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Abstract

We consider an optimal trading problem over a finite period of time during which an

investor has access to both a standard exchange and a dark pool. We take the exchange to

be an order-driven market and propose a continuous-time setup for the best bid price and

the market spread, both modelled by Lévy processes. Effects on the best bid price arising

from the arrival of limit buy orders at more favourable prices, the incoming market sell

orders potentially walking the book, and deriving from the cancellations of limit sell orders

at the best ask price are incorporated in the proposed price dynamics. A permanent impact

that occurs when ‘lit’ pool trades cannot be avoided is built in, and an instantaneous impact

that models the slippage, to which all lit exchange trades are subject, is also considered.

We assume that the trading price in the dark pool is the mid-price and that no fees are due

for posting orders. We allow for partial trade executions in the dark pool, and we find the

optimal trading strategy in both venues. Since the mid-price is taken from the exchange,

the dynamics of the limit order book also affects the optimal allocation of shares in the

dark pool. We propose a general objective function and we show that, subject to suitable

technical conditions, the value function can be characterised by the unique continuous

viscosity solution to the associated partial integro-differential equation. We present two

explicit examples of the price and the spread models, derive the associated optimal trading

strategy numerically, and describe the numerical method used in the appendix. We discuss

the various degrees of the agent’s risk aversion and further show that roundtrips—i.e.

posting the remaining inventory in the dark pool at every point in time—are not necessarily

beneficial.

Keywords: Stochastic control, optimal trading strategies, Hamilton-Jacobi-Bellman equa-

tion, viscosity solutions, limit order book, market impact, dark pools.

1 Introduction

The focus in this paper is put on trading in ‘lit’ and dark pools. We study how an investor’s

optimal trading programme is affected by the availability of a dark pool as an alternative
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venue with its own set rules. Since the trade execution price in the dark pool is related to

the best bid and ask prices in the standard exchange (often referred to as the ‘lit’ pool or ‘lit’

exchange), we propose at the same time novel microstructure models for the price dynamics in

the lit exchange. In this paper we assume the exchange to be an order-driven market and put

forward continuous-time models for the best bid price and for the bid-ask spread. The mid-

price is of course recovered by adding half the spread to the best bid price. We capture the

permanent price impact by market activity in the drift function and in the compound Poisson

processes. The spread process is constructed similarly so as to obtain the same structure for the

best ask price when compared to the best bid price process. Optimal trading in LOBs, of which

microstructural features are modelled, is for example also treated in (i) Cartea and Jaimungal

[10] who model the spot price via a hidden Markov chain to capture the switches between

price regimes, (ii) Cartea et al. [12] who model the deviation of mid-price from its long-term

mean via a jump-diffusion process, and (iii) Obizhaeva and Wang [31], and Alfonsi et al. [1]

who propose trading models by taking into account shape functions for the LOB. Research in

optimal execution in an order-driven market has its roots in the papers by Bertsimas and Lo [4],

and Almgren and Chriss [2]. More recent contributions include, e.g., Pemy and Zhang [33],

Pemy et al. [34], Gatheral and Schied [19], Brigo and Di Graziano [6], Moazeni et al. [30],

Cartea et al. [11], and Ishitani and Kato [27]. Cartea and Jaimungal [9] consider a continuous-

time, jump-diffusion mid-price model and explicitly take into account the impact of the market

activity on the mid-price. In the same context, we also mention the works by Guéant et al.

[20] and Guilbaud et Pham [22], who treat optimal liquidation via limit orders. A dark pool is

an alternative trading venue where buy and sell orders are not publicly displayed so that the

participants’ identity is not revealed. Other advantages of trading in a dark pool include (i) the

possibility of submitting large orders without impacting the market price, and (ii) trading at

more favourable conditions—the dark pool trading price lies between the best bid and the best

ask prices quoted in the standard exchange. (For simplicity, we will assume that the dark pool

utilises the standard exchange mid-price.) On the other hand, dark pools do not guarantee

execution of the trade for it is subject to the availability of a trade counterparty. Dark pools

might also reduce market liquidity since large and institutional investors, in order to protect

private information, resort to these alternative trading venues where orders remain hidden to

the general market participants. Most of the research effort in dark pools has been devoted to

the impact of dark pools on market welfare. A game-theoretic approach has often been used to

model the two competing trading venues, so to find equilibrium prices and optimal strategies

of the market players, also including the effect of private information and adverse selection on

trading. This branch of research includes the early work by Hendershott and Mendelson [23],

who extend the Kyle [29] model to capture the dynamics of the interplay between investors,

dark pool and standard exchange, followed by Degryse et al. [16], Buti et al. [7] and Daniëls

et al. [15]. The work by Ye [37] and Zhu [39] focus on the effects on price discovery due to the
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migration of order flows from the exchanges to the dark pools, when unobservable liquidity is

added to the model.

Kratz and Schöneborn [28] consider trading in the dark pool within the classical field

of optimal liquidation. They model the LOB mid-price by an exogenous square-integrable

martingale and regard the dark pool as a complete-or-zero-execution venue where the arrival

of trading counterparties follows a Poisson process. In this context, we also refer to work by

Horst and Naujokat [25], in which the authors find the optimal strategy when trading in an

illiquid market. The agent under consideration seeks to minimise the deviation from a given

target while submitting market orders in the standard exchange and “passive orders” in a dark

pool. The execution of dark-pool orders is modelled via Poisson processes. As we shall see,

we incorporate such a feature in the model presented in Section 3.

The goal in this paper is to find the optimal trading strategy when utilising standard ex-

change and the services of a dark pool. Since the smoothness of the value function is not

guaranteed on the whole domain, there are no classical solutions to the optimisation prob-

lem, in general. Therefore we resort to a weaker notion, the viscosity solutions, and we show

that the value function is the unique viscosity solution of the Hamilton-Jacobi-Bellman partial

integro-differential equation (HJB PIDE) associated with the optimisation problem. There is a

vast literature on the theory of viscosity solution of HJB equations of which state variables are

driven by general Markov processes. We here refer in particular to Pham [35, 36], and Fleming

and Soner [17] for technical details. Our results concerning the exchange are coherent with

the ones obtained by Chevalier et al. [13]. Indeed we find that the optimal strategy depends

on the book’s dynamics. Furthermore, we show that this is also the case in the presence of a

dark pool.

The paper is organised as follows: after the introduction, in Section 2 we discuss the opti-

mal trading problem and present our LOB model. Then we formulate the optimisation problem

when only standard exchanges are available to an investor. We consider a generalised objec-

tive function and derive the HJB PIDE for the control problem. In Section 3, we introduce

the dark pool by modifying the setup presented in the previous section. We propose an objec-

tive function that accounts for trading in the alternative pool and obtain the associated HJB

PIDE. In Section 4, we provide two numerical examples of the optimal strategy and we focus

on the roles played by the parameters of the explicit model. We conclude with Section 5 by

summarising the contributions offered in this paper. In order for the present work to be self-

contained, we collect the mathematical conditions, the propositions and the related proofs at

the basis of the viscosity property of the value function in the appendix. We further include

the pseudocode to numerically solve the HJB equations presented herein.
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2 Price model and optimal trading in a standard exchange

We take the view of an investor who seeks to liquidate a sizeable amount of shares over a finite

period of time [t, T], where the initial time t lies in the interval [0, T ). As far as an optimal

liquidation strategy is concerned—which in our setup involves the submission of market sell

orders only—it suffices to model the best bid (or the best ask in the case of an optimal acqui-

sition), since we consider a temporary price impact to account for the slippage effect. In the

short run, the best bid price at time u ∈ [t, T] depends on its initial state and on the cumulated

market activity up to time u.

We fix a probability space (Ω,F ,P) equipped with a filtration {Fu}0≤u≤T satisfying the

usual conditions. In what follows, we assume that the task is to liquidate an amount X t = x

of shares, where 0≤ x <∞ and write for the inventory dynamics

dXu = −νudu, (2.1)

where the rate of trading ν := {νu}t≤u≤T is the control process of the stochastic optimisation

problem presented in Section 2.1. We model the best bid price process by

dSb
u = µ

b
�

u, Sb
u− ,νu

�

du+
2
∑

i=1

hb
i

�

u, Sb
u−
�

dJ̃ b,i
u , (2.2)

and the spread process by

d∆u = µ
∆ (u,∆u− ,νu)du+

2
∑

i=1

h∆i (u,∆u−)dJ̃∆,i
u +

2
∑

i=1

hb,∆
i

�

u, Sb
u− ,∆u−

�

dJ̃ b,i
u , (2.3)

with initial values Sb
t = sb and ∆t = ∆. We introduce four compensated compound Poisson

processes defined by

J̃ b,i
u =

N b,i
u
∑

j=1

zb,i
j −λ

b
i uE

�

zb,i
1

�

, J̃∆,i
u =

N∆,i
u
∑

j=1

z∆,i
j −λ

∆
i uE

�

z∆,i
1

�

,

where i = 1, 2. In the above notation, {N b,i
u } and {N∆,i

u } are independent Poisson processes

with intensity λb
i and λ∆i , respectively. The jump sizes are modelled by sequences of i.i.d.

random variables zb,i
j and z∆,i

j , where j=1,2,. . . ,. We say that {νu} is admissible if (i) it is pro-

gressively measurable, (ii) it is such that E
�

∫ T
t

�

�µb
�

u, Sb
u ,νu

� �

�

2
+
�

�µ∆ (u,∆u,νu)
�

�

2
du
�

<∞,

and (iii) it belongs to a compact set V = [0, N] ⊂ [0,∞). The functions µb, µ∆, hb
i , h∆i and

hb,∆
i can be chosen such that both the best bid price and the spread are positive and in ways

to reproduce market features. In Equation (2.2) we consider positive jumps which model the

incoming limit buy orders at a more favourable price, and negative jumps to account for can-
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cellations of limit buy orders and market sell orders which walk the LOB. Explicit examples will

be provided in Section 4. Equation (2.3) models the spread process, of which width is affected

by both, the market activity on the ask side and on the bid side of the book. In particular,

when the best bid price increases, the spread process should decrease by the same amount,

assuming that the ask price remains unchanged. We therefore include the jump processes of

the bid price in the dynamics of the spread process through the functions hb,∆
i . The activity

on the ask side is accounted for by the functions h∆i . We further include the trading rate νu in

the drift of the spread process. This is financially justified for νu has an impact on the best bid

price—which decreases—and thus it has an opposite effect on the spread. The best ask price,

Sa
u = Sb

u +∆u, (2.4)

shares the same model structure as the best bid price given that the spread process {∆u} has

the form (2.3). Although we view the optimisation problem from the perspective of liquidating

orders, the model proposed via Equations (2.1), (2.2), and (2.3) can be adapted to the case

of optimal acquisition. Last, we define the cash (wealth) process by

dYu = µ
y(u, Sb

u ,νu)du,

with initial cash Yt = y . The function µy models the instantaneous gains made by the investor

through selling shares, possibly taking into account the temporary price impact of trades.

2.1 Optimal control problem

An investor seeks to liquidate x shares over a finite period of time [t, T]. The goal is to

maximise the total reward, while minimising the unfavourable impact of executed trades on

the best bid price {Sb
u }. We assume that the investor trades by means of market sell orders

only, and we introduce a stopping time τ,

τ := inf {u≥ t |Xu ≤ 0} ∧ T, (2.5)

that describes the first time the inventory is depleted, should such an event occur before the

terminal date T . For notational simplicity, in this section we introduce the space O = [0, x]×
R+×R and let the vector of the state variables be defined by Xu =

�

Xu, Sb
u , Yu

�

∈ O , with initial

values x = (x , sb, y) ∈ O . We propose a general objective function of the form

V (t, x )=sup
ν∈V
E
�∫ τ

t
e−r(u−t) f (u, Xu,νu)du+ e−r(τ−t)g(Xτ)

�

, (2.6)

where r ≥ 0 is a discount rate and E[·] is the expectation given the initial state of the system

(t, x ) ∈ [0, T )× O . We interpret the discount factor as the urgency of the agent to liquidate
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and enter in possession of the revenues deriving from the sales. That is, even a risk-neutral

investor (γ= 0) may prefer to liquidate faster as a result of his preference for a more immediate

liquidity. The function f : [0, T]×O ×V → R may have several interpretations. For example

it may represent the gains made from the shares sale, or it may correspond to a mean-variance

criterion. The function g : O → Rmay represent the terminal reward obtained by a block trade

liquidation of the remaining inventory at time T . However, g may also be a penalty resulting

from failing to liquidate the whole inventory by time T . We let p := (p1, p2, p3) ∈ R3, and we

define the operatorH by

H (t, x , p) = sup
v∈V

¦

f (t, x , v)− vp1 +µ
b
�

t, sb, v
�

p2 +µ
y(t, sb, v)p3

©

. (2.7)

Furthermore, for polynomially bounded functions ϕ ∈ C1,1([0, T]×O ), we define the operator

Bb by

Bb (t, x ,ϕ)=
2
∑

i=1

λb
i E
(zb,i)

�

ϕ
�

t, x , sb+ hb
i

�

t, sb
�

zb,i , y
�

−ϕ (t, x )−hb
i

�

t, sb
�

zb,i ∂ ϕ

∂ sb
(t, x )

�

,

(2.8)

where E(z
b,i) is the expectation taken with respect to the random variable zb,i . Standard argu-

ments from dynamic programming (DP) suggest that the value function of the optimal control

problem (2.6) satisfies the following HJB PIDE:

rV (t, x )−
∂ V
∂ t
(t, x )−H (t, x , Dx V )−Bb (t, x , V ) = 0, (2.9)

on [0, T )×O , with terminal condition V (τ, x ) = g(x ) and boundary condition V (u, 0, sb, y) =

g(0, sb, y). The meaning of the boundary condition is that if there are no shares to liquidate,

the agent’s duty is terminated and there are no further actions to be taken. The same holds

at time τ, if Xτ = 0. Since one cannot guarantee the smoothness of V (t, x ) on the whole

domain, one cannot discuss the solution of the HJB PIDE in the classical sense. We resort to

the weaker notion of viscosity solutions and, in the appendix, we show the aforementioned

property of the value function V .

An optimal trading strategy—similar to the one obtained by Bertsimas and Lo [4]—

whereby one liquidates at a constant rate, can be reproduced within the present setup as

follows: (i) consider profit maximisation from trading for a risk-neutral investor as the objec-

tive function, and (ii) require the bid price process (2.2) be a (local) martingale. Under such

assumptions, the optimal trading strategy is independent of the LOB dynamics (cfr. Figure 3,

left). By contrast, the solutions to the concrete examples of the liquidation problems treated

in the next section confirm the view—also in agreement with the work by Chevalier et al.

[13]—that the book dynamics is crucial when dealing with optimal execution. Further details
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can be found in Section 4 (Figures 2, 3 and 4).

3 Dark pool

We introduce the possibility for the investor to trade in a standard exchange and in a dark pool

at the same time. The investor faces a trade-off between a costly and sure trade execution in

the exchange and the alternative of a more remunerative but uncertain execution in the dark

pool.

We take this opportunity to emphasise the differences between the recent literature—e.g.

Kratz and Schöneborn [28], and Horst and Naujokat [25]—and the present work. Firstly,

we model both the best bid price and the spread process, thus allowing for a more realistic

description of market features, for there is no such thing as a mid-price in the market. Fur-

thermore, by modelling both the bid price and the spread process, we also include the effect

of the sell side of the LOB on the optimal strategy, which is justified since the two sides of the

LOB are known to be highly correlated. We also include a permanent impact by the trades on

the market prices. We do not require for the price processes to be martingales, as it is well

known that they mean-revert to their long-term value. We further consider the possibility of

partial execution in the dark pool, and we do not restrict the problem to full liquidation by T .

Finally we propose a class of models that can be adapted to (i) market-specific features, e.g.

mean-reversion, seasonality, and intra-day patterns of the price processes, as well as to (ii)

agent-specific preferences of calculating the P&L and/or measuring utility and risk-aversion.

Such generalisations come at a cost and, in particular, we are not in the position to provide

analytical trading strategies. As specified earlier in this paper, we assume that the trades in

the dark pool take place at the mid-price {Sm
u } given by

Sm
u := Sb

u +
1
2∆u . (3.1)

The purpose of this section is to find the optimal trading strategy for each venue at any time

u ∈ [t, T ). We denote the optimal order size in the dark pool by {ηu}. Thus, the control process

will be given by a vector-valued process ν = {νu}t≤u≤T defined by νu := (νu,ηu), where {νu}
is progressively measurable, {ηu} is predictable and is such that ηu ∈ N := [0, Xu]. We modify

the inventory and the wealth dynamics since they now also depend on the dark pool activity.

Along the lines of Horst and Naujokat [25], we model the dark-pool execution part by a jump

process, but we choose a compound Poisson process to account for partial execution of the

submitted order. We thus write

dXu = −νudu−ηudJ y
u , (3.2)
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for the combined inventory and

dYu = µ
y(u, Sb

u ,νu)du+ hy(u, Sb
u− ,∆u− ,ηu)dJ y

u (3.3)

for the wealth arising from simultaneously trading in the lit and the dark pools. In the above,

J y
u :=

∑N y
u

j=1 z y
j is a compound Poisson process with intensity λy and i.i.d. random variables

z y
j supported on [0,1], which model the executed portion of the submitted order. To simplify

the notation, we introduce the space O := [0, x] × R2
+ × R and we define a vector of state

variables Xu =
�

Xu, Sb
u ,∆u, Yu

�

∈ O with initial values x = (x , sb,∆, y) ∈ O . Next we consider

a generalised optimisation problem of the form

V (t, x ) = sup
ν∈Z
E
�∫ τ

t
e−r(u−t) f1(u, Xu,νu)du+ e−r(τ−t)g1(Xτ)

�

, (3.4)

where τ is defined by (2.5), Z := V ×N , and E[·] is the expectation given the initial state

of the system (t, x ∈ [0, T] × O ). The function f1 may play the role of a running gain or

penalty criterion. We include the lit-pool trading rate ν in f1 as it may reflect a penalisation

for the information leakage to which publicly-displayed orders are subject to. The function

g1 is the terminal reward function which includes the terminal cash and a penalty for the

remainder of the inventory at time τ. The HJB PIDE for trading simultaneously in the lit and

the dark pool is analogous to the one presented in Section 2.1. We skip the details at this

stage, but write the exact formulation in the appendix for completion and ease of comparison

with the one for trading optimally only in the standard exchange. We further note that one

can recover the setting presented in Section 2.1 by specifying z y
i ≡ 0. We emphasise here

that Kratz and Schöneborn [28] model the dark pool as a complete-or-zero-execution venue,

where the placed order is either fully executed, when a suitable counterparty is found, or it

expires unexecuted. Their optimal strategy in the single-asset case—which consists of placing

small portions of the inventory in the exchange and all the remainder in the dark pool—can

be obtained as a special case of the present model (see Figure 14).

4 Explicit price models and numerical computation of the trading

strategy

In this section we investigate in detail two particular examples of the best bid price and the

spread processes defined by Equations (2.2) and (2.3). In the numerical solutions that follow,

the chosen parameters are for illustrative purposes. An analysis of real data is beyond the

scope of the present work.
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4.1 Mean-reverting model

As well-known by practitioners and as also taken into account in much of the current literature,

see e.g. Cartea et al. [12], and Fodra and Pham [18], the LOB mid-price mean-reverts quickly

to its long-term mean. One may be critical of such a price model for both, the price and the

spread processes can take negative values with positive probability. Empirical evidence suggest

though that prices follow a mean-reverting pattern. We therefore consider a mean-reverting

price model capable of incorporating observable market features so to plan the liquidation

strategy accordingly, see Figure 8. Thus we choose the following dynamics for the best bid

price and the spread processes:

dSb
u = κ

b
�

S̄ − Sb
u −µ

bνu

�

du+ dJ b,1
u − dJ b,2

u , (4.1)

d∆u = κ
∆
�

∆̄−∆u +µ
∆νu

�

du+ dJ∆,1
u − dJ∆,2

u − dJ b,1
u + dJ b,2

u , (4.2)

where, for i = 1,2, J b,i
u =

∑N b,i
u

j=1 zb,i
j and J∆,i

u =
∑N∆,i

u
j=1 z∆,i

j are independent compound Poisson

processes with intensities λb
i and λ∆i , respectively. For j = 1, 2, . . . , we let zb,i

j and z∆,i
j be

sequences of non-negative i.i.d. random variables with bounded supports Zi and Yi , respec-

tively. In (4.1) we interpret dJ b,1 as the change in the best bid price due to the submission of

limit buy orders at a more favourable price, whereas dJ b,2 models the changes due to incom-

ing market sell orders which walk the book and the effect of cancellations of limit sell orders

posted at the best price. The quantities µb and µ∆ model the permanent impact to which both,

the best bid price and the spread in the standard exchange are subject to, after a trade takes

place. In Figure 1, we plot a simulation of the best ask, the mid, and the best bid prices given

respectively by Equations (2.4), (3.1), and (4.1).

Time

0 10 20 30 40 50 60 70 80 90 100

P
ri
c
e

s

39.6

39.8

40

40.2

40.4

40.6

40.8

Simulation of best bid, best ask and mid prices

Best Ask

Mid Price

Best Bid

Figure 1: Simulation of the best ask, best bid and mid prices for a time frame of 100 seconds. We set λb
1 = λ

b
2 =

λ∆1 = λ
∆
2 = 0.5, zb,i , z∆,i ∼ U[0, 0.1], sb = 40, ∆= 0.2, ∆̄= 0.1, S̄ = 40.1, κb = κ∆ = 2× 10−5.
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An assumption that is usually made, see e.g. Almgren and Chriss [2], is that the investor will

get the trade orders executed at a price that includes an instantaneous impact commensurate

to the liquidation rate νu. This feedback effect is commonly referred to as “temporary impact”.

The temporarily impacted best bid price Ŝb
u and the wealth process are given by

Ŝb
u = Sb

u − βνu,

dYu = νuŜb
u du+ηuSm

u−dJ y
u , (4.3)

where Sm
u is defined by Equation (3.1). Next we consider an investor who wants to optimally

liquidate his portfolio by placing sell orders in both, the standard market and the dark pool.

The inventory process of the investor is here modelled by (3.2). The maximised expected

return derived by the shares sale is obtained by solving the optimisation problem

V (t, x ) = sup
ν∈Z
E
�

Yτ + (S
b
τ −αXτ)Xτ − γ

∫ τ

t
X 2

udu

�

, (4.4)

where τ is defined by (2.5) and γ ∈ R+∪0. In the considered performance criterion, we allow

for a maximisation of the terminal cash Yτ together with the terminal value of the portfolio

Sb
τXτ and a penalty for a non-zero inventory level at time τ given by −αX 2

τ, where α > 0.

The integral term, as in Cartea et al. [8, 9], penalises for the inventory holding over the

whole period in which the strategy is applied. It is shown in the aforementioned papers that

such a term can also be related to both, the variance of the portfolio value and the ambiguity

aversion to the mid-price-drift. (In such a case, γ represents the risk-aversion parameter.) The

associated HJB PIDE is given by

sup
v∈Z

§

−γx2+
∂ V
∂ t
(t, x ) + κb

�

S̄ − sb −µbv
� ∂ V
∂ sb
(t, x ) +κ∆

�

∆̄−∆+µ∆v
� ∂ V
∂∆
(t, x )

−v
∂ V
∂ x
(t, x ) + v(sb − β v)

∂ V
∂ y
(t, x )

+λyE(z
y )
�

V
�

t, x − nz y , sb,∆, y + nz y
�

sb +
∆

2

��

−V (t, x )
�

+λb
1E
(zb,1)

�

V
�

t, x , sb + zb,1,∆− zb,1, y
�

−V (t, x )
�

+λb
2E
(zb,2)

�

V
�

t, x , sb − zb,2,∆+ zb,2, y
�

−V (t, x )
�

+λ∆1 E
(z∆,1)

�

V
�

t, x , sb,∆+ z∆,1, y
�

−V (t, x )
�

+λ∆2 E
(z∆,2)

�

V
�

t, x , sb,∆− z∆,2, y
�

−V (t, x )
�

ª

= 0,

(4.5)

with terminal condition V (τ, x ) = y+(sb−αx)x and boundary condition V (u, 0, sb,∆, y) = y .

We first show the optimal trading strategy, which we obtain numerically by solving (4.5), when
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only a standard exchange is available to the investor. This is achieved by imposing z y
i ≡ 0, so to

consider a dark pool that never executes orders (the dark pool is not available to the investor,

that is). Equation (4.5) is solved by the finite-difference method; the pseudocode is provided

in the appendix. The following figures show how the optimal strategy varies depending on

whether the mid-price process is a sub-, super-, or (local) martingale.
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Figure 2: Optimal strategy when the LOB best bid price is a submartingale. We set γ = 0 (risk-neutral investor,
left panel) , γ= 0.01 (risk-averse investor, right panel).
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Figure 3: Optimal strategy when the LOB best bid price is a martingale. We set γ= 0 (risk-neutral investor, left
panel) , γ= 0.01 (risk-averse investor, right panel).
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Figure 4: Optimal strategy when the LOB best bid price is a supermartingale. We set γ= 0 (risk-neutral investor,
left panel) , γ= 0.01 (risk-averse investor, right panel).

In Figure 5, we show the mean inventory evolution, throughout the liquidation period,

for a risk-neutral investor (i.e. γ = 0). We obtain the optimal trading strategy by solving

the HJB PIDE numerically and we plot the case of multiple executions (occurring at τ1 = 30,

τ2 = 40 and τ3 = 50, right panel). We emphasise that: τ1, τ2 and τ3 are fixed arbitrarily—

for the sake of illustration only—after a complete solution has been found. The dotted line

shows the evolution of the inventory when there is no dark-pool execution over the entire

period (although the dark pool is available to the investor). The dashed line shows the results

for partial execution in the dark pool, while the solid line shows the results when the posted

order in the dark pool is fully executed. We first look at the role played by α.
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Figure 5: Optimal selling strategy displayed as a function of the remaining inventory. We set γ = 0.0001,
λb

1 = λ
b
2 = λ

∆
1 = λ

∆
2 = 0.2, zb,i , z∆,i ∼ U[0,0.1], sb = 40, ∆= 0.1, ∆̄= 0.1, S̄ = 40, κb = κ∆ = 0.02, β = 1× 10−5,

z y ∼ U[0, 1], λy = 0.1, µ∆ = µb = 0.01. Left panel: α= 6. Right panel: α= 0.5.

The parameter α models the terminal penalty for failing to liquidate the whole inventory

by time T . Higher values of α incentivise the agent to increase the selling rate in the standard

exchange and the size of the dark pool posting (left panel). On the contrary, smaller values of

α allow the agent to retain a larger portion of inventory by terminal date T . The important
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feature of the resulting strategy is that it may be suboptimal to place all the remaining shares

in the dark pool at every point in time. This is due to the LOB dynamics specified above.

In Figure 6, we show how the strategy changes for a risk-averse investor (γ > 0). A higher

risk aversion (right panel) incentivises the agent to liquidate faster as he is more sensitive to

potential movements of the market price, while a lower degree of risk aversion is reflected in

a slower liquidation (left panel).
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Figure 6: Optimal selling strategy displayed as a function of the remaining inventory. We set α = 2, λb
1 = λ

b
2 =

λ∆1 = λ
∆
2 = 0.2, zb,i , z∆,i ∼ U[0, 0.1], sb = 40, ∆ = 0.1, ∆̄ = 0.1, S̄ = 40, κb = κ∆ = 0.02, β = 1 × 10−5,

z y ∼ U[0, 1], λy = 0.1, µ∆ = µb = 0.01. Left panel: γ= 0.01. Right panel: γ= 0.1.

In Figure 7 we show the sensitivity of the strategy with respect to the permanent price

impact. Depending on the market conditions, it may be worth waiting before posting orders

in the standard exchange (when there is a high permanent impact) and hope to be executed

in the dark pool, while accelerating the lit pool trading is optimal for the case of a more liquid

market (less permanent price impact).
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Figure 7: Optimal selling strategy displayed as a function of the remaining inventory. We set α= 2, γ= 0.0001,
λb

1 = λ
b
2 = λ

∆
1 = λ

∆
2 = 0.2, zb,i , z∆,i ∼ U[0,0.1], sb = 40, ∆= 0.1, ∆̄= 0.1, S̄ = 40, κb = κ∆ = 0.02, β = 1× 10−5,

z y ∼ U[0, 1], λy = 0.1. Left panel: µ∆ = µb = 0.01. Right panel: µ∆ = µb = 0.0001.

The speed of mean reversion of the best bid price (i.e. κb) has a different impact on the
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selling schedule, depending on the initial value of the bid price sb and, in particular, whether

it is higher or lower than its long-term mean S̄. In the top panels of Figure 8, we set sb > S̄,

which implies that, on average, the price decreases so as to approach its long-term mean. The

agent is thus incentivised to liquidate faster at the beginning since the price is higher than it

is supposed to be. This feature is more evident when the speed of mean reversion κb is higher

(top-left panel). In fact, the price reverts faster and the agent increases his liquidation speed

so to exploit the opportunity of selling at a higher price. In the bottom panels, the starting

price is lower than its long-term mean, i.e. sb < S̄, and thus the agent waits for it to revert

so to liquidate at a more favourable price. Unlike before, a higher κb reduces the liquidation

speed. This is rather intuitive: the agent is willing to wait for the price to increase, which, on

average, takes less time than the case when κb is low.
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Figure 8: Optimal selling strategy displayed as a function of the remaining inventory. We set κ∆ = 0.01, β = 0.01,
x = 30, 000, s = 40, ∆ = 1, ∆̄ = 0.5, λb,1 = λb,2 = λ∆,1 = λ∆,2 = 0.2, µ = 0.01, λy = 0.1, z y ∼ U[0, 1], α = 2,
φ = 0.001, r = 0.01, T = 10. In the top panels we set S̄ = 35, κb = 0.1 (left), κb = 0.0005 (right). In the bottom
panels we set S̄ = 45, κb = 0.1 (left), κb = 0.0005 (right).

Roundtrips in the dark pool are not necessarily beneficial, that is, the agent may not wish

to post all the remaining inventory in the dark pool. We have investigated such a feature by

looking at fixed times τ, but now we plot the whole optimal strategy ν andη (i.e.) as a function

of the bid price and the spread processes. This confirms our intuition that the agent may at
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times retain part of the inventory, depending on the market conditions. In Figure 9 we show

the optimal strategy for both the lit and dark pools in the case that λb
1 > λ

b
2 , while in Figure

10 we consider the case where λb
1 < λ

b
2 . When the price is expected to increase (Figure 9) we

notice that both strategies are reduced in size compared to Figure 10. This is coherent with the

intuition that the agent may wish to exploit the opportunity of a price increase by waiting to

liquidate the inventory. We further see that the quantity posted in both venues increases as we

approach the terminal date T . Take, e.g., the left panel in Figure 9. The bottom surface is the

optimal trading rate in the standard exchange at the beginning of the trading period (t = 0)

with 30,000 shares to liquidate. As t increases, the respective surface lifts up indicating that

having less time remaining implies posting higher quantities in the venue—we assume that

the inventory x = 30, 000 at each time. The analogous holds for the right panel, in which we

plot the dark pool strategy.
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Figure 9: Optimal lit and dark pool strategies. We set X t = 30,000 for each t, α = 2, γ = 0.0001, λb
1 = 0.5,

λb
2 = 0.1, λ∆1 = λ

∆
2 = 0.2, zb,i , z∆,i ∼ U[0,0.1], ∆̄ = 0.1, S̄ = 40, κb = κ∆ = 0.02, β = 1 × 10−5, z y ∼ U[0, 1],

λy = 0.1, µ∆ = µb = 0.001.
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Figure 10: Optimal lit and dark pool strategies. We set X t = 30,000 for each t, α = 2, γ = 0.0001, λb
1 = 0.1,

λb
2 = 0.5, λ∆1 = λ

∆
2 = 0.2, zb,i , z∆,i ∼ U[0,0.1], ∆̄ = 0.1, S̄ = 40, κb = κ∆ = 0.02, β = 1 × 10−5, z y ∼ U[0, 1],

λy = 0.1, µ∆ = µb = 0.001.
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4.2 Geometric Lévy model

Next we propose an exponential model for the best bid price and the spread process, so to

ensure their positivity at every point in time, while upholding all other assumptions made in

Section 4.1. In particular, all the jump processes considered herein are taken to be indepen-

dent. We set

dSb
u

Sb
u−
= (µ−µbνu)du+ dJ b,1

u − dJ b,2
u , (4.6)

d∆u

∆u−
= µ∆νudu+ dJ∆,1

u − dJ∆,2
u − dJ b,1

u + dJ b,2
u . (4.7)

Here, µb and µ∆ are the coefficients of the permanent price impact caused by the lit pool or-

ders submitted by the agent, and µ is a constant drift coefficient which may model the market

trend. In order to ensure positivity of both, the price and the spread processes, we recall that

the random variables zb,i and z∆,i are almost surely positive. Furthermore we impose zb,i < 1

and z∆,2 < 1, almost surely. All other quantities are defined as in the previous example. In

Figure 11, we plot a simulation of the best ask, the mid and the best bid prices.
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Figure 11: Simulation of the best ask, best bid and mid prices for a time frame of 100 seconds. We set µ = 0,
λb

1 = λ
b
2 = λ

∆
1 = λ

∆
2 = 0.5, zb,i , z∆,i ∼ U[0,0.1], sb = 40, ∆= 0.2.

By considering the same problem treated in Section 4.1, Equation (4.4), the associated HJB
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PIDE is given by

sup
v∈Z

§

∂ V
∂ t
(t, x ) + (µ−µbv)sb ∂ V

∂ sb
(t, x ) +µ∆v∆

∂ V
∂∆
(t, x ) + v(sb − β v)

∂ V
∂ y
(t, x )

−γx2 − v
∂ V
∂ x
(t, x ) +λyE(z

y )
�

V
�

t, x − nz y , sb,∆, y + nz y
�

sb +
∆

2

��

−V (t, x )
�

+λb
1E
(zb,1)

�

V
�

t, x , sb(1+ zb,1),∆(1− zb,1), y
�

−V (t, x )
�

+λb
2E
(zb,2)

�

V
�

t, x , sb(1− zb,2),∆(1+ zb,2), y
�

−V (t, x )
�

+λ∆1 E
(z∆,1)

�

V
�

t, x , sb,∆(1+ z∆,1), y
�

−V (t, x )
�

+λ∆2 E
(z∆,2)

�

V
�

t, x , sb,∆(1− z∆,2), y
�

−V (t, x )
�

ª

= 0

with terminal condition V (τ, x ) = y+(sb−αx)x and boundary condition V (u, 0, s,∆, y) = y .
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Figure 12: Optimal selling strategy displayed as a function of the remaining inventory. We set zb,i , z∆,i ∼
U[0, 0.1], sb = 40, ∆ = 0.3, µ = 0, µb = 0,µ∆ = 0.0001, β = 1 × 10−5, α = 2, z y ∼ U[0, 1], λy = 0.1.

Top panels: λb
1 = λ

b
2 = λ

∆
1 = λ

∆
2 = 0.3 and γ = 0 (left), γ = 0.01 (right). Bottom panels: γ = 0.0001 and

λb
1 = λ

∆
2 = 0.5, λb

2 = λ
∆
1 = 0.1 (left), λb

1 = λ
∆
2 = 0.1, λb

2 = λ
∆
1 = 0.5.

In Figure 12 we show the inventory evolution for the case of a risk-neutral and of a risk-

averse investor (top panels). Furthermore, we show the optimal trading trajectories for an

increasing and a decreasing bid price (bottom panels). We notice that an increasing bid price
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(i.e. λb
1 > λ

b
2) causes the agent to decelerate trading in the standard exchange so to benefit

from the future favourable market trend. The opposite holds for a decreasing bid price. As

in Section 4.1, we show the lit and dark pools full trading strategies as a function of the best

bid price and the spread. In Figure 13 we show both, the case of an increasing bid price (top

panels) and the case of a decreasing bid price (bottom panels). For Figures 12 and 13 similar

considerations as for the mean-reverting model apply.
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Figure 13: Optimal lit and dark pool strategies. We set X t = 30,000 for each t, α = 2, γ = 0.0001, λb
1 = 0.1,

λb
2 = 0.5, λ∆1 = λ

∆
2 = 0.2, zb,i , z∆,i ∼ U[0,0.1], β = 1×10−5, z y ∼ U[0,1], λy = 0.1, µ= 0, µ∆ = µb = 0.001. Top

panels: λb
1 = λ

∆
2 = 0.5, λb

2 = λ
∆
1 = 0.1. Bottom panels: λb

1 = λ
∆
2 = 0.1, λb

2 = λ
∆
1 = 0.5.

Similar features to the Kratz and Schöneborn [28] optimal trading strategy in the single-

asset case, can be recovered in the present framework by (i) modelling {Sb
u } by a (local)

martingale, for example by specifying µb = 0 and µ = −λb
1E[z

b,1] + λb
2E[z

b,2], (ii) setting

∆u ≡ 0 ∀ u ∈ [t, T], and (iii) setting the random variables z y
i ≡ 1 so to avoid partial execu-

tion. In Figure 14, we provide the results for the above choices in the case of a risk-neutral

investor, γ= 0, (left picture) and of a risk-averse investor, γ > 0, (right picture). The shape of

the policy shares the same features of the results obtained by Kratz and Schöneborn [28] (see

Figure 4.1, page 17) without the constraint that total liquidation has to be achieved by T .
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Figure 14: Optimal selling strategy displayed as a function of the remaining inventory. We set λb
1 = λ

b
2 = λ

∆
1 =

λ∆2 = 0.2, zb,i , z∆,i ∼ U[0, 0.1], sb = 40, ∆ ≡ 0, κb = µb = 0, µ = 0, β = α = 1× 10−5. Left panel γ = 0, and right
panel γ= 0.01.

5 Conclusions

In this paper we consider an optimal trading problem in the situation where an investor has

access to both, a standard exchange and a dark pool. We propose novel continuous-time

dynamics for the best bid price and the market spread, thus obtaining the mid-price, in an

order-driven market, and capture the impact of the market activity in the compound Poisson

processes. In particular we show how the best bid price changes due to the submission of limit

buy orders at a more advantageous price, to the incoming market sell orders which may walk

the book, or due to cancellations of limit sell orders posted at the best bid price. The orders

in the dark pool are executed at the current mid-price in line with the available liquidity. We

consider a partial execution setting so to account for various liquidity levels in the dark pool.

We observe that the LOB dynamics plays an important role in determining the optimal trading

strategy, for both the lit ad the dark pool. This is expected, for the price traded in the dark

pool is taken from the lit pool. In fact, the mid-price is influenced by the LOB dynamics,

and so must be the optimal orders placement in the dark pool. We obtain the optimal trading

strategies first in the case that only a standard exchange is available, and then also for when one

may trade simultaneously in a dark pool. We discuss in detail the cases in which the market

price dynamics is modelled by (i) a mean-reverting jump process and (ii) a geometric Lévy

process, and pay particular attention to properties usually less emphasised in the literature,

e.g. price dynamics which model realistic market features, the permanent price impact in

simultaneous lit and dark pool trading strategies, and the effect of the sell side of the book in

a liquidation problem. We employ the dynamic programming approach to obtain the optimal

trading policies and we characterise—by means of standard arguments—the value function

by the unique viscosity solution of the HJB PIDE associated to the optimal control problem.
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Although we treat a more general problem in Section 3, the considered models in Section

4 are closer to the classical optimal liquidation settings, making comparisons between the

models rather straightforward. The detailed model examples are also used to show that so-

called round-trips, whereby an agent decides to post all the remaining inventory in the dark

pool, are not generally beneficial. The discussion extends to the behaviour of market agents

who have various levels of risk-appetite and who will find different strategies of simultaneous

trading in lit and dark pools more attractive.

6 Appendix

6.1 Pseudocode for solving Equation (4.5) numerically

In this section we briefly show the numerical scheme adopted to solve Equation (4.5) so to

find the agent’s optimal strategy. This is similar to the one proposed by Guilbaud and Pham

[22] and Bian et al. [5], and adapted to the particular model considered in this paper. We

here provide the pseudocode for the mean-reverting model, the one for the geometric Lévy

model is analogous.

We create an equally-spaced grid for (i) the time axis such that t i+1 − t i = δt, ∀ i =

0, 1,2, . . . , n−1, (ii) the inventory, where x j+1− x j = δx ∀ j = 0,1, 2, . . . , m−1, (iii) the price,

where sk+1 − sk = δs ∀ k = 0, 1,2, . . . , p − 1, (iv) the spread, where ∆`+1 −∆` = δ∆ ∀ ` =
0, 1,2, . . . , q−1, and (v) the cash process where yu+1− yu = δ y ∀ u= 0, 1,2, . . . , o−1. In this

section we make use of the notation c1 = κb(S̄ − sk −µbv), c2 = −v, c3 = κ∆(∆̄−∆` +µ∆v),

c4 = v(sk − β v), and note that such coefficients are variables and depend on both, the state

variables and the control values. We write V i, j,k,`,u = V (t i , x j , sk,∆`, yu) and we consider an

upwind discretisation scheme for the numerical derivatives:

V i, j,k,`,u
(x) :=

V i, j,k,`,u − V i, j−1,k,`,u

δx

V i, j,k,`,u
(s) :=

V i, j,k+1,`,u − V i, j,k,`,u

δs
, if c1 ≥ 0, and V i, j,k,`,u

(s) :=
V i, j,k,`,u − V i, j,k−1,`,u

δs
, if c1 < 0

V i, j,k,`,u
(∆) :=

V i, j,k,`+1,u − V i, j,k,`,u

δ∆
, if c3 ≥ 0, and V i, j,k,`,u

(∆) :=
V i, j,k,`,u − V i, j,k,`−1,u

δ∆
, if c3 < 0

V i, j,k,`,u
(y) :=

V i, j,k,`,u+1 − V i, j,k,`,u

δ y
, if c4 ≥ 0, and V i, j,k,`,u

(s) :=
V i, j,k,`,u − V i, j,k,`,u−1

δ y
, if c4 < 0.

Moreover, we discretise the distribution of {zb,1, zb,2, z∆,1, z∆,2} such that they are all supported

in a finite set, say, I = 0,1, 2, . . . , z̄ which denotes the number of nodes the price and the spread

move with probability p(zι), where ι ∈ I , associated with every state. We thus reduce the space

grids of sb and∆, of which indices are in the sets S := z̄, z̄+1, . . . , p−z̄ andD := z̄, z̄+1, . . . , q−z̄,
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respectively. We further reduce the space grid y to be Y := ȳ , ȳ + 1, . . . , o − ȳ , where ȳ :=

arg minξ=0,1,2,...,o |yξ − xm(sp −αxm)|.

Pseudocode
for all j, k,`, u

Set V n, j,k,`,u = (yu + x j(sk −αx j)).
end
for i=n-1,n-2,. . . ,0

for all j ∈ X, k ∈ S,` ∈ D, u ∈ Y
* Compute

V i, j,k,`,u = Fδt(Vδt) = V i+1, j,k,`,u

+δt
�

supv

¦

c1V i+1, j,k,`,u
(s) + c2V i+1, j,k,`,u

(x) + c3V i+1, j,k,`,u
(∆) + c4V i+1, j,k,`,u

(y)

©

−γx2
j +λ

y supη∈[0,x j]
∑

ι p(z y
ι )
�

V i+1, j−ζ1,ι ,k,`,u+ζ2,ι − V i+1, j,k,`,u
�

+λb
1

∑

ι p(zb,1
ι )

�

V i+1, j,k+zb,1
ι ,`−zb,1

ι ,u − V i+1, j,k,`,u
�

+λb
2

∑

ι p(zb,2
ι )

�

V i+1, j,k−zb,2
ι ,`+zb,2

ι ,u − V i+1, j,k,`,u
�

+λ∆1
∑

ι p(z∆,1
ι )

�

V i+1, j,k,`+z∆,1
ι ,u − V i+1, j,k,`,u

�

+λ∆2
∑

ι p(z∆,2
ι )

�

V i+1, j,k,`−z∆,2
ι ,u − V i+1, j,k,`,u

��

,

where ζ1,ι := argminξ=0,1,2,...,m− j |xξ −ηz y
ι |,

and ζ2,ι := arg minξ=0,1,2,...,o−u |yξ −ηz y
ι (sk +∆`/2)|.

end
* Compute V i, j,k,`,u for k = 0,1, . . . , z̄ − 1, k = p− z̄ + 1, . . . , p,
`= 0, 1, . . . , z̄ − 1, `= q− z̄ + 1, . . . , q,

u= 0, 1, . . . , ȳ − 1, u= o− ȳ + 1, . . . , o by interpolation.
end

A theorem by Barles and Souganidis [3] ensures that any scheme which is monotone, stable

and consistent, converges to the viscosity solution, provided that a comparison principle holds.

In particular, we say that a scheme is monotone if Fδt(Wδt) ≤ Fδt(Uδt) for Wδt ≤ Uδt , where

the operator F is defined in the pseudocode, above. A scheme is stable if there exist a constant

K such that ||Vδt || ≤ K . A numerical scheme is consistent if the discretisation converges to

the PDE—as the mesh tends to zero—for any continuous differentiable test function. We

prove the viscosity solution property of the value function and the comparison principle in the

remainder of the appendix. We now provide the conditions sufficient for a simplified version

of the above scheme to converge, and recall that, heuristically, a finer time grid is the key for

the non-explosive nature of an explicit finite-difference scheme. There is no loss of generality

by considering the simplified system presented below. This is because, while a non-simplified
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version would include more terms, the analysis remains the same for the larger system. Let

us assume that, for δ̄b, δ̄∆ > 0, the random variables zb,1 ∈ {0, δ̄b} and zb,2 ∈ {−δ̄b, 0} with

p(zb,i 6= 0) = pb,i , the random variables z∆,1 ∈ {0, δ̄∆} and z∆,2 ∈ {−δ̄∆, 0} with p(z∆,i 6= 0) =

p∆,i . Furthermore, we assume that z y = {0, 1/2,1} with associated probabilities p y
0 , p y

1/2, p y
1 .

Furthermore, we performe the change of variables τ= T − t. One then obtains:

V i+1, j,k,`,u = V i, j,k,`,u +δt sup
v,nx ,y

�

c̃1δsV i, j,k,`,u
(s) + c̃2δxV i, j,k,`,u

(x) + c̃3δ∆V i, j,k,`,u
(∆) + c̃4δ yV i, j,k,`,u

(y)

+c̃5

�

V i, j− 1
2 nx ,k,`,u+ 1

2 ny − V i, j,k,`,u
�

+ c̃6

�

V i, j−nx ,k,`,u+ny − V i, j,k,`,u
�

+c̃7

�

V i, j,k+δ̄b ,`−δ̄b ,u − V i, j,k,`,u
�

+ c̃8

�

V i, j,k−δ̄b ,`+δ̄b ,u − V i, j,k,`,u
�

+c̃9

�

V i, j,k,`+δ̄∆,u − V i, j,k,`,u
�

+ c̃10

�

V i, j,k,`−δ̄∆,u − V i, j,k,`,u
��

,

(6.1)

where c̃1 = c1/δs, c̃2 = c2/δx , c̃3 = c3/δ∆, c̃4 = c4/δ y , c̃5 = λy p y
1
2
, c̃6 = λy p y

1 , c̃7 = λb,1pb,1,

c̃8 = λb,2pb,2, c̃9 = λ∆,1 and c̃10 = λ∆,2p∆,2. Furthermore, the values nx and ny model the

inventory and cash movement of the agent when the dark-pool execution takes place. Since

the scheme has variable coefficients (c1,2,3,4), we need to make sure that the properties hold

for every value that such coefficients may take. After a few simplifying steps, one finds that

the monotonicity property of the scheme in Equation (6.1) is satisfied if

δt ≤
1

∑10
i=1 c̃m

i

. (6.2)

where c̃m
i =max{|c̃min

i |, |c̃max
i |} is the largest possible absolute value (i.e. worst-case scenario)

of each coefficient taking into account (i) the possible values of the state variables embedded

in the coefficients c̃i and (ii) all the possible values that the controls may take.

For the stability property, we perform a standard Von Neumann analysis. We define the

error ε(t) by the difference between the exact solution of the discretised equation (6.1) and

the numerical solution of the same equation. Since both solutions should satisfy equation

(6.1), the error should also satisfy (6.1). We make use of the following (standard) ansatz for

the error ε(t)

ε(t) = eatei( jm x+kms+`m∆+um y), (6.3)

where i is the imaginary unit and jm, km, `m and um are wavenumbers. We define the error

amplification factor g(t) = ε(t +δt)/ε(t) and recall that, for a scheme to be stable in the Von

Neumann sense, we must have |g(t)| ≤ 1. By substituting Equation (6.3) in Equation (6.1)

and by making use of Euler’s formulae, one can rewrite the amplification factor in the form

g(t) = 1+
10
∑

i=1

αm(1− cos(θm)) + i
10
∑

i=1

cm sin(θm), (6.4)
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where αm = δt|c̃i|, cm = δt c̃i and θm are arbitrary phase angles such that −π≤ θm ≤ 1. Such

an amplification factor has been studied in Hindmarsh et al. [24], who prove that Equation

(6.2) is also a sufficient condition for stability. Finally, the consistency property is satisfied by

noticing that limδt,δx ,δs,δ∆,δ y→0(Ft+δt(φδt)− Ft(φt))/δt tends to the reduced version of the

HJB Equation (4.5), provided that the simplifying assumptions made in this section are also

made for the non-discretised equation. We thus conclude that a sufficient condition for the

scheme to converge to the viscosity solution is given by Equation (6.2).

6.2 Dark pool optimal control problem

We give the details of the optimal control problem treated in Section 3. For p ∈ R4 with

components (p1, p2, p3, p4), we define the operatorsH1,Bb,∆ andB∆ by

H1 (t, x , p) = sup
v∈V

§

f1 (t, x , v)− vp1 +µ
b
�

t, sb, v
�

p2 +µ
∆ (t,∆, v) p3 +µ

y(t, sb,∆, v)p4

ª

,

Bb,∆ (t, x ,ϕ) =
2
∑

i=1

λb
i E
(zb,i)

�

ϕ
�

t, x , sb + hb
i

�

t, sb
�

zb,i ,∆+ hb,∆
i

�

t, sb,∆
�

zb,i , y
�

−ϕ
�

t, x
�

−hb
i

�

t, sb
�

zb,i ∂ ϕ

∂ sb

�

t, x
�

− hb,∆
i

�

t, sb,∆
�

zb,i ∂ ϕ

∂∆

�

t, x
�

�

,

(6.5)

and

B∆ (t, x ,ϕ) =
2
∑

i=1

λ∆i E
(z∆,i)

�

ϕ
�

t, x , sb,∆+ h∆i
�

t,∆
�

z∆,i , y
�

−ϕ
�

t, x
�

− h∆i
�

t,∆
�

z∆,i ∂ ϕ

∂∆

�

t, x
�

�

.

(6.6)

We also define the operatorBy by

By(t, x ,ϕ) = sup
n∈N

λyE(z
y )
�

ϕ(t, x − nz y , sb,∆, y + hy(t, sb,∆, n) z y)−ϕ(t, x )
�

. (6.7)

Standard dynamic programming arguments suggest that the HJB equation associated to the

optimisation problem in (3.4) is a PIDE of the form

rV (t, x )−
∂ V
∂ t
(t, x )−H1 (t, x , Dx V )−Bb,∆(t, x , V )−B∆(t, x , V )−By(t, x , V ) = 0,

(6.8)

on [0, T )×O , with terminal condition V (τ, x ) = g1(x ) and boundary condition V (u, 0, sb,∆, y) =

g1(0, sb,∆, y).

23



Definition 6.1. (Pham [35]) A continuous function V : [0, T )×O → R is a viscosity subsolution

(resp. supersolution) of the HJB Equation (6.8) if

rφ ( t̄, x̄ )−
∂ φ

∂ t
( t̄, x̄ )−H1 ( t̄, x̄ , Dxφ)−Bb,∆( t̄, x̄ ,φ)−B∆( t̄, x̄ ,φ)−By( t̄, x̄ ,φ)≤ 0

(resp. ≥ 0) for each φ ∈ C 1,1([0, T )×O )∩ PB such that V (t, x )−φ(t, x ) attains its maximum

(resp. minimum) at ( t̄, x̄ ) ⊂ [0, T )×O . A continuous function is a viscosity solution if it is both

a viscosity subsolution and a viscosity supersolution.

We here assume that the real-valued function

ψ(t, y , v) ∈
¦

µb(·), hb
1,2(·), µ

∆(·), h∆1,2(·), hb,∆
1,2 (·), µ

y(·), hy(·), f (·), g(·), f1(·), g1(·)
©

satisfies, uniformly in the control variables, the Lipschitz continuity

|ψ(t1, y1, v)−ψ(t2, y2, v)| ≤ K(|t1 − t2|+ ||y1 − y2||),

and the linear growth conditions

|ψ(t1, y1, v)| ≤ K(1+ |t1|+ ||y1||),

where y1,2 ∈ O is the vector of state variables and v ∈ Z is the vector of controls associated to

every function (the latter may also be empty). Standard results—see, e.g., Ikeda and Watanabe

[26]—ensure that there exists a strong and path-wise unique solution of the price, the spread

and the wealth models defined by Equations (2.2), (2.3) and (3.3).

6.3 Moments estimates

We now provide some moments estimates of Sb
u . We note that both, the following proposition

and its proof, are analogous for∆u, Xu and Yu. In the remainder of the paper, we write X t, x (u)

for the state variables with initial values (t, x ) since we need the initial conditions explicitly.

Proposition 6.2. Fix p = 1,2 and let Sb
t, sb(u) be the random variable at a fixed time u ∈ [t, T]

with initial values (t, sb) ∈ [0, T]×R+. Then, for any v ∈ V and for any stopping time τ0 ≤ h ∈
[0, T] there exists a constant K = K(p, C , M , T )> 0 such that

E
�
�

�Sb
t, sb(τ0)

�

�

p�≤ K
�

1+
�

� sb
�

�

p�
,

E
h

�

�Sb
t, sb

1
(τ0)− Sb

t, sb
2
(τ0)

�

�

p
i

≤ K
� �

� sb
1 − sb

2

�

�

p�
,

E
�
�

�Sb
t, sb(τ0)− sb

�

�

p�≤ K
�

1+
�

� sb
�

�

p�
(h− t)

p
2 ,

E
�

sup
0≤u≤h

�

�Sb
t, sb(u)− sb

�

�

p
�

≤ K
�

1+
�

� sb
�

�

p�
(h− t)

p
2 .

(6.9)
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Proof. We adapt the proof in Pham [35] to the present work and indeed we shall consider

the proof only for p = 2 as it suffices to ensure the relation for p = 1, according to Hölder’s

inequality. In order to reduce notation, here K is a generic positive constant which may take

different values in different places. Define Th as the set of all stopping times smaller than

h ∈ [0, T]. By the optional sampling theorem and the Lévy-Itô isometry, we have

E
�
�

�Sb
t, sb(τ0)

�

�

2�≤

KE

�

�

� sb
�

�

2
+

∫ τ0

t

�

�

�µb
�

u, Sb
t, sb(u),νu

�

�

�

�

2
du+

2
∑

i=1

λb
i E
�
�

�zb,i
1

�

�

2�
∫ τ0

t1

�

�

�hb
i

�

u, Sb
t, sb(u)

�

�

�

�

2
du

�

,

for τ0 ∈ Th. By the linear growth conditions on µb, hb
1 , hb

2 , we have

E
�
�

�Sb
t, sb(τ0)

�

�

2�≤ K

�

1+
�

� sb
�

�
2 +E

∫ τ0

t

�

�Sb
t, sb(u)

�

�

2
du

�

. (6.10)

As noted in Pham (1998), if τ0 were a deterministic time, (6.10) would yield

E
�
�

�Sb
t, sb(τ0)

�

�

2�≤ K
�

1+
�

� sb
�

�

2�
.

By definition of Th, we note that

E
�∫ τ0

t

�

�Sb
t, sb(u)

�

�

2
du

�

≤ E

�

∫ h

t

�

�Sb
t, sb(u)

�

�

2
du

�

.

Thus, by applying Fubini’s theorem to exchange the order of integration and by Gronwall’s

lemma,

E
�
�

�Sb
t, sb(τ0)

�

�

2�≤ K

�

1+
�

� sb
�

�

2
+

∫ h

t
E
�
�

�Sb
t, sb(u)

�

�

2�
du

�

≤ K
�

1+
�

� sb
�

�

2�
, (6.11)

for a suitable constant K = K(p, C , M , T ). Define the process Zu by

Zu = Sb
t, sb

1
(u)− Sb

t, sb
2
(u).

Then by an application of Itô’s formula to |Zu|2, we have

E
�
�

�Zτ0

�

�

2�
= E

�

�

�sb
1 − sb

2

�

�

2
+

∫ τ0

t
2Zu

�

µb
�

u, Sb
t, sb

1
(u),νu

�

−µb
�

u, Sb
t, sb

2
(u),νu

��

du

+
2
∑

i=1

λb
i E
�
�

�zb,i
1

�

�

2�
∫ τ0

t

�

�

�hb
i

�

u, Sb
t, sb

1
(u)
�

−hb
i

�

u, Sb
t, sb

2
(u)
�

�

�

�

2
du

�

.
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From the Lipschitz condition on µb, hb
1 and hb

2 , it follows that

E
�
�

� Zτ0

�

�

2�≤KE(z
b,i)

�

�

� sb
1 − sb

2

�

�

2
+

∫ τ0

t

�

�Sb
t, sb

1
(u)− Sb

t, sb
2
(u)

�

�

2
du

�

.

By making use of Fubini’s Theorem and Gronwall’s Lemma we get

E
h

�

�Sb
t, sb

1
(τ0)− Sb

t, sb
2
(τ0)

�

�

2
i

≤KE

�

�

� sb
1 − sb

2

�

�

2
+

∫ h

t

�

�Zu

�

�

2
du

�

≤ K
�

� sb
1 − sb

2

�

�

2
,

for a suitable constant K = K(p, C , M , T ). For the third moment estimate, we make use of the

first moment estimate in (6.9) to obtain

E
�
�

�Sb
t, sb(t)− sb

�

�

2�≤ K

�∫ τ0

t

�

1+E
�
�

�Sb
t, sb(u)

�

�

2��
du

�

≤ K
�

1+
�

� sb
�

�

2�
(h− t).

The fourth moment estimate in (6.9) follows from the third moment estimate, Doob’s maximal

inequality, and the fact that the constant K does not depend on the control process. �

6.4 Viscosity solution

In what follows, we note that it suffices to show the viscosity property for the model presented

in Section 3, since the model discussed in Section 2.1 is a special case.

Proposition 6.3. The value function V : [0, T] × O → R defined in (3.4) is continuous on

[0, T]×O . Furthermore, for K > 0 and ∀ x ∈ O , it satisfies

V (t, x )≤ K (1+ ‖x‖) . (6.12)

Proof. We proceed in two steps. We first show that the value function is Lipschitz continuous

in x , uniformly in t. Next we show that it is continuous in t. We take x , y ∈ O and since

| sup(A)− sup(B)| ≤ sup |(A− B)|, we have that

|V (t, x )− V (t, y) |=
�

�

�

�

sup
ν∈Z
E
�∫ τ

t
e−r(u−t) f1

�

u, X t, x (u),νu

�

du+ e−r(τ−t)g1

�

X t, x (τ)
�

�

− sup
ν∈Z
E
�∫ τ

t
e−r(u−t) f1

�

u, X t, y(u),νu

�

du+ e−r(τ−t)g1

�

X t, y(τ)
�

� �

�

�

�

≤ sup
ν∈Z

�

�

�

�

E
�∫ τ

t
e−r(u−t)

�

f1
�

u, X t, x (u),νu

�

du− f1
�

u, X t, y(u),νu

�

�

du

+ e−r(τ−t)
�

g1

�

X t, x (τ)
�

− g1

�

X t, y(τ)
�

�

��

�

�

�

.
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The Lipschitz continuity of f1 and g1 gives

|V (t, x )−V (t, y) |

≤ sup
ν∈Z
E
�∫ τ

t
e−r(u−t)K |X t, x (u)− X t, y(u)|du+ e−r(τ−t)K |X t, x (τ)− X t, y(τ)|

�

≤ K ||x − y ||,

where the last inequality is justified by the moments estimates in Proposition 6.2. We note

that an analogous calculation will produce Equation (6.12). We now take 0 ≤ t1 < t2 < T

and we apply the DP to obtain

|V (t1, x )− V (t2, x ) |=
�

�

�

�

sup
ν∈Z
E
�∫ t2∧τ

t1

e−r(u−t1) f1
�

u, X t1, x (u),νu

�

du

+ e−r(t2−t1)V
�

t2, X t1, x (t2)
�

1{τ≥t2} + e−r(τ−t1)g1

�

X t1, x (τ)
�

1{τ<t2}

�

− V (t2, x )

�

�

�

�

.

We can add and subtract the quantity

1{τ<t2}e
−r(τ−t1)(g1(x ) + V (t2, x )) +1{τ≥t2}e

−r(t2−t1)V (t2, x ),

to obtain

|V (t1, x )− V (t2, x ) | ≤

sup
ν∈Z
E
�∫ t2∧τ

t1

e−r(u−t1)| f1
�

u, X t1, x (u),νu

�

|du+1{τ≥t2}e
−r(t2−t1)|V

�

t2, X t1, x (t2)
�

− V (t2, x )|

+1{τ<t2}e
−r(τ−t1)|g1

�

X t1, x (τ)
�

− g1(x )|+1{τ<t2}e
−r(τ−t1)|g1(x )− V (t2, x )|

+1{τ<t2}|(e
−r(τ−t1) − 1)V (t2, x ) |+1{τ≥t2}|(e

−r(t2−t1) − 1)V (t2, x ) |
�

≤ K |t2 − t1|(1+ ||x ||),

where the last inequality is justified by: (i) the linear growth of f1, g1 and V , the Lipschitz

continuity of g1 and of V in x uniformly in t, and the moment estimates in Proposition 6.2.

Thus, we can conclude that

|V (t1, x )− V (t2, y) | ≤ K(|t2 − t1|(1+ ||x ||) + ||x − y ||).

�

Proposition 6.4. The value function V defined by Equation (3.4) is a viscosity solution of the

HJB PIDE (6.8).

Proof. We show that V (t, x ) is a continuous viscosity solution of (6.8) by proving that it is both

a supersolution and a subsolution. We proceed along the same lines of Øksendal and Sulem
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[32] and we first show the supersolution property. We define a test functionφ : [0, T )×O → R
such that φ ∈ C 1,1([0, T ) × O ) ∩ PB and, without loss of generality, we assume that V − φ
reaches its minimum at ( t̄, x̄ ), such that

V ( t̄, x̄ )−φ ( t̄, x̄ ) = 0. (6.13)

We let τ1 be a stopping time defined by τ1 = inf {u > t̄ |X t̄, x̄ (u) /∈ Bε(x̄ )}, where Bε(x̄ ) is

the ball of radius ε centred in x̄ . Then we define the stopping time τ∗ = τ1 ∧ ( t̄ + h) for

0 < h < T − t̄ and note that γ̄ := E t̄ x̄ [τ∗] > 0. From the first part of DP and the definition of

φ, it follows that, for arbitrary ν ∈ Z ,

V ( t̄, x̄ )≥ E

�

∫ τ∗

t̄
e−r(u− t̄) f1

�

u, Xνt̄, x̄ (u),νu

�

du+ e−r(τ∗− t̄)φ
�

τ∗, Xνt̄, x̄ (τ
∗)
�

�

.

By applying Dynkin’s formula to e−r(τ∗− t̄)φ
�

τ∗, Xνt̄, x̄ (τ
∗)
�

at ( t̄, x̄ ), we get

E
�∫ τ∗

t̄

�

e−r(u− t̄) f1
�

u, Xνt̄, x̄ (u),νu

�

− e−r(u− t̄)

�

rφ
�

u, Xνt̄, x̄ (u)
�

−
∂ φ

∂ t

�

u, Xνt̄, x̄ (u)
�

− H̄1

�

u, Xνt̄, x̄ (u), Dxφ,νu

�

−Bb,∆(u, Xνt̄, x̄ (u),φ)−B∆(u, Xνt̄, x̄ (u),φ)

− B̄y(u, Xνt̄, x̄ (u),φ,ηu)

��

du

�

≤ 0,

where H̄1 and B̄y are defined respectively by

H̄1 (t, x , p, v) = −vp1 +µ
b
�

t, sb, v
�

p2 +µ
y(t, sb,∆, v)p3 +µ

∆ (t,∆, v) p4,

and

B̄y(t, x ,ϕ, n) = λyE(z
y )
�

ϕ(t, x − nz y , sb,∆, y + hy(t, sb,∆, n)z y)−ϕ(t, x )
�

.

We divide both sides by −γ̄ and let h→ 0, resulting in

rφ ( t̄, x̄ )−
∂ φ

∂ t
( t̄, x̄ )− H̄1 ( t̄, x̄ , Dxφ, v)− f1( t̄, x̄ , v)−Bb,∆( t̄, x̄ ,φ)−B∆( t̄, x̄ ,φ)

−B̄y( t̄, x̄ ,φ,η)≥ 0.

Due to the arbitrariness of v , we can rewrite the above as

rφ ( t̄, x̄ )−
∂ φ

∂ t
( t̄, x̄ )−H1 ( t̄, x̄ , Dxφ)−Bb,∆( t̄, x̄ ,φ)−B∆( t̄, x̄ ,φ)−By( t̄, x̄ ,φ)≥ 0,

which proves the supersolution inequality. We now prove the subsolution inequality. We let

28



φ be a smooth and polinomially-bounded test function such that V −φ has its maximum at

( t̄, x̄ ). Without loss of generality, we assume V ( t̄, x̄ ) − φ( t̄, x̄ ) = 0. We shall show that the

following inequality

rφ ( t̄, x̄ )−
∂ φ

∂ t
( t̄, x̄ )−H1 ( t̄, x̄ , Dxφ)−Bb,∆( t̄, x̄ ,φ)−B∆( t̄, x̄ ,φ)−By( t̄, x̄ ,φ)≤ 0, (6.14)

holds. We define τ1 = inf
�

u > t̄ |
�

u, X t̄, x̄ (u)
�

/∈ Bε( t̄, x̄ )
	

and we define the stopping time

τ∗ = τ1 ∧ ( t̄ + h). By the second part of the DP , there exist a control ν∗ ∈ Z such that, for

δ > 0, we have

V
�

t̄, x̄
�

≤ E

�

∫ τ∗

t̄
e−r(u− t̄) f1

�

u, Xν
∗

t̄, x̄ (u),ν
∗
u

�

du+ e−r(τ∗− t̄)φ
�

τ∗, Xν
∗

t̄, x̄ (τ
∗)
�

�

+δ h̄.

We divide both sides by −γ̄ and get

−δ ≥
1
γ̄
E
�∫ τ∗

t̄
−
�

e−r(u− t̄) f1
�

u, Xν
∗

t̄, x̄ (u),ν
∗
u

�

− e−r(u− t̄)

�

rφ
�

u, Xν
∗

t̄, x̄ (u)
�

−
∂ φ

∂ t

�

u, Xν
∗

t̄, x̄ (u)
�

− H̄1

�

u, Xν
∗

t̄, x̄ (u), Dxφ,ν∗u
�

−Bb,∆

�

u, Xν
∗

t̄, x̄ (u),φ
�

−B∆
�

u, Xν
∗

t̄, x̄ (u),φ
�

− B̄y

�

u, Xν
∗

t̄, x̄ (u),η
∗
u,φ

�

��

du

�

.

For h→ 0 and by the arbitrariness of δ, (6.14) follows. �

Proposition 6.5. Let U (resp. V) be a viscosity subsolution (resp. supersolution) of (6.8). If

U(T, x )≤ V (T, x ) on O , then U ≤ V on [0, T]×O .

Proof. Let U be a subsolution and V be a supersolution. Since U , V ∈ PB, then there exist a

p > 1 such that
|U(t, x )|+ |V (t, x )|

�

1+ ‖x‖p
p
� <∞, (6.15)

where the operator ‖ · ‖p
p is the Lp-norm raised to the p-th power. Let Ṽ ε(t, x ) := V (t, x ) +

εκ(t, x ), where ε > 0 and κ(t, x ) = e−ζt
�

1+ ‖x‖2p
2p

�

, for ζ > 0. Then Ṽ ε is a supersolution of

(6.8). Indeed, let φ(t, x ) be the test function for Ṽ ε, then the test function for V is φ(t, x )−
εκ(t, x ). First note that we have

rεκ (t, x )−
∂ εκ

∂ t
(t, x )− sup

v∈Z
H̄1 (t, x , Dxεκ, v)−Bb,∆(t, x ,εκ)

−B∆(t, x ,εκ)−By(t, x ,εκ)≥ 0,
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for ζ sufficiently large. By the supersolution property of V , we have

r(φ − εκ) (t, x )−
∂ (φ − εκ)

∂ t
(t, x )−H1 (t, x , Dx (φ − εκ))−Bb,∆(t, x ,φ − εκ)

−B∆(t, x ,φ − εκ)−By(t, x ,φ − εκ)≥ 0,

and recalling that sup(A+ B)≤ sup A+ sup B, we have

rφ (t, x )−
∂ φ

∂ t
(t, x )−H1 (t, x , Dxφ)−Bb,∆(t, x ,φ)−B∆(t, x ,φ)−By(t, x ,φ)≥

rεκ (t, x )−
∂ εκ

∂ t
(t, x )− sup

v∈Z
H̄1 (t, x , Dxεκ, v)−Bb,∆(t, x ,εκ)

−B∆(t, x ,εκ)−By(t, x ,εκ)≥ 0.

Since by (6.15) limx→∞ sup[0,T](U − Ṽ ε)(t, x ) = −∞, we can assume w.l.o.g. that

M := max
[0,T]×O

(U (t, x )− V (t, x )) ,

is attained at ( t̄, x̄ ) ∈ [0, T]×Σ, where Σ ⊂ O is a compact set. In order to prove Proposition

6.5, it suffices to show that M < 0. Suppose by contradiction that there exists a ( t̄, x̄ ) ∈
[0, T )×Σ such thatM > 0. For ε > 0, we define the function Ψε by

Ψε (t1, t2, x 1, x 2) = U (t1, x 1)− V (t2, x 2)−ψε (t1, t2, x 1, x 2) ,

where

ψε (t1, t2, x 1, x 2) :=
1
2ε

�

|t1 − t2|2 + ‖x 1 − x 2‖22
�

.

The function Ψε is continuous and admits a maximum point M ε, where M ≤ M ε, at m =
�

tε1, tε2, x ε1, x ε2
�

. That is, the function U(t1, x 1)−ψε(t1, t2, x 1, x 2) has its maximum at m and

V (t2, x 1)− (−ψε(t1, t2, x 1, x 2)) has its minimum at m. Also, formally limε→0

�

tε1, tε2, x ε1, x ε2
�

converges, up to a subsequence, to ( t̄, t̄, x̄ , x̄ ) (see Crandall et al. [14] for details). We let

oε = (t1 − t2)/ε, and define the vector pε by

pε =
�

pε1, pε2, pε3, pε4
�

=
�

1
ε

�

xε1 − xε2
�

,
1
ε

�

sb,ε
1 − sb,ε

2

�

,
1
ε

�

∆ε1 −∆
ε
2

�

,
1
ε

�

yε1 − yε2
�

�

.

We can apply the viscosity subsolution and supersolution properties at the point m such that

U −ψε (V − (−ψε)) has its maximum (minumum) at tε1, x ε1 → t̄, x̄
�

tε2, x ε2 → t̄, x̄
�

. We thus

have

rU
�

tε1, x ε1
�

− oε −H1

�

tε1, x ε1, pε
�

−Bb,∆

�

tε1, x ε1, U
�

−B∆
�

tε1, x ε1, U
�

−By

�

tε1, x ε1, U
�

≤ 0
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and

rV
�

tε2, x ε2
�

− oε −H1

�

tε2, x ε2, pε
�

−Bb,∆

�

tε2, x ε2, V
�

−B∆
�

tε2, x ε2, V
�

−By

�

tε2, x ε2, V
�

≥ 0

We can subtract the two inequalities and take the limit for ε→ 0 to get r [U ( t̄, x̄ )− V ( t̄, x̄ )]≥
0, which concludes the proof. �
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