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ABSTRAK 

 

 

 

Beberapa tahun kebelakangan ini, bunyi adalah salah satu faktor-faktor fizikal alam 

sekitar yang mempengaruhi kesihatan kita pada hari ini. Bunyi boleh memberi kesan 

serius kepada orang di lokasi yang sensitif bunyi dan mengganggu keupayaan mereka 

untuk berehat, tidur, atau berkomunikasi, dan menyebabkan tekanan dan masalah. 

Kajian ini membentangkan eksperimen dan analisis penyiasatan untuk menentukan sifat-

sifat penyerapan bunyi busa polimer poliuretana fleksibel tulen dan pendopan yang 

tinggi oleh titanium dioksida (TiO2) iaitu 20 %, 40 %, 60 %, 80 % dan 100 %. Kajian 

akustik sampel telah diukur dengan menggunakan ujian tiub impedans mengikut ASTM 

E-1050 untuk menentukan pekali penyerapan bunyi (α) dan bunyi pengurangan kaedah 

pekali (NRC). Busa polimer sebagai terkenal sebagai bahan akustik dijangka akan 

bertambah baik dengan penambahan pendopan tinggi TiO2. Titanium dioksida 

merupakan fotokatalis berkesan untuk air dan pembersihan udara dan permukaan 

pembersihan diri. Tambahan pula, ia boleh digunakan sebagai agen anti-bakteria kerana 

aktiviti pengoksidaan yang kuat dan superhidrofilik. Selain itu, kesan UV pada polimer 

digunakan untuk pengubahsuaian sifat-sifat (kekasaran, kehidrofobian) permukaan 

polimer. Pada akhir kajian ini, ia dijangka bahawa keputusan busa poliuretana fleksibel 

didopkan dengan peratusan yang tinggi TiO2 yang digunakan boleh digunakan untuk 

menyerap bunyi lebih baik daripada busa polimer tulen. Tertinggi pekali penyerapan 

bunyi adalah 0.999 diperhatikan dari busa polimer fleksibel didopkan dengan 60 % 

daripada TiO2 di tahap frekuensi tinggi 4000 Hz. Selepas penyinaran UV, frekuensi 

telah beralih kepada tahap frekuensi yang lebih tinggi busa polimer fleksibel didopkan 

dengan 60 % kepada 100 % daripada TiO2. 
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ABSTRACT 

 

 

 

In recent years, noise is one of the physical environmental factors affecting our health in 

today’s world. Noise can seriously affect people in noise sensitive locations and interfere 

with their ability to relax, sleep, or communicate, causing stress and annoyance. This 

study presents experimental and analytical of an investigation to determine sound 

absorption property of polymer foam of pure flexible polyurethane and high doping of 

titanium dioxide (TiO2) which are 20 %, 40 %, 60 %, 80 % and 100 %. The acoustic 

study of the samples was measured by using impedance tube test according to the 

ASTM E-1050 to determined sound absorption coefficient (α) and noise reduction 

coefficient method (NRC). Polymer foam as well-known as acoustical material expected 

to be improved by adding high doped of TiO2. Titanium dioxide represents an effective 

photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, 

it can be used as antibacterial agent because of strong oxidation activity and 

superhydrophilicity. Besides that, the impact of UV on polymers is used for 

modification of properties (roughness, hydrophobicity) of polymer surfaces. The highest 

sound absorption coefficient is 0.999 observed from the flexible polymer foam doped 

with 60 % of TiO2 at high frequency level of 4000 Hz. After UV irradiation, the 

maximum frequency level has been shifted to the higher position level based on flexible 

polymer foam doped with 60 % to 100 % of TiO2. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

Noise is defined as unwanted sounds that prevent or disturb people from doing their 

routines and also affect people’s health in negative ways. Efforts in reducing noise have 

become a major priority. There are a few ways that can be done in order to control noise. 

The focus is on two main ways to control noise. The first method is to control the 

sources of noise. This option is focused on the primary planning when developing a new 

facilities or products that will produce less or no noise at all. This method is effective, 

however, it is high cost or impossible to control all sources of noise with the current 

technologies that we have. The second option is to apply sound absorption and sound 

insulation materials, in order to diminish or eliminate the sound wave upon the way of 

transmission.  

Sound absorption is one of the major requirements in industries where the sound 

insulation that is developed should be efficient to reduce the noise and to produce sound 

absorbing materials which as cheap and user friendly. Ultraviolet radiation (UV) and 

titanium dioxide (TiO2) as the filler in appropriate concentration ratios of the polymer 

foam gives a reliable improvement in the mechanical and physic-chemical properties. 

Although the flexible polymer foam which has been used recently as a sound absorbing 

material, it is needs to be improved.  

 



 

1.2 Background of study 

 

Noise is one of the physical environmental factors affecting our health in today’s world. 

Noise is generally defined as the unpleasant sounds which disturb the human being 

physically and physiologically and cause environmental pollution by destroying 

environmental properties (Harris, 1979). Noise can seriously affect people in noise 

sensitive locations and interfere with their ability to relax, sleep, or communicate, 

causing stress and annoyance. The general effect of noise on the hearing of workers has 

been a topic of debate among scientists for a number of years (Jansen, 1992, Johnson, 

1991 & Alton, 1990).  

Hearing losses are the most common effects among the workers as well as blood 

pressure increases, heart beat accelerations, appearance of muscle reflexes, sleeping 

disorders, etc. Known that hearing loss is a permanent disability, therefore, the employer 

had to pay a higher amount of compensation to workers who suffered it from the effects 

of too high noise in workplace. Indeed, this situation caused in significant losses to both 

sides. To overcome this problem, noise issues can be avoided or minimized by applying 

sound absorbing material installed in certain places function as a sound absorber. Sound 

absorbing materials absorb most of the sound energy striking them and making them 

very useful for the control of noise. 

In order to boost and optimize the noise level provides a significant challenge to 

companies who supply materials into this market. Over the years, researchers have 

focused on improving the performance sound absorption material with the increase 

demand of quality in life. Sound absorption or insulation generally include the use of 

materials such as glass wool, foam, mineral fibers and other composites which has the 

ability to reduce or absorb sound. In the universe there enormous materials and all of 

those are useful for mankind by one way or another. Polyurethane (PU) foam are 

versatile engineering materials which find a wide range of applications because of their 

properties can be readily tailored by the type and composition of their component. The 

main market for PU foam is flexible and rigid (Verdejo, 2009). Flexible polymer foam 

recently has been researched extensively as a sound absorbing material and sound 



 

insulation. And it is also a major synthetic material applied for engineering practice to 

facilitate human need. 

Acoustic material testing is the process by which acoustic characteristics of 

materials are determined in terms of absorption, reflection, impedance, admittance, and 

transmission loss. Many different methods can be used to determine the acoustic 

properties of materials. These methods mainly involve exposure to know sound fields 

and measuring the effect of the materials presence on the sound field, and in order to 

ensure accuracy and repeatability. There is a range of standards covering material testing 

that prescribed well-defined acoustical conditions and special instrument. 

Other than that, many studies have reported that incorporated fillers to flexible 

polymer foam can improve its acoustic properties and thus reduce noise when it is 

applied in applications (Zaimy et. al., 2013). Many researchers found various kinds of 

fillers to improve the acoustic performance of polyurethane foams. Titanium dioxide 

(TiO2) represents an effective photocatalyst for water and air purification and for self-

cleaning surfaces (Anika, Nurulsaidatulsyida & Siti Rahmah, 2013). Additionally, it can 

be used as antibacterial agent because of strong oxidation activity and 

superhydrophilicity (Anika et al., 2013). Researcher also stated titanium dioxide also has 

good ultraviolet (UV)-blocking power and is very attractive in practical applications 

because such advantages as nontoxicity, chemical stability at high temperature, and 

permanent stability under UV exposure, for example (Yang et. al., 2004). While the UV 

rays on polymer foam are researched to improve the acoustic properties. 

 

1.3 Problem statement 

 

In recent decade, a great majority of people working in industry are exposed to noise 

pollution. Noise-control issues and the emergence of sound quality is becoming very 

important and are increasingly relevant to engineers, designers, manufacture to develop 

a healthier environment. Due to hearing problems and a variety of other problems 

among workers that hit the industrial sector, researchers have focused on minimized the 

sound level heard by employees by improving the performance of sound absorption 



 

material. Absorptive materials placed above the headliner, behind the door panel and 

pillar trim, and under the carpet have proven to be effective in industrial sectors. 

In this current research, the aim is to study the effect of high doping of TiO2 on 

flexible polymer foam microstructure to find a relation between corresponding 

parameters such as cell size and foam apparent density. Titanium dioxide represents an 

effective photocatalyst for water and air purification and for self-cleaning surfaces 

(Anika et al., 2013). Additionally, it can be used as antibacterial agent because of strong 

oxidation activity and superhydrophilicity (Anika et al., 2013). Furthermore, this project 

is also to modify the flexible polymer foam using filler for variety of reasons such as 

improved processing and mechanical properties such as hardness, tensile, tear resistance 

and many more reasons. This study also deals with the ultraviolet irradiation for the 

improvement of sound absorption of the flexible polymer foam with various exposure 

times. The research conducted to determine the foam’s mechanical properties (sound 

absorption properties, α) and physical properties (porosity and density) of high doping 

filler of flexible polymer foam. 

 

1.4 Objective 

 

1. To fabricate high doping of filler with flexible synthetic foam for acoustic study  

2. To study the characterization of high filler loading based on absorption coefficient 

and level of frequency, Hz 

3. To study the characterization of UV irradiation exposure based on sound absorption 

coefficient 

 

1.5 Scope of study 

 

In this research, flexible polymer foam and incorporating with high doping fillers (20%, 

40%, 60%, 80% and 100%) will be produced. The quality of these physical and 

mechanical properties of these high doping of flexible polymer foam will be analyze 

based on the acoustic property of the sound absorption coefficient (α) and the level of 

frequency by using impedance tube test. From that data obtained, noise reduction 



 

coefficient (NRC) could be examined. Scanning electron microscope (SEM) will be 

used to obtain a clear microscopic structure of the sample, as well as, Mettler Toledo 

X64 to perform the porosity and density test. Other than that, the samples were exposed 

to the UV irradiation in QUV Accelerated Weathering Tester HD-703 (Haida 

International Equipment Co., LTD) at different exposure time at 50°C to study the 

acoustic property. The UV exposure of the samples was carried out using an array of UV 

fluorescent emitting light in the region from 280 to 320 nm with a tail extending to 400 

nm. The samples were exposed in different UV exposure times (250, 500, 750 and 1000 

hours). 

 

1.6 Expected results 

 

At the end of this research, we will examine the performance of flexible polymeric foam 

doped with high percentage of TiO2 as a sound absorbing material. Other than that, it 

can also be clarified on the characteristics of high loading filler of flexible polymer foam 

based on absorption coefficient and level of frequency. The result from the test will be 

compared with the pure flexible polymer foam. From the analysis of the result, we will 

know either high doping of TiO2 of synthetic polymer foam is better than pure synthetic 

foam. Other than that, the performance of flexible polymeric foam doped with high 

percentage of TiO2 as a sound absorbing material could as be tested with different UV 

irradiation times. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

This chapter comprises of the academic literatures and studies which have direct bearing 

include to the related theoretical practices and explanations relevant to this study being 

proposed including acoustic study, materials selection and characteristics, methods, 

equipment, etc. Reviews, analyzes and explanations of research’s information from 

previous study of the subject of study will be used as a guideline to accomplish this 

project. 

 

2.2 Sound absorption 

 

Sound can comprise harmonious tones, music, bangs, noise, crackling, but also spoken 

words. Unwanted sound events can be named as noise. The general effect of noise on the 

hearing of workers has been a topic of debate among scientists for a number of years. 

Thus, the development of sound absorption system is very important to be researched. 

This definition shows that the perception of sounds has strong subjective aspects. Sound 

absorption is defined as the incident sound that strikes a material that is not reflected 

back. In other word, it is a process in which sound energy is reduced when sound waves 

pass through a medium strike a surface. 
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According to Warnock (1980), sound is the organized superposition of particle 

motion on the random thermal motion of the molecules. The speed of the organized 

particle motion in the air is typically smaller than the thermal motion. A sound absorber 

can absorb only part of the incident sound energy which is not reflected in its surface. 

However, sound absorption measurements of highly absorptive materials often yield 

sound absorption coefficients greater than 1.00 due to diffraction effects. These values 

are reported as required by the test standard. When using sound absorption coefficients 

in calculations, values above 1.00 should be reduced to values less than 1.00. 

 

 

Figure 2.1: Sound absorption mechanism. 

 

When sound waves travel through air and encounter another medium, the wall of 

a room, for instance, a portion of the sound will be absorbed by the wall while the 

remainder will reflect from the wall surface as shown in Figure 2.1. Add to the mix the 

other surfaces reflecting sound waves in various directions within the room, and the 

result is a jumble of sound reflections which interfere with the clarity of the original, 
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intended sound. The presence of numerous hard, untreated surfaces is often to blame for 

the heightened noise in busy restaurants as the voices of multiple patrons reflect and 

produce background noise. Acoustical improvement and sound reduction projects often 

involve the implementation of treatments designed to absorb sound wave reflections as a 

part of a comprehensive sound control plan. 

 

2.2.1 Sound absorption coefficient (α) 

 

The sound absorption coefficient for a material is the fraction or percentage an incident 

sound energy that is absorbed by the material. Sound absorption coefficient is defined as 

the ratio of the sound energy absorbed to the incident upon a surface. It is a measure of 

the sound absorptive property of the material. The sound absorption coefficient of every 

material varies with frequency. It is common practice to list the coefficient of a material 

at frequencies of 125 Hz, 250 Hz, 1000 Hz, 2000 Hz and 4000 Hz. 

Generally, the higher coefficient number has better absorption. Sound absorption 

coefficient is usually expressed as a decimal varying between 0 and 1 with no unit. If 65 

percent of the incident sound energy is absorbed, the absorption coefficient of the 

material is said to be 0.65. A material that absorbed all incident sound energy will have 

absorption coefficient of 1. There are two standardized method that is used to determine 

sound absorption coefficient, which are the Reverberation Room Method according to 

ASTM C423 and the Impedance Tube Method as refer to ASTM E 1050. 

For automotive industries, sound absorption is the important issue where sound 

insulation developed should be efficient and effective by means of getting the sound 

reduced and in economically ways of producing sound absorbing material which is 

cheap, user friendly and moderate sound absorbent coefficient (Nik Normunira and 

Anika Zafiah, 2013). According to Jiejun, Chenggong, Dianbin and Manchang (2003) 

the sound absorption properties of materials have been expressed by sound absorption 

factor. Sound absorption coefficient is defined by equation 2.1. 

 

                                           (2.1) 
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Where, 

E0 is the whole energy of incident sound, and 

E1 is the energy of the reflective sound. 

 

Sound absorption coefficient was measured by the standing wave method. Since 

the sound absorption is measured according to ASTM C384-98, the normal incidence of 

the sound absorption coefficient measured in an impedance tube will never exceed unity. 

According to the American Society for Testing and Materials, the ASTM C384-98 can 

be regarded as in equation 2.2. 

 

   
  

      
        (2.2) 

 

Where, 

ζ = Pmax/Pmin is the ratio of the maximum and minimum standing wave sound pressure in 

the tube upstream of the sample. 

 

Absorbing materials play an important role in architectural acoustics, the design 

of recording studios and listening rooms, and automobile interiors (seat material is 

responsible for almost 50% of sound absorption inside an automobile). 

 

2.2.2 Noise reduction coefficient (NRC) 

 

The noise reduction coefficient (NRC) is defined as a scale representation of the amount 

of energy absorbed upon striking the particular surface where the indication of zero from 

NRC shows that there is a perfect reflection upon the incidence and NRC of one shows 

there is a perfect absorption. NRC is an arithmetic value average of sound absorption 

coefficient at frequencies of 250, 500, 1000 and 2000 Hz indicating a material’s ability 

to absorb sound. 

 

    
                     

 
     (2.3) 
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The average values of four sound absorption coefficients of the particular surface 

at the frequencies of 250 Hz, 500 Hz, 1000 Hz and 2000 Hz to calculate noise reduction 

coefficient can be referred in equation 2.3. These frequencies are the fundamental 

frequencies and first few overtones of typical human speech. Therefore, the NRC 

provides a decent and simple quantification of how well the particular surface will 

absorb the human voice (Harris, 1979). 

 

2.3 Sound absorption material 

 

Sound insulation materials change the path of sound propagation, and the sound 

absorption materials can reduce the energy of sound waves, thus, it is very important to 

search for sound absorption materials for noise controlling. In other words, materials 

that reduce the acoustic energy of a sound wave as the wave passes through by the 

phenomenon are called the sound absorptive materials. Sound absorbing materials are 

used to reduce reflections from surfaces and to decrease reverberation within spaces. 

Sound absorbing materials absorb most of the sound energy striking them and making 

them very useful for the control of noise. 

Sound absorptive materials are generally used to counteract the undesirable 

effects of sound reflection by hard, rigid and interior surfaces and thus help to reduce the 

reverberant noise levels (Seddeq, 2009). In other word, sound absorptive materials are 

commonly used to soften the acoustic environment of a closed volume by reducing the 

amplitude of the reflected waves either in the wall. It is usually fibrous, lightweight and 

porous. The most common types of absorbing materials are rock wool, fiberglass, 

polyurethane and cellulose fibers. The more fibrous a material is the better the 

absorption; conversely denser materials are less absorptive. The function of absorption 

materials is to transform the impinging sound energy into heat. In practice, they are used 

on ceilings, walls, and floors of rooms on panel surroundings noisy equipment within the 

cavities between walls or partition surfaces. 

Every material that exists nowadays can absorb some acoustical energy. When a 

sound wave strikes an acoustical material, the sound wave causes the fibers or particle 
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makeup of the absorbing material to vibrate. This vibration causes tiny amounts of heat 

due to the friction and thus sound absorption is accomplished by way of energy to heat 

conversion. The sound absorbing characteristics of acoustical materials very 

significantly with the frequencies where in general low frequency sounds are very 

difficult to absorb because of their long wavelength. The absorption is desired at lower 

frequencies, thickness and weight. However, we are less susceptible to low frequency 

sounds, which can be to our benefit in many cases. 

Absorptive materials are generally resistive in nature, either fibrous, porous or in 

rather special cases reactive resonators. According to the research done by Lewis and 

Bell (1994), the classic examples of resistive material are nonwovens, fibrous glass, 

mineral wools, felt and foams. Porous materials are used for noise control are generally 

categorized as fibrous medium or porous foam. Fibrous media usually consists of glass, 

rock wool or polyester fibers and have high acoustic absorption. Sometimes, fire 

resistant fibers are also used in making acoustical products according to Braccesi and 

Bracciali (1998). An absorber, when backed by a barrier, reduces the energy in a sound 

wave by converting the mechanical motion of the air particles into low heat. This action 

prevents a buildup of sound in enclosed spaces and reduces the strength of reflected 

noise (Lewis et al., 1994). 

Besides that, the acoustical material plays a number of roles which is important 

in acoustic engineering such as the control of room acoustics, industrial noise control, 

studio acoustics and automotive acoustics. Sound absorptive materials are generally used 

to counteract the undesirable effects of sound reflection by hand, rigid and interior 

surfaces and thus help to reduce the reverberant noise levels as stated by Beranek (1960) 

and Bruce (1981). These materials are used as interior lining for apartments, automotive, 

aircrafts, ducts, enclosures for noise equipment and insulations for appliances stated by 

Knapen, Lanoye, Vermeir and Van Gemert (2003) and Youn and Chang (2004). 

Sound absorptive materials may also be used to control the response of artistic 

performance spaces to steady and transient sound sources, thereby affecting the 

character of the aural environment, the intelligibility of unreinforced musical sound 

Frank (2001). Combining absorptive materials with barriers produces composite 

products that can be used to lag pipe or provide absorptive curtain assemblies. All noise 
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control problem starts with the spectra of the emitting source. Therefore Francisco and 

Jaime (2004) tell that sound absorbing materials are chosen in terms of material types 

and dimension, and also based on the frequency of sound to be controlled. 

 

2.3.1 Sound absorption performance in porous material 

 

 

Figure 2.2: Schematic cross-section of a porous solid material. (Rouquerol, 1994) 

 

According to Crocker and Arenas (2007), a porous absorbing material is a solid that 

contains cavities, channels or interstices so that sound waves are able to enter through 

them. The porous material mainly being used to investigate the sound absorption 

behavior based on energy dissipation behavior of sound waves while it’s travelling 

through the media (Nik Normunira and Anika Zafiah, 2013). Sound absorption of 

porous materials along the propagation of the sound wave should be maximum value in 

the middle of the material (Kucukali et. el., 2010). A porous sound absorbing material is 

a solid which has a hall and channel or a small gap by which a sound can enter into the 

material (Jung et. al., 2013). A sound wave subjects air elements vibration force. These 

air elements hit the surface and cell of a porous sound absorbing material, increasing the 
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temperature and viscosity of the material’s channel wall. As the result, original energy 

decreases. Therefore, the sound absorbing characteristic of a porous material can be 

evaluated according to the cell structure and channel of the material. 

It is possible to classify porous materials according to their availability to an 

external fluid such as air. Figure 2.2 shows a schematic cross-section of a porous solid 

material. Sound absorption in porous materials absorbs most of the sound energy 

striking them and reflects very little. They are used in a variety of locations close to 

sources of noise, in various paths, and sometimes close to receivers. Porous absorbing 

materials can be classified as cellular, fibrous, or granular; this is based on their 

microscopic configurations. 

 

 

Figure 2.3: Three main types of porous absorbing materials: cellular, fibrous, granular 

(Jorge and Malcolm, 2010). 
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Figure 2.3 shows the three main types of porous sound absorbing material, their 

typical microscopic arrangements and some of the physical models used to describe their 

absorbing mechanisms. Porous materials are characterized by the fact that their surfaces 

allow sound waves to enter the materials through a multitude of small holes or openings. 

Although all materials absorb some incident sound, the term “acoustical material” has 

been primarily applied to those materials that have been produced for the specific 

purpose of providing high values of absorption. The major uses of absorbing materials 

are almost invariably found to include the reduction of reverberant sound pressure levels 

and, consequently, the reduction of the reverberation time in enclosures, or rooms. 

A porous material with a non-porous barrier bonded to the face of the material 

carries the sound energy in the form of the structure-borne wave. The factors that have a 

strong influence on the structure-borne wave are the bulk stiffness and the structural loss 

factor. Besides that, the effectiveness of the sound absorption is directly related to the 

thickness of the material absorbers are most effective when their thickness is between 

one-fourth and one-half the wavelength of the sound, with the maximum performance 

where the thickness is one-fourth the wavelength. This means that sound absorbers does 

a very good job at high frequencies, which have short wavelengths. However, at low 

frequencies, very thick materials would be required to yield high sound absorption, 

which would be impractical on the interior of a car. 

On the other hand, a porous material with an open face or with a porous scrim 

carries most of the sound energy in the form of the airborne wave. The exception is a 

porous material that has a structural stiffness less than that of air. In this case, the 

material behaves as a fluid. In either case, the sound energy can be thought of as being 

carried by the airborne wave. There are several factors that have a strong influence on 

the airborne wave, but usually the most important influence is due to the flow resistivity 

of the material. Most of the materials tested in this study were porous materials with an 

open or scrim covered face, so the airborne wave is dominant. A porous material with a 

non-porous barrier bonded to the face of the material carries the sound energy in the 

form of the structure borne wave. The factors that have a strong influence on the 

structure borne wave are the bulk stiffness and the structural loss factor. 
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Most of the porous sound absorbing materials commercially available are 

fibrous. Fibrous materials are composed of a set of continuous filaments that trap air 

between them. They are produced in rolls or in slabs with different thermal, acoustical, 

and mechanical properties. Fibers can be classified as natural or synthetic (artificial). 

Natural fibers can be vegetable (cotton, kenaf, hemp, flax, wood, etc.), animal (wool, 

fur, felt) or mineral (asbestos). Synthetic fibers can be cellulose (bamboo fibre), mineral 

(fiberglass, mineral wool, glass wool, graphite, ceramic, etc.), or polymer (polyester, 

polypropylene, Kevlar, etc.). According to Rouquerol (1994) a practical convention is 

used to make a distinction between porosity and roughness, which assumes that a rough 

surface is not porous unless it has irregularities that are deeper than they are wide. 

Porous materials are characterized by the fact that their surfaces allow sound waves to 

enter the materials through a multitude of small holes or openings. Materials made from 

open celled polyurethane and foams are examples of cellular materials. 

When a porous material is exposed to incident sound waves, the air molecules at 

the surface of the material and within the pores of the material are forced to vibrate and, 

in doing so, lose some of their energy. This is because part of the energy of the air 

molecules is converted into heat due to thermal and viscous losses at the walls of the 

interior pores and tunnels within the material. From the studies of Zwikker and Kosten 

(1949) at low frequencies, these changes are isothermal, while at high frequencies, they 

are adiabatic. 

In fibrous materials, much of the energy can also be absorbed by scattering from 

the fibers and by the vibration caused in the individual fibers. The fibers of the material 

rub together under the influence of the sound waves (Crocker and Arenas, 2007). The 

sound absorption mechanism in bulk granular materials is quite similar to that in rigid 

porous materials where the solid structure can be regarded as ideally rigid and 

stationary. Then the sound absorption is produced by the viscosity of the air contained 

inside the interconnecting voids that separate the granules. At low and mid frequencies, 

the solid structure interacts with the bulk of the gas through an isothermal heat transfer 

process. In addition, scattering from the granules also influences the absorption of sound 

energy inside the material. 
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The cell structure of a porous absorbing material can be classified as a close cell 

or open cell foam. Close cell foam affects the macroscopic property of the material, such 

as volume density, physical stiffness and thermal conductivity. But this form provides 

less effective sound absorption performance than the open cell form. On the other hand, 

the open cell form provides excellent sound absorption performance because of the 

channels that connect sequentially with the exterior surface of material; these channels 

help to dissipate sound wave energy. 

 

2.3.2 Factors influencing sound absorption 

 

The effectiveness of the sound absorption is resulting by several factors that are fiber 

size, airflow resistance, porosity, tortuosity, thickness, density, compression, surface 

impedance and so on. These factors need to be considered while its production to 

produce an optimum sound absorbing material. 

 

2.3.2.1 Fiber size 

 

In a study made by Koizumi (2002) reported that an increase in sound absorption 

coefficient with a decrease in fiber diameter helps in sound absorption. This is because, 

thin fibers can move more easily than thick fibers on sound waves. Moreover, with fine 

denier fibers are required to reach equal more fibers for same volume density which 

results in a more tortuous path and higher airflow resistance according to Banks-Lee, 

Sun and Peng (1993). A study by Youn and Chang (2003) concluded that the fine fiber 

content increases sound absorption coefficient values due to an increase in airflow 

resistance by means of the friction of viscosity through the vibration of the air. A study 

by Koizumi (2002) also showed that fine denier fibers ranging from 1.5 and 6 denier per 

filament (dpf) perform better acoustically than course denier fibers. Moreover, it has 

been reported by Koizumi (2002) that, micro denier fibers (less than 1 dpf) provide 1 

dramatic increase in acoustical performance. 
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2.3.2.2 Airflow resistance 

 

One of the most important qualities that influence the sound absorbing characteristics of 

fibrous material is the specific flow resistance per unit thickness of the material. The 

characteristic impedance and propagation constant, which describes the acoustical 

properties of porous materials, are governed to a great extent by flow resistance of the 

material (Mingzhang and Finn, 1993). Fibers interlocking in nonwovens are the 

frictional elements that provide resistance to acoustic wave motion. In general, when 

sound enters these materials, its amplitude is decreased by friction as the waves try to 

move through the tortuous passages. Thus, the acoustic energy is converted into heat 

(Conrad, 1983). This friction quantity which can be expressed by resistance of the 

material to airflow is called airflow resistance and is defined in equation 2.4. 

 

                      
  

   
              (2.4) 

 

Where, 

R1  = Specific flow resistance, mks Rayls/m 

u   = Particle velocity through sample, m/sec 

∆p = Sound pressure differential across the thickness of the sample measured in 

direction of particle velocity, newton/m
2
 and 

∆T = Incremental thickness, m (Beranek, 1960) 

 

Based upon the airflow test, ASTM D-1564-1971, flow resistance R of the 

samples obtained from the following equation 2.5. 

 

                  
 

  
      (2.5) 

 

Where, 

P = Static pressure differential between both faces of the sample, dyn/cm
2
 (10-1 Pa) 

v = Air velocity, cm/s and 

l = Thickness of sample, cm 
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The airflow resistance per unit thickness of a porous material is proportional to 

the coefficient of shear viscosity of the fluid (air) involved and inversely proportional to 

the square of the characteristic pore size of the material. From the study in Uno (1994), a 

fibrous material with a given porosity, this means that the flow resistance per unit 

thickness is inversely proportional to the square of the fiber diameter. 

 

2.3.2.3 Porosity 

 

There is a decrease in the transmission loss at higher porosities since the damping effect 

of the pores reduces allowing more sound to pass through. From the academic and 

acoustic stand point, for the right porosity levels, an improvement in transmission loss is 

observed (Koizumi, 2002). 

Number, size and type of pores are the important factors that one should consider 

while studying sound absorption mechanism in porous materials. In order to allow sound 

dissipation by friction, the sound wave has to enter the porous material. This means, 

there should be enough pores on the surface of the material for the sound to pass through 

and get dampened. The porosity of a porous material is defined as the ratio of the 

volume of the voids in the material to its total volume (Allard, 1993). Equation below 

gives the definition for porosity (H). 

 

            
  

  
       (2.6) 

 

Where, 

Va = Volume of the air in the voids 

Vm = Total volume of the sample of the acoustical material being tested 

 

Shoshani and Yakubov (2003) stated that, in designing a nonwoven web to have 

a high sound absorption coefficient, porosity should increase along the propagation of 

the sound wave. 
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2.3.2.4 Tortuosity 

 

Tortuosity is a parameter which is related to the fluid that fills the porous material (air), 

and indicates the complexity of apertures in the poro-elastic material. To be specific, it is 

determined in the ratio between the average length of the apertures in the poro-elastic 

material and the thickness of the material. As the inner structure becomes more complex 

and the tortuosity becomes higher, the same effect to the thicker material will be 

expected. 

Tortuosity is dependent upon angles between pores in an object and macroscopic 

direction of sound propagation through the object and is sometime referred to as 

structural foam factor. Besides that, Wassilieff (1996) describes tortuosity as a measure 

of how far the pores deviate from the normal, or meander about the material. In addition 

(Horoshenkov and Swift, 2001) stated that, tortuosity mainly affects the location of the 

quarter wavelength peaks, whereas porosity and flow resistively affect the height and 

width of the peaks. It has also been said by the value of tortuosity determines the high 

frequency behavior of sound absorbing porous materials. According to Knapen (2003), 

tortuosity describes the influence of the internal structure of a material on its acoustical 

properties. Horoshenkov et al., (2001) stated that, tortuosity mainly affects the location 

of the quarter-wavelength peaks, whereas porosity and flow resistively affect the height 

and width of the peaks. It has also been said by the value of tortuosity determines the 

high frequency behavior of sound absorbing porous materials (Alireza and Raverty, 

2007). 

 

2.3.2.5 Thickness 

 

Numerous studies that dealt with sound absorption in porous materials have concluded 

that low frequency sound absorption has direct relationship with thickness. The rule of 

thumb rule that has been followed is the effective sound absorption of a porous absorber 

is achieved when the material thickness is about one tenth of the wavelength of the 

incident sound (Michael and Kierzkowski, 2002). Peak absorption occurs at a resonant 

frequency of one-quarter wavelength of the incident sound (Timothy, David, Robert, 
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Phillip and Pranab, 1999). A study in Ibrahim and Melik (1978) showed the increase of 

sound absorption only at low frequencies, as the material gets thicker. However, at 

higher frequencies thickness has insignificant effect on sound absorption. 

In order to achieve one-quarter wavelength absorber effect, the longer the holes, 

the better the low frequency sound absorption due to the resonance in the holes. Thus the 

thickness of the headliner is a dominant parameter too in this sense. So we can conclude 

that the higher thickness, the better of the low level frequency performance (Shuo and 

Roland, 2003). 

For instance, high frequencies (above 500 Hz) are easier to handle with 30–50 

mm stone wool thicknesses as shown in Figure 2.4. More challenging are the sounds in 

frequencies below 500 Hz. It is indeed needed a thicker stone wool slabs to create better 

sound absorption. Material thickness can also be compensated for with air space behind 

an acoustic ceiling or wall panel to improve low frequency performance. 

 

 

Figure 2.4: Influence of thickness in sound absorption coefficient. 
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2.3.2.6 Density 

 

One of the important factors that influence the sound absorption behavior of a material is 

density. Density of a material is often considered to be the important factor that governs 

the sound absorption behavior of the material. At the same time, cost of an acoustical 

material is directly related to its density. A study by Koizumi et al. (2002) showed the 

increase of sound absorption value in the middle and higher frequency as the density of 

the sample increased. The number of fibers increases per unit area when the apparent 

density is large. Energy loss increases as the surface friction increases, thus the sound 

absorption coefficient increases. According to He, Liu, Chen and Fang (2012), with air 

friction inside cells and viscous friction between adjacent polymer chains, materials with 

high cell density are good sound absorption materials because they can increase the 

friction and decrease the sound energy by dissipating it as heat energy. 

 

2.3.2.7 Surface impedance 

 

The higher the acoustic resistively of a material, the higher is its dissipation, for a given 

layer of thickness. At the same time the surface impedance of the layer also increases 

with resistively, resulting in a greater amount of reflections on the surface layer, giving a 

lower absorptive capability. Moreover the whole process is frequency dependent, so that 

for lower frequency bands the necessary layer thickness increases as resistively 

decreases (Francisco and Jaime, 2004). 

 

2.4 Polymer foam 

 

Polymer foams are made up of a solid and gas phase mixed together to form a foam. 

This generally happens by combining the two phases too fast for the system to respond 

in a smooth structure. The resulting foam has a polymer matrix with either air bubbles or 

air tunnels incorporated in it, which is known as either closed-cell or open-cell structure. 

Closed-cell foams are generally more rigid, while open-cell foams are usually flexible. 

Polymer foams can be divided into either thermoplastics or thermosets, which are further 
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divided into rigid or flexible foams. The thermoplastics can usually be broken down and 

recycled, while thermosets are harder to recycle because they are usually heavily cross-

linked. The reason polymer foams are so widely used is that they have a lot of 

advantageous properties. The density is low, and so the weight reduction compared to 

other options is significant. Some polymer foams have very low heat transfer, making 

them optimal insulators. Many are flexible and soft, meaning they provide more comfort 

when used for furniture and bedding. Polymer foams can be categorized in two types 

which are polyurethane and biodegradable foams. 

 

2.4.1 Polyurethane (PU) 

 

Polyurethane foam are versatile engineering materials which find a wide range of 

applications because of their properties can be readily tailored by the type and 

composition of their component. Polyurethanes are any type of polymer containing a 

urethane linkage. The urethane linkage is -NH-CO-O-. The way to form polyurethanes is 

done by reacting isocyanates with compounds that have active hydrogen, such as diols, 

that contain hydroxyl-groups, in the presence of a catalyst. Since there are many 

compounds containing active hydrogens and many different diisocyanates, the number 

of polyurethanes that can be synthesized is also large. The specific properties of the 

polyurethane can be tailored to a specific need by combining the appropriate 

compounds. Polyurethane foam is most versatile polymeric and lightweight material 

used in applications such as insulation material, cushioning, and automotive part and 

energy absorption materials. Polyurethanes can exist as both rigid and flexible foams, 

and as a coating or adhesive material. According to Verdejo et al., (2009), the main 

market for polyurethane foam is flexible and rigid. 

Since polyurethanes come in so many forms and can have a wide variety of 

properties, it is also used in many different applications. Rigid polyurethanes are used as 

insulation and flotation, while flexible ones are used for cushioning and packaging. 

Flexible and rigid polyurethane foams are two predominant application forms of 

polyurethane with coatings, sealants, elastomers, and adhesives being other common 

forms of applications. Polyurethane foam can be produced with open-cell structure to be 
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more flexible or a close cell structure to be a more rigid (Hatchett, 2005). The 

characteristic of polyurethane foam is one of major production from urethane material. 

Since polymer foams are used widely all over the globe the technology to 

produce foams is continuously being improved. Polymer foams have great thermal 

insulation properties and can also be tuned to have different mechanical strength and 

moisture absorption. From a study by Broos, Sonney, Thanh and Casati (2000), it is 

shows that polyurethane has been used as an automotive part is order to ensure the 

passenger compartment comfort. He proved that, polyurethane could reduce the sound 

absorption efficiently. 

 

2.4.2 Fabrication of polymer foam 

 

In producing and fabricating a good specimen for sound absorption, there is a need to 

consider the properties of each material chosen, thus the effects on sound absorption is 

keen to absorb most of the sound rather than to reflect the sound. There are some 

materials required to produce sound absorption foam, polyurethane, such as flexible 

isocyanate, polyol and titanium dioxide (TiO2). The characteristic of polyurethane foam 

can be changes via adjusting the chemical composition of the raw materials, in particular 

polyol and isocyanate in which the polyurethane properties mainly depends on the types 

of polyol such as functionality and hydroxyl value (Lim, 2008). 

The forming process of polyurethane foam consist three basic stages such as 

bubble initiation, bubble growth and cell opening (Klempner and Sendijarevic, 2004). 

The bubble initiation was initially introduced by physically bending air into the mixture. 

The bubble growth occurs when the gas diffused and expands the gas phase due to 

increasing the forming temperature. The gas may originate from sources such as a gas 

involved by water reaction, blowing agents, carbon dioxide and surfactant. The heat 

generated during the reactions due to exothermic process play an important role in 

expansion to form a cellular structure. The bubble continued to growth, it will begin the 

cell opening to produce polyurethane foam. 
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2.4.2.1 Flexible isocyanate 

 

Isocyanate is the raw materials from which all polyurethane products are made. 

Isocyanate is the functional group of elements –N=C=O (1 nitrogen, 1 carbon, 1 

oxygen). They react with compounds containing alcohol groups to produce polyurethane 

polymers. An isocyanate is an organic group, which when reacted with other chemical 

compounds, varies in toxicity and properties much like other organic groups like 

ketones, ethers, alcohol, etc. Modern moisture-cure urethane coatings are produced by 

the reaction of diisocyanate monomers such as HDI, IPDI, MDI and TDI with other 

larger molecules called polyols to produce polymeric isocyanate. Urethane foams were 

introduced to the public as an industrial insulation. The most-used isocyanates are TDI 

and MDI. TDI is used mainly to make soft, flexible foams, for padding or insulation. 

MDI is used mainly to make hard, rigid foams for insulation in buildings, vehicles, 

refrigeration equipment, and industrial equipment. 

The repeating urethane linkage, an isocyanate group reacts with the hydroxyl 

groups of polyols. Urea linkage and carbon dioxide is produce as a byproduct when 

isocyanate reacts with water. Carbon dioxide is used as a blowing agent in order to 

produce polyurethane foams (Oertel, 1993). When polyols with three or more hydroxyl 

groups are reacted with a polyol, the resulting polymer is crosslinked. The stiffness of 

the polymer depends on the amount of crosslink. Different from the linear polymers, 

crosslinked polymers will not flow when heated. All structural adhesives are crosslinked 

because this eliminates creep (deformation under constant load). 

The isocyanate must be added and mixed just before the coating operation. This 

is because, the crosslinking reaction starts at room temperature. In addition, the 

isocyanate is a highly unsaturated and extremely reactive group, containing two 

cumulative double bonds. It can react with both electron donor and electron acceptor 

functional groups. The most important groups that react with isocyanate are amino, 

hydroxyl and carboxyl groups. 

In this study, flexible isocyanate has been applied to mix with the other raw 

materials to produce high doping of polyurethane. Maskiminate 8002, or Modified 

Polymeric-MDI, is a mixture of polyol-modified diphenylmethane diisocyanate and 
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