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Abstract 
 

This article provides a summary statement of recommended implementations of arterial 

spin labeling (ASL) for clinical applications.  It is a consensus of the ISMRM Perfusion 

Study Group and the European ‘ASL in Dementia’ consortium, both of whom met to 

reach this consensus in October 2012 in Amsterdam.  Although ASL continues to 

undergo rapid technical development, we believe that current ASL methods are robust 

and ready to provide useful clinical information, and that a consensus statement on 

recommended implementations will help the clinical community to adopt a standardized 

approach.  In this article we describe the major considerations and tradeoffs in 

implementing an ASL protocol, and provide specific recommendations for a standard 

approach.  Our conclusions are that, as an optimal default implementation we 

recommend: pseudo-continuous labeling, background suppression, a segmented 3D 

readout without vascular crushing gradients, and calculation and presentation of both 

label/control difference images and cerebral blood flow in absolute units using a 

simplified model. 
"  



 

Introduction 

 

Arterial Spin Labeled (ASL) perfusion MRI permits noninvasive quantification of blood 

flow, which is an important physiological parameter.  Disorders of perfusion such as 

stroke account for much of medical morbidity in industrialized nations, and blood flow 

alterations also commonly accompany other pathophysiological changes such as 

cancer, epilepsy, and neurodegenerative diseases.  Through a number of 

methodological advances, ASL MRI has evolved from initial single slice initial feasibility 

studies using lengthy acquisitions to the current state of the art whereby high quality 

whole-brain perfusion images can be obtained in a few minutes of scanning.  ASL MRI 

has been extensively validated against other methods that use exogenous contrast 

agents, such as 15O-PET (1,2), and ASL implementations are now commercially 

available on all major MRI platforms, with demonstrated reproducibility in multi-center 

studies (3,4).  Clinical applications of ASL perfusion MRI in the brain have recently been 

reviewed (5,6), and applications of ASL MRI outside the brain are now under rapid 

development. 
 

The goal of this document is to provide current recommendations for the implementation 

of ASL perfusion MRI for clinical applications. Since the inception of ASL more than 20 

years ago (7), the quality of ASL derived perfusion maps has reached a level that 

makes the method useful for many clinical and research applications (Figure 1). 

However, 20+ years of technical development has left potential users with a plethora of 

labeling schemes, read-out options, and models to quantify perfusion, or cerebral blood 

flow (CBF) in the brain, making it difficult for a clinician or new researcher to decide 

what method is most appropriate for each application. We believe that this 

overabundance of choices is an impediment to the acceptance of ASL by the clinical 

community, complicating the implementation of ASL in standard clinical care, 

comparisons between sites and the establishment of meaningful clinical trials. 

Furthermore, it is likely that this wide diversity of techniques has slowed implementation 

and adoption of ASL by MRI vendors, thereby limiting its availability. 



 

In 2011-2012, the Perfusion Study Group of the International Society for Magnetic 

Resonance in Medicine (ISMRM) and the European consortium ‘ASL in Dementia (AID)’ 

(funded through a grant from the EU COST agency as COST Action BM1103) both 

recognized that a clear set of recommendations was needed in order to encourage the 

adoption and improve the utility of ASL, and resolved to collaborate on a consensus 

statement of current recommendations (this document).  In October 2012, an ISMRM 

workshop on perfusion imaging, and an AID Action Workshop were held on consecutive 

days in Amsterdam, with a primary focus on open and inclusive discussion of current 

recommendations for implementation of ASL for clinical applications.  A draft of this 

document was further discussed at a Virtual Meeting of the ISMRM Perfusion Study 

Group in August 2013.  This document reports on the consensus that was reached 

during those meetings.  It is co-signed by participants, as well as additional members of 

the ISMRM Perfusion Study Group and the COST-sponsored AID Consortium, and is 

further endorsed by the American Society of Neuroradiology and the American Society 

of Functional Neuroradiology. 

 

While ASL MRI can be used to study any organ, this recommendation paper focuses 

exclusively on ASL in the brain, which to date is the most common and well-studied 

application. Recommendations will be discussed in seven sections covering the main 

aspects of ASL: 1) Hardware considerations; 2) ASL labeling approaches; 3) Time delay 

between labeling and imaging; 4) Background suppression; 5) Readout approaches; 6) 

Post-processing methods; and 7) ASL in the clinical setting. 
 

Arterial Spin Labeling is still a rapidly developing field, both in terms of technical 

innovation and applications.  This paper is not intended to suggest that there is only 

one or a few correct ways to do ASL, and should not have the effect of slowing 

innovation or development of the field.  Rather, it is intended to document the current 

recommendations for the optimal use of ASL in clinical applications, in order to 

encourage implementation of robust ASL methods and promote uniformity of data 

across scanner types, sites, and studies.  We expect that as ASL methods continue to 



develop, these recommendations should be updated, and recommend that this 

consensus statement be revised on a regular basis, perhaps every 3-5 years. 
 

A Brief Overview of ASL 

 

ASL (7,8) uses arterial blood water as an endogenous diffusible tracer by inverting the 

magnetization of the blood using radiofrequency (RF) pulses. After a delay to allow for 

labeled blood to flow into the brain tissue, ‘labeled’ images are acquired that contain 

signal from both labeled water and static tissue water (9).  Separate ‘control’ images are 

also acquired without prior labeling of arterial spins, and the signal difference between 

control and labeled images provides a measure of labeled blood from arteries delivered 

to the tissue by perfusion.  In the case of multiple averages, it is recommended to 

acquire control and label scans in an alternating fashion.  The lifetime of the tracer is 

governed by the longitudinal relaxation time of blood, which is in the range of 1300-1750 

ms at clinical field strengths (10,11). Many implementation choices of ASL are 

influenced by the fact that this lifetime is similar to the transport time from the labeling 

position to the tissue (known as the arterial transit time, ATT). The fundamental tradeoff 

is that a short delay does not allow for complete delivery of the labeled blood water to 

the tissue, while a long delay results in strong T1 decay and therefore reduced signal-to-

noise ratio SNR.  The ATT varies between individuals, regionally, and between healthy 

and pathological tissue (4,12). 

 

(1) Hardware considerations 

 

A field strength of 3T is recommended when available, though satisfactory results can 

be obtained at 1.5T.  The advantage of increased field strength is higher SNR, which 

results from a combination of higher intrinsic SNR and longer T1 (13). The lower SNR at 

1.5T can be compensated for by a combination of decreased spatial resolution and/or 

increased scan time.  The recommended parameters given below are valid for both 3T 

and 1.5T. 

 



The use of multi-channel receive head-coils with eight or more channels is advised for 

ASL. Multi-channel head coils not only increase the SNR of the MRI-images, but also 

enable the use of parallel imaging acceleration (14,15), which can be exploited to 

decrease the echo-time and the total readout duration (16). Without the use of multi-

channel head-coils, the user is advised to lower the spatial resolution to compensate for 

the lower SNR. 
 

Because ASL is a subtractive technique it is sensitive to motion, and segmented 3D 

acquisition methods (see Readout approaches below) incur additional motion 

sensitivity.  Therefore, patient motion should be minimized as much as possible.  Motion 

sensitivity can also be partially mitigated by the use of background suppression, which 

provides strong motivation for the use of that feature (see Background suppression 

below). 
 

(2) ASL labeling approaches  
 

ASL labeling approaches can be grouped into three types: continuous labeling (7,8,17), 

pulsed labeling (18-20) and velocity selective labeling (21). Velocity selective ASL is 

currently considered to be in stage of development and requiring additional validation 

for routine clinical care, and therefore only continuous and pulsed labeling are 

discussed here. 

 

Pulsed and continuous ASL labeling methods differ fundamentally in both the spatial 

extent and the duration of the labeling (see Figures 2 and 4), and these differences 

give rise to the strengths and weaknesses of each approach.  In the continuous ASL, 

labeling occurs over a long period of time, typically 1-3s, as blood flows through a single 

labeling plane and is inverted by an effective continuous RF energy.  This process is 

known as flow driven adiabatic inversion.  There are two distinct forms of continuous 

ASL, the first being the case where one single, long continuous ASL label is applied, 

continuous ASL (CASL,(8)), and the second where as many as 1000 or more shaped 

RF pulses are applied in rapid succession (i.e. every ms) to achieve pseudo-continuous 



ASL (PCASL,(17)).  CASL was originally implemented for human use as a single-slice 

technique (22), but was later extended to multi-slice imaging (23).  Both of these 

constitute long label scenarios, but PCASL provides superior labeling efficiency and is 

compatible with modern body coil RF transmission hardware that is now ubiquitous on 

clinical MRI scanners.  Accordingly, PCASL is the continuous ASL labeling scheme that 

is recommended for clinical imaging and thus referred to henceforth when discussing 

continuous ASL. In contrast, pulsed ASL (PASL) uses a single short pulse or a limited 

number of pulses, with a total duration of typically 10-20ms, to invert a thick slab of 

arterial water spins (20,24,25).  The SNR of the PCASL approach is higher than that of 

PASL for two reasons.  First, the temporal duration of the labeled bolus is longer in 

PCASL and this is proportional to the volume of labeled blood that is delivered to the 

tissue, translating to an increase in SNR. Note that labeling durations can be as long as 

3s, depending on the application.  In PASL, the bolus is derived from a labeling slab that 

is 10-20cm thick, which is limited by the spatial coverage of the transmit RF coil.  The 

arteries supplying blood to the brain have mean velocities of approximately 20cm/s, so 

the temporal duration of the generated PASL bolus is typically 1s or less.  This smaller 

bolus translates to a shorter labeling duration and consequently lower SNR in PASL 

compared to CASL.  Second, even for a bolus of equal temporal duration, and 

correction for lower labeling efficiency, the labeled magnetization delivered using 

PCASL is higher than that of PASL.  For both methods, a spatial gap exists between the 

labeling and imaging regions.  The labeling plane for CASL is typically in approximately 

the same location as the distal end of the labeling slab in PASL (see Figure 2).  For 

PASL, a single pulse simultaneously inverts the entire labeled bolus, and this bolus 

decays with time constant T1 for the entire time between the inversion pulse and image 

acquisition.  For CASL, blood is inverted as it passes through the labeling plane, and 

therefore the bolus is, on average, inverted later in time than in PASL, leading to less T1 

decay, and a larger ASL signal (19). 

 

Ease of use and adequate SNR are two critical considerations in the implementation of 

robust clinical perfusion imaging using ASL. We therefore recommend PCASL as the 

workhorse labeling approach with ASL images collected at a single post labeling delay 



(PLD). As clinicians gain and share experience it will be possible to adjust the ASL 

acquisition to account for issues that arise in cerebrovascular and/or neurological 

studies, such as prolonged or heterogeneous blood transit times. In these cases, 

multiple post label delay (PLD) values can be used in either PCASL or PASL 

approaches, since the hemodynamic information made available by quantifying ATT 

delays can improve quantification of CBF, or serve as useful hemodynamic measures in 

and of themselves (12,26) 

 

Implementation details of both CASL and PASL labeling methods are described below. 
 

CASL/PCASL approaches 

In CASL, a constant gradient is applied over the labeling period, and a constant RF 

pulse, tuned to resonate at the labeling plane, produces the flow driven inversion as 

described above.  In the currently preferred implementation of CASL, known as pseudo-

continuous ASL (PCASL) (17), the continuous RF is replaced by a long train of slice 

selective RF pulses applied at the labeling plane, along with a train of gradient pulses 

that have a small but non-zero mean value.  The mean value of both RF and gradient 

pulses over time are similar to those used in CASL, and the mechanism of inversion is 

the same.  PCASL is preferred over CASL for two reasons: 1) CASL produces 

significant saturation of brain tissue through magnetization transfer (MT) effects, leading 

to subtraction errors between label and control states.  In addition, pulse sequence 

modifications that have been introduced to reduce these errors lead to decreased 

labeling efficiency. In PCASL, larger gradients are present during RF pulses, increasing 

the resonant offset of the pulses relative to brain tissue, and thereby decreasing MT 

effects and increasing labeling efficiency.  2) CASL requires continuous application of 

RF power, which most current RF amplifiers cannot provide without modification, while 

PCASL is compatible with existing RF amplifiers.   
 

Several variants of PCASL have been proposed, and while some variants can correct 

for potential artifacts, and others provide more information such as vascular territories, 

we currently recommend the use of the basic implementation described here for 



robustness, simplicity, and because there is sufficient experience in clinical use to 

support this recommendation. 
 

The RF pulse spacing should be as short as possible.  This directly affects the 

sensitivity of the labeling process to resonance offsets at the labeling plane, as well as 

labeling efficiency (27-29). A spacing of 1ms from the center of one pulse to the center 

of the next is a good goal, but additional insensitivity to frequency offsets is gained with 

further reduction of the pulse spacing.  For the labeling pulse, the slice selective 

gradients should be approximately 10mT/m with a mean gradient of approximately 1 

mT/m, and the RF pulses should have a mean B1 of approximately 1.5!T (17,27).  The 

slice profile of the RF pulses should be sufficiently narrow to avoid labeling at the 

aliased labeling planes generated by the periodic pulses (see (17)).  In order for the 

pulses to remain in phase with the spins the phase ϕ! of the nth RF pulse should be 

ϕ! = γnGTZ , where γ is the gyromagnetic ratio, G!is the mean gradient, T is the RF 

pulse spacing, and Z is the distance from the isocenter of the gradients to the labeling 

plane (17).  For the control condition, the phase of every other RF pulse should be 

shifted by π relative to the label condition, and the refocusing gradient lobes increased 

in amplitude such that the mean gradient is zero.  In the literature, this gradient 

condition is referred to as an ‘unbalanced’ control because the gradients in the label and 

control conditions are different (‘unbalanced’).  A ‘balanced’ control is used in some 

implementations to facilitate vascular territory imaging, but has greater sensitivity to off-

resonance effects, and is not preferred for basic PCASL (27). 

 

The optimal label duration is determined by the relaxation time of the label (T1), and 

also by the effect of the label duration on the repetition time TR.  The ASL signal 

increases with label duration, but with diminishing returns for label durations much 

longer than the T1 of blood.   Longer durations increase TR, and thereby decrease the 

number of averages obtained per unit time.  Durations as long as 4s may increase SNR 

and help preserve signal when ATT is unexpectedly long. However, long labeling 

durations increase signal dependence on tissue T1 and may be unattainable due to 

power deposition and background suppression constraints. Because clinical experience 



with longer labeling times is less extensive, we recommend 1800ms labeling duration in 

Table 1 as a current compromise between SNR increase and disadvantages of greater 

power deposition, T1 sensitivity, and limited clinical experience. (9,30). 

 

Several methods have been used to choose the location of the labeling plane.  In the 

ideal case, the labeling plane should be located in a region where the relevant feeding 

arteries are relatively straight and perpendicular to the labeling plane.  This can be 

accomplished using an angiogram if one is available, and a fast angiogram that is 

sufficient for this purpose can be obtained in under one minute. However, the use of an 

angiogram for this purpose can add overall scan time, and provides more opportunities 

for operator related variability.  A viable alternative is to use anatomical landmarks for 

selection of the labeling plane, and at least two approaches have been used 

successfully.  One is choosing a plane that is 85mm inferior to the AC-PC line (31).  

This method is appropriate for adults, but is likely sub-optimal for children.  A second 

choice is to place the labeling plane just below the inferior border of the cerebellum to 

ensure labeling of the posterior cerebral circulation (32).  It would be helpful if future 

ASL implementations allowed the user to easily control of the location of the labeling 

plane for PCASL, perhaps through the graphical prescription interface of the scanner.  

There is not yet strong evidence that one of these methods is clearly superior to the 

other, and choosing an approach that integrates well with the local workflow is 

reasonable.  Likewise, the choice of angiogram based vs anatomical selection of the 

labeling plane should depend on the time constraints of the application, and the 

consistency and expertise of the scanner operators. 
 

When the RF-pulses are not on-resonance at the labeling plane, inefficient labeling can 

result.  It is therefore useful to avoid labeling in regions of strong susceptibility artifacts, 

such as air - bone interfaces.  However, such failures are rare and are considered 

relatively easy to recognize with some experience, as they typically affect a single 

vascular territory, and result in uniformly low signal throughout the territory, with no 

apparent compensatory redistribution of flow (see Figure 3).  More subtle reductions in 

labeling efficiency may also occur due to alterations in B0 or B1 at the labeling location.   



There are currently several methods under investigation to characterize, prevent, or 

correct this artifact, including methods to shim or measure the fields at the labeling 

plane and correct for field offsets in the labeling process (28,29,33,34).  However, these 

methods add complexity to the scanning process, and have not yet been streamlined 

and tested for robustness in the clinical setting, and are therefore not recommended for 

general use at this time. Because gross labeling artifacts are relatively rare, and can be 

recognized with experience, this potential problem is outweighed by the benefits of 

PCASL described above, and PCASL remains our clear recommendation as a first 

choice ASL labeling method.  
 

 

Pulsed ASL approaches 

In PASL, an RF pulse inverts a slab of tissue, including arteries, proximal to the area of 

interest.  Many PASL labeling methods, and associated acronyms, have been 

introduced to produce this inversion, but overall, the methods are more similar than 

different.  In publications we recommend identifying the ASL method first as PASL, and 

secondarily with the variant name in order to reduce confusion about the apparent wide 

variety of ASL methods.  One difference that can be observed between PASL methods 

is in the labeling of spins that flow into the region of interest from the distal side.  When 

whole-brain coverage is specified, then the region distal to the imaging region is outside 

the head, and this distinction becomes irrelevant.  For smaller imaging slabs, vessels 

entering from above the slab (mostly veins) may produce ASL signals.   For FAIR (20) 

and variants, inflow from above will produce a positive ASL signal.  For EPISTAR (13), 

inflow from above will produce a negative signal, and for PICORE (25), PULSAR (35) 

and DIPLOMA (36), inflow from above produces no ASL signal.  These labeling 

methods are all acceptable, but the user should be aware of the potential differences in 

the signal from inflowing distal spins.  For efficient inversion, RF pulses should be 

insensitive to B1 inhomogeneities, and the use of adiabatic inversion pulses (37,38) is 

therefore advocated. The total RF-power during the label and control conditions should 

be equal to minimize MT effects (39), a condition which is met by most implementations 

of PASL, including those referenced above.  In addition, the slice profile of the slab 



selective inversion pulse should be optimized to avoid overlap with the imaging volume 

(37,38 ).  Saturation of the imaging volume just before and/or after the label and control 

pulses is recommended to minimize any residual label/control differences from MT 

and/or slice profile effects, and also as an initial step in the background suppression 

process described below.  The labeling inversion pulse should have been tested in a 

phantom, showing an inversion efficiency greater than 95%. 
 

As mentioned above, a drawback of PASL is that it creates a bolus of labeled spins with 

an unknown and relatively short temporal width.  It is possible to control the width of the 

labeling bolus by means of the QUIPSS-II modification (40), in which a slab selective 

saturation pulse that matches the labeling slab is used to remove the tail end of the 

labeled bolus.  This adaptation is necessary for quantification of CBF using PASL with a 

single delay time.  However, for single delay time measurements PCASL is, in general, 

the preferred labeling method, as both SNR and repeatability are higher (41). 
 

The labeling slab should have a thickness between 15 and 20 cm, with a gap to the 

imaging volume that is minimized subject to the constraint that the labeling pulse does 

not significantly perturb the magnetization in the imaging volume (typically a gap of 1-

2cm).  For the purpose of generating a labeled bolus (and therefore an ASL signal) of 

maximum size, the thickness of the labeling slab should be as large as possible.  

However, three factors limit the optimal size of the labeling slab.  First, for all PASL 

labeling methods other than FAIR, the width of the transition zone between inverted and 

uninverted blood at the edge of the labeled bolus is proportional to the thickness of the 

labeling slab (for FAIR it is proportional to the thickness of the imaging slab).  For large 

slab thickness, the transition zone becomes larger, requiring a larger gap between 

labeling and imaging slabs, which in turn increases arterial transit times and longer 

transit delays.  Second, the RF transmit coil is limited in size, and the transmit B1 falls 

off with distance from isocenter.  For optimal quantitation of CBF, the labeled bolus 

should consist of completely inverted blood, and so the labeling slab should be limited 

to the region of relative homogeneity of the transmit RF fields.  Finally, if the labeling 

bolus is beyond the homogeneous region of the transmit RF coil, not only will the tail 



end of the labeled bolus be incompletely inverted, but this partially inverted blood will 

take a long time to clear from the labeling slab, requiring a longer TR before the next 

labeling pulse and thus lowering time efficiency.  Empirically, 15-20cm has been found 

to be a good compromise between these factors. 

 

One potential advantage of PASL over PCASL is lower RF power deposition, and this 

should be considered when the Specific Absorption Rate (SAR) is limiting.  Up to 3T, 

SAR in PCASL has not been found to be a limiting factor across the range of patient 

sizes from infants (42) to adults (17). 
 

(3) Time delay between labeling and imaging 

 

As noted in the introduction, ASL methods employ a time delay between the application 

of the labeling pulse and image acquisition in order to allow for the labeled bolus to flow 

into the target tissue in the imaging region (see Figure 4).  This time delay is used to 

allow labeled arterial water to reach the microcirculation and reduce the contribution of 

arterial signals to the perfusion image, which would otherwise appear as spots of 

apparent hyperperfusion.  The delay also reduces the sensitivity of perfusion 

quantification to variations in transit time (9).  The terminology that has developed to 

describe this delay is different for PCASL and PASL, which can be confusing, and is 

defined here.  For PCASL, two time points define the timing of the labeling pulse train, 

the beginning, and the end, which are separated by the labeling duration of 1500-

2000ms (see above).  The time between the end of this pulse train and image 

acquisition is referred to as the post labeling delay (PLD). For PASL, the timing of the 

labeling pulse is characterized by a single time point, since the labeling pulse is nearly 

instantaneous (tens of ms).  The time from the application of this pulse to image 

acquisition is referred to as the inversion time (TI). Since PLD refers to the time at which 

the end of the labeled bolus leaves the labeling plane in PCASL, the analogous time in 

PASL is the time at which the end of the labeled bolus passes through the distal end of 

the labeling slab.  In PASL this time is generally unknown, as the temporal width of the 

labeled bolus in PASL is not controlled.  With the QUIPSS II modification mentioned 



earlier, the bolus width is controlled, and is referred to as TI1.  The PLD in PCASL is 

analogous to the quantity (TI-TI1), as indicated in Figure 4. 
 

 

Single PLD/TI methods 

For CBF quantification using PCASL, the ideal case is that the PLD is set just longer 

than the longest value of ATT present in the subject.  Under these conditions, the entire 

labeled bolus is delivered to the tissue prior to image acquisition, and the CBF 

measurement will be unbiased by incomplete delivery.  However, because the ASL 

signal decays with time constant T1 after labeling, it is too costly in terms of SNR to be 

extremely conservative in the choice of PLD such that PLD is guaranteed to be strictly 

longer than ATT under all circumstances.  In healthy gray matter, ATT can vary 

between 500-1500ms depending on the labeling location and the tissue location in the 

brain, but in cerebrovascular disease and in deep white matter, ATT can be 2000ms or 

longer.  The choice of PLD is therefore a compromise, such that SNR is acceptable, 

and that in the large majority of cases the ASL signal will accurately reflect CBF.  

However, it should be understood that areas of low ASL signal may reflect some 

combination of low CBF and unusually long ATT, and not specifically low CBF.  In many 

cases long ATT can be identified by the presence of intraluminal signal in the same 

vascular distribution due to spin label remaining in arteries.  The range of expected ATT 

depends on age, and the PLD should be adjusted accordingly.  Recommended values 

for PLD are given in Table 1, with a PLD of 2000ms recommended for the clinical adult 

population, independent of age, given the potential for a wide variety of pathologies, 

which are often not known in advance of imaging. 
 

Using PCASL with a single value of PLD, as described above, is a robust and 

straightforward means of obtaining reliable CBF images, and is therefore recommended 

as a standard clinical protocol.  PASL with the QUIPSS II modification is analogous to 

PCASL in that it has a well defined labeled bolus duration, and allows for quantification 

of CBF using a single value of TI (40).  However, this approach is only recommended 

when PCASL is unavailable, as the SNR of PASL is significantly lower.  For PASL with 



QUIPSS II, TI1 should be set to 800ms, and the TI set as shown in Table 1. Note that 

the recommended values of PLD for PCASL are the same as the TI for PASL.  This 

effectively results in a PLD for PASL that is 800ms shorter than for PCASL.  While this 

non-ideal, in that it increases the likelihood of incomplete delivery of labeled blood to the 

imaging region in PASL, it also increases SNR, and it was felt to be a necessary 

tradeoff to compensate for the lower SNR inherent to PASL.  Alternative approaches to 

recovering SNR, such as decreased spatial resolution, are also potentially effective, but 

have not been thoroughly tested in clinical practice. 
 

 

Multiple PLD/TI methods 

The methods described above for single PLD/TI ASL imaging provide rapid and robust 

measures of CBF that are relatively insensitive to ATT.  However, they do not provide 

measures of ATT, nor do they provide direct evidence that an abnormally long ATT may 

be introducing errors into the CBF measurement.  Such effects might be particularly 

important in patients with steno-occlusive diseases. These effects have long been 

studied using PASL with multiple values of TI, and fitting the data to estimate both CBF 

and ATT (43-46) but can also be studied with CASL or PCASL by varying PLD and 

labeling duration (30,32,47) or with more complex but efficient Hadamard time encoding 

strategies (48-50).   While these multi-TI/PLD methods provide additional information, 

they are more complex, require more measurements and processing, and are therefore 

not recommended as a default ASL method at the present time.  However, for those 

interested in the estimation of ATT or the most precise quantitation of CBF, we 

encourage the use of multi-TI/PLD methods.  The ATT values estimated using this 

approach may themselves be of diagnostic utility, and the collection of ATT data on 

clinical populations will allow for more reliable optimization of PLD for single PLD 

imaging in the future, or may point to populations in which multi-TI/PLD imaging is 

especially useful. 
 

(4) Background suppression 

 



In gray matter, perfusion replaces approximately 1% of the brain water with inflowing 

blood water every second.  Therefore, a 2s bolus of labeled blood in an ASL 

measurement can only perturb about 2% of the magnetization in a typical brain voxel.  

Considering the PLD and T1 relaxation, the difference between label and control images 

is typically less than one percent of the relaxed brain signal. Unfortunately, subject 

motion, which is typically the dominant noise source in ASL, produces signal 

fluctuations (noise and/or artifacts) that are proportional to the signal intensity in the un-

subtracted images.  Therefore, if it is possible to decrease the signal intensity of the un-

subtracted images without a proportional decrease in the ASL difference signal, the 

overall SNR of the ASL measurement can be improved substantially (51,52).  Such a 

decrease of the signal intensity un-modulated by labeling can be accomplished using a 

combination of spatially selective saturation and inversion pulses. This technique is 

usually referred to as background suppression (BS).  ASL MRI scans incorporating 

background suppression have markedly improved temporal signal-to-noise, which is of 

particular value in clinical ASL where scan times must be as short as possible and 

inferences are being made on perfusion data from a single scan (53,54). 
 

Details about the implementation and optimization of BS for ASL can be found in 

(17,55,56), but briefly: an initial saturation pulse selective to the imaging region, 

followed by carefully timed inversion pulses, results in the longitudinal magnetization of 

static tissue passing near or through zero at the time of image acquisition.  The blood 

that is to be labeled by the labeling pulses does not experience the initial saturation, but 

does experience the inversion pulses.  For perfect inversion pulses, each inversion 

changes the sign of the ASL label/control magnetization difference, but nominally does 

not affect the magnitude of this difference.  Thus, the ASL signal is preserved, while the 

static tissue signal is nearly eliminated. 
 

Two important features of BS should be emphasized.  First, there is a tradeoff in the 

number of inversion pulses used for BS.  The larger the number of inversion pulses, the 

more accurately static tissue can be suppressed over a wide range of tissue T1 values.  

The tradeoff is that each inversion pulse reduces the ASL label/control difference signal.  



The efficiency of the inversion pulses is high but not perfect, and is typically 

approximately 95%, so each inversion pulse reduces the ASL signal by approximately 

5%.  In each implementation, this tradeoff should be evaluated, and the efficiency of the 

inversion pulse measured in-vivo or appropriate phantoms (56), so that this source of 

signal loss can be accounted for in the calculation of CBF.  Generally, two pulses can 

be considered a good trade-off.  We do not, however, recommend efficiency 

measurement on each subject as the added time required does not seem justified by 

any observations of large inter-subject differences. A second key feature is that BS only 

nulls the magnetization of static tissue at one point in time, after which the 

magnetization of static tissue continues to grow towards the equilibrium state by 

relaxation.  For imaging methods that employ a single excitation per TR, such as the 

segmented 3D approaches describe below, BS can be highly effective, as the null point 

of the magnetization can be timed to coincide with the excitation pulse.  For methods 

that require multiple excitations per TR, such as multislice single shot 2D methods, BS 

can be optimal for one slice, but is progressively less efficient for other slices.  This 

difference in BS efficiency can interact strongly with the choice of imaging methods for 

ASL, as discussed below. 
 

(5) Readout approaches 

 

For the readout module of ASL, segmented 3D-sequences are the preferred 

methodology because they use a single excitation per TR, which is optimal for BS, and 

because they can be made SNR efficient and relatively insensitive to off-resonance 

effects.  It is anticipated that single-shot 3D readout may be the preferred option in the 

future, but these methods are not yet sufficiently well tested to recommend for general 

use at this time. Multi-slice single shot 2D echo-planar imaging (EPI) or spiral readout 

should be considered a viable alternative to segmented 3D sequences, because they 

are available on all systems and are insensitive to image artifacts from motion.  

However, 2D imaging results in poor BS for most slices, and longer scan time.  

Examples of ASL with 2D and 3D readouts are shown in Figure 5, and more detailed 

comparisons between these methods in ASL can be found in (57,58). 



 

 

Segmented 3D readout 

As a default readout, 3D segmented methods such as 3D multi-echo (RARE) stack-of-

spirals (52,57) or 3D GRASE (59-61) are recommended.  These methods provide 

nearly optimal SNR for measurement of the magnetization prepared by the ASL labeling 

pulses, and they are relatively insensitive to field inhomogeneity.  They strike a balance 

between the T2* insensitivity of pure RARE methods, and the time efficiency of pure 

EPI or spiral acquisitions, enjoying most of the benefits of both. Compared to 2D 

multislice readouts, these methods allow for significantly better BS.  BS is only optimal 

at one point in time, and because segmented 3D readouts only require one excitation 

per TR period, the excitation can be timed to provide a very high degree of BS.  BS 

parameters should be optimized for minimal static tissue signal, and a complex 

difference between label and control images should be calculated to form the ASL 

signal, as a difference between magnitude reconstructed images that are near zero will 

generate sign ambiguities.  Note that the use of BS for segmented 3D acquisitions is 

critical for ASL as shown in Figure 6.  Segmented methods require data consistency 

between excitations, and without BS, the motion related artifacts will generally dominate 

the ASL signal, as in the lower right panel of the Figure.  For 3D readouts, the time 

within each TR that is allocated to image acquisition is generally shorter than that of 

multiple 2D slices (unless the number of slices is very small), allowing for more efficient 

use of time (ie shorter TR, or longer labeling time per TR).  3D RARE stack-of-spirals 

and 3D GRASE perform similarly (57), and we recommend whichever of these two is 

better optimized on a particular system.  We note that the stack-of-spiral acquisition 

provides natural over-sampling at the center of k-space, which can improve motion 

insensitivity, but also has the potential for in-plane blurring due to resonance offsets.  In 

contrast, GRASE typically does not oversample k-space, and resonance offsets in 3D 

GRASE result in in-plane distortion rather than blurring.  For this multi-shot acquisition, 

label and control conditions for a given shot should be acquired sequentially in time 

(that is, the label/control modulation should be the inner-most loop) to achieve the most 

accurate label/control subtraction.  The user should also be aware that T2 related signal 



modulation across echoes can result in through-plane blurring. If the image 

reconstruction software is vendor-supplied, we recommend inquiring as to what 

methods are used to correct for image blurring and/or distortion, so that the images can 

be interpreted accordingly.  The methods and parameters used for these corrections 

should be described in manuscripts that report ASL data, as they can have a significant 

impact on the comparison of data between sites.  See Table 2 for recommended 

imaging parameters. 

 

Single-shot 2D readout 

As a second choice, 2D single shot imaging methods can effectively be used for ASL.  

EPI and spiral methods have been used extensively, while single shot RARE and 

balanced SSFP are also viable, but are less common and much less thoroughly tested 

for ASL.  EPI and spiral have similar performance to one another for ASL, again with 

small differences.  Spirals allow for shorter TE to reduce T2/T2* weighting, but suffer 

from off-resonance related blurring.  EPI has longer minimum TE, but demonstrates 

distortion rather than blurring in the presence of resonance offsets.  As for 3D imaging, 

we recommend whichever of these two is better optimized on a particular system.  

Generally, an ascending slice order is recommended for single shot 2D readouts.  One 

advantage of single shot imaging methods is that they are immune to motion artifacts 

from the inconsistency between excitations that can affect multi-shot methods.  

However, this sensitivity in 3D segmented imaging is minimized by the use of efficient 

BS, as shown in Figure 6.  For 2D imaging, BS will only be optimal for one or a few 

slices.  While this is generally a drawback, the residual static tissue signal can be useful 

in two ways.  First, magnitude image reconstruction can be used, which can be simpler 

than complex reconstruction and coil combination, and second, the residual signal can 

be used for image registration prior to label-control subtraction.   While the effects of BS 

in 2D single shot imaging is much less dramatic than in 3D imaging (see Figure 6), 

significant decreases in signal fluctuations are seen, especially with significant patient 

motion, and the use of BS is recommended.  See Table 2 for further recommended 

imaging parameters.   

 



Parallel acceleration 

Parallel imaging can be used to reduce imaging time by undersampling k-space and 

using the spatial information from multi-channel coils to reconstruct undersampled data.  

This acceleration can come at a cost in SNR, and as ASL is significantly SNR limited, 

parallel acceleration should be used judiciously.    We recommend the use of moderate 

acceleration factors of 2-3 for the following purposes: to reduce the echo train length for 

RARE based methods such as 3D RARE stack-of-spirals or 3D GRASE, when the echo 

train would otherwise be significantly longer than T2; or to reduce the echo time for 2D 

gradient echo EPI (this is not necessary for 2D spiral). 
 

Vascular crushing gradients 

By means of the insertion of vascular crushing gradients directly after the excitation 

pulse or a motion sensitized T2-preparation module, vascular artifacts can be reduced 

by dephasing signal from label still present in larger arteries at the time of imaging. 

Elimination of this signal is based on the velocity of the spins in the direction of the 

gradients (frequently only the feet-head direction). Because of the additional gradients 

or the use of a T2-preparation module, the effective echo-time will be prolonged when 

using vascular crushing, thereby introducing T2 (or T2*) contrast into the ASL-image 

and a reduction in SNR.  This should be taken into account in the calculation of CBF 

(62). 

 

As a default implementation, we discourage the use of vascular crushing gradients, 

given that they may remove important clinical information, such as the presence of 

delayed flow and arteriovenous shunting.   For single PLD imaging, the PLD is chosen 

so that it will be longer than ATT for the majority of cases.  When this condition is true, 

the labeled bolus will be delivered to target tissues prior to imaging, and little if any 

labeled blood will be in larger arteries at the time of imaging.  In this case the effects of 

vascular crushing gradients on the ASL image will be minimal.  However, when regions 

exist with ATT>PLD, bright vascular signals will appear in the ASL image, and these 

signals would be removed using vascular crushing gradients.  For some applications, 

such as in the setting of collateral flow (63), the presence of bright vascular signal may 



be a useful indicator that regions with long ATT are present and that quantitative CBF 

values distal to these regions may be in error; this information may of itself be of 

diagnostic value.  In arteriovenous malformations, the identification of ASL signals in 

veins may also be clinically useful (64,65) (see Figure 7).  

 

We encourage the implementation of vascular crushing gradients as a user controlled 

option, as they will likely be useful under some circumstances but not others.  For 

applications such as in tumors, bright intravascular signals may obscure more subtle 

underlying perfusion related signals of interest, and vascular crushing gradients may be 

desirable.  When time is available, two ASL scans with and without vascular crushing 

gradients may provide the most useful information.  These choices are related to the 

manner in which ASL will ultimately be used in the clinical setting, which is not yet well 

established.  We encourage users to become familiar with the effects outlined above, 

and to experiment with this option. 
 

For multi-PLD/TI imaging, ATT can be estimated in addition to CBF, as discussed 

above.  Without vascular crushing gradients, the measured ATT will indicate the time at 

which the labeled bolus arrives in the voxel, while with vascular crushing gradients the 

measures ATT will reflect the arrival time in the microvasculature.  These different ATTs 

may be of interest in different applications.  Without vascular crushing gradients, care 

should be taken to include inflow effects in the model, otherwise the calculated CBF 

may not be correct. 
 

An additional note on the use of vascular crushing gradients is that when perfusion 

imaging is performed as part of a group analysis, vascular artifacts can complicate the 

analysis due to the presence of hyperintense spots at irregular locations (corresponding 

to large arteries) and the use of vascular crushing gradients could be considered in this 

setting. 
 

Vascular crushing is characterized by the VENC, or the velocity at which flow induces a 

phase shift of 180°.  Roughly speaking, spins are dephased above VENC, and remain 



visible below VENC.  Very high VENC allows large arterial signal to remain, while very 

low VENC results in prolonged ATT and low SNR.  When used, we recommend 

vascular crushing in the feet-head direction with a VENC of 4 cm/s as a good tradeoff. 

 

(6) Post processing methods  

In routine clinical practice, visualization of the ASL difference image (label - control) 

images is most useful, as most disorders of perfusion result in easily visualizable focal 

changes.  However, we recommend that additional CBF imaging in quantitative units 

also be provided, given that some disorders do cause global changes (such as 

hypercapnia or hypoxic ischemic injury). 
 

Quantification of CBF 

One of the most attractive features of ASL is its ability to quantify perfusion, an 

important indicator of tissue health as well as neuronal activity.  For quantification of 

CBF from single PLD/TI ASL data a relatively basic model is proposed. The major 

assumptions of this model are: 

1. The entire labeled bolus is delivered to the target tissue.  This is the case when 

PLD>ATT for PCASL, or (TI-TI1)>ATT for QUIPSS II PASL. 

2. There is no outflow of labeled blood water.  Because the tissue water pool is 

much larger than the blood water pool, and water exchange between blood and 

tissue is rapid, this is generally a valid assumption (66). 

3. The relaxation of the labeled spins are governed by blood T1.  While this 

assumption is not likely to be strictly true, the errors introduced by this 

assumption, which are related to the difference in T1 between blood and tissue, 

are typically relatively small. 

Under these assumptions CBF in each voxel can be calculated for PCASL using (43): 

CBF = !"""⋅!⋅(!"!"#$%"&!!"!"#$!)⋅!
!"#

!!,!"##$
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! !
!!,!"##$)
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and for QUIPSS II PASL using (40): 
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where λ is the brain/blood partition coefficient in ml/g, SIcontrol  and SIlabel  are the time-

averaged signal intensities in the control and label images respectively, T1, blood is the 

longitudinal relaxation time of blood in seconds, α is the labeling efficiency, SIPD is the 

signal intensity of a proton density weighted image, and τ is the label duration.  PLD, TI 

and TI1 are as defined above.  The factor of 6000 converts the units from ml/g/s to 

ml/(100g)/min, which is customary in the physiological literature.  Note that for 2D multi-

slice imaging, the value of TI in these expressions should be adjusted for each slice to 

take into account the time delay between slice acquisitions.  See Table 3 for a summary 

of parameters for use in CBF quantification.  Single TI PASL without the QUIPSS II 

modification cannot be reliably converted into CBF. 
 

To scale the signal intensities of the subtracted ASL-images to absolute CBF units, the 

signal intensity of fully relaxed blood spins is needed.  Although several approaches can 

yield estimates of this value, we recommend using a separately acquired proton density 

(PD) image (represented by SIPD in the above equations) to obtain this scaling factor on 

a voxel-by-voxel basis. The factor λ scales the signal intensity of tissue to that of blood.  

In principle, λ should be an image because tissue water density differs in different tissue 

types, but often a brain average value is used. Strategies to measure λ (67) or to 

quantify CBF without using λ (68,69) have been proposed but are not in widespread use. 

Quantification errors associated with the constant λ assumption are expected to be less 

than 10%. Here we recommend the use of a brain averaged λ, at least until greater 

optimization and clinical evaluation of alternative strategies has been performed.  The 

use of a PD image for this scaling serves two additional important functions.  By dividing 

by this image, signal variations caused by RF coil inhomogeneity, as well as differences 

in transverse relaxation are largely corrected as well. The PD image should have an 

identical readout module as the ASL label and control images, with a long TR to provide 

proton density weighting. If TR is less than 5s, the PD image should be multiplied by the 

factor 1/ 1− e!!"/!!,!"##$% , where T1,tissue is the assumed T1 of gray matter, in order to 

compensate for T1 relaxation.  Using a reduced TR and T1 correction may potentially 

reduce errors associated with a brain-averaged λ (34,70).  No labeling or BS should be 



applied for this scan. Care should be taken that the absolute scaling between the signal 

intensities in this acquisition and the ASL scans is known. Note that since this PD image 

goes in the denominator of the equation, it is important that its SNR is high and that it is 

well co-registered with the images in the numerator, otherwise its noise contribution can 

be greatly amplified.  A good way of insuring this is to apply a motion correction scheme 

and a smoothing filter (typically a Gaussian filter of 5-8 mm diameter) to the PD image.  
 

This model is simplified, but is recommended for its robustness and simplicity, and 

because more complete models require additional information that involves more scan 

time, and often only reduces systematic errors at the cost of SNR.  Types of additional 

information include ATT, water exchange rates and times between blood and tissue, 

tissue T1 values, and tissue segmentation.  Ongoing active research aims to more fully 

understand the range and effects of these parameters, but the complexity, uncertainty, 

and additional noise associated with correcting for these factors was deemed to be 

counterproductive as a default protocol at this stage of adoption of clinical ASL. 
 

Estimation of parameters from multi-PLD/TI ASL data is also an area of active research 

and depends in detail on the acquisition parameters and the model used (71). It is 

beyond the scope of this article, but we encourage the user to become familiar with this 

area of work, as it may be useful in the interpretation of clinical ASL images. 
 

(7) ASL in the clinical setting 

 

Scan time 

Because the ASL signal is small, ASL relies on averaging to achieve sufficient SNR.  

Increasing the number of averages increases SNR, mitigates the effects of motion 

artifacts, and also provides more opportunities for data filtering.  When using the default 

parameters described here, a total scan time of approximately 4 minutes results in good 

image quality in cooperative subjects. For fast imaging in an acute setting scan times as 

low as 2 minutes may provide interpretable data, and in these cases we recommend 

that spatial resolution should be lowered to compensate for the SNR loss. 
 



Visualization 

One of the key strengths of ASL is that it can produce absolute measures of CBF.  We 

recommend viewing the resulting CBF images in either grayscale or color, with a 

quantitative scale bar next to the images to indicate CBF values (see Figure 8).  The 

use of color can improve the ability to read quantitative CBF values from the scale bar, 

but can also lead to false apparent thresholds, and the user should be aware of this 

potential pitfall.   

 

Detection of white matter perfusion 

Detection and interpretation of perfusion abnormalities in the white matter remains 

challenging due to low SNR caused by the lower blood flow and prolonged ATT of white 

matter compared to grey matter. Furthermore, the white matter ASL signal can easily be 

overwhelmed by gray matter signal due to blurring in either in-plane or through-plane 

directions (72). The sensitivity for detection of white matter perfusion deficits should 

therefore be considered to be too small for general clinical use, though pathologies that 

exhibit increased perfusion (such as some tumors), may be detectable.  
 

 

Quality assurance 

For evaluating the quality of ASL MRI images in clinical practice we advise the following 

checks: 

1. For PCASL scans, look for areas of low labeling efficiency. First, identify which 

arteries should have been labeled. Typically, this will include internal and 

external carotid arteries, and vertebral arteries.  If an angiogram is available, this 

can be used to verify the list of labeled arteries.  Checking the Circle of Willis 

anatomy may also be of use in matching vascular territories to labeled arteries.  

When the labeling efficiency is low in an artery, the entire flow territory of that 

artery will demonstrate a low calculated CBF.  When a low CBF area is seen that 

matches an entire vascular territory, with no apparent compensation from other 

arteries, a labeling failure should be considered, though this does not preclude 

the possibility of truly low CBF conditions, or abnormally long ATT.  Labeling 



failures can be caused by tortuous vessels or resonance offsets in the labeling 

plane.  The former may be addressed by adjusting the location of the labeling 

plane, in which case an additional angiogram would be helpful.  The latter is 

commonly caused by dental work, and may be suggested by signal dropouts 

around the teeth in other images from this patient.  Methods to address 

resonance offset related labeling problems in PCASL are discussed above. 

2. Note the overall gray matter CBF value.  Absolute CBF values obtained in gray 

matter can vary significantly, even among healthy young adults, due to natural 

inter-subject and intra-subject variations.  In addition, average numbers are 

sensitive to partial volume effects and the methods used for isolating gray matter 

signal.   As a general rule, gray matter CBF values from 40-100 ml/min/100ml 

can be normal.  When the overall gray matter CBF value is inconsistent with the 

expected values for the patient population, consider the possibility that there is a 

global reduction in labeling efficiency, or that the PD scan used for normalization 

was incorrectly acquired or scaled.  Clear contrast between gray and white 

matter should be present, and if not, may signify either poor labeling or motion 

artifacts. 

3. Check for motion artifacts.  As a subtractive technique, ASL is motion sensitive, 

though this sensitivity is mitigated by BS as discussed above. The presence of 

signal outside of the brain, frequently recognizable as signal from layers of skin 

or fat is a clear indication of significant subject motion. When possible, it may be 

useful to check individual label/control difference images before averaging to see 

whether artifacts arise from only a minority of these difference images. If so, 

these images can be excluded from the CBF calculation. In addition, motion 

correction by means of automated image registration algorithms can be 

performed, though these may not be effective when BS is very efficient, or when 

applied to the label/control difference images, as the individual image SNR in 

these cases is low.  When BS is not used or is incomplete, image registration is 

likely to be more effective, but BS is nevertheless recommended as a primary 

means of reducing physiological noise and motion artifacts.  In the ideal case, 

prospective motion correction methods can be used when available to reduce 



motion artifacts during acquisition (73) , and some of these methods are 

compatible with background suppression. 

4. Look for intravascular artifacts.  Hyperintense spots and serpiginous regions 

often represent intravascular signal.  When observed, it is advisable to verify that 

the PLD was appropriate for the patient (see Table 1), as a low PLD will naturally 

generate ASL signals in larger arteries.  Intra-arterial signal with a correct PLD 

suggests that delivery of labeled blood to tissue is delayed, through slow flow 

and/or circuitous or collateral routes of circulation. Intra-venous ASL signal 

suggests that an arteriovenous shunt is present. Note that CBF calculations over 

whole brain or large regions of interest may still be valid in the presence of 

intravascular artifact as long as flow crushing gradients were not used. 

5. Check the borderzone (watershed) regions.  The borderzone or watershed areas 

are at the more distal portions of each vascular territory, and will naturally have a 

longer ATT than other portions of the territory.  Note that it is possible for low 

ASL signal in these regions to represent long ATT rather than low CBF, and an 

additional scan with longer PLD may help to distinguish between these two 

possibilities.  An example of this effect is shown in Figure 9. 
 

Summary 

 

The guidelines described in this recommendation paper are intended to help provide 

clinicians with ASL images of sufficient quality and SNR to provide diagnostic utility.  As 

a default protocol, we have recommended PCASL labeling, background suppression, a 

segmented 3D RARE based readout, and simple but quantitative data processing, and 

have tabulated recommended parameters.  While these recommendations are intended 

to promote uniformity and thereby comparability of ASL data across scanners and sites, 

experimentation with parameters and other ASL methods is encouraged when 

appropriate.  Note that these recommendations are made as of the date of this 

publication, and will likely be superseded in the future, as more clinical data is collected 

and analyzed, and as current and future technical innovations undergo clinical 

translation. 
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Definition of Terms 

 

Acronym Term Definition 

ASL Arterial Spin 

Labeling 

MRI method to magnetically label the arterial blood 

by inverting its magnetization. Used both for 

angiography as well as perfusion MRI. 

CBF Cerebral Blood Flow Brain perfusion.  The volume of arterial blood 

delivered to capillary beds in a unit volume of brain 

tissue per unit time 

ATT Arterial Transit Time Time for arterial blood to travel from the labeling 

plane in PCASL, or the distal edge of the labeling 

slab in PASL, to the imaging voxel, or to the 

microvasculature when using vascular crushing 

gradients 

CASL Continuous ASL ASL using RF and gradient pulses to label arterial 

blood as it flows through a labeling plane 

PASL Pulsed ASL ASL using a short series of RF pulses to 

simultaneously label a large slab of tissue 

containing arterial blood 

PCASL Pseudo-Continuous 

ASL 

A CASL method in which the labeling is 

implemented as a long series of short slice 

selective pulses applied to the labeling plane 

QUIPSS 

II 

QUantitative 

Imaging of 

Perfusion using a 

Single Subtraction 

Modified PASL method in which an additional 

saturation pulse is used to control the temporal 

width of the labeled bolus 



PLD Post-Labeling Delay For CASL and PCASL, the delay between the end 

of the labeling pulse train, and the start of image 

acquisition 

TI Inversion Time For PASL, the time delay between the application 

of the labeling pulse and the start of image 

acquisition 

TI1 QUIPSS II 

Saturation Time 

For QUIPSS II, the time delay between the labeling 

pulse and the saturation pulse - this defines the 

bolus width 

RARE Rapid Acquisition 

with Relaxation 

Enhancement 

Generic term for acquisition of multiple segments of 

k-space across multiple spin echoes - also known 

as fast spin echo and turbo spin echo 

GRASE GRadient And Spin 

Echo 

RARE with a segmented multi-line cartesian 

readout per echo 

EPI Echo-Planar 

Imaging 

Single shot 2D imaging with a cartesian k-space 

raster 

VENC Velocity ENCoding For vascular crushing gradients, or flow weighting 

in general, the velocity at which the flow weighting 

gradients produces phase shift of π 

 

 

Table 1: Recommended Labeling Parameters (see Sections 2 and 3) 
 

Parameter Value 

PCASL Labeling Duration 1800ms 

PCASL PLD - Neonates 2000 ms 



PCASL PLD - Children 1500 ms 

PCASL PLD - Healthy subjects < 70 yrs 1800 ms 

PCASL PLD - Healthy subjects > 70 yrs 2000 ms 

PCASL PLD - Adult clinical patients 2000 ms 

PCASL - Average Labeling Gradient 1mT/m 

PCASL - Slice Selective  Labeling Gradient 10mT/m 

PCASL - Average B1 1.5!T 

PASL TI1 800ms 

PASL TI Use PCASL PLD (from 

above) 

PASL Labeling Slab Thickness 15-20cm 

 

Table 2: Recommended Imaging Parameters (see Section 5) 
 

Parameter Value 

Spatial Resolution 3-4 mm in-plane, 4-8 mm through-plane 

3D RARE stack-of-spiral  

or 3D GRASE 

4-15 ms readouts, turbo-factor of 8 to 12, 

echo train of up to 300ms 

2D EPI or spiral single shot, minimum echo time 

Scan Time 4 minutes 

for acute cases, 2 minutes with lower 

spatial resolution 



Field Strength use 3T when available 

for 1.5T, use lower spatial resolution 

Vascular Crushing Gradients Not recommended under most 

circumstances (see text).  When 

applicable, use VENC = 4 cm/s in the Z-

direction 

 

Table 3: Values to be used in quantification of ASL data (see Section 6) 

 

Parameter Value 

λ (blood-brain partition coefficient) 0.9 ml/g (74) 

T1, blood at 3.0 Tesla 1650 ms (10) 

T1, blood at 1.5 Tesla 1350 ms (75) 

α (labeling efficiency) for PCASL 0.85 (17) 

α (labeling efficiency) for PASL 0.98 (19) 

 

 

 

!  
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Figure 1:  Example of whole brain ASL imaging of cerebral blood flow at 3T using the recommended 
parameters in a normal subject, highlighting the typical image quality and expected contrast between gray 

and white matter.  
101x84mm (300 x 300 DPI)  
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Figure 2: Schematic diagram of imaging and labeling regions for CASL/PCASL and PASL.  In CASL/PCASL, 
labeling occurs as blood flow through a single labeling plane, while in PASL, a slab of tissue, including 

arterial blood, is labeled.  
297x420mm (300 x 300 DPI)  
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Figure 3:  (a) Example of poor PCASL labeling within the right anterior circulation due to poor labeling of the 
right internal carotid artery (ICA).  Note the loss of ASL signal confined to this territory without 

compensatory collateral flow.  In this case, confirmation was obtained with a (b) normal dynamic 
susceptibility contrast CBF map and (c) normal MR angiogram of the circle of Willis.  (d) CT angiogram 

demonstrates surgical clips in the region of the right ICA (arrows), which may have been responsible for the 
poor labeling due to susceptibility effects.  
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Figure 4: Timing diagram for CASL/PCASL and PASL.  For QUIPSS II PASL, TI1 is the bolus duration, and is 

analogous to the labeling duration in CASL/PCASL.  The post labeling delay (PLD) in CASL/PCASL is 

analogous to the quantity (TI-TI1) in QUIPSS II PASL.  
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Figure 5: (a)  2D versus (b) 3D readout ASL imaging in a normal subject.  Both images were acquired with 
approximately 5 min of imaging at 3T with PCASL labeling (label duration of 1.5 sec and a post-label delay 

of 2 sec).  The 2D readout method was a single-shot gradient echo spiral.  The 3D readout was a segmented 
stack-of-spirals FSE.  Note the artifacts associated with the 2D single shot method in regions of high 

susceptibility (arrows).  Parallel imaging approaches could be used to improve such artifacts associated with 
single-shot gradient echo imaging.  
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Figure 6: PCASL images acquired using 2D single shot, and 3D segmented spiral readouts, with and without 
background suppression.    
80x84mm (300 x 300 DPI)  
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Figure 7:  Intraluminal ASL signal within veins (yellow arrows) indicative of arteriovenous shunting in a 
patient with a dural AV fistula (black arrow). Use of vascular crushing may suppress such information, 

limiting the clinical value of ASL in this type of case.  
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Figure 8:  Example of different methods to display CBF information in a patient with semantic dementia 

(note the low CBF in the left temporal lobe).  Images on the left are CBF maps, while the center shows CBF 
maps using a color map overlaid on high-resolution T1-weighted images, which are show separately on the 
right.  The color scale is in ml/min/100g.  Color CBF maps may be displayed without anatomical underlay as 

well.  
152x131mm (300 x 300 DPI)    

Page 50 of 50

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 9: Borderzone sign.  These ASL subtraction images are from an 85 year-old man with dense left 
hemiparesis, acquired using PCASL with a labeling time of 1500 ms and a PLD of 1500 ms.  Only the 
proximal portions of the arterial tree are present, indicating that the PLD was not long enough for the 

labeled spins to have reached the tissue, and that the ATT was prolonged bilaterally in this elderly 
patient.  While longer PLD should improve the visualization of parenchymal CBF, it is not uncommon to see 

such a finding, known as the borderzone sign, in elderly patients with extremely delayed arrival times.  
101x85mm (300 x 300 DPI)  

 
 

Page 51 of 50

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


