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Optimal conditions were found for the formation of carbon-oxide composites by the treatment of mix-

tures of oxides of aluminum or titanium with carbon nanotubes and nanofibers in a planetary ball mill. 
The dependences of the electrical conductivity of composites on the content of carbon nanomaterials (1-5% 

by mass) were determined. It is shown that the addition of 3%(wt) of CNT to the oxides leads to a sharp in-
crease in the electrical conductivity: from 5.0×10-8 to 2.8×10-4 S/cm for Al2O3 and from 5.0×10-6 to 2.2×10-2 

S/cm for TiO2. It was shown that the carbon-oxide composites are promising carriers of the catalysts of 
electrode processes in electrochemical devices. It was revealed that Pt/TiO2 - CNT catalyst containing 5% 

(mass) of carbon nanotubes has the best catalytic activity in oxygen reduction, in an electrode-modeling 
cathode of a fuel cell. 
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1. INTRODUCTION 
 

Composites based on ceramics and carbon materials 

have wide prospects for the modern industry [1-5]. Of 

certain interest is to use carbon nanotubes as modify-

ing components. Thus the high thermal conductivity of 

nanotubes suggests that their introduction to the ce-

ramic material, even in small amounts, would improve 

thermal conductivity and resistance to thermal shock 

[2]. The electrical conductivity of such composites can 

be useful for creating various electrochemical devices 

[3]. Thus, to give conductive properties through the 

introduction of small additions of carbon nanomaterials 

is attractive compared to other composite systems. 

In the production of electrically conductive composites 

with the dielectric matrix and conductive filler there are 

of particular importance the intrinsic conductivity of the 

filler particles, the amount of injected filler, as well as the 

shape of the filler particles. Currently, a huge number of 

composites based on Al2O3 [4-8], Si3N4 [8, 9], SiC [10], 

SiO2 [11], TiO2 [12-14], ZnO [14, 15], TiN [16], ZrO2 [17] 

etc. are investigated. At the same time one use carbon 

black, nanofibers, multiwall and single-wall nanotubes, 

and graphene structures as fillers [4-20]. 

To create high-performance composite materials is 

necessary to introduce additives, which will either im-

prove the properties of the base material, or give it new 

ones, but it is important to maintain existing properties. 

Therefore, to achieve the best effect it is necessary to 

introduce a minimum amount of additives, which give 

new properties to composites. In the literature data 

studied by us the content of carbon materials in the 

composites ranged from one percent to several tens of 

percent. In this connection, one of the problems is the 

determination of the minimum content of carbon in the 

composite material that provides the desired properties. 

The aim of this work is to obtain conductive carbon-

oxide composites based on Al2O3 and TiO2, and study 

the dependence of the specific conductivity of compo-

sites on the conditions of their formation and types of 

carbon nanostructures (CNS). 

2. EXPERIMENTAL 
 

We used powders of TiO2 (anatase and rutile mix-

ture), and γ-Al2O3. In order to form composites carbon 

nanofibers were obtained with diameters of 100 – 200 

nm, multiwalled nanotubes with diameters of 10 – 50 

nm, as well as thin tubes with diameters of 5 – 10 nm. 

Carbon-ceramic composites were prepared by mixing 

carbon nanostructures with metal oxides in a planetary 

ball mill. Such parameters as rotation speed, milling 

time, type and mass content of the CNS were varied. 

The structure and phase composition of the samples 

were investigated by transmission electron microscopy 

on instruments EMW–100B and JEOL JEM–100 CX. 

In order to study the surface of the composites we used 

a field emission scanning electron microscope Zeiss 

LEO SUPRA 25, equipped with EDX attachment for 

X-ray microanalysis of the elemental composition of the 

sample surface. X-ray analysis of the samples was car-

ried out on a powder diffractometer DRON–UM2. 

Thermogravimetric analysis of the samples was per-

formed on the instrument STA 409C LUXX. To meas-

ure the specific surface area an analyzer QUAD-

RASORB SI was used. Electrical conductivity of the 

materials was determined on a potentiostat P–30S 

(Elins Co). We used four- and double- zoned cells with 

electrodes 0.5 and 0.3 cm in diameter. 

In addition, to the surface of the obtained composite 

materials platinum clusters were deposited and their 

electrocatalytic activity in oxygen reduction was inves-

tigated. Tests were conducted with the cathode elec-

trode of fuel cell modeling. Cyclic volt-ammograms rec-

orded at various speeds with the potential sweep blow-

ing air through gas-conducting channels. After regis-

tration, the cyclic volt-ammograms stationary currents 

in potentiostatic mode were recorded. For this we used 

potentiostat P–30S and impedancemeter Z–500PX 

(Elins Co). 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Sumy State University Institutional Repository

https://core.ac.uk/display/20360458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nap.sumdu.edu.ua/
http://sumdu.edu.ua/
mailto:alexvol@icp.ac.ru
mailto:tarasov@icp.ac.ru


 

A.A. VOLODIN, A.A. BELMESOV, E.V. GERASIMOVA, ET AL. PROC. NAP 1, 03CNN19 (2012) 

 

 

03CNN19-2 

3. RESULTS AND DISCUSSION 
 

To investigate the dependence of conductivity on 

the content of carbon nanomaterial mixtures contain-

ing from 1 to 5%(wt) of CNTs were prepared. After pro-

cessing in a planetary ball mill the samples of oxide 

powders and nanotubes had a homogeneous appear-

ance, however, at the study by electron microscopy in 

mixtures containing 1% and 2%(wt) CNTs, the tubes on 

their own are almost not observed. At the content of 

3%(wt) as bundles of nanotubes, as well as individual 

tubes could be observed. At the content of 5%(wt) a 

large number of nanotube bundles, distributed between 

the oxide particles were observed. This pattern was 

observed in the case of aluminum oxide, as well as in 

the case of titanium oxide (Fig. 1). 
 

 
 

Fig. 1 – TEM image of the composite MCNT/Al2O3, with 

5%(wt) of MCNT 
 

We selected optimal conditions for processing time, 

the degree of load, type and content of the carbon na-

nomaterial. Investigation of the electrical conductivity 

of composites based on Al2O3 with different content of 

carbon nanotubes have shown that the dependence is 

exponential. At the content of CNT 1 – 2%(wt) the elec-

trical conductivity remains practically unchanged and 

amounts to about 5×10-8 S/cm. The increase of the 

nanotubes content up to 5%(wt) leads to a sharp in-

crease in conductivity up to 3×10-4 S/cm. In this case 

one can observe a jump of conductivity at 3%(wt) to 

4.5×10-5 S/cm. In the case of TiO2 this effect also occurs 

at 3%(wt) of CNTs and the electrical conductivity of 

this composite is 2.2×10-3 S/cm. In general, the conduc-

tivity varies from 5×10-6 S/cm for pure TiO2 up to 

2.2×10-2 S/cm for the composite containing 5%(wt) of 

CNTs (Fig. 2). 

For selection of the optimum degree of load and 

milling time in the future we used a composite with 

3%(wt) of carbon nanostructures. The experiments re-

vealed that the highest conductivity of milled compo-

sites reached at 100 rpm, for 30 min (Fig. 3, 4). A fur-

ther increase in time or number of revolutions leads to 

a refinement of carbon nanostructures and, conse-

quently, reduces the conductivity. 

At the study of the electrical conductivity of compo-

sites according to the type of carbon nanostructures, it 

was found that the composites with multiwall carbon 

nanotubes have the best conductivity (Fig. 5), the conduc-

tivity of composites with single-walled carbon nanotubes 

(SWNT) is worse by two orders of magnitude; a composite 

with carbon nanofibers (CNF) has the worst conductivity. 
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Fig. 2 – Dependence of the conductivity of the composites 

MCNT/Al2O3 and MCNT/TiO2 on the mass content of carbon 

nanotubes 
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Fig. 3 – Dependence of the conductivity of the composites 

TiO2/MCNT (3%wt) on the number of revolutions 
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Fig. 4 – Dependence of the conductivity of the composites 

TiO2/MCNT (3%wt) on the milling time 
 

For a detailed description of the formation condi-

tions of carbon-oxide composites in a planetary ball 

mill the magnitude of strain effect on the material was 

also determined during the machining method of the 

test sites and the energy transferred to the sample dur-
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ing ball-milling was calculated [21]. This method uses a 

universal value that allows one to be independent on 

the type of mill and sufficiently facilitates the produc-

tion and optimization of the processes of formation of 

composite materials in conditions of a variety of grind-

ing and mixing machines. 
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Fig. 5 – Dependence of the conductivity of the composites 

CNS/TiO2 (3%wt) on the type of carbon nanostructures con-

tained in it 
 

According to the results of calculations of the dose 

of strain effect and the data of the electrical conductivi-

ty of composites plots of the dependence of electrical 

conductivity of composites MWNT/TiO2 on the dose of 

strain effect on the samples were constructed (Fig. 6). 
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Fig. 6 – Dependence of the conductivity of the composite 

MWNT/TiO2 on the dose of strain effect on the samples 
 

As can be seen from the figure, the samples ob-

tained by mechanical action 76 J/g have the highest 

conductivity (4.5×10-3 S/cm). Further increase of the 

load and processing time leads to a decrease in electri-

cal conductivity, which is obviously due to the oxide 

shredding and destruction of carbon nanotubes. This 

assumption is confirmed by the values of specific sur-

face area of the composites, which vary from 55 m2/g 

for the composites obtained at a dose of strain effect 

38 J/g to 80 m2/g for the composites obtained at 

9.6 kJ/g. A similar pattern is observed in the case of 

composites based on aluminum oxide. 

 

To evaluate the effectiveness of the use of CNT/TiO2 

composite as a carrier of catalysts in electrochemical 

devices Pt/TiO2-CNT samples with different contents of 

carbon nanotubes were prepared and their electrocata-

lytic activity was investigated using an electrode-

modeling cathode of a fuel cell. According to scanning 

electron microscopy Pt particles are distributed over 

the surface of titanium oxide fairly evenly. The average 

particle size is in the range 5-10 nm (Fig. 7). According 

to the EDX Pt content is at a level of 10%(wt). 
 

 
 

Fig. 7 – SEM image of TiO2 with Pt clusters deposited on it 
 

Current-voltage characteristics of the system 

Pt/TiO2 – CNT with different mass content of carbon 

nanotubes are shown on Figure 8. 
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Fig. 7 – SEM image of TiO2 with Pt clusters deposited on it 
 

The composite with 5%(wt) of MWNT is the most ef-

fective. The composite with 3%(wt) content of CNT has 

lower quantity of extended carbon structures providing 

electron transport, and in samples with 15 and 50%(wt) 

of CNT the low efficiency of Pt-catalyst may be related 

to difficulties of contact with the reaction medium be-

cause of the large amount of carbon material. 

According to literature data, at the presence of 

spherical particles of the conducting phase and parti-

cles of non-conductive matrix of the same size for the 

occurrence of the percolation the content of the con-

ducting phase should be at the level of 50%. In the case 

of ellipsoidal particles this content reduces to 20-30%. 

For filamentous particles, this value is usually less 
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than 10%. In the case of composites obtained by the 

synthesis of carbon nanostructures directly on the sur-

face of oxide powders, apparently, there is a tight con-

tact both between the carbon tubes and between tubes 

and particles of oxides. 

 

CONCLUSIONS 
 

Optimal conditions were determined for the for-

mation of carbon-oxide composites by the treatment of 

mixtures of oxides of a metal with carbon nanomateri-

als in a planetary ball mill. The dependences of the 

electrical conductivity of composites on the content of 

carbon nanomaterials (1–5%wt) were determined. It is 

established that the addition of 3%(wt) of CNT to the 

oxides leads to a sharp increase in the electrical con-

ductivity: from 5.0×10-8 to 2.8×10-4 S/cm for Al2O3 and 

from 5.0×10-6 to 2.2×10-2 S/cm for TiO2. It was shown 

that the carbon-oxide composites are promising carri-

ers of the catalysts of electrode processes in electro-

chemical devices. It was revealed that Pt/TiO2 – CNT 

catalyst containing 5%(wt) of carbon nanotubes has the 

best catalytic activity in oxygen reduction, in an elec-

trode-modeling cathode of a fuel cell. 
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