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Abstract

Ubiquitination is a post-translational modification process that has
been implicated in the regulation of innate and adaptive immune
responses. There is increasing evidence that both ubiquitination
and its reversal, deubiquitination, play crucial roles not only during
the development of the immune system but also in the orchestra-
tion of an immune response by ensuring the proper functioning of
the different cell types that constitute the immune system. Here,
we provide an overview of the latest discoveries in this field and
discuss how they impact our understanding of the ubiquitin system
in host defence mechanisms as well as self-tolerance.
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Introduction

Our immune system’s daily routine is a constant battle against

attacks by invading potential pathogens. With a complex network of

different cells, receptors and signalling pathways, the immune sys-

tem ensures the elimination of pathogens, non-microbial foreign

substances or damaged cells whilst also tolerating ‘self’ and com-

mensal bacteria. The complexity, versatility and specificity of an

immune response are accomplished not only by the variety of differ-

ent cell types and receptors but also, and in particular, by post-

translational modifications (PTMs) of proteins involved in immune

signalling pathways. PTMs alter the properties of a protein by the

addition of a modifying chemical group, or another protein, to one

or more of its amino acid residues. The list of PTMs is long and to

date more than 200 different PTMs have been identified; with

phosphorylation, ubiquitination is likely to be the most extensively

studied and best characterised of these [1,2]. There is growing evi-

dence of the importance of ubiquitination in the initiation, mainte-

nance and termination of the immune system’s response to many

different stimuli.

An immune response requires tight regulation and control. Too

little activation can cause immunodeficiency and recurrent infec-

tions, whereas too much activation can lead to autoimmunity,

which is characterised by the recognition of self as non-self. An

uncontrolled and sustained immune response can result in tissue

damage and chronic inflammatory diseases.

Ubiquitin and ubiquitination

Ubiquitination (also known as ubiquitylation or ubiquitinylation) is

the energy-dependent, post-translational modification process in

which the 8 kDa protein ubiquitin is covalently attached to one or

more lysine residues of a substrate protein. The process of ubiquiti-

nation is a sequence of three events known as activation, conjuga-

tion and ligation, involving three different types of enzymes: the first

step is ATP-dependent and carried out by a ubiquitin-activating

enzyme, E1, and results in the formation of a thioester linkage

between ubiquitin and the E1. The next step catalyses the transfer

of ubiquitin from the E1 to the active-site cysteine of a ubiquitin-

conjugating enzyme, E2. The third and final step of ubiquitination is

executed by an E3 ubiquitin ligase resulting in the formation of an

isopeptide bond between the C-terminal glycine of ubiquitin and a

lysine residue of a target protein [3,4].

The substrate protein can also be ubiquitin itself, which will

result in formation of a ubiquitin-linkage or di-ubiquitin. Ubiquitin

has seven lysine residues, opening the possibility of forming seven

different linkage types, namely K6, K11, K27, K29, K33, K48 and K63.

In addition, a donor ubiquitin can also be attached to an acceptor

ubiquitin via the amino terminal methionine (M1) resulting in the

formation of M1- or linear linkages, making a total of eight different

inter-ubiquitin linkage types [5].

The human genome encodes only two E1s, but at least 38 E2s

and more than 600 E3s, making the process of ubiquitination very

diverse and complex, but also very specific. It requires both linkage

and substrate specificity, to ensure the attachment of the right

ubiquitin linkage type to the intended substrate in the correct posi-

tion. E2s are capable of mediating linkage specificity, either on their

own, by the use of a cofactor or with the help of the respective

substrate [6,7]. In addition, some E3s possess intrinsic linkage

specificity that is independent of the respective E2 [8]. Substrate

specificity is ensured by the diverse E3s [9].

E3 ligases are divided into subfamilies according to their domain

structure: HECT, RING or RBR ligases. HECT domains have been

identified on the basis of sequence similarity to the C-terminal cata-

lytic domain of the E3 ligase E6AP [10] whereas RING domains are

characterised by a consensus sequence of cysteines and histidines

that bind two zinc ions [9]. HECT domains are always located at the
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C-terminus whereas RING domains can occur anywhere in an E3.

The third subfamily, the RING-between-RING E3s, is defined by

three domains that are in close proximity to each other: a classical

RING domain, termed RING1, an in-between RING (IBR) domain,

and a second RING domain, termed RING2. The IBR and RING2

domains are exclusively found in RBR E3s [11].

The domain organisation determines the mechanism of how

ubiquitination occurs. In reactions involving HECT E3s the ubiquitin

is transferred from the E2 to an active site cysteine of the E3 before

being transferred to the substrate [12]. E3s with RING domain struc-

ture are capable of bringing the ubiquitin that is bound to the E2

and the substrate into such close proximity that the transfer from

the E2 to the substrate is a direct one. Recently, it has been shown

that the mechanism for RBR ligases possesses features of HECT and

RING E3s. RBR ligases first bind to the E2 that is complexed with

ubiquitin via the RING1 domain representing the feature of classical

RING E3s. However, RBR ligases require an additional step for sub-

strate ubiquitination that involves an active site cysteine in the

RING2 that catalyses the transfer of the ubiquitin from the E3 to the

substrate and, thus, acts in a HECT-like manner. This RING-HECT

hybrid mechanism has so far been shown for the RBR ligases HHA-

RI, Parkin and HOIP [also known as ring finger protein (RNF) 31]

[13–15].

Different ubiquitin linkages fulfill different physiological func-

tions. The well-studied K48–linkage targets proteins for proteasomal

degradation whereas K63-linkages are required for cell signalling

events in DNA damage response or cytokine signalling [16,17]. Until

recently, the other linkage types were not studied in much detail

and had therefore often been referred to as ‘atypical’ ubiquitin link-

ages. The functions so far attributed to atypical linkages are very

diverse. For example, K6–linkages have also been implicated in the

DNA damage response [18–20]. K11-linkages were shown to

mediate proteasomal degradation in mitosis and cell cycle regula-

tion, but also to play a role in membrane trafficking and, most

recently, in TNF signalling [21–25]. K27–linkages were shown to be

attached by the E3 ligase Parkin to mitochondrial proteins during

mitochondrial damage response [26,27]. In addition, K27–linkages

are present on TIEG1, a transcription factor that is involved in the

development of TGFb-induced regulatory T cells (Tregs) [28]. Both,

K29- and K33-linkages were implicated in the regulation of AMPK-

related protein kinases [29]. K33–linkages were further shown to be

important for the regulation of T-cell receptor (TCR) responses [30].

In 2006, M1- or linear ubiquitin linkages were shown to be cata-

lyzed by a complex called LUBAC, consisting of two RBR ubiquitin

ligases, HOIL-1 (also known as RanBP-type and C3HC4-type zinc

finger-containing protein 1 (RBCK1)) and HOIP [5]. The function of

this type of linkage, however, was not revealed until 2009 when it

became clear that linear ubiquitin chains are required for cell signal-

ling events induced by TNF and Interleukin (IL)-1b [31,32]. In addi-

tion, both HOIL-1 and HOIP were shown to form part of the native

TNF-RSC I [31]. In 2011, SHARPIN [also known as SHANK-interact-

ing protein-like 1 (SIPL1)] was identified as the third component of

LUBAC [25,33,34]. Linear ubiquitin linkages have so far been impli-

cated in the initiation and maintenance of gene activatory signalling

upon activation with different stimuli, including TNF, IL-1b, CD40,
muramyl dipeptide (MDP) and the endotoxin lipopolysaccharide

Glossary

M1 Linear linkages
ABIN1 A20 binding inhibitor of NF-jB 1
AIRE Autoimmune regulator protein
AMPK AMP-activated protein kinase
CARDIF CARD adaptor inducing IFN-b
Cbl-B Casitas B-lineage lymphoma
cFLIP Cellular FLICE/caspase-8 inhibitory protein
cIAP Cellular inhibitor of apoptosis protein
DUBs Deubiquitinating enzymes
FADD Fas-associated protein with death domain
GRAIL Gene related to anergy in lymphocytes
HECT Homology to E6AP C-terminus
HHARI human homologue of Drosophila ariadne
HOIL-1 Heme-oxidised iron-responsive element-binding

protein 2 ubiquitin ligase-1
HOIP HOIL-1-interacting protein
IKK Inhibitor of jB kinase
IPS IFN-b promoter stimulator*
IRAK IL1-R-associated kinase
LGP2 Laboratory of genetics and physiology gene 2
LUBAC Linear ubiquitin chain assembly complex
MAVS Mitochondrial antiviral signalling protein
MDA5 Melanoma differentiation-associated gene 5
MyD88 Myeloid differentiation primary response gene 88
Nedd4 Neuronal precursor cell-expressed

developmentally downregulated 4
NEMO NF-jB essential modulator
NIK NF-jB-inducing kinase
NOD Nucleotide oligomerization domain
NZF Npl4 zinc finger
OTU Ovarian tumour proteases
OTUB1 OTU domain-containing ubiquitin aldehyde-binding

protein 1
OTULIN OTU DUB with linear linkage specificity
PHD Plant homeodomain
pIgR Polymeric immunoglobulin receptor
PRR Pattern recognition receptor
RANK Receptor activator of NF-jB
RIG-I Retinoic acid-inducible gene
RBR RING-between-RING
RING Really Interesting New Gene
RIP Receptor interacting protein
SHARPIN SH3 and multiple ankyrin repeat domains protein

(SHANK)-associated RBCK1 homology (RH)-domain-
interacting protein

TAB TAK1-binding protein
TAK Transforming growth factor-b activated kinase 1
TAXBP1 Human T-cell leukemia virus type I (Tax1) binding

protein 1
TBK1 Tank-binding kinase 1
TIEG1 Transforming growth factor-b-inducible early growth

response protein 1
TNF Tumour necrosis factor
TNFR1 (TNF receptor 1)
TNF-RSC I (TNF-receptor signalling complex I)
TRABID TRAF-binding-domain-containing protein
TRADD TNFR1-associated death-domain (DD)
TRAF TNF receptor-associated factor
TRIF TIR-domain-containing adaptor protein inducing

interferon-b-mediated transcription-factor
TRIM25 Tripartite motif containing protein 25
UBAN Ubiquitin binding in ABIN and NEMO
VISA Virus-induced signalling adaptor
XIAP X-linked inhibitor of apoptosis protein

*Correction added after publication 27 December 2013: in the definition of IPS in the Glossary, IFNa was corrected to IFN-b
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(LPS), and in the prevention of TNF-induced cell death [25,31–35].

Within these signalling pathways, NEMO, RIP1, RIP2 and IRAK1

have been identified as substrates for linear ubiquitination

[25,36,37].

We are only beginning to understand the different signalling

outcomes of differently linked chains, and additional research is

required for the in-depth understanding and characterisation of

these atypical ubiquitin linkages (Sidebar A).

Proteins that contain so-called ubiquitin-binding domains (UBDs)

non-covalently bind to ubiquitin and are therefore called ubiquitin-

binding proteins (UBPs). More than twenty structurally different types

of UBDs have been identified in over 150 different proteins. UBD-

ubiquitin interactions enable conformational changes of UBPs, result

in oligomerisation or complex formation of proteins, increase the

affinity between the ubiquitinated substrate protein and the UBP, and

critically determine signalling outputs, as UBDs specifically recognise

certain linkage types. Our current knowledge on UBDs and UBPs has

recently been summarised in excellent reviews [38–40]. The specific

recognition of certain ubiquitin linkage types by UBDs is essential for

immune signalling pathways. NEMO, for example, contains the UBD

UBAN, which specifically recognises linear chains, whereas TAB 2

and TAB 3 preferentially bind to K63-linkages via their UBD NZF [41–

43]. The in-vivo relevance of UBDs is emphasised by the fact that

mutations that affect the UBAN domain of NEMO, and thereby

binding of NEMO to polyubiquitin chains, result in defective NF-jB
activation and disease development (reviewed in [44]).

The termination of an immune response is as important as its

initiation and propagation. Termination is achieved by the removal

of ubiquitin chains that mediate cell signalling events, such as K63-

linkages, and subsequent attachment of chains that mark a specific

protein for degradation. Removal of ubiquitin is carried out by so-

called de-ubiquitinating enzymes (DUBs). The human genome

encodes approximately 80 different DUBs. DUBs were identified to

have specificity for certain linkage types [45,46]: K11-linkages are

cleaved by Cezanne 1 (also known as OTU domain-containing pro-

tein 7B), TRABID (also known as ZRANB1) was shown to cleave

K29- and K33-linkages [47,48], OTUB1 cleaves K48-linkages, and

CYLD (encoded by the cylindromatosis gene) cleaves K63- and

M1-linkages [43,49]. A20 was identified as a negative feedback

regulator of NF-jB by cleaving K63–linkages on NF-jB signalling

molecules, for example RIP1 [50,51]. The OTU domain of A20,

however, was shown to preferentially cleave K48-linkages in vitro,

suggesting that additional factors are required to modulate A20’s

linkage specificity [43,52]. A20 was recently shown to restrict RIP1

ubiquitination by cleaving both, K48- and K63-linked chains [53].

Interestingly, A20 contains seven zinc fingers (ZF), of which ZF4

was shown to have intrinsic E3-ligase activity that is required for

binding to and K48-linked ubiquitination of RIP1 [51,54]. A DUB

that exclusively cleaves linear linkages was also recently discovered;

due to this activity, it was named OTULIN (also known as Gumby

or Fam105B) [55,56]. Also DUBs harbour UBDs and the recognition

and binding of a certain UBD to a specific ubiquitin linkage is

thought to be essential for specific chain hydrolysis [45]. However,

how a particular DUB recognises a particular linkage type and how

cleavage by a given DUB regulates specific signalling events requires

further investigation (Sidebar A). The different linkage types, their

known biological functions and respective DUBs identified so far are

summarised in Fig 1.

The immune response
The first lines of defence are the body’s physical barriers, such as the

skin or the intestinal and respiratory tracts. These physical barriers

possess multiple non-specific defence strategies that comprise mucus

production, decontamination by acid or special enzymes, and clear-

ance of airways by cilia [57]. When these physical barriers are

pervaded by pathogens, the second line of defence, the innate immune

system, is activated. The innate immune system detects microbial

products, the so–called pathogen-associated molecular patterns

(PAMPs), via the family of pattern-recognition receptors (PRRs) on

both immune and non-immune cells [58,59]. The PRR family consists

of different subfamilies, namely the Toll-like receptors (TLRs), the

RIG-I-like receptors (RLRs) and the NOD-like receptors (NLRs)

[60,61]. These receptors will not only be activated by microbial

products, but many of them also sense damage signals, the so-called

damage-associated molecular patterns (DAMPs) [62]. These alarmins

are released by damaged, injured or stressed cells and are usually cyto-

solic or nuclear proteins. Activation of PRRs will result in the

activation of mitogen-activated protein kinase (MAPK) and NF-jB
signalling, and subsequent induction of inflammatory cytokines and

chemokines—such as TNF, IL-1b, etc. These cytokines and chemokin-

es will lead to an inflammatory response and to the recruitment of

immune cells to the site of infection or tissue damage [63]. The innate

immune system provides an immediate but non-specific response. A

long-lasting and very specific immune response is achieved by the

activation of the adaptive immune system, the third and final line of

defence. Antigen-presenting cells (APCs), which belong to the innate

immune system, engulf pathogens and provide a link between the

innate and the adaptive immune system, the B and T cells [64–66]. T

cells strongly depend on presentation of antigens by APCs for their

activation. Cytotoxic T cells are capable of directly attacking and killing

infected cells. Helper T cells, as the name implies, help other immune

cells to differentiate and fulfill their function. The activation of B cells

results in clonal expansion of a pathogen-specific B cell and generation

of antibody-producing plasma cells or memory B cells. Memory B cells

ensure that a second contact with the same antigen will lead to a faster

and stronger immune response and elimination of the invader [57].

Sidebar A. In need of answers

(i) What is the exact physiological role of the different
ubiquitin linkage types?

(ii) How do different linkage types orchestrate different
signalling pathways and their outputs?

(iii) How does a specific DUB recognise a specific linkage type?
(iv) How is specific disassembly of ubiquitin linkages by a

specific DUB achieved?
(v) How does deubiquitination of ubiquitinated substrates affect

signalling output?
(vi) What are the specific targets of DUBs within innate immune

signalling pathways?
(vii) Do different DUBs share common targets and, if so, is there

a spatio-temporal regulation that makes them unique?
(viii) How does ubiquitination/deubiqutination regulate

inflammasome activation?
(ix) Are there any additional E3 ligases that contribute to the

maintenance of tolerance?
(x) How do the different E3 ligases cooperate to regulate the

balance between immune activation and tolerance?
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The sequence of events of an immune response requires tight

control, and ubiquitination and its reversal, deubiquitination, seem

to be crucial for the induction of an adequate but confined immune

response.

Recent advances in the understanding of ubiquitination events in

innate immune signalling pathways will be the focus of this review.

However, adaptive immune signalling pathways have also been

shown to require ubiquitination for proper signal transduction [67],

and ubiquitination seems to have an essential role in directing the

development of different adaptive immune cell lineages at the tran-

scriptional level [68].

Ubiquitin in innate immune signalling

The PRR family

TLR signalling

The TLRs are a family of membrane-bound receptors responsible for

sensing a broad array of pathogens—including bacteria, fungi,

viruses and protists—both outside the cell and intracellularly in

endosomes and lysosomes [60,69,70]. Indeed, TLRs are divided into

two groups according to their subcellular localisation: endosomal

TLRs (TLR 3, 7, 8 and 9) engage luminal PAMPs from endocytosed

pathogens, and plasma-membrane-expressed TLRs (TLR1, 2, 4, 5, 6

and 10) sense extracellular PAMPs. TLR engagement leads to

recruitment of a series of proteins resulting in a signalling cascade

that culminates in induction of pro-inflammatory cytokines and/or

type-I interferons (IFNs). Alternatively, TLR signalling can lead

either directly or indirectly (through the production of TNF,

described later in this review) to the induction of cell death through

RIP1, RIP3, caspase-8, FADD and cFLIP [71–73]. Our knowledge of

the role of ubiquitination in TLR-induced cell death is still rather

limited. Therefore, this review will focus on the role of ubiquitina-

tion in gene-regulatory signalling downstream of TLR3 and TLR4 by

the two different adaptor proteins that can be engaged, namely

MyD88 or TRIF [74], which account for different signalling outputs.

MyD88-dependent signalling, engaged by TLR4 but not TLR3,

induces the recruitment of IRAK proteins that subsequently interact
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Figure 1. Different ubiquitin linkage types and their role in immune signalling.
Ubiquitin, a small protein of 76 amino acids, can be attached to a substrate protein or to a ubiquitin molecule that is already attached to a substrate, with the latter
resulting in an inter-ubiquitin linkage. Attachment to substrates will typically occur through an isopeptide bond between the e-amino group of a lysine residue (K)
within the substrate protein and the C-terminal carboxyl group of glycine 76 (G76) of ubiquitin. Inter-ubiquitin linkages are usually between the e-amino group of one of
the seven internal lysine residues (K6, K11, K27, K29, K33, K48 and K63) of the substrate-associated acceptor ubiquitin and the carboxyl group of G76 of the incoming
ubiquitin*. Another type of inter-ubiquitin linkage can be formed between the a-amino group of the N-terminal methionine 1 (M1) of the substrate-associated ubiquitin
and the carboxyl group of G76 of the incoming ubiquitin. The resulting linkage type is called M1- or linear linkage. Different inter-ubiquitin linkage types fulfil different
functions in immune signalling. The functions currently attributed to the different linkage types are summarised in the respective boxes. Removal of ubiquitin is carried
out by DUBs, which have recently been shown to specifically cleave certain linkage types, for example CYLD cleaves K63- and M1–linkages.

*Correction added after publication 27 December 2013: in the preceding two sentences, “a-amino group” was corrected to “e-amino group”.
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with TRAF6, TRAF3, cIAP1 and cIAP2 [74,75] (Fig 2A). Within this

TLR4 signalling complex (TLR4-SC) TRAF6 is activated and conju-

gates K63-linkages to itself and to cIAP1/2, that serve as a scaffold

for the recruitment of two kinase complexes, namely TAB-TAK and

IKK-NEMO, leading to the activation of NF-jB and MAPK [42,76].

Importantly, the activation of the TAB-TAK complex requires

detachment of the TLR4-SC from the plasma membrane and translo-

cation to the cytosol. This process requires cIAP1/2-mediated K48-

ubiquitination of TRAF3 leading to its proteasomal degradation,

thereby allowing the residual complex to migrate to the cytosol

[77], resulting in activation of the TAB-TAK complex and transcrip-

tion of inflammatory cytokines.

Upon stimulation, TLR3 and TLR4 recruit the adaptor protein

TRIF although TLR4, but not TLR3, requires the additional recruit-

ment of another adaptor protein, TRIF–related adaptor molecule

(TRAM) to signal through TRIF (Fig 2A and B). Depending on the

ubiquitin ligases recruited to the complex, endosomal TRIF-depen-

dent signalling results in activation of NF-jB and/or type-I IFNs. In

the TLR3-SC RIP1 is recruited to a complex formed by TRIF, TRAF6

and the E3 ligase PELI-1 which belongs to the pellino family. PELI-1

subsequently attaches K63-linked polyubiquitin linkages to RIP1

[78], resulting in further recruitment of IKK-NEMO and TAB-TAK

complexes to induce NF-jB-mediated transcription of pro-inflamma-

tory cytokines. Alternatively, and contrary to MyD88-dependent

signalling in which TRAF3 acts as a negative regulator, TRAF3

undergoes K63-linked polyubiquitination (polyUb) and activates the

TBK1/IKKe complex, leading to IRF3 phosphorylation and subse-

quent type-I IFN production [79,80].

Other ubiquitin ligases have been shown to play an important

role in TLR signalling although the exact mechanism is less well

characterised. cIAPs are known to be involved in TLR3 signalling

and although their role in NF-jB activation has not been described,

they are known to be recruited to the TLR3-SC and to regulate cell

death induction via RIP1 polyubiquitination [71,72]. Additionally,

an increasing amount of evidence suggests that LUBAC is involved

in TLR-mediated signalling. Macrophages derived from mice that

are devoid of one of the LUBAC components, SHARPIN (also known

as cpdm mice; described later in this review), are unable to induce

phosphorylation of IjBa upon engagement of TLR4 by LPS, a well-

known TLR4 ligand [34]. Similarly, bone marrow-derived dendritic

cells (BMDCs) from cpdm mice failed to activate NF-jB upon stimu-

lation with LPS or poly(I:C), a TLR3 ligand [81]. Furthermore, a

recent study by Sasaki and colleagues showed that B cells derived

from mice lacking the E3 ligase activity of HOIP have impaired NF-

jB and ERK activation upon LPS stimulation [82]. Although LUBAC

clearly plays a role in TLR-mediated signalling —mostly by activat-

ing TAB-TAK and IKK-NEMO complexes— the mechanism by which

LUBAC regulates TLR-mediated signalling is not well understood

and therefore currently intensely studied.

To avoid unwanted exacerbated immune responses, DUBs are as

important in this process as the ubiquitin ligases themselves.

Recently, ubiquitin-specific protease (USP)-25 has been described to

play an essential role in shutting off TLR4-mediated induction of

MAPK signalling [83]. USP25 interacts with MyD88, but not with

TRIF, restricting the production of pro-inflammatory cytokines

whilst promoting IFN production via stabilisation of TRAF3 in LPS-

stimulated DCs, macrophages and MEFs. Mechanistically, USP25

acts as a direct TRAF3 DUB, and thereby counteracts cIAP1/2’s

inhibitory effect on TRAF3, preventing the dissociation of the com-

plex from the membrane and restricting the pro-inflammatory

response [83]. Concomitantly, the stabilisation of TRAF3 by USP25

promotes the TRIF-dependent production of type-I IFN (Fig 2B).

This dual function of USP25 may maintain the balance between

TLR-triggered production of pro-inflammatory cytokines and type-I

IFNs. The DUB USP7 has recently been proposed to be an important

NF-jB regulator in response to diverse TLR stimuli, including LPS

and poly(I:C). USP7 stabilizes NF-jB at target gene promoters by

deubiquitinating it and thereby preventing its proteasomal degrada-

tion. Ubiquitination and deubiquitination by E3 ligases and USP7,

respectively, have been proposed to determine the strength

and duration of the transcriptional outcome of NF-jB-activated
genes [84].

Another important DUB involved in TLR-mediated response is

A20. A20-deficient mice develop spontaneous inflammation and die

shortly after birth [50]. This is rescued by co-ablation of MyD88, but

not of TNF or TNFR1, indicating that signalling by MyD88-recruiting

TLRs is the main mediator of A20-deficiency-dependent inflamma-

tion [85,86]. A20 is part of a multi-protein complex that includes

Figure 2. Ubiquitination and deubiquitination are involved in multiple PRR signalling complexes.
(A) Multiple E3 ligases have been shown to be required for maximal gene activation in TLR3, TLR4, RIG-I and NOD2 signalling. Stimulation of TLR3 in the endosome
results in recruitment of TRIF and the E3 ligases TRAF3 and TRAF6. TRAF3 enables further recruitment of the TBK1/IKKe kinase complex resulting in IRF3 activation and
subsequent IFN production. TRAF6 mediates recruitment of PELI-1 via K63-linkages. PELI-1 in turn attaches K63-polyUb chains to RIP1. In addition, TRAF6 is required for
recruitment of TAB/TAK and IKK kinase complexes, resulting in NF-jB activation. The E3 ligases cIAP1 and cIAP2 are also recruited to the complex. Similarly, stimulation
of TLR4 by LPS results in receptor complex formation on the plasma membrane. This complex consists of MyD88, IRAK1/4, TRAF3/6 and cIAP1/2. cIAP1/2-mediated K48-
poly-ubiquitin linkages on TRAF3 result in its proteasomal degradation and the formation of a secondary cytoplasmic complex. LUBAC has been suggested to regulate
TLR signalling. RIG-I activation upon virus recognition is driven by TRIM25- and RNF135-mediated K63-poly-ubiquitination and oligomerisation of RIG-I. Activated RIG-I
binds to and activates the adaptor protein IPS-1 in the mitochondrial membrane, which induces the recruitment of TRADD, FADD and RIP1 and subsequent recruitment
of TRAF2/3/5/6 and cIAP1/2, resulting in TBK1/IKKe-mediated IRF3 and TRAF2/5/6-mediated NF-jB activation. NOD2 is an intracellular receptor that detects bacterially
derived muramyl dipeptide (MDP), leading to the formation of a complex consisting of RIP1, TRAF2/6, cIAP1/2 and XIAP, and RIP2. Ubiquitination of RIP2 is a key event in
NOD2 signalling, which results in the recruitment of LUBAC. (B) LUBAC, although a positive modulator in most SCs was shown to negatively regulate RIG-I-signalling by
preventing TRIM25/RIG-I interaction or by linear ubiquitination of NEMO and prevention of TRAF3 recruitment. RIP1 poly-ubiquitination has both a positive and negative
regulation on RIG-I-signalling, as it is needed for its recruitment as well as cleavage by caspase-8 at the complex. RNF125 catalyzes the formation of K48-linked polyUb
chains in both RIG-I and IPS-1, thereby inducing their proteasomal degradation. Several DUBs regulate these signalling complexes. USP25 binding to MyD88 results in
removal of K48-linkages from, and consequently stabilisation of, TRAF3. TRAF3 is then recruited to a TLR4/TRIF/TRAM complex leading to IRF3 activation. A20 and CYLD
have been shown to modulate these receptors although the exact mechanisms are still poorly understood. In NOD-2 signalling, A20 is known to deubiquitinate RIP2.
OTULIN has been described to selectively hydrolyse M1-linkages, thereby preventing NOD2 signalling under both basal and stimulated conditions.

▴
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TAX1BP1, the E3 ubiquitin ligases Itch, RNF11 and ABIN1/2/3

[87,88]. Further supporting the importance of A20 in TLR mediated

signalling, TAX1BP1-deficient macrophages and fibroblasts enhance

K63-linked ubiquitination of TRAF6 upon LPS stimulation, and it

was suggested that it functions as an adapter molecule that links

A20 to its substrate, in this context, TRAF6 [89]. Finally, the DUB

CYLD might modulate TLR signalling, as demonstrated in CYLD-

deficient macrophages, which were found to be hyper-responsive
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to LPS stimulation. However, the specific CYLD target modulat-

ing TLR3 and TLR4 responses remains to be determined [90]

(Sidebar A).

RLR signalling

RLRs are cytosolic PRRs involved in sensing actively replicating

double-stranded RNA (dsRNA) viruses. There are three RLRs,

RIG-I, MDA5 and LGP2 [67]. Upon sensing viral particles, RIG-I

becomes K63-ubiquitinated by two E3 ligases, TRIM25 and

RNF135, but also by unanchored (free) K63-polyUb chains, lead-

ing to RIG-I oligomerisation, activation and binding to the adaptor

protein IPS-1 (also known as MAVS, VISA and Cardif) at the

mitochondrial outer membrane [69,91] (Fig 2A). Activated IPS-1

recruits TRADD, which in turn recruits multiple components to

trigger the antiviral response [92]. Recruitment of the E3 ligase

TRAF3 leads to further recruitment of the TBK1 complex, result-

ing in the activation of IRF3 and subsequent IFN production [93].

On the other hand, recruitment of TRAF6, together with the adap-

tors TRAF2 and TRAF5, is involved in NF-jB activation, although

a recent study reported that this E3-ligase/adaptor complex can

also mediate IRF3 activation, and that TRAF3 might have a

redundant function [92]. TRADD also recruits caspase-8, RIP1 and

FADD, which are required for proper activation of IRF3 and

NF-jB [93,94] (Fig 2A). Ubiquitination of RIP1 has been sug-

gested to have a dual regulatory function on RIG-I-mediated

signalling, being involved in both the maximal activation of antiv-

iral signalling and its subsequent proper termination. Although

RIP1 ubiquitination seems to positively regulate RIG-I signalling,

it is also a prerequisite for its cleavage by caspase-8 in the RIG-I-

signalling complex (SC), resulting in a negative regulation of

RIG-I-mediated type-I IFN production [95] (Fig 2A and B). The

ubiquitin linkage types on RIP1 that are involved in this dual

function are unknown, but both cIAP1/2 and LUBAC may play a

role in this tight regulation (see below).

E3 ligases such as cIAP1/2, RNF125 and LUBAC are also

involved in RIG-I-mediated signalling [96]. cIAP1/2 attaches K63-

polyubiquitin linkages to TRAF3, TRAF6 [97] and possibly other

components, thereby positively affecting activation of IRF3 and

NF-jB. RNF125, on the contrary, has an inhibitory effect on RIG-I-SC,

as it attaches K48-linked polyUb chains to both RIG-I and IPS-1, target-

ing them for proteasomal degradation [98] (Fig 2B). Surprisingly,

LUBAC was also reported to have a negative regulatory function in

RIG-I-mediated antiviral responses through supposedly two different

mechanisms (Fig 2B). On the one hand, Inn and colleagues showed

that LUBAC prevents RIG-I-SC assembly through the ubiquitin-medi-

ated degradation of TRIM25 and/or disruption of the TRIM25-RIG-I

interaction, both scenarios resulting in inhibition of TRIM25-medi-

ated K63-ubiquitination of RIG-I, thereby preventing RIG-I’s interac-

tion with mitochondrial IPS-1. Accordingly, Sendai virus (SeV)

infection induced linear- and K48-polyubiquitin linkages on TRIM25,

and infection of HOIP knockdown cells led to increased IFN produc-

tion [99]. On the other hand, Belgnaoui and colleagues reported that,

LUBAC-mediated linear ubiquitination of NEMO sequesters TRAF3

and prevents it from binding the RIG-I/IPS-1 complex. In line with

this, vesicular stomatitis virus (VSV)-infected cpdm-derived MEFs

produced less virus and had an increased antiviral response due to

higher IFN production [100]. It therefore seems that, in the context of

RIG-I-mediated antiviral responses, linear ubiquitination has an

opposing role to that determined for other signalling pathways such

as those triggered by TNF [25,31], IL-1 [37], TLR [82] and NOD2

[35,36]. The precise role of linear ubiquitination in RIG-I signalling

requires further investigation to be fully understood (Sidebar A).

Several DUBs were shown to have an inhibitory effect on the

RIG-I signalling pathway (Fig 2B), as for example knockdown of

CYLD enhanced type-I IFN production in response to SeV infection

whereas ectopic CYLD-expression inhibited it [101]. Furthermore

fibroblasts and BMDCs from CYLD-deficient mice were shown to

have constitutive activation of TBK1. Mechanistically, CYLD was

shown to interact and deubiquitinate RIG-I, therefore inhibiting its

signalling function [102]. Another DUB suggested to play a role in

RIG-I signalling is DUBA. Overexpression of DUBA results in deubiq-

uitination of TRAF3 thereby disrupting the TRAF3-TBK1 interaction

[103] (Fig 2B). Given that TRAF3 may be dispensable for RIG-I

signalling [92], it cannot be excluded, however, that DUBA also tar-

gets other E3 ligases like TRAF2, 5 and 6. In addition, A20 has been

shown to counteract RIG-I-mediated transactivation of IRF3 and

NF-jB pathways but direct interaction of A20 with RIG-I or IPS-1

has not been reported [87,104]. Furthermore, the E3 ligase Itch,

which forms part of the A20 complex, has been shown to attach

K48-linked polyUb chains to IPS-1, leading to its proteasomal degra-

dation. However, similarly to A20, it has not been shown to interact

directly with IPS-1 [105].

NLR signalling

The NLR family are cytoplasmic sensors that detect bacterial infec-

tions. Two of the best studied NLRs, NOD1 and NOD2, detect the

presence of peptidoglycans derived from bacterial cell walls. Inter-

estingly, mutations in NOD2 have been linked to inflammatory

bowel disease.

Stimulation of NOD1 or NOD2 triggers the formation of a signal-

ling complex (NOD-SC) resulting in the activation of cytokines,

chemokines and antimicrobial peptides [69]. The NOD-SC has been

reported to contain RIP2 and cIAP1/2, and the cIAPs conjugate K63-

ubiquitin linkages to RIP2 [35,106] (Fig 2A). In addition, TRAF2, 5

and 6 are recruited to the NOD-SC, where they function as adaptors

and are important for the crosstalk between several NLRs, TLRs and

RLRs [107]. Another known IAP, XIAP is also recruited to the

NOD-SC, where it directly binds to RIP2 and plays a major role in its

ubiquitination [35,108]. Furthermore, XIAP is responsible for the

recruitment of LUBAC [35], which conjugates linear ubiquitin link-

ages to RIP2 [36] and possibly also to NEMO. Together, K63- and

M1-linkages are essential for the efficient recruitment and activation

of TAB-TAK and IKK-NEMO complexes, ultimately leading to activa-

tion of NF-jB and MAPK signalling and subsequent induction of

inflammatory mediators in NOD signalling [109].

The importance of XIAP in the innate immune response to intra-

cellular bacteria has been shown in several infection models. Upon

C. pneumoniae infection, XIAP-deficient mice suffer from increased

pulmonary infectivity and are unable to clear bacteria as a conse-

quence of reduced NF-jB activation [110]. Similarly, XIAP-deficient

mice succumbed to an intraperitoneal injection of Listeria monocyt-

ogenes due to increased bacterial burden [111]. Co-activation of

NOD2 and TLR4 was shown to lead to synergistic production of

cytokines required to mount an efficient immune response against

bacteria [112]. Fatal hepatitis, induced by injection of LPS together

with the liver-specific transcriptional inhibitor GalN and the NOD2

EMBO reports Vol 15 | No 1 | 2014 ª 2014 The Authors

EMBO reports Ubiquitin in the immune system Julia Zinngrebe et al

34



ligand MDP, was accelerated in XIAP-deficient mice. This effect was

NOD2-signalling-dependent, as livers of XIAP-deficient mice showed

only mild damage when treated with LPS and GalN alone [35]. In

line with this, cytokine levels were reduced in serum and in bone

marrow-derived macrophages (BMDMs) derived from XIAP-defi-

cient mice upon MDP treatment. Importantly, this was independent

of the role of XIAP as an inhibitor of apoptosis since treatment with

MDP and/or LPS neither induced cell death in wild-type nor in

XIAP-deficient macrophages [35]. Together, these results underscore

the requirement of XIAP’s E3 ligase activity in NOD signalling.

Importantly, recent work performed in cells obtained from

patients with the X-linked lymphoproliferative syndrome 2 (XLP2)

gave important insight on NOD signalling in humans. This disease

is caused by mutations in the Xiap gene, either in the part that

encodes the RING domain or the one that encodes the BIR2 IBM-

binding pocket. XLP2-causing mutations in the RING domain abro-

gate XIAP’s ubiquitin ligase activity whereas mutations in the BIR2

domain impair XIAP binding to RIP2 and both defects lead to an

impaired NOD2-mediated NF-jB activation [113]. The SMAC

mimetic Compound A displaced XIAP-RIP2 binding, thereby antag-

onising RIP2 ubiquitination and recruitment of LUBAC. Importantly,

this was independent of cIAP1/2, as it occurs in the XLP2 patients

[113]. This suggests that NOD1/2 signalling might be regulated at

the level of XIAP recruitment to the NOD-SC by BIR2-IBM binding

proteins and other factors that interfere with its binding to RIP2,

rather than by cIAP1/2. In line with this work, the inositol phospha-

tase SHIP-1 was reported to negatively regulate NOD2 signalling by

interfering with XIAP-RIP2 binding [114].

The DUB A20, which directly deubiquitinates RIP2, is a negative

regulator of NOD2-SC. Consistently, exacerbated responses to MDP

stimulation, with increased RIP2 ubiquitination and NF-jB activa-

tion, were observed both in vitro and in vivo in the absence of A20

[115]. Similarly, the recently identified DUB OTULIN [36,55,56] neg-

atively regulates NOD2-mediated signalling by preventing LUBAC

autoubiquitination under basal conditions, as well as restricting the

accumulation of linear ubiquitin chains on RIP2 and LUBAC upon

stimulation (Fig 2B). OTULIN depletion in cells resulted in increased

MDP-induced transcription of NF-jB target genes, and its overex-

pression inhibited LUBAC- and, to a lesser extent, XIAP-mediated

NF-jB activation [36].

An emerging role of ubiquitination has also been described for

another important NLR, the NLRP3, which is involved in the assem-

bly of the inflammasome —a platform containing caspase-1 that is

involved IL-1b activation [116]. cIAP1/2 have both been implicated

in inflammasome regulation, although some controversy in their

function makes it currently difficult to fully understand their exact

influence and mechanism of action. Labb�e and colleagues reported

that cIAP1/2, together with TRAF2, directly interact with a caspase-

1-containing complex and mediate its K63-polyubiquitination,

thereby positively regulating inflammasome activation. Consis-

tently, cIAP1/2 inhibition in THP-1 cells, a monocytic cell line,

markedly inhibited caspase-1 activation and IL-1b processing [117].

Vince and colleagues, on the contrary, demonstrated that cIAP1/2

and XIAP have an inhibitory effect on the NLRP3-inflammasome.

The authors showed that either treatment with the SMAC mimetic

Compound A or genetic ablation of cIAP1/2 and XIAP induced rapid

generation of the NLRP3-caspase-1 inflammasome, leading to

increased IL-1b maturation and secretion. They further showed that,

in the absence of IAPs, activation of IL-1b secretion can occur in a

caspase-1-independent manner, suggesting the existence of other

IL-1b-activating platforms, possibly relying on caspase-8, in which

IAP E3 ligase activity exerts an inhibitory effect [118]. Although the

exact roles of cIAP1 and cIAP2 remain to be established, it is clear

that they have a crucial role in inflammasome activation. Py and

colleagues recently identified the DUB BRCC3 as a positive regulator

of the inflammasome by directly deubiquitinating NLRP3. BRCC3

knockdown leads to an increase in NLRP3 ubiquitination, and the

DUB activity of BRCC3 is required for caspase-1 activation and IL-1b
processing, but not for LPS-induced transcription of pro-IL-1b or of

NLRP3 itself [119].

Taken together, these recent studies provide new insight on the

importance of ubiquitination in NLRP3-inflammasome-dependent

and -independent IL-1b activation. Investigation of the role of other

E3 ligases and DUBs in inflammasome activation will further con-

tribute to a more comprehensive understanding of this process

(Sidebar A).

The TNF superfamily
The TNF superfamily consists of 19 members, which share sequence

homology with its founding member TNF. These ligands interact

with 29 different receptors, resulting in a plethora of physiological

outcomes, including inflammation, proliferation and cell death

[120]. Ubiquitination has been identified to regulate many, if not all,

of the signalling pathways used by these ligands [25,31,82,121].

TNF signalling has always been the exemplar and best-understood

signalling pathway of the TNF superfamily. However, the more we

find out about the complexity and accuracy of the sequence of

events in TNF signalling, the more we realise what remains to be

discovered. Recent advances in the field, which further unravelled

the importance of ubiquitination for the sequence of events induced

by ligation of TNFR1 with TNF will be discussed below. However,

more work will be required to decipher the ubiquitin code of TNF

signalling (Sidebar A).

TNF signalling

TNF stimulation results in two opposing signalling outcomes. On

the one hand, TNF is a potent inducer of pro-inflammatory and

cell-death-preventing signalling cascades via TNF-RSC I. On the

other hand, TNF stimulation results in elimination of infected or

damaged cells via the induction of cell death by a cytosolic com-

plex that consecutively forms out of TNF-RSC I, termed complex

II [122]. Although the induction of gene-activatory signalling is

the major role of TNF, its cell-death-inducing capacity was the

function that gave this cytokine its name in 1975 [123]. Carswell

and colleagues identified the production of TNF by endotoxins to

cause endotoxin–mediated tumour necrosis, a phenomenon that

had been known since 1890 and was first described by William

Coley [124].

The sequential transition from membrane-bound TNF-RSC I into

cytosolic complex II implies that signalling by TNF always results in

gene activation prior to possibly inducing cell death. Both signalling

outputs of TNF can be useful and essential for the host response

against invading pathogens. However, apart from being beneficial

and important for the induction of an adequate immune response,

inordinate TNF stimulation can also result in fulminant pathological

outcomes; for example, excessive TNF production was identified as
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mediator of lethal septic shock [125,126]. Thus, TNF signalling is

tightly controlled, and ubiquitination and deubiquitination are cru-

cial components in this regulation.

Binding of TNF to TNFR1 leads to receptor trimerisation and

recruitment of both, TRADD and RIP1 via their death-domains

(DDs) [127–129]. TRADD further recruits TRAF2, or alternatively

TRAF5, which in turn leads to recruitment of the E3 ligases cIAP1/2

[128,130–133]. The recruitment of both TRAF2/5 and cIAP1/2 is

required for K63-linked ubiquitination of RIP1, downstream recruit-

ment of TAB/TAK and IKK-NEMO complexes, and subsequent acti-

vation of NF-jB and MAPK signalling [76,134] (Fig 3). It was long

thought that K48- and K63-linkages were the only ubiquitin linkages

required for TNF signalling. This view was challenged by three dis-

coveries. First, Xu et al (2009) [135] demonstrated that K63-linkages

are dispensable for TNF-induced NF-jB activation, suggesting that

either other linkage types are capable of replacing K63-linkages or

that K63-linkages are not required for NF-jB activation. Second, it

was discovered that linear ubiquitination, mediated by LUBAC, is

essential for full TNF-mediated NF-jB activation [31,32]. Impor-

tantly, the tripartite complex LUBAC consisting of SHARPIN, HOIL-1

and HOIP was not only identified as a new component of the native

TNF–RSC I, but also shown to mediate linear ubiquitination of RIP1

and NEMO [25,31]. Third, apart from linear linkages, K11-, K48-

and K63-linkages were found to be simultaneously present on RIP1

in TNF-RSC I, proposing that additional linkage types are required

to orchestrate and modulate TNF’s signalling output [24,25] (Fig 3).

LUBAC is recruited in a TRADD-, TRAF2/5- and cIAP1/2-depen-

dent manner, and recruitment of LUBAC is critically dependent on

the E3-ligase activity of cIAP1/2 [31]. This suggests that LUBAC

most likely binds to cIAP1/2-mediated linkages in TNF-RSC I. LU-

BAC was shown to be a decisive regulator of TNF signalling since

its presence stabilises TNF-RSC I resulting in maintained NF-jB and

MAPK signalling whereas its absence leads to enhanced TNF-medi-

ated cell death via complex II. Importantly, stabilisation of TNF-RSC

I and inhibition of transition into complex II is not mediated by the

mere presence of LUBAC components in the complex but requires

LUBAC’s E3 ligase activity [31]. Apart from being a substrate of

linear ubiquitination, NEMO was shown to bind linear linkages with

100-fold higher affinity than K63-linkages through its UBAN domain

[41,136,137], suggesting that LUBAC, once recruited, orchestrates

the sequence of events by enabling recruitment of NEMO via linear

linkages on TNF–RSC I components, like RIP1 and possibly others.

More research will be required to unravel the distinct roles and

functions of different ubiquitin linkages on the various components

involved in TNF signalling.

TNF signalling is controlled by different DUBs. Negative feed-

back regulation of TNF-induced NF-jB activation is ensured by the

NF-jB-dependent upregulation of expression of the DUBs A20 and

CYLD [138]. A20 mediates the cleavage of K63-linked chains on

RIP1, and subsequently marks RIP1 —through the attachment of

K48-linked chains— for proteasomal degradation [51]. A20 thereby

terminates TNF-induced NF-jB activation and at the same time pre-

vents TNF-induced cell death. CYLD, a DUB that can cleave both

K63- and linear linkages, was shown to negatively regulate NF-jB
activation by removing K63–linkages from RIP1 [139–142]. But in

contrast to A20, CYLD is required for TNF-induced cell death, and

cleavage of CYLD by caspase-8 prevents programmed necrosis,

termed necroptosis [140,142,143]. Whether CYLD also cleaves

linear linkages in TNF-RSC I, and how this impacts the TNF

signalling output, is currently unclear. The recently identified linear-

chain-specific DUB OTULIN has been implicated in the regulation of

TNF–induced NF-jB activation and cell death [55]. However,

whether OTULIN forms part of the native TNF–RSC I remains to be

determined.

Deubiquitination of RIP1 seems to be a prerequisite for complex

II formation, as RIP1 ubiquitination was shown to protect from cell

death [143,144]. Whether complex II induces apoptosis or necropto-

sis depends on the activity of individual components of the com-

plex. Apoptosis is induced by complex IIA, which consists of

TRADD, FADD, caspase-8, RIP1 and RIP3. Caspase-8 constitutively

inactivates RIP1 and RIP3, thereby allowing apoptosis induc-

tion. Absence of caspase-8 or caspase-8 activity results in phosphor-

ylation of RIP1 and RIP3 and subsequent RIP1/RIP3-dependent

necroptosis induction via complex IIB, also called the necro-

some [145,146]. Little is known about specific ubiquitination and
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Figure 3. Different linkage types in the TNFR1-signalling complex
orchestrate the TNF signalling output.
Crosslinking of TNFR1 by TNF results in trimerisation of TNFR1 and
recruitment of TRADD and RIP1 via their DDs. This results in subsequent
recruitment of TRAF2 and in turn cIAP1/2. cIAP1/2 place different lysine-linked
ubiquitin chains (K11, K48 and K63) on various components of the TNF-RSC.
This activity is required for recruitment of LUBAC, which subsequently places
linear ubiquitin linkages (M1) on RIP1, NEMO and possibly other components.
Both cIAP1/2 and LUBAC may also create K63-M1-hybrid chains on RIP1. The
different ubiquitin linkages placed by cIAPs and LUBAC enable and orchestrate
the physiologically required gene-activatory capacity of this complex by
ensuring exact positioning of both the IKK and TAK/TAB complexes. Different
ubiquitin linkages are indicated in different colours. The exact positions of
these chains have not yet been identified, and the precise lengths and linkage
sequences of these chains remain to be established.
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deubiquitination events on components of complex II, but they

likely also play a crucial role in determining the output of this sig-

nalling complex.

Ubiquitin in autoimmunity
and autoinflammation

What is commonly referred to as autoimmunity was first cited at the

turn of the 20th century by Paul Ehrlich, who used the phrase

‘horror autotoxicus’ to define the processes in which the immune

system attacks self. Five decades later, Burnet and colleagues pro-

vided a theoretical basis for autoreactivity by demonstrating the

presence of autoantibodies [147]. This concept is currently viewed

as a defect of the immune system concerning either B or T cells

involved in adaptive immune activation, which can lead to auto-

immune diseases characterised by tissue damage.

There are two main processes that play a key role in the estab-

lishment of the immune system’s tolerance to self-antigens: central

and peripheral tolerance. The induction of central tolerance takes

place in the thymus, where medullary thymic epithelia cells

(mTECs) and medullary DCs present a broad array of self-peptides

in association with specialised proteins known as the major histo-

compatibility complexes (MHC) on their surface to developing T

cells. The T cells whose TCR recognises a self-peptide in the context

of an MHC molecule with an affinity that is above a certain thresh-

old are eliminated. This process is called negative selection and

aims to prevent host tissue damage by autoreactive T cells.

Peripheral tolerance is an additional strategy to ensure that

activation and function of autoreactive T cells that might have

escaped negative selection in the thymus are kept under control. Sev-

eral mechanisms contribute to peripheral tolerance: (i) hypo-respon-

siveness to antigens expressed at low levels [148], (ii) deletion of

activated T cells through antigen-induced cell death [149], (iii) T cell

intrinsic functional inactivation (anergy) [150], and (iv) active sup-

pression by the action of regulatory T cells (Tregs) [151,152].

It was not until 1999 that the concept of autoinflammation

emerged with the discovery of mutations in TNF receptors by

McDermott and colleagues [153]. Autoinflammation, just like

autoimmunity, leads to the development of self-directed inflamma-

tion, but by different mechanisms. Whereas in autoimmune diseases

the main player is the adaptive immune system, in autoinflammato-

ry diseases the key role is played by the innate immune system.

Autoinflammatory diseases are characterised by hyperactivation of

the innate immune system and abnormalities in pro-inflammatory

cytokine signalling. One of the molecular mechanisms that has been

implicated in the establishment and maintenance of self-tolerance

and suppression of the development of autoreactive immune cells is

ubiquitination (Fig 4).

E3 ligases in central tolerance
Several E3 ubiquitin ligases have been suggested to be involved in

the maintenance of central tolerance [154]. Mutation in the AIRE

causes the autoimmune polyendocrine syndrome type 1 (APS-1), also

called autoimmune polyendocrinophathy-candidiasis-ectodermal

dystrophy (APECED), an autosomal recessive disorder characterised

by organ-specific autoimmunity that mainly affects endocrine glands

[155,156]. AIRE is mainly expressed in the nucleus of mTECs, where

it regulates the transcription of genes encoding peripheral-tissue

antigens (PTAs). This phenomenon, called promiscuous gene expres-

sion, is crucial for the establishment of central tolerance [157–159].

AIRE-deficient mTECs have a specific reduction in the ectopic tran-

scription of genes encoding for PTAs [160]. Furthermore, AIRE-defi-

cient mice have decreased expression of a wide array of PTAs and

develop circulating autoantibodies, infertility and multi-organ lym-

phocytic infiltration, mostly in endocrine organs, just like in patients

IL-1β TNF

Self-reactive
receptor

Autoantibodies

mTEC

Self-peptide

Mutation in
E3 ligases/DUBs

Mutation in
E3 ligases/DUBs

Cytokines

Eosinophil
Macrophage

Neutrophil

Self reactive cells

Dendritic
cell

Dendritic
cellB cell

T cell

Treg

noitammaflniotuAytinummiotuA

Figure 4. Ubiquitin and immune system modulation. Cells of both the innate and adaptive arms of the immune system are crucial for immune reactivity and self-
tolerance. Defects in the expression of E3 ligases or DUBs can lead to deregulation of these processes which can resulting in autoimmunity or autoinflammation.
Autoimmune disorders are characterised by disturbed function of mTEC and DCs (impairment in their presentation of self-peptides to T cells; highlighted in red) or by
perturbed peripheral tolerance, which will lead to the development of self-reactive T and/or B cells (highlighted in red), production of autoantibodies and subsequent
tissue destruction. During autoinflammation, the innate immune cells are hyperactive (highlighted in red) and release pro-inflammatory cytokines, including IL-1b and
TNF, which will result in the development of auto-reactive inflammation.
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with APECED [161–163]. AIRE contains two PHD domains that

resemble RING finger domains. On the basis of this AIRE has been

suggested to function as an E3 ligase [164] but this hypothesis is con-

troversial; on the one hand, missense mutations in PHD1 found in

patients with APECED were shown to abolish its E3 ligase activity

[164], on the other, the PHD1 domain alone was shown not to have

intrinsic E3 ubiquitin ligase activity [165]. Further studies will

be required to clarify whether AIRE can function as a ubiquitin

E3 ligase.

An E3 ligase with a proven role in regulating central self-toler-

ance is TRAF6. TRAF6-deficient mice display disorganised distribu-

tion of mTECs and impairment in their maturation. In addition,

expression of AIRE and PTAs were significantly reduced in TRAF6-

deficient mice, with the consequent development of an autoimmune

phenotype [166]. However, it is not clear whether the E3 ligase

function of TRAF6 is required for this phenotype. Interestingly,

expression of RelB, a member of the NF-jB family, was significantly

reduced in thymi of TRAF6-deficient mice [166], and mice with loss

of RelB also had thymic abnormalities and multi-organ inflamma-

tory infiltration, suggesting a functional link between TRAF6 and

RelB in thymus organogenesis [167]. A recent study showed that

RANK and CD40 signalling play an important role in the regulation

of mTEC development by mediating the activation of TRAF6, NIK,

and IKKb [168].

E3 ligases in peripheral tolerance
Among the factors known to ensure the maintenance of periph-

eral tolerance are several E3 ligases including (Cbl)-b and

GRAIL). Defects in the expression of these two E3 ligases have

been associated with development of autoimmunity, both in

human and murine experimental models [169]. Cbl-b is a mem-

ber of the Cbl family, functions as a RING-type E3 ligase

[170,171], and is involved in the regulation of T cell tolerance

[172–174]. Cbl-b-deficient mice develop spontaneous auto-

immunity characterised by autoantibody production, infiltration of

activated T and B lymphocytes into multiple organs, and

parenchymal damage [174]. Na€ıve Cbl-b-deficient T cells hyper-

proliferate and produce IL-2 upon TCR activation, even without

CD28 co-stimulation, suggesting a possible role of Cbl-b in the

induction of T cell anergy [174]. Cbl-b was also shown to be

selectively induced during the early phases of T cell unrespon-

siveness, and Cbl-b-deficient T cells are resistant to anergy induc-

tion, both in vitro and in vivo [175]. The molecular mechanism

responsible for Cbl-b-driven induction of T cell anergy seems to

be Cbl-b-mediated ubiquitination of p85, the regulatory subunit of

phosphoinositide 3-kinase (PI3K), with consequent inhibition

of p85 recruitment to the cell-surface molecules CD28 and

TCRf [176].

Similar to Cbl-b, the absence of GRAIL from T cells enhances

their proliferation and cytokine production after TCR activation in a

CD28-independent manner [177]. GRAIL is a type I transmembrane

protein localised in endosomal compartment that contains a cyto-

solic enzymatic RING domain and a luminal protease-associated

domain [178]. It was first identified as a transcript upregulated in

anergic CD4+ T cells, and it has also been found to be highly

expressed in CD4+ CD25+ Tregs, where its expression level directly

correlates with immunosuppressive activity [178,179]. Moreover, its

E3 ubiquitin ligase activity is crucial for the induction of T cell

anergy [180]. In vivo studies using GRAIL-deficient mice demon-

strated the crucial role of this E3 ligase in maintenance of

peripheral tolerance as lack of GRAIL increased susceptibility to au-

toimmunity [177].

Although several substrates ubiquitinated by GRAIL have been

described, including the transmembrane proteins CD40L and the

cytosolic Rho GDP dissociation inhibitors (GDIs), the mechanism of

GRAIL-mediated anergy induction is not well understood [181–183].

Furthermore, GRAIL has recently been suggested to regulates T cell

tolerance via ubiquitination and consequent degradation of actin-

related proteins2/3-5 and coronin 1A, which are actin cytoskeleton-

associated proteins [184].

Ich is another E3 ligase up-regulated in anergic T cells [185]. It

belongs to the Nedd4 family of HECT domain E3 ubiquitin ligases.

The crucial role of this protein in the regulation of T cell function

has been underscored by the discovery that Itch deficiency in

humans correlates with the development of multi-system autoim-

mune diseases and morphologic and developmental abnormalities.

Human Itch deficiency results in a complex phenotype affecting

physical growth, craniofacial morphology, muscle development,

and immune function [186]. Interestingly, Itch-deficient mice have a

similar phenotype, characterised by scratching of the skin and

immunological disorders, manifested by hyperplasia of lymphoid

organs and inflammation in the lung and intestinal tract [187,188].

This phenotype is correlated with increased production of IL-4, IL-5,

IgG1 and IgE [189]. At the molecular level, Itch has been proposed

to regulate T cell functions by ubiquitinating several substrates,

such as phospholipase Cc1 and protein kinase Ch [185], two central

players in TCR signalling, as well as JunB, which is required for the

transcription of IL-4 [189]. It has further been shown that Itch medi-

ates the ubiquitination and degradation of Bcl-10, with concomitant

inhibition of NF-jB activation in T cells [190].

It will be interesting to determine whether other E3 ligases take

part in the maintenance of tolerance, and identify new relevant tar-

gets of the known ubiquitin ligases. This will hopefully provide a

better understanding of the mechanisms that govern immune toler-

ance (Sidebar A).

LUBAC in self-tolerance
As discussed above, LUBAC is involved in several signalling pro-

cesses, including those triggered by TNF [31,191]. Interestingly,

mice deficient in SHARPIN, develop chronic proliferative dermatitis

(cpdm) at 4–6 weeks of age; characterised by inflammatory skin

lesion and multi-organ inflammation with a Th2 dominant milieu

[192,193]. Furthermore, cpdm mice also show defective Th1 cyto-

kine production and defects in secondary lymphoid organ develop-

ment —such as absence of Peyer’s patches and marginal zone of the

spleen— in which the T and B cell areas are poorly defined

[194,195]. SHARPIN/TNF-double deficient mice do not develop the

cpdm skin phenotype and have less liver inflammation, but on the

other hand, the immune-development phenotype is unaltered, sug-

gesting that inflammation in cpdm mice is TNF-driven, whereas the

immune-developmental defect is most likely due to the lack of

LUBAC in a different pathway [20].

At first glance, the fact that TNF ablation corrected the inflamma-

tory phenotype that characterises cpdm mice may not seem overly

surprising, given that inhibition of TNF has been proven to be a

highly successful therapeutic approach for the treatment of several
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chronic inflammatory and autoimmune diseases, including psoria-

sis, psoriatic arthritis, rheumatoid arthritis and Crohn’s disease

[196–198]. However, the benefit of anti-TNF therapy is currently

mostly attributed to its interferance with the gene-activatory arm of

TNF-signalling. Yet, this arm is attenuated in cpdm mice, whilst

TNF-induced cell death is increased. Therefore, the rescue from

inflammation in cpdm mice by co-ablation of TNF had to be due to

prevention of aberrant cell death induction, rather than gene activa-

tion. This suggests a previously unrecognised aetiology of TNF-

induced autoinflammation and/or autoimmunity that relies on

supra-physiological levels of cell death induction, rather than aber-

rantly high gene activation by this cytokine.

Three patients with mutations in the gene that encodes the

LUBAC component HOIL-1 were recently identified. These

patients presented with a paradoxical clinical phenotype, charac-

terised by the development of an autoinflammatory and immuno-

suppressed syndrome with pyogenic bacterial diseases and

amylopectin-like deposits in muscle, which are known to be a

cause of death in the early stages of life [199]. To study the basis

of autoinflammation and immunosuppression in HOIL-1-deficient

patients, Boisson and colleagues analysed the genome-wide tran-

scriptional profiles of whole blood cells and found that erythroid

lineage-related transcripts and transcripts encoding pro-inflamma-

tory cytokines were up-regulated in these patients. Additionally,

this was correlated with an increase in the plasma concentration

of pro-inflammatory cytokines, including IL-6, IL–8, TNF and

IL-1b. Whole blood cells from HOIL-1-deficient patients were

hyper-responsive to agonists of TLR1/2 and IL-1b stimulation.

Indeed, the constitutive hyper-inflammation and hyper-responsive-

ness to IL-1b could, at least in part, explain the autoinflammatory

phenotype of these patients. Furthermore, HOIL-1-deficient

patients are also highly susceptible to invasive bacterial infec-

tions, which could be due to impairment of NF-jB-dependent
responses. This should not come as a surprise, given that patients

with inborn errors affecting TLR, IL-1b pathway and NF-jB-medi-

ated immunity —which include NEMO and IjBa—are also prone

to pyogenic bacterial infections [200].

DUBs in self-tolerance
Several DUBs have been shown to be involved in the mainte-

nance of self-tolerance. Mutations in the human A20 locus are

associated with autoimmune and inflammatory diseases, including

SLE, rheumatoid arthritis and Crohn’s disease [201]. As men-

tioned previously, genetic deficiency of A20 leads to multi-organ

inflammation, cachexia and neonatal fatality [50]. Furthermore,

mice lacking A20 in DCs develop anti-DNA antibodies, nephritis

and lympho-splenomegaly, all features of SLE [202]. Interestingly,

three independent single nucleotide polymorphisms (SNPs) in the

human A20 region have also been correlated with development

of SLE [203]. Additionally, loss of A20 in B cells causes an

inflammatory syndrome with autoimmune features in old mice

characterised by chronic inflammation, high levels of IL-6 and tis-

sue-specific autoantibodies [204].

A20 has been identified to be a susceptibility gene for Crohn’s

disease by the Wellcome Trust Case Control Consortium in a

genome-wide association study for the seven most prevalent com-

mon inflammatory diseases conducted on the British population

[205]. Crohn’s disease is a chronic inflammatory bowel disease,

most probably occurring due to a deregulation in the immune

response to commensal intestinal bacteria. Arsenescu and col-

leagues analysed the expression of RelA, A20, NF-jB, TNF, IL-8

and pIgR in mucosal biopsies of 69 Crohn’s disease patients and

28 non-diseased controls. Based on the expression pattern of

these biomarkers, they classified individuals in three groups.

Interestingly, patients in group 2 —characterised by low expres-

sion of all five biomarkers— had moderate to severe disease and

poor responses to immunosuppressive and anti-TNF therapy, sug-

gesting that the use of these biomarkers to classify Crohn’s dis-

ease patients could help predict disease behaviour and response

to therapy [206]. Further to this, a recent study identified SNPs

in the A20 region of 6q23 as novel coeliac disease associated risk

factors [207]. An additional independent study, aimed at identify-

ing susceptibility alleles correlating with rheumatoid arthritis,

showed an SNP at 6q23 that was also reproducibly associated

with rheumatoid arthritis risk [208]. In order to define the contri-

bution of A20 to rheumatoid arthritis pathology, Matmati and col-

leagues generated mice lacking A20 in myeloid cells (A20myel-KO)

and determined that such mice develop severe features of rheu-

matoid arthritis-like destructive poly-arthritis, high serum levels of

IL-6, TNF, IL-1b and MCP-1 and prolonged NF-jB activation in

macrophages, demonstrating the cell-specific function of A20 in

causing a rheumatoid arthritis-like pathology [209].

CYLD is another DUB that has been described to play a key role

in the regulation of macrophages and T cell activation. CYLD-defi-

cient macrophages show increased NF-jB activity and release high

levels of TNF and IL-6 following stimulation by TNF or CD40L [90].

Furthermore, CYLD-deficient T cells are hyper-responsive to TCR/

CD28 stimulation, leading to spontaneous development of autoim-

munity [210]. In addition, the adoptive transfer of CYLD-deficient T

cells into RAG1-deficient mice was sufficient to induce the inflam-

matory phenotype, underscoring that the abnormal response of T

cells in CYLD-deficient mice was responsible for the occurrence of

the inflammatory phenotype.

Concluding remarks

The ubiquitination of key proteins within receptor signalling com-

plexes and its reversal (their deubiquitination) is essential for elic-

iting an adequate but confined immune response. Defects in

ubiquitination have been implicated in the pathogenesis of a vari-

ety of different diseases, including autoimmunity, autoinflamma-

tion and immunodeficiency, underlining the importance of its tight

regulation and control. In recent years, we have come to appreci-

ate that different variations in the theme of ubiquitination and

deubiquitination are responsible for this. We are, however, far

from fully understanding these processes, both molecularly and

functionally. We predict that further elucidation of the precise role

of individual ubiquitination and deubiquination events in regulat-

ing immune signalling will be necessary to understand how and

why aberrant ubiquitin signalling outputs result in a disturbed host

response. Deeper insights into these processes probably also reveal

novel therapeutic options for the treatment of diseases and patho-

logical conditions in which the immune system does not act

to the full extent of its capacity, or within its physiologically

defined limits.
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“Ubiquitylation: mechanism and functions” Review series

Previous issues of EMBO reports include:

• Building and remodeling Cullin-RING E3 ubiquitin ligases, by
Wade Harper et al

Other reviews in this series, which will be published in consecu-
tive issues of EMBO reports, will cover:

• RBR E3 ligases at work, by Judith Smit and Titia Sixma

• Dynamic survey of mitochondria by ubiquitin, by Mafalda Escobar-
Henriques and Thomas Langer

• Ubiquitylation in stem cells, by Ioannis Aifantis et al

• Understanding ubiquitylation one structure at a time, by Ronald
Hay et al
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