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This paper provides an overview of the effects of ripening the olivine nano-silica to form particles with a 

lower specific surface area for optimal use in high performance concrete. The nano-silica was ripened using a 
hydrothermal treatment in a mixed batch reactor at 90 C, pH ranging from 8 to 10 and a silica weight per-

centage of three and six percent. The specific surface area of the olivine nano-silica can be reduced by 

62 percent by Ostwald ripening in 22 hours. This reduction corresponds to a 80 percent drop of the micropore 
surface area and a 57 percent drop of the external surface area. The different hydrothermal conditions did not 

affect the final specific surface area at the equilibrium. However, the use of a high energy mixer reduced the 
specific surface area by 52 percent in only five minutes. Despite the reduction in specific surface area, the ag-
gregates of the original olivine nano-silica are not dissolved during the ripening process. 
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1. INTRODUCTION 
 

The use of amorphous micro-silica in concrete con-

tinuous to increase and, it is particularly valued in mak-

ing high performance concrete. The main beneficial ef-

fects of micro-silica in concrete are a higher strength and 

a lower permeability. This is due to the pozzolanic prop-

erties of micro-silica and the extremely fine particles 

located at close proximity to the aggregate particles [1]. 

Despite the beneficial properties of small silica parti-

cles in concrete, nano-silica is not yet used in common 

practice because it is often too expensive. However, ini-

tial research [2-6] has demonstrated that nano-silica 

could be produced for a low price and a sustainable 

method by the dissolution of olivine in acid. 

The problem when using this nano-silica in concrete 

is the low workability of the concrete due to the high 

specific surface area (SSABET), between 200 and 

400 m2/g, and the three-dimensional network structure 

of the silica. The workability can be increased by adding 

more water, resulting in a lower compressive strength, 

or by adding superplasticizers, which are expensive. For 

optimal use in concrete a more spherical nano-silica with 

a lower SSA is needed. 

The polymerization of silica has been widely studied 

by Iler [7] and can take place by aggregation of particles, 

creating the unwanted three dimensional networks as 

seen in Fig. 1 following path A, but also by the growth of 

spherical particles increasing in diameter, following path 

B of Fig. 1. 

Between pH 7-10, the silica particles are negatively 

charged and repel each other, therefore the particles do 

not aggregate. This is only true if the salt concentration 

is low and does not reduce the charge repulsion [7]. Even 

though the particles do not aggregate, under these condi-

tions, they still grow in size and reduce in number. This 

is due to Ostwald ripening where smaller, more soluble 

particles dissolve and silica is deposited upon larger, less 

soluble particles, creating bigger particles with a lower 

SSA [7]. The ripening of the particles stops when the 

difference in solubility between the largest and smallest 

particles becomes negligible and equilibrium is reached 

[7]. But, the question is whether it is possible to ripen the 

nano-silica produced by the dissolution of olivine in acid. If 

so, then it is interesting to know what the effect of differ-

ent ripening conditions is on the final SSA of the olivine 

nano-silica. The aim of this paper is to answer these ques-

tions and to have a better understanding of the effect of 

the ripening process on the olivine nano-silica. 
 

 
 

Fig. 1 – Polymerization pathway of aqueous silicate sols by Iler [7] 

 

2. EXPERIMENTAL METHOD 
 

The nano-silica cake used was supplied by Geochem. 

All the experiments where performed using a mixed 

batch reactor which was kept at the set temperature.  

A base solution was added to the reactor to adjust the 

pH of the final solution. When the temperature reached 

the set temperature, the nano-silca cake was added. Af-

ter 15 minutes the pH of the solution was measured and 

the pH was adjusted to the desired value.  

The ripening process was conducted with two differ-

ent bases, NH4OH and NaOH; at different pH ranging 

from 8 to 11.3; and with a silica mass percentage of three 

and six percent.  
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During the first experiments we observed that it took 

three hours before the ‘lumps’ of nano-silica cake where 
no longer visible in the solution. Therefore, in some ex-

periments a high energy mixer was used to break the 
silica cake before adding it to the reactor.  

During the ripening process, samples were taken at 
regular intervals to determine the pH of the solution and 

the SSABET of the silica. The silica samples were filtered 
to extract most of the water and dried in an oven at 

110 C for about 15 hours.  
The nano-silica was characterized by gas physisorp-

tion. A ‘Micromeritics TriStar 3000’ equipment was used 
for the gas physisorption analysis [8]. The specific sur-

face area (SSABET) and the specific micropore surface 
area (SSAMP) were calculated using the BET [9] and t-

plot [10,11] methods, respectively. The external surface 
area (SSAE) was determined as the difference between 

the specific surface area and the specific micropore sur-
face area  

The particle size of olivine nano-silica was calculated 
from the geometrical relationship between surface area 

and mass given by 
 

 
BET

6000
d (nm)=

SSA ρ
, (1) 

 

where d is the particle size of nano-silica considered to be 
spherical (nm), ρ the density of the material, 2.2 (g/cm3) 

for nano-silica, and SSA the surface area (m2/g). This 
particle size is an average value, considering that the 

particles are spherical. Lieftink [4] stated that the corre-
lation between the primary particle size, obtained from 

the TEM images and the SSAE, is in good agreement for 
olivine nano-silica. The particle size distribution and d50 

were determined as well by laser light scattering using a 

‘Mastersizer 2000’.  
 

3. RESULTS 
 

The experiment conditions are shown in Table 1 giving 

the average values of the reactor temperature, pH of the 

solution, the silica weight percentage and the base used.  
 

Table 1 – Conditions during the ripening experiments 
 

 T (oC) pH SiO2 wt% Base 

RP-1 89.0 8.4 4.41 NH4OH 

RP-2 90.2 10 3.10 NH4OH 

RP-3 90.3 8.3 2.63 NaOH 

RP-4 90.2 9.6 3.26 NaOH 

RP-5* 90.2 10 6.57 NaOH 

*High energy mixer used. 
 

3.1 Gas physisorption analysis  
 

Fig. 2 and Fig. 3 show the adsorption isotherm and 
the t-plot curve of the original olivine nano-silica used (in 

red) and the ripened olivine nano-silica of experiment 
RP-1 after 22 hours (in green), respectively. 

The adsorption isotherm can be classified as a type 
IV with H1 or H2 hysteresis loop [12,13]. This adsorption 

isotherm classified as type IV, is typical for mesoporous 
materials and is related to capillary condensation taking 

place in mesopores [12]. Hysteresis H1 is associated with 
porous materials known to consist of agglomerates with 

narrow pore distributions, and H2 is associated with 

materials of not well-defined pore size and shape [11].  

 
 

Fig. 2 – Adsorption isotherms of the original and ripened olivine 
nano-silica 

 

 
 

Fig. 3 – t-plot curves of the original and ripened olivine nano-slica. 

 

3.2 Specific surface area 
 

The SSABET of the nano-silica during the different 

ripening experiments is shown in Table 2. The SSABET 

can be reduced by 62 percent, from 330 m2/g to 125 

m2/g. 

The SSAMP of the original nano-silica and the aver-

age SSAMP of the ripened nano-silica are 100 m2/g and 

20 m2/g, respectively. This is a reduction of the mi-

cropore surface area of 80 percent. The SSAE of the 

original nano-silica and the average SSAE of the rip-

ened nano-silica are 230 m2/g and  100 m2/g, respective-

ly. This is a reduction of external surface area of 57 

percent. This means that in terms of percentage the 

micropore surface area is reduced more than the exter-

nal surface area during the ripening process.  
 

Table 2 – SSABET in m2/g of the ripened nano-silica. 
 

t (h) RP-1 RP-2 RP-3 RP-4 RP-5 RP-6 

0 332 334 - - - - 

0.2 - - - - 160 - 

1.5 - - 181 - - 198 

3 - 150 - - - - 

6 141 135 131 133 139 - 

22 124 - - - - - 
 

The SSABET of the experiments RP-1, RP-3 and RP-

5 are shown in  

Fig. 4 as they give a representative view of the 

overall results.  

All the ripening experiments result in a similar 

SSABET of around 130 m2/g after six hours. This is be-

cause the ripening process reaches equilibrium when 

the difference in solubility between the smallest and 

the largest particles becomes negligible [7]. Because the 

same initial nano-silica, with the same particle size 

distribution, has been used in all the experiments, the 

same equilibrium with a similar final particle size is 

reached.  

To reduce the SSABET even further, relatively small, 
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and thus more soluble, particles need to be added gradu-

ally to the solution, as described by Iler [7]. Consequently, 

the ripening process continues further until the equilibri-

um is reached once again.   

 

3.3 Particle size and zeta potential 
 

The average particle size calculated with equation 1  

is 22 nm and the d50 determined by laser light scattering  

is 18 μm. This indicates that the nano-silica particles are 

still present as larger aggregates.  

The zeta potential of the nano-silica particles during 

the ripening process was -47 mV, indicating a good stabil-

ity if the only force taken into account is the electrostatic 

force. This means that there is most likely no further 

aggregation of the silica particles during the ripening 

process. This indicates that the original olivine nano-

silica already consists of relatively large aggregates 

which have not dissolved during the ripening process. 

 

4. CONCLUSIONS  
 

The olivne nano-silica can be ripened by hydrother-

mal treatment, reducing the specific surface area up to 63 

percent. However, the different ripening conditions: a pH 

from 8 up to 11.3; a silica weight percentage of three or 

six percent; or the use of NaOH or NH4OH, do not have a 

significant effect on the final specific surface area.  

Using the high energy mixer at room temperature 

does lower the specific surface area almost instantly by 

52 percent, but does not influence the final specific sur-

face area.  

In order to reduce the specific surface area even fur-

ther and to reduce the aggregates present in the original 

olivine nano-silica, a different ripening process is needed. 

5. FURTHER RESEARCH 
 

Further research will focus on the ripening process 

in multiple steps, where more relatively small silica 

particles will be added to a previously ripened suspen-

sion. Adding the ‘active’ silica results in a significant 

difference in solubility between the smaller ‘active’ sili-

ca and the larger, ripened ‘growth’ particles. Thus, the 

ripening process continues until the active silica has 

disappeared and equilibrium is reached once again.    

  Because the nano-silica particles are present as 

relatively large aggregates, the effects of dissolving all 

the silica in solution and slowly lowering the solubility 

in order to form new spherical particles which grow by 

nucleation and polymerization (path B of Fig. 1). 
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Fig. 4 – SSABET of the ripened nano-silica for RP-1, RP-3 and RP-5 
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