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Heterostructures with 1 monolayer of Si3N4-like Si2N3 interfacial layer between five monolayers thick 

B1-TixZr1-xN(111), x  1.0, 0.6, 0.4 and 0.0, slabs were investigated by means of first-principles quantum 

molecular dynamics and structure optimization procedure using the Quantum ESPRESSO code. Slabs con-

sisting of stoichiometric TiN and ZrN and random, as well as segregated B1-TixZr1-xN(111) solutions were 

considered. The calculations of the B1-TixZr1-xN solid solutions as well as of the heterostructures showed 

that the pseudo-binary TiN-ZrN system exhibits a miscibility gap. The segregated heterostructures in 

which the Zr atoms surround the SiyNz interface were found to be most stable. For the Zr-rich heterostruc-

tures, the total energy of the random solid solution was lower compared to that of the segregated one, 

whereas for the Ti-rich heterostructures the opposite tendency was observed. 
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1. INTRODUCTION 
 

The superhard nanocomposites and nanolayered 

heterostructures exhibit enhanced hardness of 40-

100 GPa and  35 GPa, respectively, combined with 

high thermal stability [1-5] which is somewhat lower 

for the heterostructures [6] as compared with the 

nanocomposites [1]. The large increase of the hard-

ness in the nanocomposites as compared with TiN (20-

21 GPa) has been attributed to the 3-4 nm size TiN 

grains which prevents dislocation activity, and one 

monolayer interfacial SiNx [7] which is strengthened 

by valence charge transfer [8]. The SiNx tissue con-

necting the grains enhances the strength of the nano-

composites by preventing grain boundary shear ("slid-

ing"). The hardness enhancement in the heterostruc-

tures is usually explained by the Koehler's model [9]. 

The 1 ML thick SiNx tissue in the TiN/SiNx nano-

composites with randomly oriented TiN nanocrystals 

appears amorphous in X-ray and electron diffraction 

(XRD and ED) [1, 10], whereas it is heteroepitaxially 

stabilized in the heterostructures [4]. The maximum 

hardness is achieved when the SiNx layer is about 1 

ML thick, but the hardness enhancement is lost when 

the thickness reaches 2 ML (see [1] and references 

therein) due to the weakening of neighbor Ti-N bonds 

(see Ref. [8]. The possibility of the formation of the 

epitaxial interfaces in TiN/SiN heterostructures has 

been discussed in Ref. [4,11-14]. Both the coherent 

and incoherent TiN/SiNx interfaces were widely inves-

tigated in the framework of different first-principles 

procedures which were summarized in Ref. [15]. 

Whereas the Ti-Al-Si-N and Cr-Al-Si-N nanocom-

posites find already large-scale industrial applications 

as wear-protection coatings on tools [16], the nano-

composite coatings based on Ti-Zr-N alloys were stud-

ied to a lesser extent. Sobol’, Pogrebnjak and Bersenev 

showed that the Ti-Zr-N in Ti-Zr-N/SiNy nanocompo-

site coatings form B1-TixZr1-xN solid solution [17] with 

maximum nanohardness of about 40 GPa. 

Because the investigation of the ternary nanocom-

posite M1-M2-N/SiNx, (M1, M2 are transition metals) 

is in its infancy, we investigate in the present paper 

the TixZr1-xN/SiNy heterostructures as a model sys-

tems using first-principles quantum molecular dy-

namics (QMD) calculations. 

 

2. COMPUTATATIONAL ASPECTS 
 

First-principles QMD calculations of the electronic 

structure have been done using the Quantum-

ESPRESSO code [18] for 8-atom cubic supercells of 

B1-Ti4-nZrnN4, n  0, 1, 2, 3 and 4 random solid solu-

tion Ti1 - xZrxN, and for 105-atomic hexagonal-like 

supercells of B1-TinZr45-nN45(111)/Si6N9, n  0, 18, 27, 

and 45, representing the B1-TixZr1-xN(111)/ Si3N4-like 

Si2N3 heterostructures. The heterostructures with 1 

monolayer of Si3N4-like Si2N3 interfacial layer be-

tween five monolayers thick B1-TixZr1-xN(111), x  1.0, 

0.6, 0.4 and 0.0, slabs were investigated using first-

principles QMD with the structure optimization as 

described in [18]. Several heterostructures with the 

partially segregated ("ordered") and random arrange-

ment of the atoms within B1-TixZr1-xN(111) slabs were 

considered. The "ordered" structures were composed of 

the TiN and ZrN slabs. The atomic configurations of 

the heterostructures under consideration are shown in 

Figs. 1 to 3. Vanderbilt ultra-soft pseudo-potentials 

were used to describe the electron-ion interaction [19]. 

In the Vanderbilt approach [14], the orbitals are al-

lowed to be as soft as possible in the core regions so 

that their plane-wave expansion converges rapidly. 

The semi-core states were treated as valence states.  

For the titanium and zirconium pseudo-potentials, the 

nonlinear core-corrections were taken into account 

[18]. To describe exchange-correlation energy, the 

generalized gradient approximation (GGA) of Perdew 

et al. [20] has been employed. The criterion of conver-
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gence for the total energy was 10 – 6 Ry/formula unit. 

To speed up the convergence, each eigenvalue was 

convoluted with a Gaussian with a width of 0.02 Ry. 

The cut-off energy for the plane-wave basis was set to 

60 Ry and 30 Ry, for the 8- and 105-atomic unit 

supercells, respectively. The integration in the Bril-

louin zone (BZ) was done on special k-points deter-

mined according to the Monkhorst-Pack scheme [21] 

using a mesh (8 8 8) for the 8-atomic supercells, and 

(2 2 2) for the 105-atomic supercells. 

 

 

 
 

Fig. 1 – (Color online) Atomic configurations of heterostructures consisting of TiN slabs ("5Ti" on the left), the partially segre-

gated ("ordered") Ti-rich (Ti27Zr18N45/Si6N9) slabs, and ZrN slabs ("5Zr" on the right). The denotation of the heterostructures 

gives the sequence of layers in the c-direction. Here and in further figures are: N-the small circles, Si-dark circles, Ti-dark 

large circles, Zr-light large circles 
 

 
 

Fig. 2 – (Color online) Atomic configurations of the Ti-rich random Ti27Zr18N45/Si6N9 solution based heterostructures. The Zr-

rich heterostructures are constructed from the corresponding Ti-rich heterostructures. In the denotation of the heterostruc-

ture, T and Z are Ti and Zr, respectively, and the numbers are their concentrations 

 
The QMD calculations of the initial relaxed hetero-

structures are carried out at 1400 K with fixed unit 

cell parameters and volume (NVT ensemble, i.e., con-

stant number of particles-volume-temperature) for  

2.5 ps. In all the QMD calculations, the time step was 

about 10 – 15 s. The system temperature is kept con-

stant by rescaling the velocity. For the large-scale 

system calculations, only the  point is taken into ac-

count in the BZ integration. The variation of the total 

energy has been considered during each QMD time 

step. During the initial 1 to 1.5 ps, all structures 

reached closely their equilibrium state and, at later 

times, the total energy of the equilibrated structures 

varied only slightly around the constant equilibrium 

value with small amplitude of 0.025 eV/atom. 

After QMD equilibration, the geometry of all the 
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hetero-structures has been optimized by simultane-

ously relaxing the atomic basis vectors and the atomic 

positions inside the unit cells using the BFGS algo-

rithm [22]. The relaxation of the atomic coordinates 

and of the unit cell is considered to be complete when 

the atomic forces are less than 1.0 mRy/Bohr 

(25.7 meV/Å), the stresses are smaller than 0.05 GPa, 

and the total energy during the iterative structural 

optimization process is changing by less than 0.1 mRy 

(1.36 meV). 

The formation energy of the Ti1-xZrxN solid solu-

tion (EForm) and of the heterostructures (Ehetero) was 

determined from Eqs. (1a) and (1b), respectively, 
 

 

 1( ) ( ) (1 ) ( ) ( )Form T x x T TE x E Ti Zr N x E TiN xE ZrN , (1a) 

 

 1( ) ( / ) (1 ) ( / ) ( / )hetero T x x y T y T yE x E Ti Zr N SiN x E TiN SiN xE ZrN SiN , (1b) 

 

as a function of composition x. Here, ET is the total en-

ergy of the Ti1-xZrxN solid solutions, of the stoichio-

metric TiN and ZrN compounds, and of the Ti1-

xZrxN/SiNy, TiN/SiNy and ZrN/SiNy heterostructures.  

 

3. RESULTS AND DISCUSSION 

 

In Fig. 3, we show the concentration dependence of 

the lattice parameter a for Ti1-xZrxN solid solution. The 

calculated values are slightly higher than the experi-

mental ones by approximately 0.2-0.5 %, and display a 

slight positive deviation from the mixing rule 

a(x)=x aZrC  (1 – x)·aTiC, in agreement with the experi-

ment [5]. 
 

 
 

Fig. 3 – Lattice parameters of Ti1-xZrxN versus composition. 

The experimental data were taken from Ref. [5]. The dashed 

line reflects the mixing rule for the experimental results. Here 

and in the following figures the solid line is a polynomial fit to 

the data points 
 

The Gibbs free energy of mixing of Ti1-xZrxN, calcu-

lated at zero temperature (i.e. formation energy), as a 

function of composition x is shown in Fig. 4. The for-

mation energy is positive in the entire composition 

range, which implies that the alloys are metastable, 

and should decompose into TiN and ZrN with the 

chemical driving forceEForm, in agreement with the the-

oretical results in Ref. [5]. Because the mixing entropy 

term stabilizes the solid solution, and this stabilization 

increases with increasing temperature, the positive 

value of the Gibbs free energy in Fig. 4 is due to the 

mixing enthalpy term. 

We performed the QMD optimization of the struc-

ture of the initial epitaxial heterostructures at zero 

temperature and at 1400 K with subsequent variable-

cell structural relaxation. The arrangement for all in-

terfaces was found to be preserved, as shown in Figs. 1 

and 2. The structural parameters and the total energies 

of the computed heterostructures are summarized in 

Tables 1 to 3. One can see from Tables 2 and 3 that, for 

the same concentration x, the structural parameters 

weakly depend on the atomic arrangements. The aver-

age cell volume for the disordered structures is higher 

as compared to that of the ordered one. 
 

 
 

Fig. 4 – Computed formation energy (EForm) for Ti1-xZrxN as a 

function of composition x 
 

The total energy calculations show that the Ti-Zr-N 

solid solution, which forms during the deposition, is 

metastable and should decompose into stoichimetric 

TiN and ZrN. However, by analogy with other similar 

systems, such as Ti-Al-N and Cr-AlN, this decomposi-

tion is activated and therefore it will occur only at 

somewhat higher temperature. (Of course, the mixing 

entropy term will stabilize the random solid solution at 

high temperatures approaching the melting point, 

where the de-stabilizing mixing entropy term will di-

minish.) However, in the Ti1-xZrxN/SiNx heterostruc-

tures, the different stability of heterostructures consist-

ing of ordered and random Ti1-xZrxN solid solution slabs 

terminated with either Zr or Ti atoms at the SiNx inter-

face indicate that the decomposition of the random sol-

id solution may be promoted already at a lower tem-

perature. 

Finally, we would like to emphasize that our 

estimate of the stability of the Ti1-xZrxN solid so-

lution is based on the comparison of the total en-

ergies of different heterostructures. For a more 

detailed analysis the vibrational and configura-

tion entropies should be taken into account. 
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Table 1 – Structural parameters and total energy of the Ti45N45/Si6N9 (5Ti) and Zr45N45/Si6N9 (5Zr) heterostructures (see Fig. 1) 
 

 A (Å) B (Å) C (Å) V (Å3/at) ET (eV/at) 

5Ti 8.974 8.915 14.863 9.826 -828.32506 

5Zr 9.730 9.607 15.865 12.263 -726.32889 
 

Table 2 – Structural parameters and total energy of the Ti27Zr18N45/Si6N9 (i.e. Ti0.6Zr0.4N/Si2N3) heterostructures (see Figs. 1 and 2) 
 

(0.6  ET(Ti45N45/Si6N9)  0.4  ET(Zr45N45/Si6N9)  – 787.52659 eV/at.) 

Heterostructure a(Å) b(Å) c(Å) V(Å3/at) ET(eV/at) 

2Zr-3Ti 9.292 9.202 15.291 10.813 -787.48378 

Zr-3Ti-Zr 9.278 9.192 15.337 10.814 -787.48502 

Ti-2Zr-2Ti 9.319 9.217 15.238 10.824 -787.48505 

Average 9.297 9.203 15.289 10.817 -787.48462 

T27Z18-R1 9.311 9.215 15.316 10.873 787.48835 

T27Z18-R2 9.315 9.214 15.300 10.856 -787.48945 

T27Z18-R3 9.313 9.218 15.325 10.885 -787.48422 

T27Z18-R4 9.318 9.202 15.355 10.904 -787.47507 

T27Z18-R5 9.314 9.212 15.345 10.887 -787.47476 

Average 9.314 9.212 15.328 10.881 -787.48237 
 

Table 3 – Structural parameters and total energy of the Ti18Zr27N45/Si6N9 (i.e. Ti0.4Zr0.6N/Si2N3) heterostructures (see Figs. 1 and 2) 
 

(0.4 ET(TiN/Si2N3) + 0.6 ET(ZrN/Si2N3) = -767.12736 eV/at). 

Heterostructure 
a 

(Å) 

b 

(Å) 

c 

(Å) 

V 

(Å3/at) 

ET 

(eV/at) 

2Ti-3Zr 9.451 9.345 15.491 11.316 -767.08720 

Ti-3Zr-Ti 9.463 9.355 15.439 11.306 -767.08859 

Zr-2Ti-2Zr 9.425 9.324 15.568 11.309 -767.08491 

Average 9.446 9.341 15.499 11.310 -767.08690 

T18Z27-R1 9.464 9.356 15.505 11.365 -767.08819 

T18Z27-R2 9.472 9.343 15.520 11.355 -767.08647 

T18Z27-R3 9.463 9.352 15.512 11.359 -767.09296 

T18Z27-R4 9.466 9.367 15.487 11.363 -767.09835 

T18Z27-R5 9.465 9.363 15.497 11.353 -767.09782 

Average 9.466 9.356 15.504 11.359 -767.09276 
 

 

CONCLUSIONS 
 

We performed first-principles investigations of the 

B1-TixZr1 – xN(111)/Si3N4-like Si2N3 heterostructures 

for x  1.0, 0.6, 0.4 and 0.0, and of the B1-TixZr1-xN 

solid solutions for x  1.0, 0.75, 0.5, 0.25 and 0.0. Sev-

eral heterostructures with the segregated ("ordered") 

and random arrangement of the atoms within B1-

TixZr1 – xN(111) slabs were considered. The ordered 

structures consisted of TiN and ZrN layers. The or-

dered heterostructures, in which the Zr atoms sur-

round the SiNx interface, were found to be most sta-

ble. According to our results, the B1-TixZr1-

xN(111)/Si3N4-like Si2N3 nanostructures should de-

compose into the TiN(111)/SiNy and ZrN(111)/SiNy 

units due to the immiscibility of TiN and ZrN. Howev-

er, experiment shows that during the deposition at 

relatively low temperature the B1-TixZr1-xN metasta-

ble solid solutions can form. According to our results, 

the formation of the random B1-TixZr1-xN solid solu-

tion will be preferable for the Zr-rich heterostruc-

tures, whereas for the Ti-rich heterostructure the or-

dered alloys should form. 
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