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Abstract

Limbal epithelial stem cells (LESCs) are essential to maintain the transparent ocular surface required for vision. Despite great
advances in our understanding of ocular stem cell biology over the last decade, the exact location of the LESC niche remains
unclear. In the present study we have used in vitro clonal analysis to confirm that limbal crypts provide a niche for the
resident LESCs. We have used high-resolution imaging of the basal epithelial layer at the limbus to identify cells with a
morphology consistent with stem cells that were only present within the basal layer of the limbal crypts. These cells are
proximal to limbal stromal cells suggesting direct cell-to-cell interaction. Serial block-face scanning electron microscopy
(SBFSEM) confirmed that the putative LESCs are indeed in direct contact with cells in the underlying stroma, a contact that is
facilitated by focal basement membrane interruptions. Limbal mesenchymal cells previously identified in the human limbus
collocate in the crypt-rich limbal stromal area in the vicinity of LESCs and may be involved in the cell-to-cell contact revealed
by SBFSEM. We also observed a high population of melanocytes within the basal layer of the limbal crypts. From these
observations we present a three dimensional reconstruction of the LESC niche in which the stem cell is closely associated
and maintained by both dendritic pigmented limbal melanocytes and elongated limbal stromal cells.
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Introduction

The cornea, the transparent tissue located at the front of the

eye, is a highly specialized tissue that transmits and refracts light

onto the retina. The outer layer of the central cornea over the

visual axis is composed of a stratified squamous epithelium that is

continuously replaced from a population of epithelial stem cells, as

is the case with the epidermis, the hair follicle and the epithelium

of the small intestine [1,2].

Currently, the prevailing hypothesis is that in most species, stem

cells of the ocular surface are located in the basal layer of the

epithelium at the limbus, which is the 1.5–2 mm wide interface

between the peripheral avascular cornea and adjacent conjunctiva

[3,4]. Radial ridges of the underlying stromal (palisades) at the

superior and inferior limbus are associated with LESC rich areas.

It is widely accepted that LESCs are the smallest cells in the basal

layer with a high nucleus-cytoplasm ratio [5], and that they

express a panel of putative stem cell markers including the

transporter ABCG2 [6], transcription factors such as p63 [7] and

its DNp63a isoform [8,9], cell adhesion molecules such as integrin

a9 [6] and N-cadherin [10] and that they have a high proliferative

potential in culture [11,12].

LESCs are maintained and concentrated in a stem cell niche

where they have the ability to self renew and to preserve their

multipotency [3]. The elements of this microenvironment consists

of soluble factors, cell-to-cell interactions between the other cells in

the niche and a unique composition of the local extracellular

matrix [13–16]. In the last decade, specific anatomical features

have been described within the human limbus. Serial histological

sectioning revealed ‘distinct anatomical extensions from the

peripheral aspect of the limbal palisades’. These were termed

‘limbal epithelial crypts’ and were proposed as a putative LESC

niche owing to the presence of cells expressing putative stem cell

markers including ABCG2 [17]. In 2007, Shortt et al. described

epithelial cell filled crypts between the limbal palisades of Vogt

corresponding to the ‘interpalisadal epithelial rete ridges’ de-

scribed by Goldberg and Bron [18]. These were termed ‘limbal

crypts’ (LCs). The LC, similar in structure to the rete pegs of the

epidermis, also expressed high levels of putative LESCs markers as

determined by examination of whole-mounted tissue using

immunochemical confocal microscopy. Furthermore, the epithe-

lial cells isolated from LCs presented high colony forming

efficiency potential in vitro – the first functional evidence attributed

to either of the proposed anatomical niche structures [19]. Hence

LCs were proposed as a putative candidate for the LESC niche.

However at that time, the gold standard single cell clonal analysis

assay, used to identify epithelial stem cells cultured in vitro [20],

was not performed causing ambiguity regarding the relevance of

LCs as a stem cell niche. Interestingly, LCs that were more often
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observed at the superior and inferior human limbus could not be

detected in patients affected by LESC deficiency [19].

As reported in other tissues [21,22], an important feature of a

stem cell niche is interaction between stem cells and their

surrounding niche cells. Stromal cells were previously observed

in close proximity to putative LESCs lining LCs of the human

limbus [19]. A close spatial relationship involving cytokine cellular-

crosstalk between basal epithelial cells and limbal stromal cells was

also discovered in the LC [15]. The emerging concept from

different studies suggests that LESC may be maintained by direct

contact with their niche cells and that this physical interaction

appears to be essential, at least in vitro, for maintenance of the stem

cell phenotype [23–25].

The aims of this study were to demonstrate the previously

identified LCs as a LESC niche by using functional in vitro clonal

analysis of resident cells and, secondly, to use state-of-the art

imaging techniques to observe putative LESCs in their native

environment to highlight potential physical cell-to-cell interactions

with surrounding niche cells.

Materials and Methods

1. Ethics Statement
All human tissue was handled according to the tenets of the

Declaration of Helsinki and written consent was acquired from

next of kin of all deceased donors regarding eye donation for

research. Research consent was obtained via the Moorfields Eye

Hospital Lions Eye Bank (U.K) http://www.moorfields.nhs.uk/

Aboutus/Clinicalsupportservices/Eyebank and Lions Eye Institute

(Florida, U.S) http://www.fleb.org/. All experiments were

approved by the National Research Ethics Service, South west 3

REC, reference 10/H0106/57.

2. Isolation and Culture of Limbal Epithelial Cells
Limbal palisades, which surround the LCs were macroscopi-

cally identified under a dissecting microscope. After dissection,

crypt-rich (from superior and inferior limbus) and non-crypt rich

(from temporal and nasal limbus) limbal biopsies isolated from the

same donor were transferred separately into a solution containing

1.2 U/mL dispase II (Roche diagnostics GmbH, Mannheim,

Germany) in corneal epithelial cell culture medium (CECM)

containing a 1:1 ratio of DMEM:F12, 10% (v/v) fetal bovine

serum, 100 U/mL penicillin, 100 mg/mL streptomycin, 0.25 mg/
mL Fungizone, epidermal growth factor (EGF) 10 ng/mL (Life

technologies, Paisley, UK), hydrocortisone (0.4 mg/mL), insulin

(5 mg/mL), adenine (0.18 mM), transferrin (5 mg/mL), T3 (2 nM),

cholera toxin (0.1 nM) (Sigma-Aldrich, Dorset, UK) and incubat-

ed for 2 hours at 37uC. Limbal epithelial cells (LECs) were isolated

from the crypt-rich and non-crypt rich biopsies by gently scraping

the epithelium using the point of thin forceps. LECs were then pre-

expanded for 7 days in T25 flasks on a 3T3 feeder layer that had

been previously growth arrested with 4 mg/mL mitomycin C

(Sigma-Aldrich, Dorset, UK) for 2 hours. CECM culture medium

was changed three times a week and the co-cultures maintained at

37uC in a humidified atmosphere containing 5% CO2 in air.

3. Clonal Analysis
Cadaveric human corneas were obtained from three donors

(age range 51–71 years; mean 58.3 years). In total, 124 clones

isolated from the crypt-rich and non-crypt limbal biopsies from

three donors were analyzed for their in vitro growth potential.

When they had reached 50% confluence in primary 3T3-LECs

co-cultures, the LECs were isolated using serial trypsinization. The

3T3 feeder cells were detached and removed using 0.05% trypsin-

0,02% EDTA, before 0.5% trypsin-0.2% EDTA (Life technolo-

gies, Paisley, UK) was used to detach and prepare a single cell

suspension of LECs. For each donor, 250 single LECs initially

isolated from crypt-rich or from non-crypt limbal biopsies were

seeded onto 55 mm2 plates containing 1.46106 growth-arrested

3T3s. Plates were then checked under an inverted microscope to

confirm seeding of a single LECs suspension on top of growth

arrested 3T3s. After 7 days in culture, small colonies (clones) of

approximately 1 mm diameter were randomly selected and

isolated using 8 mm sterile cloning cylinders (Sigma-Aldrich,

Dorset, UK) and 0.5% trypsin-0.2% EDTA. Limbal epithelial cells

from these single cell colonies (clone) were again seeded onto a 55

mm2 plate containing 1.46106 growth-arrested 3T3s. Epithelial

cells were expanded for up to 12 days and plates fixed with 4%

paraformaldehyde (PFA) (VWR International Ltd. Leicestershire,

UK) and stained with 2% rhodamine. Each plate was then scored

as holoclone, meroclone or paraclone depending on the percent-

age of aborted colonies [20]. When 0–5% of the total colonies

were terminally differentiated, the clone was scored as a holoclone.

When more than 95% of colonies were terminally differentiated,

the clone was scored as a paraclone. Finally, when .5% but ,

95% of colonies were terminally differentiated, the clone was

classified as a meroclone.

4. Transmission Electron Microscopy
Biopsies from crypt-rich and non-crypt rich regions of the

human limbus were fixed in 2.5% glutaraldehyde and 2%

paraformaldehyde in 0.08 M sodium cacodylate buffered to

pH 7.4. Limbal biopsies were then post-fixed with 1% aqueous

osmium tetroxide (Elektron Technology Ltd. Essex, UK) for 2

hours at 4uC and rinsed in distilled water. Following osmication,

the samples were dehydrated through an ascending ethanol series

(50%, 70%, 90% and 100%), passed through propylene oxide and

infiltrated with 50:50 propylene oxide: epoxy araldite resin

mixture (Elektron Technology Ltd. Essex, UK) before being

embedded in full resin at 60uC overnight. 75 nm ultra-thin

sections were collected on copper grids and post-stained with lead

citrate, prior to examination in a JEOL 1010 transmission electron

microscope and imaged with an SC1000 Orius CCD camera

(Gatan, Abingdon Oxon, UK).

5. Serial Block-face Scanning Electron Microscopy
(SBFSEM)
Crypt-rich human limbal biopsies were fixed in 2.5% glutar-

aldehyde and 2% paraformaldehyde in 0.08 M sodium cacodylate

buffered to pH 7.4. Tissues were washed in cold cacodylate buffer

containing 2 mM calcium chloride and incubated in a solution

containing an equal volume of 2% aqueous osmium tetroxide and

3% potassium ferrocyanide in 0.3 M cacodylate buffer with 4 mM

calcium chloride. Tissues were then washed with double distilled

water (ddH20) and placed in a freshly prepared and filtered

thiocarbohydrazide solution (0.01 g/mL in ddH20). After being

rinsed with ddH2O, tissues were placed in 2% osmium tetroxide

in ddH2O for 30 minutes at room temperature, washed in ddH2O

and placed in 1% uranyl acetate overnight at 4uC. After a rinse

with ddH20, tissues were placed in freshly prepared Walton’s lead

aspartate solution and placed in a 60uC oven for 30 minutes.

Tissues were then washed with ddH20 and dehydrated through

increasing concentrations of ethanol (20%, 50%, 70%, 90% and

100%). After dehydration, tissues were transferred to acetone

before being infiltrated in mixtures of resin:acetone 25%, 50%,

75% respectively. Tissues were placed in 100% resin (Taab hard-

plus resin, TAAB Laboratories Equipment Ltd) for 2 hours before

being embedded in a fresh resin at 60uC for 48 hours. Resin blocks
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containing the tissues were mounted on cryo-specimen pins (Leica

Microsystems, Milton Keynes, UK), trimmed and sputter-coated

with a layer of gold/palladium. Samples were observed using a

Zeiss SIGMA VP field emission scanning electron microscope.

Serial block-face (SBF) imaging used the 3View system (Gatan,

Abingdon Oxon, UK) with a low kV backscattered electron

detector. This technique involves the sequential removal of the

surface of the resin block using an ultra-microtome inside the

microscope chamber. Ultrathin sections (100 nm) are serially cut

from the resin block followed by imaging of the freshly exposed

block surface. This procedure was repeated up to 1000 times

generating a large data set and allowing a complete three-

dimensional reconstruction of the tissues imaged.

6. Manual Segmentation and 3D Reconstruction
SBF scanning electron microscopy datasets were converted into

voxels (volumetric picture elements) and areas of interest manually

segmented and reconstructed into a 3D volume using Amira

(Visage Imaging Inc.).

Figure 1. Clonal analysis. Crypt-rich (A) and non-crypt rich (D) limbal biopsies observed under the dissecting microscope and targeted for clonal
analysis. Sections were cut tangentially to the limbal circumference and stained with hematoxylin and eosin. Sections shown highlight the palisades
of Vogt and the limbal crypts (B) and the non-crypt rich limbus (E). Colonies of limbal epithelial cells grown in Petri dishes and stained with 2%
rhodamine (C) and (F). Growth potential of single epithelial cells isolated from crypt-rich (C) and non-crypt rich (F) human limbal biopsies was
characterized by the generation of holoclones, meroclones and paraclones. LECs isolated from the limbal crypts generated the highest proportion of
holoclones demonstrating their stem characteristics and the LCs as a stem cell niche. Scale bars: 50 mm. Black arrows: Limbal crypts. Conj.:
conjunctiva; L: Limbus; CC: central cornea; Epi.: epithelium; St.: stroma; POV: palisades of Vogt; LC: limbal crypt.
doi:10.1371/journal.pone.0094283.g001
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7. Immunohistochemistry
Limbal biopsies from human corneas (n = 3) were isolated under

a dissecting microscope and small pieces of tissue were embedded

in OCT compound. Thick frozen sections (7 mm) were cut from

the crypt rich and non-crypt rich limbus tangential to the corneal

circumference on a cryostat and mounted on superfrost plus

microscope slides (VWR International, West Sussex, UK). Frozen

sections were fixed with 4% PFA, permeabilized with 0.5%

Triton-X and blocked with 10% goat serum in PBS at room

temperature for 90 minutes. Sections were then incubated with

primary antibodies against CD90 (Abcam ab23894, Cambridge,

UK), CD105 (Abcam ab44967, Cambridge, UK) and MelanA

(Abcam ab51061, Cambridge, UK) at 4uC overnight. Sections

were washed and incubated with secondary antibody (Alexa-594

conjugated goat anti-mouse, 1:250, Invitrogen A11032 for CD90

and CD105 and Alexa-594 conjugated goat anti-rabbit, 1:250,

Invitrogen A11037, Life technologies, Paisley, UK) for 1 hour at

room temperature and mounted in Vectashield with DAPI (Vector

laboratories Ltd. Peterborough, UK). Images were captured using

a Zeiss 710 confocal microscope (Carl Zeiss, Hertfordshire, UK).

8. Histological Staining of Cryosections
Thick frozen sections (7 mm) tangential to corneal circumfer-

ence from crypt rich and non-crypt rich limbal biopsies were fixed

in 4% PFA before being stained with haematoxylin and eosin and

mounted in DPX. Sections were imaged using a Nikon Eclipse

TS100 inverted microscope.

9. Statistical Analysis
Fisher’s exact test has been used to show that the frequencies of

holoclones, meroclones and paraclones observed differ significant-

ly between the limbal crypts and the non-crypt rich limbus.

Results

1. LCs Provide an Epithelial Stem Cell Niche
Demonstrated by Clonal Analysis of Resident Cells
LCs were identified under a dissecting microscope (Fig. 1A) and

appear as downward projections of the limbal epithelium into the

limbal stroma enclosed laterally by the limbal palisades – the LC-

rich limbus (Fig. 1B). Where these structures were absent, the

region was termed non-crypt rich limbus as shown in Figure 1D

and E. Among three human donors and 124 clones analyzed, cells

isolated from the LC were able to generate the highest proportion

of holoclones (17.74%, 11 holoclones among 62 clones) compared

to LECs isolated from the non crypt-rich limbus in which only one

holoclone was observed among 62 clones analyzed (1.61%). Cells

isolated from the non-crypt rich limbus showed a lower growth

potential when compared to those isolated from the crypt-rich

limbus (56.45% paraclones cf. 38.71% paraclones respectively).

The number of meroclones (43.55% for cells isolated from the LCs

and 41.94% from the non-crypt rich) was similar for both limbal

areas (Fig. 1C, F and table 1).

2. LCs Support a Subpopulation of LECs Exhibiting Stem
Cell Morphology that are Closely Associated with the
Underlying Stromal Cells
In the non-crypt rich limbus, transmission electron micrographs

show a uniform limbal basal epithelial cell population (Fig. 2A).

These epithelial cells appeared columnar and elongated, expressed

Table 1. Clonal analysis.

Origin of tissue Number of donors Age of donors
Number of
holoclones

Number of
meroclones

Number of
paraclones Total

Limbal crypts 3 51–71 11 27 24 62

Non-crypt rich 3 51–71 1 26 35 62

P-value p= 0.0038*

Single limbal epithelial cells were isolated from 6 primary co-cultures originated from crypt-rich and non-crypt rich limbal biopsies of three human donors. After 7 days,
single clones were isolated and transferred to a new culture dish and expanded for 12 days prior to fixation and rhodamine staining. Clones were finally classified as
holoclones, meroclones or paraclones depending on the percentage of aborted colonies. *is considered as statistically significant (Fisher’s exact test p,0.005).
doi:10.1371/journal.pone.0094283.t001

Figure 2. Observation of putative LESCs by TEM within the LCs.
Transmission electron micrographs highlighting the interface between
the limbal stroma and the limbal basal epithelial layer within the non-
crypt rich limbus (A, B) and the limbal crypts (C, D, E, F). White
arrowheads: hemidesmosomes; Black arrows: limbal stromal cell
extensions in the vicinity of putative LESCs. Epi.: epithelium; St.: stroma;
Bm: Basement membrane. White asterisks: putative LESCs. Black
arrowhead: Contact between putative LESC and limbal stromal cell.
Black box in E represents area in F. Scale bars A, B, C, D and E: 2 mm, F:
1 mm.
doi:10.1371/journal.pone.0094283.g002
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intermediate filaments and had basal finger-like projections with

an abundance of hemidesmosomes (Fig. 2B).

In contrast, the limbal basal epithelial layer in the crypt-rich

limbus contained a mixed population of epithelial cells. Most of

the cells had the same morphological characteristics as the basal

epithelial layer of the non-crypt rich limbus. However, we also

observed a population of small, circular, basal cells characterized

by a high nucleus/cytoplasm ratio that were mainly located on the

edges of the crypt close to blood vessels in the underlying stroma.

These cells had a morphology consistent with expected stem cells,

they were almost devoid of hemidesmosomes and rested upon a

thin basement membrane. Moreover, these cells appeared to be in

close proximity to limbal stromal cell extensions suggesting a

possible route for crosstalk or direct cell-to-cell interaction (Fig. 2C

and D). The micrograph shown in Figure 2F highlights a thin

stromal cell extension presumably extending from the largest

stromal cell observed in 2E, in direct connection to a small, basal

epithelial cell at the edge of the crypt. Micrographs shown in

Figure S1 clearly show basement membrane interruptions

allowing direct contacts between stromal cell extensions and the

basal epithelium.

3. Putative LESCs Make Direct Connections with Limbal
Stromal Cells in the Stem Cell Niche
Low magnification imaging by SBFSEM directed at one limbal

palisade separating two distinct LCs revealed the complexity of the

stroma beneath the limbal epithelium (Fig. 3A-C and videos S1

and S2). Large and elongated stromal cells were closely associated

with limbal basal epithelial cells (Fig. 3B). Within the epithelium,

some cells contained electron dense cytoplasmic granules that had

the potential to be melanosomes observed in limbal melanocytes.

3D reconstruction revealed the unusual proximity between limbal

stromal and limbal basal epithelial cells although direct contact

could not be confirmed at this magnification (Fig. 3C and D and

videos 1 and 2).

High-magnification images of the interface between the basal

epithelium and the limbal stroma on the edge of the LC (boxed

area Fig. 4A and 4F) again showed the proximity between limbal

stromal cells and putative LESCs (Fig. 4B and 4G). Figures 4C and

4H show that limbal stromal cells and putative LESCs previously

observed on Figures 4B and G show a focal connection deeper in

the stem cell niche. 3D reconstruction at this magnification

revealed the morphological stem cell characteristics of the putative

LESC and confirmed a direct interaction with a large and

elongated stromal cell (Fig. 4D, E and 4I, J) at the edge of the

limbal crypt.

4. Limbal Stromal Cells Expressing Mesenchymal Stem
Cell Markers are More Frequently Observed within the
Limbal Crypts
To determine whether limbal stromal cells involved in the direct

contact with putative LESCs were limbal mesenchymal cells, we

compared the expression of two mesenchymal stem cell (MSC)

markers CD90 and CD105 in the central cornea, the non-crypt

rich limbus and the limbal crypt-rich limbus. Immunostaining for

both CD90 and CD105 was negative for both MSC markers in the

central cornea (Fig. 5A and 5B). However, a sub-population of

limbal stromal cells in the limbus expressed both CD90 and

CD105 mesenchymal markers. Interestingly, the distribution of

these limbal mesenchymal cells was not uniform. In the non-crypt

rich limbus a small population of stromal cells expressed CD105

and weakly expressed CD90 (Fig. 5C and 5D). On the other hand,

in crypt rich regions, there was a sub-population of limbal stromal

cells beneath the LCs that were highly positive for either CD90 or

CD105 MSC markers (Fig. 5E and 5F).

Figure 3. Limbal crypt ultrastructure observed by SBFSEM. Limbal crypt tangentially imaged through 70 mm from the corneal to the
conjunctival side of the limbus. A, B and C represent non-sequential micrographs of the same 3D dataset. Manual segmentation followed by 3D
reconstruction highlights the close proximity between the limbal epithelium (yellow volume in D) and a limbal stromal cell (white asterisks in B, blue
area in C and blue volume in D) within the limbal crypt (Lc) suggesting a putative cell-to-cell contact. Lc: limbal crypt; Bv: blood vessel; St: Stroma.
Arrowheads: melanocytes. Scale bars: 50 mm.
doi:10.1371/journal.pone.0094283.g003
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5. Limbal Melanocytes Interact with Putative LESC within
the Limbal Crypts
Immunostaining for MelanA, specifically expressed by melano-

cytes, identified a population of these pigmented cells within the

epithelial basal layer of the limbal crypts where LESCs are

concentrated. As shown in Figure 6A, limbal melanocytes were

also observed, at a lower density, within the non-crypt rich limbus

where they appeared dispersed between the epithelial layers.

SBFSEM targeting of the edge of the limbal crypt (Fig. 6C and

6D) revealed that pigmented dendritic cells, corresponding to the

morphology of limbal melanocytes, were closely associated with

the smallest basal limbal epithelial cell which is in turn were

located in close proximity to limbal stromal cells. After 3D

reconstruction putative LESCs were found to directly connect with

at least two non-epithelial cells (Fig. 6E). The apical aspect of the

putative LESC connected with a dendritic limbal melanocyte

(Fig. 6F) while the basal aspect connected with a limbal stromal

cell (Fig. 6G).

Figure 4. Cell-to-cell contacts imaged within the limbal crypts by SBFSEM. Box in A and F represents the area in which contact between
putative LESC (green arrows in B, C, G, H and green volumes in D, E, I, J after 3D reconstruction) and limbal stromal cells (yellow arrows in B, C, G, H
and yellow volumes in D, E, I, J after 3D reconstruction) was observed. Cell nuclei are represented in pink in D an E, the area of interaction between
putative LESC and the limbal stromal cell is represented in orange (J). Scale bars: 50 mm (A, F); 5 mm (B, C, G, H).
doi:10.1371/journal.pone.0094283.g004
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Discussion

The first indication of the presence of stem cells in the limbus

was the observation in guinea-pig of centripetal migration of

pigmented epithelial cells from the limbus following debridement

of an area of adjacent epithelium [3]. Following DNA labeling,

slow cycling epithelial cells were observed within the limbus of the

mouse cornea, and these cells proliferated after injury [4]. Further

in vitro clonal analysis demonstrated that the human limbus

contained a population of limbal epithelial stem cells (LESCs)

and that these cells could be used to generate a cohesive corneal

epithelial sheets suitable for the treatment of ocular surface disease

[12]. The assumption that there was a uniform distribution of

LESCs around the peripheral cornea has been recently challenged

as distinct anatomical features have been identified within the

human limbus. These structures (including vascularized focal

stromal projections also called ‘basal crypts’ [26], limbal crypts

[19] and limbal epithelial crypts [17]) have been proposed as

putative LESC niches. LCs, that correspond to downward

projections of the limbal epithelium into the limbal stroma, are

easily identified in normal eyes at low magnification within the

limbal palisades of Vogt [19]. Clinically, LCs and focal stromal

projections that are preferentially located at the superior and

inferior meridians, could not be detected in patients affected by

LESC deficiency [19].

In the present study we have used clonal analysis to compare the

growth potential of LECs isolated specifically from crypt-rich and

non-crypt rich limbal biopsies. We have demonstrated that

biopsies taken from areas with limbal crypts contain a high

population of limbal epithelial cells with the properties of stem cells

[20]. Specifically, the generation of a greater number of holoclones

in culture when compared to limbal epithelial cells isolated from

limbal biopsies devoid of those structures. The generation of

holoclone could also be observed when cells were isolated from the

non-crypt rich limbus suggesting LESC are also present at a lower

density outside the LCs. This ability to generate holoclones was

indeed dramatically decreased when LECs were isolated from the

non crypt-rich limbus hence confirming the LCs as a stem cell

reservoir. We observed by transmission electron microscopy that

the limbal crypts contain a sub-population of small, basal epithelial

cells, a morphology characteristic of stem cells, [5] which were

closely associated with the underlying limbal stromal cells

suggesting the possibility of cell-to-cell contact. Cell-to-cell

interaction between LESCs and their surrounding niche cells

have been investigated previously. Higa et al. 2009, proposed that

interaction between LESCs and 3T3 feeder cells mediated by N-

cadherin is essential for the maintenance of the stem phenotype

in vitro. However, such an interaction between putative LESCs and

limbal stromal cells was not clearly identified in the native niche

[23,27]. On the other hand, Chen et al, observed that digestion of

human limbal biopsies by collagenase released clusters of p63

positive (+ve), small epithelial cells closely associated with stromal

vimentin+ve cells, which exhibited clonal growth in the absence of

serum [24]. Interestingly, they demonstrated that association of

LECs to their subjacent mesenchymal cells was essential for

promoting clonal growth in vitro. Their observations support the

concept of a direct crosstalk between LESC and limbal stromal

cells for the maintenance of cell stemness in the native niche. In

order to confirm our previous TEM observations we used

SBFSEM. This allowed imaging in x, y and z directions and

reconstruction of the 3D structure of the putative limbal stem cell

[28]. SBFSEM imaging of the limbal basal epithelial layer revealed

a clear and focal connection between small basal epithelial cells

and their underlying elongated limbal stromal cells in the native

niche. Such interaction was only observed within the limbal crypt

and is facilitated by the presence of interruptions in the basement

membrane that have been identified previously [29], acting like

windows allowing cells from two opposing tissues to connect and

interact with each other.

Small populations of mesenchymal stem cells have previously

been observed in the human limbus. These limbal mesenchymal

cells have the ability to grow clonally and to differentiate into

various cell lineages under specific culture conditions, and it has

been proposed that they maintain the phenotype of LESCs in the

niche [30–34]. In the present study we investigated whether limbal

mesenchymal cells were involved in the interaction with putative

LESCs that we revealed by SBFSEM. Interestingly, we observed a

population of limbal stromal cells positive for CD90 and CD105

mesenchymal stem cell markers that were more often present

adjacently or beneath the limbal crypts where we demonstrated

the highest population of LESCs to be located. However, at this

stage, involvement of these limbal mesenchymal cells in the direct

contact with putative LESCs that we observed by electron

microscopy remains uncertain and would require further investi-

gation. Higa et al. have indeed recently observed aquaporin1+ve

elongated limbal stromal cells immediately located beneath the

basement membrane in the proximity of N-cadherin+ve epithelial

Figure 5. Results of immunohistochemistry staining for limbal
mesenchymal cell markers CD90 and CD105 within the central
cornea, the non-crypt rich limbus and the limbal crypts.
Immunofluorescence suggests CD90 and CD105 expression is markedly
increased by limbal stromal cells underlying the limbal crypts (E, F)
compared to the non-crypt rich limbus (C, D). Central corneal sections
were used as a negative control (A, B). Sections were counterstained
with DAPI. Scale bars: 50 mm.
doi:10.1371/journal.pone.0094283.g005
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clusters that were also CK15+ve and p63+ve [27]. These

aquaporin1+ve stromal cells appear to have the same location

and morphology as the cells we have observed connecting the

putative LESC, whereas CD90+ve and CD105+ve mesenchymal

cells appear to lie deeper in the limbal stroma.

Limbal melanocytes have been observed to align with the basal

layer of the epithelium and have been proposed to protect LESCs

from damaging ultraviolet light [35]. In their study, Hayashi et al.

2007, observed that limbal melanocytes were also N-cadherin+ve

and proposed that N-cadherin is involved in homotypic interac-

tions with LESCs thus acting as associated cells maintaining LESC

in the niche [10]. In the present study we observed that

MelanA+ve limbal melanocytes were preferentially located within

the basal epithelial layer of the limbal crypts where the LESCs are

concentrated.

We propose a 3D model of the limbal stem cell niche in which

the smallest basal epithelial cells within the limbal crypt are

apically closely associated with pigmented limbal melanocytes and

basally with limbal stromal cells. Such cell-cell interactions were

not observed in the regions of the limbus normally devoid of limbal

crypts. Despite the impressive resolution reached by volume

electron microscopy, that allowed us to observe the putative LESC

in their complex native microenvironment, we were unable to

confirm the functional involvement of N-cadherin in this triple

cell-to-cell interaction. This requires further investigation.

Conclusion

In the present study, we have confirmed by in vitro clonal

analysis that the previously identified limbal crypts provide a niche

for the resident limbal epithelial stem cells. These observations

directly support and strengthen the concept of targeted limbal

biopsies for successful limbal stem cell therapy. High-resolution

microscopy revealed clusters of small basal epithelial cells

specifically observed within the limbal crypt. Volume electron

Figure 6. Melanocytes interact with putative LESCs in their niche. Immunohistochemistry reveals much more MelanA positive cells within
the LCs than within the non-crypt rich limbal areas (A, B). Serial-block face scanning electron micrographs showing the edge of one limbal crypt (C,
D). After manual segmentation and 3D reconstruction (E, F, G) putative LESC (smallest epithelial cell with a high nucleus/cytoplasm ratio) is
represented in green, melanocyte (dendritic cell containing electron dense granules) in red, limbal stromal cell in yellow. Blue volumes correspond to
nuclei. Continuous line in G corresponds to block face represented in C. Dashed line in G corresponds to block face represented in D. Scale bars:
50 mm (A, B) and 7 mm (C, D).
doi:10.1371/journal.pone.0094283.g006
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microscopy revealed that the smallest basal epithelial cells with

morphological stem cell characteristics were directly connected to

the underlying limbal stromal cells via local basement membrane

interruptions. After observing a higher population of limbal

melanocytes within the limbal crypts and limbal mesenchymal

cells underlying the crypts, we finally illustrated the first 3D

reconstruction at a cellular-scale of the limbal epithelial stem cell

niche.

Supporting Information

Figure S1 Transmission electron micrographs high-
lighting cell-to-cell contacts (black arrowheads) and
basement membrane interruptions within the limbal
crypts. St: Stroma; Ep: Epithelium; Bm: Basement membrane.

Scale bars 500 nm (A); 1 mm (B). Black arrowhead: Cell-to-cell

contact between epithelial and stromal cell.

(TIFF)

Video S1 Low magnification movie of serial-block face
SEM dataset highlighting the complexity of the human
limbal stroma within the limbal crypts. Every image

corresponds to a freshly exposed surface of the resin block after a

100 nm ultrathin section removal.

(MPG)

Video S2 Medium magnification movie of serial-block
face SEM dataset focused on the edge of one limbal
crypt. Note the cluster of small basal epithelial cells and the

proximity of the underlying limbal stromal cells.

(MOV)
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