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Abstract Craniofacial malformations, have devastating psy-
chosocial implications for many adults and children and
causes huge socioeconomic burden. Currently craniofacial
defects require soft tissue transfer, bone grafting techniques
or difficult procedures such as microvascular free flaps. Such
tissues are often limited in quantity, their harvest causes sec-
ondary large donor site defects and they lack the capability to
fully restore previous form and function. Stem cell technology
is being utilised for various tissue and organs of the body and
consequently surgeons are eager to transfer these principles
for craniofacial surgery. Adipose derived stem cells (ADSCs)
are an exciting stem cell source for craniofacial surgeons due
to their easy and painless isolation, relatively large abundance
and familiarity with the harvesting procedure. ADSCs also
have multiple desirable properties including adipogenic, oste-
ogenic and chondrogenic potential, enhancement of angiogen-
esis and immunodulatory function. Due to these advantageous
characteristics, ASDCs have been explored to repair cranio-
facial bone, soft tissue and cartilage. The desirable character-
istics of ADSCs for craniofacial surgical applications will be
explained. We report the experimental and clinical studies that
have explored the use of ADSCs for bone, cartilage and soft
tissue craniofacial defects. We conclude by establishing the
key questions that are preventing the clinical application of
ADSC:s for craniofacial surgery.

Keywords Cranial facial surgery - Adipose derived stem
cells - Osteogenesis - Chondrogenesis - Adipogenesis

M. Griffin + D. M. Kalaskar - P. E. Butler + A. M. Seifalian (D<)
UCL Centre for Nanotechnology and Regenerative Medicine,
Division of Surgery & Interventional Science, University College
London, London, United Kingdom

e-mail: a.seifalian@ucl.ac.uk

P. E. Butler * A. M. Seifalian
Royal Free London NHS, Foundation Trust Hospital, London,
United Kingdom

Introduction

As the field of regenerative medicine continues to grow, there
is aneed for a reliable and continuous source of stem cells that
can be easily obtained. Mesenchymal stem cells can be iso-
lated from various tissue sources in adults [1]. For many years,
bone marrow derived stem cells (BMDSCs) have been the
focus of tissue engineering research strategies. However, cur-
rent research interest is looking towards developing adipose
derived stem cells (ADSCs), which are isolated directly from
either fat excision or liposuction during plastic surgical pro-
cedures. ADSCs share many properties as those of BMDSCs
with similar potential to differentiate into bone, cartilage,
muscle and fat [2]. However, with easier isolation and better
availability ADSCs have sparked great clinical and research
interest. There have already been several clinical reports of the
successful application of ADSCs including soft tissue aug-
mentation [3], wound healing [4] and Crohn’s disease [5].
Craniofacial surgery is particularly suited to the implemen-
tation of ADSCs due to the huge demand for reconstruction of
several tissue types. Firstly, there is a huge demand for soft
tissue reconstruction including (1) reconstruction of surgically
or traumatically created facial tissue voids (2) to restore bulk
of aging tissue in order to correct soft tissue folds (3) to
augment or create soft tissue for cosmetic enhancement and
lastly (4) to create soft tissue contours for patients with con-
genital soft tissue deficiencies. Secondly, there is strong clin-
ical need to generate bone for craniofacial osseous defects due
to congenital diseases, trauma and surgically created bony
defects following cancer resections. The paediatric population
represents a large clinical need for tissue-engineered bone
including cleft palate, Down syndrome, Treacher Collins syn-
drome and Apert and Crouzon syndromes. Autogenous bone
grafts harvested from the iliac bone are considered to be the
gold standard to treat bone defects but this causes huge donor
site morbidity, pain and has limited availability. Calvarium
defects represent a particular reconstructive challenge as
above the age of 2 years it does not regenerate on its own
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[6]. Lastly cartilage is often required following trauma, in-
flammatory conditions or cancer resections of the nasal area or
in paediatric patients for auricular reconstruction due to
microtia and anotia.

The “gold standard” to address these defects currently
involves using autologous material in the form of soft tissue
transfer, bone or cartilage grafting and complicated free flaps
and microvascular anastomosis [7, 8]. Such techniques create
secondary donor defects with associated risks and complica-
tions and are limited in their availability. Various alloplastic
materials are available to replace autologous tissue including
silicone, medpor, titanium but all have shown mechanical
failure, extrusion, infection and limited capability to recreate
previous form [9—11]. It has been suggested that ADSC strat-
egies can overcome the necessary donor site morbidity, limit-
ed availability and failure of autologous grafts and extrusion
and infection of alloplastic grafts [12, 13]. Various techniques

for using ADSCs for clinical applications are shown in
Fig. 1.

This review aims to describe the desirable properties of
ADSCs currently in practice. Further, we evaluate the evi-
dence that uses ADSCs for bone, cartilage and adipose engi-
neering currently in practice for craniofacial reconstruction
surgery and lastly describe the possibilities and expected
contribution of ADSCs in the future of craniofacial surgery.

What are Adipose Stem Cells?

Adipose tissue is one of the largest tissues in the body, acting
as an important energy and endocrine reservoir [14]. Adipose
tissue is mainly composed of adipocytes (fat cells), accounting
for more than 90 % of the tissue volume, being arranged in
lobules [15]. Adipose tissue is a very vascular tissue with all of
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Fig. 1 Schematic drawing illustrating how adipose stem cells can be
utilised for craniofacial surgery. Adipose derived stem cells (ADSCs) can
supplement fat grafts for improved adipogenesis in a process called cell
assisted liposuction (CAL). Furthermore, ADSCs can be expanded
in vitro under Good Manufacturing Practice and Good Laboratory
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the adipocytes in contact with the surrounding capillaries [14].
In addition to the adipocytes, adipose tissue consists of
pericytes, fibroblasts, macrophages, vascular endothelial cells
and an extracellular matrix [15]. ADSCs were first identified
in 2001 by Zuck et al. as a population of fibroblast cells
capable of differentiating into adipogenic, chondrogenic,
myogenic and osteogenic cells in the presence of specific
induction factors [2]. Since this time many groups have tried
to optimise the isolation and expansion of ADSCs [16-27].
ADSC are commonly extracted from adipose tissue in a multi-
step wise procedure. Adipose tissue is first obtained through
liposuction, from a variety of sites including the upper arm,
medial thigh, trochanteric, and superficial deep abdominal
depots [21]. The most commonly used ADSC isolation tech-
nique is that described by Coleman. Processing the
lipoaspirate via the Coleman method involves centrifugation
of lipoaspirate at 3,000 rpm for 3 min in 10 ml syringes. The
processed harvested fat is then separated into three layers. The
upper layer (supranatant) containing lipid is poured off and the
lower layer containing blood, tissue fluid and local anaesthetic
is ejected from the base of the syringe leaving the middle part
containing stromal cells, vascular endothelial and mural cells,
termed the stromal vascular fraction (SVF). To isolate ADSCs
from the adipose tissue, it is common to digest the adipose
tissue using collagenase after mincing and cutting of the
tissue. After neutralisation with Dulbecco Modified Eagle
Medium (DMEM) containing foetal bovine serum (FBS)
and centrifugation an ADSC-rich pellet is formed. This is then
cultured and expanded in media. Following a period of several
days or hours the non-adherent cells are then removed with the
remaining cells being ADSCs [27] (Fig. 1).

Useful Properties of Adipose Stem Cells

Human adipose tissue offers several advantages as a stem cell
source (Table 1). With the widespread obesity in current
populations, most adults have abundant adipose tissue [28].
In addition, the technique described in Fig. 1 for adipose
harvesting is relatively less painful compared to the bone
marrow aspiration with decreased donor site morbidity and
10-100 times greater frequency of stromal cells per unit
volume [29]. ADSCs are attractive options for tissue regener-
ation due to their angiogenic, wound healing and
immunodulatory properties [30—45].

Current Evidence Supporting the Use of ADSCs
for Craniofacial Surgery

ADSCs are an exciting stem cell source for craniofacial sur-
geons due to the capacity to facilitate angiogenesis, limit
apoptosis, provide immunodulatory function and multi-

differentiation capacity. Preclinical and clinical trials are al-
ready exploring the potential of ADSCs for reconstructive
surgery. For craniofacial surgery bone, cartilage, fat tissues
are required for various reconstructive applications. This sec-
tion will discuss each of these requirements in detail.

Use of ADSCs to Generate Bone

ADSCs can undergo osteogenic differentiation in vitro by
exposure to a combination of ascorbate, 3-glycerophosphate,
various bone morphogenetic proteins (BMPs), dexamethasone,
and/or vitamin D3, confirming bone formation using Alizarin
Red or Von Kossa staining, usually over a two-week period
[45]. Several studies have shown that ADSCs will express
multiple markers for osteogenesis in these conditions including
cbfa-1, alkaline phosphatase, osteopontin, osteocalcin and
collagen I [46, 47].

Repair of large bone defects is a common challenge to
craniofacial reconstructive surgeons. The current gold stan-
dard of current restoration is to use autologous bone to recon-
struct craniofacial defects, which is often insufficient in quan-
tity and causes huge donor site morbidity. Despite alloplastic
materials and prosthetic implants including metal and plastics
trying to act as alternatives, optimal clinical results are not
achieved for cranial restoration. However, by delivering oste-
ogenic induced cells or cells capable of osteogenesis such as
ADSCs, bone formation for cranial bone defects could be
achieved. Several pre-clinical studies have utilised ADSCs
for engineering bone to repair cranial defects and few clinical
cases have also been reported.

Calvarial defects are the more frequently used model to test
stem cells for tissue engineering. Several rodent animal stud-
ies have illustrated the ability of ADSCs to form bone to heal
calvarial defects. Human ADSCs isolated from the fat tissue
of 3 patients was harvested from the abdominal tissue
discarded during reconstructive breast surgery. The ADSCs
were then seeded on polylactic glycolic acid, atelocollagen,
and hydroxyapatite scaffolds to support osteogenesis in
athymic nude rat calvaria [48]. Bone mineral densitometry
analysis revealed a 2 to 3-fold increase in mineral density in
ADSC-seeded scaffolds and healed the rat calvarial defects
[48]. Osteogenically induced ADSCs have been thought to
provide better bone formation than unstimulated ADCSs. Di
bella et al. highlighted that osteogenically induced ADSCs can
promote more bone formation than unstimulated ADSCs in a
rabbit model. Osteogenically induced ADSCs seeded on fi-
bronectin treated Poly(lactic acid) (PLA) scaffolds formed
significantly more bone than PLA scaffolds without fibronec-
tin and scaffolds with undifferentiated ADSCs (p<0.0005)
over 6 weeks [49]. The immunomodulatory functions of allo-
genic ADSCs has been utilised by healing a cranial critical
sized defect without the need of immunosuppressive therapy
on a coral scaffold [50].
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Few studies, have illustrated that the combination of
growth factors and ADSCs can support the healing of calvarial
bone defects. Xenograft bone chips, covered with acellular
periosteum with ADSC and progenitor stem cells and vascular
endothelial growth factor and/or bone morphogenetic protein-
2 (BMP-2) showed histological confirmation of bone healing
for rat critical calvarial bone defects.[51] Lin et al. showed that
BMP-2 transfected ADSCs loaded on alginate showed com-
plete healing of rat calvarial cranial defects of 16 weeks but
only partial repair for scaffold alone and non transfected
ADSCs [52]. Lin et al. illustrated that osteogenic differentia-
tion by BMP-4 adenovirus of BMDSCs and ADSCs was
capable of healing rabbit calvarial defects [53].

Whilst there are numerous reports in rodents, there are only
two clinical studies showing the capacity of ADSCs for
calvarial bone regeneration. The first was the case report of
using ADSCs to reconstruct widespread calvarial defects of a
7-year-old girl following a severe head injury [54]. ADSCs
were combined with fibrin glue and bone from the iliac
crest to reconstruct the calvarial defect in a single
operation. The second study, also reported in Germany,
illustrated the reconstruction of large calvarial defects in
4 patients using ADSC seeded in beta-tri-calcium phos-
phate granules [55].

Several large animal studies have illustrated the po-
tential of ADSCs to healing mandibular defects. The
injection of ADSCs into the ramus of the pig mandible
showed accelerated bone development after 2 and
4 weeks [56]. Similarly, ADSCs seeded onto collatemp
scaffolds (collagen impregnated with gentamycin)
showed greater bone formation than scaffold alone in
a canine mandibular defect [57]. Two clinical studies
have confirmed the used of ADSCs for mandible de-
fects. ADCS have been used to reconstruct the critical
size defects of the mandible seeded on a resorbable
scaffold combined with BMP-2 in 23 patients [58].
More recently, the same author reported the reconstruc-
tion of a 10 cm anterior mandibular ameloblastoma
resection defect, using a tissue-engineered construct
consisting of B-tricalcium phosphate (3-TCP) granules,
recombinant human bone morphogenetic protein-2
(BMP-2), and Good Manufacturing Practice (GMP) lev-
el autologous ADSCs [59].

The use of ADSCs and orbital floor defects has not
been thoroughly explored. A single report has also
illustrated the success of ADSCs for orbitozygomatic
reconstruction [60]. A 14-year of boy with Treacher
Collins Syndrome was treated with engineered bone
made from a combination of human bone allograft,
ADSCs, BMP-2, and periosteal graft to manage his
bilateral orbitozygomatic defects (Fig. 2) [60]. Similarly
there has been one single case report of using ADSCs
for maxillary reconstruction (Fig. 2) [61].

Use of ADSCs to Generate Cartilage

Cranial cartilage defects involves the auricular and nasal car-
tilage caused by congenital deformities, cancer resections,
inflammatory conditions and trauma. Adult cartilage is avas-
cular, with limited capability of self-restoration due to the
matrix having a slow turnover and very low supply of pro-
genitor cells [62]. Therefore, current restoration of cartilage
defects involves obtaining autologous cartilage from either
costal, auricular or nasal cartilage. However, the limited sup-
ply of cartilage, the consequential donor site morbidity, the
fact it cannot be easily shaped into the desired shape, are all
reasons that researchers are trying to find alternative strategies
to create cartilage tissue [62]. Since the work of Cao et al. in
1997, who engineered cartilage using chondrocytes in the
shape of an ear in an nude mouse model, many researchers
have tried to develop cartilage constructs using tissue engi-
neering principles [63]. In addition to finding the right scaf-
folds to support chondrogenesis the source of cells to allow for
cartilage formation is required.

The expression of chondrogenic markers can be induced in
ADSC:s in vitro after exposure to a combination of dexameth-
asone, transforming growth factor (TGF (3-1/3-3) and ascor-
bate confirmed by positive alician blue staining over a three-
week period [62]. Several studies have highlighted that 3-
dimensional culture (3D) enhanced the chondrogenic differ-
entiation of ADSCs compared to 2-dimensional (2D) culture.
The simplest method to achieve this is to culture using a
micromass pellet [64]. Alternatively, ADSCs can be seeded
on a biomaterial scaffold grown in chondrogenic culture con-
dition. Yoon et al. illustrated that ADSCs showed greater
proliferation and differentiation on 3D-hydroxyapatite scaf-
folds compared to the micromass culture [65].

Several culture medium cocktails have been investigated to
induce chondrogenesis of ADSCs and BMDSCs, due to the
difficulty to obtain reliable differentiation (Table 2) [66—75].
In addition to the media, several biomaterials have success-
fully shown to support the differentiation of ASDSCs into
cartilage. Natural biomaterials that support chondrogenesis
include alginate and fibrin. Autologous ADSCs were isolated
and induced with growth medium and placed in a fibrin glue
scaffold and into 3 x 4-mm full-thickness chondral defects in
rabbits with negative controls. Twelve of 12 (100 %) articular
surface defects containing tissue-engineered stem cell con-
structs healed with hyaline-like cartilage, versus 1 of 12
(8 %) in the control group (p <0.001) [76]. Similarly, alginate
disks seeded with ADSCs supported the formation of a carti-
laginous like matrix at 12 weeks in nude mice, with increase
expression of collagen III, VI and chondroitin sulphate [77].

Several synthetic scaffolds have been utilised for the
chondrogenic differentiation of ADSCs. Cui et al. found that
PGA scaffolds supported chondrogenesis of ADSCs to repair
full thickness articular cartilage defects (8 mm in diameter,
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Fig. 2 Left: 14-year of boy with Treacher Collins Syndrome treated with
human bone allograft, adipose derived stem cells (ADSCs), bone morpho-
genetic protine-2 (BMP-2) and a periosteal graft to manage his bilateral
orbitozygomatic defects. a, ¢, e Preoperative views. b, d, f postoperative
views [60]. Reprinted from Taylor JA. (2010). Bilateral orbitozygomatic
reconstruction with tissue-engineered bone. J Craniofac Surg, 21, 1612—4.
Right: Maxillary reconstruction following hemimaxillectomy using
ADSCs seeded on a titanium cage with beta-tricalcium phosphate (bTCP).
(a) The titanium cage filled with bTCP and ADSCs, before being inserted
into the rectus abdominis muscle pouch [61]. b Skeletal scintigraphy of the
rectus abdominis muscle was performed which confirmed bone activity

deep to subchondral bone) in femur trochlea at 3 months [78].
Poly-lactide-co-glycolide (PLGA) scaffolds were also found
to support the differentiation of ADSCs for 3 weeks in vitro in
media supplemented with TGF-31 [79].

Few studies have compared differentiated and undifferen-
tiated ADSCs for their chondrogenic potential. Rabbit
osteochondral defects were treated with predifferentiated and
undifferentiated ADSCs on gelatin hydrogels. Pre-
differentiated ADSCs showed the highest level of cartilage
formation by histological examination. Predifferentiated
ADSCs were further compared to undifferentiated ADSCs
after being implanted into nude mice on poly(3-
hydroxybutrate-co-3-hydroxyvalerate) (PHBV) scaffolds for
16 weeks [80]. Differentiated ADSCs were found to show
stronger chondrocytes-specific histochemical staining and
stronger compression moduli [80]. Alginate gels also support-
ed cartilage formation when ADSCs were pre-differentiated
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[61]. ¢ When the rectus abdominis free-flap was raised, and the muscle
pouch and titanium cage was opened the tissue engineered bone was
clinically confirmed to be rigid. After disconnecting the vessels the flaps
was placed in the maxillary defect. [61] d A histological section from the
tissue-engineered bone showed normal mature bone structures. Reprinted
from Mesiméki K, Lindroos B, Tornwall J, Mauno J, Lindqvist C,
Kontio R, Miettinen S, Suuronen R. (2009). Novel maxillary recon-
struction with ectopic bone formation by GMP adipose stem cells.
Int J Oral Maxillofac Surg, 38, 201-9 Copyright (2014), with
permission from Elsevier

when subcutaneously implanted into nude mice after 20 weeks
but no cartilage like tissue formation was found using undif-
ferentiated ADSCs [81].

Despite extensive research into the chondrogenic potential
of ADSC:s only one in vivo study has confirmed the promising
application of ADSCs for craniofacial applications. Bahrini
et al. recently illustrated that ADSCs may be a novel candidate
for the repair of auricular cartilage injuries in vivo. ADSCs
from rabbit adipose tissue was injected into the midportion of
a surgically created rabbit ear auricle cartilage defect. After
6 months mature cartilaginous plates completely filled the
defect in the native cartilage [82].

It is clear that the biochemical environment, including the
growth factors, hormones and specific laboratory cell culture
conditions required to chondrogenic differentiate ADSCs is
still being determined. Hence, further exploration into
optimising chondrocyte culture conditions is required
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Table 2 Examples of the multiple medium combinations to stimulate chondrogenic differentiation of adipose derived stem cells (Adapted from 66)

Source of tissue were from human except *from rabbit

Year and Ref Differentiation Protocol Outcome
2001 [2] DMEM, FBS, insulin, ascorbate 2-phosphate Processed lipoaspirate cells differentiate in vitro into a chondrogenic
lineage using specific induction factors.
2002 [67] DMEM, FBS, ITS, ascorbate 2-phosphate, ADSCs abundantly synthesized cartilage matrix molecules including
dexamethasone, TGF3-1, sodium pyruvate collagen type 11, VI, and chondroitin 4-sulfate.
2003 [68] DMEM, BSA, ITS, ascorbate 2-phosphate, The combination of TGF-f31 and ITS stimulated cell growth and
sodium pyruvate, TGFf3-1, dexamethasone, synthesis of proteins and proteoglycans by human ADSCs.
L-glutamine, pyridoxine hydrochloride
2004 [69] DMEM, FBS, ITS, ascorbate 2-phosphate, Chondrogenic media containing TGF-31 significantly increased
dexamethasone, TGF[3-1 protein and proteoglycan synthesis and DNA, sulfated
glycosaminoglycans, and hydroxyproline content of engineered
constructs.
2004 [70] DMEM, FBS, transferrin, ITS, ascorbate Chondrogenic media enabled processed lipoaspirate cells to form
2-phosphate, dexamethasone, TGF3-1 nodules within 48 h of induction and expressed the cartilaginous
markers collagen type II, chondroitin-4-sulfate and keratan sulfate.
2006 [71] HAMS-F12, DMEM, ITS, ascorbate 2-phosphate, By day 14 ADSCs in chondrogenic media on elastin hydrogels
dexamethasone and TGF(3-1 exhibited formation of collagen and sulfated glycosaminoglycan.
2006 [72] DMEM, FBS, ITS, ascorbate 2-phosphate, BMP-6 BMP-6 up-regulated aggrecan and collagen expression showing
BMP-6 is an inducer of chondrogenesis in ADSCs.
2006 [73] * DMEM, FBS, ITS, ascorbate 2-phosphate, BMP-2 ADSCs induced by thBMP-2 were transplanted into nude mice and
formed cartilage lacuna at week 8.
2007 [74] DMEM, ITS, ascorbate 2-phosphate, sodium BMP-2 and TGF-31 induced a chondrogenic phenotype in ADSC.
pyruvate, pyridoxine hydrochloride,
L-glutamine, dexmethasone, TGF-1, BMP-2
2009 [75] HAMS-F12, DMEM, ITS, ascorbate 2-phosphate, At 4 weeks, glycosaminoglycan assays, RT-PCR, and histology

thyroxine, pyruvate, dexamethasone, TGF[3-2,
BMP-2,6,7

demonstrated the combination of 5 ng/mL of TGFf3-2 and
100 ng/mL of BMP-7 most effectively induced chondrogenesis of
ADSCs.

Key; TGFp-1 transforming growth factor-31, BMP bone morphogentic protein, DMEM dulbecco modified eagle medium, FBS fetal bovine serum,
ADSCs adipose derived stem cells, /7S insulin-transferrin-selenium, BS4 bovine serum albumin, R7-PCR real-time reverse-transcription PCR

before large amount of animal studies or clinical studies
are performed.

Use of ADSCs to Generate Adipose

Soft tissue defects range from a small to major subcutaneous
tissue loss on the face from congenial, trauma or inflammatory
conditions. Neuber et al. was the first to publish the use of
autologous fat transplantation in 1893 for the use of facial scars
[83]. Despite adipose tissue being a quick, safe and reliable
method for restoring volume and utilised for over 100 years,
little has be done to improve the clinical performance of fat
grafts. Autologous fat grafts are associated with many difficul-
ties including donor site morbidity, uncertain viability and be-
haviour of the grafted fat and a low rate of graft survival [84].
The loss of tissue has also been shown to be replaced by the
conversion of the graft to fibrous tissue, and sometimes includes
the formation of cysts [84]. Recently, ADSCs have been thought
to overcome these limitations due to their significant potential
for angiogenesis and adipogenesis [85]. When fat is grafted into
the site a series of reactions have been found to occur. The
bleeding at the recipient tissue activates platelets, causing the

release of platelet derived growth factor (PDGF), epidermal
growth factor (EGF) and TGF-3 [85, 86]. The grafted fat is
under severe ischaemia until a direct vascular supply is formed,
causing the death of adipocytes, vascular endothelial cells but
not adipose-derived stem/progenitor cells [87, 88]. The dying
cells as well as the extracellular matrix (ECM) disruption cause
the release of soluble factors. As the ADSCs/progenitor cells do
not die they are capable of responding to these factors to release
paracrine factors or simulate the mobilisation of endothelial
progenitor cells (EPCs) from the bone marrow or resident
progenitor cells to stimulate angiogenesis and adipogenesis
[89, 90] (See Fig. 3). However, further investigation is required
to confirm the action of ADSCs in grafted fat tissue to promote
angiogenesis and adipogenesis as it is still unclear and not fully
understood or documented [85].

Over the last decade several studies have explored the
addition of stem cells to fat grafts. Zhu et al. further showed
that after 6 and 9 months ADSCs enhanced fat grafts not only
enhanced the longevity 2-fold compared to adipose free grafts
but enhanced the expression of various growth factors includ-
ing vacular endothelial growth factor-A (VEGFA) and insulin
growth factor-1 (IGF-1), promoting angiogenesis and
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Fig. 3 Proposed action of adipose derived stem cells (ADSCs) in en-
hancing survival of fat grafts. Factors released from the extracellular
matrix and platelets stimulate ADSCs to secrete angiogenic factors,
which stimulate angiogenesis, adipogenesis and wound healing (Adapted

adipocyte differentiation and preventing apoptosis [91].
Moseley et al. illustrated that fat supplemented with ADSCs
can improve longevity and the volume of the grafts [92].

In addition, ADSCs have also been used to enhance grafts
by using the SVF to augment soft tissue survival, in a process
called Cell Assisted Lipotransfer (CAL) (Fig. 1). The process
begins with extracting adipose tissue using the conventional
machine. The aspirate is then divided into two portions. Half
of the aspirate is washed extensively with sterile phosphate-
buffered saline (PBS) to remove contaminating debris and red
blood cells and then treated with 0.075 % collagenase for
30 min at room temperature. The infranatant is centrifuged
for 5 min at 1,200g after being inactivated using FBS. The
cellular pellet is then resuspended in 10 % FBS and passed
through a 100-um mesh filter to remove debris. The first
portion is then also centrifuged at 1,200g for 5 min and then
mixed with the adipose stem cell rich aspirate for 15 min
before being transplanted. Preclinical studies have illustrated
the benefit of CAL [93, 94]. Aspirated fat was transplanted

@ Springer

from Regenerative Medicine. (2011) 6(6s), 33-41 with permission of
Future Medicine Ltd). ECM; Extracellular Matrix, ADSCs: Adipose
derived stem cells, EPCs; Endothelial progenitor cells

subcutaneously into severe combined immunodeficiency
mice with CAL and without CAL. The CAL fat survived
better (35 % larger on average) than non-CAL fat, and micro-
vasculature was detected more prominently in CAL fat [93].
The study also confirmed that some of the ADSCs differenti-
ated into vascular endothelial cells being immunopositive for
Von Willebrand Factor, which could have contributed to
neoangiogenesis in the acute phase of the transplantation
[93]. Similarly, Lu et al. reported that fat grafts implanted in
the subcutaneous tissue of 18 nude mice supplemented with
ADSCs transduced with vascular endothelial growth factor
(VEGF) had better survival than ADSCs free fat grafts over
6 months (74.1+12.6% and 60.1£17.6%, respectively) [94].

Several studies have shown that ADSCs can be delivered to
the specific site via scaffolds. ADSCs are capable of attaching
to synthetic and natural scaffolds can undergo proliferation,
differentiation and angiogenesis. Venugopai et al. illustrated
that ADSCs grown on biphasic calcium phosphate allowed
the formation of fat when implanted in the rat dorsum muscle
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after 3 weeks [95]. PLGA adipocyte grafts have shown to
maintain a phenotype after 56 days with positive confocal
microscopy showed associated LipidTOX Deep Red neutral
lipid staining. The PLGA scaffolds were further encapsulated
within the alginate/chitosan hydrogel capsules and showed
subcutaneous tissue over 28 days [96].

Few clinical studies have illustrated the clinical application
of ADSCs for clinical use in regeneration of facial fat tissue
[84, 97—-102]. Yoshimura et al. in 2008 was the first to illus-
trate the effectiveness of CAL for facial augmentation, in
patients with facial lipoatrophy [84]. Lee et al. in 2012 found
CAL in 9 patients with facial augmentation gave better satis-
faction and photographic evidence of increased volume than
those without SVF cells (Fig. 4) [97].

Progressive facial hemiatrophy, also known as Parry-
Romberg Syndrome, is a gradual loss of the subcutaneous
tissue on one side of the face that creates craniofacial asym-
metry (Fig. 4) [98]. A single patient underwent CAL after a 5-
year history of right facial hemiatrophy. At 12 months follow
up there was better volume and symmetry of the

frontotemporal region and malar prominence and cheek [98].
A similar case report illustrated that ADSCs could be used for
Linear scleroderma “en coup de sabre”, characterized by
atrophy and furrowing of the skin of the front parietal region
above the level of the eyebrow [99].

Outlook for Adipose Stem Cell for Cranial Facial Surgery

Literature reports of ADSCs for cranial factor application have
rapidly increased over the last 5 years. Though preclinical data is
encouraging, largely level 4 and 5 clinical evidence with lack of
power is insignificant to affect tailor clinical practice (Table 3).
There are considerable hurdles, which remain to bring ADSCs
into large-scale engineering for craniofacial surgery.

There are many unanswered questions that limit the clinical
translation of ADSCs for craniofacial application relating to
the isolation and processing of ADSCs. Firstly, whether opti-
mal tissue formation is produced using cultured or uncultured

Fig.4 Left: Clinical views of cell assisted liposuction (CAL) for Grade 4
lipoatrophy. (A, B) Preoperative views of the patient diagnosed with
Parry-Romberg syndrome (PRS). (C, D) CAL (110 mL) was performed
to correct the facial defect, which improved and the facial contour was
maintained at 13-month follow-up. The cheek is soft and natural
appearing with no visible scars. Reprinted from Yoshimura K, Sato K,
Aoi N et al. (2008). Cell-assisted lipotransfer for facial lipoatrophy:
efficacy of clinical use of adipose-derived stem cells. Dermatol Surg,

34, 1178-85, copyright (2014), with permission of John Wiley & Sons,
Inc. Right: A 35-year-old male patient diagnosed with Parry-Romberg
syndrome (PRS). (E,G) Preoperative view. (F, H) Postoperative view
12 months after lipoinjection enriched with adipose derived stem cells.
Taken with permission from Castro-Govea Y, De La Garza-Pineda O,
Lara-Arias J et al. (2012). Cell-assisted lipotransfer for the treatment of
parry-romberg syndrome. Arch Plast Surg, 39, 659—62
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ADSCs need to be determined. Discovery of specific markers
for ADSC:s is also vital as this will allow rapid purification of
ADSCs, which may allow immediate use without cell culture.
The application of ADSCs currently remains costly and time
consuming. Reliable fast and efficient protocols for expansion
and differentiation of ADSCs into bone, cartilage and adipose
is also required before large clinical trials are to be carried out.
Standardized harvesting, processing and differentiation proto-
cols would also allow clinical studies to be able to effectively
compare clinical data. The number of cells that need to be
harvested for effective implantation is not clear from the
literature when direct application of ADSCS is utilised as for
cell assisted lipotransfer.

ADSCs capacity to heal cranial defects has been investi-
gated to the greatest depth in the literature to date, both in
preclinical and clinical studies. Several in vivo animal studies
have highlighted ADSCs can heal bone defects to the calvarial
and mandible, with few supporting clinical studies. However,
it is still not clear whether scaffolds, growth factors are re-
quired for optimal osteogenesis over a long period of time.
Furthermore, the specific scaffold material to support bone
growth is unknown and the importance of supplemental
growth factor in particular BMPs needs to be explored. Few
studies have illustrated the capacity of in vivo cartilage for-
mation using ADSCs for cranial defects [82]. Further study
into differentiation protocols of ADSCs into cartilage, scaffold
biocompeatibility and suitability will further develop the po-
tential for ADSCs to heal cranial chondrogenic defects [66].
ADSCs capacity to heal adipose cranial defects has attracted
considerable research interest. Clinical studies have illustrated
the potential of ADSCs to enhance fat loss due to facial
hemiatrophy, Parry Romberg disease and natural soft facial
defects. However, due the small numbers, variability in dose
of ADSCs used and processing of ADSCS, variability in
patient populations in these studies, further in vitro and animal
studies are required to expand ADSCs clinical applications.
Greater understanding of the ADSCs mechanisms to promote
angiogenesis and angiogenesis will enable researchers to con-
trol the amount of soft tissue formation. The paracrine factors,
migratory stimuli and differentiation potential of ADSCs to
enhance angiogenesis and soft tissue formation needs to be
analysed at a greater depth.

defects without the need for ectopic
rehabilitation with dental implants.

BMP-2 good option for mandibular
bone formation and allowing

standard immediate reconstruction

defects remains challenging as it
but results are encouraging.

takes longer and has a higher
cost than the conventional

Authors Conclusions

failures (one infection and two cases

reconstruct jaws except for three
of inadequate bone formation).

combined with thBMP-2 were

successfully implanted to
be implanted and prosthodontic

After 10 months dental implants could ADSCs in combination with 3-TCP and
rehabilitation was completed.

23 ADSCs seeded resorbable scaffolds ADSC-aided reconstruction of large

Outcome

Same technique as 2009 [61]
Similar technique to 2009 [61]

Methods

Conclusion

prepared for ectopic bone formation and
later microvascular translocation as
granules, recombinant BMP-2, and Good
Manufacturing ADSCs.

indicated.
10 cm anterior mandibular ameloblastoma

scaffolds, and growth factor as required.

reconstructed with ADSCs, resorbable
Vascularized soft tissue beds were

resected and repaired using 3-TCP

All patients with jaw defects were

Study Design

Preclinical data and few clinical studies have highlighted the
potential of ADSCs for generation of required bone, cartilage
and fat tissue for craniofacial surgery. A greater understanding
into the mechanisms that control ADSC differentiation,
immunodulatory functions and angiogenesis capacity is vital
to expand the use of ADSCS in craniofacial surgery. Further-
more the optimal harvesting and processing techniques of

Year and
2012 [58]
2013 [59]

Key; ADSCs adipose derived stem cells, 5TCP beta tricalcium phosphate, CAL cell assisted lipotransfer, SVF stromal vascular fraction

Table 3 (continued)
Replaced Ref

Tissue
Bone
Bone
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ADSCs for cultured and uncultured ADSCs needs to be
determined. This acquired knowledge will allow surgeons
and researchers in the future to control ADSCs in expansion
or through direct implantation providing optimal tissue resto-
ration for craniofacial applications. Currently we are working
in extraction of ADSCs in frametime of an operation of 2—
3 h, which may reduce the regulatory hurdle in the future.
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