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A kinetic model for the influence of external noise, such as fluctuations of the point-defects’ production 

rate and inhomogeneity of irradiated f.c.c. crystal, on the formation of modulated defect-distribution struc-

ture is considered. Defect-production rate and density of sinks for point defects are simulated as independ-

ent uniform and stationary stochastic fields with certain parameters. The interaction between vacancies is 

taken into account. Such stochastic fields can induce a spatial point-defects’ distribution, which is a sta-

tionary uniform stochastic field. Its mean value and correlation functions are estimated, and restricting 

conditions are determined when this stochastic field becomes unstable because of interaction between de-

fect-density fluctuations and a stochastic field with a spatially-periodic mean value is formed. A formula 

for evaluating its spatial period is analysed. This geometrical parameter of such a dissipative structure is 

determined also by kinetic characteristics. 
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1. INTRODUCTION 
 

The main causes for the stochastic behaviour of ra-

diation-defects’ density are external ones. Firstly, these 

are fluctuations of the rate of defects’ generation. Sec-

ondly, it is the random distribution of various imperfec-

tions of a crystal lattice, which serve as sinks for the 

point defects. Because of these, the fluctuations of the 

density of radiation point defects are essentially non-

equilibrium. Unlike the thermodynamic fluctuations, 

they do not decrease in inverse proportion to a system 

size and can reach the noticeable values [1]. The role of 

random disturbances becomes especially important for 

systems with non-linear feedbacks between their ele-

ments, and for processes, which have a threshold char-

acter and bifurcation points [2]. 

In a given work, the analysis of the formation of the 

spatially-periodic structure of the radiation point-

defects’ distribution that occurs due to non-linear in-

terdefect interaction, which was carried out in Refs. [3-

5] and extended to irradiated solids with fluctuating 

parameters [2], is used to predict and consider the pos-

sible modulated structure in a spatial distribution of 

radiation defects formed in irradiated f.c.c. crystal. To 

describe the probabilistic nature of a point-defects’ dis-

tribution, it is suggested to be a stochastic field, and for 

its description a stochastic differential equation is used. 

If the rate of production of defects and density of their 

sinks are modelled by the relevant random uniform 

stationary fields, the random distribution of point de-

fects can also be homogeneous and stationary. Howev-

er, under certain conditions of irradiation, it becomes 

unstable due to the interaction of fluctuations of a de-

fects’ density through the strain-induced (‘elastic’) 

fields and ‘electrochemical’ interaction between defects. 

Because of this, a stochastic field with a spatially-

periodic behaviour of its average value is formed. 

 

2. THE BASIC EQUATIONS  
 

We consider an f.c.c. crystal in which due to an ex-

ternal irradiation the vacancies and self-interstitial 

atoms are randomly formed. Right after [2], the rate of 

generation of defects, K(r, t), is considered to be a ran-

dom uniform and stationary function of spatial co-

ordinates (r) and time (t), respectively. Its average, 
3 3 1

0( , ) ( 0.5 10 5 10 s )K t Kr  and variance are 

the constants and supposed to be predetermined.  Cor-

relation functions of this field depend only on a differ-

ence of respective arguments, i.e. 

( , ) ( , ) ( , )K t K t t f tr r r r , and their Fourier-

transform components, i.e. the spectral densities, G(k, t), 

are also supposed to be given functions. The defects mi-

grate and are absorbed by sinks (for instance, by dislo-

cations, dislocation loops, etc.) with the density 

d  d(r). As, due to the ‘fast’ migration of intrinsic 

interstitial atoms during the relaxation, their concen-

tration in a bulk is rapidly decreasing, a residual con-

centration of self-interstitial atoms is comparatively 

small, atom-to-atom distances are large, and a total 

contribution of their interactions between themselves 

and with vacancies is much more weaker than contri-

bution of interaction between vacancies. Then, neglect-

ing both the former and the recombination of these 

point defects, the evolution of the density of ‘slow’ va-
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cancies (v), n(r, t), will be considered hereinafter and 

described by the following stochastic equation [2, 6]: 
 

 
( , )

( , ) ( ) ( , ) ( ( , ))
n t

K t n t t
t

r

r
r r r j r  (1) 

 

( r  / r is the Hamilton differentiation operator ‘na-

bla’; (... ...) symbolizes the scalar product). Here 

(r)  zdD d(r) is the uniform random field, which de-

scribes the probability of an absorption of point defect 

by sinks [2], with (r)   0, the factor zd  1 for a va-

cancy, and the spectral density – G (k), 
 

 
( , ) ( , )

( , ) ( , )
B

n t t
t D n t

k T
r

r F r
j r r  (2) 

 

is a vacancy-flux density vector [2, 5, 6], where 

D  D0exp( Em/{kBT}) is the vacancy-diffusion coeffi-

cient (diffusivity), Em is the migration-activation ener-

gy, T is the temperature of an irradiated specimen, kB 

is the Boltzmann constant, 

( , ) ( ) ( , )vvt W n t drF r r r r r  is the force of interac-

tion between the vacancy located at the point r with all 

other vacancies with co-ordinates {r }, Wvv(r  r ) is the 

pairwise-interaction energy of vacancies at the points r 

and r . 

Separating in (1) the deterministic and fluctuation-

noise components of n(r, t), (r), and K(r, t), we have a 

following set of equations [2, 6]: 
 

0 0

( , )
( ) ( , ) ( ) ( , ) ( , )

n t
K n t n t D n t

t

r
r r r r r  

 

( , ) ( , ) ( )vv

B

D
n t n t W d

k T
r rr r r r r  

 

( , ) ( , ) ( ) ,vv

B

D
n t n t W d

k T
r rr r r r r  (3) 

 

0

( , )
( , ) ( , ) ( ) ( , ) ( , )

n t
K t n t n t D n t

t

r
r r r r r  

 

( , ) ( , ) ( )vv

B

D
n t n t W d

k T
r rr r r r r  

 

( , ) ( , ) ( )vv

B

D
n t n t W d

k T
r rr r r r r  

 

( ) ( , ) ( ) ( , )n t n tr r r r  

 

( , ) ( , ) ( , ) ( , ) ( ) ,vv

B

D
n t n t n t n t W d

k T
r rr r r r r r r (4) 

 

where ( )r r  is the Laplace operator, and 

 

0( , ) ( , ) ( , ), ( , ) ( ) ,n t n t n t tr r r r r  

 

0( , ) ( , )K t K t Kr r . 

3. THE RANDOM UNIFORM STATIONARY 

FIELD OF DEFECTS’ DENSITY 
 

Amongst the solutions of Eq. (1) or the set of Eqs. 

(3) and (4), there can be a solution, which is a random 

uniform stationary field – n0(r, t). The average density 

of vacancies for it, 0 0( , )n t nr  is constant in space 

and in time, and the correlation function of a defects’ 

density depends only on a difference of arguments [2]. 

Then, for the average value n0, we have [2] 
 

 0 0 0 0 0r r( ) ( , ) .K n n t  (5) 

 

Neglecting the fluctuations of a product of stochas-

tic functions, we solve Eq. (4) and construct the correla-

tion functions as follows [2]: 
 

 0 0

0

( )
( ) ( , ) ,

( ; )

G
n t n

n

k
r r

k
 (6) 

 

 

( )

2
0 1 0 2 0 2

0

( )
( , ) ( , )

( ; )

iG e d
n t n t n

n

k r rk k
r r

k
 

 

1 2 1

1 2 1 2( ) ( )( ) 2 ( ) ( )
1 2 2( , ) ,

t t t
i t td e d e d G ek r r k k kk k (7) 

 

where 2 0
0 0

( )
( ) ( ; ) 1

vv

B

n W
n k D

k T

k
k k ,  

  ( ) ( )exp( )vv vvW W i dk r k r r . (8) 

 

The equations (5), (6) form a closed system for 

n0(r, t) and together with expression (7) completely de-

scribe a random homogeneous stationary field of the 

density of defects within the correlation approximation. 

For the determination of stability conditions for a 

random uniform stationary field, let us consider the 

evolution of a small perturbation of a probability distri-

bution of the density of vacancies, at which the pertur-

bation of average value is ( , )n tr  (
fexp{ }t ik r  

with a damping factor f  f(k)), and a perturbation of 

the fluctuation part is ( , )n tr [2]. Due to the anisotropy 

of an f.c.c. crystal, the interaction-energy Fourier com-

ponent, ( )vvW k , reaches a minimum value for a partic-

ular crystallographic direction. Therefore, with a 

change of parameters, for instance, the temperature of 

an irradiated specimen (and/or its content), one of the 

modes will become unstable with a wave vector k = kc 

having the same direction. Among other factors, it al-

lows to restrict the analysis of stability to one-

dimensional perturbations by directing Ox axis along 

kc. Substituting 0( , ) ( , )n x t n n x t into Eq. (3) and 

0( , ) ( , )n x t n n x t in Eq. (4), we obtain the equations 

of the evolution of small perturbations of the average 

value and fluctuations of a homogeneous stationary 

random distribution of point defects [2, 6] 

 

 
2 2

0
0 2 2

( , )
( , ) ( ) ( . ) ( . ) ( , ) ( )vv

B

Dnn x t
n x t x n x t D n x t n x t W x x dx

t k Tx x
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 0 0( , ) ( , ) ( , ) ( , ) ,vv

B

D
n x t n x t n x t n x t W x x dx

k T x x
 (9) 

 

 
2

0 2

( . )
( , ) ( , )

n x t
n x t D n x t

t x
  

 

 
2

0

2
( , ) ( ) ( ) ( , )vv

B

Dn
n x t W x x dx x n x t

k T x
  

 

 0 0

( ) ( )
( , ) ( , ) ( , ) ( , ) .

vv vv

B

D W x x W x x
n x t n x t dx n x t n x t dx

k T x x x
 (10) 

 

The set of Eqs. (9), (10) has variable coefficients and 

is not closed, as it contains ( ) ( , )x n x t  and 

0( , ) ( , )n x t n x t  [2]. But, as in Eq. (10), the variable 

coefficients are only at ( , )n x t  we consider the rele-

vant terms as a inhomogeneity and find ( , )n x t , which 

is now a functional of ( , )n x t . Then, we substitute it in 

Eq. (9) and by averaging obtain the following expres-

sion for a damping decrement of above-mentioned per-

turbations [2]: 

 

 0 1 0 2
f

f

( ) ( , ) ( , )
( ) ( ) 1 1

( ( ) ( )) ( ) ( )B B

G n DS n DS
d S

k T k T

k k k k k
k k k

k k k k k
, (11) 

 

where 
 

 
2 0 0 0

1 2 3 1 2 1 2 3 1 2 f 32
( , ) ( , ) ( , )exp{ ( )( ) ( ( ) ( )) },

( )B

D
S d d d d S S G

k T
k k k k k k k k k k   

 

 1( , ) (( ) { ( ) ( )}),vv vvS W Wk k k k k k k k   

 

 2( , ) ( { ( ) ( ) ( )}).vv vvS W Wk k k k k k k k k   

 

In the derivation of expression (11), the statistical 

independence of ( )r  and ( , )K tr  was supposed, i.e. 

their mutual correlation function and the relevant 

spectral density were taken to be equal to zero. Evi-

dently, the damping decrement f is a function of k. If 

the energy of thermal motion of vacancies considerably 

exceeds the energy of their force interaction, f  0 for 

any mode. Nevertheless, with decreasing temperature 

for some k  kc (where c( ) 0vvW k ), the damping dec-

rement passing through zero becomes positive (as am-

plification factor), the instability in relation to the 

transition to a probability distribution with an average, 

the period of spatial change of which being equal to 

2 /|kc| [2]. 

We consider the conditions for a spatially-periodic 

(inhomogeneous) distribution of the defects’ density to 

arise in their stochastic formation. To obtain further 

results a form of a spectral density should be rendered 

concrete. For the Gauss temporal spectrum 
2( , ) exp( )G t tk , there will be an unstable mode and 

the homogeneous stationary random field of a defects’ 

density will not be realized. Let us consider the case 

when fluctuations of a rate of defect-production in time 

and in space are statistically independent and small so 

that the period of a structure of a defects’ density which 

arises is close to a deterministic one and much more 

than a radius of their correlation, rcor, and the time of 

their correlation, cor, is much less of all characteristic 

times of a problem. Then for the component in (11) 

caused by fluctuations we have [2] 
 

 
2

1 2 cor

2

( ) ( , ) ( , )
.

( )( ( ) ( ))2( )B

G S SD
S d

k T

k k k k k
k

k k k k
 (12) 

 

In the stochastic description, it is not possible to re-

duce parameters 
0n , vvW0 , T to the one parameter—

0 / ( )vv
BnW k T0 , where 

{ }
max lim ( )vv vvW W0

k 0n
k . We 

will search for conditions of the development of instabil-

ity by changing K0 ( f depends on K0 only through ), 

and the temperature and coefficient of a variation of the 

rate of a creation of displacements 2
0/K K  will be 

considered as fixed [2]. 

 Correspondingly, the radius of correlation and the 

time of correlation may be evaluated as follows [7, 8]: 
 

cor 2

( , ) ( , ) ( )

( , )

K t K t d
r

K t

r r r r

r
, 

cor 2

( , ) ( , ) ( )

( , )

K t K t t d t

K t

r r

r
. 

 

A condition of the development of instability ob-

tained without taking into account the fluctuations is 

the following: 
 

 2
0( ; ) 1 ( ) 0k D Uk k , (13) 
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( ) ( ) /vv vvU W W0k k . The properties of an even function 

(k; ) are investigated in detail in [3, 5]. If   1, then 

(k; )  0. At  = 1 at a point k = km, there is a extre-

mum. km| monotonously increases with increasing , 

and the value of (km; ) increases and becomes equal 

to zero at  = cr and k = kcr [2, 6]. Because of this the 

integrand in (12), decreasing with an increase of k as 

 k2 is localised within the interval ( km|, km|) pro-

vided that km|  kcr|. The damping decrement f will 

become zero at   cr, because the numerator of an 

integrand in (11) is non-negative within the interval 

( km|, km|), and S  0 [2]. It is also clear from this 

consideration that in a region of stability (k; )  0 for 

all k. 

The value of kcr is that, for the large-scale inhomo-

geneity of sinks’ distribution when k0 is small, 

( ) lim ( )vv vv vv
crW W Wn

k 0
k k , where k  0 along the 

direction ncr  kcr/|kcr|. If a distance between the de-

fects largely exceeds the host-lattice period, the Fourier 

components, ( )vvW k , of the interaction energies for 

vacancies can be written as a power series: 
 

2
el.chem( ) ( ) ( ) ...vv vv vv vv vvW V w knk k k n( ) (14) 

 

vvV k( )  is the Fourier component of strain-induced v–v-

interaction energies. Within the small finite region 

near k  0, vvV k( )  may be represented as follows [9, 

10]: 2( ) ( ) ( ) .vv vv vv vvV A B k Qk n n  Here, the well-

known first term is based on the long-wave-limit ap-

proximation [9, 10]; the second term is a correction to 

this approximation [10, 11], and the third term is a 

gauge, which eliminates a strain-induced self-action of 

the vacancies [9, 12]. The coefficient Bvv(n) was derived 

in revised form in Ref. [11]. el.chem( )
vv k  is the Fourier 

component of energies for direct ‘electrochemical’ v–v-

interactions. Within both the long-wavelength approx-

imation and the cohesive-energy-estimation approach 

developed in Refs. [13–17], 
2

el.chem el.chem( ) ( )vv vv vvkk 0  [17], ( ) ( )vv vv vvBn n  

is the expansion coefficient in Eq. (13) ( kn k ), 

el.chem( ) ( )vv vv vvw A Qn n 0 . 

As shown in Ref. [17], the coefficient Bvv(n) and 

hence, ( )vv n  have the minimum values along the di-

rection (100) for f.c.c. crystal, when k  0. The Fourier 

component of v–v-interaction energies along the direc-

tion (100) within the small finite region near k  0 may 

be represented as follows: 
 

2( ) ( 1 (100) )vv vvW W k0k B , 

 

where (100) (100) /vv vv vvW0B . 

In a numerator of an integrand in (12), we will be 

restricted to the first term of an expansion, and in, 

(k; ) (13),  to the second term because it determines 

km [2]. Going to (12) from an integration to the 

summation and taking into account 
2

cor cor,0G K r0  [2], then substituting (12) into (11) 

and keeping the terms of the same order of smallness, 

we find [2] 

 

5/4 1/40c 0
c cr d

1
( ) (100)

( ) 2

vv
vv

B

K W
b T

T k T
B , 

 

2 2 1/4 5/4
c cr d

1
1 ( ) (100)
4

k k b T B , 

 

where 2 2
cor cor 0( ) ( ) /b T r D T K K  [2]. 
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