(smenu);
 break;
 }
 }
 return true;
 }
 return false;
 }

166

B Code Fragments for the Connection between the Framework and
Components

B.1 Method of loading components in the framework

//Loading function components
 private void loadAssemblies()
 {
 AssemblyConfiguration aCog = new AssemblyConfiguration();
 ArrayList pathList = aCog.getAssembliesPath();
 foreach (String path in pathList)
 {
 Assembly fileAssembly = Assembly.LoadFrom(path);
 if (fileAssembly == null)
 continue;
 Type[] types = fileAssembly.GetTypes();
 foreach (Type ty in types)
 {
 Type[] interfaces = ty.GetInterfaces();
 foreach (Type inface in interfaces)
 {
 if (inface.Equals(typeof(SSObject)))
 {
 SSObject a = (SSObject)Activator.CreateInstance(ty);
 a.OnRegister();
 break;
 }
 }
 }
 }
 }

B.2 Methods of adding and removing components in the framework

//Add a new function component
private void buttonAdd_Click(object sender, EventArgs e)
{
 OpenFileDialog fileDlg = new OpenFileDialog();
 fileDlg.RestoreDirectory = true;
 if (fileDlg.ShowDialog() != DialogResult.OK)
 return;
 Assembly fileAssembly = Assembly.LoadFrom(fileDlg.FileName);
 if (fileAssembly == null)
 return;
 Type[] types = fileAssembly.GetTypes();
 foreach (Type ty in types)
 {
 Type[] interfaces=ty.GetInterfaces();
 foreach (Type inface in interfaces)
 {
 if (inface.Equals(typeof(SSObject)))
 {
 SSObject a = (SSObject)Activator.CreateInstance(ty);
 if (a.OnRegister())
 {
 AssemblyConfiguration aCog = new AssemblyConfiguration();
 aCog.AddFileAssembly(fileDlg.FileName);
 updateAssemblies(sender,e);
 }
 break;
 }
 }
 }
}

167

//Remove an existing function component
private void buttonDelete_Click(object sender, EventArgs e)
{
 foreach (ListViewItem lvi in this.listViewAssembliesManage.SelectedItems)
 {
 Assembly asmbly = Assembly.LoadFrom(lvi.SubItems[1].Text);
 Type[] types = asmbly.GetTypes();
 foreach (Type ty in types)
 {
 Type[] interfaces=ty.GetInterfaces();
 foreach (Type inface in interfaces)
 {
 if (inface.Equals(typeof(SSObject)))
 {
 SSObject a = (SSObject)Activator.CreateInstance(ty);
 if (a.UnRegister())
 {
 AssemblyConfiguration aCog = new AssemblyConfiguration();
 aCog.DeleteFileAssembly(lvi.SubItems[1].Text);
 updateAssemblies(sender,e);
 }
 break;
 }
 }
 }
 }
}

168

C Code Fragments for Surface Data Definition

C.1 Definition of surface data structure CSurfObject

class CSurfObject
{
public:
 CSurfObject(void);
 CSurfObject(CSurfObject& m_SurfObj);
 CSurfObject(CMatrix& m_DataOther, THSurfObjInfo& m_InfoOther);
 virtual ~CSurfObject(void);

//Data members
public:
 CMatrix m_DataSurf;
 THSurfObjInfo m_InfoSurf;

//function members
public:
 bool CopyFrom(CSurfObject& m_SurfObj);
 bool CopyFrom(CMatrix& m_DataOther, THSurfObjInfo& m_InfoOther);
 bool CastFrom(CSurfObject& m_SurfObj);
 bool CastFrom(CMatrix& m_DataOther, THSurfObjInfo& m_InfoOther);

 bool IsValidSurfObj();
 void Clear();
};

C.2 Definition of surface data information THsurfObjInfo

typedef /* [helpstring][version][uuid] */ DECLSPEC_UUID("A43EF600-B02A-11D6-9BCF-
00D0B74C4D6A") struct THSurfObjInfo
 {
 TCHAR cFileName[256];
 TCHAR cFileExt[16];
 TCHAR cFileVersion[16];
 TCHAR cManufacture[16];
 TCHAR cCreateDate[16];
 TCHAR cModifyDate[16];
 long sNumPoints;
 long sNumProfiles;
 float fXscale;
 TCHAR cXunit[16];
 float fYscale;
 TCHAR cYunit[16];
 float fZscale;
 TCHAR cZunit[16];
 float fXOffset;
 float fYOffset;
 float fZOffset;
 boolean bMetricUnit;
 TCHAR cDescription[256];

} THSurfObjInfo;

C.3 Definition of surface data class CTH3DData

class ATL_NO_VTABLE CTH3DData :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CTH3DData, &CLSID_TH3DData>,
 public ISupportErrorInfo,
 public IDispatchImpl<ITH3DData, &IID_ITH3DData, &LIBID_TH3DDataProcessLib,
/*wMajor =*/ 1, /*wMinor =*/ 0>
{
public:
 CTH3DData()

169

 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_TH3DDATA)

BEGIN_COM_MAP(CTH3DData)
 COM_INTERFACE_ENTRY(ITH3DData)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY(ISupportErrorInfo)
END_COM_MAP()

// ISupportsErrorInfo
 STDMETHOD(InterfaceSupportsErrorInfo)(REFIID riid);

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 Clean();
 return S_OK;
 }

 void FinalRelease()
 {
 Clean();
 }
 BOOL Clean();

public:
 STDMETHOD(IsDataValid)(/*[out, retval]*/BOOL* m_bValid);
 STDMETHOD(UnitSystem)(/*[in]*/BOOL m_bMetricUnit);
 STDMETHOD(MinMax)(/*[out]*/float* Min, /*[out]*/float* Max);
 STDMETHOD(Cast)(/*[in]*/ITH3DData* source);
 STDMETHOD(Copy)(/*[in]*/ITH3DData* source);
 STDMETHOD(CopyToSafeArray)(/*[out]*/THSurfObjInfo *pDataInfo, /*[out]*/VARIANT
*pDataMatrix);
 STDMETHOD(CopyFromSafeArray)(/*[in]*/THSurfObjInfo *pDataInfo, /*[in]*/VARIANT
*pDataMatrix);
 STDMETHOD(CopyFromVariant)(/*[in]*/THSurfObjInfo *pDataInfo, /*[in]*/VARIANT
*pDataMatrix);
 STDMETHOD(CastFromVariant)(/*[in]*/THSurfObjInfo *pDataInfo, /*[in]*/VARIANT
*pDataMatrix);
 STDMETHOD(CastToVariant)(/*[out]*/THSurfObjInfo *pDataInfo, /*[out]*/VARIANT
*pDataMatrix);
 STDMETHOD(get_DataInfo)(/*[out, retval]*/ THSurfObjInfo *pVal);
 STDMETHOD(put_DataInfo)(/*[in]*/ THSurfObjInfo newVal);
 STDMETHOD(HasMissingData)(BOOL* m_bMissingData);
 STDMETHOD(GetThumbnailData)(SHORT nWidth, SHORT nHeight, BYTE** pbData);
 STDMETHOD(ThumbnailDataToSafeArray)(LONG m_nWidth, LONG m_nHeight, VARIANT*
pDataMatrix);
 STDMETHOD(ShiftX)(LONG m_offsetX);

 CSurfObject m_objSurf;
public:
 STDMETHOD(CheckSum)(LONG* CHKSum);
 STDMETHOD(ReleaseData)(void);
 STDMETHOD(Subtract)(ITH3DData* subtracter);
 STDMETHOD(Addition)(ITH3DData* addend);
};

170

D Definition of Command Interface: ISSCommand.
public abstract class ISSCommand
 {
 protected String m_Name;
 protected bool m_defaultArgs;
 protected List<SSArgument> m_argList;

 protected Object m_Tag = null;
 public Object Tag
 {
 get { return m_Tag; }
 set { m_Tag = value; }
 }
 public String Name
 {
 get { return m_Name; }
 set { m_Name = value; }
 }

 public bool DefaultArgs
 {
 set { m_defaultArgs = value; }
 get { return m_defaultArgs; }
 }
 public List<SSArgument> ArgList
 {
 get { return m_argList; }
 }
 public abstract bool Execute(List<SSData> operands);
 public abstract void ModifyArgument();
 }

171

E Code Fragments for Method ModifyArgument of Feature
Parameters Component

 public void ModifyArguments(ISSCommand command)
 {
 //THDataSegmentLib.THFeatureParas
 ParameterSetting ps = new ParameterSetting();
 ps.m_reset = command.DefaultArgs;
 ps.m_bHillFeatures = (int)command.ArgList[0].Value;
 ps.m_fWolfPrune = (float)command.ArgList[1].Value;
 ps.m_fVolumePrune = (float)command.ArgList[2].Value;
 ps.m_fAreaPrune = (float)command.ArgList[3].Value;
 ps.m_fCircumferencePrune = (float)command.ArgList[4].Value;
 ps.ShowDialog();
 command.DefaultArgs=ps.m_reset;
 command.ArgList[0].Value = ps.m_bHillFeatures;
 command.ArgList[1].Value = ps.m_fWolfPrune;
 command.ArgList[2].Value = ps.m_fVolumePrune;
 command.ArgList[3].Value = ps.m_fAreaPrune;
 command.ArgList[4].Value = ps.m_fCircumferencePrune;
 }

172

F Interface Definitions for the Three Subtypes of Data Process
Components

 public interface SSAnalysisA : SSAnalysis //bioA
 {
 bool Execute(SSData pSrc, ref SSData pOut,ref bool defaultArgs, List<SSArgument>
argList);
 }
 public interface SSAnalysisB : SSAnalysis
 {
 bool Execute(SSData pSrc1, SSData pSrc2, ref SSData pOut, ref bool defaultArgs,
List<SSArgument> argList);

}
 public interface SSAnalysisC : SSAnalysis //single
 {
 bool Execute(SSData pSrc,ref bool defaultArgs, List<SSArgument> argList);

 object GetDisplayCtrl();
 }

173

G Related Publications

Lan, X., Jiang, X., Blunt, L., & Xiao, S. (2009). An adaptive system framework for surface

characterisation. Paper presented at the The Proceedings of Computing and Engineering Annual

Researchers' Conference 2009, Huddersfield.

Lan, X., Jiang, X., Blunt, L., Xiao, S., & Zeng, W. (2011). A feasible way to analysis

microstructures on a surface based on the extraction and construction of geometrical features.

Paper presented at the The 10th International Symposium on Measurement Technology and

Intelligent Instruments, Daejeon, S. Korea.

