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Article

Strengthening
Theoretical Testing
in Criminology
Using Agent-based
Modeling

Shane D. Johnson1 and Elizabeth R. Groff2

Abstract
Objectives: The Journal of Research in Crime and Delinquency (JRCD) has pub-
lished important contributions to both criminological theory and associated
empirical tests. In this article, we consider some of the challenges associated
with traditional approaches to social science research, and discuss a com-
plementary approach that is gaining popularity—agent-based computational
modeling—that may offer new opportunities to strengthen theories of
crime and develop insights into phenomena of interest. Method: Two liter-
ature reviews are completed. The aim of the first is to identify those articles
published in JRCD that have been the most influential and to classify the the-
oretical perspectives taken. The second is intended to identify those studies
that have used an agent-based model (ABM) to examine criminological the-
ories and to identify which theories have been explored. Results: Ecological
theories of crime pattern formation have received the most attention from
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researchers using ABMs, but many other criminological theories are amen-
able to testing using such methods. Conclusion: Traditional methods of the-
ory development and testing suffer from a number of potential issues that a
more systematic use of ABMs—not without its own issues—may help to
overcome. ABMs should become another method in the criminologists
toolbox to aid theory testing and falsification.

Keywords
agent-based models, theory testing, empirical methods

Introduction

Discussing the need for another journal dedicated to research in criminol-

ogy, in the Foreword of the first issue of the Journal of Research in Crime

and Delinquency (JRCD), the founding editor Lloyd E. Ohlin (1964:3)

wrote ‘‘ . . . many practitioners will seize the opportunity to explore a jour-

nal where the frontier problems of theory and research in criminology are

discussed.’’ Three of the most pressing contemporary problems in crimin-

ological enquiry are (1) the fuzziness of the theories, (2) the lack of data

to test them, and (3) the nonlinear nature of the systems being modeled and

the existence of feedback loops (both of which are difficult for statistical

techniques to handle well—see Eck and Liu 2008). In this article prepared

for the 50th anniversary issue of JRCD, we have two broad aims. The first is

to classify the most influential contributions published in JRCD in the last

50 years and identify the theories that have so far received the most atten-

tion. The second is to examine the gaps in two of those theories that have

thus far proven difficult test and consider how a research methodology at

the frontier of the social sciences—agent-based computational model-

ing—might be employed to strengthen the specification of those theories

and guide future data collection.

To provide a context for what follows, we begin with a brief discussion

of methods commonly employed in criminological research, consider how

agent-based modeling differs, and articulate how it can be used to test and

strengthen criminological theories. We then present the results of two liter-

ature searches. The first considers the theoretical focus of the 50 most cited

articles published in JRCD since its inception. The aim of doing so is to pro-

vide one perspective on which theories have received the most attention in

JRCD publications over the last 50 years. The review is not intended to be

exhaustive but rather to reflect the contribution of JRCD publications to the
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literature. In the next section, we examine which theories have received some

form of testing using agent-based models (ABMs). To illustrate the potential

value of ABMs, we then consider two theories that have received much atten-

tion in the criminological literature but little or none in modeling research.

This approach allows us to elaborate upon the potential for ABMs to be used

to explore theories that have been emphasized in past issues of JRCD but

have not traditionally garnered attention from agent-based modelers.

Traditional Social Science Research Methods

Over the last 50 years, researchers have used a variety of methods to test

criminological theories. In broad terms, one can differentiate between qua-

litative and quantitative approaches, each of which has strengths and weak-

nesses. In this section, we will briefly mention those issues to frame the

discussion that follows. We then consider what agent-based modeling is,

how it compliments other approaches, and what it might contribute to the-

ory testing, strengthening, and falsification.

Qualitative research encompasses a variety of methods (e.g., Bennett and

Wright 1984; Cromwell 2006) that usually involve interactions (e.g., inter-

views, focus groups, etc.) with relatively small samples of participants.

Such research has a particular strength in providing insight into how actors

make decisions, and the process or mechanisms through which patterns of

behaviors might emerge. It is an example of a so-called bottom-up approach

in that the researcher is interested in testing or generating explanations as to

why particular phenomena occur. Limited generalizability is a notable

weakness, since probability samples cannot easily be drawn from the popu-

lations studied.

In contrast, quantitative methods take a top-down approach through the

analysis of large samples of data (often collected using an explicit sampling

frame) to look for regularities or patterns that are consistent with a partic-

ular theory or hypothesis. One of the most common quantitative modeling

approaches employed in criminological enquiry uses some form of regres-

sion analysis. The idea behind these kinds of approaches is twofold. First,

that the outcome or behavior of interest can be measured using an observa-

ble dependent variable, such as the volume of crime in an area. And, second,

that an algebraic model can be constructed to represent the candidate theory

of interest. The latter will comprise a set of explanatory variables—col-

lected using some form of real-world sampling—considered to represent

the key constructs of the theory in question. Hypothesis testing then

involves estimation of the amount of variance in the dependent variable
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explained by the proposed model and the relative contribution of the inde-

pendent variables. Considerable advances have been made in the maximum

likelihood estimation methods employed in such modeling exercises (e.g.,

Osgood 2000; Rountree and Land 1996).

However, there are acknowledged problems with these two approaches

to research, and hence many theories remain inadequately tested. One obvi-

ous limit is that correlation does not imply causality. A second is the lack of

empirical data to accurately represent theoretical constructs of interest (see

Sullivan and McGloin this issue). A third is that many theories involve com-

plex dynamic interactions that evolve over time that cannot be systemati-

cally studied using the empirical methods described. In such cases,

alternative methods are required.

In the next section, we describe how ABMs may help address some of

the outstanding critical questions, allowing the exploration and strengthen-

ing of criminological theory. We are not suggesting such models should

replace empirical investigations. Rather, that they may be used in combina-

tion, perhaps in an iterative fashion, to provide insight into phenomena of

interest. For example, they offer an efficient way of ensuring that empirical

investigations are well designed and that candidate theories are as well

specified as possible. In the next few paragraphs, we describe ABMs to

illustrate why they might be useful.

ABMs as a Tool for Strengthening Criminological
Theory

In their book on ABMs, Epstein and Axtell (1996) describe ‘‘a generative

program for the social sciences and see the artificial society as its principle

scientific instrument’’ (p. 177). This is a bold aspiration, but the principles

that motivate it are those that most criminologists will agree with. The idea

is simply this—if a theory is valid, then a formal implementation of it

should be able to ‘‘grow’’ the outcomes the theory was developed to

explain. This is a departure from statistical approaches for which something

of a leap of faith is required to connect explanatory mechanisms to out-

comes. The act of modeling a theory using an ABM requires concepts and

mechanisms be formally articulated in a logical way. If this cannot be

accomplished, doubt is cast on the veracity of the theory or its articulation

(e.g., Benenson and Torrens 2004; Gilbert and Terna 1999; Gilbert and

Troitzsch 2005). ABMs represent perhaps the most commonly used compu-

tational generative approach—and the simplest to understand—and hence,
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we concentrate on those here (for a collection of criminological examples,

see Eck and Liu 2008).1

A typical ABM comprises three basic components—agents, rules, and an

environment. Agents can represent anything of interest but are usually

autonomous entities (e.g., offenders, citizens), whose behavior the

researcher seeks to simulate. Over the many iterations of a simulation,

agents engage in behaviors and interact with each other and their environ-

ment. Such behaviors are specified in a computer program that comprises

among other things, condition action rules that guide agent decision-

making. The program is intended to be a formal representation of the theory

of interest (more on this below) and the rules used to specify agent behavior

may reflect only a parsimonious representation of the theory concerned.

Despite this, model outcomes can be complex and unexpected. One reason

for this is that agents interact, and these interactions can affect subsequent

choices and impact the environment. These interdependencies can generate

feedback loops, for example, not explicitly included in the agent rule sets

(but often observed in the real world). That is, complex behavior can

emerge from simple rules. In terms of assessing simulation outcomes, the

focus is not on the individual choices made by each agent (though these can

be analyzed) but on the macro-level phenomena observed at the level of the

overall system. Such outcomes would include documented regularities like

the age–crime curve (Steffensmeier et al. 1989) or the finding that crime

clusters in space (e.g., Braga, Papachristos, and Hureau 2010; Groff, Weis-

burd, and Yang 2010; Johnson and Bowers 2010; Weisburd, Bruinsma, and

Bernasco 2009).

ABMs do not include a central controller that objectively assesses the

situation each agent encounters. Instead, agent decision-making is autono-

mous and usually reflects a form of bounded rationality (Simon 1952). That

is, agents generally make decisions based only on the information that is

available to them and (in some models) past experience. Moreover, where

an agent might select from two or more choices, the decision-making pro-

cess will usually be stochastic so that a favored (or the most optimal) choice

will not always be selected, just as in real life.

ABMs share some of the advantages of the empirical methods discussed

previously but offer the promise of addressing some of their weaknesses.

For example, in the spirit of qualitative research, they allow a researcher

to formally specify theoretical mechanisms and see if they are sufficient

to replicate findings observed in the real world (e.g., Epstein 2006). A

researcher can also experiment by changing specific agent behaviors, or

characteristics of the agents or their environment. As the researcher
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specifies the behaviors, threats to internal validity that are a common con-

cern for empirical studies, such as spurious effects or unknown confoun-

ders, are minimized. Moreover, as with quantitative studies, simulations

can be run for long simulated periods of time to generate large samples

of data, but unlike empirical studies can easily (and should) be replicated

many times.

A detailed account of how an ABM is constructed and tested is beyond

the scope of this article, but a brief explanation will be helpful. The first

stage is to formalize the theoretical model of interest (Gilbert and Terna

1999; Gilbert and Troitzsch 2005; Grimm and Railsback 2005) by translat-

ing it into a series of computer algorithms that represent key components.

This can be difficult, as theories expressed in natural languages are often

vague, ambiguous, and open to interpretation. But the process may be help-

ful regardless of whether an ABM is ultimately produced as the identifica-

tion of elements of a theory that cannot be formalized can highlight aspects

of it that require intellectual attention or data collection (Eck and Liu 2008).

Considering this point, we wondered how many existing criminological the-

ories would pass the formalization test. We do not have an answer to this

question, but it is one worth asking.

ABMs can be produced in a number of ways, but freely available ABM plat-

forms such as NetLogo (Wilensky 1999) or Repast (Collier 2003) are com-

monly used. Having implemented a formal model, model parameters require

calibration. One appeal of ABMs is that heterogeneity can easily be incorpo-

rated. For example, reflective of actual people, agents may vary on particular

attributes (e.g., age, self-control) and these may change over time. For

instance, agents can learn, adapting their behavior to achieve particular goals,

or some form of satisfaction (e.g., Axelrod 1997). Places too might vary in one

or more ways, such as their social composition or signs of decay. Such factors

can be dynamic, affected by agent activity or exogenous factors.

ABMs have limitations (Gilbert and Terna 1999; Gilbert and Troitzsch

2005). Similar to other types of modeling, findings are constrained by the

assumptions and rules that underpin the model. An example is the calibra-

tion of an ABM. For instance, the values (or distribution of values) associ-

ated with particular parameters may be unknown. Choices made about how

to represent those parameter values and the associated condition action

rules will affect the process and the outcomes observed. In addition, the

findings from an ABM must be interpreted conservatively since they do not

represent an empirical test. Instead, they explore the ‘‘extent to which a the-

ory is plausible’’ (Groff 2007:79; for a discussion of other issues of validity,

see Berk 2008; Townsley and Johnson 2008).
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On one hand, this can be problematic insofar as a model based on incom-

plete information may be of little value. On the other, ABMs can be tested

using different values (or distributions) to identify the range of parameter

values (or distributions) for which a particular model is able to sufficiently

generate a particular outcome. Furthermore, where little is known about key

model parameters, a research agenda can describe what data should be col-

lected to inform (theory and) model development. Such an exercise can sup-

plement research that uses methods other than simulation.

Qualitative/ethnographic research shares common ground with ABM in

that both focus upon the mechanisms and processes through which out-

comes emerge. This differs from quantitative research that typically looks

for patterns that are consistent with a particular theory. Qualitative research

offers an empirical complement to ABMs virtual societies, a relationship

that can go both ways (Tubaro and Cassilli 2010). For example, qualitative

research may provide insight into the decision-making of actors of interest,

which can be incorporated into the condition action rules of an ABM. Such

decision-making might already have been studied, or it might be identified

as important through the process of formalizing an ABM. Further, an ABM

can be used to examine how such condition action rules influence model

outcomes, or how sensitive the model is to changes in the specific decision

criteria (e.g., if particular tipping points need to be reached for an action to

be triggered, see below), and so on. This can be a much more time and cost-

effective strategy than undertaking additional interviews in a new popula-

tion (Tubaro and Cassilli 2010). In this way, the approaches can (and

should) be seen as reciprocal, and ABM can be considered another compo-

nent of the researchers toolbox.

Put differently, ABM can increase the formality of qualitative research by

making possible in silica experimentation—the agent’s ‘‘lives’’ can be

restarted and allowed to play out under different assumptions. This might

be used to test different theories or even interventions. For example, agents

can provide estimates of the counterfactual by allowing outcomes to be mod-

eled for those who do and do not receive ‘‘treatments.’’ The possibilities for

qualitative research and ABM to strengthen one another are many. For a more

in-depth treatment of this subject, see Tubaro and Cassilli (2010).

This same reciprocity applies to quantitative research. Consider Bruch

and Mare’s (2006) investigation into Schelling’s (1971) classic model of

ethnic segregation. Developed to explain the high levels of neighborhood

segregation observed in American cities at the time, Schelling’s model

explored whether uncoordinated2 activity on the part of residents could lead

to unexpected aggregate behavior. Using a parsimonious spatial

Johnson and Groff 515

 at University College London on August 5, 2014jrc.sagepub.comDownloaded from 

http://jrc.sagepub.com/


representation, Schelling showed that a simple ‘‘tipping point’’ model was

able to reproduce highly segregated patterns of neighborhood segregation

for a population of agents that were, at the individual level, happy to live

in a mixed neighborhood. At the start of the simulation, agents—which rep-

resent households that belong to one of the two groups—are randomly

placed on a regular grid that represents an abstract city. During each cycle

of the simulation, every agent surveys its eight neighbors and computes

what fraction belong to the same group. Where this fraction is lower than

a given tolerance threshold, or tipping point, the agent moves to a new loca-

tion. The model is run many times and each choice by every agent has the

potential to affect those of the others by changing the composition of their

neighborhoods; their behavior is interdependent. In experiments, Schelling

and others used variants of the decision rules and showed that segregation

can occur for tolerance thresholds that are substantially lower (i.e., as low as

30 percent) than the aggregate behavior of residents would otherwise

suggest.

What is important for our discussion is that Schelling’s model has

inspired the development of theoretical explanations and the collection of

empirical data to test them. Bruch and Mare (2006) carefully elucidate the

mechanisms underlying Schelling’s model and consider alternative imple-

mentations for which agent preferences are based on a continuous rather

than discrete threshold function. Using an ABM, they show that different

‘‘tolerance functions’’ (e.g., a threshold function vs. a continuous function)

generate different outcomes, even if the aggregate levels of tolerance com-

puted across all agents are the same. This is useful in and of itself, but it also

suggests an agenda for the collection and analysis of empirical data. In the

same article, the authors analyze data collected for a large-scale survey.

Results support the conclusions of their ABM.

This study illustrates the iterative nature of research and how ABMs can

be used to help refine theory and to guide empirical research intended to test

it. In this case, the ABM was used to test a hypothesis that would be time

consuming to do empirically. Having established its plausibility, the

researchers then examined the empirical record.

Theoretical Focus of Articles in JRCD

We now consider the theoretical focus of the 50 most cited JRCD articles

(1964–2012). Thirty-three of these tested one or more perspective using

empirical data.3 Table 1 shows that the general theory of crime (Gottfredson

and Hirschi 1990) was the most frequently tested, followed by general strain
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theory (Agnew 1992) and neighborhood/social disorganization theories

(Sampson and Groves 1989; Shaw and McKay 1942). To estimate the rela-

tive popularity of the theories over time, we compute how many years after

the date of the oldest article published (1979) each article appeared in

JRCD, and take the average for the articles associated with each theory.

Theories with averages closer to zero are those that were tested during the

earliest period considered. On average, articles that tested the general the-

ory of crime or neighborhood characteristics/social disorganization theories

were published most recently, followed by those using routine activity/life-

style/victimization theories.

Theories Tested Using ABM

We next examined articles that used some type of simulation of urban

crime. We conducted a systematic search of all articles written in the Eng-

lish language published (in any journal, book, thesis, etc.) through July

2012. A detailed list of search terms used and the databases searched is

available from the authors upon request. A total of 36 publications met our

search criteria. Table 2 shows that 33 of these mentioned some kind of the-

oretical framework. Of these, routine activity theory was modeled over

twice as often as any other theory (n ¼ 23). Crime pattern theory and the

rational choice perspective were also frequently used. In contrast, social dis-

organization theory and social cohesion/collective efficacy were used

Table 1. Theories Tested in Journal of Research in Crime and Delinquency’s (JRCD)
Most Cited Articles.

Theory Number
Average Age of Articles

Relative to 1979

General theory of crime 8 18
General strain theory/strain 7 13
Neighborhood characteristics/social

disorganization
6 18

Social control 4 14
Differential association 3 13
Fear of crime 3 7
Routine activity theory/lifestyle/

victimization
3 16

Social learning 2 10
Other 13 11
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(superficially) in only four models each. There was a definite bias toward

opportunity theories and those appearing under the rubric of environmental

criminology versus theories about individual human behavior (e.g., strain

theory that appeared in only one article).

This comparison shows that the criminological theories receiving more

attention in the most highly cited articles in JRCD are precisely those that

have received the least from the computational modeling community. Why

have those involved in computational modeling embraced theories of envi-

ronmental criminology? One reason is that simulation models typically

model dynamic events, and do so in an iterative fashion. Theories of envi-

ronmental criminology, such as routine activity (Cohen and Felson 1979)

and crime pattern theory (Brantingham and Brantingham 1984) focus on

crime at the event level, and consider the necessary ecological conditions

for a crime to occur at a particular place and time. Consequently, they are

expressed in a form that is directly compatible with the ABM approach (for

further discussion, see Brantingham and Brantingham 2004).

We now turn to two examples of theories, prominent in JRCD articles

that have received little attention from computational modelers but might

benefit from it.

General Strain Theory—What Can ABM Contribute?

In contrast to theories of the crime event, general strain theory (GST) con-

siders how individual differences affect offender motivation. In particular,

Agnew (1999:372) suggests that ‘‘strain may involve the removal of

Table 2. Theoretical Framework Tested in Agent-based Models.

Theory Number of Articles

Routine activity theory 23
Crime pattern theory 9
Rational choice perspective 8
Social disorganization 4
Social cohesion/collective efficacy 4
Beliefs/desires/intentions (BDI) 3
Near repeats 2
PECS 2
Situational crime prevention 2
Strain 1

Note: PECS ¼ physical conditions, emotional states, cognitive capabilities, and social status.
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positively valued stimuli. . . . and negative relations with parents, teachers,

peers and others -with such relations involving insults, verbal threats, and

other noxious behavior. These types of behavior increase the likelihood

that the individual will experience negative affect. . . . This creates pres-

sure for corrective action, and delinquency is one response’’ (Agnew,

1995, p. 372). Thus, GST considers how an offender might become moti-

vated to commit a crime but not when and where they might do so. The

theory is largely silent on crime events.

The description quoted previously clearly outlines a dynamic process

whereby a person’s interaction with others influences the strain they expe-

rience. While data could be (and are) collected using surveys to estimate

how such experiences shape an offender’s propensity to offend, it is diffi-

cult to see how sufficiently complete data could be collected to allow an

adequate test of the theory. On the other hand, in an ABM, such incidents

could be recorded and their impact on simulation outcomes observed.

In translating the theory into an ABM, it would be possible to specify

rules about how agents interact with each other and their environment and

how their interactions provide triggers that influence the amount of strain

experienced. Such a model would need to articulate each of the different

sources of strain. It would also need to specify how much strain experienced

would likely to lead to delinquency, whether a threshold or some other func-

tion would apply (see above), how this might vary across agents, and what

factors might mediate it. Some of these issues have been discussed in the

literature (e.g., Agnew 2001, 2012), but perhaps not so comprehensively

that they could be formally expressed at the level of specificity necessary

for an ABM. For example, are some sources of strain more damaging than

others or more damaging to some people than others? At what rate do dif-

ferent sources of strain build up? Are cumulative effects linear? Are there

tipping points? Do the effects of some (or all) sources of strain decay with

time? Do some (or all) sources of strain have long-term effects, and do some

have abrupt but temporary effects?

Another element of GST concerns the way in which a person’s relations

to their parents and others might mediate how strain experienced influences

behavior. To model these effects, researchers would need to be specific

about how such influences operate. They might also want to specify how

people’s social networks impact upon them more broadly.

Formally articulating these aspects of the theory would represent a useful

step in developing an ABM and in strengthening the theory. Given the num-

ber of influences considered in GST, modeling it would be a complicated

task. However, ABM architectures such as physical conditions, emotional

Johnson and Groff 519

 at University College London on August 5, 2014jrc.sagepub.comDownloaded from 

http://jrc.sagepub.com/


states, cognitive capabilities, and social status (PECS) may provide a con-

venient framework to support the modeling of such theories (e.g., Urban

2000).

Social Disorganization Theory—What Can ABM
Contribute?

Sampson and Groves (1989:777) explain that ‘‘[i]n general terms, social

disorganization refers to the inability of a community structure to realize the

common values of its residents and maintain effective social controls.’’

Moreover, ‘‘the structural dimensions of community social disorganization

can be measured in terms of the prevalence and the interdependence of

social networks in a community—both informal (e.g., friendship ties) and

formal (e.g., organizational participation)—and in the span of collective

supervision that the community directs toward local problems.’’ Emergence

of the cohesion necessary to support collective action is affected by a com-

munity’s socioeconomic characteristics and its residential stability.

Although Sampson and colleagues have specified the mechanisms from

which collective action emerges, accurate measurement of those mechan-

isms remains elusive. Researchers have attempted to measure community

social organization through surveys of individuals and scholars have cre-

ated an entire methodology, systematic social observation, in an effort to

quantify key elements (Sampson and Raudenbush 1999). This has revealed

some very interesting patterns in one city, Chicago, IL. Unfortunately, the

method is costly and even with improved technology is likely beyond the

reach of cash-strapped funding agencies.

ABM can help to test social disorganization theory by representing the

individual-level dynamic processes of friendship tie formation, participa-

tion in neighborhood organizations, and how these enable a community to

maintain effective social control and reflect the goals of its residents. To

capture the dynamics, such a model might represent both individuals and

neighborhoods as agents with characteristics that change over time. Agent

decisions could be influenced by other individuals with whom they inter-

act and the neighborhood in which they occur. In addition, individual

agents could ‘‘observe’’ decisions their neighbors make, which could

inform their personal perception of the neighborhood and their subse-

quent decisions. With repeated encounters, agents could begin to recog-

nize each other. Over time, they might begin to speak and get to know

one another. The strength of an agent’s social ties could increase, as they
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become familiar with more of their neighbors. Development and changes

in social ties could be monitored in real time.

But many details of the theory remain unspecified. At what point

does someone begin to understand neighborhood social norms? Must

they observe active instances of intervention or is the absence of beha-

vior evidence of what is (not) acceptable in that neighborhood? What is

the number and/or the strength of social ties that are necessary before a

neighborhood becomes socially organized? How many individuals need

to participate in community organizations? What is the interaction

between the strength or number of social ties among neighbors and par-

ticipation in community organizations that enables social organization

to emerge? ABM offers a robust platform for thinking through the

answers to these questions, operationalizing them within an artificial

world, and examining the sensitivity of the model to changes in associ-

ated parameters.

Conclusion

In this article, we have discussed two traditional approaches to social science

research and highlighted how ABM offers complementary strengths to those

wishing to test and strengthen criminological theory. Our review of the most

cited articles published in JRCD in the last 50 years revealed the field’s interest

in dispositional theories of crime, although ecological theories have received

more attention recently. At the same time, agent-based modelers have focused

on the criminal event and relied on Cohen and Felson’s (1979) routine activity

theory, the Brantinghams’ crime pattern theory, and Clarke and Cornish’s

rational choice perspective. Here, we argue that agent-based computational

modeling could play a wider role in testing criminological theory if it is applied

to a greater variety of theoretical perspectives.

Our brief discussion of how GST and social disorganization theory might

benefit from ABMs is illustrative. We do not suggest these are the only the-

ories that could or should be examined. We believe we have only scratched

the surface. As JRCD moves forward into the next 50 years, consideration

of new methods for strengthening criminological theory is critical to Lloyd

E. Ohlin’s (1964:3) vision of a journal ‘‘where the frontier problems of the-

ory and research in criminology are discussed.’’
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Notes

1. Traditional simulation encapsulates a broad field that includes statistical mod-

eling techniques such as Monte Carlo methods that employ resampling and per-

mutation approaches (for an example of such methods in criminology, see

Johnson 2009). Simulation also includes a variety of models such as dynamic

systems, queuing models, and microsimulation that focus on process. For a

good introduction to these methods, see Gilbert and Troitzsch (2005). ABMs

differ in that they allow for heterogeneity and for dynamic individual decision

making that can be influenced by the situation and agent interaction.

2. Uncoordinated in that no central controller—or invisible hand—directs agent

actions.

3. Journal of Research in Crime and Delinquency’s (JRCD) managing editor pro-

vided a list of the top 50 most cited articles in April 2013. The abstracts of all

articles were reviewed and categorized by types of theories tested. The list of arti-

cles is available from the authors.
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