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M A J O R A R T I C L E

Pseudaminic Acid on Campylobacter jejuni
Flagella Modulates Dendritic Cell IL-10
Expression via Siglec-10 Receptor: A Novel
Flagellin-Host Interaction

Holly N. Stephenson,1,a Dominic C. Mills,2 Hannah Jones,1 Enea Milioris,1 Alastair Copland,1 Nick Dorrell,2

Brendan W. Wren,2 Paul R. Crocker,3 David Escors,4,5 and Mona Bajaj-Elliott1

1Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, 2Department of Pathogen Molecular Biology, London
School of Hygiene and Tropical Medicine, 3College of Life Sciences, University of Dundee, and 4Rayne Institute, University College London,
United Kingdom; and 5Navarrabiomed-Fundacion Miguel Servet, Pamplona, Navarra, Spain

Introduction. Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. At present the iden-
tity of host-pathogen interactions that promote successful bacterial colonisation remain ill defined. Herein, we aimed
to investigate C. jejuni-mediated effects on dendritic cell (DC) immunity.

Results. We found C. jejuni to be a potent inducer of human and murine DC interleukin 10 (IL-10) in vitro, a
cellular event that was MyD88- and p38 MAPK-signalling dependent. Utilizing a series of C. jejuni isogenic mutants
we found the major flagellin protein, FlaA, modulated IL-10 expression, an intriguing observation as C. jejuni FlaA is
not a TLR5 agonist. Further analysis revealed pseudaminic acid residues on the flagella contributed to DC IL-10
expression. We identified the ability of both viable C. jejuni and purified flagellum to bind to Siglec-10, an
immune-modulatory receptor. In vitro infection of Siglec-10 overexpressing cells resulted in increased IL-10 expres-
sion in a p38-dependent manner. Detection of Siglec-10 on intestinal CD11c+ CD103+ DCs added further credence
to the notion that this novel interaction may contribute to immune outcome during human infection.

Conclusions. We propose that unlike the Salmonella Typhimurium flagella-TLR5 driven pro-inflammatory axis,
C. jejuni flagella instead promote an anti-inflammatory axis via glycan-Siglec-10 engagement.

Keywords. Campylobacter jejuni; IL-10; dendritic cells; immune modulation; Siglec-10; p38.

Campylobacter species are a leading cause of bacterial
gastroenteritis worldwide [1]. Evidence suggests that
both the nature of the infecting strain and the host
immune status defines the clinical presentation of
human campylobacteriosis [1, 2]. Infection can result
in asymptomatic carriage or clinical symptoms ranging

from mild, watery, or bloody enteritis to autoimmunity
[2, 3]. Research indicates that repeated exposure to dif-
ferent C. jejuni strains allows development of protective
immunity that minimizes symptomatic disease while
having a limited effect on colonisation [4, 5].

To promote their fitness, survival, and dissemination,
enteropathogens utilize various strategies to counteract
host immunity. For example, C. jejuni flagella evade
Toll-like receptor (TLR)-5 recognition [6]. Pathogens
are also known to target host anti-inflammatory cyto-
kine interleukin 10 (IL-10) axis, for example, via
TLR-2 engagement by Yersinia sp. V-antigen [7, 8],
and via DC-SIGN engagement by Mycobacterium
tuberculosis cell wall component, ManLAM [9]. IL-10
induction is potentially beneficial to pathogens as it
can aid colonisation via immune suppression [10, 11].
C57BL/6 wild-type and IL-10 knockout mice are con-
sidered appropriate models for C. jejuni colonisation
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and colitis, respectively, suggesting that IL-10 signalling is a key
determinant of clinical outcome to C. jejuni [12]. Although
clearly important, currently there is limited information on
how C. jejuni may modulate IL-10 immunity in the murine
or the human host [13].

An emerging paradigm suggests that microbes can modulate
host IL-10 production via engagement of glycan receptors [14].
Sialic-acid binding Ig-like lectins (Siglecs), I-type lectins, have
emerged as important players in host immunity [15]. Siglecs
bind sialylated structures, exhibiting varying specificities for
the linkage of the sialic acid (Sia) and the underlying glycan
structures that can be present both on host cells and microbes
[15, 16]. The immunomodulatory capability of Siglecs occurs
via the modulation of pattern-recognition receptor (PRR)-
mediated signalling [17, 18]. Many sialylated pathogens engage
with Siglecs, for example, the Sia moiety of different C. jejuni
lipooligosaccharides (LOS) interacts with Siglec-7 and siaload-
hesin (Siglec-1) [19–22].

The flagellin proteins of C. jejuni are O-linked glycosylated
with Sia-like structures, derivatives of pseudaminic acid (Pse),
and sometimes legionaminic acid (Leg), moieties important
for flagella assembly and colonisation of chickens [23, 24].
Herein we report that derivatives of Pse on C. jejuni flagella in-
teract with host Siglec-10 to modulate MyD88-mediated IL-10
expression via a p38-dependent pathway. The present study
suggests C. jejuni flagella may favour interaction with immuno-
modulatory Siglec-10, an anti-inflammatory strategy that may
promote asymptomatic colonisation in individuals that are re-
peatedly exposed to Campylobacter sp.

MATERIALS AND METHODS

Ethics Statement
Ethical approval for obtaining mucosal biopsies during endos-
copy was granted by the Institute of Child Health/Great
Ormond Street Hospital (ICH/GOSH) Research Ethics Com-
mittee (12/LO/0503 R&D 09GA03). Written informed consent
was provided by the legal guardians of the study participants.
Blood sampling from healthy volunteers was approved by
ICH Human Tissue Act Review Board. Written informed con-
sent was recorded in accordance with ICH Research Gover-
nance and Ethical Regulations.

C57BL/6 wild-type (WT) mice were purchased from the Jack-
son Laboratory (Maine, US). TRIF and MyD88 deficient murine
bone-marrow were kindly provided by Prof Reis e Sousa (Cancer
Research, UK). Ethical approval was obtained from University
College London Ethics Committee (project license: PPL 80/2309).

C. jejuni Culture
C. jejuni strains were routinely cultured on blood agar (BA)
plates supplemented with Campylobacter selective supplement
(Oxoid) and 7% (v/v) horse blood (TCS Microbiology) under

microaerobic conditions at 37°C for 24 hours. The hypermotile
strain 11168H is a variant of NCTC11168 WT [25]; 81-176 is a
milk-borne outbreak isolate [26]. 11168H flaA, pglB, waaF,
kpsM, rpoN, Cj1324, and Cj1316 mutants and an 81-176 flaA
mutant were obtained from the London School of Hygiene
and Tropical Medicine Campylobacter Resource Facility
(http://crf.lshtm.ac.uk/index.htm).

Generation of Murine Bone-Marrow Derived
Dendritic Cells (BMDCs)
The bone marrow from femurs and tibias of 6–12 week old
C57BL/6 mice was extracted and the red blood cells lysed in
Red Blood Cell Lysis Buffer (Sigma). Cells were seeded at
0.5 × 106 cells/mL in IMDM containing 10% heat-inactivated
fetal calf serum (FCS), 50 U/mL penicillin, 50 µg/mL strepto-
mycin, 2 mM L-glutamine, 50 µM β-Mercaptoethanol, 10 µg/
mL gentamicin, and 20 ng/mL murine GM-CSF (Invitrogen).
On days 3 or 4, nonadherent cells were resuspended in fresh
media containing GM-CSF. Cells were used on days 7 or
8. BMDCs were >80% positive for CD11c by flow cytometry.

Generation of Human Monocyte-derived Dendritic Cells (hDCs)
CD14+ monocytes were extracted from peripheral blood using
bead isolation (Miltenyi Biotec). In sum, 5 × 105 cells/mL
CD14+ monocytes were cultured in Roswell Park Memorial In-
stitute medium (RPMI) containing 50 ng/mL interleukin 4 (IL-
4) and 100 ng/mL GM-CSF (R&D systems) for 6–7 days. And
hDCs were harvested and used immediately. Cells were >95%
positive for CD11c by flow cytometry.

RESULTS

C. jejuni is a Potent Inducer of Innate IL-10 in Comparison
to Other Enteropathogens
Dendritic cells (DC) detect and respond to microbes via expres-
sion of costimulatory molecules and by generating a cytokine
milieu, two cellular events that define adaptive immune out-
come to infection. DC IL-10/IL-12 axis is a central determinant
of T-cell immunity [27]. To define the DC cytokine milieu gen-
erated in response to C. jejuni, human (hDC) and bone-marrow
derived (BMDC) DCs were employed. Studies were performed
in vitro as the best murine model available is the antibiotic-
treated IL-10 knock-out mouse, a model unsuitable for studying
host anti-inflammatory immunity [28]. To improve our under-
standing of how microbes modulate host IL-10/IL-12 axis,
3 other well-studied enteropathogens Enteropathogenic Escher-
ichia coli EPEC (E2348/69), Salmonella Typhimurium (SL1344),
and Clostridium difficile (R20291) strains were also investigated.
For appropriate comparison, infections were performed with
live bacteria such that the final multiplicity of infection (MOI;
hDCs and BMDCs) for each bacterial species reached 100 8
hours post-infection. Optimisation assays ensured low cell
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death during the experimental time-period (data not shown). In
hDCs, C. jejuni induced the highest level of IL-10 (Figure 1A)
while inducing comparable levels of IL-12 to EPEC and

C. difficile. Interestingly, C. jejuni induced minimal levels of
IL-1β (Figure 1A). A high IL-10/IL-12 ratio in response to
C. jejuni was observed for 3/6 donors (Figure 1B). In BMDCs,

Figure 1. Campylobacter jejuni induces high IL-10 expression in hDC and murine BMDC. Cells were stimulated with either WT C. jejuni 11168H, EPEC
E2348/69, Salmonella Typhiumurium SL1344, Clostridium difficile R20291 strains to reach a final MOI of 100, 8 hours post-infection. Cytokine levels were
measured 8 hours post-infection. A, Enteropathogen-mediated hDC IL-10, IL-12 and IL-1β production. Bars depict median values from 6 individual donors. B,
hDC IL-10/IL-12 ratio. Bars depict median values from 6 individual donors. C, Enteropathogen-mediated BMDC IL-10, IL-12 and IL-1β protein production. Bars
show mean values from four independent experiments ± SEM (D) BMDC IL-10/IL-12 ratio. Bars show mean values from four independent experi-
ments ± SEM. Friedman statistical analysis was performed on data sets. *P < .05; **P < .01; ***P < .001. Abbreviations: BMDC, bone-marrow derived den-
dritic cells; hDC, human dendritic cells; IL, interleukin; WT, wild-type.
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C. jejuni induced comparable levels of IL-10 to the other enter-
opathogens (Figure 1C); however, lower levels of IL-12 in com-
parison to EPEC and C. difficile caused an overall high IL-10/IL-12
ratio (Figure 1D). As noted in hDCs, C. jejuni exhibited mini-
mal capacity to elicit BMDC-derived IL-1β unlike the in-
flammasome-activating enteropathogens (Figure 1C). Taken
together, the data suggested that C. jejuni is not a potent induc-
er of DC inflammasome activation but instead promotes IL-10
production.

C. jejuni FlaA Modulates IL-10 Expression
To identify C. jejuni structural components responsible for DC
IL-10 expression, infection studies with C. jejuni 11168H WT
and various mutants were performed (Figure 2A). A C. jejuni

flaA mutant, which lacks the major flagellin protein FlaA but
is still secretion-positive [29], showed significant reduction in
IL-10 production compared to WT (Figure 2A; P < .01). Other
structural mutants lacking the outer core oligosaccharide of the
LOS (waaF [30]), capsular polysaccharide, CPS (kpsM [31]) or
the N-linked glycosylation system (pglB [32]) showed no signif-
icant alteration in IL-10 protein induction. Interestingly, the
effect of the flaA mutant was specific to IL-10 as no significant
difference in the IL-12 family members (IL-12, IL-23 and IL-27)
or TNF-α was observed between the WT and the mutants tested
(Figure 2A). To confirm that the impact of C. jejuni flagella on
IL-10 production was not due to a difference in BMDC uptake
of the flaA mutant, a gentamicin protection assay was per-
formed (Figure 2B). Similar numbers of intracellular bacteria

Figure 2. Campylobacter jejuni flagella selectively modulate BMDC IL-10 expression. A, BMDCs were stimulated with C. jejuni 11168H WT, flaA, waaF,
kpsM, or pglB isogenic mutants for 24 hours MOI 100. Secreted IL-10, IL-12, TNFα, IL-23 and IL-27 cytokine levels were quantified by ELISA. Bars depict mean
values ± SEM from four independent experiments. B, Uptake of 11168H WT and flaA isogenic mutant by BMDCs was quantified 4 hours post-infection (initial
infection MOI 100) using the gentamicin protection assay. C, BMDCs were infected with C. jejuni 11168H WT or flaA isogenic mutant (MOI 100) and time-
dependent IL-10 and IL-12 p35 subunit mRNA levels were quantified by real-time PCR. Bars depict mean values ± SEM from a minimum of 3 independent
experiments. Friedman statistical analysis was performed on data sets. *P < .05; **P < .01; ***P < .001. Abbreviations: BMDC, bone-marrow derived dendritic
cells; IL, interleukin; MOI, multiplicity of infection; PCR, polymerase chain reaction; SEM, standard error of the mean; TNFα, tumor necrosis factor α.
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were found between the WT and flaA mutant 4 hours post-
infection, indicating low IL-10 expression in response to the
flaA mutant was not due to defective phagocytosis.

The C. jejuni flagella-mediated effect on BMDC IL-10 ex-
pression was also noted at the transcriptional level (Figure 2C).
Reduced IL-10 transcripts in response to infection with the flaA
mutant were observed as early as 1 hour post-infection; this
difference gained significance 6 hours post-infection (P < .05).
Importantly, the effect on transcription was specific to IL-10
as IL-12 p35 subunit transcripts showed similar kinetics in
response to the WT and the flaA mutant.

Derivatives of Pseudaminic Acid (Pse) on C. jejuni FlaA
Modulate BMDC and hDC IL-10 Production
Toll-like receptor (TLR)-signalling is critical for C. jejuni-
mediated BMDC cytokine production [33]. To determine
the contribution of TLR-signalling on IL-10 expression,
BMDCs from Trif−/−, MyD88−/−, and Trif−/−MyD88−/− double
knock-out (DKO) mice were generated. IL-10 expression was
completely dependent on MyD88-mediated signalling (Fig-
ure 3A), whereas IL-12 was both TRIF and MyD88-dependent.
As C. jejuni flagella do not interact with TLR5 [10], the bacte-
rium instead must engage with other TLRs to elicit MyD88 de-
pendent IL-10 expression. To determine which flagella
component(s) modulate the observed TLR-MyD88 driven IL-
10 expression, infection in the presence of a range of 11168H
flagella-specific mutants was performed. A secretion-negative
aflagellate rpoN mutant which lacks the alternative sigma factor
σ54 [34] showed similar levels of IL-10 to the secretion-positive
flaAmutant, suggesting that flagella-secreted proteins do not af-
fect IL-10 (Figure 3B). Importantly, infection with an 81-176
flaAmutant showed comparable reduction in IL-10 when com-
pared to its WT counterpart, suggesting this phenomenon was
not specific to the 11168H WT strain (Figure 3B).

We next assessed the role of flagellin glycosylation in regulat-
ing IL-10 expression (Figure 3B). The Ptm and Pse pathways are
necessary for the generation of Leg and Pse derivatives respec-
tively in strain 11168H. The Cj1324 mutant lacks 2 derivatives
of Leg, Leg5AmNMe7Ac and Leg5Am7Ac, and in addition
lacks a form of Pse, Pse5Ac7Am [23]. The Cj1324 mutant
induced significantly lower levels of IL-10 than the WT strain,
although IL-10 levels were not restored to WT levels upon com-
plementation (Figure 3B). It is important to note that the com-
plemented mutant does not restore Pse5Ac7Am structures [23]
which suggested that these structures may in fact be critical in
modulating IL-10 expression. Strain 81-176 synthesizes only de-
rivatives of Pse and not Leg supporting the notion that deriva-
tives of Pse are important for the observed effect of C. jejuni
flagella on hDC and BMDC IL-10. Mutations in the Pse biosyn-
thesis pathway lead to defective flagellum assembly, due to the
requirement of some but not all of the Pse modifications in fil-
ament polymerisation [24].Mutation of pseA (Cj1316) results in

flagellin monomers with only pse5Ac7Ac present and not
pse5Ac7Am (or further derivatives), but the Cj1316 mutant
still have functional flagella [35, 36]. Infection with the Cj1316
mutant showed a similar reduction in IL-10 secretion compara-
ble to the flaA mutant (Figure 3B; P < .001). A total of 3 inde-
pendently constructed Cj1316 mutants were used in the assay
and showed similar phenotypes (data not shown). Importantly,
this phenotype was also observed in hDCs (Figure 3C; P < .05).
This series of experiments suggest that the Pse5Ac7Am or fur-
ther derivatives on C. jejuni flagella can modulate BMDC and
hDC IL-10 production.

C. jejuni Flagellin Pse Moieties’-host Siglec-10 Engagement
Modulates DC IL-10
A previous study highlighted a potential interaction between
C. jejuni and Siglec-10, this interaction was found to be siali-
dase-insensitive indicating that the bacterial LOS is not the can-
didate ligand [19]. The core ring structure of Pse and Leg could
potentially allow their accommodation in the Sia binding pocket
of Siglecs [37]. This led us to hypothesize that derivative(s) of
Pse may be potential ligands for Siglec-10 [19]. To test this
hypothesis, the binding potential between live bacteria and
Siglec-10-expressing Chinese hamster ovary (CHO) cells was
investigated (Figure 4A and 4B). A significant increase in bind-
ing of C. jejuni WT to Siglec-10 expressing cells was observed.
Importantly, this increase was not observed with the flaA and
Cj1316 mutants (P < .01). To confirm that the interaction was
independent of the Sia on the bacterial LOS, the waaF mutant
lacking the Sia residue on the OS outer core was employed (Fig-
ure 4A). The waaF mutant showed similar binding to Siglec-10
CHO cells to 11168H WT confirming that the oligosaccharide
Sia moiety was not critical for this interaction.

To confirm the interaction between C. jejuni flagella and
Siglec-10, flagella from 2 C. jejuni WT strains and from the
Cj1316 mutant was purified and coated onto high-absorbance
plates, enzyme-linked immunosorbent assays (ELISAs) were
performed with soluble Siglec-10-Fc to determine their binding
potential (Figure 4C). Flagellin from both WT strains bound
Siglec-10-Fc, whereas the flagellin from the 11168H Cj1316mu-
tant failed to do so (P < .001). Collectively, our observations
suggest for the first time to our knowledge that C. jejuni Pse
modifications can actively engage with Siglec-10 receptor.

To obtain direct evidence that C. jejuni interaction with the
Siglec-10 promotes IL-10 production Siglec-10 was over-
expressed in the human and murine macrophage cell lines
THP-1 and RAW264.7, respectively, by lentiviral transduction.
Overexpression was confirmed by flow cytometry (data not
shown). In THP-1 cells C. jejuni 11168H WT infection led to
an increase in IL-10 secretion from Siglec-10 transduced cells
compared to GFP control-transduced cells (Figure 5A;
P < .001). This increase was not observed upon infection with
the 11168H flaA mutant (P < .001). C. jejuni 11168H WT
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Figure 3. Pseudaminic acid structures on Campylobacter jejuni flagella modulate BMDC and hDC IL-10 expression. A, WT, TRIF−/−, MyD88−/−, and DKO
BMDCs were infected with 11168H WT C. jejuni or stimulated with LPS (100 ng/mL) for 24 hours. IL-10 and IL-12 protein levels post-stimulation were
measured by ELISA. Bars depict mean levels ± SEM from 3 independent experiments. B, BMDCs were infected for 24 hours with 11168H WT, 11168H flaA,
and 11168H rpoN mutants, 81-176 WT and 81-176 flaA mutant, 11168H Cj1324 mutant, and the Cj1324 complemented strain or 11168H Cj1316 mutant
(MOI 100). 24 hours post-infection IL-10 protein was measured by ELISA. Bars depict mean values ± SEM from four independent experiments. C, hDCs were
infected with 11168H WT, flaA, and Cj1316 mutant strains (MOI 100). Bars depict median levels from 8 individual donors. Friedman statistical analysis was
performed on data sets. *P < .05; **P < .01; ***P < .001. Abbreviations: BMDC, bone-marrow derived dendritic cells; DKO, double knockout; ELISA, enzyme-
linked immunosorbent assay; hDC, human dendritic cells; IL, interleukin; MOI, multiplicity of infection; SEM, standard error of the mean; WT, wild-type.
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infection led to approximately 2-fold increase in IL-10 secretion
from Siglec-10 RAW264.7 transduced cells, compared to infec-
tion in GFP control-transduced cells (Figure 5B; P < .01). No in-
crease was observed in response to the Cj1316 mutant or to
purified LOS (P < .05) suggesting specific engagement of
Siglec-10 by C. jejuni flagella was responsible for the observed
IL-10 response (P < .05). Interestingly, no significant increase in
IL-12 (THP-1 cells) or tumor necrosis factor α (TNF-α; THP-1

and RAW264.7 cells) was observed in Siglec-10 overexpressing
cells, indicating that WT C. jejuni mediates a specific effect on
IL-10 in response to Siglec-10 engagement (Figure 5).

MAPK Signalling Mediates Siglec-10 Induced IL-10 Expression
The transcription factor NF-κB and the mitogen-activated pro-
tein kinase (MAPK) pathways are central regulators of innate
cytokine production. To assess whether NF-κB signalling was

Figure 4. Glycosylated surface structures of Campylobacter jejuni flagella bind to Siglec-10 receptor. A, 11168H WT, flaA, Cj1316, and waaF mutants
were assessed for binding to CHO cells overexpressing Siglec-10 receptor at 4°C. Histograms are representative of 3 independent experiments. Control cells
alone (dotted line), bacteria/CHO cell co-cultures (solid gray). B, Binding of 11168H WT and Cj1316 mutant to CHO cells is expressed as a bacterial binding
index (% cells with bacteria bound × geometric mean fluorescence intensity of the bacteria-positive cells). Bars depict mean values ± SEM from 5 inde-
pendent experiments. C, The binding capacity of Siglec-10-Fc to purified flagella from WT 11168H, WT 81-176 and 11168H Cj1316 mutant was assessed by
ELISA. Bars depict mean values ± SEM from 3 independent experiments performed in duplicate. Friedman statistical analysis was performed on data sets.
*P < .05; **P < .01; ***P < .001. Abbreviations: CHO, Chinese hamster ovary; ELISA, enzyme-linked immunosorbent assay; IL, interleukin; MOI, multiplicity of
infection; SEM, standard error of the mean; WT, wild-type.
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altered in response to the flaAmutant, BMDCs were transduced
with an NF-κB responsive promoter that drives luciferase ex-
pression. The flaAmutant elicited NF-κB activation to a similar
extent as the WT strain (Figure 6A). Analysis of the MAPK sig-
nalling, however, revealed a clear difference in the kinetics of
p38 activation (Figure 6B). C. jejuni 11168H WT mediated
marked p38 phosphorylation; in contrast the flaA mutant elic-
ited slower kinetics with no apparent increase 60 minutes post-
infection. Modest reduction in extracellular signal-regulated
kinase (ERK) activation 30 minutes post-infection was also
noted between the flaA mutant and the WT. In contrast,
c-Jun N-terminal kinase (JNK) activation was similar in re-
sponse to both WT and mutant. Taken together, the data indi-
cated that C. jejuni flagella could potentially modulate DC IL-10
expression via modulation of p38 activation. Interestingly, a
similar delay in p38 activation paralleled reduced IL-10 produc-
tion in MyD88−/− BMDCs infected with the WT strain (Fig-
ure 6C), Collectively, the results raise the hypothesis that
flagella-DC interactions potentially converge with the TLR-
MyD88 signalling cascade at p38 to modulate downstream
IL-10 gene expression.

Chemical inhibition confirmed a key role for the p38 pathway
as p38 inhibitors (SB203580 and SB239063) at 1 µM (low

concentration) caused significant reduction in IL-10 protein
(Figure 6D). At 10 µM (50 µM PD90859) all MAPK inhibitors
tested impacted on IL-10 (Figure 6D). To assess the contribu-
tion of p38 signalling in response to Siglec-10 engagement, in-
fection in the presence of SB203580 was performed (Figure 6E ).
The increase in IL-10 secretion in the Siglec-10 overexpressing
cells was abolished in the presence of the p38 inhibitor
SB203580, confirming a critical role for p38-signalling in
Siglec-10-dependent IL-10 secretion (P < .001). Overall, the ev-
idence supports the notion that C. jejuni flagellin Pse-hDC Si-
glec-10 axis modulates IL-10 via a p38 MAPK-dependent
mechanism(s).

Siglec-10 is Expressed on Lamina Propria CD103+
Dendritic Cells
If this novel C. jejuni-host interaction does indeed contribute to
immune outcome in humans, it was crucial to determine Siglec-
10 expression on in vitro-cultured DCs and ex vivo human
intestinal lamina propria (LP) DCs (Figure 7). In addition, ex-
pression of Siglec-G (murine homologue of Siglec-10) on
BMDCs was also sought. Siglec-G showed strong intracellular
staining on BMDCs (Supplementary Figure 1). In comparison,
Siglec-10 was expressed on the surface of hDCs from 4 donors

Figure 5. Siglec-10 receptor overexpression promotes IL-10 expression in response to Campylobacter jejuni flagella. A, Untransduced, GFP control, and
Siglec-10 transduced PMA-differentiated THP-1 cells were infected with 11168H WT and flaA isogenic mutant (MOI 100) or LPS (100 ng/mL) for 24 hours. B,
Untransduced, GFP control and Siglec-10 transduced RAW264.7 were infected with 11168H WT and Cj1316 isogenic mutant (MOI 100) or purified C. jejuni
11168H LOS (100 ng/mL) for 24 hours. IL-10, IL-12 and TNFα protein levels were assessed by ELISA. Bars depict data from 4 independent experi-
ments ± SEM. Friedman statistical analysis was performed on data sets. *P < .05; **P < .01; ***P < .001. Abbreviations: ELISA, enzyme-linked immunosor-
bent assay; IL, interleukin; MOI, multiplicity of infection; SEM, standard error of the mean; TNFα, tumor necrosis factor α; WT, wild-type.
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Figure 6. Campylobacter jejuni flagella alter BMDC IL-10 transcription in an NF-κB independent but MAPK-dependent manner. A, BMDCs were trans-
duced with an NF-κB luciferase reporter plasmid on day 4 of differentiation. On day 8 BMDCs were infected with 11168H WT or flaA mutant (MOI of 100)
for 6 hours and subsequent luciferase activity quantified. Bars depict values from 3 independent experiments performed in duplicate ± SEM. B, BMDCs were
infected with 11168H WT or flaA isogenic mutant (MOI 100) and time-dependent effects on MAPK activation (phosphorylated p38, ERK and JNK) was
followed by Western blotting; total ERK was used as a loading control. Representative blots from 3 independent experiments are shown. Densitometric
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(Figure 7A). Siglec-10 surface staining was performed on colon-
ic LP cells. CD11c+ cells were gated on to identify LP DCs. Cells
were further separated by CD103 to define negative and positive
populations for this molecule. Interestingly, the Siglec-10 stain-
ing was high in the CD11c+ CD103+ lamina propria DC popu-
lation (Figure 7B), indicating that this receptor may indeed
contribute to mucosal immunity to C. jejuni.

DISCUSSION

The IL-10 axis is pivotal in defining the outcome of intestinal
infection. The importance of this axis is demonstrated by the
finding that IL-10 knock-out but not wild-type mice present
with intestinal pathology in response to C. jejuni infection
[12, 28].

Herein, we assign a potential novel function to O-linked gly-
cosylated pseudaminic acid (Pse) structures on C. jejuni flagella
in modulating innate DC IL-10 production, which indicates
C. jejuni may have developed specific-mechanisms that pro-
mote anti-inflammatory immunity. The acute inflammation
seen in the majority of naive individuals infected with C. jejuni
suggests this anti-inflammatory mechanism may be more criti-
cal in asymptomatic infection that can occur after repeated ex-
posure to C. jejuni, as highlighted in developing countries and
long-term abattoir workers [5, 38–40].

Use of C. jejuni flagella glycosylation mutants implied that
the carbohydrate modifications of FlaA were involved in mod-
ulating DC IL-10 expression. In particular, the Pse5Ac7Am
moiety or further derivatives appeared to be critical. All C. jejuni
strains studied express either Pse with its derivatives (eg, strain
81-176) or both Pse and Leg (eg, strain 11168H) [38]. 3 of the 19
O-linked glycosylated residues in strain 81-176 are critical for
the assembly of functional flagella, 5 residues are important
for auto-agglutination, and 11 residues have no ascribed func-
tion [24].Their highly abundant nature on the flagellum surface
suggests that these modifications may interact with the host.
Mutation of the flagella Leg structures in strain 11168H decreas-
es the ability of C. jejuni to colonize the chicken gastrointestinal
(GI) tract confirming potential bacterial glycan-host crosstalk
[23].

Siglecs are generally immunomodulatory [15, 16]. Pathogens
can engage with host Siglecs promoting immune evasion,

including the induction of IL-10 [41]. We defined the ability
of both viable C. jejuni bacteria and purified flagella to bind
to the Siglec-10 via Pse5Ac7Am or further derivatives. Al-
though Sias are the best characterized ligands for Siglecs,
these receptors are also able to bind other ligands [42, 43]. 9-
carbon Pse shares many of the reported critical residues
required for direct binding with the Siglec Sia binding pocket
[37]. The carboxylate group, hydroxyl groups on the 4th and
8th carbon, and amide group on the 5th carbon are all con-
served between pseudaminic acid and N-acetyl neuraminic
acid (Sia). As yet, the structures of Siglec-G (murine homologue
of Siglec 10) and Siglec-10 are unknown; the potential binding
of Pse5Ac7Am to these receptors is therefore a matter for future
research.

Siglecs can modulate macrophage IL-10 production follow-
ing exposure to TLR ligands. Overexpression of Siglec-9 and Si-
glec-5 followed by TLR stimulation results in increased IL-10
[41]. Here, Siglec-10 was identified as the immunomodulatory
receptor involved in C. jejuni-TLR mediated IL-10 responses.
Utilizing chemical inhibitors and Siglec-10 overexpressing mu-
rine RAW264.7 cells we provide evidence that the bacterial Pse-
host Siglec-10 interaction targets the p38 MAPK pathway for
IL-10 modulation. Signalling events linking Siglec-10 engage-
ment and p38 activation are currently unknown. Siglec-10 in
addition to the intracellular immunoreceptor tyrosine-based in-
hibition motif (ITIM) domain also contains a putative growth
factor receptor binding protein-2 (Grb2) binding motif [44],
and interestingly Grb2-mediated signalling is known to alter
p38 signalling [45]. How C. jejuni-mediated Siglec-10 engage-
ment enhances p38 activity is currently under investigation.

Siglec-10-mediated IL-10 expression was dependent on Pse
residues on C. jejuni flagella. For C. jejuni the main evolutionary
driving forces may come from its interaction with the avian gut,
in which it is a commensal. It is interesting to speculate how the
abundant Sia and Sia-like C. jejuni surface structures may mod-
ulate avian immunity allowing commensalism to occur. The
presence of Siglec-10 on human GI mucosal CD11c+ CD103+

DCs suggests that Siglec-10 may play an immunomodulatory
role not only during C. jejuni infection but potentially also
under other conditions, as CD103+ DCs exert tolerogenic func-
tions [46, 47]. Interestingly, LP CD103+ DCs are known to in-
duce regulatory T-cell differentiation and activation [48]. It is

Figure 6 continued. analysis was performed on P-p38 and P-ERK blots using ImageJ software. C, WT, DKO, MyD88−/− and TRIF−/− BMDCs were infected
with C. jejuni 11168H WT (MOI 100). Time-dependent activation of MAPK pathways (p38, ERK, and JNK) was followed by Western blotting. The presence of
phosphorylated MAPKs was indicative of activation; total ERK served as a loading control. D, BMDCs were pre-treated with various MAPK inhibitors for 2
hours and subsequently infected with C. jejuni 11168H WT (MOI 100). 1 μM (black bars; 5 μM PD90859) and 10 μM (gray bars; 50 μM PD90859). IL-10 and
IL-12 protein levels were quantified 24 hours post-infection. E, Siglec-10 and GFP control transduced RAW264.7 cells were infected with 11168H WT C.
jejuni (MOI of 100) for 24 hours in the presence of the p38 inhibitor SB203580 or DMSO vehicle control. IL-10 levels were analysed by ELISA. Blots are
representative of 3 independent experiments. Friedman statistical analysis was performed on data sets. *P < .05; **P < .01; ***P < .001. Abbreviations:
BMDC, bone-marrow derived dendritic cells; DKO, double knockout; ELISA, enzyme-linked immunosorbent assay; ERK, extracellular signal-regulated kinase;
IL, interleukin; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MOI, multiplicity of infection; SEM, standard error of the mean; WT,
wild-type.
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tempting to speculate whether potential differences in these DC
and other lamina propria cell subsets may be one likely expla-
nation as to why humans and not mice present with acute

inflammation in response to C. jejuni infection, and whether re-
peated infection with C. jejuni in humans leads to changes in
mucosal cell populations that may lead to asymptomatic colo-
nisation. Future studies will determine if Siglec 10-driven IL-10
expression presents a novel therapeutic target for GI inflamma-
tory conditions.

S. Typhimurium flagella, a TLR5 agonist, promote inflamma-
tion by negative regulation of LPS-mediated IL-10 [48]. Our
findings highlight an opposing phenomenon whereby C. jejuni
flagella engage in a TLR-5 independent, Siglec-10 receptor de-
pendent manner leading to positive regulation of IL-10. Better
understanding of how mucosal pathogens manipulate host TLR
and glycan receptors to create a preferred niche for successful
colonisation and/or cause GI disease may aid in the design of
better future therapeutics.
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