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Abstract 
 
 The proliferation of online information resources increases 
the importance of effective and efficient distributed searching.  
Our research aims to provide an alternative hierarchical 
categorization and search capability based on a Bayesian 
network learning algorithm.  Our proposed approach, which is 
grounded on automatic textual analysis of subject content of 
online web databases, attempts to address the database 
selection problem by first classifying web databases into a 
hierarchy of topic categories.  The experimental results 
reported demonstrate that such a classification approach not 
only effectively reduces the class search space, but also helps 
to significantly improve the accuracy of classification 
performance. 
 Key Words:  Hierarchical classification, Bayesian 
classifiers, multiple web databases. 
 

1 Introduction 
 
 As the Internet has rapidly proliferated over the past 
decades, especially World Wide Web (WWW), web users have 
witnessed an explosion in the availability of online information 
from distributed web databases.  Despite the usefulness of 
various search engines such as Yahoo and AltaVista, web 
users still feel frustrated in profitably utilizing such large 
amounts of information.  One potential problem of current 
dilemmas is the database selection problem; that is, how to 
optimally select a number of databases from such a vast 
information source, which are most likely to provide the useful 
information with respect to a given user query.  We believe 
that an automatic and robust method called database 
classification, which partitions multiple, distributed web 
databases based on their subject contents into classification 
schemes, will be helpful for efficient and fruitful database 
selection. 
 Classification of textual documents as a useful technique for 
information retrieval has long attracted significant attention 
from information science researchers [20].  Since web 
databases usually consist of hundreds of thousands textual 
documents, text classification techniques can easily be applied 
                                                 
* School of Information Technology & Computer Science.  E-mail:  
hy92@uow.edu.au, minjie@uow.edu.au. 

to database classification.  
 There are quite a number of special–purpose databases 
which focus on documents in confined subject domains such as 
IEEE and ACM digital library databases on the Internet, while 
there are also some large-scale general–purpose databases 
which cover wide-ranging web contents of various topic 
categories.  The above characteristics of web databases make it 
feasible to organize and manage web databases in a structured 
hierarchy of topics.  We believe that the use of a hierarchy can 
decompose the classification task into a set of smaller tasks, 
each of which only corresponds to a small split in the 
hierarchical tree.  Such a hierarchical structure makes 
accomplishment of the classification work more effective and 
efficient.  
 Several researchers have recently investigated the use of 
hierarchies for text classification and have received 
encouraging achievements [12, 19, 25].  Our work differs from 
earlier work in the following important aspects.  First, as we 
know, most of hierarchical classification methods only treat 
the classes (categories) in the hierarchy as a simple vertical 
parent-child relationship between different levels. But, in 
practice, the relationships between classes in the hierarchy are 
usually more complicate such as the horizontal relationship 
between classes.  Hence, to better express the correlation of the 
classes, we consider the horizontally logical relationship 
among the classes at the same level during the construction of 
the topic hierarchy.  Second, we use a variation of a 
probabilistic Bayesian model based on Naive Bayes learning 
techniques [16] for automatic database classification.  This 
model takes the special characteristics of databases into 
account, thus making itself more applicable to database 
classification rather than text document classification.  Third, 
we propose a new category assignment strategy called 
possibility-window, which allows more appropriate categories 
to be chosen regarding the content of  the databases.  Our 
experimental results reported in this paper have demonstrated 
that our hierarchical classification methods can significantly 
improve the performance of database classification.  
 The rest of our paper is structured as follows.  In Section 2 
we present an overview of text classification for information 
retrieval.  In Section 3 we discuss the specific technique we 
use for database classification.  We focus on a probabilistic 
model that provides a framework for the construction of a set 
of classifiers for a category-based search.  In Sections 4 and 5 



IJCA, Vol. 11, No. 2, June 2004 

 

119

we provide our experimental methodology and a variety of 
experimental results supporting our approach.  Conclusions 
and future work are provided in Section 6. 

 
2 Related Work 

 
 With the exponential growth of digital libraries, and online 
databases on the Internet, system-aided classification 
techniques, which are used to organize and manage these 
emerging large–scale information sources, have recently 
become more and more promising and appealing to 
information science researchers.  While work in text database 
classification is relatively new, a substantial body of research 
which looks at text document classification, has been occurring 
for decades. 
 Although manual classification might produce good quality 
category assignments, it is hampered by the bottlenecks 
inherent in the manual way such as expensive costs (i.e., 
human participation) and the lack of scalability.  Obviously, in 
many ways, machine learning techniques provide suitable 
solutions to solve the above problems.  In recent studies a 
number of machine-learning techniques have been proposed to 
address the text classification problem.  Among them exists 
mainly two types of learning techniques: supervised learning 
and unsupervised learning.  Although they all depend on some 
labeled training data for category models to learn, the main 
difference of unsupervised learning from supervised learning is 
that in unsupervised learning once category models are trained, 
new data instances can be added with little or no outside 
interference (e.g., human efforts). 
 A wide range of research has been devoted to text-based 
classification algorithms based on supervised learning 
techniques, including the linear classification algorithm [17] 
and decision tree or rule induction [1, 24].  In addition, there 
has been some work on unsupervised learning in textual 
analysis application [2, 10].  Moreover, some comparative 
studies were found [3, 8] which discovered various clustering 
methods perform differently under different sets of conditions. 
 Due to good performance on clustering and learning abilities 
[14], neural network techniques have recently been studied for 
text classification application by researchers.  There exists 
some neural network clustering algorithms for text 
classification, which are based either on supervised or 
unsupervised learning.  Schutze, et al. [24] present a two-layer 
back-propagation-like neural network for document learning.  
Chen, et al. [4] adopt a variation of the hopfield network for 
concept classification of electronic brainstorming comments.  
In their recent work [5] they have also developed a multilayed 
Kohonen self-organizing feature map (SOFM) to categorize 
Internet homepages.  
 Although text database classification is a relatively new 
research area, a number of research efforts have still been 
devoted to it. Gauch, et al. [11] manually construct query 
probes to facilitate the classification of text databases.  In [15] 
Ipeirotis, et al. introduce an automatic database classification 
method based on the number of matches that each query probe 
generates at the databases.  The formation of queries comes 
from a rule-based document classification. In [19] a concept 

hierarchy is constructed for text database categorization.  Each 
concept description is treated as a query that is submitted to the 
database.  The documents retrieved from the database are used 
to calculate the similarity between the concept and the 
database. 
 
3 Probabilistic Framework for Hierarchical Classification 

 
 For a moderate number of databases (e.g., hundreds of 
databases), a “flattened” class space with each class (topic) for 
every leaf in the hierarchy is suitable.  We can train a single 
classifier so that each database is precisely categorized into 
one of the possible basic classes.  Unfortunately, when the 
number of databases is very large, such as thousands or tens of 
thousands, this simplistic approach will be hampered by 
computational costs.  This is because using a single flattened 
classifier, the similarity estimation of the most relevant topic 
for each database could be time-consuming in the case of a 
large number of databases.  For this reason, we introduce a 
hierarchical structure of topics, which allows us only to focus 
on the relevant topic area beginning from the root level.  As a 
result, the topic number of probability estimation can be 
drastically reduced.  Comparatively speaking, the hierarchical 
approach obtains significant efficiency gains over the standard 
flat approach.  
 In this paper we have chosen to focus on probabilistic 
methods used for hierarchical classification.  The probabilistic 
model provides an efficient means for producing a set of 
classifiers used in the hierarchy of topics.  In this section we 
give a brief overview of the probabilistic model and its 
application to database classification. 
 
3.1 Hierarchical Structure of Topics for Databases 
 
 Hierarchical structure of topics has long been used in special 
purpose collection of documents [13].  More recently, several 
large-scale Internet search engines such as Yahoo and Infoseek 
have also adopted such hierarchies to manage the World Wide 
Web to conveniently guide users to their appropriate topic of 
interest.  It is sensible to utilize the existing well-known 
category hierarchies such as Yahoo to build our own 
hierarchical structure since they are widespread and familiar to 
web users. 
 We first describe the structured hierarchy of topics.  Figure 1 
shows a topic directory which is a hierarchical architecture of 
three layers.  The tree hierarchy contains nodes at different 
levels indicating topics of interests to users.  It is easy to see 
that topics in the hierarchical structure are ordered from 
general broad topics (top) to more narrow ones (bottom), and 
the leaf nodes point to specific and unambiguous subjects.  
Topics close to each other in the hierarchy typically have a lot 
more in common with each other than topics far apart.  Nodes 
“Database” and “Platform” are close in the content of subject, 
but they are quite different from the nodes “Video” and 
“Image” which belong to another parent node “Multimedia”. 
 The hierarchical structure treats the topics as a collection of 
topic sets, each of which consists only of a small set of topics.  
As we see from Figure 1, each node (except root node and leaf 
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nodes) in the hierarchy actually have two roles, a parent node 
and a child node.  On the one hand when it is used as a parent 
node, in practice, it is a cluster which corresponds to a topic 
set.  On the other hand, when it is used as a child node, it is 
only a single topic (class).  For example, for node 
“computers”, when it is a child node for the root node, it only 
points to the topic “Computers”, while when it is a parent node 
for node “software”, it actually corresponds to the topic set 
{“software”, “hardware”, … , “Internet”, “multimedia”}. 
 For all parent nodes, each node has a classifier that 
distinguishes one class from a set of classes.  Since the 
classifier at a node only needs to focus on a small set of topics 
rather than overall topics, it is possible to make the 
classification more accurate.  Therefore, such a hierarchical 
topic structure actually decomposes the classification task into 
a set of simpler subtasks, which can be solved much more 
efficiently and, hopefully, more accurately as well. 
 
3.2 Bayesian Classifiers 
 
 3.2.1 Feature Selection.  In order to distinguish the 
appropriate class from a set of classes in the hierarchical 
classification scheme, a set of features that have enough 
discriminating power are needed for the classifier.  For 
example, in text classification, the features are the words that 
strongly associate with one specific category.  Theoretically, 
the more the features represent a class, the more useful it is for 
the classifier to distinguish the classes.  Unfortunately, it is 
impractical to simply implement the above idea as described, 
since the computation cost is exponential in the number of the 
features.  Thus there is a fundamental trade-off between a large 
feature space and classification accuracy.  However, the issue 
of how best to select optimal features for the classes will be 
studied in our future research and will not be reported in this 
paper.  Here we employ a feature selection technique called 
Latent Semantic Indexing (LSI) reported in [6, 7] to produce a 
smaller subset of the most important features for the class with 
minimal loss in accuracy. 
 LSI serves as a means of data compression that represents 
features and documents by a low-dimensional linear 
 

combination of orthogonal indexing variables.  It can best 
capture the important information contained in a large number 
of terms with a much smaller number of factors.  In particular, 
it is useful for eliminating the redundancy in word features that 
is due to term dependence. 
 
 3.2.2 Construction of Naive Bayes Classifiers.  A training 
set of labelled feature vectors are used to induce a classification 
model.  This model is then used to predict the class label for a set of 
previously unseen data instances (e.g., web databases).  
Optimistically, the feature vectors will fully determine the appropriate 
topic class.  As we know however, the training data, which is simply a 
sample from the underlying population of relevant documents about 
the class, may not adequately characterize its true distribution since 
the training set provides only a rough approximation.  Thus we use a 
probability distribution to model the classification function.  
Formally, for each feature if  in the feature space F, we have a 

probability )Pr( ki cf in the possible cluster C, where Cck ∈ , and C 

is a set of classes denoted as },,,{ 21 McccC L= ; Ffi ∈ , and F is a 

set of features described as },,,{ 21 NfffF L= ; )Pr( ki cf  is the 

probabilistic distributions for each feature if ( Ffi ∈ ) in class kc .  
This ensures that in the class network each feature will be taken into 
account for the classification.  A learning algorithm utilizes the 
feature information that is obtained from the training set using the LSI 
method to construct a classifier.  

Recent work in supervised learning has shown that a simple 
Bayesian classifier with the assumption of independence 
among features is competitive in textual classification [17, 26].  
A Bayesian network [21] provides a compacted representation 
of probabilistic distributions over the training data.  A 
Bayesian classifier is simply a Bayesian network applied to a 
classification domain. 
 During construction of the classifiers in a hierarchical 
scheme, we limit our attention to a set of Naive Bayes network 
structures.  Unlike other ordinary Naive Bayes structures, we 
add horizontal lines between some classes in the same level to 
common that one document contains the content of multiple 
topics rather than a single one.  Thus, the relationships of these 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The leaf level 

The root level 
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The Second level 

Figure 1: A Small Fraction of the Topic Hierarchical Structure 

Software Internet … Multimedia Hardware 

Database … Programming Platform Image … Video Audio

Computers Education Health … Sports Science 
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Figure 2: The structure of the Naive Bayes Network for a 

classifier 
 
topics are closer than those of other topics.  For example, for 
the cluster “Computers”, classes “Software” and “Hardware” 
usually have more cohesive relationship than class “Internet” 
or class “Multimedia” (see Figure 1).  A line is then drawn  
between them denoting “AND” connection.  Note that the 
process of adding these edges may involve a heuristic search 
on a hierarchical structure. 
 Like most agglomerative clustering methods [12, 25], our 
hierarchical clustering algorithm constructs a cluster hierarchy 
from the bottom to the top by merging some subject-relevant 
classes one at a time.  At the beginning, just the topics of the 
leaf level in the hierarchy associate with labeled training 
documents as the classes.  For each leaf-level topic (class), a 
separate round of optimal feature selection is employed by the 
LSI method to obtain the most indicative features for this 
topic.  Note that this feature selection is done starting from the 
original feature set which has been preprocessed by stop-word 
removal and stemming.  Stop-words are first removed because 
they occur very frequently in the documents such as the words: 
‘the’, ‘a’, ‘we’, ‘of’, ‘but’.  These frequent words are not 
helpful to the search results, and require a lot of processing 
power.  In addition, many words have different variations. 
These variations have the same or similar meaning(s) such as 
the words “stepped”, “steps” and “stepping”.  Due to different 
spellings, they cannot be directly matched to each other.  
Using Porter’s stemming algorithm [22], different variations of 
the same word can be converted to the same word stem which 
is useful during the classification. 
 With the framework of multinominal Naive Bayes text 
classification [16], the classifier can parameterize each class 
separately with the prior probability for each class kc  in the 
leaf level, )Pr( kc  and the probabilistic distributions for each 

feature if ( Ffi ∈ ) given the class kc , )|Pr( ki cf .  Thus, each 
leaf-level topic, in practice, consists of a set of the most 
important features with the parameters )|Pr( ki cf .  
 The last-second-level topics are then used as class labels.  
Note that every node in the last-second-level topic has only a 
subset of the total class labels in the leaf level.  As we have 
observed, the most informative features at the lower-level child 
class are likely to be particularly useful for its high-level parent 
class.  We will only present our method for constructing the 
classifiers at the last-second level.  The construction of the 
classifiers at other higher levels are implemented in a similar 
way.   

 Definition 1.  Cluster C is a superclass of a number of 
classes presented as },,,{ 21 McccC L= , where kc  ( Mk ≤≤1 ) 

is a class of cluster C.  CF  is the feature space for the cluster 
C, which is described as },,,{ 21 N

C fffF L= , where CF  
is the feature space set of all the classes, namely, 

M
C FFFF ∪∪∪= L21 , kF  corresponds to the feature space of 

class kc , and if ( Ni ≤≤1 ) is a distinct feature vector in this 

feature space CF . 
 Definition 2.  For the given cluster C, ),( kj ccR  is a logic 

connection function for the classes, jc  and 

kc ( kjMkj ≠≤≤ ,,1 ).   
 Assume that for the given cluster C, the probabilistic 
distribution for each feature if  to each class kc , )|Pr( ki cf , and 

the prior probability for each class kc , )Pr( kc , are known.  We 
can easily calculate the probabilistic distribution for each 
feature if  to the cluster C, )|Pr( Cfi .  For a feature vector if , 
assume that if  exists in the feature space kF of a certain class 

kc , where Cck ∈ . 
 

1) If ),1( kjMjFF C
j ≠≤≤∈∀ , ji Ff ∉ , then  

 
  )|Pr()|Pr( kii cfCf =   (1) 
 
2) If  ),1( kjMjFF C

j ≠≤≤∈∃ , kji FFf ∩∈ , then  
 

 
⎩
⎨
⎧ =

=
otherwisecfcfMax

ANDccRcfcfMin
Cf

kiji

kjkiji
i ))|Pr(),|(Pr(

),())|Pr(),|(Pr(
)|Pr(  (2) 

 
 The prior probability for the cluster C, )Pr(C will be 
 

 
NM

c

C Cc
k

k

+

+

=

∑
∈

)Pr(1

)Pr(   (3) 

 
where N indicates the number of classes in the level in which 
the cluster C lies, and M is the number of classes in the cluster 
C. 
 Since the feature space CF  for cluster C is the combination 
of all the feature space of all the classes, the size of the feature 
will possibly be very large, so it may result in the time-
consuming problem of classification computation for a 
classifier.  To solve the above problem, we will eliminate those 
features with too small )|Pr( Cfi in that such features are 
generally not able to improve classification accuracy.  Finally, 
for each last-second-level class, we construct a separate 
classifier with the appropriate reduced-feature set. 
 For example, assume that the cluster C “software” consists 
of three classes (see Figure 3), 1c =“Database”, 2c = 

C 

    c1       c2       c3                   cm     

… 
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“Platform”, and 3c = “Programming”, respectively.  Among 

them, the logic connection of the classes, 1c  and 2c : ),( 21 ccR = 
“AND”.  For each class, the prior probabilities for each class 
are, )Pr( 1c =0.3, )Pr( 2c =0.4, and )Pr( 3c =0.3.  Thus, according 
to Equation 3, the prior probabilities for cluster C:  

2.0
103

)3.04.03.0(1)Pr( =
+

+++
=C  (assume that the number of 

classes of the level in which the cluster C belongs is 10). 
 The probabilistic distributions for the feature 1f , 
“Windows”, to each class are, )|Pr( 11 cf =0.4, )|Pr( 21 cf =0.5, 
and )|Pr( 31 cf =0.45.  According to Equation 2 and the logic 
relationship among the classes, the probabilistic distribution  
for the feature 1f  to the cluster C, 

45.045.0)5.04.0()|Pr( 1 =∪∩=Cf .  Since the feature 1f , 
“Oracle” only appears in the class 1c , the probabilistic 
distribution for the feature 2f  to the cluster C, 

3.0)|Pr()|Pr( 222 == cfCf .  Finally, we can obtain the feature 

space CF and the probabilistic distributions for each feature in 
CF  shown as Table 1. 

 
3.3 Hierarchical Classification Strategies 
 
 3.3.1 Hierarchical Classifying Web Databases.  At first, 
the definition of a web database, 

iS , is described as follows. 
 
 Definition 3. A web database 

iS  is a 3-tuple, 
>=< iiii TDCS ,, , where iC  is the set of subject domain 

(topic) categories that the documents in database 
iS  come 

from; iD  is the set of documents that database 
iS  contains, and 

iT  is the set of distinct terms that occur in database 
iS . 

 Definition 4.  Suppose the database 
iS  has s distinct terms,  

 

namely, },,,{ 21 si tttT L= .  Each term in the database can 
be represented as a two-dimension vector )1(},{ sjwt jj ≤≤ ,  

where jt  is the term (word) occurring in the database 
iS , and 

jw  is the weight (importance) of the term jt  due to its term 
frequency (i.e., the number of occurrence) in the database. 
 Definition 5.  Consider that there exists a number of topic 
categories in database 

iS , which can be described as 
},,,{ 21 pi cccC L= .  

 Definition 6.  Suppose that database 
iS  consists of a set of 

documents which can be represented as a vector: 
},,,{ 21 ti dddD L= , where t is the number of documents in 

the database 
iS .  For each document ridi ≤≤1 , id can be 

similarly described as },,,{ 21 isiii tttd L= , and each term 
in document id  is also a two-dimension vector 

)1(},{ sjwt
ijij ≤≤ , ijw  is the weight (important) of the term 

ijt .  

 Note that for the sake of expressive convenience, jt in 
Definition 4 and ijt in Definition 5, in practice, refer to the 
same term.  The only difference between them is the weight of 
the term, jw and ijw : 
 

 jjj icftfw ×= *   (4) 
 

  jjij idftfw ×=   (5) 
 
where *

jtf  is the term frequency of the term occurring in the 
database 

iS , jicf is the database frequency (the number of 
databases that have the term) in the test database collection. jtf   
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  The Nave Bayes structure of the classifier for cluster “software” 
 

 Table 1:  The feature space CF  and the probability distribution for each feature in CF  for the cluster C  
The Feature Space CF  Oracle SQL Delphi Windows Unix Dos Linux C++ Java 

)|Pr( Cfi  0.3 0.35 0.3 0.45 0.3 0.15 0.25 0.35 0.35 

Software (C)

Database (c1) Platform (c2) Programming (c3) 
Oracle (0.3) 
SQL (0.35) 

Delphi (0.15) 
Window (0.4) 
Unix (0.35) 

Window (0.5) 
Unix (0.45) 
Dos (0.15) 

Linux (0.25) 
C++(0.2) 

C++ (0.35) 
Delphi (0.3) 
Java (0.35) 

Window (0.45) 
Unix (0.3) 

                                0.3          0.4                                      0.3            
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is the term frequency of the term occurring in the document id , 
idf the database frequency (the number of databases that have 
the term) in database 

iS .  All the weights are normalized with 
the cosine function [23], which can range from 0 and 1. 
 Note that in order to reduce the term space in the database 
and improve classification accuracy, these terms have been 
preprocessed by removing stop-words, stemming, and 
eliminating rarely appearing words.  
 Once the classifiers in the hierarchical classification scheme 
are built, we can start the work of assigning a web database 

iS  
with the appropriate topics (categories) into the hierarchy.  In 
practice, the optimization process for category search in 
probabilistic category hierarchy can be implemented using a 
heuristic search technique called best first search to find the 
“best” candidate (candidates) over the category space of each 
level in this hierarchy.  At first, instead of taking the first node 
at the first level to classify the database 

iS , the hierarchy 
classification scheme first chooses the best node (topic) with 
the biggest similarity score using the root classifier.  Then the 
hierarchy scheme further sends the database down to the 
children nodes associated with the chosen first-level category 
(topic).  Apply the same category search strategy until one or 
more categories at the leaf level are chosen for the database 
(detail on the search will be described in subsections 3.3.2 and 
3.3.3).  
 At each level, except the root level, after one class is chosen 
by the classifier as the most likely topic for the database 

iS , it 
will automatically be added into the class set iC  of database

iS  
(recall Definition 5).  Clearly, the database that belongs to a 
class (a leaf node in the hierarchy tree) is also assumed to 
belong to each of the nodes (classes) along the path to the root.  
For example, if class “database” is chosen by the classification 
scheme as a appropriate topic for database 

iS , then classes 
“computers” and “software” must be in the class set iC  of 
database

iS  (see Figure 1). 
 Note that one of the advantages of our approach is that the 
classification mechanism can be utilized in parallel hardware.  
When one or more categories in one level are chosen by the 
classifier, the classification processes at the lower level can 
proceed in parallel in different subsets of classes rooted from 
the chosen parent nodes.  Therefore, this method improves the 
classification efficiency.  
 
 3.3.2 Category Search Strategy.  In each level of the 
hierarchy, the category search strategy will be executed by the 
following steps: 
 

1) First calculate the posterior probability )|Pr( ik Sc  of 

class kc  for the database 
iS , where kc  is a class of the 

chosen cluster C in the higher level.  
2) Then Rank all the classes in the chosen cluster C based 

on the posterior probability )|Pr( ik Sc . 

3) Assign the most likely categories to the database 
iS  

employing the category assignment strategy.  
 
 Step 1 searches a set of categories in the chosen cluster C 
with the classifier constructed by Naive Bayes network.  The 
measure of likeliness for the database 

iS  is the posterior 
probability )|Pr( ik Sc .  Given the parameters, )|Pr( ki cf and 

)Pr( kc , the posterior probability )|Pr( ik Sc can be determined 
by Bayes’ rule and the occurrence frequency of features of the 
class kc  in the database 

iS : 
 
  

)Pr(
)|Pr()Pr(

)|Pr(
i

kik
ik S

cSc
Sc =  

 
  

∑ ∑

∑

∈ ∈

∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Cc Tt
isis

Tt
ikik

s Ii

ii

wctc

wctc

)Pr()Pr(

)|Pr()Pr(   (6) 

 
where, if the term it  occurs in the feature space kF of class 

kc , that is, )( kjji Ffft ∈= , )|Pr( ki ct in fact equates to 

)|Pr( kj cf ; otherwise )|Pr( ki ct = 0; iw is the word weight of 

the term it (recall Definition 4). 
 
 3.3.3 Category Assignment Strategy.  In Steps 2 and 3, it is 
usual to make the ranking C based on the posterior probability 

)|Pr( ik Sc .  According to the category ranking, one or more 
categories are assigned to the database 

iS  using the categories 
assignment strategy.  Many category assignment methods have 
been proposed [19].  For example, the famous top-K method 
chooses the top K categories as the most likely categories, and 
the probability-threshold method assigns all the categories with 
the likeness value over a predefined threshold τ.  However, one 
problem of the above two methods is that due to the difference 
of the number of classes in each level of a hierarchy tree, a 
simple K or τ can not correctly reflect the proper class number 
in different level.   
 In this paper we propose a new approach to selecting the 
“winning” classes in cluster C.  Consider such a scenario 
where for some web databases, especially large-scale, general-
purpose web databases, the distribution of the documents 
concerning various topics are usually quite different.  When 
one or several categories do not fully reflect the factual 
categories in the database, we use a window to capture as 
many categories as possible.  This possibility-window method 
is extended from the possibility-threshold method.  The 
window is defined as follows: 
 
  )1(1

)|Pr(
)|(Prmax Mk

Sc
SC

ik

i ≤≤+≤ ε   (7) 
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  ε−≥ 1
)|(Pr

)|Pr(

max i

ik

SC
Sc  (8) 

 
where )|(Prmax iSC is the maximum of the posterior probabili-
ties of all the classes in cluster C, and ε is the parameter of 
window size.  As long as the posterior probability of category 

kc  satisfies all of the above conditions, category kc  will be 
chosen as the appropriate category for the database 

iS .  
 The size of the window for selection of categories which are 
considered relevant to the content of the database depends 
greatly on the window parameter ε.  Using huge windows 
means expensive computation but small ones discard possible 
valuable categories.  Therefore, ε is a sensible parameter for 
classification accuracy.  We ran a number of experiments to 
determine its appropriate value in Section 5. 
 

4 Experiment 
 
4.1 Testbed 
 
 To evaluate our database classification techniques, we first 
need to obtain hierarchical classified text data.  Our testbed 
was based on artificial data set which is the Reuters 21578 
Distribution 1.0 [18]. 
 The Reuters 21578 distribution 1.0 data set.  This data set 
consists of 21578 articles, each of which has been manually 
labelled with one or more categories.  Although topic 
categories have not been organized with a hierarchical 
structure, we still use the label information to construct a 3-
layer hierarchy.  In the hierarchy, 4 categories at level-1 
roughly correspond to economy, currency, commodity, and 
energy, and there are 5, 5, 6 and 2 topics, respectively, as the 
topics of level-2 (see Table 2).  Ninety-three topic categories 
are extracted from 135 financial topic categories as the topics 
of the leaf level.  Except for the vertical parent-child 
connection of different levels, we added some horizontal logic 
“AND” relationships among the classes at the same level.  In 
order to get the most representative feature space for each topic 
category at the leaf level, for those categories which have the 
logic relationship with other same-level categories, we 
intentionally select some articles which are labelled with two 
correlative topic tags as the training data for these topics. 
 Tables 3 and 4 show some statistics of Reuters dataset. 
 Database classification is made up of two phases: training 
phase and test phase.  To guarantee enough labelled training 
documents for Naive Bayes learning, a large set of documents 
with known category labels are used to build an initial 
probabilistic Bayesian model, and another set of data is used to 
identify optimal model parameters.  Test data is used to 
hierarchically classify new databases. 
 
4.2 Experimental Setup 
 
 To evaluate the database classification performance of our 
proposed classification methods, we considered a number of 
variations which are shown as follows: 

Table 2:  3-level clusters of Reuters categories 
ECONOMY 

Level 2 Nation, Person, Money, Price, Corporate 
Leaf 
Level 

bop, gnp, lei, jobs, income, interest, money-
supply,  money-fx, housing, install-debt, cpu, 
earn, reserves, cpi, wpi, retail, ipi, inventories, 
trade, earn, acq  

CURRENCY 
Level 2 Ocean, America, Europe, Asia, Africa  
Leaf 
Level 

dir, can, saudriyal, yen, rand, dfl, lit, nkr, stg, 
dmk 

COMMODITY 
Level 2 Agriculture, Metallurgy, Non-Metal Industry, 

Food, Farming 
Leaf 
Level 

barley, grain, corn, wheat, cotton, rice, iron-
steel, platinum, copper, nickel, cold, lead, 
silver, strategic-metal, tin, zinc, hog, carcass, 
livestock, pork-belly, l-cattle, wool, lumber, 
plywood, alum, rubber, palladium, cocoa, 
coffee, coconut, groundnut, meal-deed, oilseed, 
orange, potato, sugar, tea, veg-oil, copra-cake, 
oat, palm-oil, palmkernel, rape-oil, rapeseed, 
sorghum, soy-meal, soy-oil, soybean, sun-oil, 
sunseed, tapioca, ship 

ENERGY 
Level 2 Oil, Gas 
Leaf 
Level 

crude, heat, fuel, gas, pet-chem, jet, naphtha, 
nat-gas, propane, ship 

 
Table 3:  Statistics about the training dataset for Reuters 

databases 
     Reuter Dataset 

Training 
Number of documents 2850 

Number of classes 90 
Mean relevant documents 

per class 
32 

Mean words per document 176 
 

Table 4:  Statistics about the test dataset for Reuters databases 
 Reuter Dataset Test 

(Small-Scale 
databases) 

Reuter Dataset Test 
(Large-Scale 
databases) 

Number of 
databases 

45 24 

Documents 
per database 

50~150 1000~2500 

Mean classes 
per database 

6.5 38 

Mean words 
per database 

13347 402124 

 
1) The effect of adding logic correlations among the 

classes at the same level. 
2) The comparison of three different category assignment 

strategies (probability-window, probability-threshold, 
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and Top-K). 
3) A hierarchy model vs a flat model. 
4) The effects of various factors in database structure on 

classification performance. 
 

a. The similarity measurement methods employed. 
b. Database size. 
c. The distribution of database clusters. 

 
 We conducted experiments with the above variations, and 
evaluated the impact these aspects had on the final 
classification results.  
 
4.3 Evaluation Measurement 
 
 The effectiveness of database classification can be measured 
as recall R and precision P, which can be calculated by the 
following equations:  
 

database  the toassigned be should that categories ofnumber  The
databases  toassignedcorrectly  are that categories ofnumber  theR =

   (9) 
 

database  the toassigned  are that categories ofnumber  The
database  toassignedcorrectly  are that categories ofnumber  theP =

   (10) 
 
 To combine precision and recall into one number, E 
Measure is commonly used: 
 

  

RP

E 11
21
+

−=   (11)  

 
where the value of E varies from 0 to 1, and is inversely related 
to selection performance.  When P=R=1, selection performance 
is “perfect”and E=0. 
 For example, assume that database 

iS  has the documents of 

five topic categories (see Figure 1), iD ={computer, software, 
database, Internet, network}.  There are six topic categories 
which are chosen by the database classification method.  They 
are “computer”, “software”, “database”, “platform”, 
“programming”, and “science”, respectively.  Only three 
categories in the returned category list are correct.  The precision 
will then be 0.5 (P=3/6=0.5), and the recall will be 0.6 
(R=3/5=0.6).  Finally, we get the database classification 
effectiveness with E=0.454.  
 It should be noted that an “ideal” selection result is R=P=1.  
Unfortunately, precision and recall sometimes are antinomy to 
each other.  When recall goes up, precision usually (though not 
always) goes down.  Thus there exists the possible trade-off 
between recall and precision. 
 The above evaluation methods will be used to estimate the 
database classification effectiveness in our experiments reported 
in Section 5.      
 

5 Experimental Results and Discussions 
 
5.1 Accuracy for Different Category Assignment Methods 
 
 First we compare different category assignment methods 
with probability-window, probability-threshold, and Top-K in 
terms of selection accuracy.  It is interesting to see how the 
variety of window parameter ε, threshold parameter τ, and 
class parameter K affects the classification performance.  To 
see more clearly, we plot the accuracy curve in Figures 4 and 
5. 
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Figure 4: The average e-measure value of the category 
assignment methods. (a) probability-window (ε 
ranges from 0.2 to 1); (b) probability-threshold (τ 
ranges from 0.2 to 0.8) 
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Figure 5: The average e-measure value of the Top-K 
category assignment methods 

 
 In order to allow a fair comparison, we ran experiments over 
the Reuters databases with varying values of parameters ε and 
τ ranging from 0.2 to 1, and K being 1, 2, 3, respectively.  As 
noted, for high value of window parameter ε, the classification 
scheme will have the databases assigned to more leaf nodes 
(topics), which may lead to high recall.  But, as mentioned 
previously, it raises the shortcoming of low precision.  These 
characteristics might affect the classification performance and 
the same would be expected for the probability-threshold and 
the Top-K methods.  Therefore, the selection of the proper 
value for these parameters will be focused on the important 
tradeoff between precision and recall, namely, low E-Measure 
value.  
 As seen in the accuracy results for Reuters testing dataset 
using our probability-window method, selection of the 
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appropriate window parameter ε can have a large impact on 
classification accuracy.  When ε varies the range between 0.5 
and 0.8, the results are significantly improved over the 
accuracy on the original testing dataset.  It is understandable 
that the topic distributions in the database are uneven.  Some 
topics have hundreds of documents in the database, but some 
topics only have a few or tens of documents.  The irregular 
distributions make the size of the probability window broaden 
in order to cover the topics with a few documents within the 
window.   
 By contrast, the probability-threshold and the Top-K seem 
virtually incapable of taking advantage of the hierarchical 
structure.  In very few cases did we observe little improvement 
in the accuracy for the Top-K method.  We conjectured that the 
possible reason for this drawback is that the Top-K method is 
too simple to completely reflect the complicated relationships 
between the classes in the hierarchy.  
 
5.2 The Effect of Logical Correlations Between the Classes. 
 
 We were also interested in the impact of adding logical 
relationships between the classes in the hierarchy on 
classification performance.  As would be expected, the logical 
relationships between the classes are useful indicators of class 
relevance, which can help improve selection effectiveness.  
The classification results in Figure 6 show that when the right 
logical relationships are used for classification, classification 
performance increases by an average of 9.75 percent.  This 
suggests that it is possible that the common features occurring 
in the related classes affect classification effectiveness to some 
extent.  We note that the method of adding a logical relation-
ship between the classes significantly outperforms the non-
logical method regardless of the number of features used.  For 
the common feature vectors in the logic related classes, we 
used the minimum function (recall Equation 2) to decrease 
their impact on the classification.  Experimental results proved 
our opinion that these features are not the best indicators to 
disinguish the classes, since they co-occur in one or more 
classes.  
 During the experiments we employed an aggressive feature 
selection method to reduce the feature space to 50, 100, 150 
and 200 features in order to observe the impact of the number 
of features on the classification performance.  As noted, when 
feature selection was aggressively employed versus the case 
where all topic category features were used, the performance 
gains were particularly noticeable, with a statistically 
significant improvement.  The greatest improvement was 
obtained in the range between 100~200 features for both logic 
and non-logic cases.  By contrast, in both cases, beginning 
from the point of around 2000 features, 80 percent of the 
feature space, the performance starts to deteriorate in both 
cases.  We conjecture that the reason for this shortcoming 
arises from the fact that ideal feature space should cover all the 
most representative features of the class, but the real-world 
feature space only approximates it.  It is so-called bias-
variance of classification.  The small size of features helps 
lessen the suffering of the error associated with the variance, 
while the use of too many features makes the classification 

very inaccurate, sometimes even resulting in poor overall 
performance.  
 The results in Figure 6 show that an initial improvement 
occurs as the number of features is increased, and then a 
decrease in the accuracy as the number of features is increased 
too much.  It is surprising that the greatest improvement can be 
obtained when 100 features are chosen for classification.  One 
possible explanation is that the most distinguished features for 
the class could be contained in the top 100 features.  For this 
reason, selecting a larger number of features for classification 
does not provide a great benefit, and may even degrade 
performance. 
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Figure 6: The average e-measure value for the effect of 
adding logic correlation between the classes 

 
5.3 The Accuracy of a Hierarchical Model and Flat Model 

on Classification Performance 
 
 To compare the difference between the hierarchy and the flat 
classification models, we began with an equivalent number of 
features (e.g., 100 features in each class) for each classifier.  
As can be seen in Figure 7, in some cases the hierarchical 
model is slightly better (window parameter ( )7.0,5.0∈ε ), while in 
others (window parameter 5.0≤ε  or 7.0≥ε ) the flat approach 
wins.  However, when an appropriate window parameter ε is 
chosen (e.g., ( )7.0,6.0∈ε  ), there is no apparent difference in 
overall classification performance.  This may be due to the 
same feature spaces that we use for all the classes in both the 
hierarchical model and flat model.  It suggests that 
classification performance is not the main reason we choose 
the hierarchical structure over the flat one.   
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Figure 7: The average e-measure for the hierarchy and flat 
models 
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 As far as computational expense and running time, the 
hierarchy approach shows promise for scaling to larger topic 
domains.  Since the classification in the hierarchy scheme is a 
filter method, the hierarchical category search algorithm makes 
dramatic reductions in the class search space and consequently 
shortens running time as well.  In Table 5 it can be seen that, in 
a hierarchical structure with 91 topic categories, the searched 
topics are 25.375 categories on average using the hierarchical 
model, which is only 28.2 percent of the whole search space 
used by the flat model.  Besides, the running time for 
classification is 12 CPU seconds due to parallel computation, 
34.2 percent of the time used for the flat model.  In terms of 
training time for constructing a hierarchy of Naive Bayes 
classifiers, the running time with 2,850 training documents 
was 1 hour 23 minutes in comparison with 4 hours 56 minutes 
for the flat approach.  The above advantages indicate that the 
hierarchical model is generally more robust in database 
classification. 
 
Table 5: Classification statistics of the hierarchy and flat 

models 
 Hierarchy Model Flat Model 

Topic Categories 
Searched 

25.375 91 

Running Time in 
Testing 

12 (second) 35 (second) 

Running Time in 
Training 

1hour 23 minutes 4 hours 56 
minutes 

 
 

5.4 The Effects of Various Factors in Database Structure 
on Classification Performance 

 
 Considering the special characteristics of database 
classification are different from text document classification, 
we also investigated various factors (e.g., the similarity 
measurement methods employed, database size and 
distribution of database clusters) in database structure that 
affect classification performance. 
 
 5.4.1 The Similarity Measurement Methods  Employed.  
Since each database is composed of documents with various 
topic categories, there are two similarity measure methods for 
database classification:  term-based method and document-
based method.  In the term-based method the measure of 
similarity for the database 

iS  with respect to the class kc  
(recall Equation 6) is based on the occurrence frequency of 
features of the class kc  in the database 

iS , while in the 
document-based method, the similarity of the database 

iS  is 

based on the number of documents belonging to the class kc .  
In practice, the document-based method is the variation of text 
document classification.  We need to first classify each 
document in the database.  The posterior probability )|Pr( ik dc  
can be computed by 
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where, if the term it  occurs in the feature space CF of class 

kc , that is, )( C
jji Ffft ∈= , )|Pr( ki ct in fact equates to 

)|Pr( kj cf ; otherwise )|Pr( ki ct = 0; ijw is the word weight of 

the term it in the document id  (recall Definition 6).  
Therefore, the number of topic categories in the database 

iS  is 
equal to the number of topic categories of the documents in 
database 

iS . 
 During our experiment we ran each method with various 
feature sets.  The performance variations are shown in  
Figure 8.  It was easily noted that the term-based method 
performed better than the document-based method, with an 
average of 5.05 percent performance improvement.  The best-
performance feature-number point for both methods was the 
100-feature point, with the E-Measure values 0.497 and 0.527, 
respectively.  This implicates that, for huge documents (note 
that in the term-based method, the database 

iS  is in fact 
assumed as a single large document with hundreds of 
thousands of words), Bayesian classifiers still have similar, or 
even better, classification performance than ordinary 
documents.   
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Figure 8: The average e-measure for different similarity 
measurement methods employed 

 
 As for time cost and resource consumption, the term-based 
method is far better than the document-based method since the 
database 

iS  is only regarded as a single large document.  The 
rough estimation of running time for the term-based method is 
about 15.2 seconds in comparison to 315.5 seconds for the 
document-based method.  According to the above 
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observations, we deduce that the term-based method provides 
a more applicable and effective measurement for database 
classification. 
 
 5.4.2 The Effect of Database Size on Classification 
Performance.  Database size is one of the important factors  
for database structure.  We ran the experiments with various-
size databases (see Table 4 for more information about the test 
databases). 
 The first thing we noticed in Figure 9 was the difference of 
the best-performance feature number for various-size 
databases.  The best-performance feature number increases 
with the database size.  A possible reason is that large-scale 
databases contain a large number of documents with more 
topic categories (recall Table 4).  It means that the classifiers in 
the hierarchy need more features to better distinguish various 
classes in the database.  
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Figure 9:  The average e-measure for the database size 
 
 The second thing we noticed, as described in Section 5.2, is 
the increase of the feature number tends to improve 
classification performance, but there are limits to that trend.  In 
fact, beyond a certain point, the use of more features will lead 
to a diminished performance.  Similar experimental results can 
be observed here.  In both small-scale and large-scale database 
cases, performances seem to approach an arch.  For small-scale 
databases, the best-performance feature number point is 
usually located at the range between 80-150 features, while the 
best-performance feature number for large-scale databases is at 
the range between 2,500-4,500 features. 
 
 5.4.3 The Effect of the Distribution of Database Clusters.  
As mentioned previously, in the real world there exists two 
different types of databases, special-purpose databases and 
general-purpose databases.  The main distinction between 
them is the distribution of subject domains in the databases.  
To determine the extent to which the distribution of topic 
categories affects classification performance, we conducted a 
number of experiments shown in Table 6 on these two types of 
large-scale test databases. 
 In Figure 10 we noted that Bayesian classifiers perform 
better in general-purpose databases than in special-purpose 
databases in terms of capturing the distinctions between 

relevance and irrelevance for available topics.  In the range 
between 3,500-4,500 features, the performances for both types 
of databases are very close.  However, in other range of 
features, the classification accuracy for general-purpose 
databases significantly outperformed that for special-purpose 
databases.  In some feature ranges (e.g., the range between 
1,000-2,000 features), the performance gap even reaches 31.2 
percent.  
 
Table 6: Statistics about the test dataset for Reuters databases 

 Reuter Dataset Test 
(Special-Purpose 

databases) 

Reuter Dataset Test 
(General-Purpose 

databases) 
Number of 
databases 

12 12 

The 
documents 

per database 

1,000~2,500 1,000~2,500 

Mean 
classes per 
database 

7 38 

Mean words 
per database 

201,062 201,062 
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Figure 10: The average e-measure for the distribution of 
database clusters 

 
 A primary cause of this phenomenon is the problem of 
classification errors in the hierarchy.  In Section 3.2.1 we 
discussed that, due to the trade-off between computation cost 
and classification accuracy, the feature space F of a class kc  

only contains those most representative features for class kc .  
The information loss in the feature space results in 
classification errors in the classification process.  As described 
in Section 3.2.2, the features space CF  for the cluster C is the 
combination of the feature spaces of a subset of child classes in 
the lower level (recall Definition 1).  Classification error for 
cluster C is also the accumulation of all classification errors of 
the child classes.  When classification error of a class reaches 
beyond-error tolerance, the classification performance will 
rapidly degrade.  Since general-purpose databases contain the 
documents with more topic domains than special-purpose 
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databases, they provide more category room, which helps 
alleviate to some extent the problem of classification errors in 
the hierarchy.  
 

6 Conclusions and Future Work 
 
 With the proliferation of online information resources on the 
Internet, the problem of database selection has become a 
challenging issue for searching multiple, distributed web 
databases.  The work described in our paper explores the use of 
hierarchical structure in order to resolve the difficulty.  Within 
a probabilistic framework, our hierarchical classification 
approach takes the logical relationships between the classes in 
the hierarchy and the special characteristics of databases into 
consideration.  The experimental results have proved that this 
approach is effective and drastically reduces search space, 
while also helping to improve accuracy in many cases.  
Moreover, we presented a new category assignment strategy 
that could assign more “winning” topic categories into the 
database thus outperforming two other common assignment 
approaches on classification effectiveness.   
 Our future work on this research topic includes the following 
tasks.  First, we wish to construct more accuracy models by 
using an optimal Bayesian network learning algorithm, which 
will allow us to obtain further advantages in efficiency in the 
hierarchical approach.  Second, we will further investigate the 
work on feature selection, especially how to effectively 
discriminate the features of topic categories at higher levels in 
the hierarchy.  In this paper we simply combine the feature 
spaces of child classes at lower levels, which we expect to 
improve in future work.  More importantly, we intend to apply 
this approach to a wider variety of text datasets.  Our present 
work is conducted only on small hierarchies of topics extracted 
from the Reuters datasets.  We hope that these techniques can 
also effectively tackle complex problems in a vast web 
environment. 
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