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The novelties of this approach are introducing the self-settled dispersive liquid-liquid microextraction 

technique to remove the centrifuging step, conducting the dispersive liquid phase microextraction in com-

plex organic systems, applicability of water as disperser phase, and nano-extraction of charged porphyrins 

by nano-baskets of calixcrown, which act as the settling agents as well as the inclusion ligands. Four pro-

ton di-ionizable diacid conformers of 25,26-bis(carboxymethoxy)calix[4]arene-27,28-crown-3; -crown-4; -

crown-5; and -crown-6 in the cone conformation were synthesized and used. The related parameters includ-

ing ligand concentration, volume of water disperser, salt effect, and extraction time were optimized. The 

linear range, detection limit (S/N  3) and precision (RSD, n  6) were determined to be 0.2–50, 0.07 μgL−1 

and 5.3%, respectively. The established method was applied to determine the target compound in five 

samples of live crude oil, were sampled from an Iranian offshore field. Owing to the overall differences 

(such as organic media, inclusion extraction, water-soluble ligands, etc), the comparison of the proposed 

method with the traditional liquid-liquid microextraction was inapplicable. These results revealed that the 

new approach is competitive analytical tool and an alternative of the traditional methods in the crude oil 

and related systems. 
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1. INTRODUCTION 
 

Determination of metalloporphyrins in crude oil is 

of interest in understanding the geochemical origins 

of petroleum reservoirs, the diagenetic and the cat-

agenetic pathways in the oil formation, and the matu-

ration, depositional [1] and environmental reconstruc-

tion studies [2].  Alfred Treibs discovered the petrole-

um porphyrins (petroporphyrins) in 1934 [3]. Vanadyl 

porphyrins were the first petroleum biomarkers [4] 

and they are molecular fossils of tetrapyrrolic pig-

ments such as bacteriochlorophylls and chlorophylls 

[5]. Vanadium in crude oil causes corrosion problems 

that derive from the formation (in the combustion 

chamber of power plants) of sodium vanadates (with 

low melting point), which react with the metal surface 

of the superheaters and form the metal oxide [6]. 

According to the literature reports [4], five main 

types of porphyrins along with their homologues are 

present in crude oil including etioporphyrins (Etio), 

deoxophylleoerythroetioporphyrin (DPEP), tetrahy-

drobenzo DPEP, benzo-Etio and benzo-DPEP. Up to 

30% of vanadium and 25% of nickel in Tatarstan 

crude oil are found as porphyrin complexes. Ion et al. 

[7] analyzed the vanadyl porphyrin distribution of 

Romanian petroleogenetic rocks by UV-vis spectro-

photometry, FTIR, ICP-atomic emission spectrometry, 

ESR and X-ray fluorescence spectroscopy. Holden and 

coworkers [5] developed the method of high-resolution 

reflectance spectroscopy for determination of porphy-

rins (low levels) in the kerogen fraction. After that, 

Premovic et al. [8] used  the electron spin resonance 

(ESR) to quantify the high levels of vanadyl porphy-

rins in kerogens. 

Saitoh et al. [9] used a series of preliminary sepa-

ration procedures for preconcentration of metallopor-

phyrins and determination by reversed-phase high-

performance liquid chromatography (HPLC). Ali et al. 

[2] extracted the nickel and vanadyl porphyrins in 

residue of Saudi Arabian Crude Oils. The nickel por-

phyrins were separated from vanadyl porphyrins us-

ing adsorption chromatography on alumina and silica 

gel by solvents of increasing polarity. They monitored 

the chromatographic separation by UV-vis spectro-

photometry. 

New aspects of analytical chemistry in crude oil 

and reservoir engineering are summerized manly as 

chemometrics [10], sample preparation and microex-

traction [11] techniques.  

New sample-preparation methods, which are easy 

to use, inexpensive, fast, environmental friendly and 

compatible with a range of analytical instruments, are 

outspreaded. More recently, efforts have been placed 

on the development of the dispersive liquid–liquid 

microextraction (DLLME) [12] procedure, which is 

based on a ternary component solvent system. The 

dispersion of extraction solvent by disperser solvent 

within the aqueous solution leads a large contact area 

between the aqueous phase and the extraction sol-

vent. Other examples of sample preparation by 

DLLME have been presented for trace determination 

of pesticides in soils, organophosphorus pesticides in 

water, nickel and Cu(II) in water, and chlorobenzenes 

in water. 

Flocculation, which is the first action of the demul-

sifier on an emulsion, involves the joining of the small 

water droplets. When magnified, the flocks take on 

the appearance of fish-egg bunches. If the emulsifier 

film surrounding the water droplets is very weak, it 

will break under this flocculation force and the coales-
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cence, which is the rupturing of the emulsifier film 

and the uniting of water droplets, will take place 

without further chemical action. Once the coalescence 

begins, the water droplets grow large enough to settle 

out. 

Asphaltenes are the high polar fraction of the pe-

troleum and play an important role in the formation 

and stabilization of the water in crude oil emulsions 

[13]. The goal of demulsifier action is to offset the sta-

bilization of emulsion both from the kinetic and ther-

modynamic points of view [14]. Demulsifiers are mole-

cules that aid the separation of water from oil and 

prevent formation of water in oil mixture. Some de-

mulsifiers are polymers, others have calixarene and 

calixcrown structures. Calixarenes and calixcrowns 

have been subjected to extensive researches [15] and 

reviews [16] in development of extractants, transport-

ers, stationary phases, electrode ionophores, optical 

sensors and medical researches over the past decades. 

In this paper, a novel approach, entitled self-

settled dispersive liquid phase microextraction, was 

introduced and is used for determination of vanadium 

porphyrins in live crude oil. The main objectives of 

this work are applicability of water as disperser 

phase, removing the centrifuging step, settling the 

water dispersed droplets by calixcrowns, conducting 

the dispersive liquid phase microextraction in complex 

organic systems, and inclusion microextraction of 

charged porphyrins by ionizable calixcrowns. This 

method deals with twin role of calixcrowns scaffolds 

as the settling and the complexing agent. 

 

2. EXPERIMENTAL 
 

2.1 Chemicals and reagents 
 

Doubly distilled and deionized water (DDW) with a 

specific resistivity of 18 MΩcm, from a Milli-Q water 

purification system (Millipore, Bedford, MA), was used 

as disperser. According to the literature methods [4, 9], 

the vanadyl porphyrins were separated from the oil 

matrix and were used as standard solutions. The oil 

samples were collected from one of the Iranian offshore 

oil fields and their chemical characteristics are pre-

sented in Table 1. 

 

2.2 Analytical Apparatus 
 

Determinations The extractions and injections were 

performed by microsyringe (Agilent, CA, USA) bearing 

an angledcut needle tip (needle id: 0.11 mm and glass 

barrel id: 0.6 mm). Atomic absorption spectrometer of 

Shimadzu (model AA-670G) with deuterium lamp 

background correction and a graphite furnace atomizer 

(GFA-4B) was used. A reversed phase (RP) C18 column 

(4.6mm diameter, 100 mm length, 2 μm macropore size, 

and 13 nm mesopore size) was obtained from Merck 

(Darmstadt, Germany). A RP-C18 guard column was 

fitted upstream of the analytical column. The mobile 

phase was optimized to be 45:55, v/v methanol–water 

and was delivered by an HPLC pump (Waters LC-600). 

The UV detection wavelength was set at 254 nm and 

the flow rate of the mobile phase was adjusted to be 3 

ml/min. 
 

Table 1 – Chemical characteristics of blend crude oil. 
 

Component 

Stream Liq-

uid 

(mol %) 

Flashed Gas 

(mol %) 

Flashed 

Liquid 

(mol %) 

N2 00.04 00.31 00.00 

CO2 00.35 02.78 00.00 

H2S 00.57 04.52 00.00 

CH4 03.76 30.14 00.00 

C2H6 01.50 12.02 00.00 

C3H8 03.77 21.90 01.18 

i-C4H10 01.92 07.25 01.16 

n-C4H10 07.23 12.40 06.49 

i-C5H12 02.79 03.21 02.73 

n-C5H12 03.80 02.81 03.94 

C6 07.30 01.86 08.08 

C7 08.76 00.68 09.91 

C8 09.61 00.12 10.97 

C9 08.77 00.00 10.02 

C10 06.75 00.00 07.71 

C11 03.60 00.00 04.12 

C12+ 29.48 00.00 33.69 

Total Sulfur  00.85/mass % 

Asphaltenes  00.32/mass % 

Waxes  05.00/mass % 

 

2.3 Sample Preparation 
 

5.0 mL pre-washed crude oil was placed into a 10-

mL screw-cap glass centrifuge tube with conic bottom. 

100.0 μL of distilled water (as dispersive solvent) con-

taining 0.001 g calixcrown (as extraction ligand) was 

rapidly transferred into the above-mentioned centri-

fuge tube and was gently shaked. 

The calixcrown demulsifier caused the dispersed fi-

ne droplets of the extraction phase be sedimented at 

the bottom of the conical test tube. The volume of the 

sedimented phase was determined using a 50.0 μL mi-

crosyringe, and was completely transferred to another 

100 μL centrifuge tube. After evaporation of the water 

under a gentle nitrogen flow, the residue was re-

dissolved in 25 μL LC-grade methanol and injected into 

HPLC for analysis. 

 

3. RESULTS AND DISCUSSION 
 

The effects of all parameters (that can probably in-

fluence the performance of extraction) were investigated. 

They were (1) the concentration of demulsifier or extrac-

tion ligand (calixcrown), (2) the volume of disperser (wa-

ter), (3) the extraction time and (4) the salt addition that 

were investigated and optimized in order to achieve the 

higher enrichment factor and recovery of vanadyl por-

phyrins from the samples of live oil. 

 

3.1 Effect of the calixcrown concentration 
 

In order to evaluate the effect of calixcrown concen-

tration on the extraction efficiency and the separation 

of phases, the following experiments were performed 

using 0.50 ml DDW containing different concentrations 

of calixcrown (9.5, 14.5, 19.5 and 24.5 mgl-1). Figures 1–

3 depicts the traces of recovery of vanadyl porphyrins, 

enrichment factor and volume of sedimented phase 

versus the calixcrown concentration, respectively.  

As illustrated in Figure 3, the extraction recovery is 

almost increasing (from 62.0–95.5%) owing to the quan-
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tity extraction and high distribution coefficient of 

vanadyl porphyrins in the conditions of high concentra-

tion. Obviously, in Figure 2, the enrichment factor de-

creases from 880 to 200. Thus, 10 μL of vanadyl por-

phyrins was selected in order to obtain high enrich-

ment factor, and hence low detection limit and high 

recovery. According to Figure 3, by increasing the ca-

lixcrown concentration from 10 to 26 mgL-1, the volume 

of sedimented phase increases (6.0–20.5 μL). 
 

 
 

Fig. 1 – Effect of the calixcrown concentration on the recovery 

of vanadyl porphyrins. Extraction conditions: oil sample vol-

ume, 5.00 ml; disperser solvent (water) volume, 0.50 ml; at 

ambient temperature 
 

 
 

Fig. 2 – Effect of the calixcrown concentration on the enrich-

ment factor of vanadyl porphyrins. Extraction conditions: as 

with Figure 1; concentration of calixcrown, 10 mgL-1 
 

 
 

Fig. 3 – Effect of calixcrown concentration on the volume of 

sedimented phase (N  3). Extraction conditions: as with Fig-

ure 1 

 

3.2 Effect of the disperser volume 
 

As discussed above, water was selected as the best 

disperser solvent; hence, it was necessary to optimize 

the disperser volume. As a rule, the water disperser (at 

low volumes) cannot disperse the extracting calixcrown 

properly. In the other hand, in such conditions, the 

cloudy solution is not formed completely.  

For obtaining optimized volume of water, some ex-

periments were conducted using different volumes of 

water (0.25, 0.5, 1.0, 1.5, 2.0 and 2.5 ml) containing 

10.0, 12.5 16.0 and 24.0 μgL-1 vanadyl porphyrins, re-

spectively. It is necessary to change the volume of 

vanadyl porphyrins by changing the volume of water in 

order to obtain constant volume of sedimented phase in 

all experiments. Figure 4 illustrates the trace of vana-

dyl porphyrin's recovery versus the volume of water. 

Base upon the results, a 0.50 ml water was chosen as 

the optimum volume of disperser. 
 

 
 

Fig. 4 – Effect of the volume of water disperser on the recov-

ery of vanadyl porphyrins obtained from DLLME (N  3). Ex-

traction conditions: as with Figure 1 

 

3.3 Effect of the extraction time 
 

The interval time between the injection of the water 

disperser (containing the extraction ligand) and starting 

to decant was defined as the extraction time. The effect 

of extraction time on the performance of DLLME is a key 

factor, which is evaluated here. Different extraction 

times in the range of 0 to 90 min (with constant experi-

mental conditions) were investigated. Base upon the 

results, the extraction regime is time-independent since 

an infinitely large surface area is available between the 

aqueous phase (extraction solvent) and the oil media. 

According to Figure 5, this method is very fast and this 

is a common advantage of DLLME. 
 

 
 

Fig. 5 – Effect of extraction time on the peak area of vanadyl 

porphyrins obtained from DLLME (N  3). Extraction condi-

tions: as with Figure 1 
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3.4 Effect of the salt addition 
 

The influence of ionic strength on the performance of 

DLLME was studied by adding different amounts of 

NaCl (0–5%), while the other experimental conditions 

were kept constant. Figure 6 presents the effect of in-

creasing the ionic strength on the volume of sedimented 

phase of vanadyl porphyrins. Obviously, by increasing 

the ionic strength (from 0 to 1%) the volume of sediment-

ed phase decreases and then by more increasing (from 1 

to 5 %), the volume of sedimented phase increases. 
 

 
 

Fig. 6 – Effect of salt addition on the volume of sedimented 

phase obtained from DLLME (N  3). Extraction conditions, as 

with Figure 1 

 

3.5 Real sample analysis 
 

The matrix effects on the extraction were also eval-

uated by studding the applicability of this approach to 

determine the concentration of vanadyl porphyrins in 

the crude oil samples taken from one of the Iranian 

offshore fields. The samples were extracted using 

DLLME method and analyzed by HPLC–UV. The sam-

ples were spiked with vanadyl porphyrin standards at 

different concentration levels to investigate the matrix 

effects. A typical chromatogram representing the vana-

dyl porphyrins is depicted in Figure 7. 

 
 

Fig. 7 – Chromatograms of decanted water and spiked samples 

at concentration level of 12.5 μgL−1 vanadyl porphyrins 

 

4. CONCLUSIONS 
 

This study introduced a new approach and a self-

settled DLLME method combined with HPLC–UV for 

separation, preconcentration and determination of 

vanadyl porphyrins in crude oil. This method deals 

with twin role of calixcrown scaffolds as the self-

settling and the complexing agent. Removing the cen-

trifuging step and performing the inclusion microex-

traction of vanadyl porphyrins by means ionizable ca-

lixcrown was the novelty of this project to enhance the 

preconcentration speed and extraction the vanadyl por-

phyrins 

The results of this study revealed that the proposed 

approach is acceptable for preconcentration of vanadyl 

porphyrins from crude oil samples. The linear range, 

detection limit (S/N  3) and precision (RSD, n  6) 

were determined to be 0.2–50, 0.07 μgL−1 and 5.3%, 

respectively 
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