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Abstract

Using ideas from continuum mechanics we construct a theory of
gravity. We show that this theory is equivalent to Einstein’s theory
of general relativity; it is also a much faster way of reaching general
relativity than the conventional route. Our approach is simple and
natural: we form a very general model and then apply two physical
assumptions supported by experimental evidence. This easily reduces
our construction to a model equivalent to general relativity. Finally,
we suggest a simple way of modifying our theory to investigate non-
standard space-time symmetries.
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Einstein himself, of course, arrived at the same Lagrangian but

without the help of a developed field theory, and I must admit

that I have no idea how he guessed the final result. We have had

troubles enough arriving at the theory - but I feel as though he

had done it while swimming underwater, blindfolded, and with

his hands tied behind his back!

Richard P. Feynman, Feynman lectures on gravitation, 1995.

1 Introduction

Einstein’s theory of general relativity is one of the crowning achievements of
modern science. However, the route from a special-relativistic mind game
to a fully-fledged theory capable of producing physical predictions is long
and tortuous. As Feynman notes, Einstein completed this journey with
seemingly superhuman intuition: for the rest of us, lengthy mathematical
preparation is the key to developing the theory.

The purpose of our essay is to showcase a new approach to general
relativity. Using well-known machinery from continuum mechanics [1] we
construct a general Lagrangian which describes a space-time continuum.
We make two physical assumptions which reduce our Lagrangian (relatively
painlessly) to that of general relativity, the Einstein-Hilbert action. We also
suggest a simple way of modifying our theory to investigate different models
of gravitation with alternative physical assumptions.

Readers with a background in continuum mechanics should be familiar
with our construction while this essay serves as an introduction to general
relativity for members of this community.

2 Mathematical preliminaries

There is strong experimental evidence that space and time should not be
treated as independent concepts, but that we should think of a 4-dimensional
space-time continuum when describing nature. Such a continuum is mod-
eled mathematically as a 4-dimensional manifold equipped with Lorentzian
metric

ds2 = ηijδ
i
αδ

j
βdx

αdxβ := (dt)2 − (dx1)2 − (dx2)2 − (dx3)2 (2.1)

which is used to determine distances between points. We adopt Einstein’s
summation convention whereby summation is carried out over repeated in-
dices. Here xκ, κ = 1, 2, 3 are the standard Cartesian coordinates and x0 = t
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is time. This is the usual setting for special relativity, a theory containing
no gravity. The Kronecker δ’s (where i, j = 0, 1, 2, 3) indicate that all local
coordinate frames are aligned. This over-complication will become useful to
us further on.

Light propagating in a vacuum described by space-time (2.1) travels in
straight lines. However, experimental evidence suggests that in our universe
light rays are deflected by massive bodies. We argue that this observation
indicates (2.1) should be modified when gravity is taken into account. To
do this we assume that our local coordinate system changes from point-to-
point on the manifold in the presence of gravity. Mathematically, we modify
our metric by attaching to every point a frame or tetrad eiα(x

κ, t), which
describes this change of coordinates

ds2 = ηije
i
αe

j
βdx

αdxβ := gαβdx
αdxβ . (2.2)

The sixteen components of the frame can be thought of as a set of orthonor-
mal vectors attached to each point of the manifold, where i labels each
vector and α their components. At any fixed point P of our manifold, the
functions eiα determine how the local coordinates at P are related to the
local coordinates at any other point Q.

The frame will play the role of the dynamical variable. We are therefore
modelling a situation in which physical information related to the gravita-
tional field is encoded in the frame. Gravity manifests itself as the difference
in alignment of local coordinates at different points; this is the reason we
used Kronecker δ’s in (2.1) when dealing with the special-relativistic case.

We can also view the frame as a pseudo-orthogonal matrix. This suggests
that we can introduce the inverse frame ej

β which, together with the frame
itself, will satisfy the equalities

eiαei
β = δβα, eiαej

α = δij . (2.3)

The position of the indices allows us to differentiate between the frame and
its inverse without using different notation.

To progress further we need to measure the gravitational field strength.
It seems natural to differentiate the first expression from (2.3) with respect
to the coordinate xγ , say, which gives

eiα∂γei
β + ei

β∂γe
i
α = 0. (2.4)

This motivates the introduction of the rank-3 tensor, antisymmetric in the
first and third indices

Kαβγ = gγγ′Kαβ
γ := gγγ′eiα∂βei

γ′

, (2.5)

which we take as our measure of field strength and call the contortion tensor.
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3 Our approach

So far we have introduced the frame eiα and linked this to the metric (2.2).
We then identified a possible gravitational field strength tensor (2.5). The
next logical step is to construct an admissible Lagrangian from which we
can determine a set of field equations via a variational principle. Here ‘ad-
missible’ means we take a very general Lagrangian and apply two physical
assumptions to isolate physically meaningful situations. These assumptions
are discussed below.

As the reader will no doubt have noticed, we aim to model the gravi-
tational field in a manner very different to general relativity. Indeed, this
is a good time to emphasise that we are not considering a geometry with
curvature. If we assume we work in flat space then our metric (2.2) is
constant, and hence raising and lowering indices commutes with partial dif-
ferentiation. We need no longer differentiate between co- and contra-variant
vectors and can work with Cartesian tensors, which reduces computational
complexity significantly. Stipulating that space-time is flat does not remove
gravity from our theory; it only serves to reduce the metric equation (2.2)
to a restrictive constraint on the frame components eiα.

4 Cautionary notes

We stress that our treatment of general relativity via continuum mechanics
is often referred to as the ‘teleparallel equivalent of general relativity’, see [2].
In this context, the free parameters of a general continuum-based theory are
chosen to produce an equivalence with general relativity.

Our approach is different. We do not choose specific parameters to force
such an equivalence; we retain all degrees of freedom and apply two physical
assumptions which reduce our continuum model to general relativity. It
is the fact that two sensible physical assumptions alone produce general
relativity that motivates this essay.

5 Lagrangian and assumptions

Define the Lagrangian W with the rank-6 tensor Cαβγλµν as

W :=
1

2
CαβγλµνKαβγKλµν (5.1)

where C takes all permutations over (αβγλµν), which has 4096 possible
components. Using symmetry arguments we will reduce this to something
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more manageable. The symmetry properties of K imply C enjoys two sym-
metries, namely

Cαβγλµν = −Cγβαλµν , Cαβγλµν = −Cαβγνµλ. (5.2)

Under (5.2) the number of independent components of C drops from 4096
to 576. Irrespective of the symmetry properties of K, we also have

Cαβγλµν = Cλµναβγ . (5.3)

Including (5.3) reduces the number of independent components from 576 to
300. We now state our two physical assumptions.

1. Isotropy: the property of a vacuum space-time whereby gravity acts
equally in all directions.

2. Lorentz invariance: the property of a space-time whereby experimental
results are independent of the orientation or the relative velocity of the
laboratory through space.

Both assumptions are well supported by current experimental evidence and
are key to modern field theory.

Isotropy is invoked mathematically by stipulating that the tensor C re-
mains invariant under local changes of coordinates and, indeed, must be
composed from tensors which obey the same restriction. This means that
a rank-6 tensor of our type can only be composed from Kronecker δ’s. A
simple combinatorial exercise demonstrates there are 15 possible ways of
choosing pairs from a set of 6 possibilities, which indicates that

W =
1

2

15∑

m=1

cmδm(αβγλµν) (5.4)

where cm are undetermined parameters and m(αβγλµν) is one of the 15
possible combinations of indices. To see the form of the isotropic tensors
δm(αβγλµν), consider the case when the indices retain their original order,
indicated by m = 1, say:

c1δ1(αβγλµν) = c1δαβδγλδµν . (5.5)

We have not yet included the three symmetries (5.2), (5.3). Doing so reduces
the number of independent components to 3! Explicitly we have

W = c1KααβKβγγ + c2KαβγKαγβ + c3KαβγKαβγ (5.6)
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where c1, c2 and c3 are the remaining free parameters. We must now include
the second physical assumption, Lorentz invariance. This manifests itself as
the invariance of our Lagrangian under a certain transformation of the frame,
namely

eiα 7→ Λi
je

j
α (5.7)

where Λi
j(x

κ, t) is a member of the Lorentz group satisfying

ηijΛ
i
mΛj

n = ηmn. (5.8)

Our metric (2.2) is invariant under such a transformation. The required in-
variance of the Lagrangian (5.6) produces a constraint on the undetermined
parameters c1, c2 and c3, specifically that

c1 = −c2, c3 = 0. (5.9)

Therefore we have reduced the number of independent components of C

from 4096 to 1, and only 1, free parameter!

6 The final result

Our one-parameter Lagrangian can now be written

W = c1 (KααβKβγγ −KαβγKαγβ) . (6.1)

This is a significant achievement. We have produced a simple Lagrangian
from a very general case using two physical assumptions, all without intro-
ducing curvature. Furthermore, one can show that our Lagrangian is, up to
a surface term, equivalent to the Einstein-Hilbert action of general relativity.

At this point we could vary our Lagrangian to determine a set of field
equations. These will be equivalent to the Einstein field equations, although
expressed in terms of the tetrad instead of the metric.

As a final thought, it is possible to introduce different physical as-
sumptions into our model by replacing isotropy with another symmetry.
This asymmetry is at a very fundamental level of the theory and is com-
pletely independent of the symmetries of the metric. One can formulate an
anisotropic model (Cαβγλµν anisotropic) where the space-time (gαβ) would
remain isotropic for instance. Our model allows for the straightforward in-
troduction of such non-standard symmetries.

Our essay demonstrates a very quick method of arriving at general rela-
tivity using the machinery of continuum mechanics. It also provides a neat
method for investigating symmetries of the gravitational field and, hope-
fully, the reader has not at any point felt as though they were “swimming
underwater, blindfolded, and with [their] hands tied behind [their] back[s]”!
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Norm. Sup., 40, 325412 (1923); A. Einstein, “Riemann-Geometrie
mit Aufrechterhaltung des Begriffes des Fernparallelismus”, Sitzungs-
ber. Preuss. Akad. Wiss., 1928(XVII), 217221 (1928); “Neue
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