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The photoreflectance (PR) spectroscopy was applied to study the band-structure in GaAs:Bi, (Ga,Mn)As 

and (Ga,Mn)As:Bi layers with the 4% of Mn and 1 % of Bi content and, as a reference, undoped GaAs layer. 

All films were grown by low temperature (LT) MBE on semi-insulating (001) GaAs substrates. Photoreflec-

tance studies were supported by Raman spectroscopy and high resolution X-ray diffractometry (XRD) 

measurements. Magnetic properties of the films were characterized with a superconducting quantum in-

terference device (SQUID) magnetometer. Our findings were interpreted in terms of the model, which as-

sumes that the mobile holes residing in the valence band of GaAs and the Fermi level position determined 

by the concentration of valence-band holes. 
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1. INTRODUCTION 
 

The GaAs semiconductor alloy compounds contain-

ing Bi or Mn have emerged as potential candidates for 

novel photonic and spintronic applications. The band 

gap of the GaAs:Bi epitaxial layers is red shifted con-

siderably upon the addition of only a few atomic per-

cent of Bi and exhibits other anomalous properties, 

such as a reduced temperature dependence as well as 

giant spin-orbit splitting. These effects are very useful 

in solar cells as well as in optical telecommunication 

and the internet underpinned by the development of 

semiconductor lasers emitting at 1.3 µm and at 1.55 

µm, the wavelengths at which, respectively, the disper-

sion is zero and losses are minimized in standard opti-

cal fibers. To explain these unusual features of the 

electronic structure of the GaAs:Bi epitaxial layers the 

band anticrossing (BAC) model was developed [1]. Ac-

cording to this model the hybridization of the extended 

p-like states comprising the valence band of the GaAs 

host semiconductor with the close-lying localized p-like 

states of Sb or Bi leads to a nonlinear shift of the va-

lence-band edge and a reduction of the band gap. 

The ternary III-V semiconductor (Ga,Mn)As has at-

tracted a lot of attention as the model diluted ferro-

magnetic semiconductor, combining semiconducting 

properties with magnetism. There are two alternative 

models of the band structure of (Ga,Mn)As. The first 

one assumes mobile holes residing in the valence band 

of GaAs and the Fermi level position determined by the 

concentration of valence-band holes [2,3]. The second 

one involves persistence of the narrow, Mn-related, 

impurity band in highly Mn-doped (Ga,Mn)As with 

metallic conduction. In this model the Fermi level ex-

ists in the impurity band within the band gap and the 

mobile holes retain the impurity band character [4]. It 

was suggested in [5], that in the (Ga,Mn)As the valence 

band anticrossing interaction is observed as well. 

We have presented in [6,7,8] the results of our in-

vestigations the electronic- and band-structure proper-

ties of (Ga,Mn)As epitaxial layers with a low Mn con-

tent, in the range from 0 to 1.2% where the onset of 

ferromagnetic ordering occurs, and a high Mn content 

[6], in the range up to 6% where (Ga,Mn)As epitaxial 

layers have high Curie temperature (TC), by applying 

modulation photoreflectance spectroscopy and several 

complementary characterization techniques such as 

high-resolution X-ray diffractometry, thermoelectric 

power, Raman spectroscopy and SQUID magnetome-

tery. PR spectroscopy results presented in [7,8] were 

elaborated by performing both the full-line-shape anal-

ysis of the PR spectra and the analysis of the periods of 

Franz-Keldysh oscillations, which concluded with simi-

lar findings on the evolution of the optical transition 

energies with increasing Mn content in the layers. De-

crease in the band-gap-transition energy, with respect 

to that in the reference LT-GaAs layer, was revealed in 

very low-doped (Ga,Mn)As layer with Mn content of 

0.001% -0.005% and n-type conductivity. It is inter-

preted by assuming a merging of the Mn-related impu-

rity band with the host GaAs valence band resulting in 

electronic transitions from the top of this disordered 

valence band to the conduction band. On the other 

hand, an increase in the band-gap-transition energy 

(E0) with increasing Mn content was observed in 

(Ga,Mn)As layers with higher Mn content of 0.8% and 

1.2%, displaying p-type conductivity. It is interpreted 
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as a result of the Moss-Burstein shift of the absorption 

edge due to the Fermi level position, determined by the 

free-hole concentration, within the valence band.  

In p-type (Ga,Mn)As with 1–2% of Mn content and 

hole density close to that of the metal-insulator transi-

tion (MIT), the interband transition energy was blue 

shifted with respect to that in reference LT-GaAs. On 

the other hand, a substantial red shift, of 40 meV, of 

the E0 energy was revealed in (Ga,Mn)As with the 

highest (6%) Mn content and a hole density correspond-

ing to metallic side of the MIT. These results, together 

with the determined other parameters of the in-

trerband electro-optic transitions near the center of the 

Brillouin zone, which were significantly different from 

those in reference LT-GaAs, was interpreted in terms 

of a disordered valence band, extended within the 

band-gap, formed in highly Mn-doped (Ga,Mn)As as a 

result of merging the Mn-related impurity band with 

the host GaAs valence band.  

The experimental results presented in our previous 

study are consistent with the valence-band origin of 

mobile holes, which mediate ferromagnetic ordering in 

the (Ga,Mn)As diluted ferromagnetic semiconductor. 

The disordered character of the valence band may ac-

count for the observed very low mobility of holes in fer-

romagnetic (Ga,Mn)As layers.  

Considering the above, the electronic structure of 

the more complex  semiconductor alloy compounds such 

as (Ga,Mn)As:Bi could be very complicated. Neverthe-

less, we have expected that the understanding of this 

issue allow to anticipate band structure of the  new 

materials and to design complex  semiconductor alloy 

compounds with unusual properties.  

 

2. SUMPLES AND EXPERIMENTAL PROCE-

DURES 
 

We have investigated GaAs:Bi, (Ga,Mn)As, 

(Ga,Mn)As:Bi layers with 4% of Mn and 1% of Bi con-

tent and, as a reference, undoped GaAs layer, grown by 

LT-MBE at a temperature of 230°C. All the epitaxial 

layers were grown pseudomorphically on semi-

insulating (001) GaAs substrates. The alloy composi-

tions were determined from high resolution X-ray dif-

fractometry (XRD) measurements. The photoreflec-

tance (PR) spectroscopy enabled the determination the 

of the band gap values (E0). Both the Mn composition 

and the film thickness were verified during the growth 

by the reflection high-energy electron diffraction 

(RHEED) intensity oscillations, which enabled to de-

termine the composition and film thickness with accu-

racy of 0.1% and one monolayer, respectively. The qual-

ity of the epitaxial layers were confirmed in transmit-

tance electron microscope (TEM). 

The films were subjected to investigations of their 

properties using several complementary characteriza-

tion techniques. Magnetic properties and the TC values 

for the (Ga,Mn)As films were inspected using both 

magnetic-field- and temperature-dependent SQUID 

magnetometry. Micro-Raman spectroscopy was em-

ployed to estimate the hole densities in the thick 

(Ga,Mn) As films. The micro-Raman measurements 

were performed using an inVia Reflex Raman micro-

scope (Renishaw) at room temperature with the 514.5-

nm argon ion laser line as an excitation source. Struc-

tural properties of the thick epitaxial films were inves-

tigated by analysis of XRD results obtained at the tem-

perature 27°C by means of high-resolution X-ray dif-

fractometer equipped with a parabolic X-ray mirror 

and four-bounce Ge 220 monochromator at the incident 

beam and a three-bounce Ge analyzer at the diffracted 

beam. Misfit strain in the epitaxial films was investi-

gated using the reciprocal lattice mapping and the 

rocking curve techniques for both the symmetric 004 

and asymmetric 224 reflect  

Room temperature PR measurements were per-

formed using an helium-cadmium ion laser working at 

the 442 nm wavelength and a nominal power of 20 mW 

as a pump-beam source and a 250 W halogen lamp 

coupled to a monochromator as a probe-beam source. 

The PR signal was detected by a Si photodiode. The 

chopping frequency of the pump beam was 70 Hz and 

the nominal spot size of the pump and probe beams at 

the sample surface were 2 mm in diameter. 

 

3. RESULTS AND DISCUSSION 
 

3.1 Structural and magnetic characterization 
 

High-resolution XRD measurements have shown 

that all the epitaxial layers were grown pseudomorphi-

cally on GaAs substrate under compressive misfit 

strain. The layers exhibited a high structural perfec-

tion, as proved by clear X-ray interference fringes re-

vealed for the 004 Bragg reflections of all the layers, as 

shown in figure 1. The layer thicknesses calculated 

from the angular spacing of the fringes correspond very 

well to their thicknesses determined from the growth 

parameters. Diffraction peaks corresponding to the 

GaAs:Bi, (Ga,Mn)As, (Ga,Mn)As:Bi films in figure 1 

shift to smaller angles, with respect to that of the GaAs 

substrate, as a result of larger lattice parameters. In 

LT-GaAs it is caused by incorporation of a large 

amount of about 1% excess arsenic, mainly in form of 

arsenic antisites, AsGa [9]. The lattice parameter in all 

epitaxial layers becomes more increased as a result of 

additional incorporation of the BiAs, MnGa and MnI at-

oms in the crystal lattice [10]. Angular positions of the 

diffraction peaks corresponding to epitaxial layers were 

used to calculate the perpendicular lattice parameters, 

c, and the relaxed lattice parameters, arel, [11] (assum-

ing the epitaxial layer elasticity constants to be the 

same as for GaAs). The lattice unit of the layers chang-

es with increasing lattice mismatch from the zinc-

blende cubic structure to the tetragonal structure with 

the perpendicular lattice parameter larger than the 

lateral one, equal to the GaAs substrate lattice param-

eter, which is asub = 5.65349Å in our XRD experiments. 

The  decrease in angular positions of the diffraction 

peak from the epitaxial layers results in a increase in 

their lattice parameters, which is in agreement with 

the expected value of Mn and Bi doping [10].  

The TEM cross-sectional image of the GaAs:Bi pre-

sented in figure 2 has proved the structural perfection 

of this epi-layers and allowed to check the its lattice 

parameters in the grown direction [001].  
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Fig. 1 – High-resolution X-ray diffraction spectra: 2θ/ω scans 

for (004) Bragg reflections for (1) GaAs:Bi, (2) (Ga,Mn)As and 

(3) (Ga,Mn)As:Bi epitaxial layers grown on (001) semi-

insulating GaAs substrate. The narrow line corresponds to 

reflection from the GaAs substrate and the broader peaks at 

lower angles are reflections from the layers. 

 
 

Fig. 2 – Cross-sectional image of the GaAs:Bi epitaxial layer 

obtained using TEM microscope. 

 

The results of SQUID magnetometry applied to the 

(Ga,Mn)As and (Ga,Mn)As:Bi layers are presented in 

figure 3. They show that the layers exhibit an in-plane 

easy axis of magnetization, characteristic of compres-

sively strained (Ga,Mn)As layers, and well defined hys-

teresis loops in their magnetization vs. magnetic field 

dependence shown in the insets in figure 3. The as-

grown layers displayed the similar TC values of 50-60K. 
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Fig. 3 – SQUID magnetization along the in-plane [110] crys-

tallographic direction vs. temperature for the as-grown 

(Ga,Mn)As and (Ga,Mn)As:Bi layers after subtraction of dia-

magnetic contribution from the GaAs substrate. Magnetiza-

tion hysteresis loops measured at a temperature of 5 K are 

shown in the insets  

 

3.2 Micro-Raman characterization 
 

Quantitative analysis of Raman spectra can provide 

important information about the free-carrier density. 

Seong et al. [12] proposed a powerful procedure, which 

enables for accurate determining the carrier density 

without necessity of applying large magnetic fields, as 

is required in the Hall-effect measurements for ferro-

magnetic materials.  
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Fig.4 – Raman spectra recorded at room temperature in 

backscattering configuration from the (001) surfaces of the 

LT-GaAs reference film and two 230-nm (Ga,Mn)As films. The 

spectra have been vertically offset for clarity. The dashed lines 

indicate the positions of the Raman LO- and TO-phonon lines 

for the LT-GaAs reference film 
 

In (Ga,Mn)As films, characterized by a high density 

of free holes of about 1020 cm-3, the interaction between 

the hole plasmon and the LO phonon leads to the for-

mation of coupled plasmon LO phonon (CPLP) mode 

[13]. In addition, it results in a broadening and a shift 

of the Raman line from the LO-phonon position to the 

TO-phonon position depending on the hole density [14]. 

From micro-Raman spectra we have estimated the hole 

concentrations of 1.5×1020 cm−3 in both the (Ga,Mn)As 

and (Ga,Mn)As:Bi films. The obtained results suggest 

that these two epi-layers are metallic-like p-type mate-

rials with the similar magnetic properties. 
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3.3 Photoreflectance spectroscopy 
 

The PR spectra measured  for LT–GaAs, GaAs:Bi, 

(Ga,Mn)As:Bi and (Ga,Mn)As epitaxial layers  in the 

photon-energy  range from 1.3 to 1.7 eV (Fig. 5)  re-

vealed a rich, modulated structure containing electric-

field-induced Franz-Keldysh oscillations (FKO) at en-

ergies above the fundamental absorption edge. The 

modulation mechanism of the feature around the inter-

band transition energy (peaks A) observed for 

(Ga,Mn)As:Bi and (Ga,Mn)As epitaxial layers results 

from the thermal excitation of impurities or traps at 

the layer/substrate interface and their momentary re-

filling by the laser-injected carriers [15] 
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Fig. 5 – Sequence of the photoreflectance spectra for the as-

grown LT–GaAs, GaAs:Bi, (Ga,Mn)As:Bi and (Ga,Mn)As film 

epitaxially grown on GaAs substrate (dots). The spectra have 

been vertically offset for clarity 
 

The energy values Eg connected with the interband 

transition energy E0 are obtained for all epitaxial lay-

ers (see Fig.6) from the intersection with the ordinate 

of the linear dependence of the energies of FKO extre-

ma Em vs. their “effective index” defined as 
2 33 1 2 4 /

[ ( / ) / ]mF m : 

 

 m g mE E F  (1) 

 

where m is the extremum number (marked on Fig. 5) 

and ħθ – the electro-optic energy defined as 
1 3

2 2 2 2
/

e F , F is the electric field and µ is the 

interband reduced effective mass. 

Our PR results evidence a tangible difference in the 

electronic band structures of LT–GaAs, GaAs:Bi, 

(Ga,Mn)As:Bi and (Ga,Mn)As epitaxial layers. The sig-

nificant red shift, of 20 meV, of Eg transition in the 

GaAs:Bi film with respect to LT–GaAs epi-layer even 

for very low Bi concentration (1%) indicates the reduc-

tion of the band gap in the GaAs:Bi because of BAC. 

On the other hand, small red shift of the Eg transi-

tions in the (Ga,Mn)As and (Ga,Mn)As:Bi films with 

4% of Mn contents are consistent with the band struc-

ture model, where the Mn-related impurity band is 

merged with the GaAs valence band, forming a disor-

dered valence band extended within the band gap.6 In 

this case the Eg transition occurs from the Fermi level 

in the disordered valence band to the conduction band. 

The lack of splitting of the PR spectra into light- and 

heavy-hole features in the spectral area near the Eg 

transition, even in the (Ga,Mn)As:Bi film with a verti-

cal strain as high as 3 10-3 (from XRD results), may be 

explained by the disordered character of valence band.  
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Fig. 6 – Analysis of the period of Franz-Keldysh oscillations 

for LT–GaAs, GaAs:Bi, (Ga,Mn)As:Bi and (Ga,Mn)As. The 

values of Eg obtained from the analysis are listed in the fig-

ure. The numbers of the FKO extrema used for the analysis 

are marked on Fig. 5 
 

Assuming the large concentration of the free holes 

(up to 1.5×1020 cm−3 for the (Ga,Mn)As and 

(Ga,Mn)As:Bi films) reside in the valence band, we 

have expected the significant blue shift of the band gap 

because of the Burstein-Moss effect. Nevertheless, the 

coupling of the free carriers in the band states with 

impurities (especially Mn interstitials) leads to an up-

ward shift of the valence-band edge, resulting in a re-

duction of the band gap. The band gap renormalization 

associated with the change in the lattice parameters 

(observed in HR-XRD) as well as with the high density 

of free holes (observed by micro-Raman) also lead to a 

small reduction in the band-gap energy for these epi-

layers [16]. 

The significant reduction of the band gap for the 

GaAs:Bi caused by the hybridization of the extended p-

like states comprising the valence band of the GaAs 

host with the close-lying localized p-like states of Bi, is 

not observed in the (Ga,Mn)As:Bi probably because of 

the large valence-band distortion. 
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