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Abstract: Coalescing bubbles are known to produce a pulse of sound
at the moment of coalescence, but the mechanism driving the sound
production is uncertain. A candidate mechanism for the acoustic forc-
ing is the rapid increase in the bubble volume, as the neck of air joining
the two parent bubbles expands. A simple model is presented here for
the volume forcing caused by the coalescence dynamics, and its predic-
tions are tested against the available data. The model predicts the right
order of magnitude for the acoustic amplitude, and the predicted ampli-
tudes also scale correctly with the radius of the smaller parent bubble.
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1. Introduction

The pulses of sound produced by newly formed bubbles are of interest to a wide
range of scientific fields because they provide information about changes occurring in
a bubble population. Past research has tended to focus on the sounds produced as
bubbles fragment, but it has long been known1,2 that an acoustic signal is also emit-
ted at the moment that two bubbles coalesce. This signal has the form of a decaying
sinusoid at the natural frequency of the new larger bubble. The pressure amplitude
depends on the mechanism driving the new bubble into volume oscillations, and to
date no study has conclusively identified the mechanism exciting the sound pulse.
Manasseh et al.3 have investigated the pressure jump due to the equalization of pres-
sures, and found that this mechanism produced the right scaling in amplitude with
bubble radius. However, the magnitude of the amplitude was under-predicted by an
order of magnitude.

Recent research4 has shown that the sound emitted when a new bubble is
formed at a nozzle is consistent with the volume forcing produced by the rapid change
in bubble shape just after pinch-off. The collapse of the conical neck of air that had
connected the new bubble to the parent gas supply is fast because the radius of curva-
ture of the new surface is very small. Consequently, the bubble volume changes on a
timescale far shorter than the natural frequency of the bubble and this drives volume
oscillations and acoustic emission. This paper was motivated by the observation that a
similar (but inverted) situation occurs when two bubbles touch and start to coalesce.
The two bubbles (assumed spherical here) first touch at a point, and an approximately
cylindrical neck of air joining the two bubbles is formed. The boundary surface between
the gas and liquid then has a very small radius of curvature and there is no balancing
force to maintain this situation. The liquid accelerates outward, rapidly increasing the
total volume of the new bubble. The aim of this paper is to present simple calculations
to examine whether this rapid volume change could explain the observed acoustic
amplitudes when bubbles coalesce. A dynamical model of the volume change on coales-
cence will be described here, following the principles used in Deane and Czerski.4 The
consequent dynamical and acoustical predictions will be tested against the data pub-
lished by Thoroddsen et al.5 and Manasseh et al.3
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2. Dynamical model

The model is based on energy balance arguments. In order to carry out a simple first-
order calculation, we assume that thermal and viscous losses are negligible on the short
timescales considered here. Figure 1 defines the geometry and the parameters used in
the calculation. The situation is axisymmetric about a line joining the bubble centers,
and we make no assumptions about their relative sizes.

At time zero, the bubbles touch at a single point, and the neck of air joining
them is assumed to be infinitesimally thin. This is the moment of formation of a new
bigger bubble. We will assume here that the neck is cylindrical, even though Thorodd-
sen et al.5 showed that arcs of circles can be fitted to the shape of the bubble wall. The
reason for this simplification is that it permits an analytic solution for the neck radius
with time, while still including the fundamental physics of the problem. Consider an
annulus of liquid just outside the neck, when the neck has a radius of R. We assume
that the surface area that will be lost as this annulus moves outwards from R to
Rþ dR in time dt provides the kinetic energy for that annulus to move outwards at a
speed dR/dt:

2pR dS1 þ dS2 � dz1 � dz2ð Þr ¼ 1
2

2pRðz1 þ z2ÞdRð Þq dR
dt

� �2

; (1)

where dS1 and dS2 are the widths of the slanted areas lost from bubbles 1 and 2, and
z1þ z2 is the height of the new surface area formed (vertical in Fig. 1). r is the surface
tension and q is the density of the liquid.

We can rearrange Eq. (1) in terms of r1, r2, h1, and h2 (all defined in Fig. 1) to
get an expression for the outward velocity,

Fig. 1. (Color online) Diagram showing the parameters used for the model described here. The two bubbles
(with radii r1 and r2) are considered axisymmetric about the line joining their centers. R is the radius of the neck
of air joining them (which is assumed cylindrical). The inset shows a close-up of the region where the two bub-
bles touch, and the shaded area shows the cross-section of the liquid annulus under consideration in the model
when the neck has reached radius R. The schematic diagrams along the bottom of the panel show how the neck
is assumed to change in time, where the solid lines represent the actual bubble walls at any time and the dotted
lines show the initial position of the bubble walls.
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q
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Using R=r1 ¼ sin h1, R=r2 ¼ sin h2 and the approximations cos h1 � 1� R=2r2
1, and

cos h2 � 1� R2=2r2
2, we can eliminate h1 and h2,

dR
dt

� �2

¼ 4r
qR2

2r1r2

r1 þ r2
� Rþ R2

2
r2

2 þ r2
1

r2
2r1 þ r2

1r2

� �
: (3)

Equation (3) is valid to second order and is presented for completeness. The most im-
portant forcing will occur at small values of R, so to make the expression more tracta-
ble only the zeroth order term in the parenthesis on the right hand side of Eq. (3) will
be used for the following calculations. Numerical testing has shown that this assump-
tion makes a negligible difference for the parameter ranges of interest here.

The expression for the outward speed is then given by

dR
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r
qR2

2r1r2

r1 þ r2ð Þ

s
; (4)

which can be integrated to give the neck radius with time,

R ¼ 2
2rr1r2

q r1 þ r2ð Þ

� �1=4

t1=2: (5)

We will now check this model against the data from Thoroddsen et al.5 Equa-
tion (4) has a similar form to the capillary-inertial model described in that paper. That
model includes an adjustable constant C, whereas there are no adjustable parameters in
the simple model presented here. Their data fit the capillary-inertial model very well if C
is given a value of 1.08. Equation (4) in this paper can be used to predict a value of 1.41
for C if r1 ¼ r2 (to match the model of Thoroddsen et al.) and (z1þ z2)=r� 1, which is
a valid assumption at early times during the growth of the neck. Figure 2(a) shows the
data from Fig. 4 of Thoroddsen et al. compared with the results from Eq. (5). The dy-
namical model presented in this paper overpredicts the speed of the neck growth, which
is expected because there are no energy loss terms included, and simplifying assumptions
were made about the shape of the neck. However, the general form of the function is
the same and this model includes the effects of r1 and r2. The author is unaware of coa-
lescence speed data for coalescing bubbles where the parent bubble’s radius ratio was
more than 2, so Eq. (5) remains untested for higher radius ratios. However, the model
predicts the correct order of magnitude and the correct functional form, providing confi-
dence that a first-order calculation of the acoustic forcing can be made with this model.

Equation (5) can be used to find the volume gained by the new bubble with
time, so the acoustic forcing provided by the dynamics of the coalescence event can
now be calculated directly. The additional bubble volume after time t, DV(t) is given
by

DVðtÞ ¼
ðr¼RðtÞ

0
2pRdR z1 þ z2ð Þ: (6)

Using small angle assumptions for h1 and h2 and Eq. (5), this reduces to

DVðtÞ ¼ 8pr
q

t2: (7)
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The effect of this additional bubble volume will be to decrease the pressure
inside the bubble. The change in external pressure that would be required to account
for this change in bubble volume can be calculated using the polytropic relationship

Pin ¼ Pin;0
V0

V0 þ DV

� �j

; (8)

where Pin is the internal bubble pressure at the time of interest, and Pin,0 is the internal
bubble pressure when the bubble is in equilibrium with the ambient pressure in the liq-
uid around it. DV

V0
� 1, so a binomial expansion of Eq. (8) yields the forcing function

f(t) for a spherical bubble of radius R0,

f ðtÞ ¼ �6rjPin;0

q2R5
0

t2: (9)

The additional factor of qR2
0 in Eq. (9) is due to the form in which the forcing

is inserted into the Rayleigh–Plesset equation, as an equivalent external pressure.4 This
forcing term can then be used to drive the linearized Rayleigh–Plesset equation, once
the appropriate time dependence is taken into account (discussed below). To apply the
Rayleigh–Plesset equation, it is necessary to use an equivalent spherical radius for
the new bubble, and we assume here that the breathing mode response of the bubble
can be described using spherical symmetry. This approach produced good results in
Deane and Czerski.4

Equation (9) has no dependence on the parent bubble radii. The most obvious
effect that the bubble radii will have is to limit the length of time for which this simple
model of neck expansion is valid. We make the assumption here that this is controlled
by the smaller bubble of the pair (labeled bubble 2), and that the length of time for
which forcing continues is related to the length of time taken for the neck radius to
reach some fixed fraction of the small bubble radius, or equivalently a limiting angle
h2¼hlim. The calculation here is carried out with values for hlim of 40, 45, and 50
degrees, so that the importance of this parameter can be judged. The time taken for
the neck to reach this radius [calculated using Eq. (5) and labeled tlim] will be used to
scale the time for which the forcing is allowed to continue.

Fig. 2. (Color online) (a) A plot of the neck width with time. The dotted line shows the results from Thoroddsen
et al. and the solid line shows the predictions of the model described in this paper for the same parameters. If
the model results are multiplied by 0.65, they exactly overlie the experimental data. (b) The scaling of the acous-
tic pressure amplitude with a reference pressure, a plot equivalent to figure 13 in Manasseh et al. The circles are
the data points from that figure, and the lines show the predictions from the model presented here for hlim of 40�

(dotted line), 45� (dashed line), and 50� (solid line).
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The arbitrary function chosen to modulate the forcing is an arctangent,
because this is continuously differentiable and relatively straightforward to scale. The
modulating function M(t) is shown below, and its effect on the forcing function is
shown in Fig. 3,

MðtÞ ¼ 1
2
� 1

p
arctan B

t� tlim

tlim

� �
; (10)

where B is a constant chosen to determine the cut-off slope. The M(t) scales so that it
is close to 1 at time zero and has decreased to 0.5 at tlim. The value for B used in these
calculations was chosen to be 3 to provide a reasonable cut-off slope.

With the acoustical model in place, it is now possible to calculate the acoustic
pressure signals produced by coalescence events. The outcomes of this model will be
compared with the data of Manasseh et al.3 The radii of the new bubbles in that study
have a minimum value of 0.8 mm, so we neglect the change in internal pressure due to
surface tension. The newly coalesced bubble will oscillate close to its natural frequency,
so for the damping term we use Medwin’s approximation.6 The version of the Ray-
leigh–Plesset equation used here is

d2e
dt2 ¼ �

3jP0

qR2
0

e� 0:0025f
1
3x

de
dt
þ 1

2
� 1

p
arctan B

t� tlim

tlim

� �� �
6jrP0

q2R5
0

t2; (11)

where x is the natural frequency of the new bubble in radians/s, f is equal to x/2p,
R0 is the equivalent spherical radius of the new bubble, and e is the fractional change
in bubble radius. Integrating this with respect to time gives us the bubble wall radius,
speed, and acceleration; so the acoustic pressure at 1 m distance can be calculated.

In the experiments of Manasseh et al. a large bubble was formed at a nozzle,
followed by a much smaller bubble that coalesced with the first bubble after a short
interval. High-speed photography was used to measure the bubble radii and a nearby
hydrophone recorded the acoustic pulse produced. The effects of reverberation in the

Fig. 3. (Color online) Results of the model described in this paper, from numerical simulations using the pa-
rameters in Manasseh’s paper. The large bubble has a radius of 0.8 mm in all cases, and the results shown here
are for small bubble radii of 150 lm (solid line) and 200 lm (dashed line). (a) The function modulating the forc-
ing for the two radii. In each case, the modulating function M(t) passes through 0.5 at tlim. (b) The forcing func-
tions. The thick solid line shows the unmodulated forcing function f(t), and the thin solid and dashed lines show
the final forcing functions for the two bubble radii, once that modulating function is applied. (c) and (d) The cal-
culated acoustic pressures with time for these situations. The vertical axis is the same in both plots, and it can be
seen that both pressure signals rise initially, and that the amplitude of the pulse associated with the 200 lm
radius bubble is much larger than that associated with the 150 lm radius bubble.
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tanks were checked and found to be negligible. The first observation to note is that ini-
tially the sound pressure in the experiments of Manasseh et al. always rose, contrasting
with the observations of bubble pinch-off where the sound pressure was always
observed to fall initially. This is consistent with the volume oscillations being driven by
a rapid change in bubble volume, since in the pinch-off experiments the bubble volume
decreases rapidly, whereas during the coalescence process the volume increases rapidly.

The major acoustic result is shown in Fig. 13 of the paper by Manasseh et al.
where the ratio of bubble volumes is shown to have an approximately linear relation-
ship with the scaled acoustic pressure amplitude. In order to compare the model pre-
sented here with those data, equivalent numerical simulations of those experiments
have been carried out using the model described above and the results have been plot-
ted in the same way for comparison. Equation (11) was integrated with respect to time
for an appropriate range of small bubble radii, and for one large bubble radius (0.8
mm). The acoustic pressure amplitude was extracted from the numerical simulations in
the same way that it was extracted from the experimental data.

The comparison is shown in Fig. 2(b). It can be seen that the predicted acous-
tic amplitudes match the data very well, and that the predicted relationship between
alpha and the scaled acoustic pressure is consistent with the data. It should be remem-
bered that Eq. (5) overestimated the collapse speed, so the model is also expected to
overestimate the acoustical pressure amplitude and this is not the case here. However,
considering the many first-order assumptions in the model outlined in this paper, the
agreement in pressure amplitude is acceptable.

3. Conclusions

A simple dynamical model for the growth of a neck of air between two coalescing bub-
bles has been shown to produce the correct functional form and approximately the right
order of magnitude, providing confidence that it could be used for first-order calculations
of the rate of volume change with time. The length of time for which the volume forcing
continued was controlled by a simple modulating relationship that depended on the size
of the smaller bubble of the pair. This acoustic forcing was then used to drive the linear-
ized Rayleigh–Plesset equations to calculate the acoustic pressure pulses expected from
coalescing bubbles driven by this mechanism. A comparison of the results with published
data shows that the mechanism of volume forcing generates the right order of magnitude
for the acoustical amplitude. In addition, it can also account for the observed relationship
between the size of the smaller bubble and the amplitude of the emitted sound, and the
sign of the initial change in pressure is correctly predicted. Rapid volume change due to
the bubble dynamics has previously been shown to be a significant mechanism for driving
the sound produced by fragmenting bubbles, and the calculations here suggest that it is
also a mechanism driving sound emission during bubble coalescence.
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