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Active acoustic techniques are commonly used to measure oceanic bubble size distributions, by

inverting the bulk acoustical properties of the water (usually the attenuation) to infer the bubble

population. Acoustical resonators have previously been used to determine attenuation over a wide

range of frequencies (10–200 kHz) in a single measurement, corresponding to the simultaneous

measurement of a wide range of bubble sizes (20–300 lm radii). However, there is now also con-

siderable interest in acquiring measurements of bubbles with radii smaller than 16 lm, since these

are thought to be important for ocean optics and as tracers for near-surface flow. To extend the bub-

ble population measurement to smaller radii, it is necessary to extend the attenuation measurements

to higher frequencies. Although the principles of resonator operation do not change as the fre-

quency increases, the assumptions previously made during the spectral analysis may no longer be

valid. In order to improve the methods used to calculate attenuation from acoustical resonator out-

puts, a more complete analysis of the resonator operation is presented here than has been published

previously. This approach allows for robust attenuation measurements over a much wider frequency

range and enables accurate measurements from lower-quality spectral peaks.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3569723]
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I. INTRODUCTION

Although the research presented in this paper is moti-

vated entirely by the need to improve oceanic bubble meas-

urements, the subject matter is more general: the challenge of

making very localized and accurate measurements of acousti-

cal attenuation in a rapidly changing natural aquatic environ-

ment. Upper ocean acoustic attenuation measurements have

traditionally been made using a single frequency source and

one or more distant receivers.1–3 The two main drawbacks to

this approach for bubble measurements are the need for a

long path length to get measureable attenuation and the lim-

ited range of bubble sizes that can be measured simultane-

ously. The internal structure of oceanic bubble plumes is a

complex subject and has rarely, if ever, been studied directly.

However, it seems likely that these structures are inhomoge-

neous on size scales of a meter and below, and they are

known to contain bubbles from a few microns to a few milli-

meters in radius. Medwin and co-workers4,5 developed the

acoustical resonator concept in order to make much more

detailed measurements inside oceanic bubble plumes.

Farmer et al.6,7 made improvements to the original reso-

nator design and carried out a theoretical analysis of its oper-

ation. Since then, resonators have been used regularly8,9 to

measure the size distributions of bubbles with radii between

16 and 300 lm, corresponding to an operating frequency

range of 5–200 kHz. However, several recent papers have

discussed the possible importance of even smaller bubbles

for optical scattering,10 and the expected Mie scattering

from bubbles with radii as low as 0.1 lm has been calcu-

lated.11 The acoustical resonator is a good candidate instru-

ment to observe such bubbles, but to measure of bubbles

with a radius of 3 lm, the resonator needs to be operated at

frequencies as high as 1 MHz.

The acoustical resonator operation does not change as

frequency increases, but the engineering challenges are con-

siderable when the system is operated at these higher fre-

quencies. For example, small imperfections on the

transducers, small deviations in their alignment, and elec-

tronic issues are increasingly problematic as the acoustic fre-

quency increases. The result of these issues is that the peak

quality decreases significantly as the frequency approaches

1 MHz. As will be shown, this means that the Lorentzian

peak shapes assumed in previous studies are no longer

appropriate. The eigenvalue of the resonance (described in
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Sec. III) is a better measure of the strength of the resonant

peak.

The aim of this paper is to introduce a matrix-based

analysis of the acoustical resonator, resulting in a better

understanding of its spectral response. This leads to a

method for interpreting peak heights with a stronger basis in

the fundamental resonator physics, which offers a way to

deal with the realities of high-frequency resonator designs.

II. ACOUSTICAL RESONATOR

Figure 1 shows the basic design of a recent acoustical res-

onator. It is a relatively simple and mechanically robust instru-

ment, making it suitable for deployments for extended periods

in the hostile upper ocean wave zone. The instrument consists

of two large flat transducers (approximately 0.25 m in diame-

ter), made up of metal backing plates covered by a 110 lm

layer of PVDF (polyvinylidenedifluoride) piezoelectric mate-

rial coated by a film of NiCu or Ag. One transducer transmits

broadband pseudorandom noise which is reflected between

the transducer plates, providing an effective path length many

times the physical distance between the transducers. The

acoustic pressure field at the receive transducer is digitized,

and the power spectral density is calculated for subsequent

analysis. The resonator sides are open so that the water

between the plates at any given time is representative of the

water surrounding the device (Fig. 1). At regular frequency

intervals, defined by the transducer spacing, the reflecting

waves constructively interfere to generate a resonant peak in

the power spectrum. An example is shown in Fig. 2.

The resonant peaks are sensitive to changes in attenua-

tion caused by changes in water properties and the presence

of bubbles between the transducer plates. By comparing the

peaks from a spectrum measured in a bubble-free environ-

ment with the peaks measured in a natural attenuating (bub-

bly) environment, it is possible to relate changes in peak

height to changes in the bulk attenuation of the water at each

peak frequency. Figure 3 shows part of a typical power

density spectrum, with and without bubbles present. The fre-

quency of any given peak will depend on the speed of sound

in the medium between the plates, and is therefore also

affected by the presence of bubbles.3,6 However, this effect

will not be considered in the present analysis.

The material of the backing plates and their thickness are

chosen to maximize the reflection coefficient of the plates,

while limiting their weight and the number and location of

destructive interference zones (Fig. 2). Typically, we have

been using aluminum or mild steel backing plates with thick-

nesses of either 25.4 or 12.7 mm (1=2 or 1=4 in.). The trans-

ducers are covered with a potting compound that has an

acoustic impedance equal to that of water to make them

waterproof. Internal acoustic reflections inside the backing

plate will cancel out the reflected signal at some frequencies,

and the spectral regions associated with this cancellation are

determined by the combination of the sound speed and the

thickness of the plate, as described in Farmer et al.6 This can

be observed at 480 and 960 kHz in Fig. 2 where the backing

plates are made of 12.7 mm (1=4 in.) mild steel. In addition to

the choice of backing plate size and material, the most

important design considerations are the performance of the

transducer (including its electronic components) and how well

the potting compound is impedance-matched to the water.

The acoustical resonator is approximately 0.3 m in size,

and the latest resonator design can make a measurement once

FIG. 1. (Color online) Panel (a) shows a schematic diagram of an acoustical

resonator, with approximate dimensions. Panel (b) shows a recent resonator.

FIG. 2. An example of the noncalibrated power spectral density in decibels

measured by a current resonator. The inset shows the spectral peaks at fre-

quencies between 100 and 200 kHz. The features at 480 and 960 kHz are

due to reflections within the back plate, as described in the text.

FIG. 3. (Color online) The solid line shows a typical bubble-free spectrum

over the frequency range from 150 to 250 kHz. The dashed line shows an

attenuated spectrum from the same resonator during an ocean deployment.

The presence of bubbles reduces the peak height and introduces a phase shift

so that the peaks move sideways slightly.
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every second, resulting in an excellent temporal and spatial re-

solution. Another major advantage is that resonators of this size

produce resonant peaks approximately every 4 kHz, providing

good frequency resolution for the attenuation measurements.

Hardware construction is challenging because once the

transducer is encased in the potting compound, no further

alterations are possible. Testing the transducer extensively

before potting is not possible because the transducer is not

waterproof at this stage. Development of manufacturing

techniques required to produce resonators with a reliable and

reproducible response in the 200 kHz to 1 MHz range is

ongoing. Regardless of the engineering challenges associ-

ated with operating MHz resonators, the evident loss of fidel-

ity of high-frequency peaks makes it important to understand

how to extract data from imperfect spectra.

Another reason for more careful consideration of the

higher frequency peaks is that we expect the magnitude of

the attenuation due to bubbles to be considerably lower at

the higher frequencies. Figure 4 shows a typical oceanic bub-

ble size distribution and the attenuation with frequency that

this would cause. The expected attenuation decreases rapidly

for frequencies higher than 200 kHz, and consequently,

more accurate and sensitive techniques are required to make

useful measurements at those frequencies.

For several of the resonators that we have used, we have

observed irregularly shaped resonance peaks occurring at higher

frequencies. Figure 5 shows examples of these peaks. Part of

the motivation for the research presented here was to explore

explanations for those shapes and to provide tools to either

improve the peaks or to interpret them accurately as they are.

We wish to emphasize that this reanalysis of resonator

physics does not invalidate previous results but is a necessary

step in order to extend the measurement technique to higher

frequencies (smaller bubbles) and lower bubble densities.

III. METHOD OUTLINE

The large flat PVDF transducers are designed to oscillate

with the same amplitude and phase everywhere on their sur-

face. The signal supplied to the transmitting transducer was

broadband noise generated using a pseudorandom bit

sequence produced by feedback shift registers and amplified

to 8 V peak to peak. The frequency range covered was 1 kHz

to 1 MHz, and each sequence lasted for a period of 0.25 s.

The whole transducer surface oscillates in phase with this sig-

nal since the PVDF has a very fast response time.12

The outgoing acoustical signal can therefore be modeled

by considering incremental areas of the transducer face,

FIG. 4. (Color online) (a) A typical

ocean bubble size distribution pre-

sented as the number of bubbles per

unit volume per micron radius incre-

ment plotted against bubble radius.

The slope of the distribution varies

from �4 at the larger radii to �1 at

the smallest radii. (b) The acoustic

attenuation with frequency expected

from this bubble size distribution.

(c) The same data as (b) with a log

scale on the y-axis.

FIG. 5. (Color online) (a) Skewed

peaks at frequencies between 200

and 220 kHz. In addition, it can be

seen that the individual peak heights

are fairly variable as frequency

increases. (b) An example of alter-

nating low and high peaks, which

eventually merge into a single peak

at the higher frequencies. Part of

the motivation for the research

described in this paper was to

explore possible reasons for these

features.
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each producing an acoustical signal described by the same

Green’s function. The acoustical pressure waves are reflected

back and forth between the steel backing plates, and a steady-

state acoustic field is set up. The total detected signal at the

receive transducer is the sum of all the attenuated reflections

which are incident on that plate, and constructive interference

at some frequencies will cause peaks in the measured

response while destructive interference causes troughs.

The general method used to describe the physics of this

system is to analyze sound making a single traverse across

the resonator cavity and being reflected once. Reflection

refers to the change of direction of the acoustic signal at the

transducer face and may involve a change in amplitude and

phase (depending on the thickness and material of the

reflecting plate). After a single traverse and a single reflec-

tion, the signal is about to start another traverse across the

cavity (which will be described by the next iteration in the

calculation). To begin with, we will briefly outline the nu-

merical integration method used previously for calculations

of the acoustic field6 to introduce the much faster matrix

method used here.

IV. FORWARD INTEGRATION MODEL

The full forward acoustic field calculation6 used to cal-

culate the eigenvalue U is computationally very expensive.

The transducers are physically identical, so once the signal is

in the cavity, it does not matter which one was originally the

transmitting transducer and which the receiving. The calcu-

lation is carried out for each pass across the cavity, so for

clarity here, we will label the transducer that the sound starts

from as “1” and the transducer that it travels to and is

reflected from as “2.” The radial pressure distribution leav-

ing plate 1 at radius r is pi(r). After each pass across the cav-

ity, the labels 1 and 2 switch transducers so that the

calculation can be carried out for the return journey. The

final stage is to multiply this signal by a coefficient that takes

into account the physics of the reflection process, so that the

output pressure piþ1(x) is the signal at the point when it is

about to leave transducer 2 at radius x after one reflection.

This integration is repeated until the complex ratio Piþ1=Pi

has converged, and this ratio is taken to be the eigenvalue

for that mode. The detected sound pressure field is obtained

numerically by integrating the acoustic signal leaving each

part of one transducer 1 that arrives at a single point on

transducer 2 and then integrating this result across the whole

face of the transducer 2 face to get the total received signal.

We reproduce Eq. (5) from Farmer et al.6 here in order to

present the slightly modified formulation which was used in

this study and to correct a typographical error in the original

paper [<ðkÞ was given incorrectly as k].

piþ1ðxÞ ¼ Weie i<ðkÞ
2p

ðX

r¼0

ðp

h¼0

piðrÞ
eikU

U
1þ z

U

� �
rdrdh;

(1)

where

U ¼ x2 þ z2 þ r2 � 2rx cos ðhÞ
� �1=2

; (2)

and where piþ1(x) is the pressure distribution at transducer

2 with radial position x, pi(r) is the pressure distribution at

transducer 1 with radial position r, w is the reflectivity coef-

ficient [given by Eq. (2) in Ref. 6], e is the phase shift associ-

ated with a reflection [Eq. (3) in Ref. 6], k is the complex

wavenumber and RðkÞ is its real component, X is the trans-

ducer plate radius, U is the path length, and z is the plate sep-

aration. Attenuation along the path length adds an imaginary

component to the complex wavenumber k.

Eigenvalues were calculated at closely spaced frequency

intervals by iterations of this integral until U reached a stable

value. The resolution of the numerical integration was

increased until the integration results were stable. This value

of U was used to check the results from the faster matrix

method shown below.

V. EIGENFUNCTION ANALYSIS

The mathematics is most easily described using matrix

notation, where a vector Pi is the radial pressure distribution

leaving a transducer face (assumed to have circular symme-

try), and Piþ1 is the pressure distribution leaving the opposite

transducer after one traverse and one reflection. The ele-

ments of Pi contain the pressure at equally spaced radius

increments across the transducer face. The matrix X repre-

sents the phase change and attenuation of the signal as it

leaves one transducer face at a given distance from the cen-

ter of the transducer and is reflected from another radial dis-

tance position on the opposite transducer face. We then get

XPi ¼ Piþ1: (3)

Stable modes exist where the shape of the pressure distribu-

tion remains the same after each reflection, so that one or

more stable eigenvectors P exist:

XP ¼ CP; (4)

where the complex eigenvalue U represents the attenuation

and phase change associated with one traverse of the resona-

tor cavity and one reflection. This is also the eigenvalue

described in Ref. 6, in the text accompanying Eq. (7). The

total pressure on the receiving plate is therefore the sum of

all the reflections. A given signal is reflected twice before it

returns to the transducer under consideration, and we assume

that the signals are continuous in time so that we can sum all

the reflected components to get the final received signal.

Equation (8) from Farmer et al.6 describes the total signal af-

ter M reflections as being proportional to

A ¼ 1þ
XM

1

C2M: (5)

However, the strongest received signal component has al-

ready passed across the cavity once from the transmitting

transducer when it reaches the receive transducer, so a more

appropriate form is a modified version of A called Amod:

Amod ¼
XM

0

C2Mþ1; (6)
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and the power spectral density is proportional to Amod

�� ��2 for

M ¼ 1.

Attenuation in the fluid due to bubbles will decrease the

magnitude of U and change its phase slightly, decreasing the

resonant peak height and shifting the peak position. Under-

standing the origin of U and how to measure it is therefore

the key step in inferring attenuation data from a spectrum of

resonant peaks. We begin with the full integral model, as

presented by Farmer et al.,6 and then analyze the system by

calculating the eigenvalues and the associated eigenvectors

using a matrix model.

The matrix notation in Eqs. (4) and (6) provides a com-

pact formulation for this problem and allows for the opportu-

nity to examine modes other than the dominant mode with

considerably less computational effort. Each element of the

matrix represents the contribution to the acoustic signal at an

incremental area (an annulus of radius r and width Dr) on

the receiving transducer from an incremental area (an annu-

lus with radius x and width Dx) on the transmitting trans-

ducer. The matrix X was calculated by numerically

integrating Eq. (1) for each possible value of the transmitting

radius and the receiving radius. The eigenvalues and eigen-

vectors of the matrix were then calculated using a standard

MATLAB routine. The necessary number of matrix elements

was determined by comparing the results of the matrix

method to the results of the full integration. A matrix size of

500� 500 elements was found to be more than sufficient and

was used for this study.

The matrix X was found to have many physically rea-

sonable modes, and the eigenvectors (representing the radial

pressure distribution) are very similar for all resonant fre-

quencies, presumably because the number of wavelengths

that fit along a path is a multiple of those for the lowest reso-

nant frequency. The first mode dominates the total resonator

response, for reasons discussed below. Figure 6 shows the

magnitude and phase of the first four eigenvectors at 440

kHz for an acoustical resonator with transducers that have a

diameter of 0.25 m and are separated by 0.19 m. These are

the radial pressure distributions that will undergo multiple

reflections without changing their shape. Without including

attenuation, the first four eigenvalues for this system were

found to be 0.9966, 0.9918, 0.9827, and 0.9704. The combi-

nation of modes that are active depends on the boundary

conditions; in this case, the input radial pressure distribution.

Each eigenvector is a linearly independent solution, and the

input radial pressure distribution provided by the transmit-

ting transducer must be a linear superposition of these eigen-

vectors. For example, for the case of a uniform input radial

pressure distribution, the relative importance of the first five

modes is 1.0, 0.50, 0.33, 0.25, and 0.21 (calculated numeri-

cally). So the first mode is dominant, but other modes are

active. However, the contributions made by each mode to

the detected pressure distribution are not equal.

The PVDF sheet will generate a voltage proportional to

the net pressure it receives, and the pressure is not uniform

across the transducer surface. The net pressure is propor-

tional to P(r)dA(r)=A, where dA(r) is an incremental area at

radius r and A is the total area of the transducer face. For the

first mode, all the contributions to the pressure across the

transducer face are in phase. However, the results in Fig. 6

show that for higher modes a part of the transducer receives

a signal that is p out of phase with the signal at its centre. To

assess the net pressure produced by each phase, we calculateP
PðrÞ2prDr. For the first five modes, the relative contribu-

tions (normalized to the contribution of the first mode) are

1.00, 0.38, 0.23, 0.16, and 0.12. Combining the relative im-

portance of each mode with its contribution and taking into

consideration that the power spectral density is proportional

to the square of the net pressure, we see that more than 95%

of the detected resonator response is due to the first mode.

The point that we are making in this section is that although

the higher order modes could exist, they would have almost

no effect on the received acoustic signal because this is nec-

essarily an integration of the pressure response over the

whole disc. The response of the PVDF will be positive or

negative at particular radii for the higher modes, but the

FIG. 6. (Color online) Each pair of

panels shows the magnitude and phase

of the radial pressure distribution asso-

ciated with one resonant mode. The

first four modes are shown. The top

panel in each pair shows the pressure

magnitude with frequency, and the

lower panel shows the phase variation

with radius. Phase shifts of p are asso-

ciated with the magnitude minima. It

should be noted that the results shown

are the result of calculations at fixed

frequency spacings and that the mag-

nitude does not quite reach zero

because the chosen frequencies did

not coincide exactly with the nodal

points. The magnitudes do pass

through zero at those points, as shown

by the coincident p phase shift.
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single output signal from the whole transducer will be a sum

of all these effects. We can see that even if those modes are

active, their net effect on the received signal is very small.

These other modes can only be detected when the quality of

the resonance is very high. When U is very high (0.95 or

above), the pressure signal is so low between the resonance

peaks that peaks due to other resonant modes can be seen in

the model calculations. The peaks from other modes have a

much lower value of U so that they are obscured by the dom-

inant mode if there is any overlap. However, none of the

peaks produced by the current design of our resonators have

an eigenvalue greater than 0.9. We conclude that the higher

modes cannot explain the complex peak shapes seen, and so

we continue our analysis assuming that only the first mode

needs to be taken into account.

We note that in theory there could also be nonaxisym-

metric modes active, while the theory described here only

deals with axisymmetric modes. We have ignored the possi-

bility of nonaxisymmetric modes because the resonator

transducers have cylindrical symmetry (so only axisymmet-

ric modes are expected) and also because we are unable to

detect any modes other than the dominant axisymmetric

mode in spectra from our existing resonators.

The final step in the matrix analysis is to predict the

spectral response from the calculated eigenvalues. The

power spectral density S is proportional to the square of the

pressure amplitude [which can be described by the geometri-

cal sum of Eq. (4) when M ¼ 1], making the spectral

response at any point on the spectrum equal to

S ¼ KC

1� Cj j2ei2h

 !�����
�����; (7)

where K is a constant of proportionality and h is the phase of

the eigenvalue at that frequency.

At this point, we would like to ensure that the physical

meaning of the magnitude and phase of U is clear. The mag-

nitude of the complex eigenvalue U is the ratio of the magni-

tudes of the signal leaving plate 1 and the signal leaving

plate 2 (after one traverse and reflection). Consequently, the

situation where U¼ 1 corresponds to zero losses and infin-

itely perfect resonant peaks. The situation where U¼ 0 rep-

resents the case where none of the signal remains after one

traverse of the cavity. The phase of U gives the phase rela-

tionship between one reflected signal and the next, and reso-

nant peaks only occur when the phase relationship means

that successive reflections reinforce each other. This is im-

portant because the magnitude of U varies only slowly with

frequency, but the phase relationship varies relatively rap-

idly. In our current design of resonator, the phase of U
changes by 2 p every 8 kHz, producing two peaks in every

2p cycle. Thus, the change in U with frequency can be

visualized as a rotation in the complex plane, and the total

amplitude can be visualized as the sum of successive terms

in Eq. (6) in the complex plane.

Figure 7 shows how the variation in the eigenvalue

phase with frequency generates the observed peak shapes.

These are numerical calculations carried out using the pa-

rameters appropriate for our current resonator design. Only

the magnitude of the final signal matters for the output,

although the phases matter in the sum.

The use of the eigenvalue U here replaces the traditional

quality factor Q because of the cyclical nature of the reso-

nance. When there is a high quality resonance, the magni-

tude of the signal received at a transducer is very close to the

magnitude of the signal transmitted from the other trans-

ducer so the magnitude of U is close to 1. As the quality of

the resonance decreases, there is a limit to the possible fre-

quency width of the resonance because the peaks have a

fixed separation in frequency, and as a peak gets wider, it

overlaps with the peaks on either side. This limits the possi-

ble values of the bandwidth Df that is needed for the calcula-

tion of Q. So the traditional definition of quality factor does

not apply here for lower quality resonances. However, U still

applies and can take any value between 0 (no resonance at

all) to 1 (perfect resonance). A high quality resonance is

therefore a peak with a value of U that is close to 1.

FIG. 7. (Color online) Plot showing

the relationship between eigenvalue

phase (top plot) and the peaks in

the power spectral density (lower

plot). Eigenvalue magnitudes change

slowly as frequency increases, but

the phase changes are rapid. Succes-

sive reflections reinforce to form a

peak in the spectrum whenever the

phase change caused by one cavity

traverse is either zero or p.
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VI. THE EFFECT OF BUBBLES

When a population of bubbles passes between the plates,

they change the bulk modulus and attenuate the sound by

scattering and absorption, and these effects can be expressed

as changes to the real and imaginary components of the com-

plex sound speed.

By using the full forward model of the resonator’s

acoustic field [Eq. (1)], we confirmed that for a bulk fluid

attenuation of a Np=m, the eigenvalue change is very accu-

rately described by

Cattenuated ¼ e�azCo; (8)

where z is the transducer separation, and Uattenuated and Uo

are the attenuated and original eigenvalues, respectively.

Consequently, if the magnitude of the eigenvalue is known

in both cases, the value of the attenuation can easily be cal-

culated. Our approach will therefore be to calculate the

eigenvalue for each individual peak and then to use the ratio

of the attenuated to unattenuated peak heights to calculate

the attenuation. We note that when the ratio of the attenuated

peak height to the unattenuated peak height is calculated, the

constant K in Eq. (7) cancels out, so there is no need to know

the absolute value of the peak height, only the height of the

attenuated peak relative to the unattenuated peak.

We start with a calculation of the eigenvalue of the peak

observed when no bubbles are present. The eigenvalue asso-

ciated with a particular resonant peak can be estimated by

comparing the spectral level at the troughs and the peak. The

corollary of the strong constructive interference at the peak

is strong destructive interference at the trough. Therefore,

the ratio of the power spectral density at the peak to that at

the trough can be used to calculate U, and the higher the

peak=trough ratio is, the closer U is to 1. Once the initial

eigenvalue has been determined, the actual measurement of

attenuation is made by comparing the peak heights and is

relatively insensitive to the initial U. The advantage of this

approach is that it distinguishes between peaks with different

resonance qualities (therefore reducing the measurement

uncertainty) while still being simple to carry out.

The magnitude of the initial eigenvalue for a peak that

can be described by Eq. (7) is then given by

Cj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
p
� 1ffiffiffiffi

X
p
þ 1

s
; (9)

where X is the peak to trough ratio of the power spectral den-

sity peak. This calculation is relatively insensitive to the

exact value of X measured—a 10% change in X results in a

change in of less than 2%. The attenuated eigenvalue is then

calculated from the ratio of power spectral density peak

heights. If the ratio of the attenuated peak height to the initial

peak height is U, we can calculate the attenuation using Eqs.

(7) and (8) to get

a ¼ �1

z
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ C0j j2 � 1

U C0j j2

s !
: (10)

Our procedure is to calculate the initial eigenvalue for each

peak on the bubble-free spectrum individually using Eq. (9)

and then to store the initial peak height and the eigenvalue

magnitude as the reference values. For spectra measured at

sea, Eq. (10) is used to calculate the value of attenuation

associated with each peak.

For the acoustical resonators that we are currently using,

there is a steady downward trend in the initial eigenvalue

magnitude with frequency. Figure 8 shows the eigenvalues

calculated from the power spectrum produced by one of our

current resonators. We emphasize that these are real data

and not a modeled result. In this case, at 150 kHz, the eigen-

value magnitude is approximately 0.7 and at 800 kHz it is

approximately 0.4, although ongoing engineering efforts are

focused on increasing the resonance eigenvalue at all

frequencies.

VII. COMPARISON WITH THE PREVIOUS METHOD
USED FOR ATTENUATION MEASUREMENT

The previously used method for calculating attenuation

uses a Lorentzian function to model the resonant peaks6 and

assumes that the half-power bandwidth of any given peak

can be calculated from the peak height. By comparing this

bandwidth with the half power bandwidth in a bubble-free

spectrum, the additional peak width due to the bubble attenu-

ation is inferred.

This approach has several limitations. First of all, it

assumes that the spectral peaks have a high quality factor

and actually fit a Lorentzian shape. Second, it fails to take

into account the periodicity in the spectrum, which results in

consecutive peaks starting to touch each other as the spectral

quality decreases. Figure 9 shows the best fit of a Lorentzian

shape to spectral peaks with different eigenvalues. Although

the fit is good for an eigenvalue of 0.8, there is a significant

deviation when the eigenvalue is 0.5. Finally, the approach

provides no flexibility in accounting for irregular peak

shapes. By contrast, the method presented in this paper is

based on the more detailed physics of the resonant process

and can account for all of these features.

FIG. 8. (Color online) Measured eigenvalue magnitudes for a typical spec-

trum from one of the current resonators. These are experimental data from

an actual resonator, not a modeling result, and this explains the unevenness

of the eigenvalue trend with frequency. Each point represents the eigenvalue

magnitude of a single peak, measured using the ratio between the power

spectral density of each spectral peak and the troughs on either side.
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Figure 10 shows the percentage error in the Lorentzian

approach when compared to the matrix approach presented

here for a range of initial eigenvalues. The Lorentzian

method always provides an overestimate. The error in the

Lorentzian method is less than 10% for peaks with an eigen-

value above 0.7 but fails to work at all for eigenvalues below

0.4 (since the peak is no longer more than twice the trough

value). As the eigenvalue magnitude decreases below 0.7,

the error associated with the Lorentzian method increases

rapidly.

An examination of the spectra published by Farmer

et al.6 suggests that most of the spectra were associated with

eigenvalue magnitudes between 0.6 and 0.7. This suggests

that there may have been a systematic error in the absolute

value of the measured attenuation between 10% and 20%,

but this is relatively small compared to the general variabili-

ty of oceanic measurements. However, it is possible that a

systematic frequency dependent error could have more influ-

ence when estimating the slope of the bubble size distribu-

tion. To determine the extent of this effect, we considered a

hypothetical spectrum with eigenvalue magnitudes which

varied linearly from 0.8 at 50 kHz to 0.52 at 400 kHz. This

is a variation that is similar to that on the spectrum shown in

Figure 9(a) of Farmer et al.6 Calculations were carried out

for bubble distributions with populations that were propor-

tional to av, where a is bubble radius, and v is the exponent

of interest. For values of v from �1 to �4 (a typical range

for bubble population measurements beneath breaking

waves), the slope obtained using the Lorentzian method

underestimated the true slope by approximately 0.1. Because

this is a relatively small error when considering oceanic bub-

ble size distribution models, the general results of Farmer

et al.6 and other papers published using resonators below

200 kHz8,9 are not significantly affected by the processing

method used. However, the new matrix-based method pre-

sented here provides a straightforward basis for analyzing

spectral peak heights to infer attenuation and is required for

measurements at higher frequencies.

VIII. FLEXIBILITY IN THE RESONATOR MODEL

One of the scientific objectives behind the development

of this new technique was to obtain an understanding of the

spectral features and irregular peak shapes that have been

observed using acoustical resonators. For example, several

of our resonator systems have produced spectra with alter-

nating low and high peaks in the region from 100 to 400

kHz, gradually changing so that the larger peak in each pair

dominated completely at higher frequencies (see Fig. 11)

and double-spaced peaks were produced. Based on the

model developed in this paper, we suggest that this happens

because of electrical cross talk between the transmit and

receive transducers. Cross talk would cause some of the

transmitted signal to be added directly to the output signal of

the receive transducer and consequently successive peaks

would alternate in size. To understand the consequences of

possible cross talk, we note that the peaks should occur

when the round trip path length from one reflection off the

receive transducer to the next (two traverses of the cavity) is

equal to an integer number of wavelengths. This corresponds

to an integer number of half-wavelengths for one traverse of

the cavity, so if at one peak the reflections off the two trans-

ducers are in phase, at the next peak these reflections are p
out of phase. Cross talk would result in adding the signal at

the two transducers, and so peaks corresponding to the in-

phase case would be reinforced while peaks corresponding

to the out-of-phase case would be partly cancelled. If the

cross talk is the majority of the signal, peak spacing will

double because a peak will only occur when an integer num-

ber of wavelengths fit into a single path length from one

transducer to another. We note that using a conducting wire

to permit direct electrical contact between the resonator

back-plates (artificially facilitating cross talk between the

transmit and receive plates) generates this alternating peak

effect in frequency ranges where it was not previously pres-

ent. This supports the hypothesis that cross talk could be re-

sponsible for the alternating peaks seen when the resonator

is in normal operating mode.

This effect was modeled by summing the pressure at the

receiving transducer and a fraction C of the pressure at the

FIG. 10. (Color online) The percentage error caused by using the Lorent-

zian method plotted against the magnitude of the initial eigenvalue U.

FIG. 9. A comparison of spectral peaks calculated using the matrix model

(solid lines) with the best fit Lorentzian peak shapes (dashed lines). (a) and

(b) both show peaks with an initial eigenvalue of 0.8 and (c) and (d) show

peaks with an initial eigenvalue of 0.5. The peaks in (b) and (d) have both

been attenuated with the same absolute attenuation. The Lorentzians shown

here are used to estimate the attenuation. When (b) is compared to (a), the

error in the Lorentzian result is 4.3%. When (d) is compared to (c), the error

in the Lorentzian result is 45%.
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transmitting transducer. The resulting amplitude including

the effects of cross talk ACT can be given by

ACT ¼
Cj j

1� Cj j2
þ C

1� Cj j2
; (11)

where C is a frequency-dependent parameter that depends on

the extent of the cross talk. Figure 11(b) shows the power

spectral density predicted by this model as the value of C
increases with frequency. Qualitatively this produces a spec-

trum with a similar shape to 11(a). The actual value of C to

use in practice at any given frequency can be determined by

fitting the model to a bubble-free spectrum. We have fitted

this model to such a spectrum for one of our resonators and

have found that attenuation could still be measured from

these double peaks using Eq. (11). The engineering aim is to

manufacture resonators that do not produce this alternating

peak height, but if it is present Eq. (11) means that the

attenuation measurements can still be made. In addition, this

theory for the cause of the alternating peaks feature may

advance attempts to eliminate it.

IX. CONCLUSIONS

We have outlined an improved method for interpreting

the output of an acoustical resonator to measure the addi-

tional acoustical attenuation caused by changes in the bulk

properties of the liquid between the transducer plates. In

contrast with the methods previously used, this method is

based on the specific physics of the resonance process in an

open-sided acoustical resonator. A matrix which describes

the propagation of ray paths across the resonant cavity has

been calculated, and the eigenvectors of this matrix corre-

spond to stable resonant modes. Consideration of the likely

contribution of the first few modes leads us to conclude that

only the first mode needs to be taken into account when cal-

culating the spectral response of the resonator system. The

magnitude and phase of the eigenvalues for this mode can be

used to calculate the spectral response of the resonant sys-

tem, and changes in the peak heights can then be used to

estimate changes in attenuation. This model for resonator

performance is more flexible than the method used previ-

ously and can account for more realistic spectral shapes.

This does not invalidate the previous results gathered using

acoustical resonators, although the analysis method may

have caused a systematic error of the order of 10%–20% in

the attenuation measurement in the frequency range from 10

to 200 kHz and a similar error in bubble void fraction esti-

mation. However, for measurements which include higher

frequency resonant peaks (including the measurements up to

1 MHz discussed here), the method proposed here signifi-

cantly improves the accuracy of the results.
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