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Abstract
We assess the suitability of quantum and semiclassical initial-value repre-
sentations (IVRs), exemplified by the coupled coherent states (CCS) method and
the Herman–Kluk (HK) propagator, respectively, for modeling the dynamics of
an electronic wave packet in a strong laser field, if this wave packet is initially
bound. Using Wigner quasiprobability distributions and ensembles of classical
trajectories, we identify signatures of over-the-barrier and tunnel ionization in
phase space for static and time-dependent fields and the relevant sets of phase-
space trajectories to model such features. Overall, we find good agreement with
the full solution of the time-dependent Schrödinger equation (TDSE) for Wigner
distributions constructed with both IVRs. Our results indicate that the HK
propagator does not fully account for tunneling and over-the-barrier reflections.
This leads to a dephasing in the time-dependent wave function, which becomes
more pronounced for longer times. However, it is able to partly reproduce
features associated with the wave packet crossing classically forbidden regions,
although the trajectories employed in its construction always obey classical
phase-space constraints. We also show that the CCS method represents a fully
quantum initial value representation and accurately reproduces the results of a
standard TDSE solver. Finally, we show that the HK propagator may be
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successfully employed to compute the time-dependent dipole acceleration and
high-harmonic spectra. Nevertheless, the outcome of the semiclassical compu-
tation exhibits disagreements with the TDSE, as a consequence of the previously
mentioned dephasing.

Keywords: phase space dynamics, strong laser fields, semiclassical propagators,
ionization, high-harmonic generation

1. Introduction

Initial-value representations (IVRs) such as the coupled coherent states (CCS) method [1] and
the Herman–Kluk (HK) propagator [2] are widely used in many areas of science. These
approaches allow an intuitive interpretation of a time-dependent wave packet in terms of
trajectories in phase space, and account for binding potentials, external fields, and quantum-
interference effects. Furthermore, the numerical effort in IVRs does not scale exponentially with
the degrees of freedom involved (for discussions related to the CCS and HK methods applied to
multidimensional systems, see [3–5], respectively). This efficiency may be increased by
employing several strategies, such as dominant Hamiltonians in specific phase-space regions
[6, 7] or quantum-state reprojection [8, 9]. For that reason, IVRs have been successfully used in
the modeling of the short-time dynamics of quantum systems with many degrees of freedom,
such as polyatomic molecules and small clusters. For instance, the CCS method has been
applied to the intramolecular vibrational energy exchange [10], tunneling in large molecules
[11], and calculations of Franck–Condon [12] spectra. Further examples include applications of
the multiconfiguration Ehrenfest method, which is closely related to the CCS approach, to
pyrazine [13], and to the spin-boson model [14].

In principle, all these features make IVRs very attractive to strong-field and attosecond
science. In fact, it has been well known for the past two decades that strong-field phenomena,
such as high-order harmonic generation (HHG), above-threshold ionization (ATI), or
nonsequential double ionization (NSDI), may be described as the result of the laser-induced
scattering or recombination of an electron with its parent ion [15]. This implies that electron
orbits play a very important role in understanding these phenomena. This has led not only to a
myriad of applications, such as the attosecond imaging of dynamic processes in matter (see [16–
18]), but to the extensive use of orbit-based approaches (see [19]).

In particular, classical and semiclassical methods are very popular. Classically, ensembles
of electrons that behave according to the previously mentioned recollision picture are
constructed to mimic the behavior of the quantum mechanical wave packet and both the
external laser field and the binding potentials are fully incorporated. This is the key idea behind
classical trajectory methods, which have reproduced key features such as the low-energy
structure in ATI [20] and the V-shaped structure observed in NSDI [21, 22]. These methods,
however, cannot account for quantum-interference effects or tunnel ionization. Most quantum
mechanical and semiclassical methods in strong-field physics incorporate such effects, but make
drastic approximations on the residual binding potential. A typical example is the strong-field
approximation (SFA), which, in conjunction with the steepest descent method, is the most used
approach in this field. In SFA, the continuum is approximated by field-dressed plane waves, i.e.,
the potential is not accounted for in the electron propagation. Nonetheless, the interplay
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between the external laser field and the binding potential is important and has revealed itself in
many ways. For instance, this interplay leads to a prominent low-frequency structure [20, 23–
25] and fan-shaped interference patterns [26, 27] in ATI and strongly influences NSDI in
circularly polarized fields [28, 29]. Because this interplay is important, in the past few years,
Coulomb-corrected analytic approaches have been developed and successfully applied to
strong-field phenomena [24, 30–32]. These approaches, however, require the external field to be
dominant.

On the other hand, IVRs have only been employed in strong-field physics in relatively few
publications. Specifically, in [6, 7, 33] HHG spectra have been computed using the HK
propagator and in [34–36] NSDI ion and electron momentum distributions have been calculated
employing the CCS method. To be able to apply these methods widely, major challenges must
be overcome. Concretely, the trajectories employed in the construction of the time-dependent
wave function with the HK propagator are real, i.e., they cannot cross classically forbidden
regions in phase space. Hence, tunnel ionization may not be properly accounted for. Since the
1990s, there has been considerable debate about whether one may model tunneling employing
semiclassical IVRs such as the HK propagator, and if so, to what extent (see [37–41]). To
circumvent this problem, in [6, 7, 33] the initial electronic wave packet has been placed far
away from the core. Unfortunately, these initial conditions leave out many strong-field
problems, for which tunneling is expected to be the dominant ionization mechanism. On the
other hand, tunneling is present in the CCS method because it is a basis-set method. However,
special effort must be made to choose a trajectory-guided basis suitable for tunneling.

Nevertheless, one may wonder whether the over-the-barrier dynamics, per se, would not be
sufficient for the modeling of strong-field wave-packet dynamics in the presence of the
Coulomb potential. This is a legitimate question, especially if one considers that classical
models, for which tunnel ionization does not occur, have been hugely successful in reproducing
a number of features in ATI and NSDI. In some of these methods, tunnel ionization has been
mimicked by employing the quasistatic Ammosov-Delone-Krainov (ADK) tunneling rate,
which may explain this success. However, there exist also purely classical models in which the
electron ensemble is left to propagate without the need for any ad-hoc quantum mechanical
ingredient. For a discussion of these models in the NSDI context, see our review article [42].

For that reason, in this work, we perform a systematic analysis of the dynamics of an
electronic wave packet in a strong field, with particular focus on ionization, and on what is left
out by IVRs. This analysis will be performed in phase space, for reduced dimensionality
models, under the assumption that the electronic wave packet is initially bound. These reduced-
dimensionality models are a first step toward more realistic, multidimensional computations and
will serve to assess the ionization dynamics in a simplified setting. A further key advantage is
that the full solution of the time-dependent Schrödinger equation (TDSE) is straightforward for
one-dimensional (1-D) models, whereas for more degrees of freedom this does not hold. For
this reason, the TDSE will be used as a benchmark throughout this paper.

This article is organized as follows. In section 2, we provide the necessary theoretical
background to understand our results. Subsequently, in section 3, we will have a closer look at
how the time-dependent wave packet overcomes the potential barrier resulting from the
combined action of the external field and the binding potential. For that purpose, we will
employ quasiprobability distributions in phase space, for a static and a time dependent field, and
for long- and short-range potentials. As, for short-range potentials, tunneling is expected to be
more prevalent than over-the-barrier ionization, in this case we will also perform a comparison
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with the CCS method. In section 4, we present approximate estimates, in which the
transmission through the potential barrier is computed analytically using uniform Wentzel–
Kramers–Brillouin (WKB) approximations and a comparison with an inverted harmonic
oscillator is made. In section 5, we will show how the phase differences between the
semiclassical and quantum mechanical computations lead to discrepancies in HHG spectra and
the time-dependent dipole acceleration. In section 6, we will provide a summary of the main
results and the conclusions to be drawn from this work. Finally, in the appendix, we discuss the
fact that the HK and the CCS methods share a common origin.

2. Background

2.1. Model

For the sake of simplicity, we consider a one-electron, 1-D atom. The Hamiltonian of such a
system can be expressed as

= + +H
p

V Vˆ ˆ

2
ˆ ˆ , (1)a

2

where V̂a and V̂ represent the binding potential and the interaction with the laser field in the
length gauge, respectively, and the hats denote operators. Atomic units are used throughout.
The length gauge has been chosen, as it leads to the physical picture of an electron tunneling
through an effective potential barrier or undergoing over-the-barrier ionization. This picture will
be very convenient for the phase-space analysis performed in this work.

The external field exhibits the same temporal dependence as in [6, 33], i.e.,

 ω=( )V x t x tˆ ˆ, ˆ cos ( ), (2)

where  and ω denote the field strength and frequency, respectively, of the laser field. The
binding potential is taken either as the soft-core potential

λ
= −

+
( )V x

x
ˆ ˆ

1

ˆ
, (3)sc

2

or as the short-range Gaussian potential

λ= − −( )V x xˆ ( ) exp ˆ , (4)G
2

where λ is an arbitrary parameter. As a benchmark, we employ the full solution of the TDSE

Ψ Ψ∂ =t H ti ( ) ˆ ( ) , (5)t

which is solved in coordinate space for Ψ Ψ= 〈 〉x t x t( , ) | ( ) using a split operator method.
The initial wave function is defined as the Gaussian wave packet

⎜ ⎟
⎛
⎝

⎞
⎠Ψ γ

π
γ= − − + −α α α{ }x x q p x q(0) exp
2

( ) i ( ) (6)
1 4

2

centered at α αp q, , with =αq 0. Furthermore, the parameter γ defines the width of the wave
packet. This initial choice facilitates the implementation of IVRs.

The initial energy expectation value, computed for the system in the absence of the
external driving field, is given as
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γ Ψ Ψ= = + +α ( )E t
p

V x( 0)
4 2

(0) ˆ ˆ (0) . (7)a

2

If the wave packet is initially centered at =αq 0, this expectation value reads as

Ψ Ψ γ
γ λ

= −
+

( )V x(0) ˆ ˆ (0) (8)G

and

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠Ψ Ψ γ

π
γ λ γ λ= −( )V x K(0) ˆ ˆ (0)
2

exp
2

(9)sc

1 2

0

for the Gaussian and the soft-core potentials, respectively, where Kn(z) is the modified Bessel
function of the second kind. Equation (7) depends on the width and the initial momentum of the
initial wave packet and on the potential parameter λ. Throughout, this parameter has been
chosen as λ = 1 for the soft-core potential and as λ = 1 2 for the Gaussian potential.

The width and the position of the initial wave packet were chosen to minimize its initial
energy. This procedure yields =α αp q( , ) (0, 0) and γ ≃ 0.46 and =α αp q( , ) (0, 0) and γ ≃ 0.65
for the soft-core and the Gaussian potentials, respectively. The ground-state energies associated
with the potentials V x( )sc and VG(x) are = −E 0.67sc a.u. and = −E 0.594G a.u., respectively.

2.2. Quantum and semiclassical IVRs

Although quantum mechanics is usually formulated in coordinate or momentum space, it can
also be formulated in phase space. In this section, we present the IVRs in phase space employed
in this work. These representations are the CCS method, which is a formally exact approach for
describing quantum mechanics, and the HK propagator, which is semiclassical. More details
can be found in the review article [1].

The CCS method represents a time-dependent wave function as a superposition of
nonorthogonal Gaussian coherent states (CS), which can either be chosen as static, or as time
dependent and trajectory-guided. In this work, we will adopt the latter formulation, i.e.,

〉 = 〉z z t| | ( ) .
Gaussian CS are eigenstates of the creation and annihilation operators

= =a z z z z a z zˆ and ˆ *, (10)†

where the eigenvalue z q p( , ) is a complex number in phase space parametrized as

γ
γ

γ
γ

= +

= −

z q p

z q p

2
i

2
,

*
2

i

2
, (11)

which is defined in terms of the position q and the momentum p of the particle.
CS are not orthogonal; their overlap is given as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Ω= = − −z z z z

z z z z
exp

2 2
. (12)l j lj l j

l l j j
*

* *
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The identity operator in the CS representation reads as

∫ π
=I z z

zˆ d
, (13)

2

where =z q pd d d 22 is the notation for phase-space integration. In this case, the time-dependent
wave function is explicitly given by

∫Ψ
π

=t z D t
z

( ) ( )e
d

, (14)z
Si

2
z

where the expression

⎡
⎣
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥
⎥∫= − − ( )S z

z

t
z

z

t
H z z t

i
2

*d
d

d *

d
*, d , (15)z ord

denotes the classical action along the trajectory defined with regard to the matrix element
= 〈 〉H z z z H a a z( *, ) | ˆ ( ˆ , ˆ) |ord ord

† . This represents the diagonal elements of the ordered
Hamiltonian matrix H a aˆ ( ˆ , ˆ)ord

† . In general,

′ = ′ ′( )z H z z z H z zˆ *, , (16)ord

where 〉z| , ′〉z| denotes two arbitrary CS.
By inserting the identity operator in the TDSE (5) and closing it with 〈z |, one obtains the

integro-differential equation

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

∫

∫
π

δ
π

′ − ′ =

− ′ ′ − ′

′

′

′

′
′( )

( )

( )

z z
D t

t
S S

z

z z H z z S S D t
z

d ( )

d
exp i

d

i * *, exp i ( )
d

(17)

z
z z

z z z

2

2
ord

2

for the amplitudes ′D t( )z , where the coupling kernel is

δ ′ = ′ − ′ −
′

−′ ′ ′( ) ( ) ( )( )H z z H z z H z z
z

t
z z* *, *, *, i

d
d

* * , (18)2
ord ord ord

with the matrix elements of the ordered Hamiltonian defined in equation (16). An important
property of (18) is that the kernel δ ′′H z z* ( *, )2

ord is always small for z and ′z close to each other
and their overlap 〈 ′〉z z| vanishes when they are far away.

The exact form of the kernel depends on the choice of the trajectories, which are used to
guide the basis, and it becomes particularly simple if they are determined by Hamiltonʼs
equations with a quantum-averaged Hamiltonian

′
= −

∂ ′

∂

′

′
( )z

t

H z z

z

d
d

i
*,

*
. (19)

ord

In coordinate space,

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

γ
π

γ= − − + − +x z x q p x q
pq

exp
2

( ) i ( )
i

2
(20)

1 4
2

is a Gaussian wave packet centered at the phase-space coordinates q and p.
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In practice, a finite basis of Gaussian CS is used so that the integral in (14) becomes a finite
sum. The identity operator is discretized as

∫ ∑
π

Ω= ≈ −( )I z z
z

z zˆ d
, (21)

i j

i
ij

j

2

,

1

where Ω−1 is the inverse of the overlap matrix Ω = 〈 〉z z|ij i j . This specific discretization reduces
the integro-differential equation (17) to a system of linear equations for the derivatives D t˙ ( )z ,
which are solved numerically together with equation (19) for the trajectories.

For the HK propagator, the time-dependent wave function is once more expressed in terms
of Gaussians in phase space (for seminal papers, see [2, 43–45]). Following the original work
[2], they are usually labeled, not with a single complex number z, but with two real numbers p
and q. This specific formulation is considered in our implementation and in the results that
follow. Explicitly,

∫ ∫Ψ Ψ
π

= ( )t q p R t q p q p
q p

( ) , , , , (0) e
d d

2
(22)S

HK 0 0 0 0
i 0 0

cl

where 〉q p| , represents a coherent state whose expression in coordinate representation is given
by

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

γ
π

γ= − − + −x q p x q p x q, exp
2

( ) i ( ) , (23)
1 4

2

which differs from equation (20) employed in the CCS approach by a phase factor, and

⎛
⎝⎜

⎞
⎠⎟γ

γ
= + − +( )R t q p m m m m, ,

1

2
i

i
(24)pp qq qp pq0 0 1 2

1 2

is given in terms of the elements = ∂ ∂m u vuv 0 of the monodromy matrix, which is composed of
the derivatives of the final variables q p, with regard to their initial values q p,0 0. In
equation (22), the action reads as

∫= −( )S q p pq H t( , ) ˙ d , (25)cl cl

where Hcl is the classical Hamiltonian, in which the operators x̂, p̂ in (1) have been replaced by
the phase-space variables q, p. For the initial wave packet (6) considered here,

⎧⎨⎩
⎫⎬⎭Ψ γ

γ
= − − − − + + −α α α α( )q p q q p p p p q q, (0) exp

4
( )

1
4

( )
i
2

( ) . (26)0 0 0
2

0
2

0 0

The integral is carried out over phase-space coordinates, which are used as initial conditions of
the classical solutions (q, p). In the p q, -notation, the phase of CS in (23) differs from that of z-
notations by pqi 2, which is compensated by the different form of action (25) used in [2] as
opposed to that of equation (15).

Apart from trivial notations, the HK propagator and the CCS method differ in three
main ways:

(1) The trajectories of the Gaussian CS in the HK method are purely classical, whereas in
CCS, the trajectory of a CS 〉z t| ( ) is driven by the Hamiltonian 〈 〉z H z| ˆ | . This latter
Hamiltonian is the average of the quantum Hamiltonian with regard to the CS and
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considers the local zero-point energy and further corrections due to commutators. This
makes all wells more shallow and lowers all potential barriers. The CCS and HK
trajectories are identical only in the case of harmonic potentials.

(2) The CCS representation is a formally exact basis set technique. It uses coupled quantum
equations for the coefficients Dz(t), obtained simply by substitution of (14) into the
Schrödinger equation. In contrast, in the HK theory, the coefficients are obtained by an
analytical semiclassical formula, which includes the elements of the monodromy or
stability matrix. These expressions result from the so called local quadratic approximation,
which only considers the first and second terms in the Taylor expansion of the potential
energy around a specific trajectory, and assume that only the coupling of CS near this
trajectory is important. Physically, this implies that, while in the CS representation the
trajectories are coupled through the amplitudes Dz(t), each trajectory in the swarm
employed in the HK method contributes independently. Indeed, for each trajectory there is
one prefactor, which depends only on the information carried out by that specific
trajectory.

(3) On a more technical level, the CCS is often used in conjunction with various algorithms of
basis-set expansion, which generate additional basis functions and reproject the wave
function on the new basis set. These basis sets allow us to follow complicated features of
the dynamics more efficiently. Although reprojection has been used in conjunction with the
HK method as well, in the latter case it is less common [8, 9].

In the appendix, a sketch is presented of how both CCS coupled equations and the HK
formula are obtained from the same source, which is the integro-differential form of the
Schrödinger equation in the continuous CS representation, closely following the review article
[1]. For a detailed account of the similarities and differences between both IVRs, see also
[46–48].

3. Phase-space dynamics

In the following, we analyze different ionization mechanisms in phase space. According to the
quasistatic tunneling picture, a low-frequency, time-dependent field and the binding potential
determine an effective potential barrier

= +V x t V x x t( , ) ( ) ( ), (27)aeff

whose maximum will be given by V x t( , )seff at the coordinate xs such that
∂ ∂ ==V x t x( , ) | 0x xeff s

. If the total electron energy is larger than this value, it may escape via
over-the-barrier ionization. If the total energy is smaller, tunneling is expected to be the
dominant ionization mechanism.

3.1. Phase portraits and classical-trajectory analysis

With this aim in mind, we will perform a phase-space analysis of both the trajectory ensemble
used to construct the semiclassical wave function in equation (22), and the wave functions
Ψ x t( , )HK and Ψ x t( , ). For simplicity, we will first study what happens if the driving field is
static. This is a good approximation for the instantaneous barrier (27) if the frequency is low
enough. In this case, the time-dependent field  t( ) is replaced by  in equation (2).
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In phase space, the classical static Hamiltonian then reads as

= + +H p q
p

V q q( , )
2

( ) . (28)acl
st

2

In these studies, we will consider the soft-core potential (3).
In figure 1, we present the phase portrait of the system for the Hamiltonian (28) and static

fields of different amplitudes. The figure shows that the condition

+ + =p V q q E2 ( ) , (29)a
2

min

where Emin is the minimal energy necessary for the electron to undergo over-the-barrier
ionization, defines a separatrix, which crosses at =q p q( , ) ( , 0)s . For energies E below the
separatrix energy, the dynamics can be either bounded or unbounded depending on whether the
spatial coordinate of the orbit is larger or smaller than that of the saddle point q( , 0)s . This
means that an orbit with <E Emin will remain unbound if its initial spatial coordinate q0 lies on
the left-hand side of the saddle point, and that it will remain bound if q0 lies on the right-hand
side of qs (figure 1). On the other hand, orbits with >E Emin will remain unbounded regardless
of the initial value of their spatial coordinate. Furthermore, the trajectories in the ensemble
always respect the constraints dictated by classical dynamics. This is explicitly shown by the
thin lines in the figure, which illustrate the time evolution of some sample trajectories. In fact,
the trajectories whose energy lie below Emin always remain bound and propagate along closed
orbits bounded by the separatrix. Those that follow the separatrix from below
( < < −E E 0.3min a.u.) go around the bound region in phase space, but never cross this region.

Classically, if a trajectory has a specific energy, it will occupy a well-defined phase-space
orbit. Quantum mechanically, however, an initial wave packet of a specific energy may occupy
many regions in phase space. In fact, due to the uncertainty relation, a strong spatial localization
will lead to a larger momentum spread and vice versa. This is shown in the upper panels of
figure 2, where we display the phase-space representation (26) of two Gaussian wave packets
(6) centered at =α αq p( , ) (0, 0) with different widths γ = 0.5 and γ = 0.05. These widths give
bound-state energies of roughly = −E 0.5 a.u. or = −E 0.67 a.u., respectively. If now a set of

Figure 1. Phase portrait of the system defined by equation (28) for a static electric field.
The solid lines represent the separatrix in phase space for driving-field amplitudes of
 = 0.075 a.u. (left) and  = 0.05 a.u. (right) according to equation (29). Dashed and
dotted lines show solutions for energies = −E 0.67 a.u. and = −E 0.3 a.u., respectively.
The dashed-dotted lines illustrate the evolution of some sample trajectories from t = 0 to
t = 20 a.u.

9

New J. Phys. 16 (2014) 103040 C Zagoya et al



Figure 2. Classical trajectory distributions, together with the initial quantum mechanical
wave packet, considering a soft-core potential and a static field of amplitude  = 0.075
in equation (28). Upper panels: initial quantum mechanical distributions in phase space
for a Gaussian wave packet centered at =α αq p( , ) (0, 0), γ = 0.5 (bound-state energy

≃ −E 0.67 a.u.; left), and γ = 0.05 (bound state energy ≃ −E 0.5 a.u.; right). Middle
panels: initial conditions in phase space for an ensemble of classical trajectories
corresponding to these distributions, represented by dots. Lower panels: classical
distributions at t = 20 atomic units for an ensemble whose initial conditions are given by
those in the middle panels [ =α αq p( , ) (0, 0) and, from left to right, γ = 0.5 = and
γ = 0.05]. In our computations using the HK method, we have considered around 107

trajectories. The thick black lines indicate the separatrix defined according to
equation (29) and the constant-energy curve for E = 0 a.u.
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initial conditions in phase space is generated to match these distributions, these conditions will
spread over several regions, bound and unbound, as shown in the middle panels of figure 2.
These are the starting points q p( , )0 0 for an ensemble of classical trajectories, which will be
propagated in time and used in the construction of the semiclassical wave function Ψ x t( , )HK .

After some time has elapsed (lower panels in figure 2), the distributions follow the
constant-energy curves in phase space. For the wave packet with γ = 0.5, the distributions are
concentrated in the bound region or, for <q qs, in the momentum region below the separatrix.
The region on the left-hand side of the saddle around the axis p = 0 is practically unpopulated.
In contrast, for the wider wave packet in position space (γ = 0.05), there are phase-space events
in this region, but closely following the separatrix given previously.

These features are determined by the initial position and momentum spreads of the wave
packet and the corresponding trajectory ensemble. For γ = 0.5, the wave packet is more
localized in position space, so that the associated classical ensemble practically does not occupy
the region on the left-hand side of the saddle. The trajectories that lie between the separatrix and
the curve associated with the energy = −E 0.3 a.u. then follow the separatrix from below. The
remaining trajectories, for <E Emin or > −E 0.3 a.u. either remain bound or lead to the
distribution below the latter curve, for high negative momenta. In contrast, for a larger
momentum spread (γ = 0.05), the region on the left-hand side of the saddle is reasonably
populated from the start.

According to this analysis, only if the previously determined constraints vary in time may
a classical bound trajectory become unbound or vice versa. This is what happens if the external
field is time dependent. In figure 3, we illustrate this behavior for the laser field associated with
equation (2). In this case, the bound region first increases in time, so that an initially unbound
trajectory may become trapped. After a field crossing, the field amplitude starts to increase and,

Figure 3. Time-dependent separatrix corresponding to the laser field represented by
equation (2) (solid lines), together with a specific electron trajectory (dashed line), with
frequency ω = 0.05 a.u. and amplitude  = 0.075 a.u. The gradient color shows the
time variation from t = 0 (blue) to t = 30 a.u. (red), which spans slightly less than the
first quarter cycle of the field. The dot depicts the initial condition of an initially
unbound trajectory that becomes trapped because of the time-dependent field, and the
remaining symbols illustrate the phase-space coordinates p q( , )t t at specific times t. For

>t T 4, where π ω=T 2 is the field cycle, the region bounded by the separatrix starts
to decrease, until the trapped trajectory is eventually able to escape.
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consequently, the bound region will shrink. This will lead to a bound trajectory becoming
unbound. Hence, the electron will be able to escape. According to the classical constraints,
however, its momentum must be such that it only may go over the barrier.

3.2. Wigner quasiprobabilities

We will now employ the Wigner quasiprobability distribution (also known as the Wigner
function) to relate the preceding picture to the wave-packet propagation in phase space [49].
This function is defined as

∫π
Ψ Ψ= + −

−∞

+∞
W q p y q y q y py( , )

1
d *( ) ( ) exp [2i ]. (30)

If equation (30) is integrated over the momentum or position space, the corresponding
probability densities are recovered. One should note, however, that the Wigner distribution may
exhibit positive as well as negative values. Hence, strictly speaking, it cannot be associated with
a probability density. Nonetheless, it does give an intuitive picture of the wave-packet dynamics
in phase space and provide valuable information about momentum-position correlation. Wigner
distributions are widely employed in quantum optics and have also been used in strong-field
physics to assess the dynamics of ionization [50], rescattering [51, 52], double ionization [53],
and HHG [54]. A common feature identified in [50] and [54] was a tail in the Wigner
distribution, which has been associated with tunnel ionization. In the following, we will plot the
square of the Wigner function, W q p( , )2 as it makes the previously mentioned tail slightly
clearer.

In the left and right panels of figure 4, we depict the squares of the Wigner distributions
obtained using the TDSE and the HK propagator, respectively, for a static field and the soft-core
potential (3). This quasiprobability has evolved from an initial Gaussian state centered at

=α αq p( , ) (0, 0) and width γ = 0.5 (see figure 2 for details). The time propagation of the wave
packet and, in particular, the shape of the Wigner function, are strongly influenced by the
separatrix. Throughout, the figure shows a distinct tail in the Wigner functions leaving the
bound phase-space region. For short times, this tail follows the separatrix from below, as shown
in the upper panels of the figure. This strongly suggests that the continuum is reached by over-
the-barrier ionization: the electronic wave packet does not leave the core with vanishing
momentum, but, rather, with the minimum necessary momentum to overcome V q( )seff . As time
progresses, interference fringes start to build up on the left-hand side just above the separatrix.
These fringes have been identified in [50], for a delta-potential model in a static field, and in
[51, 54] for long- and short-range potentials in time-dependent fields, and have been associated
with the quantum interference of ionization processes occurring at different times. Apart from
that, there is a pronounced tail now following the separatrix from above. This implies that parts
of the wave packet are reaching the continuum with lower energy than that required for over-
the-barrier ionization to occur. In other words, tunnel ionization may be taking place, both for
the TDSE and the HK wave packets. Near =q qs, the momentum at this tail is even
approximately vanishing, in agreement with the model in [50]. A decrease in the momentum
associated with the tail is intuitively expected as, physically, the components of the wave packet
with lower energies will take longer to reach the barrier [39].

All previously mentioned features are present both for the semiclassical and quantum
mechanical computations. In fact, the agreement between the outcomes of both approaches is
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quite striking. The presence of interference patterns in both cases is not surprising, as it is well
known that the HK propagator is capable of reproducing such effects. It seems, however, that
the semiclassical propagator allows the wave packet to cross classically forbidden regions. In
other words, classical trajectories with over-the-barrier energy appear to mimic transmission
through a barrier for <E Emin . This is not obvious, as these trajectories do not violate any
phase-space constraints, or cross classically forbidden regions.

However, we have verified that the trajectories whose initial coordinates q p( , )0 0 lie
outside the bound phase-space region lead to the tail in the Wigner distributions. For clarity, in
figure 5 we show the Wigner function computed from the HK propagator leaving out these
trajectories. In the figure, both the previously mentioned tail and the interference fringes are
absent. These findings are in agreement with the results in [55], in which a nonlocal behavior of
the Wigner function around separatrices has been observed for an inverted harmonic oscillator,
and with those in [56], which find that the transmission coefficient associated with a parabolic
barrier is related to the quantum mechanical weight of all classical trajectories with enough
energy to go over the barrier. The disappearance of the fringes in the Wigner functions around
p = 0 for <q qs also supports the assumption that the Wigner function behaves nonlocally.

For a short-range potential, the separatrix becomes much steeper and the tail in the Wigner
function starts to form along the separatrix, i.e., for ≃p p| | | |min . This is explicitly shown in

Figure 4. Square of the Wigner function calculated for a wave packet in a soft-core
potential (3) and a static field of amplitude  = 0.075 a.u. by using the full quantum
wave function (left column) and the semiclassical wave function (right column) for
t = 10 a.u. (first row) and t = 20 a.u. (second row). The thicker lines in the figure show
the separatrix and the phase-space trajectory for E = 0. The width and initial momentum
of the initial wave packet are γ = 0.5 and =αp 0, respectively.
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figure 6, in which the soft-core potential has been truncated by multiplying equation (3) with the
function

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

π=

<

−
−
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f x

x a

x a

L a
a x L

x L

( )

1,

cos
2

,

0,

, (31)

0

7 0

0
0

in which the parameters a0 and L are chosen so that the ground-state energy remains practically
the same but the effective potential barrier changes. This type of potential has been employed in
our previous publications [57, 58] to study the influence of the Coulomb tail on HHG
enhancements, and HHG spectra from specific Bohmian trajectories, respectively. Physically,
this may be understood as follows: although for a long-range potential the electron may escape
via highly excited states and over-the-barrier ionization, for short-range potentials these

Figure 5. Square of the Wigner function calculated using the HK propagator leaving out
the trajectories starting outside the bound region for the same parameters as in figure 4
and times t = 10 a.u. and t = 20 a.u. (left and right panels, respectively).

Figure 6. Square of the Wigner function calculated using the TDSE and the HK
propagator (left and right panels, respectively), for the same field parameters as in
figure 4, time t = 10 a.u., and a truncated soft-core potential according to equation (31),
with =a 10 and L = 7.55. The solid and dashed lines indicate the separatrices for the
truncated and the long-range soft-core potential, respectively.
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pathways are strongly suppressed. Hence, the wave packet is expected to escape through phase-
space regions associated with tunnel ionization.

For the time-dependent field in equation (2), we observe that the tails with momenta
following the separatrix from below prevail in the Wigner function. Furthermore, there are
many more fringes associated with quantum interference and rescattering events (for
discussions of these fringes, see [51, 52]). Snapshots of W q p( , )2 in the time-dependent case
are presented in figure 7. The separatrix, which is now time dependent, is also displayed in the
figure as the thick black lines. This suggests that, for this type of potential, there will be enough
over-the-barrier dynamics for the approximate modeling of strong-field ionization and
rescattering. We see, however, that the agreement between the HK propagator computation

Figure 7. Square of the Wigner function computed using the TDSE and the HK
propagator (left and right panels, respectively) employing a soft-core potential (3) and a
time-dependent field associated to equation (2), with frequency ω = 0.05 a.u. and
amplitude  = 0.075 a.u. The top, middle, and bottom panels have been calculated for
t = 12.6 a.u., =t T 4, and =t T 2, respectively, where π ω=T 2 is the field cycle.
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and the TDSE worsens with time. This is related to the fact that nonclassical effects such as
tunnel ionization and over-the-barrier reflections cannot be fully accounted for, and become
dominant for longer times [39].

3.3. Comparison with the CCS method

We will now investigate the Gaussian potential (4) and an initial wave packet with γ = 1. As
discussed in the previous section, for a short-range potential, the effective potential barrier is
much steeper and there is no Rydberg series. Hence, tunneling is expected to be dominant for
the parameter range in question. Furthermore, we will also perform a direct comparison with the
CCS method, which is well known to incorporate tunneling. A Gaussian potential is very
convenient for the subsequent comparison of the ordered and the classical Hamiltonians, as it
may be computed analytically in a coherent-state basis.

In figure 8, we display snapshots of W q p( , )2 computed with the TDSE, the HK
propagator, and the CCS method (left, middle and right columns, respectively) using a static
field. For t = 10 a.u. (upper panels) there is a very good agreement between the outcome of all
approaches, with a distinct tail in the quasiprobability distributions following the separatrix
given previously. This behavior holds even for the results obtained with the semiclassical
propagator and is different from that observed for the soft-core potential (see figure 4).
Physically, this suggests that there will be a nonvanishing probability density leaving the core
with <p p| | | |min . For t = 20, a longer tail extending to far beyond the core region and
interference fringes are present in all cases. For these longer times, the agreement between the

Figure 8. Modulus square of the Wigner quasiprobability distributions computed using
a static field of the same amplitude as in figure 4 and the Gaussian potential (4), using
the TDSE, the HK propagator, and the CCS method (left, middle, and right panels,
respectively). The upper and lower panels correspond to t = 10 a.u. and t = 20 a.u.,
respectively. The separatrix and the curve in phase space for the energy E = 0 are
illustrated by the thick lines in the figure. For the HK propagator and the CCS method,
we employ 107 and 1600 trajectories, respectively.
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HK propagator computation and the TDSE worsens. For the standard CCS, this is also the case,
as, in this region, anharmonicities associated with the binding potential become more important.
To overcome this problem, it is necessary to perform a periodic reprojection of the trajectories
onto a static grid. A detailed discussion of this method in the strong-field context will be given
elsewhere [59] (see also [8, 9] for details).

We have also verified that, although the trajectories employed in the HK propagator never
cross the separatrix, defined with regard to the classical Hamiltonian those used in the CCS
method do. This is a consequence of the fact that the ordered Hamiltonian H z z( *, )ord is
different from the classical Hamiltonian H p q( , )cl . In fact, as a function of the phase-space
coordinates (q, p), for a static field H z z( *, )ord is given by

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦ γ γ
γ λ

η= + −
+

− +H p q
p

q q( , )
4 2

exp , (32)ord
st

2 1 2
2

with η λγ γ λ= +( ( )). If the separatrix is however defined with regard to H p q( , )ord instead of
the classical Hamiltonian, the trajectories defined by the CCS method will not cross. In other
words, averaging the potential over a Gaussian CS basis leads to the lowering of the barrier,
which partially takes tunneling into account. A direct comparison of H p q( , )ord

st and H p q( , )cl
st

shows an effective energy shift γ 4 and a shift

⎡
⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

⎤
⎦
⎥
⎥Δ γ

γ λ
λ
γ λ

=
+ +

−V q V q
q

( ) ( ) exp 1 (33)G G

1 2 2 2

in the binding potential, where VG(q) is given by equation (4). For discussions of these shifts,
see [47, 48].

4. Approximate estimates

It is a well known fact that, for an inverted harmonic oscillator, IVRs lead to exact descriptions
of the time-dependent wave-packet dynamics and Wigner quasiprobability distributions exhibit
nonlocal behavior [55]. In [39], however, it has been argued that this does not hold for a general
barrier, unless transmission occurs close enough to its top. In this case, the potential barrier may
be approximated by an inverted harmonic oscillator, and IVRs give reasonable, albeit not exact,
results. It is thus our objective to assess whether, for the potential barriers employed here, the
results obtained in the previous section may be justified in this way.

For that reason, we expand V x( )eff around the saddle xs, and, using the uniform WKB
approximation, we compute the transmission coefficient through this barrier for a static field.
This coefficient reads as

⎛
⎝⎜

⎧⎨⎩
⎫⎬⎭

⎞
⎠⎟∫= + −

−

( )P E V x E x( ) 1 exp 2 2 ( ) d , (34)
x

x

eff

1

l

r

where xl and xr are the left and right turning points, respectively, for which
= =V x V x E( ) ( )l reff eff . In figure 9, these results are displayed as a function of the energy of

the initial wave packet. The figure confirms that the inverted harmonic oscillator is a reasonable
approximation for the parameter range employed in this work. This approximation becomes
increasingly more accurate as the energy approaches the threshold and over-the-barrier regime.
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A better agreement is observed for the soft-core potential. This is consistent with the results in
the previous section (see figures 4 and 8).

5. High-harmonic generation

We will now establish a connection with previous work in the literature, and compute high-
harmonic spectra with the HK propagator. We will use the soft-core potential (3) and the
interaction Hamiltonian (2), but assume that the electronic wave packet is initially localized at
the core. HHG spectra are a particularly critical test for the present IVRs as HHG is a coherent
process, for which the phase of the wavefunction is important and which builds up over at least
a few cycles. Furthermore, it occurs close to the core, for which the interplay between the
binding potential and the external laser field is important.

The HHG spectra are given by

∫σ Ω Ω= ta t t( ) d ( )exp(i ) , (35)
2

where

∫ Ψ Ψ= −
∂

∂−∞

∞
a t x x t

V x

x
x t( ) d *( , )

( )
( , ), (36)a

denotes the dipole acceleration. The time-dependent wave function is either given by the
solution of equation (5) in coordinate space or byΨ x t( , )HK . The acceleration form of the dipole
operator has been taken as it emphasizes regions near the core, and it is numerically much less
expensive than the dipole length for the HK method. However, we have verified that the length
form of the dipole operator leads to similar results (not shown). In this latter case, it was
necessary to employ a Hanning filter to remove the existing numerical background. The high-
frequency part of the spectrum from the dipole length is underestimated by a factor Ω4, in
comparison to that of the dipole acceleration. All these features are expected and consistent with
what is known about the different forms of the dipole operator (see [60, 61] for discussions of
these issues).

Figure 9. Transmission coefficients for different order approximations to the barrier in
the soft-core (left) and the inverted Gaussian potentials (right) for a static field of
amplitude  = 0.075 a.u. The insets show the behavior of such coefficients within the
range in which the energy of the respective ground state lie.
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In figure 10, we display a(t), together with its power spectrum, for an initial wave packet
(6) centered at =αq 0 and with vanishing momentum =αp 0, whose width is γ = 0.5 a.u. The
figure shows a qualitative agreement between the fully quantum and semiclassical acceleration
[panels (a) and (b), respectively], which roughly follow the field and exhibit a series of high-
frequency oscillations. These oscillations, together with spatial localization, are responsible for
the HHG plateau. They have been identified and discussed in previous publications employing
the TDSE [62] and the HK propagator [6, 7, 33], for an initial wave packet far from the core.
They have also been studied in a different context, namely the adiabatic approximation [63] and
Bohmian trajectories [58, 64]. The agreement between the outcome of the TDSE and the HK

Figure 10. Dipole acceleration over two field cycles, together with the HHG spectra
(left and right panels, respectively), computed using a laser field of frequency ω = 0.05
a.u. and amplitude  = 0.075 a.u., the soft-core potential (3) and an initial wave packet
(6) of width γ = 0.5, centered at =αq 0 and with vanishing momentum =αp 0. Panels
(a) and (b) were computed using the full TDSE computation, and the HK propagator,
respectively. The dashed lines show the energy position of the cutoff, which in this case
is located at ω+ =I U3.17 49p p .
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propagator is particularly good for times below half a cycle. However, phase differences arise
between T0.5 and T1.5 , with π ω=T 2 .

This agreement persists for the spectra, which exhibit a long plateau followed by a sharp
cutoff at +I U3.17p p and a reasonably similar substructure, such as the intensity modulations
near the cutoff (harmonic orders ⩽ ⩽N45 59) and in the below-threshold harmonic region
(harmonic orders ⩽N 19). Discrepancies, however, exist in the overall intensity of the plateau,
which is slightly higher for the semiclassical spectrum, and in this substructure. These
discrepancies are associated with the phase differences mentioned previously.

Physically, this dephasing is a consequence of the fact that the semiclassical IVRs do not
fully account for processes in which classically forbidden regions in phase space are crossed,
which affect the overall phase of the wave packet. Examples of such processes are tunneling
ionization and over-the-barrier reflections. We have indeed found that this dephasing decreases
if the energy of the initial wave packet is increased, for instance, by changing its width or initial
momentum αp . This, together with an overall decrease in the plateau height, is consistent with
the fact that, for ≠αp 0 or γ ≪ 1, there will be an enhancement in the over-the barrier pathways.
A similar dephasing has also been observed in the context of the transmission of a wave packet
through an Eckart barrier [38]. These issues may constitute a problem for long times [39]. We
have observed that our results are reasonably accurate for ⩽t T3.5 .

One should also note that the spectrum from the HK computation exhibits a second, much
less intense plateau. A similar plateau, extending to +I U8p p, has been identified in [65], in the
context of an improved SFA method, and has been attributed to ionization and recombination at
different points in space and/or ionization with initial nonvanishing velocities. Although we
cannot state with certainty whether the mechanism in [65] is behind the second plateau
observed in this work, our model does account for the spatial extension of the core and an initial
velocity spread. Other possibilities for this second plateau are the temporal degradation of the
HK computation and classical trajectories becoming trapped in orbits whose energies are lower
than that of the ground state (in fact until the energy λ−1 defined by the potential minimum).
We have ruled out the latter possibility, as the removal of such trajectories does not eliminate
the second plateau. Furthermore, we have found no obvious connection between the
degradation of the HK propagator and this plateau.

Finally, in figure 11, we display a distribution of trajectories employed in the HK
propagator as functions of the kinetic energy obtained from the field at the recombination time.
This kinetic energy is expected to be converted in harmonic radiation. In the figure, we have
assumed that the electron returns to the core when the condition ⩽x r| | 0, where r0 is the Bohr
radius, is met. This implies that recombination to the ground state has occurred. Because our
model incorporates an initial velocity spread, for each orbit we have subtracted the initial kinetic
energy from its value upon return to obtain the kinetic energy transfer from the field. A similar
procedure has been employed in [66] and in our previous publication [58] for more simplified,
classical trajectory models.

To discard the trajectories that remain in the bound phase-space region, we only
considered the kinetic energies starting from the times in which the trajectories reach the saddle,
i.e., at =x t x( )s s. The figure exhibits a clear cutoff around +I U3.17p p, in agreement with the
three-step model. We have verified that, if this initial assumption is relaxed and we consider all
trajectories starting at x (0)i according to the distribution in figure 2, there is a substantial
increase in the low-energy trajectories and a more uniform distribution of trajectories across the
plateau (not shown). This is expected according to the preceding discussion.
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6. Conclusions

The results presented in this paper strongly suggest that semiclassical IVRs, a concrete example
of which is the HK propagator, may be employed for describing strong-field wave-packet
dynamics, even if this wave packet is initially bound and located within the core region. We
have observed a reasonably good agreement with fully quantum mechanical methods, such as
the numerical solution of the TDSE, or the CCS representation, for static and time-dependent
fields, and different types of binding potentials. This agreement manifests itself in the time
evolution of Wigner quasiprobability distributions and in the computation of time-dependent
quantities such as the dipole acceleration.

A noteworthy feature is the presence of tails in the Wigner distributions, which leave the
core region following the separatrices very closely. Depending on the momenta associated with
this tail, it may be related to over-the-barrier or tunneling ionization. Similar tails have been
identified in the literature, using either a zero-range potential [50, 52] or the TDSE [54].
Therein, however, focus has been placed on how this tail behaves outside the core region, and
on its agreement with classical trajectories as defined by the strong-field recollision model [15].
In this work, we place more emphasis on the position-momentum correlation in the vicinity of
the core as evidence for different ionization mechanisms. For the soft-core, long-range potential
employed here, the momentum in this tail indicates substantial over-the-barrier ionization,
whereas for the Gaussian, short-range potential, tunnel ionization seems to be dominant. It
therefore appears that the Wigner function is crossing a classically forbidden region.

Thus, one may argue that, although the trajectories in the semiclassical method used in this
paper are classical and will never cross a separatrix, the initial position-momentum spread will
provide the wave function with access to classically forbidden regions. This probability density,
and hence the Wigner function, may exhibit nonlocal behavior around a separatrix. This specific
behavior has been shown in [55] for an inverted harmonic oscillator.

Figure 11. Histogram constructed with the trajectories that go beyond the saddle xs as
functions of the net kinetic energy Δ ω ω= −E E t E t[ ( ) ( )]k k k s gained by the electron
from the field in units of the field frequency ω, where Ek(t) and E t( )k s denote the kinetic
energy at the return time and at the time ts for which the electrons reach the saddle,
respectively. We consider the same field and atomic parameters as in the previous
figure. A total sample of ×5 105 trajectories has been used, and the return condition has
been chosen as ⩽x t| ( ) | 1 a.u. The dashed line in the figure indicates the cutoff energy.
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On the other hand, if the classical trajectories that start outside the bound phase-space
region are removed, the tail in the Wigner functions disappears. This implies that they are an
essential, and fully classical, ingredient for reproducing this tail in the context of a semiclassical
IVR. Furthermore, a semiclassical approximation would only be exact for a parabolic barrier,
whereas for the potentials employed here it will be only approximate. The presence of
anharmonicity in more realistic barriers, together with the existence of tunneling loop structures
in phase space for anharmonic potentials, was in fact employed in [39, 67] as a criticism to the
findings in [55]. These structures become dominant for long times. Nevertheless, any barrier in
the vicinity of its maximum may be approximated by an inverted harmonic oscillator.
Specifically, our approximate estimates for the transmission coefficient show that this is a
reasonable approximation for the parameter range employed in this work. Another noteworthy
aspect is that, in [39, 67], the potential barrier is flat, i.e., =→∞V xlim ( ) 0x a , whereas, for the
effective potential V x( )eff employed in this work, this condition does not hold. In such
references, it was repeatedly emphasized that this condition led to the tunneling contributions
becoming dominant for longer times.

One should bear in mind, however, that the trajectories do need to cross classically
forbidden regions for the phase of the wave function to build up correctly. If this does not occur,
there will be a degradation of this phase for longer times [39, 67]. Because the dipole
acceleration and the HHG spectra are strongly dependent on this phase, only a qualitative
agreement with the full quantum mechanical result may be reached if a standard semiclassical
IVR is employed. A quantitative agreement would require more sophisticated approaches,
possibly along the lines of [40, 68] or by adding higher-order correction terms to the HK
propagator as in [69, 70]. Still, the results in section 5 show that the HK propagator, may be
quite useful in modeling strong-field phenomena and understanding quantum-interference
effects in, for instance, few-cycle laser pulses, for which this critical regime has not been
reached.

Nevertheless, the HK propagator did reproduce low-energy regions in the HHG spectra to
a reasonable extent (e.g., the hump around the frequency Ω ω= 10 ), for which the application
of standard strong-field methods such as the SFA is questionable. Furthermore, a very good
agreement in the cutoff region has been obtained. This implies that, at the interpretational level,
semiclassical IVRs provide a tool for investigating quantum interference between different
types of trajectories returning to the core, in which the binding potential is incorporated. This
holds even if the electronic wave packet is initially bound. This is a noteworthy fact in view of
the wide range of applications for quantum interference in strong-field physics, especially in the
attosecond imaging of matter.
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Appendix. Relation between the CCS and the HK IVRs

For the readerʼs convenience, in this appendix we briefly focus on how the CS representation
and the HK propagator share a common origin. The details of the derivation of CCS working
equations and the HK formula can be found in [1]. Originally, the semiclassical phase-space
HK method has been derived differently [2]. Nonetheless, the current derivation shows that it
also can be obtained as an approximation of the exact quantum dynamics in phase space.

The HK method can be derived from equation (17) by employing the local quadratic
approximation, which only considers the first and second terms in the Taylor expansion of the
potential energy around a specific trajectory. This allows us to use classical trajectories instead
of those driven by the quantum averaged Hamiltonian H z z( *, )ord . Furthermore, the local
quadratic approximation assumes that only the CS that are very close to each other, and
therefore are driven by the same quadratic potential, are coupled. Under these assumptions, the
integrals in (17) may be calculated analytically.

The resulting wave function may be then represented as

∫Ψ Ψ
π

=t z M z
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( ) e (0)
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where Mzz denotes the HK prefactor in the z notation. In this notation Mzz is a single element
of the monodromy (or stability) matrix
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which describes how stable the dynamics around a specific trajectory are. The monodromy
matrix elements in this representation are related to those in the p q, representation by
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where the elementsMνμ are defined in section 2.2. The evolution of the monodromy matrix
is given by the matrix of second derivatives of the Hamiltonian

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛
⎝⎜

⎞
⎠⎟= ∂ ∂ ∂ ∂ ∂
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M M

M M
Md
d

* *

*
. (A.4)

*
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cl cl

cl cl

zz zz

z z z z

2 2
2

2 2 2

In this work, only a 1D case has been considered. However, a generalization to more than
one degree of freedom is straightforward, as a multidimensional CS is simply a product of 1-D
CSs. The CCS method can also be generalized for multielectronic states by introducing
Fermionic CS with proper permutational symmetry [35].
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