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Abstract-Voltage collapse is still the biggest threat to the 
transmission system. There are many approaches that have 
been explored to predict the point of voltage collapse. 
However, it is still lacking of information that related to 
current system state. With the advancement of Phasor 
Measurement Units (PMUs) technology, it provides an 
alternate pathway to improve the existing power system state 
estimation. Hence, it was of interest to develop better 
methods that could give a preliminary warning before the 
voltage collapse. This paper concerns for the development of 
real-time system monitoring methods to give a timely 
warning in the power system. The algorithm to predict the 
points of collapse is based on the assumption that voltage 
instability is closely related to the maximum load ability of a 
transmission network. Therefore, the Thevenin impedance is 
equalled to the apparent load impedance at  the points of 
collapse. Numerous methods such as Discrete Kalman Filter 
(Dm), Extended Kalman Filter (EKF) and Unscented 
Kalman Filter (UKF) are being implemented into the real- 
time voltage instability predictor to track the Thevenin 
parameters. The test results are tested on Malaysia's power 
system 132 kV - 2-bus and 10-bus systems. The results are 
compared based on the early-warning index of voltage 
collapse. The results of DKF method are set as the reference 
for comparison purpose between EKF method and UKF 
method. The test results shown that EKF method provided 
better results by decreasing of 0.1169 p.u. for 2-bus system 
and 0.0338 p.u. for 10-bus system. In the meanwhile, UKF 
method provided increasing values of 0.4262 p.u. for 2-bus 
system and 0.1522 p.u. for 10-bus system. The overall 
purpose of this research is to develop methods that in 
provide early warning for an emerging stability problem. In 
order to achieving the research's objectives, derivation of the 
index for early warning of the point of collapse is completed. 
The performance of each method used throughout this 
research is based on the analyzed results for the points of 
voltage collapse. 

Index Terms-Kalman Filter, Point of Collapse, Real 
Time System Monitoring, Thevenin Parameters 

I. INTRODUCTION 

With the growing of demand in power system, voltage 
instability problem has become a challenge to power 
system operator. Load growth without a corresponding 
increase of transmission capacity has brought many power 
systems closer to their voltage stability boundaries, which 
leads to voltage instability problems increase. Moreover, 
the stable system contributes to reliability and reduction in 
system loss. Hence the voltage instability problem has 
received a lot of attention not only from researchers but 
also from the industry. Thus, a continuous real-time 

voltage margin monitoring system is required to predict 
the distance from the point of voltage collapse. 

The Malaysia power system is equipped with Phasor 
Measurement Units (PMUs). The implementation of the 
PMU technology in real power systems is under the 
process currently. By refqrring to the announcement on 
the increase of electricity tariff as in [I], the continually 
increasing in load demand and fuel cost leads to urgent 
needs to improve operational efficiency's utilization of 
transmission and distribution assets and reduction of 
losses. Therefore, Tenaga Nasional Berhad-Transmission 
(TNB-T) and TNB-Research (TNB-R) have joint 
collaboration in a 5-years research and development 
project on Wide-Area Intelligent Systems (WAIS) to 
enhance security and reliability of the power system 
network, and hence to provide system operators with real- 
time information on proximity of the system to voltage 
collapse as stated in [2]. 

The existing transmission lines have been equipped 
with the protection and countermeasure systems to 
prevent from a collapse. Hence, the actual data from the 
applied PMUs will never find any collapse in the system. 
Therefore, fault occurrence or tripping on the bus will be 
created in the simulation by using Real-Time Digital 
Simulator (RTDS). The PMUs simulated data obtained 
from TNB-R are in the form of voltage and current, which 
refer to its magnitude and angle. For the time being, TNB- 
R is using the latest PMUs technology that able to 
measure 50 samples per second. The experimental 
performance of simulation was conducted at TNB-R with 
the 132 kV system with 2-bus and 10-bus systems. The 
limitation of this project is due to the communication 
channels at some TNB substations of interest are not fully 
configured, thus the measurements based on actual data - - 

streams are still impossible at the moment. Therefore, the 
results shown are based on input from simulations. 

This paper will address the overviews of voltage 
stability in the next section. Third section will include the 
development of methodology and technique used in this 
research. The fourth section will show the results and 
discussion. The conclusion is shown in the last section. 

11. THE OVERVIEWS OF VOLTAGE STABILITY 

Power system voltage stability is a dynamic 
phenomenon involving power generation, transmission 
and distribution. Voltage stability is referred to a power 
system that can maintain the voltage at an acceptable level 
under normal conditions. In addition, voltage collapse is 



defied when the power system at a given operating state 
is subjected to a given disturbance undergoes the voltage 
collapse if post-disturbance equilibrium voltages are 
below acceptable limits. Besides, voltage instability is the 
lack of voltage stability and results in progressive voltage 
decrease (or increase) as defined in [3]. 

Basically, stability can be classified into three principal 
issues, which are thermal, voltage and transient. The main 
cause of voltage stability issue is electrical distance 
between generations and loads and also depends upon the 
topology of the network. Whenever a power system 
affected by disturbances, it can enter a state of voltage 
instability after a progressive and uncontrollable drop in 
the voltage as in [4]. 

There are 3 keys associated with voltage stability. First 
is the reactive power support either through power 
transfer, or at loading point. The second is the load 
characteristics as seen from the bulk power network. The 
last is the available means for voltage control at 
generators and in the network as in [5] .  

According to theory, the magnitude of Thevenin 
impedance is equal at the apparent load impedance to the 
voltage reaches the maximum transfer point. The Voltage 
Instability Predictor (VIP) method is based upon the 
assumption that voltage instability is closely related to the 
maximum load ability of a transmission network as 
proven in [6]. A load bus and the rest of the system treated 
as a Thevenin equivalent is shown in Fig. 1. 

t. - -  - -  
~Ihevenin equivalent 

Fig. 1. Local bus and the rest of the system treated as a Thevenin 
equivalent [5] 

The apparent impedance is merely the ratio 
apP 

between the voltage and current phasors measured at the 
bus. Tracking the Thevenin equivalent is essential in the 
detection of voltage collapse. 

There are many methods to track the Thevenin 
parameters. The tracking is based on Eq. 1 as in [5, 7-10]. 

Denoted that: 

Rewritten the above equations into a Cartesian 
coordinate as shown in Eq.2: 

The subscripts r and i indicated the real and the 
imaginary part of phasors. Note that V and I are directly 
available from the measurements at the local bus. The 

unknowns are R t h ,  X rh , E and E , . In Eq. 2, there are 

two equations, and four unknowns, so clearly, 
measurements taken at two or more different times are 
required to solve for the unknowns. In the real 
environment, measurements are not precise and the 
Thevenin parameters drift due to the system's changing 
conditions. In order to suppress oscillations, a larger data 
window needs to be used. Therefore, the estimation 
attempts to minimize the error in a least-square sense. 

111. RESEARCH METHODOLOGY 

The investigation will be performed in one of the TNB 
load areas to examine the effectivfeness of the voltage 
stability margin. The 132 kV network (for 2-bus system 
and 10-bus system) of the area under investigation, where 
the incoming 275 kV supply is taken from Bus 1 and 
stepped down to 132 kV by two units of 180 MVA 
transformers, which are connected to Bus 1 and Bus 2. All 
buses in this area are considered as the load bus. Load bus 
can be defined as transmission line feeding a certain load. 
The analysis is based on the collected information fiom 
TNB-R. The collected data fiom 132kV network studied 
and analysed according to the performance of stability. 
Total load in the area is about 85 MVA, and the power 
flows to the load centres. PMUs are installed to monitor 
voltage and current phasors at Bus 1 to Bus 10. 

Fig. 2. Detail of TNB 132 kV load under investigation 

The TNB 132 kV load area under investigation for 2- 
bus and 10-bus systems is shown in Fig.2. The PMUs data 
provided by the TNB-R for 2-bus system has a total 
number of 32973 data points while for the 10-bus system 
has a total number of 2000 data points, and both systems . 

consist the same step size of 0.02 sec which means that 50 
samples per second of the collected data are provided 
from PMUs. 

Tracking the Thevenin equivalent is essential for the 
detection of voltage collapse. In this research, the Discrete 
Kalman Filter (DKF), the Extended Kalman Filter (Em) 



and the Unscented Kalman Filter (UKF) are being 
implemented to track the Thevenin equivalent parameters. 
The results from these three methods will be analyzed and 
compared. The Kalman Filter is a set of mathematical 
equations that provides an efficient computational means 
to estimate the state as a process, in a way that minimizes 
the mean of the squared error. The filter is very powerful 
in several aspects which it supports estimations of past, 
present and also future states, and it can do so even when 
the precise nature of the modelled system is unknown. 
The Kalman Filter addresses the general problem of trying 
to estimate the state of a discrete-time controlled process 
that is governed by a linear stochastic difference equation. 
Due to the Kalman Filter is more appropriate for the 
applications in a linear system. Hence, a Kalman Filter 
that linearized about the current mean and covariance are 
referred to as an EKF. The EKF has become a standard 
technique used in a number of nonlinear estimation and 
machine learning applications. These include estimating 
the state of a nonlinear dynamic system, estimating 
parameters for nonlinear system identification, and also 
dual estimation that both states and parameters are 
estimated simultaneously. However, the EKF can 
sometimes introduce large errors in the true posterior 
mean and covariance of the transformed Gaussian random 
variable which lead to sub-optimal performance and 
sometimes divergence of the filter. The UKF addresses 
this problem by using a deterministic sampling approach. 
The UKF is an extension of the Kalman filter for 
nonlinear systems that a set of weighted sigma points are 
used to simulate the distribution within the state random 
variable. The performance of the filter depends heavily on 
the selection of sigma points, and the computational cost 
is proportional to the number of sigma points used. 

A. Discrete Kalman Filter (DKF) 

The DKF estimates a process by using a form of 
feedback control. The filter estimates the process state at 
some time and then obtains feedback in the form of noisy 
measurements. As such, the equations for the Kalman 
Filter contain two groups, which are the time update 
equations and the measurement update equations. A 
complete picture of the operation of DKF is shown in 
Fig.3. 

The time updated equations are responsible for 
projecting forward the current state and error covariance 
estimates to obtain a-priori estimates for the next time 
step. The measurement updated equations are responsible 
for the feedback which incorporating a new measurement 
into the a-priori estimates to obtain an improved a 
posterior estimate. The time update is actually the 
prediction stage of the Kalrnan Filter while the 
measurements update represented the correction stage. 
Indeed, the final estimation algorithm resembles that of a 
predictor-corrector algorithm for solving numerical 
problems as in [I l l .  

Time Update: 
1 Project the state ahead. 

= A.G1 + Bu,-, 
2 Project the m o r  covariance ahead. 

PC = Ap+-.ar + q 
3Ieasurement Update: 

1 Compute rhe Kalman g i n  
K, = P,-H~(HP;H~+R:-~ 
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3. Cpdate the error covariance 
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Fig. 3. A complete picture of the operation of the DKF 

B. Extended Kalman Filter (EKF) 
The EKF can linearize the estimation around the 

current estimate using the partial derivatives of the 
process and measurement functions to compute estimates 
even in the face of non-linear relationship. As with the 
basis discrete Kalman Filter, the measurement updates 
equations correct the state and covariance estimates for 

the measurement, k .  An important feature of the EKF is 

that the Jacobian, H in the equation for the Kalman 

gain, K t  serves to correctly propagate only the relevant 

component of the measurement information as in [ l l ] .  
The complete picture of the operation of EKF is shown in 
Fig.4. 

Time ratlate: 
1 Prgectthe state ahad 
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Fig. 4. A complete picture of the operation of the EKF 

C. Unscented Kalman Filter (UKF) 

The UIG is founded on the intuition that it is easier to 
approximate a probability distribution that it is to 
approximate an arbitrary non-linear function or 
transformation and the complete operation is shown in 
Fig.5. The sigma points are chosen so that their mean and 

covariance to be exactly xu ,-, and Pk-, . Each sigma 

point is then propagated through the non-linearity yielding 
at the end a cloud of transformation points. The new 
estimated mean and covariance are then computed based 
on their statistics. This process is called unscented 
transformation. The unscented transformation is a method 
for calculating the statistics of a random variable which 
undergoes a non-linear transformation as in [12]. 
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Fig. 5. A complete picture of the operation of the UKF 

D. Index to monitor the condition of the system 

By having the estimated Thevenin impedance value, 
the minimum magnitude of the load impedance in a stable 
system can be defined. Hence, the early warning index 
can be defmed in (3) to monitor the condition on the 
power system. Fig. 7. Graph of load impedance with Thevenin impedance by EKF 

IzJ- IzJ 
Index im,d,,, = Iz,I 
More power will be drawn whenever the load 

impedance started to drop. By this, the early warning 
index also decreases indicating that the system is an edge 
near to the nose point of voltage collapse. The index 
definitely becomes zero when the system is operating 
from the nose point. The main perception is to ensure the 
index always stay positive and suitable early prevention 
should be implemented when the index is close to zero 
r i  21 
LLdJ.  

Fig. 8. Graph of load impedance with Thevenin impedance by UKF 

IV. RESULTS AND DISCUSSION 

A. Results and Analysis 

According to the given data, the set of data in Zbus 
system shows an abnormal phenomenon at time 634.1 
seconds; therefore, a prediction that the point of voltage 
collapse might happen at time 634.1 seconds. The results 
from the three methods which are DKF, EKF and UKF 
are shown in Fig.6, Fig.7 and Fig.8 respectively. The 
results have also proven that the point of voltage collapse 
for the two buses system is happened at time of 634.1 
seconds. According to the theory, the point of collapse 
occurs whenever the Thevenin impedance is equal to the 
load impedance for the power system network. 

In the meanwhile for the 10-bus system, the prediction 
of the point of voltage collapse is at time 0.16 seconds. 
The results from the three methods of DKF, EKF and 
UKF are shown in Fig.9, Fig.10 and Fig.11 individually. 
The results also have also proven that the point of voltage 
collapse for the ten buses system is happened at time of 
0.16 seconds. According to the theory, the point of 
collapse occurs whenever the Thevenin impedance is 
equal to the load impedance for the power system 
network. The system will be a normal state if the 
Thevenin impedances are smaller (or very much smaller) 
than the load impedance. 



Fig. 9. Graph of load impedance with Thevenin impedance by KF 

Fig. 11. Graph of load impedance with Thevenin impedance by UKF 

The indices of the early warning for point of voltage 
collapse are calculated based on the estimated Thevenin 
impedance by using different Kalman filtering 
implementations is shown in Table 1. By comparing the 
values of index, it is very obvious that the result for the 
EKF is much more accurate because of its value for the 
index is closer to zero. Thus, we concluded that the EKF 
algorithm performs better in tracking the points of 

Types of Method 

Discrete Kalman 
Filter Algorithm 
(Dm) 
Extended Kalman 
Filter Algorithm 

Unscented 
KalmqFilter 
Algorithm (UKF) 

collapse in the 2-bus and 10-bus systems and then follows 
by the KF algorithm and lastly, the UKF algorithm. 

B. Discussion 

Index for Early Warning 

The overall discussion is based on the performance of 
three different types of Kalman's filter methods for 
tracking the Thevenin parameters. In the way of only 
looking at its performance to trace the points of voltage 
collapse, which basically only refer to its Thevenin 
impedance and load impedance, the EIG performs the 
best among them. However, the results of estimating the 
Thevenin voltage hom EKF are divaricated. This 
phenomenon may due to the large error in the true 
posterior mean and covariance. As the EKF is suitable for 
non-linear system, and we presented the Thevenin 
parameters in its rectangular form in order to meet the 
non-linear requirement. 

The radial equivalent independent (REI) network 
equations in this research are basically a linear system, but 
it can also present in the non-linear state. Therefore, both 
KF and EKF can also be used to track the Thevenin 
parameters. If comparing the results of the KF with the 
EKF, the overall performance is better in the KF 
algorithm. Although the EKF able to trace the more 
accurate point of voltage collapse but its Thevenin 
voltages are divaricated and are invalid for analysis 
purpose. The performance of EKF for its Thevenin 
voltage can actually be addressed by using the UKF. The 
overall performance of the UKF in this research can be 
considered as moderate and it does perform better than the 
EKF in the Thevenin voltage prediction. However, the 
UKF is slightly more complex in its level of complexity. 
It is more suitable for highly non-linear system, which 
involves higher level of order in the state vector. 

All the three Kalman filter methods that been used for 
this research can also be considered as appropriate for the 
system. Preferable suggestion that KF algorithm is more 
suitable to apply in our system because it is simpler and 
its process times are faster. The EKF can be used as a 
secondary method which able to back up in tracking the 
points of voltage collapse. While the UKF is not that 
suitable for this case, but it was recommended to apply in 
other non-linear system because its performance is quite 
high in accuracy. 

2-bus system 
0.2182 

0.1013 

0.6444 

V. CONCLUSIONS 

The overall purpose of this research was to develop 
methods that in real-time provide an early warning for an 
emerging stability problem. It was interest to develop on 
methods of tracking the points of voltage collapse of the 
electric power system, and then give an early warning for 
the emerging blackout or voltage collapse. In order to 
achieving the research's objectives, derivation of the index 
for early warning of the point of collapse is completed. 
There are three methods, which have been employed for 
this online estimation of the model parameters which are 
the KF, EKF and UKF. Comparisons of the results and 
performance from all of these methods have also been 
made in section IV. As a conclusion, the presented 
methods fulfill the requirements. This means that a 

10-bus system 
0.1529 

0.1191 

0.3051 



development of the high accuracy for PMUs 
measurements could be achieved. The results make the 
presented assessment method an attractive tool for real- 
time stability assessment in future prevention of voltage 
collapse. 
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