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ABSTRACT
We report the statistical properties of stars and brown dwarfs obtained from four radiation
hydrodynamical simulations of star cluster formation that resolve masses down to the opacity
limit for fragmentation. The calculations are identical except for their dust and gas opacities.
Assuming dust opacity is proportional to metallicity, the calculations span a range of metal-
licities from 1/100 to 3 times solar, although we emphasize that changing the metallicity has
other thermodynamic effects that the calculations do not capture (e.g. on the thermal coupling
between gas and dust). All four calculations produce stellar populations whose statistical
properties are difficult to distinguish from observed stellar systems, and we find no significant
dependence of stellar properties on opacity. The mass functions and properties of multiple
stellar systems are consistent with each other. However, we find that protostellar mergers are
more common with lower opacities. Combining the results from the three calculations with the
highest opacities, we obtain a stellar population consisting of more than 500 stars and brown
dwarfs. Many of the statistical properties of this population are in good agreement with those
observed in our Galaxy, implying that gravity, hydrodynamics, and radiative feedback may be
the primary ingredients for determining the statistical properties of low-mass stars. However,
we do find indications that the calculations may be slightly too dissipative. Although further
calculations will be required to understand all of the effects of metallicity on stellar properties,
we conclude that stellar properties are surprisingly resilient to variations of the dust and gas
opacities.

Key words: hydrodynamics – radiative transfer – binaries: general – brown dwarfs – stars:
formation – stars: luminosity function, mass function.

1 IN T RO D U C T I O N

Understanding the origin of the statistical properties of stellar sys-
tems is the fundamental goal of a complete theory of star formation.
Much attention has been paid to the origin of the stellar initial mass
function (IMF), and there are many models that have been proposed
for its origin (see the review of Bonnell, Larson & Zinnecker 2007).
However, a complete model must be able to explain the origin of all
the statistical properties of stellar systems (e.g. the star formation
rate and efficiency, and the abundance and properties of multiple
stellar systems) and how these depend on variations in environment
and initial conditions. While simplified analytic or semi-analytic
models are useful for understanding the role that different processes
play in the origin of some stellar properties, numerical simulations
are almost certainly necessary to help us understand the full com-
plexity of the star formation process.

� E-mail: mbate@astro.ex.ac.uk

Numerical simulations first became powerful enough to begin
tackling the question of the origin of the statistical properties of
stars in the late 1990s and early 2000s, with calculations that could
follow the formation of groups of stars (e.g. Bonnell et al. 1997;
Klessen, Burkert & Bate 1998; Klessen & Burkert 2000; Bate,
Bonnell & Bromm 2003). However, until recently, the stellar pop-
ulations produced by such calculations have always differed sig-
nificantly from the properties of observed stellar systems. For ex-
ample, some calculations used large sink particles to model the
protostars and could not resolve most brown dwarfs, thus produc-
ing incomplete mass functions (e.g. Bonnell et al. 2001; Bonnell,
Bate & Vine 2003). Hydrodynamical simulations that resolved the
opacity limit for fragmentation (and hence the lowest mass brown
dwarfs) but used barotropic equations of state tended to overproduce
brown dwarfs (Bate et al. 2003; Bate & Bonnell 2005; Bate 2009a;
Offner et al. 2009), particularly when the molecular cloud was mod-
elled with decaying rather than driven turbulence (Offner, Klein &
McKee 2008). Moreover, using a barotropic equation of state re-
sults in a characteristic stellar mass that depends primarily on the
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initial mean thermal Jeans mass in the cloud (Bate & Bonnell 2005;
Jappsen et al. 2005; Bonnell, Clarke & Bate 2006). This seems to
be the case even when the barotropic equation of state is modified
as might be expected for a different metallicity (Bate 2005). Includ-
ing radiative transfer and a more realistic equation of state is found
to dramatically decrease the amount of fragmentation, increase the
characteristic stellar mass, decrease the proportion of brown dwarfs
(Bate 2009b; Offner et al. 2009; Urban, Martel & Evans 2010), and
weaken the dependence of the characteristic mass of the IMF on
the initial Jeans mass (Bate 2009b). The latter effect may help to
explain why the IMF is not observed to be strongly dependent on
initial conditions, at least in our Galaxy (Bastian, Covey & Meyer
2010). However, the introduction of radiative transfer can also lead
to problems in reproducing the observed IMF as ‘overheating’ of
the gas due to protostellar radiative feedback can produce a top-
heavy IMF in calculations of massive dense molecular cloud cores
(Krumholz, Klein & McKee 2011).

The most successful numerical simulation of star formation pub-
lished to date, in terms of reproducing a wide variety of the observed
statistical properties of stellar systems, is that of Bate (2012). This
radiation hydrodynamical calculation produced more than 180 stars
and brown dwarfs, including 40 multiple systems, whose properties
were difficult to distinguish from observed stellar systems. The mass
function of the stellar population was in good agreement with the
observed Galactic IMF, the multiplicity of the stellar systems was
found to increase with primary mass with values in agreement with
the results from various field star surveys, and the properties of these
multiple systems (e.g. their mass ratios and separation distributions)
also reproduced many of the observed characteristics. Although the
earlier barotropic calculation of Bate (2009a) was able to reproduce
many of the observed characteristics of multiple stellar systems, it
greatly overproduced brown dwarfs due to the absence of radiative
feedback. More recently, Krumholz, Klein & McKee (2012) have
also presented results from a radiation hydrodynamical calculation
whose stellar mass distribution is in statistical agreement with the
observed IMF and with a stellar multiplicity that increases with
primary mass. They find that including protostellar outflows and
large-scale turbulent driving are important for avoiding the ‘over-
heating’ problem (Krumholz et al. 2011). However, this calculation
underproduces low-mass multiple systems and only produces two
dozen multiple systems in total which limits further comparison
with observed systems.

Now that we are able to produce simulations that create stellar
populations whose statistical properties are in close agreement with
observed stellar systems in our Galaxy, we can begin to use fur-
ther calculations to reveal how the statistical properties of stellar
systems may depend on initial conditions and environment. In this
paper, we report the results from three new simulations which are
identical to the calculation of Bate (2012) except that they employ
different opacities. Although each of the calculations is started from
the same initial conditions, the calculations soon differ because the
different opacities affect the thermodynamics. As the calculations
diverge, they produce stellar systems whose dynamics are, in gen-
eral, chaotic. Thus, particularly on small-scales, the calculations
each produce a different set of stellar systems.

Our aim is to begin investigating the extent to which stellar prop-
erties may depend on the metallicity of a star-forming region. How-
ever, it is important to realize that a change in the metallicity does
much more to a star-forming cloud than simply change the opac-
ity of the matter, particularly if the metallicity is reduced. There
have been many studies that have investigated the thermodynamics
of molecular gas with different metallicities (e.g. Omukai 2000;

Omukai et al. 2005; Glover & Jappsen 2007; Jappsen et al. 2007,
2009a,b; Hocuk & Spaans 2010; Omukai, Hosokawa & Yoshida
2010; Schneider & Omukai 2010; Dopcke et al. 2011, 2013; Walch
et al. 2011; Glover & Clark 2012a,b,c; Omukai 2012; Schneider
et al. 2012). The thermal behaviour of collapsing molecular gas is
found to be almost independent of its metallicity once it becomes
opaque to long-wavelength radiation, but at lower densities the gas
temperature is complicated and depends on a large number of heat-
ing and cooling processes (Omukai 2000). These studies show that
changing the metallicity can change the thermal evolution of the
low-density gas in several different ways. First, while Galactic star
formation calculations often assume that the gas and dust temper-
atures are well coupled, due to collisions, this depends on both on
the gas density and the density (and properties) of dust grains. The
gas and dust are well coupled at molecular densities �105 cm−3

and with solar metallicities, but they become poorly coupled as ei-
ther the density or metallicity are reduced (e.g. Tsuribe & Omukai
2006; Dopcke et al. 2011; Nozawa, Kozasa & Nomoto 2012; Chi-
aki, Nozawa & Yoshida 2013; Dopcke et al. 2013). This has a huge
impact on the gas temperatures. When the gas and dust are ther-
mally well coupled, both are typically cold and nearly isothermal
(≈10 K) because thermal dust emission is the primary coolant and
the dust cooling rate is a strong function of temperature (typically
scaling as ∼T 6

d , e.g. Goldsmith 2001). However, when they are de-
coupled, the dust remains cold, but the gas tends to be much hotter.
An added complication is that the dust properties themselves are
likely to change as the metallicity varies (e.g. Rémy-Ruyer et al.
2014). Secondly, in the absence of dust cooling, the gas cools di-
rectly via atomic and molecular line emission (e.g. from C+ and
CO). Clearly, as the metallicity is reduced, so is the effectiveness of
these coolants. However, the gas cooling rate also increases much
more slowly with increasing temperature than the dust, so that when
the gas and dust become decoupled, an even higher gas tempera-
ture is required to make up for the lost dust cooling. Thirdly, a
star-forming cloud is heated by external radiation and cosmic rays.
At the very least, it will receive cosmic background radiation, but
typically it is also irradiated by other stars in its galaxy and perhaps
by the radiation from an active galactic nucleus. The reduced dust
opacities associated with a reduced metallicity will mean that this
radiation penetrates further into the cloud, again tending to increase
the temperature of the cloud. Overall, this means that the typical
temperature of low-density gas with 1/100 solar metallicity tends
to be more like ∼100 K rather than ∼10 K (e.g. Glover & Clark
2012c). Therefore, it is essential to recognize that the low-opacity
calculations in this paper in particular, are only a first step in the
direction of helping us to understanding how star formation may
vary with metallicity.

Only one other study has used radiation hydrodynamical simu-
lations of star cluster formation to begin to address the question
of how star formation depends on metallicity (Myers et al. 2011).
They also changed only the opacity of the matter, and they found
no significant variation of the IMF. However, they only explored
opacities ranging over a factor of 20 (from solar metallicity to 1/20
of the solar value), their calculations were unable to resolve the
low-mass end of the IMF, and each calculation produced only a
few dozen stars, limiting their sensitivity to variations. They also
used relatively large sink particles (radii of 28 au) so they could
not explore the effects of opacity on the properties of multiple stel-
lar systems. In contrast, we explore an opacity range of 300 (from
three times solar to one-hundredth of solar metallicity), each calcu-
lation produces 170 or more protostars (including low-mass brown
dwarfs), and we employ sink particles with radii of only 0.5 au,
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allowing us to follow the formation of most multiple systems in
some detail.

2 C O M P U TAT I O NA L M E T H O D

The calculations presented here were performed using a three-
dimensional smoothed particle hydrodynamics (SPH) code based
on the original version of Benz (1990; Benz et al. 1990), but sub-
stantially modified as described in Bate, Bonnell & Price (1995),
Whitehouse, Bate & Monaghan (2005), Whitehouse & Bate (2006),
Price & Bate (2007), and parallelized using both OpenMP and MPI.

Gravitational forces between particles and a particle’s nearest
neighbours are calculated using a binary tree. The smoothing lengths
of particles are variable in time and space, set iteratively such that
the smoothing length of each particle h = 1.2(m/ρ)1/3, where m and
ρ are the SPH particle’s mass and density, respectively (see Price
& Monaghan 2007, for further details). The SPH equations are
integrated using a second-order Runge–Kutta–Fehlberg integrator
with individual time steps for each particle (Bate et al. 1995). To
reduce numerical shear viscosity, we use the Morris & Monaghan
(1997) artificial viscosity with αv varying between 0.1 and 1, while
βv = 2αv (see also Price & Monaghan 2005).

2.1 Equation of state and radiative transfer

As in Bate (2012), the calculations presented in this paper were per-
formed using radiation hydrodynamics with an ideal gas equation
of state for the gas pressure p = ρTgR/μ, where Tg is the gas tem-
perature, μ is the mean molecular weight of the gas, and R is the
gas constant. The thermal evolution takes into account the transla-
tional, rotational, and vibrational degrees of freedom of molecular
hydrogen (assuming a 3:1 mix of ortho- and para-hydrogen; see
Boley et al. 2007). It also includes molecular hydrogen dissocia-
tion, and the ionizations of hydrogen and helium. The hydrogen and
helium mass fractions are X = 0.70 and Y = 0.28, respectively. For
this composition, the mean molecular weight of the gas is initially
μ = 2.38. The contribution of metals to the equation of state is
neglected.

Two temperature (gas and radiation) radiative transfer in the flux-
limited diffusion approximation is implemented as described by
Whitehouse et al. (2005) and Whitehouse & Bate (2006), except
that the standard explicit SPH contributions to the gas energy equa-
tion due to the work and artificial viscosity are used when solving the
(semi-)implicit energy equations to provide better energy conserva-
tion. Energy is generated when work is done on the gas or radiation
fields, radiation is transported via flux-limited diffusion and energy
is transferred between the gas and radiation fields depending on
their relative temperatures, and the gas density and opacity. The gas
and dust temperatures are assumed to be the same.

The clouds have free boundaries. To provide a boundary condition
for the radiative transfer, we use the same method as Bate (2009b)
and Bate (2012). All particles with densities less than 10−21 g cm−3

have their gas and radiation temperatures set to the initial values
of 10.3 K. This gas is two orders of magnitude less dense than the
initial cloud (see Section 2.4) and, thus, these boundary particles
surround the region of interest in which the star cluster forms.

2.2 Opacities and metallicity

Bate (2012) assumed solar metallicity gas, with the opacity set to be
the maximum of the interstellar dust grain opacity tables of Pollack,
McKay & Christofferson (1985) and, at higher temperatures when

the dust is destroyed, the gas opacity tables of Alexander (1975)
(the IVa King model) (see Whitehouse & Bate 2006, for further
details).

In this paper, we wish to investigate how variation of the opacity,
due to the molecular gas having a different metallicity, may affect
the star formation process. Therefore, we use a range of metallic-
ities. For the dust opacities, we use scaled versions of the Pollack
et al. (1985) opacities, in which we assume that the dust opacity
scales linearly with the metallicity. This assumes that the dust prop-
erties are independent of metallicity and that their number density
is simply proportional to the overall metallicity. Observations of the
gas to dust ratios in other galaxies show that this may be a reason-
able assumption for metallicities �1/10 of the solar value, but at
lower metallicities the gas-to-dust ratio appears to be substantially
greater than that given by a strict linear relation (Rémy-Ruyer et al.
2014, and reference therein).

For the gas opacities, we use the newer models of Ferguson et al.
(2005) with X = 0.70. They provide opacities for heavy element
abundances from Z = 0 to Z = 0.1. We take the solar abundance to
be Z� = 0.02. The tables of Ferguson et al. provide the logarithm
of the Rosseland mean opacities as functions of the logarithms
of temperature and density. We use bilinear interpolation from the
tables to provide opacities for our desired heavy element abundance.
As in Bate (2012), the total opacity is set to be the maximum
of the dust and gas opacities (in the regions of parameter space
where the tables overlap). Typical opacities and their dependence
on metallicity are illustrated in Fig. 1.

In this paper, we compare the results of new calculations with
the solar-metallicity calculation of Bate (2012). At the same metal-
licity, the gas opacities of Alexander (1975) are somewhat different
from those of Ferguson et al. (2005; see Fig. 1). However, these
differences in the opacities are only relevant at high temperatures
(beyond the dust sublimation temperature) and, thus, only affect the

Figure 1. Examples of the Rosseland mean opacities for different metal-
licities: 1/100 Z� (solid black line), 1/10 Z� (short-dashed red line), Z�
(long-dashed magneta line), and 3 Z� (dot–dashed blue line). We also give
the opacity curve as used by Bate (2012) above 1500 K (solid magenta line)
which differs slightly from the Z� case because this calculation used the
gas opacities of Alexander (1975) rather than Ferguson et al. (2005). The
opacities are functions of both temperature and density. For this graph, we
plot the opacity as a function of temperature in which the density at each
temperature satisfies the equation (T/10 K) = (ρ/10−13 g cm−3)0.3 which
(very roughly) approximates the typical densities and temperatures found
during the collapse of a molecular cloud core.
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regions very close to the protostars, not larger scales. The differ-
ences in the opacities are also very small compared with the range
of a factor of 300 that we explore in this paper.

2.3 Sink particles

As in Bate (2012), using the above realistic equation of state and
radiation hydrodynamics means that as the gas collapses, each of
the phases of protostar formation can be captured (Larson 1969),
including the formation of a first hydrostatic core and its second
collapse due to the dissociation of molecular hydrogen. We could
follow the collapse to the formation of a stellar core (e.g. Bate
2010b, 2011); however, as the collapse proceeds, the timesteps
required to obey the Courant–Friedrichs–Levy criterion become
smaller and smaller. Because we wish to evolve the large scales
over time-scales of ∼105 yr, we cannot afford to follow the small
scales (e.g. the stellar cores themselves). Instead, we follow the
evolution of each protostar through the first core phase and into the
second collapse (which begins at densities of ∼10−7 g cm−3), but
we insert a sink particle (Bate et al. 1995) when the density exceeds
10−6 g cm−3, approximately three orders of magnitude before the
stellar core would begin to form (density ∼10−3 g cm−3).

As in Bate (2012), a sink particle is formed by replacing the
SPH gas particles contained within racc = 0.5 au of the densest gas
particle in region undergoing second collapse by a point mass with
the same mass and momentum. Any gas that later falls within this
radius is accreted by the point mass if it is bound and its specific
angular momentum is less than that required to form a circular orbit
at radius racc from the sink particle. Thus, gaseous discs around
sink particles can only be resolved if they have radii �1 au. Sink
particles interact with the gas only via gravity and accretion. There
is no gravitational softening between sink particles. The angular
momentum accreted by a sink particle is recorded but plays no
further role in the calculation.

Since all sink particles are created within pressure-supported
fragments, their initial masses are several Jupiter-masses (MJ), as
given by the opacity limit for fragmentation (Low & Lynden-Bell
1976; Rees 1976). Subsequently, they may accrete large amounts
of material to become higher mass brown dwarfs (�75 MJ) or stars
(�75 MJ), but all the stars and brown dwarfs begin as these low-
mass pressure-supported fragments.

In Bate (2012), sink particles were permitted to merge in the cal-
culation if they passed within 0.01 au of each other (i.e. ≈ 2 R�),
but no mergers occurred. In the new calculations performed for
this paper, this was increased slightly to 0.015 au (i.e. ≈ 3 R�),
since it is likely that young protostars accreting at high rates are
somewhat larger than the Sun (Hosokawa & Omukai 2009). Some
mergers occurred during the calculations, as will be discussed
below.

The benefits and potential problems associated with introduc-
ing sink particles into radiation hydrodynamical star formation
calculations have been discussed in detail by Bate (2012) and
will not be repeated here. The interested reader is referred to
this earlier paper for a detailed discussion. Briefly, we use sink
particles from which there is no radiative feedback from inside
the sink particle radius, but we use as small an accretion ra-
dius as is computationally feasible to minimize missing luminos-
ity. Bate (2012) showed empirically that the main effects of ra-
diative feedback on the fragmentation of a collapsing molecular
cloud is captured when using sink particles with racc = 0.5 au or
smaller.

2.4 Initial conditions

The initial conditions for the calculations presented in this paper are
taken from the calculation of Bate (2009a) and are identical to those
of Bate (2012). We followed the collapse of an initially uniform-
density molecular cloud containing 500 M� of molecular gas. The
cloud’s radius was 0.404 pc (83300 au) giving an initial density
of 1.2 × 10−19 g cm−3. At the initial temperature of 10.3 K, the
mean thermal Jeans mass was 1 M� (i.e. the cloud contained 500
thermal Jeans masses). Although the cloud was uniform in density,
we imposed an initial supersonic ‘turbulent’ velocity field in the
same manner as Ostriker, Stone & Gammie (2001) and Bate et al.
(2003). We generated a divergence-free random Gaussian velocity
field with a power spectrum P(k) ∝ k−4, where k is the wavenumber.
In three dimensions, this results in a velocity dispersion that varies
with distance, λ, as σ (λ) ∝ λ1/2 in agreement with the observed
Larson scaling relations for molecular clouds (Larson 1981). The
velocity field was generated on a 1283 uniform grid and the veloc-
ities of the particles were interpolated from the grid. The velocity
field was normalized so that the kinetic energy of the turbulence
was equal to the magnitude of the gravitational potential energy of
the cloud. Thus, the initial root-mean-square Mach number of the
turbulence was M = 13.7. The initial free-fall time of the cloud
was tff = 6.0 × 1012 s or 1.90 × 105 yr.

Molecular clumps of this mass, radius, and internal velocity dis-
persion are not found in nearby star-forming regions, but these initial
conditions are very similar to the clumps found in many infrared
dark clouds (e.g. Rathborne, Jackson & Simon 2006; Battersby et al.
2010; Ragan et al. 2012a,b).

As for the calculation performed for Bate (2012), since the initial
conditions for the calculation are identical to those of Bate (2009a)
and including radiative transfer does not alter the temperature of the
gas significantly until just before the first protostar forms, the early
evolution of the cloud was not repeated for any of the calculations
presented in this paper. Instead, all of the radiation hydrodynamical
calculations were begun from a dump file taken from the original
Bate (2009a) calculation at t = 0.70tff, just before the maximum
density exceeded 10−15 g cm−3.

Three new calculations were performed for this paper, with opac-
ities relevant for gas with metallicities of 1/100, 1/10, and 3 times
solar (i.e. Z = 2 × 10−4, 0.002, and 0.06), assuming a linear de-
pendence of the dust opacity on metallicity as discussed above.
When combined with the calculation presented by Bate (2012), this
gives four calculations whose metallicities and opacities range over
a factor of 300. We restrict the highest metallicity to three times the
solar value for two reasons. First, there are not many stars known
with higher metallicities. Secondly, the contribution of metals to
the equation of state of the gas is neglected. While this is stan-
dard practice for solar-metallicity star formation calculations, the
approximation will break down for sufficiently high metallicities.

At the other end of the metallicity range, we do not study metal-
licities less than 1/100 solar because our method ignores the many
other effects that a decreased metallicity would have on the ther-
mal behaviour of the gas that we listed in Section 1. These effects
become more and more important as the metallicity is decreased.
In particular, our method assumes that the gas and dust are ther-
mally well coupled and, therefore, that the gas cools primarily via
thermal dust emission. These are standard assumptions for star for-
mation calculations that begin with dense molecular gas with solar
metallicity, but they quickly break down at low metallicities and/or
low densities. In fact, even though our initial cloud has a relatively
high density, the Z = 1/100 Z� calculation is almost certainly very
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unrealistic and even the Z = 1/10 Z� calculation may only be real-
istic in extreme circumstances. This can be easily seen by taking a
simple model (e.g. Goldsmith 2001) for the gas temperature of our
initial conditions. We can estimate the gas temperature deep inside
a molecular cloud (i.e. where the interstellar radiation field is suffi-
ciently attenuated by dust absorption), by balancing the cosmic ray
heating of the gas by its cooling due to line emission and collisions
with dust grains. Following Goldsmith (2001), we take the cosmic
ray heating rate (measured in erg cm−3 s−1) to be

�gas,cr = 10−27nH2, (1)

and the gas–dust cooling rate to be

	gd = 2 × 10−33n2
H2

(
Z

Z�

) (
Tg

10 K

)1/2 (
Tg − Td

)
, (2)

where nH2 is the number density of molecular hydrogen, Td is the
dust temperature, and we have assumed that the gas–dust cooling
rate scales linearly with metallicity. Goldsmith (2001) parameter-
izes the line cooling as 	gas, line = α(Tg/10 K)β , where α and β

are tabulated as functions of nH2. For our initial conditions (nH2 ≈
3 × 104 cm−3), we can estimate α ≈ 1 × 10−23 and β ≈ 2.85 at solar
metallicities from Goldsmith’s values, and again we assume that the
line cooling scales linearly with metallicity. These equations allow
us to estimate the equilibrium gas temperature for our initial cloud
by solving

�gas,cr − 	gas,line − 	gd = 0, (3)

but we need to estimate the dust temperature to evaluate the last
term. Assuming the thermal coupling between the gas and the dust
is weak (which is the regime we are interested in), the dust tem-
perature can be estimated by balancing the absorption of radiation
from the interstellar radiation field (attenuated by extinction) and
thermal dust emission. Because the latter scales as ∼T 6

d , the dust
temperature is only weakly dependent on the local level of the in-
terstellar radiation field and will lie within a factor of 2 of 10 K for
a wide range of assumptions (Goldsmith 2001). Taking Td = 10 K
and solving equation 3, we find that for our initial cloud conditions
Tg ≈ 30 for Z = 0.1 Z�, and Tg ≈ 70 for Z = 0.01 Z�. Clearly these
temperatures are much higher than the initial temperatures assumed
by Bate (2009a, 2012). We note that for Z = Z�, we obtain Tg ≈
13 (i.e. the gas and dust are well coupled and the initial conditions
used by the earlier papers are reasonable). To obtain the same equi-
librium temperature for the Z = 0.1 Z� case as the Z = Z� case,
we need to assume that the cosmic ray heating rate is a factor of
10 lower than that given by equation 1. Therefore, the Z = 0.1 Z�
calculation can only be considered to be reasonable in star-forming
regions where the cosmic ray heating rate is much lower than that
estimated locally. The Z = 0.01 Z� calculation is unlikely to be
realistic in any situation – even if the cosmic ray flux was 100 times
lower, the fact that the gas and dust are thermally decoupled will
mean that even compressional heating of the gas due to the turbu-
lent initial conditions is likely to result in much higher temperatures
than those assumed by Bate (2009a, 2012). Because of this fact, we
only discuss the results of the Z = 0.01 Z� calculation in Sections
3.1 and 3.2, simply to illustrate the extreme case of using very low
opacities. It should not be taken as a realistic calculation, and even
the results from the Z = 0.1 Z� calculation should be treated with
care.

2.5 Resolution

The local Jeans mass must be resolved throughout the calculation
to model fragmentation correctly (Bate & Burkert 1997; Truelove
et al. 1997; Whitworth 1998; Boss et al. 2000; Hubber, Goodwin &
Whitworth 2006). The original barotropic calculation of Bate
(2009a) used 3.5 × 107 particles to model the 500 M� cloud and
resolve the Jeans mass down to its minimum value of ≈0.0011 M�
(1.1MJ) at the maximum density during the isothermal phase of the
collapse, ρcrit = 10−13 g cm−3. Using radiation hydrodynamics re-
sults in temperatures at a given density, no less than those given by
the original barotropic equation of state (e.g. Whitehouse & Bate
2006) and, thus, the Jeans mass is also resolved in the calculations
presented here.

The calculations were performed on the University of Exeter
Supercomputer, an SGI Altix ICE 8200 that was upgraded in 2011
to dual 2.80 GHz Intel Westmere nodes. Using 96 compute cores,
each of the new calculations required between 0.7 and 1 million
CPU hours (i.e. 10–13 months of wall time).

3 R ESULTS

We present results from four radiation hydrodynamical calculations
that are essentially identical, except for their opacities. Assuming a
linear dependence of the dust opacity on metallicity, the opacities
correspond to metallicities Z = 0.01, 0.1, 1, and 3 Z�. See Table 1
for a summary of the statistics from each of the calculations, includ-
ing the numbers of stars and brown dwarfs produced, the total mass
that was converted to stars and brown dwarfs, and the mean and me-
dian stellar masses. We use the same analysis methods as those used
by Bate (2009a) and Bate (2012), but we discuss fewer properties.
We consider the mass functions for each calculation individually.
However, we only discuss other statistical properties for the three
calculations with the highest opacities (Z ≥ 0.1 Z�) because, as dis-
cussed in Section 2.4, we consider the lowest opacity calculation to
be too unrealistic. We discuss the multiplicities, and the separations
and mass ratios of the multiple systems for individual calculations.
In Section 4, we construct a combined sample consisting of the
535 stars produced by the three calculations with Z ≥ 0.1 Z�. In
addition to presenting the mass function, multiplicity, separations,
and mass ratios of the systems in this combined sample, we also
consider the eccentricity distributions of multiple systems and the
orientations of orbits in triple systems or stars and discs in binary
systems. We do not consider the accretion histories or kinematics
of the stars or the distributions of closest encounters at all. These
omissions are made for the purpose of brevity, but we note that we
find no evidence that these properties vary with opacity.

3.1 The evolution of the star-forming clouds

As mentioned in Section 2.4, all the calculations were begun from a
dump file at t = 0.70tff from the original calculation of Bate (2009a),
before the maximum density exceeded 10−15 g cm−3. Before this
point, the initial ‘turbulent’ velocity field had generated density
structure in the gas, some of which was collected into dense cores
which had begun to collapse. Those readers interested in this early
phase should refer to Bate (2009a) for figures and further details.

In the solar-metallicity calculation, the first sink particle was in-
serted at t = 0.727tff. In the low-opacity calculations, the first sink
particles were inserted slightly earlier at t = 0.722tff for both the
Z = 0.01 Z� and Z = 0.1 Z� calculations. In the highest opac-
ity calculation, the first sink particle was inserted at t = 0.733tff.
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Table 1. The parameters and overall statistical results for the calculation of Bate (2012) using solar metallicities and the three new calculations presented
here. The initial conditions for all of the calculations were taken as the state of the Bate (2009a) calculation at 0.70tff (initial cloud free-fall times), and
all calculations were run to 1.20tff. All calculations employ sink particles with racc = 0.5 au and no gravitational softening. Brown dwarfs are defined as
having final masses less than 0.075 M�. The numbers of stars (brown dwarfs) are lower (upper) limits because some brown dwarfs were still accreting
when the calculations were stopped. Changing the opacities results in no significant difference in the statistical quantities for opacities corresponding to
metallicities ≥1/10 Z�, except for the numbers of stellar mergers. However, the lowest opacity calculation converts gas into stars at a slower rate and
produces objects slightly more quickly which results in a slightly higher fraction of low-mass objects than the other calculations.

Calculation Initial gas Metallicity No. stars No. brown Mass of stars and Mean Mean Median Stellar
mass formed dwarfs formed brown dwarfs mass log-mass mass mergers
M� Z� M� M� M� M�

Metallicity 1/100 500 0.01 ≥134 ≤64 78.3 0.40 ± 0.04 0.16 ± 0.02 0.18 21
Metallicity 1/10 500 0.1 ≥136 ≤34 84.0 0.49 ± 0.05 0.24 ± 0.02 0.25 7
B2012 500 1.0 ≥147 ≤36 88.2 0.48 ± 0.05 0.22 ± 0.02 0.21 0
Metallicity 3 500 3.0 ≥143 ≤39 86.1 0.47 ± 0.05 0.21 ± 0.02 0.19 2

The general increase in the formation time of the first object with in-
creasing opacity occurs because cooling at high densities becomes
slower with the increased optical depth and the protostars spend
longer in the first hydrostatic core phase of evolution before under-
going the second collapse.

In the panels of Figs 2 and 3, we present snapshots during the
evolution of each calculation from t = 0.90–1.20tff (we omit earlier
times because they show little of interest). Fig. 2 displays the column
density (using a red–yellow–white colour scale), while Fig. 3 dis-
plays the mass-weighted temperature in the cloud (using a blue–red–
yellow–white colour scale). Animations of each of the calculations
can be downloaded from http://www.astro.ex.ac.uk/people/mbate/.
As in the calculations of Bonnell et al. (2003), Bate (2009a), and
Bate (2012), the star formation in the clouds occurs in small groups,
embedded within larger scale filaments that are formed by the tur-
bulent initial conditions. Initially, each group contains only a few
low-mass objects and the heating of the surrounding gas is limited
to their immediate vicinity (a few thousand au). However, as the
stellar groups grow in number and some of the stars grow to greater
masses, the heating can be seen to extend to larger and larger scales,
particularly in the higher opacity calculations.

Despite the very different evolution of the temperature distribu-
tions in the four calculations (Fig. 3), the evolution of the column
density is very similar on large scales (�0.01 pc). This is because the
gravitational and turbulent energies are dominant over the thermal
energy on large scales. Differences in the thermal energy only have
large effects on scales of thousands of au where the fragmentation
of discs and filaments may be inhibited from occurring (cf. Bate
2009b; Offner et al. 2009). There are two main effects that produce
different temperature distributions with the different opacities. The
first is visible even at early times in the left-hand panels of Fig. 3.
Much of this material is optically thin in all of the calculations, but
in the lower opacity calculations the matter (gas and dust) is less
well coupled to the radiation field and so the matter does not cool
as effectively. Thus, the temperatures of 15–20 K occupying much
of the volume in the Z = 0.01 and 0.1 Z� calculations are due to
inefficient cooling of the shocks formed by the supersonic motions
in the clouds. We emphasize, however, that the gas temperatures in
the low-opacity calculations are still lower than would be expected
in more realistic calculations that take account of the thermal de-
coupling of the gas and dust. In the Z = 0.01 Z� in particular,
although the dust temperature would be expected to be ≈10 K, the
gas would be essentially uncoupled from the dust except at very
high densities, and is expected to have temperatures of ∼100 K
(e.g. Glover & Clark 2012c). The second main difference is visible
at late times (the right-most panels in Fig. 3). At t ≈ 1.15tff, two

sub-clusters of protostars merge near the centre of the cloud. The
merger of the dense clumps and dynamical interactions between
protostars lead to increased protostellar accretion rates and a burst
of radiation which heats the central region of the cloud. However,
with higher opacities, the cloud is more optically thick and the
radiation trapped by the cloud heats the matter significantly. This
results in heating of the cloud to distances of ≈0.1 pc from the
centre in the Z = 1 Z� calculation (reported by Bate 2012), and
even more dramatic heating to distances of ≈0.3 pc in the Z = 3 Z�
calculation.

We follow the calculations to 1.20tff (228 280 yr) which is
9.0 × 104 yr after the star formation began. At this stage 78−88 M�
of gas (16–18 per cent) has been converted into 170–198 stars and
brown dwarfs, depending on the calculation (Table 1). Despite the
huge variation in opacity (a factor of 300), the amount of gas con-
verted into stars and brown dwarfs, the numbers of objects, and
their mean and median masses shows little variation between the
four calculations (Table 1, columns 7–9). The median mass varies
by 42 per cent at most (from 0.18 to 0.25 M�), while the mean
mass varies by 25 per cent at most (from 0.40 to 0.49 M�) and
the values are within the 2σ formal statistical uncertainties of each
other. We also provide the mean values of the logarithm of the
masses. It is interesting to note that the two calculations with the
most different characteristic masses are the two calculations with
the lowest opacities. The Z = 0.1 Z� has the highest mean and
median stellar masses, while the Z = 0.01 Z� calculation has the
lowest. The Z = 0.1 Z� calculation also produces the most mas-
sive star (4.56 M�), while the other calculations produce stars with
masses up to 2.92 M� (Z = 0.01 Z�), 3.84 M� (Z = 1 Z�), and
3.71 M� (Z = 3 Z�).

We investigate the significance of these variations in the mass
distributions in the next section. Before that, we examine the star
formation rates in terms of mass and the numbers of stars and
brown dwarfs (Fig. 4). In the left-hand panel, we plot the total
stellar mass as a function of time for each of the calculations. It can
be seen that in terms of stellar mass, there is a slow star formation
rate of ≈5 × 10−4 M� yr−1 from ≈0.8 to 1.0tff followed by an
increase to ≈2 × 10−3 M� yr−1 after ≈1.0tff. The star formation
rate is quite constant after this transition. Gas is converted into stars
slightly more slowly in the lowest opacity calculation, presumably
due to the slightly higher temperatures in the low-density gas due
to the less effective cooling, but the other three calculations are
indistinguishable. In terms of the number of stars and brown dwarfs
versus time (centre panel), there is no obvious difference between
the calculations. This is also true of the number of objects versus the
total stellar mass (right-hand panel), except that the lowest opacity
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Dependence of stellar properties on opacity 291

Figure 2. The global evolution of column density for each of the radiation hydrodynamical calculations from time t = 0.90 to 1.20tff. From top to bottom,
the rows show the evolution of the calculations with opacities corresponding to metallicities of 1/100, 1/10, 1, and 3 times solar, respectively. Shocks lead to
the dissipation of the turbulent energy that initially supports the cloud, allowing parts of the cloud to collapse. By t = 1.10tff, each calculation has produced
several main sub-clusters. Each panel is 0.4 pc (82, 500 au) across. Time is given in units of the initial free-fall time, tff = 1.90 × 105 yr. The panels show the
logarithm of column density, N, through the cloud, with the scale covering −1.4 < log N < 1.0 with N measured in g cm−2. White dots represent the stars and
brown dwarfs.

calculation seems to have two ‘bursts’ where it forms a lot of objects
at t ≈ 1tff and again near the end of the calculation. The latter burst is
partially responsible for the lower median and mean stellar masses
– at t = 1.18tff, the median and mean masses for the Z = 0.01 Z�
calculation are 0.20 and 0.44 M�, respectively.

Finally, we note that in each of the new calculations some stel-
lar mergers occurred. The Z = 0.01 Z� calculation had 21 stellar
mergers (i.e. ≈10 per cent of the stars), the Z = 0.1 Z� calculation
had seven stellar mergers, and the Z = 3 Z� calculation had only
two stellar mergers. No mergers occurred in the solar metallicity
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292 M. R. Bate

Figure 3. The global evolution of gas temperature for each of the radiation hydrodynamical calculations from time t = 0.90 to 1.20tff. From top to bottom,
the rows show the evolution of the calculations with opacities corresponding to metallicities of 1/100, 1/10, 1, and 3 times solar, respectively. At early times,
the gas in the shocks is hotter with lower opacities as the dust cooling is inefficient. At later times, the higher opacity, more optically thick clouds are
heated more strongly by the thermal feedback from the protostars. Each panel is 0.4 pc (82 500 au) across. Time is given in units of the initial free-fall time,
tff = 1.90 × 105 yr. The panels show the logarithm of mass weighted gas temperature, Tg, through the cloud, with the scale covering 9−100 K. White dots
represent the stars and brown dwarfs.

calculation, but this calculation had a slightly smaller merger radius
(2 R� rather than 3 R�). Examining the records of the sink parti-
cle trajectories from the solar metallicity calculation, if the larger
merger radius was used one merger would have occurred. Thus,
we find that stellar mergers occur more frequently with decreas-

ing opacity. The reason for the opacity dependence of the numbers
of mergers will be discussed in Section 5. In Fig. 5, we plot the
masses and times involved in the stellar mergers. There is no appar-
ent dependence of the frequency of mergers on stellar mass – sink
particles with masses ranging from 12 Jupiter masses to 2.2 M�
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Dependence of stellar properties on opacity 293

Figure 4. The star formation rates obtained for each of the four radiation hydrodynamical calculations. We plot: the total stellar mass (i.e. the mass contained
in sink particles) versus time (left-hand panel), the number of stars and brown dwarfs (i.e. the number of sink particles) versus time (centre panel), and the
number of stars and brown dwarfs versus the total stellar mass (right-hand panel). The different line types are for opacities corresponding to metallicities of
1/100 (long dashed), 1/10 (dotted), 1 (solid), and 3 (dot–dashed) times solar. Time is measured from the beginning of the calculation in terms of the free-fall
time of the initial cloud (bottom) or years (top). The rate at which mass is converted into stars is almost independent of the opacity, but for the lowest opacity
the rate appears to be slightly lower and the rate at which new stars and brown dwarfs form seems to be more variable.

Figure 5. A summary of the protostellar mergers that occurred in the low opacity Z = 0.01 Z� (left) and Z = 0.1 Z� (right) calculations. For each merger,
we plot the masses of each of the two progenitors at the time they were formed as open circles, and each of these is linked by a dotted line to a filled circle
which is plotted at the time of the merger and gives the mass of the merged object. It can be seen that brown dwarfs, low-mass stars, and super-solar stars are
all involved in protostellar mergers. There is no plot for the Z = 3 Z� calculation because only two mergers occur, involving objects of 0.15 and 0.075 M�
and 1.5 and 0.8 M�, respectively. Both of these occurred at t ≈ 1.14tff.

were involved in collisions with 18 of the 30 mergers involving stars
with masses in the 0.1–1 M� range. As expected, most of the brown
dwarfs involved in stellar mergers are involved shortly after they first
form, since the reason they have low masses is that they have not had
long to accrete to higher masses (Bate & Bonnell 2005). Bonnell,
Bate & Zinnecker (1998) proposed that protostellar collisions
may be an important ingredient in the formation of massive stars
(M � 10 M�) in a cluster environment. Here, we find that protostars
of all masses may undergo collisions, but we also note that by the
end of the Z = 0.01 Z� calculation two of its four most massive
stars have suffered collisions, and that in the Z = 0.1 Z� calculation
the most massive star was also formed in through a collision.

3.2 The initial mass function

In Fig. 6, we compare the differential IMFs at the end of the four ra-
diation hydrodynamical calculations with different opacities. Each

is compared with the parameterizations of the observed IMF given
by Chabrier (2005), Kroupa (2001), and Salpeter (1955). There is
no obvious difference between the mass functions, indicating that
the IMFs produced by the calculations do not depend strongly on
opacity. We do note, however, that the calculation with the lowest
opacity seems to produce somewhat more brown dwarfs than the
other calculations.

The cumulative IMFs from the four calculations are compared
with each other in Fig. 7. Also plotted is the parametrization of
the observed IMF given by Chabrier (2005). The apparent excess
of brown dwarfs in the lowest opacity calculation can be seen,
with around 30 per cent of the objects being brown dwarfs in the
Z = 0.01 Z� calculation, while only 20 per cent of the objects are
brown dwarfs in the other three calculations. However, apart from
this difference, there is little to distinguish between the four IMFs.
This conclusion is borne out by running Kolmogorov–Smirnov tests
on each pair of distributions. Formally, they are all indistinguishable
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294 M. R. Bate

Figure 6. Histograms giving the initial mass functions of the stars and brown dwarfs produce by the four radiation hydrodynamical calculations, each at
t = 1.20tff. The double hatched histograms are used to denote those objects that have stopped accreting (defined as accreting at a rate of less than 10−7 M� yr−1),
while those objects that are still accreting are plotted using single hatching. Each of the mass functions is in good agreement with the Chabrier (2005) fit to
the observed IMF for individual objects. Two other parameterizations of the IMF are also plotted: Salpeter (1955) and Kroupa (2001). Despite the opacity
varying by a factor of up to 300 between the calculations, the IMFs are indistinguishable, though we note that there is a potential excess of brown dwarfs for
the calculation with the lowest opacity (Z = 0.01 Z�).

from each other. The two most different mass functions are those
from the Z = 0.01 Z� and Z = 0.1 Z� calculations, but even these
have a 1.2 per cent probability of being drawn from the same under-
lying distribution (i.e. they only differ at the level of approximately
2.5σ ). Each of the four mass functions are also indistinguishable
from the Chabrier (2005) IMF.

Note that, in fact, the calculations produce protostellar mass func-
tions (PMFs) rather than IMFs (Fletcher & Stahler 1994a,b; McKee
& Offner 2010) because some of the objects are still accreting when
the calculation is stopped. In this paper, we refer to each mass
function as an ‘IMF’ because we compare it to the observed IMF
since the PMF cannot yet be determined observationally. However,
it should be noted that how a PMF transforms into the IMF depends
on the accretion history of the protostars and how the star formation
process is terminated. Bate (2012) found that the distribution of
stellar masses in the solar-metallicity calculation evolved such that,
no matter when the distribution was examined, it was always con-
sistent with being drawn from a constant underlying mass function.
Within the statistical uncertainties, the median stellar mass and the
overall shape of the distribution did not change with time. The same
is also true of the three new calculations presented here. Therefore,
in stopping the calculations at t = 1.20tff, we do not seem to have
stopped at a special point in the evolution of the clusters. Rather,
at any given time, the IMFs are always ‘fully formed’, even though
the number of stars and the maximum stellar mass both increase
with time.

3.3 Multiplicity as a function of primary mass

The formation of multiple systems in a radiation hydrodynamical
calculation and the evolution of their properties (e.g. separations)
during their formation was discussed in some detail by Bate (2012)
and will not be repeated here. As mentioned above, in this paper,
our primary purpose is to investigate the dependence of the resulting
statistical properties of stars and brown dwarfs on opacity.

As in Bate (2009a) and Bate (2012), to quantify the fraction of
stars and brown dwarfs that are in multiple systems, we use the
multiplicity fraction, mf, defined as a function of stellar mass. We
define this as

mf = B + T + Q

S + B + T + Q
, (4)

where S is the number of single stars within a given mass range
and, B, T, and Q are the numbers of binary, triple, and quadruple
systems, respectively, for which the primary has a mass in the same
mass range. This measure of multiplicity is relatively insensitive to
both observational incompleteness (e.g. if a binary is found to be
a triple it is unchanged) and further dynamical evolution (e.g. if an
unstable quadruple system decays the numerator only changes if it
decays into two binaries) (Hubber & Whitworth 2005; Bate 2009a).

The method we use for identifying multiple systems is the same
as that used by Bate (2009a) and Bate (2012), and a full description
of the algorithm is given in the former paper. When analysing the
simulations, some subtleties arise. For example, many ‘binaries’ are
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Figure 7. The cumulative stellar mass distributions produced by the four
radiation hydrodynamical calculations with different opacities, correspond-
ing to metallicities of Z = 0.01 Z� (green long-dashed line), Z = 0.1 Z�
(red dashed line), Z = Z� (black solid line), and Z = 3 Z� (blue dot–dashed
line). We also plot the Chabrier (2005) IMF (black dotted line). The ver-
tical dashed line marks the stellar/brown dwarf boundary. The form of the
stellar mass distribution does not vary significantly with different opacities:
Kolmogorov–Smirnov tests show that even the two most different distri-
butions (Z = 0.01 Z� and Z = 0.1 Z�) have a 1.2 per cent probability of
being drawn from the same underlying distribution (equivalent to a ≈2.5σ

difference). However, in the lowest opacity case there does seem to be a
slight excess of brown dwarfs.

in fact members of triple or quadruple systems and some ‘triple’
systems are components of quadruple or higher order systems. From
this point on, unless otherwise stated, we define the numbers of
multiple systems as follows. The number of binaries excludes those
that are components of triples or quadruples. The number of triples
excludes those that are members of quadruples. However, higher
order systems are ignored (e.g. a quintuple system may consist of
a triple and a binary in orbit around each other, but this would be
counted as one binary and one triple). We choose quadruple systems
as a convenient point to stop as it is likely that most higher order
systems will not be stable in the long term and would decay if the
cluster was evolved for many millions of years.

The numbers of single and multiple stars produced by each of
the three calculations with the highest opacities are given in Table 2
following these definitions. We do not provide the statistics of the
multiple systems for the lowest opacity calculation because the ther-
mal behaviour of the gas is so unrealistic in this calculation that we
do not believe that it is worthwhile discussing the calculation any
further. We do note, however, that, as with the mass function, we
find no statistically significant difference between the lowest opac-
ity calculation and the other calculations in terms of the multiple
systems that are produced.

Bate (2012) provided a table of the properties of each of the multi-
ple systems produced by the solar metallicity calculation. However,
in total the three calculations with the highest opacities produce
108 multiple systems. Therefore, rather than include them with the
paper, this information is provided electronically in ASCII tables.
For all four calculations, we provide tables that list the masses,
formation times, and final accretion rates of the stars and brown
dwarfs (see Table 3 for an example). These tables are given file
names such as Table3_Stars_Metal01.txt for the Z = 0.1 Z�

Table 2. The numbers of single and multiple systems for different primary
mass ranges at the end of the three radiation hydrodynamical calculations
with the highest opacities (Z ≥ 0.1 Z�).

Mass range (M�) Single Binary Triple Quadruple

Metallicity Z = 0.1 Z�
M < 0.03 7 0 0 0

0.03 ≤ M < 0.07 17 1 0 0
0.07 ≤ M < 0.10 11 0 0 0
0.10 ≤ M < 0.20 10 2 1 0
0.20 ≤ M < 0.50 25 9 0 4
0.50 ≤ M < 0.80 6 2 1 2
0.80 ≤ M < 1.2 0 2 0 1

M > 1.2 0 4 4 2

Metallicity Z = Z�
M < 0.03 7 0 0 0

0.03 ≤ M < 0.07 20 0 0 0
0.07 ≤ M < 0.10 8 3 0 0
0.10 ≤ M < 0.20 17 7 1 0
0.20 ≤ M < 0.50 21 9 2 2
0.50 ≤ M < 0.80 5 2 0 1
0.80 ≤ M < 1.2 2 1 1 0

M > 1.2 4 6 1 4

Metallicity Z = 3 Z�
M < 0.03 8 0 0 0

0.03 ≤ M < 0.07 24 0 0 0
0.07 ≤ M < 0.10 13 1 0 0
0.10 ≤ M < 0.20 18 5 2 0
0.20 ≤ M < 0.50 18 5 3 2
0.50 ≤ M < 0.80 4 2 0 2
0.80 ≤ M < 1.2 3 3 0 1

M > 1.2 4 1 3 3

All masses, three calculations 252 65 19 24

Table 3. For each of the four calculations, we provide online tables of
the stars and brown dwarfs that were formed, numbered by their order of
formation, listing the mass of the object at the end of the calculation, the
time (in units of the initial cloud free-fall time) at which it began to form
(i.e. when a sink particle was inserted), and the accretion rate of the object
at the end of the calculation (precision ≈10−7 M� yr−1). The first five lines
of the table for the solar metallicity calculation are provided.

Object number Mass tform Accretion rate
(M�) (tff) (M� yr−1)

1 1.3749 0.7266 3.18 × 10−5

2 1.8626 0.8034 2.3 × 10−6

3 2.2732 0.8046 0
4 1.3284 0.8066 3.0 × 10−6

5 2.5311 0.8120 4.3 × 10−6

calculation. For each calculation with Z ≥ 0.1 Z�, we also pro-
vide tables that list the properties of each multiple system (see
Table 4 for an example). These tables are given file names such as
Table4_Multiples_Metal3.txt for the Z = 3 Z� calculation.

The overall multiplicities for all stars and brown dwarfs from
each of the three remaining calculations are 32 per cent, 32 per cent,
and 26 per cent, each with 1σ uncertainties of ±5 per cent for opac-
ities corresponding to metallicities of 1/10, 1, and 3 times solar,
respectively. Therefore, there is no significant overall dependence
of the multiplicity on opacity.

However, observationally, it is clear that the fraction of stars or
brown dwarfs that are in multiple systems increases with stellar
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Table 4. For each of the three calculations with the highest opacities (Z ≥ 0.1 Z�), we provide online tables of the properties of the multiple systems at the
end of each calculation. The structure of each system is described using a binary hierarchy. For each ‘binary’, we give the masses of the most massive star
Mmax in the system, the least massive star Mmin in the system, the masses of the primary M1 and secondary M2, the mass ratio q = M2/M1, the semimajor axis
a, the period P, the eccentricity e. For binaries, we also give the relative spin angle, and the angles between orbit and each of the primary’s and secondary’s
spins. For triples, we give the relative angle between the inner and outer orbital planes. For binaries, Mmax = M1 and Mmin = M2. However, for higher order
systems, M1 gives the combined mass of the most massive sub-system (which may be a star, binary, or a triple) and M2 gives the combined mass of the least
massive sub-system (which also may be a star, a binary, or a triple). Multiple systems of the same order are listed in order of increasing semimajor axis. As
examples, we provide selected lines from the table from the solar metallicity calculation.

Object numbers No. of No. in Mmax Mmin M1 M2 q a P e Relative spin Spin1 Spin2

objects system or orbit –orbit –orbit
angle angle angle

(M�) (M�) (M�) (M�) (au) (yr) (◦) [deg] [deg]

25, 26 2 4 1.807 1.233 1.807 1.233 0.682 0.91 0.50 0.610 7 31 27
64, 79 2 3 0.837 0.103 0.837 0.103 0.123 1.95 2.82 0.242 48 28 57
44, 82 2 4 1.028 0.908 1.028 0.908 0.883 14.28 38.79 0.008 8 35 31
4, 84 2 4 1.328 1.062 1.328 1.062 0.800 19.29 54.80 0.018 12 40 41
(25, 26), 37 3 4 1.807 1.233 3.041 1.684 0.554 5.53 5.98 0.188 34 – –
(64, 79), 55 3 3 0.859 0.103 0.939 0.859 0.914 18.08 57.31 0.104 4 – –
(4, 84), (44, 82) 4 4 1.328 0.908 2.391 1.935 0.810 138.88 786.64 0.033 – – –
((25, 26), 37), 40 4 4 3.379 1.233 4.725 3.379 0.715 176.55 823.79 0.308 – – –

mass (e.g. Kraus & Hillenbrand 2012; Duchêne & Kraus 2013),
with different surveys examining primaries with different masses:
massive stars (Mason et al. 1998; Preibisch et al. 1999; Shatsky
& Tokovinin 2002; Kobulnicky & Fryer 2007; Mason et al. 2009;
Chini et al. 2012; Peter et al. 2012; Sana et al. 2012; Rizzuto et al.
2013; Sota et al. 2014), intermediate-mass stars: (Patience et al.
2002; Kouwenhoven et al. 2007; Chini et al. 2012; Fuhrmann &
Chini 2012; De Rosa et al. 2014), solar-type stars (Duquennoy &
Mayor 1991; Raghavan et al. 2010), M-dwarfs (Fischer & Marcy
1992; Reid & Gizis 1997; Janson et al. 2012), and very low mass
(VLM) stars and brown dwarfs (Burgasser et al. 2003, 2006; Close
et al. 2003; Siegler et al. 2005; Basri & Reiners 2006; Reid et al.
2006, 2008; Allen 2007; Duchêne et al. 2013; Pope, Martinache &
Tuthill 2013).

In Fig. 8, for each of the three radiation hydrodynamical cal-
culations with the highest opacities, we compare the multiplic-
ity fraction of the stars and brown dwarfs as functions of stellar
mass with the values obtained from observational surveys. The
results from a variety of observational surveys (see the figure
caption) are plotted using black open boxes with associated er-
ror bars and/or upper/lower limits. The data point from the sur-
vey of Duquennoy & Mayor (1991) is plotted using dashed lines
for the error bars since this survey has been superseded by the
lower value of Raghavan et al. (2010). The results from the sim-
ulations have been plotted in two ways. First, using the num-
bers given in Table 2, we compute the multiplicities in six mass
ranges: low-mass brown dwarfs (masses <0.03 M�), VLM objects
excluding the low-mass brown dwarfs (masses 0.03−0.10 M�),
low-mass M-dwarfs (masses 0.10−0.20 M�), high-mass M-dwarfs
(masses 0.20−0.50 M�), K-dwarfs and solar-type stars (masses
0.50−1.20 M�), and intermediate mass stars (masses >1.2 M�).
The filled blue squares give the multiplicity fractions in these mass
ranges, while the surrounding blue hatched regions give the range
in stellar masses over which the fraction is calculated and the 1σ

(68 per cent) uncertainty on the multiplicity fraction calculated us-
ing Poisson statistics. Note that the uncertainties in the equivalent
figure presented by Bate (2012) for the solar metallicity calculation
were a factor of 2 too small by mistake. In addition to the blue
squares, a thick solid line gives the continuous multiplicity fraction
computed using a sliding lognormal-weighted average from the re-

sults from each simulation. The width of the lognormal average is
half a decade in stellar mass. The dotted lines give the approximate
1σ (68 per cent) uncertainty on the sliding lognormal average.

All three calculations clearly produce multiplicity fractions that
strongly increase with increasing primary mass. Furthermore, the
values in each mass range are in agreement with observations of
field stars. There is no significant dependence of the multiplicity
on opacity. For primary masses up to 1.2 M�, the values are in
close agreement between all the calculations. The Z = 0.1 Z �
calculation has a higher multiplicity for intermediate-mass stars
(M1 > 1.2 M�) than the other two calculations, but the result is not
statistically significant.

3.4 Separation distributions of multiples

Observationally, the mean and median separations of binaries are
found to depend on primary mass (see the review of Duchêne &
Kraus 2013). Duquennoy & Mayor (1991) found that the mean
separation (in the logarithm of separation) for solar-type binaries
was ≈30 au. In the recent larger survey of solar-type stars, Raghavan
et al. (2010) found ≈40 au. Fischer & Marcy (1992) and Janson
et al. (2012) found indications of smaller mean separations for M-
dwarf binaries of ≈10 and 16 au, respectively. Finally, VLM binaries
(those with primary masses <0.1 M�) are found to have a mean
separation �4 au (Close et al. 2003, 2007; Siegler et al. 2005), with
few VLM binaries found to have separations greater than 20 au,
particularly in the field (Allen et al. 2007). A list of VLM multiple
systems can be found at http://vlmbinaries.org/.

Although we are able to follow binaries as close as 0.015 au
before they are assumed to merge in the radiation hydrodynamical
calculations carried out for this paper, the sink particle accretion
radii are 0.5 au. Thus, dissipative interactions between stars and gas
are omitted on these scales which likely affects the formation of
very close systems (Bate, Bonnell & Bromm 2002a).

In Fig. 9, we present the separation (semimajor axis) distributions
of the stellar (primary masses greater than 0.10 M�) multiples. The
distributions are compared with the lognormal distributions from the
surveys of M-dwarfs by Janson et al. (2012; solid lines) and solar-
type stars by Raghavan et al. (2010; dotted lines). In each case, the
filled histogram gives the separations of binary systems, while the
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Figure 8. Multiplicity fraction as a function of primary mass at the end
of each of the three radiation hydrodynamical calculations with the highest
opacities. The blue filled squares surrounded by shaded regions give the
results from the calculations with their statistical uncertainties. The thick
solid lines give the continuous multiplicity fractions from the calculations
computed using a sliding lognormal average and the dotted lines give the
approximate 1σ confidence intervals around the solid line. The open black
squares with error bars and/or upper/lower limits give the observed multi-
plicity fractions from the surveys of Close et al. (2003), Basri & Reiners
(2006), Fischer & Marcy (1992), Raghavan et al. (2010), Duquennoy &
Mayor (1991), Kouwenhoven et al. (2007), Rizzuto et al. (2013), Preibisch
et al. (1999) and Mason et al. (1998), from left to right. Note that the
error bars of the Duquennoy & Mayor (1991) results have been plotted us-
ing dashed lines since this survey has been superseded by Raghavan et al.
(2010). The observed trend of increasing multiplicity with primary mass is
well reproduced by all calculations. Note that because the multiplicity is a
steep function of primary mass it is important to ensure that similar mass
ranges are used when comparing the simulations with observations.

double hatched region adds the separations from triple systems (two
separations for each triple, determined by decomposing a triple into
a binary with a wider companion), and the single hatched region
includes the separations of quadruple systems (three separations for
each quadruple which may be comprised of two binary components
or a triple with a wider companion).

In Fig. 9, it appears that there may be a weak trend whereby the
peak of the distribution moves from the 1 to 10 au bin with low
opacities to the 10–100 au bin at the highest opacity. To investigate
this further, in Fig. 10, we provide the cumulative separation dis-
tributions for each of the calculations. This demonstrates that the
apparent trend is an artefact of the binning. The median separa-
tions are 15.5 au (Z = 0.1 Z�), 14.8 au (Z = 1 Z�), and 16.7 au
(Z = 3 Z�), and performing Kolmogorov–Smirnov tests between
the distributions shows that they are statistically indistinguishable.

The Z = 0.1 Z� and Z = 3 Z� calculations each produced only
one VLM binary (primary masses M1 < 0.1 M�), and the solar-
metallicity calculation only produced three. Because of these small
numbers, we defer discussion of the VLM binaries until Section 4,
where we discuss the statistical properties of the combined sample.

3.5 Mass ratios distributions of multiples

In addition to the separation distributions of the multiple systems,
we can investigate their mass ratio distributions. We only consider
binaries, but we include binaries that are inner components of triple
and quadruple systems. A triple system composed of a binary with
a wider companion contributes the mass ratio from the closest pair,
as does a quadruple composed of a triple with a wider companion.
A quadruple composed of two pairs orbiting each other contributes
two mass ratios – one from each of the pairs.

In Fig. 11, we present the mass ratio distributions of the bi-
naries with primary masses ≥0.5 M� (top panels) and M-dwarfs
with masses 0.1 M� ≤ M1 < 0.5 M� (bottom panels) for each of
the three calculations with the highest opacities (left to right). We
compare the M-dwarf mass ratio distribution to that of Janson et al.
(2012), and the higher mass stars to the mass ratio distribution of bi-
naries with solar-type primaries obtained by Raghavan et al. (2010).
As for the separations of the VLM binaries, we defer discussion of
the mass ratios of the five VLM binaries until Section 4, but we note
that all have mass ratios M2/M1 > 0.6.

Examining the distributions, there is no firm evidence of a de-
pendence of the mass ratio distributions on opacity. It could be
noted that the lowest opacity calculation produces a higher propor-
tion of low-mass ratio M-dwarf systems (M2/M1 < 0.4) than the
two higher opacity calculations. However, the reverse is true of the
solar-type (M1 > 0.5 M�) binaries (the two higher opacity calcu-
lations give the greatest proportions of low-mass ratio systems).
Interestingly, both of the new calculations produce large numbers
of solar-type ‘twins’ – binaries with mass ratios M2/M1 > 0.8. The
solar-metallicity calculation of Bate (2012) produced an essentially
flat mass ratio distribution for solar-type stars, in good agreement
with Raghavan et al. (2010). But in each of the new calculations
approximately half of the binaries have mass ratios M2/M1 > 0.8.
This will be discussed further below when we discuss the combined
sample.

4 T H E C O M B I N E D STAT I S T I C S

As discussed above, there is little evidence that the stellar properties
produced by the calculations depend on opacity, and formally we
cannot distinguish between the four calculations whose opacities
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Figure 9. The distributions of separations (semimajor axes) of multiple systems with stellar primaries (M∗ > 0.1 M�) produced by the three radiation
hydrodynamical calculations with the highest opacities. The solid, double hatched, and single hatched histograms give the orbital separations of binaries,
triples, and quadruples, respectively (each triple contributes two separations, each quadruple contributes three separations). The solid curve gives the M-dwarf
separation distribution (scaled to match the area) from the M-dwarf survey of Janson et al. (2012), and the dotted curve gives the separation distribution for
solar-type primaries of Raghavan et al. (2010). Note that since most of the simulated systems are low mass, the distributions are expected to match the Janson
et al. distribution better than that of Raghavan et al. (see also Fig. 15). The vertical dotted line gives the resolution limit of the calculations as determined by
the accretion radii of the sink particles (0.5 au).

Figure 10. The cumulative semimajor axis (separation) distributions of
the multiple systems with stellar primaries (M∗ > 0.1 M�) produced by
the three radiation hydrodynamical calculations with the highest opacities.
All orbits are included in the plot (i.e. two separations for triple systems,
and three separations for quadruple systems). The opacities correspond to
metallicities of Z = 0.1 Z� (red dashed line), Z = Z� (black solid line),
and Z = 3 Z� (blue dot–dashed line). The vertical dashed line marks the
resolution limit of the calculations as determined by the accretion radii of the
sink particles. Performing Kolmogorov–Smirnov tests on the distributions
shows that they are statistically indistinguishable.

range over a factor of 300. Therefore, in this section, we amalga-
mate the stellar systems from three of the radiation hydrodynamical
calculations with the highest opacities (Z ≥ 0.1 Z�) and discuss the
combined sample of 535 stars and brown dwarfs. We exclude the
lowest opacity calculation from this combined sample because, as
discussed in Section 2.4, the thermal behaviour of the low-density
gas in this calculation cannot be considered to be realistic. However,
we note that our conclusions in this section are the same, whether
this calculation is included or not. This combined sample provides
lower statistical uncertainties than each of the calculations individu-
ally, allowing us to better compare the statistical properties with the

results of observational surveys. We also note that the comparisons
discussed below are usually with field populations, which anyway
contain stars with a range of metallicities.

4.1 The combined initial mass function

The combined IMF is given in Fig. 12 in both differential and cumu-
lative forms. The lowest mass object has a mass of just 6.3 MJ, while
the most massive star has a mass of 4.56 M� (and is still accreting
when the calculations are stopped). The close agreement with the
parametrization of the observed IMF given by Chabrier (2005) is as-
tonishing, and a Kolmogorov–Smirnov test shows the two IMFs to
be indistinguishable (there is a 9 per cent probability that the numer-
ical IMF could have been drawn randomly from Chabrier’s IMF).
Observationally, the form of the IMF in the sub-stellar regime is still
quite uncertain. Rather than fit a function to the IMF in the low-mass
regime, another method is to compare the number of brown dwarfs
to the number of stars with masses less than that of the Sun. Ander-
sen et al. (2008) analyse a large number of young clusters and find
that the ratio of stars with masses 0.08−1.0 M� to brown dwarfs
with masses 0.03−0.08 M� is N(0.08 − 1.0)/N(0.03 − 0.08) ≈
5 ± 2. The recent analysis of the mass functions in NGC1333 and
IC348 by Scholz et al. (2013) finds ratios of 1.9–2.4 and 2.9–4.0 in
these two clusters, respectively. For the combined sample, this ratio
is 344/87 = 3.95, broadly consistent with observations. The ratio of
all stars to brown dwarfs (M∗ < 0.08 M�) is 423:112 = 3.8.

Although the IMF of the combined sample and Chabrier’s IMF
are formally indistinguishable, we do note that there appears to be
a deficit of stars with masses greater than 4 M�. The simulations
produce one, but the Chabrier IMF would predict that there should
be seven or eight. This may be related to the age old question of
whether the IMF obtained by adding together the stars from several
low-mass clouds is the same as the IMF produced by a single large
cloud of the same total mass. In other words, does the mass of the
most massive star depends on the mass of the stellar group it is con-
tained within, or is it consistent with being drawn randomly from
a universal mass function (Larson 1982, 2003; Elmegreen 1983,
2000; Weidner & Kroupa 2004, 2006; Oey & Clarke 2005; Selman
& Melnick 2008; Weidner, Kroupa & Bonnell 2010)? The result
obtained here, from adding together the results from three 500 M�
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Figure 11. The mass ratio distributions of binary systems with stellar primaries in the mass ranges M1 > 0.5 M� (top row) and M1 = 0.1–0.5 M� (bottom
row) produced by the three radiation hydrodynamical calculations with the highest opacities (left to right). The solid black lines give the observed mass ratio
distributions of Raghavan et al. (2010) for binaries with solar-type primaries (top row) and Janson et al. (2012) for M-dwarfs (bottom row). The observed mass
ratio distributions have been scaled so that the areas under the distributions match those from the simulation results. There is no obvious dependence of the
mass ratio distributions on opacity.

Figure 12. The differential (histogram; left-hand panel) and cumulative (solid line; right-hand panel) IMFs produced by combining the stars and brown dwarfs
from the three calculations with the highest opacities. In total, there are 535 stars and brown dwarfs. The double hatched histogram denotes those objects
that have stopped accreting (defined as accreting at a rate of less than 10−7 M� yr−1), while those objects that are still accreting when the calculations were
stopped are plotted using single hatching. The differential IMF is compared with the parameterizations of the observed IMF by Salpeter (1955), Kroupa (2001),
and Chabrier (2005). The cumulative IMF is compared with the cumulative IMF (dashed line; right-hand panel) from the parametrization of the observed
IMF by Chabrier (2005). The vertical dashed line marks the stellar/brown dwarf boundary. A Kolmogorov–Smirnov test shows the numerical IMF to be
indistinguishable from Chabrier’s parametrization of the IMF (there is a 9 per cent probability that the numerical IMF could have been drawn from Chabrier’s
fit to the observed IMF).

clouds, implies that the highest mass star is related to the total
mass of the star-forming cloud (and its resulting cluster). It must
be noted, however, that most of the stars with masses greater than
one solar mass are still accreting when the calculations are stopped

and if they were evolved for longer the discrepancy may disappear.
Indeed, while there is a slight deficit of high-mass stars, there ap-
pears to be an excess of stars with 1.5–4 M� that could accrete to
erase the high-mass deficit if the calculations were followed further.
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Furthermore, the four calculations are not strictly independent of
each other since they all began with the same initial density and
velocity structure. It is likely that starting from clouds with equal
masses but a range of initial conditions (e.g. different velocity fields)
may result in a greater range of maximum stellar mass, and may
smooth out the excess.

Below 0.03 M�, the IMF is very poorly constrained observation-
ally. By combining the results of the three calculations, we find that
the numerical IMF is reasonably well described by a continuation
of Chabrier’s IMF. The numbers from the combined sample fall
slightly below those expected for the Chabrier IMF, but the deficit
is not statistically significant. As discussed above, there is no strong
evidence for the abundance of the low-mass brown dwarfs depend-
ing on metallicity. Although the lowest mass object produced by the
solar-metallicity calculation of Bate (2012) was 17.6MJ, the lowest
mass object from all of the calculations (6.3MJ) was produced by
the calculation with the highest metallicity, and the Z = 0.1 Z�
calculation produced four brown dwarfs with masses less than
20MJ with a minimum mass of 12MJ. The lowest mass object
in each calculation had stopped accreting before the calculation
was stopped. As expected, the masses of the lowest-mass brown
dwarfs are similar to the minimum masses predicted by models
of the opacity limit for fragmentation (Low & Lynden-Bell 1976;
Rees 1976; Silk 1977a,b; Boyd & Whitworth 2005). The lowest
mass objects also have similar masses to the estimated masses of
some of the lowest-mass objects observed in star-forming regions
(e.g. Zapatero Osorio et al. 2000, 2002; Kirkpatrick et al. 2001,
2006; Lodieu et al. 2008; Luhman et al. 2008, 2009; Bihain et al.
2009; Burgess et al. 2009; Weights et al. 2009; Todorov, Luhman
& McLeod 2010; Quanz et al. 2010). Neither observations nor the
simulations can currently determine an exact value for a cut-off
mass, if one exists.

4.2 Multiplicity

In Fig. 13, we plot the multiplicity as a function of primary mass
for the combined sample of 535 stars and brown dwarfs from the
three calculations with the greatest opacities. The solid line gives
the continuous multiplicity fraction computed using a sliding log-
normal average, while the dotted lines give the approximate 1σ and
2σ confidence intervals around the solid line due to the statistical
uncertainties. The numerical result is compared with the results of
the observational surveys referred to in the figure caption. The ob-
served trend of increasing multiplicity with primary mass is well
reproduced by the combined sample and the results for different
ranges of primary mass are consistent with the multiplicities from
current observational surveys.

It should be noted that the statistical uncertainties from the com-
bined numerical sample are smaller than the uncertainties from all
of the observational surveys, with the exception of the Raghavan
et al. (2010) survey. Larger observational samples will be required
in the future to avoid comparisons between numerical simulations
and observations being limited by observational uncertainties. In
particular, the multiplicities of intermediate and massive stars are
poorly constrained observationally, and there is little information
on the multiplicity of low-mass brown dwarfs. The multiplicity of
VLM stars and brown dwarfs of ≈20 per cent is typically derived
from samples with primary masses close to 0.1 M�, whereas the
numerical simulations predict that the multiplicity for low-mass
brown dwarfs (masses <30 Jupiter-masses) should be even lower
(<10 per cent) (see also Bate 2009a, 2012).

Figure 13. Multiplicity fraction as a function of primary mass for the
combined sample of the 535 stars and brown dwarfs from all the three
calculations with the highest opacities (Z ≥ 0.1 Z�). The solid line gives
the continuous multiplicity fraction from the calculations computed using
a sliding lognormal average. The dotted lines give the approximate 1σ and
2σ confidence intervals around the solid line. The open black squares with
error bars and/or upper/lower limits give the observed multiplicity fractions
from the surveys of Close et al. (2003), Basri & Reiners (2006), Fischer &
Marcy (1992), Raghavan et al. (2010), De Rosa et al. (2014), Kouwenhoven
et al. (2007), Rizzuto et al. (2013), Preibisch et al. (1999) and Mason et al.
(1998), from left to right. The observed trend of increasing multiplicity with
primary mass is well reproduced by the combined sample.

Finally, we note that the surveys with which we are comparing
the multiplicities are primarily of field stars rather than young stars.
This is necessary because surveys of young stars either do not sam-
ple a large range of separations and mass ratios, or the statistics
are too poor. However, in principle, there may be considerable evo-
lution of the multiplicities between the age of the stars when the
calculations were stopped (∼105 yr) and a field population. This
issue was investigated by Moeckel & Bate (2010) who took the
end point of a hydrodynamical calculation from Bate (2009a) and
evolved it to an age of 107 yr using an N-body code under a variety
of assumptions regarding the dispersal of the molecular cloud. Im-
portantly, Moeckel & Bate found that the multiplicity distribution
evolved very little during dispersal of the molecular cloud and was
surprisingly robust to different assumptions regarding gas dispersal.
They concluded that when star formation occurs in a clustered en-
vironment, the multiple systems that are produced are quite robust
against dynamical disruption during continued evolution. There-
fore, we do not expect the multiplicities presented in Figs 8 and 13
to evolve significantly as the stars evolve into a field population.
We also note that Parker & Reggiani (2013) recently performed a
series of N-body calculations to examine the dynamical evolution
of binaries in young clusters. They found that even when the sep-
aration distribution of binaries suffered evolution, the mass ratio
distributions of binaries were unchanged.

4.2.1 The frequencies of triple and quadruple systems

Consulting Table 2, we find that the combined sample includes 252
single stars/brown dwarfs, 65 binaries, 19 triples, and 24 quadruples.
This gives an overall frequency of triple and quadruple systems of
5.3+1.4

−1.2 per cent and 6.7+1.6
−1.3 per cent, respectively. In Fig. 14, we plot

the outer orbital period, PL, versus the inner orbital period, PS, for
each of the triples and quadruples, including the triples that are sub-
components of quadruples, and we distinguish between quadruples
that are composed of two pairs, and those that are composed of a
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Figure 14. The outer orbital period, PL versus the inner orbital period, PS

for the 43 triple or quadruple systems in the combined sample from the
three radiation hydrodynamical calculations with the highest opacities (Z ≥
0.1 Z�). Triples are plotted as red triangles, triples that are sub-components
of quadruples are plotted as blue filled squares, quadruples that contain
triples are plotted as black open squares, and quadruples that are composed
of two pairs are plotted as black open circles. The solid and dotted lines
denote equal periods and a period ratio PL/PS = 4.7, respectively. Systems
that lie below the dotted line are likely to be dynamically unstable and to
undergo further evolution.

triple and a fourth object. Note that there are three systems that are
not hierarchical (lying below the solid line) that would certainly
undergo further dynamical evolution. There are several more for
which PL/PS < 4.7 that are also very likely to evolve (i.e. they lie
below the dotted line), and in all there are 13 systems (3 triples
and 10 quadruples, including 2 quadruples composed of pairs) for
which PL/PS < 4.7 (1 − eL)−1.8(1 + eL)0.6, which is the stability
criterion of Mardling & Aarseth (2001), where eL is the outer orbital
eccentricity and we have ignored the very weak dependence on the
outer mass ratio of (1 + qL)0.1. Thus, further dynamical evolution
would almost certainly decrease the above frequencies, particularly
for the quadruple systems.

Bate (2012) obtained 5.4+3.1
−2.1 per cent and 8.1+3.5

−2.6 per cent, re-
spectively, while Bate (2009a) found slightly lower values from
the barotropic calculations, although the radiation hydrodynamic
results agree within the uncertainties. Bate (2009a, 2012) found
that the frequencies of high-order multiples increased strongly
with primary mass. This also appears to be the case here. For
VLM primaries, there are no triples or quadruples out of 120 sys-
tems. For M-dwarf primaries (0.10−0.50 M�) the frequency of
triples/quadruples is 10.4+3.0

−2.4 per cent, while for K-dwarfs to inter-
mediate mass stars the frequency is 35 ± 5 per cent.

Comparing these results with observations, Fischer & Marcy
(1992) found 7 triples and 1 quadruple amongst 99 M-dwarf pri-
maries giving a frequency of 8 ± 3 per cent, in reasonable agree-
ment. However, the larger, more recent survey of M-dwarfs by
Janson et al. (2012) only found a frequency of high-order systems
of ≈2 per cent. For solar-type primaries, the frequency of triple and
higher order multiple systems has been found to be 11 ± 1 per cent
by Raghavan et al. (2010) and 13 ± 1 per cent by Tokovinin (2014).

For primaries in the mass range 0.5−1.2 M�, the radiation hydro-
dynamical simulations give a frequency of 9/41 = 22 ± 7 per cent.
But five of the nine high-order systems break the stability crite-
rion of Mardling & Aarseth (2001), so the eventual frequency may
be similar to the observed fractions. In summary, the frequencies
of triples/quadruples obtained from the radiation hydrodynamical
calculation tend to be larger than those that are observed, but fur-
ther dynamical evolution is very likely to bring them into better
agreement.

Bate (2009a) found that quadruples composed of a triple and
a fourth outer component (so-called 3+1 systems) outnumbered
quadruples composed of two inner binaries (2+2 systems) by 2:1 in
a barotropic calculation. The combined sample produces 12 of each,
but 7 of the 3+1 systems are unstable while only two of the 2+2 sys-
tems are unstable so it is likely that 2+2 systems would significantly
outnumber 3+1 systems if they were evolved for longer. Observa-
tionally, Tokovinin (2000a) found roughly equal numbers of such
quadruples from a large but biased sample, while the very recent
distance-limited sample of Tokovinin (2014) contained nine 2+2
systems and only two 3+1 systems. The potential convergence of
the relative numbers of 2+2 and 3+1 systems between the observed
systems and numerical systems is pleasing, but fundamentally we
need much larger samples in both cases.

4.3 Separation distributions of multiples

As discussed in Section 3.4, the median separation for the mul-
tiple systems in the three calculations with the high opacities are
all around 16 au and there is no significant dependence on metal-
licity. Combining the multiple systems from the three calculations
(Fig. 15), the median of the 170 separations of the multiple systems
with primaries with masses >0.1 M� is 17.3 au and the standard
deviation of the distribution is 0.94 dex. Most of these systems have
M-dwarf primaries. Restricting the primaries to M-dwarfs (mass
range 0.1–0.5 M�), the median of the 82 separations is 17.9 au and
the standard deviation is 0.91 dex. Fischer & Marcy (1992) found
that M-dwarf binaries have a median separation of ≈10 au. Most
recently, Janson et al. (2012) found that the separation distribution
of their M-dwarf sample was well fit by a lognormal distribution
with a mean separation of 16 au and a dispersion of 0.8 dex. Thus,
the separation distribution of the M-dwarf multiples is in very good
agreement with the observed distributions, as can be seen in the
centre panel of Fig. 15.

On the other hand, both the median separation (40 au) and the
dispersion (1.52 dex) obtained by Raghavan et al. (2010) for solar-
type stars are larger, whereas we obtain a very similar distribution
for solar-type multiples (primary mass range 0.8–1.2 M�) as for
M-dwarf multiples with a median of 16 au and a standard deviation
of 0.72 dex. We note that the number of close systems from the
simulations is likely underestimated because of the lack of dissi-
pation on small scales (see Bate 2009a). Furthermore, the number
of wide systems may be lower than found in the field because the
stellar clusters that are formed are quite dense, meaning that it is
difficult for wide binaries to exist within the clusters. There appears
to be a similar deficit of wide binaries in the Orion Nebula Cluster
(Bate, Clarke & McCaughrean 1998; Scally, Clarke & McCaugh-
rean 1999; Reipurth et al. 2007). However, this does not necessarily
mean that wide systems could not be produced as the stars joint the
field population. Moeckel & Bate (2010) and Kouwenhoven et al.
(2010) have shown that wide systems can be formed as a star cluster
disperses (see also Moeckel & Clarke 2011).
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Figure 15. The distributions of separations (semimajor axes) of multiple systems with solar and intermediate-mass primaries (M1 > 0.5 M�; left-hand
panel), M-dwarf primaries (M1 = 0.1 − 0.5 M�; centre panel) and VLM primaries (M1 < 0.1 M�; right-hand panel) for the combined sample from the
three calculations with the highest opacities (Z ≥ 0.1 Z�). The solid, double hatched, and single hatched histograms give the orbital separations of binaries,
triples, and quadruples, respectively (each triple contributes two separations, each quadruple contributes three separations). The solid curve gives the M-dwarf
separation distribution (scaled to match the area) from the M-dwarf survey of Janson et al. (2012), the dotted curve gives the separation distribution for
solar-type primaries of Raghavan et al. (2010), and the open histogram in the VLM plot gives the separation distribution of the VLM binary systems from the
list at http://vlmbinaries.org/. The vertical dotted line gives the resolution limit of the calculations as determined by the accretion radii of the sink particles.

Among the combined sample, we have only five VLM binaries
(right-hand panel of Fig. 15). All have separations less than 40 au
(their median is 26 au, with a standard deviation of 0.42 dex). This is
at odds with observed VLM binaries because the vast majority have
projected separations �20 au. However, Bate (2009a), who obtained
32 VLM multiples from a barotropic calculation, found that the
median separation of VLM multiples decreased as the calculation
was evolved from ≈30 au at 1.04tff to ≈10 au at 1.50tff because many
were still accreting gas and interacting with other systems early on.
He concluded that VLM binaries may form with reasonably wide
separations and evolve to smaller separations (cf. Bate, Bonnell &
Bromm 2002b). Of the five VLM multiples in the combined sample,
three were still accreting when the calculations were stopped, so it is
likely that the separation distribution would continue to evolve if the
calculations were followed further. In addition to the evolution of
VLM binary separations during their formation, the observational
studies of Close et al. (2007) and Burgasser et al. (2007) suggest that
young wide VLM binaries are disrupted, leading to the observed
paucity of old wide VLM systems. Close et al. (2007) estimated
that young VLM objects have a wide (>100 au) binary frequency
of ∼6 ± 3 per cent for ages less than 10 Myr, but only 0.3 ±
0.1 per cent for field VLM objects. Thus, it is at least plausible that
the VLM binaries from the simulations are too wide because they
neglect further evolution.

4.4 Mass ratio distributions of binaries

As discussed in Section 3.5, there is no evidence for the mass ratio
distributions of the binaries produced by the radiation hydrodynam-
ical simulations depending on the opacity. In Fig. 16, we plot the
mass ratio distributions for the combined sample in three primary
mass ranges: the more massive binaries (M1 > 0.5 M�), M-dwarf
binaries (M1 = 0.1–0.5 M�), and VLM binaries (M1 < 0.1 M�).
The numerical results are compared with the observed mass ratio
distributions from Raghavan et al. (2010), Janson et al. (2012), and
the list of VLM binaries at http://vlmbinaries.org/, respectively. The
distributions include both binaries, and pairs that are components
of higher order systems.

For the most massive binaries, the numerical distribution is con-
sistent with being flat with the exception of a large number of near
equal-mass systems (‘twins’). Forty percent of the systems have
mass ratios M1/M2 > 0.8. The observed distribution of Raghavan
et al. (2010) also has a significant fraction of such systems (just
over 1/3), though not quite as large a proportion as the combined
numerical sample. Performing a Kolmogorov–Smirnov test on the
two distributions gives a 4 per cent probability of them being drawn
from the same underlying distribution, so formally they are sta-
tistically indistinguishable. The numerical and observed mass ratio
distributions for both the M-dwarfs and the VLM binaries are clearly
in very good agreement with each other.

Observationally, several older studies found evidence that the
mass ratio distribution of binaries depends on primary mass.
Duquennoy & Mayor (1991) found that the mass ratio distri-
bution of solar-type binaries peaked at M2/M1 ≈ 0.2, while
Fischer & Marcy (1992) found a flat mass ratio distribution in the
range M2/M1 = 0.4–1.0 for M-dwarf binaries, and VLM binaries
have been found to have a strong preference for equal-mass systems
(Close et al. 2003; Siegler et al. 2005; Reid et al. 2006).

However, more recent studies have called this apparent trend into
question. Raghavan et al. (2010) found a flat mass ratio distribu-
tion for solar-type primaries in the range M2/M1 = 0.2–0.95, with
a drop-off at lower mass ratios and a strong peak at nearly equal
masses (so-called twins; Tokovinin 2000b). Janson et al. (2012)
also found that the M-dwarf mass ratio distribution is well fit by a
uniform mass ratio distribution, but it can also be fit with a distribu-
tion that slowly rises towards equal masses. In the Taurus–Auriga
star-forming region, Kraus et al. (2011) report a flat mass ratio dis-
tribution for primaries in the range 0.7–2.5 M�, but for primaries
in the mass range 0.25–0.7 M� they find a bias towards equal-mass
systems. Thus, apart from the apparent preference for equal-mass
VLM binaries, mass ratio distributions seem to be more similar than
indicated in the past. In fact, Reggiani & Meyer (2013) argue that
the mass ratio distributions of M-dwarf and solar-type binaries are
currently indistinguishable.

In Fig. 17, we compare the cumulative mass ratio distributions of
the VLM, M-dwarf, and more massive binaries obtained from the
simulations with each other. We also plot the distribution observed
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Figure 16. The mass ratio distributions of binary systems with stellar primaries in the mass ranges M1 > 0.5 M� (left) and M1 = 0.1–0.5 M� (M-dwarf;
centre) and VLM primaries (right; M1 < 0.1 M�) produced by the combined sample from the three calculations with the highest opacities (Z ≥ 0.1 Z�).
The solid black lines give the observed mass ratio distributions of Raghavan et al. (2010) for binaries with solar-type primaries (left), Janson et al. (2012) for
M-dwarfs (centre), and of the known VLM binary systems from the list at http://vlmbinaries.org/ (right). The observed mass ratio distributions have been scaled
so that the areas under the distributions match those from the simulation results. The VLM binary mass ratio distribution and the M-dwarf distributions from
the combined sample are in good agreement with the observed distributions, but among the more massive primaries there may be an excess of near equal-mass
binaries.

Figure 17. The cumulative mass ratio distributions of binary systems with
stellar primaries in the mass ranges M1 > 0.5 M� (black solid line) and
M1 = 0.1–0.5 M� (red dashed line) and VLM primaries (blue dotted line;
M1 < 0.1 M�) produced by the combined sample from the three calculations
with the highest opacities (Z ≥ 0.1 Z�). There appears a preference for VLM
binaries to have near equal masses. However, a Kolmogorov–Smirnov test
shows that all three distributions are consistent with being drawn randomly
from the same underlying distribution (there is a 50 per cent probability
that the solar-type and M-dwarf distributions are drawn from the same
underlying population, and a 13 per cent probability that the M-dwarf and
VLM distributions are drawn from the same underlying population). We also
plot the mass ratio distribution of binaries and pairs in higher order systems
for solar-type primaries as obtained by Raghavan et al. (2010; green dot–
dashed line). A Kolmogorov–Smirnov test gives a 4 per cent probability of
the M1 > 0.5 M� and Raghavan et al. distributions being drawn from the
same underlying population.

by Raghavan et al. (2010). Performing Kolmogorov–Smirnov tests
on each pair of distributions, we find no evidence for a dependence
of the mass ratio distribution on primary mass (see the figure caption
for more details).

Figure 18. The mass ratios of binaries (filled black circles), inner pairs in
triples (filled red triangles), inner pairs in quadruples (filled blue squared),
the outer components of triples (open red triangles), and the widest compo-
nents of quadruples (open blue squares) as a function of semimajor axis for
the combined sample from the three radiation hydrodynamical calculations
with the highest opacities (Z ≥ 0.1 Z�). For the outer components of triples,
the outer mass ratio compares the mass of the outer component to the sum of
the masses of the two inner components (the pair). For quadruples involving
a two binary components (inner pairs), the outer mass ratio is between the
two pairs, and for quadruples involving a triple, the mass ratio is between the
mass of the fourth component and the combined mass of the triple. There is
a clear relationship between mass ratio and separation with closer binaries
having a greater fraction of near equal-mass systems.

4.4.1 Mass ratio versus separation

In Fig. 18, we plot mass ratios against separation (semimajor
axis) for the binaries, triples, and quadruples from the combined
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sample. The median mass ratios for binary separations in the ranges
1–10, 10–100, and 100–1000 au are M2/M1 = 0.64, 0.67, 0.35, re-
spectively, so wide systems (separations >100 au) appear to have
smaller mass ratios than close systems. This is similar to the results
obtained from earlier calculations. Bate (2009a) found a clear rela-
tion between mass ratio and separation from barotropic calculations,
with closer binaries having a preference for equal masses. From the
radiation hydrodynamical calculation with solar-metallicity, Bate
(2012) found weaker dependence of mass ratio on separation,
but did note that there appeared to be a trend in which systems
with separations �100 au had more equal masses than for wider
systems.

In terms of the so-called twins, the combined sample contains
120 binaries (including pairs in triple and quadruple systems), of
which there are 19 twins (pairs with mass ratios M2/M1 > 0.95)
and all have semimajor axes less than ≈50 au. This is in good
agreement with observations that consistently find that closer bina-
ries have a higher fraction of twins (Soderhjelm 1997; Tokovinin
2000b; Halbwachs et al. 2003). Tokovinin (2000b) found evidence
for the frequency of twins falling off for orbital periods greater than
40 d, while Halbwachs et al. (2003) found that the fraction of near
equal-mass systems (M2/M1 > 0.8) is always larger for shorter pe-
riod binaries than longer period binaries regardless of the dividing
value of the period (from just a few days up to 10 yr). The recent
study of Raghavan et al. (2010) found that the mass ratio distribu-
tion depends on period, with less than 1/4 of twins having periods
longer than 200 yr (separations ≈40 au) and no twins having pe-
riods greater than 1000 yr (separations of ≈115 au). However, the
larger survey of Tokovinin (2014) does not find much evidence for
a dependence of mass ratio on period. A trend of more equal-mass
binaries with decreasing separation is expected from the evolu-
tion of protobinary systems accreting gas from an envelope (Bate
& Bonnell 1997; Bate 2000). Furthermore, dynamical interactions
between binaries and single stars tend to tighten binaries at the
same time as increasing the binary mass ratio through exchange
interactions.

4.4.2 Mass ratios of triples and quadruples

For stellar triple and quadruple systems, Tokovinin (2008) reports
that triples are observed to have a median outer mass ratio of 0.39
independent of the outer orbital period while quadruples involving
two binary sub-components have a similar median outer mass ratio
of ≈0.45, but there appears to be a dependence on the outer orbital
period with systems with shorter outer periods having higher mass
ratios. Of 31 triple systems, we obtain a median mass ratio of 0.51
(0.52 excluding the 12 triples which are members of quadruple
systems).

There are 12 quadruple systems consisting of two pairs, with outer
mass ratios ranging from M3/(M1 + M2) = 0.22–0.99 and outer
periods 4.3 < log10(Pd) < 6.9 (measured in days). Tokovinin (2008)
finds no outer mass ratios <0.6 for orbital periods log10(Pd) <

5.4, but a wide range of outer mass ratios for longer periods. In
the combined sample, we have four quadruple systems consisting
of two pairs and with outer orbital periods log10(Pd) < 5.4 and
all have outer mass ratios >0.6, while the other eight quadruples
consisting of two pairs have outer mass ratios ranging from 0.22 to
0.93 with a median outer mass ratio of 0.65 and three having outer
mass ratios <0.6. Thus, our quadruple systems are in agreement
with the findings of Tokovinin (2008), although we note that the
observed values are based on biased samples from catalogues and

the observed systems tend to contain stars more massive than the
Sun.

4.5 Orbital eccentricities

Observationally, there is an upper envelope to binary eccentrici-
ties at periods less than about one year, and binaries with periods
less than 12 d are almost exclusively found to have circular or-
bits due to tidal circularization (Duquennoy & Mayor 1991; Udry
et al. 1998; Halbwachs et al. 2003; Raghavan et al. 2010). How-
ever, the radiation hydrodynamical calculations do not allow us to
probe such small separations due to the absence of dissipation on
scales <0.5 au. Observations also indicate that eccentricities e <

0.1 are rare for periods greater than ≈100 d (separations � 1 au).
Raghavan et al. (2010) finds no binaries with e < 0.1 and orbital
periods greater than 100 d, though they do find that the outer or-
bits of two triples and one quadruple have e < 0.1. Duquennoy &
Mayor (1991) and Raghavan et al. (2010) also find that the upper-
eccentricity envelope is dominated by components of triple systems,
possibly due to the action of the Kozai mechanism (Kozai 1962).
Finally, Halbwachs et al. (2003) find that the eccentricities of bina-
ries with mass ratios M2/M1 > 0.8 with periods greater than ≈10
d (the tidal circularization radius) are lower than for more unequal
mass ratio systems.

In the left-hand panel of Fig. 19, we plot the eccentricities versus
orbital period for the binaries, triples and quadruples from the com-
bined sample, including those that are sub-components of higher
order systems. The mean eccentricity of all 175 orbits is e = 0.33 ±
0.02 with a standard deviation of 0.28. The median is e = 0.25. The
mean eccentricity of binaries (including components of triples and
quadruples) is e = 0.32 ± 0.02 with a standard deviation of 0.23. The
mean eccentricity of the triples and quadruples is e = 0.37 ± 0.04
with a standard deviation of 0.29. The mean eccentricities obtained
by Bate (2009a) for the barotropic calculation with accretion radii
of 0.5 au and Bate (2012) for the radiation hydrodynamic calcula-
tion with solar metallicity were e = 0.45 and 0.35, respectively. The
median eccentricity from Raghavan et al. (2010) is about e = 0.4,
so there is reasonable agreement.

However, Raghavan et al. (2010) report a flat distribution of ec-
centricities for periods longer than 12 d out to e = 0.6, whereas the
combined sample produces approximately twice as many orbits with
e < 0.2 (77 orbits) compared to the intervals 0.2 ≤ e < 0.4 (31 orbits)
and 0.4 ≤ e < 0.6 (29 orbits). In particular, there are 36 binaries with
e < 0.1, whereas observed systems with e < 0.1 are rare. More than
half of these (19) are components of triple or quadruple systems,
which may be related to the finding of Raghavan et al. (2010) that
components of higher order multiple systems can have low eccen-
tricities. Furthermore, 21 of the 36 have mass ratios M2/M1 > 0.8
(right-hand panel of Fig. 19) which is in qualitative agreement with
the finding of Halbwachs et al. (2003) that near-equal mass binaries
have smaller eccentricities than more unequal mass ratio systems.
Both Bate (2009a) and Bate (2012) found evidence that near-equal
mass binaries tend to have smaller eccentricities. In the combined
sample, the mean eccentricity of binaries with mass ratios M2/M1 <

0.8 is e = 0.37 ± 0.03 (73 orbits), while for M2/M1 > 0.8 the me-
dian is e = 0.24 ± 0.04 (47 orbits). Thus, we also find evidence
for a link between mass ratio and eccentricity such that near-equal
mass systems have lower eccentricities, as is observed. A possible
explanation for this is that accretion, which drives binaries towards
equal masses (Artymowicz 1983; Bate 1997; Bate & Bonnell 1997;
Bate 2000), may also provide dissipation which damps eccentricity.
However, given that there are so many systems with eccentricities
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Figure 19. The eccentricities of binaries (filled black circles), inner pairs in triples (filled red triangles), inner pairs in quadruples (filled blue squares), the
outer components of triples (open red triangles), and the widest components of quadruples (open blue squares) as a function of orbital period (left) and mass
ratio (right) for the combined sample from the three radiation hydrodynamical calculations with the highest opacities (Z ≥ 0.1 Z�). There are a significant
number of binaries with eccentricities lower than 0.1 which are very rare observationally (Duquennoy & Mayor 1991; Halbwachs et al. 2003; Raghavan et al.
2010). However, it is also clear that most of these low-eccentricity binaries also have high-mass ratios, similar to the observations of Halbwachs et al. (2003).

less than e = 0.1, it seems that the damping may be too effective in
the numerical simulations.

Finally, we note that VLM binaries are observed to have a pref-
erence for low eccentricities with a median value of 0.34 (Dupuy &
Liu 2011). The barotropic calculation of Bate (2009a) with small
accretion radii also produced low-eccentricity VLM binaries (Bate
2010a), with those VLM binaries with separations less than 30 au
having a mean eccentricity of 0.23. Unfortunately, the combined
sample only contains five VLM binaries, so there is little that can
be said about their eccentricity distribution. They have eccentricities
ranging from 0.013 to 0.79.

4.6 Relative alignment of orbital planes for triples

For a hierarchical triple system there are two orbital planes, one
corresponding to the short-period orbit and one to the long-period
orbit. Observationally, it is difficult to determine the relative ori-
entation angle, 
, of the two orbits of a triple system due to the
number of quantities that must be measured to fully characterize
the orbits. However, the mean value of 
 can be measured simply
from knowledge of the number of corotating and counter-rotating
systems (Worley 1967; Tokovinin 1993; Sterzik & Tokovinin 2002).

The first studies (Worley 1967; van Albada 1968) of the rela-
tive orbital orientations of triple systems found a small tendency
towards alignment of the angular momentum vectors of the or-
bits. Of 54 systems with known directions of the relative motions,
39 showed co-revolution and 15 counter-revolution resulting in a
mean relative inclination angle of 〈
〉 ≈ 50◦. For 10 visual systems
with known orbits, 5 systems were found to have 
 < 90◦, 2 had

 > 90◦ and 3 were ambiguous. Fekel (1981) examined 20 systems
with known orbits and periods of less than 100 yr (for the wide
orbit). He found that 1/3 had non-coplanar orbits. Finally, Sterzik &
Tokovinin (2002) performed the most detailed study to date. From
135 visual triple systems for which the relative directions of the

orbital motions are known they found 〈
〉 = 67◦ ± 9◦ and this
result was also consistent with 22 systems for which the orbits were
known. They also found a tendency for the mean relative orbital
angular momentum angle to increase with increasing orbital period
ratio (i.e. systems with more similar orbital periods tend to be more
closely aligned).

The main barotropic calculation of Bate (2009a) produced 40
triple systems (17 of which were sub-components of quadruple sys-
tems), with a mean relative orbital orientation angle of 〈
〉 = 65◦ ±
6◦, in good agreement with the observed value.

The combined sample provides 31 triple systems, 12 of which are
components of quadruple systems. The mean relative orbital orien-
tation angle of the all these triple systems is 〈
〉 = 39◦ ± 7◦, which
is about 2.5σ lower than the observed value. For the 19 pure triples,
〈
〉 = 39◦ ± 9◦, and further excluding the three unstable triples (see
Section 4.2.1) gives 〈
〉 = 29◦ ± 9◦. The relative angles are plotted
in Fig. 20 as functions of semimajor axis and period ratio. It can be
seen that systems with larger period ratios tend to have larger rela-
tive orbital angles in qualitative agreement with observations. This
also applies to systems with wider third components in general. We
conclude that both the observed and simulated triple systems have a
tendency towards orbital coplanarity, but as with the eccentricities it
appears that the systems produced by the simulations may be overly
dissipative. Note also, that triples with 
 ∼ 90◦ will be subject to
Kozai evolution and will merge, which is another way to reduce the
frequency of high-order multiples (cf. Section 4.2.1).

4.7 Relative alignment of discs and orbits

Finally, we consider the relative alignment of the spins of the sink
particles in binary systems. Unfortunately there is not a direct anal-
ogy with real binary systems in this case because the sink particles
are larger than stars and yet smaller than a typical disc. The ori-
entation of the sink particle spin thus represents the orientation of
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Figure 20. The relative inclinations of the two orbital planes for the 31 triple systems included in the combined sample from the three radiation hydrodynamical
calculations with the highest opacities (Z ≥ 0.1 Z�). Triples that are sub-components of quadruples are plotted as blue squares. We give plots of the relative
orbital orientation angle versus the semimajor axis of the third component (left) and versus the period ratio of the long- and short-period orbits (right). Wider
triples and/or systems with larger period ratios tend to have larger relative orbital angles. Note that the four systems with period ratios PL/PS < 4.7 (to the left
of the dotted vertical line in the right-hand panel) are likely to be dynamically unstable and to undergo further evolution.

the total angular momentum of the star and the inner part of its
surrounding disc. This distinction is important because during the
formation of an object the angular momentum usually varies with
time as gas falls on to it from the turbulent cloud. Thus, the orien-
tation of the sink particle frequently differs substantially from the
orientation of its resolved disc (if one exists) and, furthermore, the
orientations of both the sink particles and their discs change with
time while the object continues to accrete gas (e.g. Bate, Lodato &
Pringle 2010). The orientations may also evolve with time due to
gravitational torques (Bate et al. 2000).

Observationally, Weis (1974) found a tendency for alignment
between the stellar equatorial planes and orbital planes among pri-
maries in F star binaries, but not A star binaries. The orbital sep-
arations were mainly in the 10–100 au range. Similarly, Guthrie
(1985) found no correlation for 23 A star binaries with separations
10–70 au. Hale (1994) considered a larger sample of 73 binary and
multiple systems containing solar-type stars and found evidence
for approximate coplanarity between the orbital plane and the stel-
lar equatorial planes for binary systems with separations less than
≈30 au and apparently uncorrelated stellar rotation and orbital axes
for wider systems. For higher order multiple systems, however, non-
coplanar systems were found to exist for both wide and close orbits.
Hale found no evidence to support a difference dependent on spec-
tral type, eccentricity, or age. In terms of circumstellar discs, there is
evidence for misaligned discs from the observations of misaligned
jets from protostellar objects (Davis, Mundt & Eisloeffel 1994),
inferred jet precession (Eisloffel et al. 1996; Davis et al. 1997), and
direct observations (Koresko 1998; Stapelfeldt et al. 1998). How-
ever, these are not statistically useful samples. Monin, Menard &
Duchene (1998), Donar, Jensen & Mathieu (1999), Jensen et al.
(2004), Wolf, Stecklum & Henning (2001), and Monin, Ménard
& Peretto (2006) used polarimetry to study the relative disc align-
ment in T Tauri wide binary and multiple systems and all found

a preference for disc alignment in binaries. However, Jensen et al.
(2004) also found that the wide components of triples and quadru-
ples appear to have random orientations. For more massive Herbig
Ae/Be binaries, Baines et al. (2006) found that the circumprimary
disc was preferentially aligned with the orbit and the larger study of
Wheelwright et al. (2011) also finds that the discs are preferentially
aligned with the orbit.

The barotropic calculations of Bate (2009a) produced ambiguous
results, with one calculation giving a strong tendency for alignment
between sink particle spins, but another calculation with smaller ac-
cretion radii not showing any tendency for alignment (Bate 2011).
However, the solar-metallicity radiation hydrodynamical calcula-
tion of Bate (2012) produced strong tendencies for alignment be-
tween the spins of the components of binaries and for coplanarity
of the orbital plane and the equatorial planes of the components for
binaries.

In Fig. 21, we plot the relative spin angles for the 120 binaries
(including those that are components of triple and quadruple sys-
tems) as functions of semimajor axis and orbital eccentricity. There
are only eight relative spin angles >90◦ and no relative spin angles
greater than 140◦, indicating a strong tendency for alignment. The
mean relative spin angle is 30◦ ± 3◦, while the median angle is
17◦. For the 65 pure binaries, the mean is 38◦ ± 4◦ and the median
is 28◦, while for the binaries that are components of higher order
systems the mean is 21◦ ± 4◦ and the median is 9◦, so the spins of
binaries that are the close components of higher order multiples are
more aligned.

Examining the left-hand panel of Fig. 21, it is clear that the
tendency for alignment depends on separation: of the 72 the binaries
that have relative spin angles less than 25◦, all have separations less
than 130 au (orbital periods ≈2000 yr) and 65 have separations
less than 30 au (orbital periods ≈200 yr). Taking all binaries with
semimajor axes less than 30 au, the mean relative spin angle is
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Figure 21. The relative inclinations of the rotation axes of the sink particles (modelling stars and their inner discs) of the binaries included the combined
sample from the three radiation hydrodynamical calculations with the highest opacities (Z ≥ 0.1 Z�) as functions of the binary’s separation (left), eccentricity
(centre-left), mass ratio (centre-right), and total mass (right). We include binaries that are inner components of triples (red triangles) and quadruples (blue
squares). Most binaries for which the spins are closely aligned have semimajor axes �30 au. Binaries in which the spins are closely aligned also tend to have
low eccentricities and high-mass ratios, but the degree of alignment does not seem to depend on the binary’s mass.

24◦ ± 3◦, while those with longer periods have a mean of 52◦ ±
6◦. The centre-left panel of Fig. 21 indicates that there may also be
a relation between the relative spin angle and the eccentricity, with
more circular systems having a stronger tendency for alignment.
Similarly, binaries with more equal masses tend to be more aligned
(centre-right panel of Fig. 21). Such relations may come about
through accretion on to a binary system and/or gravitational torques
between the stars and discs (e.g. Bate et al. 2000), either of which
would tend to align the components of the binary and may damp
eccentricity, while accretion is expected to drive the system towards
equal masses (Bate 2000). We note that the distribution of relative
spin angles seems to be independent of the total mass of the binary
(right-hand panel of Fig. 21).

If the spins of the components of close binaries tend to be aligned
with one another, one might also expect the spins to be aligned with
the orbital plane of the binary. Indeed, this is the case (left-hand
panel of Fig. 22), though the alignment is not as strong as for the
individual spins. Taking the 72 binaries with relative spin angles
less than 25◦, the mean spin–orbit angle is 32◦ ± 2◦ with a standard
deviation of 22◦. For the remaining 48 systems for which the spins
are only weakly aligned, the mean spin–orbit angle is 66◦ ± 4◦ and
the standard deviation is also much larger (36◦). It is also the case
that the systems in which the spin axes are near to alignment with
the orbit tend to be close systems with the vast majority having
separations less than 100 au (right-hand panel of Fig. 22).

In summary, for binaries with separations �30–100 au, the ra-
diation hydrodynamical calculations give a strong tendency for
alignment between the spins of the components of binaries and
for coplanarity of the orbital plane and the equatorial planes of
the binary components. These results are in good agreement with
the observed coplanarity of binaries (Hale 1994) and in qualita-
tive agreement with the many observational studies examining disc
alignment mentioned above.

5 D ISCUSSION

5.1 The dependence of stellar properties on metallicity

From the results of four radiation hydrodynamical calculations that
cover a range of opacities corresponding to 1/100 to 3 times solar
metallicity (a factor of 300) that each produce at least 170 stars and
brown dwarfs, we find no conclusive evidence for a dependence of

the statistical properties of the stars and brown dwarfs on opacity.
Why is the opacity unimportant, and how do the results presented
above compare to the results of observational surveys that investi-
gate the dependence of stellar properties on metallicity?

5.1.1 Comparison with previous theoretical results

It is well established that the characteristic mass of stars produced
by self-gravitating hydrodynamic calculations of star formation in
molecular clouds using barotropic equations of state depend on the
Jeans mass in the cloud (Bate & Bonnell 2005; Jappsen et al. 2005;
Bonnell et al. 2006). This being the case, it is possible to propose
that the characteristic stellar mass either increases or decreases with
decreasing metallicity. In the former case, dust cooling is less ef-
fective at lower metallicities in the low-density gas in the molecular
cloud leading to an increase in the average temperature of the cloud.
This effect can partially be seen in Fig. 3 although, as discussed in
Section 2.4, in reality the gas temperatures are expected to be even
higher in the low-metallicity cases because the calculations per-
formed for this paper assume that the gas and dust are thermally
well coupled which quickly breaks down at low metallicity. There-
fore, if the characteristic stellar mass depends on the global Jeans
mass, it should move to higher masses at lower metallicities. Con-
versely, however, as gas collapses to form a protostar it will be able
to cool more quickly at higher densities if the metallicity is lower
because the optical depth will be reduced. Thus, fragmentation (ei-
ther in dense cores or protostellar discs) will potentially be able to
occur at higher densities with lower metallicities, resulting in more
fragmentation and a lower characteristic stellar mass. Such changes
in the effective equation of state of the gas due to different metallic-
ity motivated the barotropic study of Bate (2005) who found that,
with the exception of the low-mass cut-off, the IMF was insensitive
to variations of the metallicity.

To illustrate this different thermal behaviour during the collapse
of a molecular cloud core, we ran four calculations with vary-
ing metallicities of the collapse of initially uniform-density, sta-
tionary, spherical 1 M� molecular cloud cores with initial radii of
4 × 1016 cm embedded in an external radiation field with a temper-
ature Tr = 10 K. The evolution of the maximum gas and radiation
temperatures with maximum density is shown for each calculation
in Fig. 23. The differences are in good agreement with the results
of Omukai et al. (2010), except that they do a much better job of
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Figure 22. The inclination angles of the rotation axes of the sink particles (modelling stars and their inner discs) of binaries relative to the inclination angle
of the binary’s orbital plane. The binaries are taken from the combined sample from the three radiation hydrodynamical calculations with the highest opacities
(Z ≥ 0.1 Z�). The relative spin–orbit angle is plotted as a function of the relative inclination angle of the two rotation axes of the sink particles (left) and the
binary’s separation (right). For each binary, we plot a point which gives the average of the angle between the primary’s spin axis and that of the binary’s orbit
and the secondary’s spin axis and binary’s orbit, with the errorbars giving the actual values of these two angles. We include binaries that are sub-components
of triples (red triangles) and quadruples (blue squares). Binaries for which the spins are closely aligned also tend to have spins that are closely aligned with the
orbit. Most binaries in which the orbit and spins are closely aligned have semimajor axes �100 au.

Figure 23. The evolution of the maximum gas and radiation temperatures
versus maximum density for radiation hydrodynamical calculations of the
spherically-symmetric collapse of 1 M� molecular cloud cores with differ-
ent metallicities: 1/100 Z� (solid black lines), 1/10 Z� (short-dashed red
lines), Z� (long-dashed magneta lines), and 3 Z� (dot–dashed blue lines).
At low densities, two lines are visible for each of the different metallicities.
The upper line in each case is the gas temperature, while the lower line is
the radiation temperature. These are well coupled at high densities and/or
metallicities, but are poorly coupled at low densities with low metallicity.

modelling the thermodynamics at low density. It is clear that at low
densities, lower metallicities lead to higher gas temperatures (due to
the less effective coupling of the gas and radiation), while at higher
densities the temperatures are lower with lower metallicity (due to
the increased cooling rate allowed by the lower optical depth). The
magnitudes of these effects are also in good agreement with those

found in the similar recent calculations with Z = 0.1−1 Z� of
Tomida (2014). Since the Jeans mass MJeans ∝ T 3/2

g /ρ, at a given
low density the Jeans mass is higher with lower metallicity (reduc-
ing the fragmentation), while at higher densities the Jeans mass is
lower (potentially promoting fragmentation).

The case for an increase in the characteristic stellar mass at lower
metallicities relies on the link between the characteristic stellar mass
and the global Jeans mass in the cloud. However, Bate (2009b)
found that when hydrodynamical star formation calculations were
performed using radiative transfer and a realistic equation of state,
the strong dependence of the characteristic stellar mass on the ini-
tial Jeans mass of the cloud was eliminated. Bate proposed a semi-
analytic model for the characteristic mass of the IMF in which
thermal heating of the molecular gas surrounding accreting proto-
stars changed the effective Jeans mass. Since the thermal heating
depends on the luminosity of the protostars, which is unrelated to the
initial global Jeans mass in the cloud, this removes the dependence
of the characteristic stellar mass on the initial Jeans mass. In the sim-
plest case (taking the matter to be optically thin at all wavelengths
with a grey opacity), the temperature distribution at radius r from a
protostar with luminosity L∗ is given by T = (L∗/(4πσB))1/4r−1/2,
where σ B is the Stefan–Boltzmann constant. Assuming that the dust
grains are in thermal equilibrium with this radiation field and that
the gas is thermally coupled to the dust (as assumed in this paper),
this may also be used to describe the gas temperature distribution.
However, it does not take into account the wavelength dependence
of the dust absorption. If the dust opacity depends on wavelength
λ as κ ∝ λ−β then the temperature of the grains has a slightly dif-
ferent radial dependence T ∝ L1/4

∗ r−2/(4+β) (e.g. Ivezic & Elitzur
1997), which reduces to the above formula when β = 0, but β ≈
2 for interstellar grains. In either of these equations, however, the
radial temperature profile only depends on the properties of the dust
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grains, not the magnitude of the opacity, unless the clouds start
to become optically thick. For the calculations presented here, the
opacities are at most ≈0.1 cm2 g−1 at 20 K even with the highest
metallicity (see Fig. 1) and the typical column densities on the scale
of the cloud range from 0.1 to 10 g cm−2 (see Fig. 2), so the
clouds are marginally optically thin on large scales even in
the highest metallicity case (and very optically thin most cases).
Thus, for the calculations presented here, the temperature distribu-
tion at large distances from the accreting protostars is expected to be
essentially independent of the metallicity. Therefore, if the model
of Bate (2009b) is correct, the IMF should not vary with opacity, in
agreement with the numerical results in this paper.

Myers et al. (2011) performed radiation hydrodynamical simula-
tions of star formation in which the opacity was varied by a factor
of 20 and found no significant variation of the mass functions. Their
calculations had the same limitations as those we have presented
here (i.e. they assumed that the gas and dust were thermally cou-
pled, and neglected external sources of heating and gas emission
line cooling), but they also proposed that the reason the IMF was
independent of the metallicity was that the temperature distribution
outside the photospheres of the protostellar cores was essentially
independent of changes in the opacity due to metallicity.

Krumholz (2011) took the arguments of Bate (2009b) and Myers
et al. (2011) one step further and tried to link the characteristic mass
to fundamental physical constants. In his simplest case, in which
he assumes the temperature distribution varies with radius as Tg ∝
r−1/2 as described above, the characteristic stellar mass does not de-
pend on the magnitude of the opacity. However, Krumholz (2011)
also develops a more complicated model of the thermal structure
of protostars and predicts a dependence of the characteristic mass
on metallicity such that it increases by a factor of 2 for an order of
magnitude decrease in opacity and a factor of 3–5 for two orders
of magnitude decrease (i.e. approximately Mch ∝ Z−0.3). Although
this dependence is relatively weak, it is inconsistent with the re-
sults of the simulations presented in this paper – we would easily
have detected such changes in the characteristic stellar mass since
our statistical uncertainties on the mean masses are no more than
≈0.05 M� (cf. Table 1 and Fig. 7).

Even if the thermal feedback from the protostars on cloud-scales
is responsible for origin of the characteristic stellar mass, it is some-
what surprising that the different small-scale thermal behaviour of
a collapsing molecular cloud core (e.g. Fig. 23) does not result in
differences in the small-scale fragmentation. Naively, as mentioned
above, the lower temperatures at a given density for lower opacity
would be expected to increase fragmentation on small scales. In
fact, the weak variations in stellar properties noted in Section 3 may
be due to this different small-scale thermal behaviour. The low-
est opacity calculation appeared to produce somewhat more brown
dwarfs than the others, and the numbers of protostellar mergers
increased strongly as the opacity was decreased below those ex-
pected for solar metallicities. Although the statistical significance
of these results is questionable, they are consistent with the idea that
reducing the opacity promotes small-scale fragmentation. Calcula-
tions of the fragmentation of individual pre-stellar cores to produce
binary systems with different opacities have found similar effects,
with the amount of fragmentation increasing and the typical binary
separations decreasing as the opacity is decreased (Machida 2008;
Machida et al. 2009). The way to be sure is to increase the statistical
significance which will require large calculations in the future.

Finally, as noted in Sections 1 and 2.4, while the calculations pre-
sented in this paper assume that the gas and dust are thermally well
coupled and, thus, that the dominant cooling at low temperatures

is dust cooling, this is not likely to be valid for metallicities much
lower than the solar value. Thermal decoupling of the gas and dust,
cosmic ray and photoelectric heating of the gas, emission line cool-
ing of the gas, and other effects all become much more important
at low metallicities and must be included in future calculations to
investigate the full dependence of stellar properties on metallicity.

5.1.2 Comparison with observations

Bastian et al. (2010) recently reviewed the evidence for variations
of the IMF, and concluded that there was no clear evidence of
systematic variation with initial conditions, including metallicity
variations, after the first few generations of stars. For example, al-
though studies of the thick disc population in our Galaxy obtain
slopes that are somewhat shallower than found for the thin disc
(Reylé & Robin 2001; Vallenari et al. 2006), the uncertainties are
large. Studies of OB associations in our Galaxy and stellar popula-
tions in nearby galaxies find that high-mass stars follow a standard
Salpeter slope regardless of their metallicity (Massey, Johnson &
Degioia-Eastwood 1995b; Massey et al. 1995a; Sirianni et al. 2002;
Sabbi et al. 2008; Schmalzl et al. 2008), while some recent studies
of nearby galaxies are able to begin probing below a solar mass
but also fail to find a metallicity dependence (Kalirai et al. 2013).
Similarly, although studies of Galactic globular clusters tend to find
somewhat higher characteristic stellar masses than found for young
clusters, this is thought to be due to dynamical evolution rather
than evidence of IMF variations (Paresce & De Marchi 2000; De
Marchi, Paresce & Pulone 2007). Thus, there seems to be little
evidence that the IMF is sensitive to metallicity within the range
≈0.2–1 Z�. Other evidence comes from examining the α-element
ratios (thought to be produced by core-collapse supernovae) which
appear to be constant down to the lowest metallicities probed, sug-
gesting that the high-mass end of the IMF has been invariant to
redshifts of z ∼ 3–5 (Bastian et al. 2010, and references therein).
Recently, there has been much interest in the possibility that the
IMF may be bottom heavy in early-type galaxies (Cenarro et al.
2003; van Dokkum & Conroy 2010, 2011; Conroy & van Dokkum
2012; Spiniello et al. 2012; Ferreras et al. 2013). However, if this
proves to be the case, it may be linked to the velocity dispersion in
the galaxies rather than to metallicity (La Barbera et al. 2013).

Quite a few studies have investigated the question of whether the
frequencies or properties of multiple stellar systems vary with metal-
licity. However, the results have been mixed. A number of studies of
metal-deficient stars have indicated potentially lower multiplicities
than solar-metallicity systems (Carney 1983; Stryker et al. 1985;
Abt & Willmarth 1987; Martin & Rebolo 1992; Allen, Poveda &
Herrera 2000; Rastegaev, Balega & Malogolovets 2007; Rastegaev
et al. 2008; Riaz, Gizis & Samaddar 2008; Jao et al. 2009; Lodieu,
Zapatero Osorio & Martı́n 2009; Rastegaev 2010). Others found
similar multiplicities (Ryan 1992; Latham et al. 2002; Chanamé &
Gould 2004; Zapatero Osorio & Martı́n 2004; Zinnecker, Köhler &
Jahreiß 2004), and a few studies have found higher multiplicities
(Grether & Lineweaver 2007; Raghavan et al. 2010). The recent re-
view of stellar multiplicity by Duchêne & Kraus (2013) concludes
that spectroscopic binaries are similar between Population II stars
and their higher metallicity counterparts, but that the frequency of
wide multiples with solar-mass primaries (�10 au) is lower, result-
ing in slightly lower overall multiplicities. Rastegaev (2010) report
a multiplicity of 33 per cent from 221 halo and thick-disc star pri-
maries with metallicities less than 1/10 solar. This compares to
44 per cent for nearby Sun-like stars (Raghavan et al. 2010). For K
and M-stars, the multiplicities are around 26 per cent for metal-poor

MNRAS 442, 285–313 (2014)

 at U
nversity of E

xeter on M
arch 13, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


310 M. R. Bate

sub-dwarfs (Jao et al. 2009) versus approximately 37 per cent for
dwarfs (Reid & Gizis 1997). However, for solar-mass primaries,
Rastegaev (2010) also find that the distribution of orbital periods
peaks at much lower periods (log P = 2−3 for Population II stars
rather than log P ≈ 5 for Population I stars, with period P measured
in days), and a similar difference in the orbital separations has been
suggested for M-star binaries (Riaz et al. 2008; Lodieu et al. 2009).
It is unclear whether these apparent differences in wide multiples
are primordial or whether there has been significant evolution with
time.

Overall, it seems from observations that metallicity does not play
a large role in determining the properties of stellar systems. This
is consistent with our numerical results – we find no firm evidence
for a dependence of stellar properties on metallicity due to changes
in the opacity. However, it is interesting to note that the indications
from the simulations that small-scale fragmentation may be slightly
enhanced at low opacities, resulting in an increased frequency of
protostellar mergers, is at least in the same sense as the observations
that suggest metal-poor binaries may have closer separations than
systems with solar metallicities.

5.2 Potential for improving the agreement with observed
stellar properties

As discussed in Section 4, many of the statistical properties of the
stellar systems produced by the calculations are in good agreement
with observed systems. However, there are some quantities where
there is disagreement. The first is that VLM multiple systems tend to
have separations that are wider than is typically observed (Fig. 15).
Although wide VLM multiples are observed to be more common
at young ages (Close et al. 2007), and Bate (2009a) found that the
separation distribution of VLM multiples tended to move to smaller
separations if the hydrodynamical calculations were evolved for
longer, there is potential for improvement. One area of concern is
that the sink particle radius in the calculations is 0.5 au which is
uncomfortably close to the typical VLM binary separation of a few
au. It is likely that interactions between the sink particles and their
discs are not as dissipative as they should be and this may lead
to larger orbital separations. Therefore, it would be desirable to
increase the resolution by decreasing the sizes of the sink particles
still further in future calculations.

Dissipation may also be the cause of the other areas of poten-
tial disagreement, but this time over dissipation rather than a lack
of it. As mentioned in Sections 4.5 and 4.6, there appears to be
an excess of low eccentricity orbits and the orbital planes of triple
systems may be more aligned than is observed. This points to pos-
sible excess dissipation in modelling the orbits of multiple systems.
The potential excess of solar-type ‘twins’ (binaries with near-equal
masses) is also interesting in this regard. Although the numerical
mass ratio distribution is consistent with that found by Raghavan
et al. (2010) (Section 4.4), one way to produce twins is via the ac-
cretion of gas with high angular momentum which tends to equalize
the masses (Bate 2000) and if the effective viscosity is high it may
also damp eccentricities and inclinations. The numerical resolution
in these calculations is only 7 × 104 SPH particles per solar mass
of gas which is much lower than would be typically used to study
the evolution of individual protostars. Artificial viscosity decreases
with increased resolution, so again this is an area where increased
resolution (this time in terms of increased particle number) may
help. Alternately, it may be possible to use some of the recently de-
veloped SPH viscosity switches (e.g. Cullen & Dehnen 2010; Read
& Hayfield 2012) to reduce the effective viscosity.

6 C O N C L U S I O N S

We have presented results from four radiation hydrodynamical sim-
ulations of star cluster formation that each resolve the opacity limit
for fragmentation, protoplanetary discs (radii � 1 au), and multiple
systems. The calculations are identical except for the opacities that
are used when modelling the radiative transfer. We use opacities
appropriate for metallicities ranging from 1/100 to three times the
solar value (a factor of 300). Each individual calculation produces
at least 170 stars and brown dwarfs (modelled as sink particles with
accretion radii of only 0.5 au), sufficient to allow comparison of
the statistical properties of the stars, brown dwarfs, and multiple
systems with the results of observational surveys. Overall, the cal-
culations display good agreement with a wide range of observed
stellar properties, implying that the main physical processes in-
volved in determining the properties stellar systems are gravity, gas
dynamics (i.e. dissipative N-body dynamics), and thermal feedback
from protostars.

However, there are a number of important caveats to this conclu-
sion. First, the star formation rate in the calculations is much higher
than observed. To solve this problem may require globally unbound
molecular clouds and/or the inclusion of magnetic fields and kinetic
feedback. Secondly, we emphasize that changing the metallicity of
a star-forming region affects more than just the opacity of the gas
and dust. In particular, the calculations performed for this paper
have assumed that the gas and dust are thermally well coupled and,
thus, that dust emission is the dominant gas coolant. While this
approximation is typical for calculations of star formation at solar
metallicities and should also be a good at super-solar metallicites,
it quickly breaks down as the metallicity is reduced. Future calcu-
lations should examine both the effects of thermal feedback from
protostars and the additional thermal effects at low metallicities in
order to get a complete picture of how star formation depends on
metallicity.

For the present study, our detailed conclusions for how star for-
mation depends on opacity and how stellar properties obtained from
the simulations compare with observations are as follows.

(i) We find no statistically significant dependence of the proper-
ties of the stars and brown dwarfs on opacity, despite varying the
opacities by a factor of 300. However, we do find that fragmentation
of dense gas in protostellar cores and/or discs may increase with
low opacities (�1/10 of the opacities corresponding to solar metal-
licities), potentially increasing the abundance of brown dwarfs.

(ii) We find that protostellar collisions become significantly more
frequent at lower opacities. With opacities relevant for solar and
super-solar metallicities, mergers are very rare. But ≈10 per cent
of stars and brown dwarfs suffer a collision as they are forming
with opacities of 1/100 the solar metallicity value. This is also
consistent with a higher degree of small-scale fragmentation at low
metallicities.

(iii) All the calculations produce IMFs that are statistically in-
distinguishable from the parametrization of the observed IMF by
Chabrier (2005), and ratios of brown dwarfs to stars which are also
in good agreement with observations. Combining the results of the
calculations with the three highest opacities (Z ≥ 0.1 Z� which
produced 535 stars and brown dwarfs) also gives an IMF in good
agreement with Chabrier’s parametrization.

(iv) We find that multiplicity strongly increases with primary
mass. The results are in good agreement with the observed multi-
plicities of A–M stars and VLM objects. For objects with primary
masses in the range 0.03−0.20 M�, the multiplicity fraction is
0.14+0.07

−0.05 (95 per cent confidence interval). But it is important to
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note that the multiplicity increases with primary mass steeply in
this range and, thus, when comparing with observations it is im-
portant to take care to compare like with like. We predict that the
multiplicity continues to drop for lower mass brown dwarfs. We
also find that the frequency of high-order multiples (triples and
quadruples) increases with primary mass.

(v) We examine the separation distributions of binaries, triples,
and quadruples. These are in good agreement with the observed
distributions for M-stars, and reasonable agreement for higher mass
stars. However, the VLM multiples tend to be wider than is typically
observed. This may be because VLM multiples evolve to closer
separations with time (as seen in the calculations of Bate 2009a)
and the calculations are not followed long enough, or the numerical
resolution may be insufficient.

(vi) The mass ratio distributions of solar-type, M-dwarf, and
VLM binaries are consistent with observations. Although the VLM
binaries are consistent with a mass ratio distribution that is biased
towards equal masses, we find that within the statistical uncertain-
ties their mass ratio distribution is also consistent with those of
higher mass binaries. We find that closer binaries tend to have a
higher proportion of equal-mass components in broad agreement
with observed trends.

(vii) The distributions of eccentricities are broad, but there are too
many low-eccentricity systems compared with observed systems.
This may be an indication that the hydrodynamical interactions
between protostars are too dissipative. There may also be a weak
link between mass ratio and eccentricity such that ‘twins’ have
lower eccentricities, as is observed.

(viii) We investigate the relative orientation of the orbital planes
of triple systems and the alignments between sink particle spins
and the orbital planes in binaries. We find a tendency for alignment
between the orbital planes in triple systems, and we find that this
tendency is stronger for closer systems, in qualitative agreement
with observations. However, the degree of alignment appears to be
stronger than is observed. Again, this may be an indication that
the calculations are too dissipative. Similarly, we find that in close
binaries (�100 au) the spins of sink particles tend to be aligned with
each other, and the spins tend to be aligned with the orbital plane,
in good agreement with existing observations.
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Gamen R. C., Arias J. I., Alfaro E. J., 2014, ApJS, 211, 10

Spiniello C., Trager S. C., Koopmans L. V. E., Chen Y. P., 2012, ApJ, 753,
L32

Stapelfeldt K. R., Krist J. E., Menard F., Bouvier J., Padgett D. L., Burrows
C. J., 1998, ApJ, 502, L65

Sterzik M. F., Tokovinin A. A., 2002, A&A, 384, 1030
Stryker L. L., Hesser J. E., Hill G., Garlick G. S., Okeefe L. M., 1985, PASP,

97, 247
Todorov K., Luhman K. L., McLeod K. K., 2010, ApJ, 714, L84
Tokovinin A. A., 1993, Astron. Lett., 19, 383
Tokovinin A., 2000a, in Zinnecker H., Mathieu R. D., eds, Proc. IAU Symp.

Vol. 200, Statistics of Multiple Stars: Some Clues to Formation Mecha-
nisms. Kluwer, Dordrecht, p. 84

Tokovinin A. A., 2000b, A&A, 360, 997
Tokovinin A., 2008, MNRAS, 389, 925
Tokovinin A., 2014, AJ, 147, 87
Tomida K., 2014, ApJ, 786, 98
Truelove J. K., Klein R. I., McKee C. F., Holliman J. H., II, Howell L. H.,

Greenough J. A., 1997, ApJ, 489, L179
Tsuribe T., Omukai K., 2006, ApJ, 642, L61
Udry S. et al., 1998, in Donahue R. A., Bookbinder J. A., eds, ASP Conf.

Ser. Vol. 154, A Survey for Spectroscopic Binaries in a Large Sample
of G Dwarfs. Astron. Soc. Pac., San Francisco, p. 2148

Urban A., Martel H., Evans N. J., 2010, ApJ, 710, 1343
Vallenari A., Pasetto S., Bertelli G., Chiosi C., Spagna A., Lattanzi M., 2006,

A&A, 451, 125
van Albada T. S., 1968, Bull. Astron. Inst. Neth., 20, 73
van Dokkum P. G., Conroy C., 2010, Nature, 468, 940
van Dokkum P. G., Conroy C., 2011, ApJ, 735, L13
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S U P P O RT I N G IN F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Table 3. For each of the four calculations, we provide online tables
of the stars and brown dwarfs that were formed, numbered by their
order of formation, listing the mass of the object at the end of the
calculation, the time (in units of the initial cloud free-fall time)
at which it began to form (i.e. when a sink particle was inserted),
and the accretion rate of the object at the end of the calculation
(precision ≈10−7 M� yr−1).
Table 4. For each of the three calculations with the highest
opacities (Z ≥ 0.1 Z�), we provide online tables of the prop-
erties of the multiple systems at the end of each calculation
(http://mnras.oxfordjournals.org/lookup/suppl/doi:10.1093/mnras/
stu795/-/DC1). In addition, the data set consisting of the output
and analysis files from the calculations presented in this paper
have been placed in the University of Exeter’s Open Research
Exeter (ORE) repository and can be accessed via the handle:
http://hdl.handle.net/10871/14881.

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the paper.
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