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The spectral dependence of the photoluminescence (PL) decay kinetics at room temperature have been 

studied in porous nc-Si-SiOx nanostructures. Investigated samples were obtained by oblique evaporation of 

SiO with following annealing at 975 C in vacuum and treating in the HF vapor at 50 C. PL decay in these 

structures described by a stretched exponential and the average lifetime of the PL decrease exponentially 

with increasing energy of photons. PL lifetime values is in microsecond range that point out on phonon 

participation in radiative recombination.  Dispersion parameter  do not depend on emission energy and 

tends to 1 with increasing porosity, which is consistent with the model of noninteracting nc-Si. It was es-

tablished, that the absorption cross section σ of the nc-Si particles increase with decreasing of nc-Si dimen-

sions and increasing of emission energy. 

 This result is consistent with the quantum confinement effects, where the smaller nc-Si with larger 

energy gaps are characterized by a short radiative lifetime and the corresponding radiative recombination 

process take place within the individual nc-Si. 
 

Keywords: Si nanocrystals, Photoluminescence, Decay time. 
 

 PACS numbers: 78.55.Mb, 79.60.Jv, 81.40.Ef 

 

 

                                                           
*danko-va@ukr.net  

1. INTRODUCTION 
 

The creation of light-emitting structures on the 

basis of developed silicon technology for advanced 

electronic and optoelectronic devices is actual problem 

now. Porous silicon [1], Si nanoclusters (nc-Si) em-

bedded in the SiO2 matrix [2, 3], Si/SiO2 superlattices 

[4], etc. structures of the most intensively investigat-

ed in recent years. On the basis of nano-silicon has 

created electronic and optoelectronic devices (lasers, 

photodetectors, etc.) [5, 6], now it is a promising can-

didate for next-generation flash memory silicon tech-

nology [7]. 

Some of the most promising silicon light-emitters 

are structures containing Si nanoclusters (nc-Si) em-

bedded in the SiOx matrix. Recently we have devel-

oped new porous light-emitting nanocomposite nc-Si-

SiOx structures obtained by thermal evaporation of 

silicon monooxide and oblique deposition with follow-

ing high temperature annealing in a vacuum [8-10]. 

HF vapor treatment of such structures results in sig-

nificant (more than 100 time) photoluminescence (PL) 

intensity increasing and essential shift (up to 210 nm) 

of PL maximum from infrared to visible spectral 

range, that can explained  by modification of nc-Si 

and nanocluster-SiOx matrix interface. But, mecha-

nism of photoluminescence (PL) in such structures is 

discussed yet. 

The present paper continues investigations of PL 

properties of thin films porous nc-Si-SiOx  structures, 

where nc-Si clusters are situated in suboxide SiOx 

columns (e.i. on the surface or near surface area). The 

main objective of this work is the elucidation of the 

mechanism of recombination of excited carriers in 

these structures by studying the kinetics of lumines-

cence decay. 

 

2. EXPERIMENT 
 

Investigated samples were obtained by thermal 

evaporation of silicon monooxide SiО (Cerac Inc.,  

99.9 % purity) in a vacuum (residual pressure 1-2∙10 – 3 

Pa) and oblique deposition onto two-side polished sili-

con substrate. The angle ( ) between the vapor stream 

and the substrate normal was 60  and 75  for different 

samples (samples I and II, correspondently). The rate 

of deposition was controlled by the calibrated quarts 

monitor. The film thicknesses measured with the use of 

an MII-4 microinterferometer after deposition were 

400–600 nm. Because of additional oxidation by resid-

ual gases during evaporation of SiO, the compositional-

ly nonstoichiometric SiOx (x  1) films were deposited 

in the vacuum chamber. 

The structure of the obliquely deposited SiOx films 

was studied by transmission electron microscopy (TEM) 

with the use of a ZEISS EVO 50XVP high-resolution 

electron microscope. The film structure presents well-

defined columns characterized by a certain orientation of 

growth; the column diameter varies in the range 10–

100 nm. The dimensions of the columns, their orienta-

tion, and the porosity (the relative volume of pores) of 

the films depend on the angle of deposition. The porosity 

of the film (specific pore volume) for deposition angles 

60  and 75 , calculated from the change of its thickness 

in comparison with that of normally deposited film [9], 

was 34 and 53 %, respectively. Due to the presence of 

free space (pores) between the oxide columns, porous 

films of SiOx easily amenable to chemical treatment, and 

additional oxidation in air compared with the same solid 

SiOx films, which allowed to specifically change the lu-

minescence properties of these structures by modifying 

the interface nc-Si/oxide matrix [8] . 

After the deposition the porous SiOx films were an-

nealed in vacuum chamber at 975  C for 15 min. For 
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such annealing the thermally stimulated formation of 

the nc-Si occurs in the SiOx columns thus forming nc-

Si-SiOx structures. Before PL measuring annealed nc-

Si–SiOx samples were treated in the HF vapor at 50  C 

and than they were maintain for a month in air atmos-

phere for characteristic stabilization. 

Time-resolved PL was investigated at room temper-

ature under exitation of a pulsed nitrogen laser 

(337 nm). The excitation photon flux density was 3∙1022 

cм – 2s – 1 and can was changed by using of optical aper-

ture and neutral density filters. PL signal was ana-

lyzed by monochromator and was detected by a photo-

multiplier in conjunction with a pulse oscillograph. 

Time-resolution of our system was 0.5 s. Obtained PL 

spectra were corrected on setup spectral sensitivity. 

 

3. RESULTS AND DISCUSSION  
 

Fig. 1 shown normalized room temperature PL spec-

tra of nc-Si-SiOx structures (curves 1 and 2 correspond 

on samples obtained at α  60  and 75 ). There is a broad 

band in the spectral range of 1.25 – 2.0 eV and the band 

shapes are similar for both types of samples. PL band 

maximum are situated at 1.44 and 1.51 eV, and their 

widths on half of maximum consists of 0.4 and 0.37 eV, 

correspondently. 
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Fig. 1 – PL spectra of porous nc-Si-SiOx structures (curves 1 

and 2 correspond on samples deposited at   60  and 75 ) 
 

The comparison of obtained PL spectra with early 

known literature data [11, 12] allows to suggest that PL 

of nc-Si-SiOx structure is connected with silicon nano-

particles. The short-wavelength shift of PL maximum in 

75  sample (curve 2) is explained by nanoparticles Si size 

decreasing (are forming during high temperature an-

nealing) with increasing of deposition angle. Such size 

decreasing depend on (in the first line) changing of film 

composition (x rise when α increase).  

Fig. 2. shows experimental PL decay for sample de-

posited at   60  measured at registration energies 

1.48, 1.59, 1.72 and 1.87 eV (curves 1, 2, 3, and 4, corre-

spondently). PL relaxation is more quickly for more 

short-wavelength emission. It correlates with probability 

rise of radiative recombination in smaller Si nanoparti-

cles. In consistent with the quantum confinement effect 

(e.g. size dependent phenomena), when  nc-Si size de-

crease then nc-Si energy gap increase and radiative re-

combination rate growths [13, 14].  
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Fig. 2 – PL decay time for nc-Si-SiOx structure deposited at 

  600 
 

Decay PL curves (and their main characteristics) for 

the samples deposited at   75  are qualitatively simi-

lar to curves shown on Fig. 2. 

In order to analyze the kinetics of PL decay we have 

fitted the experimental date (Fig. 2) to a stretched-

exponential decay function that is frequently used to 

describe dispersive processes in disordered systems with 

a distribution of relaxation times [15, 16]:  
 

 IPL(t)  I0 exp[ – (t/ ) ], (3.1) 
 

where  – is the PL average decay time, IPL(t) and I0- are 

current and at t  0 PL intensity values, 0    1 is the 

dispersion exponent.  

We used our experimental data and eq. (3.1) to calcu-

late  and  of investigated samples. The least-squares 

fit of the eq. (3.1) to experimental data brings values of τ 

and . Fig. 3 presents the dependence of average decay 

time  of PL from emission energy Еem in semilogarith-

mic plot.  

It may seen that the τ obtained for sample (II) (at the 

same emission energies) are smaller in comparison with 

the one for sample (I), that, given the smaller size of nc-

Si in them, consistent with the results [8, 14, 17]. More-

over, as in the most structures, contained silicon nano-

particles, our experimental dependence τ on photon en-

ergy (Еem) can be described by exponential function: 

  1/k ∞ exp(-Eem/E0). The experimental line slope (1/Е0) 

allowed to determine a value of characteristic energy Е0. 

For sample (I) value Е0=0.33 eV almost coincide with 

difference between energy position of PL maximum and 

massive silicon gap (Ес  0.31 eV). Rather well correla-

tion is observed between these values (Е0  0.36 eV and 

Ес  0.39 eV) in sample (II) too.  

Dispersion parameter  do not depend on emission 

energy Еem (within experimental errors) in both  samples 

(I and II) and its average values are equal to 0.85 (I) and 

0.90 (II). As was pointed out, increasing of deposition 

angle is accompanied by growth of obtained SiOx film 

porosity, decreasing of silicon content and the nc-Si con-

centration after high temperature annealing. So nc-Si-

SiOx structures formed on the base of SiOx films with 

smaller silicon content may be consider as a ensemble of 

non interacting nc-Si. In that case parameter β increas-

ing ( 1) is typical, and its behavior characterize the 

local properties of oxide matrix surrounded nanoincludi-
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ons nc-Si. This conclusion is proved by value   0,76 for 

samples obtained at deposition angle   45   (results on 

these films not shown). 
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Fig. 3 – Spectral dependence of average PL decay time τ. 

Curves 1 and 2 correspond on samples deposited at   60  

(sample I) and 75  (sample II) 
 

Assuming the nc-Si can be represented by a quasi-

level system, the following rate equation can be written:  
 

 dN*/dt  Ф(N – N*) – N*/ ,  (3.2) 
 

where N, N* ,  and Ф are the total number of the nc-

Si, the number of the nc-Si in the exited state, the nc-Si 

absorption cross section at 3.68 eV (wavelength of excita-

tion), the lifetime of the nc-Si excited state, and the exci-

tation photon flux, respectively. If the PL intensity is 

defined by Ipl   N*/τrad , where rad is the nc-Si radiative 

lifetime, solving (1) for steady state conditions gives the 

following expression of the PL intensity:  
 

 Ipl(Eem)  Aσ(Eem)τ(Eem)Ф/1  σ(Eem)τ(Eem)Ф, (3.3) 
 

where A is constant.  

Fig. 4 presented of the dependence of the PL intensity 

from the excitation flux at the different emission energy 

Eem. The data are normalized with respect to the PL in-

tensity measured at the maximum of the laser power 

used. The lines represent the fit of the experimental data 

by expression (3.3). Using the obtained data we have cal-

culated absorption cross section σ on one nc-Si particle. It 

was established that σ increase from 5·10 – 18 to 1.34·10 – 17 

сm2 when the emission energy varies from 1.48 to 2.06 eV. 

Since σ is defined as the product of electron states 

density and oscillator force of optical transition then we 

observed monotonic rise σ when Eem increase. It is mean, 

that the increase of the oscillator force, when the size of 

emitting nc-Si decrease, predominate over the reduction 

of electronic state density in little particles. 
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Fig. 4 – PL intensity dependence on photon flux for sample 

(I). Curves 1, 2, 3, and 4, correspond to registration energies 

1.48, 1.59, 1.77 and 2.06 eV. 
 

4. CONCLUSIONS  
 

In this work we carried out investigation of photo-

luminescence decay kinetics of the samples of porous 

nc-Si-SiOx nanostructures obtained by oblique deposi-

tion (at angles of 60  and 75 ) and annealed in vacuum 

followed by treatment with HF vapor at 50  C. At room 

temperature photoluminescence decay kinetics in these 

structures described by a stretched exponential and the 

average lifetime of the PL decrease exponentially with 

increasing energy of photons. The parameter β tends to 

1 with increasing porosity, which is consistent with the 

model of noninteracting nc-Si. It was established, that 

the absorption cross section σ of the nc-Si particles in-

crease with decreasing of nc-Si dimensions and increas-

ing of emission energy. 

The results of spectral and kinetics investigations 

allowed suppose that PL of porous light-emitting nc-Si-

SiOx structures in the 1.25-2.0 eV region is originated 

from radiative recombination of carriers (excitons). The 

recombination take place in nc-Si, moreover emission 

energy depend on nc-Si sizes. The room temperature 

PL lifetime values are in microsecond range that point 

out on phonon participation in radiative recombination. 
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