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Abstract

This thesis uses theoretical models to answer questions that revolve around the ecological processes that

maintain diversity. Chapter 1 studies the importance of competitive asymmetry on the likelihood of coex-

istence. Considering a competition-fecundity trade-off, we find conditions that allow coexistence of two

species, and show the likelihood of these species coexisting increases with competitive asymmetry. Fur-

ther, we demonstrate that asymmetry allows for the coexistence of an arbitrarily large number of species,

although the likelihood of coexistence decreases as more species are considered. Chapters 2, 3 and 4 are all

concerned with the effects of disturbance on diversity. In Chapter 2, we demonstrate that the frequency and

intensity of disturbance events can affect the community dynamics in different ways. We demonstrate that

the diversity-disturbance relationship can take several different forms as frequency and intensity interact to

determine overall disturbance regimes. Chapter 3 examines which of three predicted trade-offs are likely to

contribute most to coexistence. In particular, we derive the likelihood of two species coexisting as defence

against disturbance, fecundity and juvenile growth rates vary between species. We show that a fecundity-

defence trade-off is particularly sensitive to parameters, and is not expected to contribute to diversity in

large communities. Further, we conclude that a fecundity-growth trade-off contributes more to the main-

tenance of diversity than a growth-defence trade-off, although the latter is expected to have some effect.

In Chapter 4, we consider the effects of disturbance extent on the likelihood of three species coexistence.

We demonstrate that in a single, well mixed community a fecundity-growth trade-off cannot support three

species. We then use a metapopulation structure to show that spatial heterogeneity in disturbance regimes

can increase diversity; showing that a community protected from disturbance can contribute to increase

regional diversity, and increase diversity in a neighbouring patch with disturbance.
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Chapter 0

Introduction

One of the key issues in ecology is understanding how some communities can maintain high levels of

species diversity. In particular, tropical forests and coral reefs are known to support a large number of

species, often within a small area. For example, a single hectare of Amazonian forest has been observed

to support over 300 species (Valencia et al, 1994), while a single region of coral reef (< 15m3) can host

over 75 species (Smith and Tyler, 1972). However, although the preservation of this diversity is often a

conservation priority, the processes that lead to, and consolidate, this biodiversity are still to be uncovered.

Much of the recent theoretical work on this topic has fallen into two categories: niche theory, where

species specialise on different resources, and neutral theory, which considers all species ecologically equiv-

alent and dynamics are determined by chance, through either demographic or environmental stochasticity.

Niche theory can be traced back as far as Darwin (1859), who suggested a deterministic sequence of events

could lead to a diverse community, in which species are distinguished by a unique role within the commu-

nity. More recently, Hutchinson (1957) defined a niche to be the supervolume of n-dimensional resources

in which a species lives. These resources may be considered as chemicals needed by an individual, such

as nitrogen or carbon, or may come in other forms such as space to develop. Hutchinson (1957) also noted

the distinction between a species’ abiotic niche, the range of environments in which it can survive, and

the realised niche, a function not only of abiotic factors but also dependent on the identity and actions

of other species present in the community, in which a species does survive. Theory suggests that for a

single resource, the species which can reduce a resource to the lowest level will exclude all other species

(e.g. Tilman, 1980; Tilman and Wedin, 1991). This leads to the conclusion that for a given number n of

distinct resources, niche specialisation can result in n species coexisting, as each maximises the use of a

single resource, while the law of competitive exclusion indicates that m > n species cannot coexist (Hardin,
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CHAPTER 0. INTRODUCTION

1960), assuming all other factors are constant between species. However, this mechanism often requires

an excessive number of distinct resources in order to mirror the biodiversity levels seen in empirical stud-

ies, while exact equivalence of factors is unlikely to occur in nature. Hutchinson (1961) examined the

implications of competitive exclusion in the case of plankton, where diverse communities are maintained

within an unstructured environment, concluding that environmental variation on shorter temporal scales

than competitive exclusion was necessary to sustain diverse communities.

One possible explanation for the levels of diversity observed beyond the number of distinct resources is

trade-off theory. Since resources are not infinite, no single species can allocate sufficient resource to opti-

mise every life history trait, becoming the ‘Darwinian Demon’ of Law (1979), or the analogous ‘Hutchin-

sonian Demon’ (e.g. Kneitel and Chase, 2004). Rather, resources are allocated to one life history trait at the

expense of others, resulting in trade-offs such that, for example, a species that produces seeds with a large

mass will produce a much smaller number of seeds (e.g. Greene and Johnson, 1993; Venable, 1992), or a

species with resource allocation to rapid juvenile growth may do so at the expense of its ability to disperse

and colonise other areas in the environment (e.g. Tilman, 1994; Cadotte et al, 2006). These trade-offs effec-

tively differentiate species realised niches, even while maintaining the same abiotic niche. Trade-offs such

as the competition-colonisation trade-off have been shown in theory to support an arbitrarily large number

of species (Tilman, 1994).

The action of trade-offs may also be heavily dependent on competitive asymmetry between species.

Competitive asymmetry occurs when one individual receives a disproportionate amount of the resource

when in competition with another individual. Asymmetric competition is prevalent in insect communities

(Lawton and Hassell, 1981), and is also common within plants, where competition for light is expected to

depend on size, with the larger individual intercepting large quantities of light at the expense of a smaller

neighbour (Weiner, 1990). Competition is said to be highly asymmetric if a small difference between

individuals results in a large difference in the amount of resource garnered from competition.

In Chapter 1, we examine the effects of this competitive asymmetry on the likelihood of coexistence.

Using a Lotka-Volterra type model of competition, we find analytical conditions for the coexistence of two

species along a fecundity-competition trade-off. We demonstrate that competitive asymmetry between sim-

ilar individuals must be sufficiently high if the system is to support two or more species, such that a small

size advantage results in a large competitive advantage, and show that the likelihood of two species coex-

istence increases with the maximal competitive asymmetry (the competitive advantage over a very large

individual over a very small one). Coexistence is maximised when competition is modelled by a discon-

tinuous step function, such that any size advantage grants the same competitive advantage, and the larger

12



CHAPTER 0. INTRODUCTION

individual gains 100% of the available resources. Further, using this step function, we show analytically

that this trade-off can support any number of species, although the probability of the system supporting

randomly selected species declines rapidly as the number of species increases.

While niche theory focuses on the differences between species, neutral theory instead considers all

species equivalent at an individual level, with community structure determined by chance (e.g. Hubbell,

1979; Chave, 2004; Hubbell, 2001). Designed as null models for coexistence, neutral theory models have

proven able to predict high levels of biodiversity (see Chave, 2004; Hubbell, 2001, and references therein),

and have accurately captured a range of observed relative abundance distributions (e.g. Volkov et al, 2003),

although some studies report a poor fit to data when compared to alternative theory (e.g. Dornelas et al,

2006; McGill et al, 2006). The predictions of niche and neutral theories can also coincide (Chisholm and

Pacala, 2010), indicating that support for neutral theory predictions in empirical studies does not necessarily

exclude the presence of niche differentiation.

One type of model that utilises many of the assumptions of neutral theory are lottery models, as intro-

duced by Sale (1978) and developed further by Chesson and Warner (1981). These models are usually stud-

ied for relatively sessile species such as trees or coral dwelling fish, where a dispersal phase is followed by a

long term occupancy of a site (e.g. Munday, 2004). Space is considered a limiting factor and the occupation

of sites by a species is determined by the proportion of sites occupied by that species; that is, recruitment

is determined by random (lottery) selection of the individuals available to reproduce. Lottery models have

been shown to promote coexistence in scenarios where deterministic models such as Lotka-Volterra com-

petition models predict competitive exclusion (e.g. Chesson, 2000). Further, Fagerström (1988) concludes

that environmental variation generally increases such coexistence of similar species. Coexistence is also

favoured when the spatial mixing of individuals during the dispersal phase is incomplete (Muko and Iwasa,

2003; Snyder and Chesson, 2003).

More recently, stochastic niche theory has been developed in an attempt to resolve the differences be-

tween the two approaches (Tilman, 2004). Tilman (2004) found that decreases in resource level cause

limitation of local diversity, although this can be overcome by resource pulses or disturbance events. In

Chapter 2, we develop a lottery type model in which we combine aspects of both neutral and niche theories.

Using a trade-off between fecundity and juvenile growth rate, we introduce species specific characteristics

into a non-linear stochastic model where allocation of space is subject to significant environmental stochas-

ticity. We demonstrate that this combination of species specific traits and chance can lead to coexistence

of at least two species competing asymmetrically for light, and using invasion analysis as a criterion for

coexistence, find express conditions for this coexistence.
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Further, we use this stochastic model to study the effects of disturbance on the community structure.

Disturbance has been suggested as a strong driver of biodiversity, by perturbing the system such as to

prevent the realisation of a lower diversity equilibrium (e.g. Denslow, 1987; Sousa, 1984). These events,

defined by Shea et al (2004) as events that alter niche opportunities via the death of large numbers of

individuals, can create an environment where space limited species, such as pioneers, that prosper in an

unsaturated environment, can persist in regions where they would otherwise by excluded if disturbance was

too weak. If disturbance levels are sufficiently high, however, those species that are strong in saturated and

congested environments will be excluded, as the environment will favour space limited species. Using these

arguments, the intermediate disturbance hypothesis (IDH) suggests that diversity will be maximised at inter-

mediate levels of disturbance, producing a unimodal, peaked diversity-disturbance relationship (DDR) (e.g.

Connell, 1978; Grime, 1973; Huston, 1979). However, empirical evidence for the IDH is mixed (see review

in Mackey and Currie, 2001), while it has also attracted theoretical criticism (e.g. Fox, 2012, who argued

the IDH showed several logical inconsistencies). A further criticism of the IDH may be that the strength

of disturbance is poorly defined, and many studies conflate several axes on which disturbance can vary

into a single measure, when these different factors may have different effects on the dynamics (e.g. Molino

and Sabatier, 2001; Nakagawa et al, 2000; Peterson and Rebertus, 1997). Including disturbance events in

the model that consider explicitly two factors affecting total disturbance rate, frequency and intensity (pro-

portion of individuals killed), we find that disturbance can dramatically increase the range of parameters

for which two species can coexist. We demonstrate that the component of disturbance measured can have

very different effects on the observed DDR, such that the peaked DDR predicted by the IDH is just one

of several possible outcomes from the same mechanism, and show that these results are robust to changes

in productivity and system capacity, the maximum number of individuals supported in the community at

saturation.

The focus of the work presented in Chapter 2 is on a fecundity-growth trade-off, yet there are three main

life history traits to consider for plants - fecundity, growth and defence against herbivory or other distur-

bances (Bazzaz et al, 1987). Therefore, in Chapter 3 we adapt the stochastic model in order to consider

trade-offs between different combinations of these three traits, by introducing species-specific disturbance

intensities. We then compare the likelihood of these different trade-offs leading to two species coexistence,

and compare the resulting predictions to empirical evidence from the literature. We find that using the lot-

tery model framework, trade-offs including growth rate differences between species can support coexistence

for any system capacity, while a trade-off between fecundity and defence cannot sustain more than a single

species in large systems. This is supported by the empirical results, which show no relationship between

14



CHAPTER 0. INTRODUCTION

fecundity and defence (Martin et al, 2010), while growth-defence and fecundity-growth trade-offs are ob-

served in natural communities (e.g. Stanton et al, 2002; Turnbull et al, 1999; Wright et al, 2010; Fine et al,

2006). By correlating the species specific intensities, we demonstrate that, of the trade-offs considered, the

fecundity-growth trade-off is likely to contribute the most to coexistence.

Using these conclusions, we then extend the stochastic model in Chapter 4 to include a third species

along a fecundity-growth trade-off, and examine the effects of disturbance with more than two species.

Introducing a third species allows the consideration of coexistence between specialist species (with high fe-

cundity or rapid juvenile growth rate) and a generalist with intermediate seed production and growth rates.

We examine the effects of varied trade-offs and disturbance regimes, and introduce geographic regions of

the community that may be protected from disturbance, or experience a different disturbance regime from

the remaining forest sites. We show that these refuges can provide for species that would otherwise be

excluded if exposed to the conditions experienced by the rest of the community, suggesting that distur-

bance regimes alone can allow native species to survive the invasion of an invasive species. This increase

in diversity can occur despite the fact that species present in the community may exclude each other in the

absence of the environmental heterogeneity provided by disturbance. Further, the model predicts that while

nature reserves can boost regional diversity, there is no corresponding increase in species number within the

reserve. Rather, the increased diversity may be observed in neighbouring areas. Therefore, we argue that

monitoring of nature reserve effectiveness must include regions outside the reserve itself that are reproduc-

tively connected to the reserve, and that knowledge of the level of inter-patch migration may be crucial to

managing environments where disturbance pressures vary significantly. Finally, we find that when the level

of inter-patch migration is non zero, small reserves (relative to the size of the entire region) can support

more than two species for higher levels of migration than larger reserves, suggesting smaller reserves may

be more resilient to fluctuations in migration than large protected areas when close to regions of intense

disturbance.
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CHAPTER 1. QUANTIFYING THE PROBABILITY OF COEXISTENCE

Abstract

Trade-offs in performance of different ecological functions within a species are commonly offered as an

explanation for coexistence in natural communities. Single trade-offs between competitive ability and other

life history traits have been shown to support a large number of species, as a result of strong competitive

asymmetry. We consider a single competition-fecundity trade-off in a homogeneous environment, and ex-

amine the effect of the form of asymmetry on the likelihood of species coexisting. We find conditions that

allow coexistence of two species for a general competition function, and show that (1) two species can only

coexist if the competition function is sufficiently steep when the species are similar; (2) when competition

is determined by a linear function, no more than two species can coexist; (3) when the competition between

two individuals is determined by a discontinuous step function, this single trade-off can support an arbitrar-

ily large number of species. Further, we show analytically that as the degree of asymmetry in competition

increases, the probability of a given number of species coexisting also increases, but note that even in the

most favourable conditions, large numbers of species coexisting along a single trade-off is highly unlikely.

On this basis we suggest it is unlikely that single trade-offs are able to support high levels of biodiversity

without interacting other processes.
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CHAPTER 1. QUANTIFYING THE PROBABILITY OF COEXISTENCE

1.1 Introduction

There is no such thing in the natural world as a Darwinian Demon which maximises all possible life history

traits (Law, 1979), and instead individuals have to allocate resources to one life-history trait at the expense

of others. This results in trade-offs between life history traits, so that, for example, a plant species which

allocates resource to rapid growth does so at the expense of its ability to withstand shading; or a species

that has allocated much of the available resource to out-competing other species will suffer a decrease

in its ability to disperse and colonise empty areas of the environment (e.g. Tilman, 1994; Cadotte et al,

2006). Other classic life-history trade-offs include the offspring size-number trade-off (e.g. Venable, 1992);

the trade-offs between pathogen resistance and fecundity (e.g. Bowers et al, 1994); and competition and

intra-guild predation (Amarasekare, 2007).

Theory has shown that these trade-offs can allow two or more species to coexist while competing for

the same resources (e.g. Kisdi and Geritz, 2003; Levins and Culver, 1971; Bonsall and Mangel, 2004), and

consequently that trade-offs may be instrumental in the evolution of biodiversity (Schluter, 1995; White and

Bowers, 2005; Bonsall and Mangel, 2004). In particular, Levins and Culver (1971) originally highlighted

two such trade-offs, the competition-colonisation trade-off which has received much attention, and the trade-

off between death rate and competitive ability which has received less attention. Levins and Culver argued

that two species can coexist if one experiences a lower death rate, but is a weaker competitor than the other

species. Both trade-offs are closely related, and have received much attention, with Tilman (1994) showing

that the competition-colonisation trade-off can potentially lead to infinitely many species coexisting.

However, the conditions under which species either competitively exclude, or coexist alongside others

due to trade-offs between competition and other life history traits might also be dependent on the existence,

and level, of asymmetric competition between species (Adler and Mosquera, 2000). Competition is called

asymmetric if an individual with larger trait value (e.g. size) is bestowed some benefit over small trait valued

neighbours, winning more than 50% of contests by virtue of this difference in trait. This competition is

deemed to be very asymmetric if there is a large difference in competitive ability between individuals which

have slightly different trait values. Asymmetric competition is widespread in the natural world, forming the

majority of inter-species competition in insects (Lawton and Hassell, 1981); and is prevalent in plants where

competition for light is expected to be size dependent, such that a larger plant may intercept nearly all the

available light at the expense of a smaller individual (Weiner, 1990). However, there is relatively little theory

that investigates how the strength of competitive asymmetry may affect the maintenance of biodiversity.

Adler and Mosquera (2000) demonstrated that, if the competition between two species is determined

by a step function with infinite gradient when traits are the same, then the species richness, the number of
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species present in the community, is maximised in their model. They then used numerical simulations of

their model to show how reducing the degree of competitive asymmetry reduces the number of species that

can coexist on the trade-off. Similarly, Kisdi (1999) showed that the gradient of the competition function

at the point where two competing individuals have the same trait value (i.e. the same size), is critical in

determining the number of species that may evolve in the long term. In other words, coexistence and the

evolution of a large community seem to be more likely if a small change in fecundity translates into a large

change in competitive ability.

Here we build on this previous work and analyse a model with a single trade-off between competitive

ability and fecundity. We will find conditions required for two species to coexist, and demonstrate that

while no more than two species can coexist when competition is a linear function of the trait value, if the

mechanisms of the competition between species allows for a discontinuity in the competition function, then

coexistence of any number of distinct species is possible. We also demonstrate analytically for two species

that this discontinuous competition gives an upper bound on the likelihood of coexistence when compared

with two convex-concave functions that tend to the step function as parameters are altered. Niche theory

suggests that as species become more similar coexistence should become more unlikely, but few studies

have quantitatively investigated this in the context of life-history trade-offs. Using rigorous proofs we will

show that competitive asymmetry and the gradient of the competition function at the origin are important in

determining the number of species able to persist on one trade-off, but also show that even under the most

favourable conditions, large numbers of species coexisting on one trade-off is very unlikely.

1.2 The Model

We examine coexistence criteria in a simple model where species differ only in their per capita fecundity

and their competitive ability. The per capita fecundity is compared to competitive ability through assigning

a trait value to each species. The typical traits we have in mind are body size, or weight of armament,

and a strong competitor has a lower fecundity, creating a competition-fecundity trade-off. In doing so

we assume a species which is a stronger competitor diverts resources into this trait, perhaps by delaying

reproduction and growing in size; whereas a weaker competitor diverts more resources into reproduction at

the cost of competitive ability. We assume this trade-off, which restricts parameter space within the model,

is conserved across species, and that it can be described by two functions that relate a species’ trait value to

(i) fecundity, and (ii) competitive ability. In particular, we will explore how the shape of the latter function

is important in determining the amount of species that may be supported by the trade-off.

Let n denote the number of species present in the environment, with species i having expected size xi
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and population density Nxi . We use Lotka-Volterra equations to describe the population dynamics:

dNxi

dt
= Nxi

p(xi) −
n∑

j=1

c(xi − x j)Nx j

 , (1.1)

where p(xi) is the intrinsic growth rate of species i when resources are not limiting and the environment

is free of competition; c(xi − x j) is the competition kernel used to quantify the impact of competition with

species j on species i which depends only on the difference in trait values xi − x j. For larger species, which

have lower fecundity, p(xi) is lower than for species with smaller trait values, so we assume that p(xi) is a

strictly decreasing non-negative function of trait value xi. For a species to be viable in an environment, the

intrinsic growth rate p must be greater than zero, as any species with a non-positive growth rate would not be

able to grow in even an empty environment. Since we are at liberty to choose units for x, we choose xmax = 1

since the supremum of all trait values for which a species is viable: p(1) = 0. Similarly, we let xmin = 0

be the smallest permissible trait value, meaning all extra resources are diverted into fecundity rather than

competitive ability. In what follows we will mainly work with the linear growth function p(xi) = ρ(1 − xi)

where ρ > 0. However, we will use p(xi) wherever possible in order to show how the method may be

extended to nonlinear growth functions. Using these assumptions, our aim is to investigate the possibility

and probability of coexistence of species selected at random across the entire trait-space.

The continuous competition kernels c(xi− x j) we consider are non-increasing functions of the difference

between the individual’s trait value and that of its competitor, i.e. non-increasing in (xi − x j). This means

that an individual with large trait value experiences little resource loss from competing individuals with

smaller trait values, while small trait value individuals suffer a much larger competitive effect from large

individuals. For example, taller trees will clearly intercept light earlier than shorter individuals, while

shading shorter neighbours. However, shorter trees will have limited shading effect on a tall neighbour. We

use convex-concave functions, to reflect the assumption that two large species will have a similar effect on a

much smaller third species, while a large individual will suffer approximately equal effects from two much

smaller individuals. However, when all three species are of similar size, the effects of the larger (smaller)

two on the smallest (largest) may vary significantly. The discontinuous competition is a suitable limit of

such continuous functions, and although it is less realistic, it allows for useful analytical upper bounds for

the continuous cases.

We study the effects of asymmetric competition for two species considering (1) a general function c(z)

and linear growth, with a focus on two examples; and (2) for general growth p(xi) with linear and step

function c(xi − x j), which we also consider for n > 2. As with the growth function, the general linear

20



CHAPTER 1. QUANTIFYING THE PROBABILITY OF COEXISTENCE

competition kernel is studied, with

c(xi − x j) = κ − θ(xi − x j) (1.2)

for constants κ, θ, but additional restrictions are applied to the convex-concave and step functions model.

To ensure that the effect of this competition is never positive, such that the model represents a predator-prey

interaction or mutualism, it is necessary to have κ > θ. The intraspecific competition (i.e. when xi = x j)

is assumed to be identical across species, and can be scaled to one to reduce the number of parameters,

and it is assumed that the total negative effect of competition in an interaction between any two individuals

is the same. Ecologically, this means that there is a set amount of resource to be shared between any

two individuals. When the two individuals are the same species and have equal trait values, each takes

on average 50% of the resource, or wins the competitive contest roughly half of the time. When the trait

values differ, the stronger competitor takes a greater percentage of the resource, leaving less for the weaker

competitor. To reflect this we study two continuous competition functions, a piecewise linear function given

by

c(xi − x j) =



1 + ε xi − x j ≤ −Θ

1 − ε
Θ

(xi − x j) −Θ < xi − x j < Θ

1 − ε xi − x j > Θ,

(1.3)

and a smooth function modified from that used by Kisdi (1999), which we consider as

c(xi − x j) = 1 + ε −
2ε

1 + e−
2(xi−x j )

Θ

, (1.4)

where ε and Θ are constants. As Θ tends to zero, these two functions both tend to a step function, that will

be considered in detail for general n species dynamics. This function is given by

c(xi − x j) =



1 + ε xi < x j

1 xi = x j

1 − ε xi > x j

, (1.5)

and is used as the discontinuous competition function throughout this study (see also Tilman, 1994; May

and Nowak, 1994).

Our model is similar to those studied by Law et al (1997) and Kisdi (1999), although both of their

models only considered a concave-convex competition function in lieu of the linear and discontinuous

functions considered for large n here. The function ck,ν(z) = c(1 − 1/(ν + ekz)) used by Kisdi, of which

21



CHAPTER 1. QUANTIFYING THE PROBABILITY OF COEXISTENCE

(1.4) is a modified version tends to a discontinuous step function of the type studied here as Θ = 1/k tends

to zero (ν > 0 fixed). The use of simplified competition functions in this study allows for more analytical

work than the more complex functions used in Kisdi’s analysis. We demonstrate in the two species case that

our results for the discontinuous competition function are similar to those produced using the competition

kernel given by (1.4) when Θ is small, and hence allow for comparison with Kisdi’s competition model

which shows qualitatively similar results for two species coexistence with linear growth.

When ε = 1, our model with a step function c(z) takes the same form as the spatially implicit model pre-

sented by Klausmeier (1998), which also demonstrates that coexistence is possible for general n. However,

this current study builds upon this work to indicate both the likelihood of this coexistence, and the effects

of weakened asymmetry in competition.

Before studying the effects of trade-offs on the coexistence of species, it is important to clarify what

we mean by coexistence. In its strongest sense, coexistence can be taken to mean that all species present

persist at a given positive equilibrium value. This means that any mathematical model of the system will

exhibit coexistence if and only if there is a positive fixed point that is globally asymptotically stable, in

the sense that all initial conditions for which each species has positive density end up at a positive equilib-

rium density. This is the notion of coexistence used by Strobeck (1973). Law and Morton (1996) uses a

less stringent definition of coexistence, namely that the system exhibits coexistence if all species densities

remain bounded and for all positive initial densities, there is a density δ > 0 such that all the species even-

tually exceed δ, demonstrated mathematically by the concept of permanence. In this study, a collection of

species is considered to exhibit coexistence if the model of those species exhibits permanence. However,

as permanence is an immediate consequence of a globally asymptotically stable equilibrium in the interior,

the existence of the latter is used to show coexistence in our discontinuous competition model.

In later sections we study n-species communities and investigate the likelihood of coexistence given the

model, and the trade-off function. Here we assume communities are assembled randomly from a regional

species pool where all species (trait values) are present. We note that our results will be different to the

expected number of species that will evolve via small mutations from a mono-specific community; or

from community assembly by invasion of species one at a time; but in both cases relatively high levels of

coexistence are required for large communities to occur.
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1.3 Results

1.3.1 Linear competition

Suppose that the competitive advantage held by one species over another is a linear function of the differ-

ence between the trait values of the two species. Then the competition coefficients c(xi − x j) in (2.2) are

determined by use of the function given in (1.2). In order to preserve the competition-fecundity trade-off,

it is necessary that as fecundity decreases - and the function p(xi) decreases - the competitive advantage

that the species holds over a fixed, weaker competitor is increasing. This translates to the mathematical

condition θ > 0. To simplify the calculations, it is assumed that xi > xi+1, but the results shown apply to

any ordering of species, and therefore trait values. The equations for the two species system are

dNx1

dt
= Nx1

{
p(x1) − κNx1 − (κ − θ(x1 − x2))Nx2

}
dNx2

dt
= Nx2

{
p(x2) − (κ − θ(x2 − x1))Nx1 − κNx2

}
.

This model admits an interior fixed point when

κ

θ

p(x2) − p(x1)
p(x2)

< x1 − x2 <
κ

θ

p(x2) − p(x1)
p(x1)

, (1.6)

and this is globally stable in (R+
0 )2 whenever it exists, since κ > 0 by assumption. Therefore, coexistence is

possible if the condition (1.6) is satisfied.

However, the limits of linear competition in giving rise to coexistence are shown if a third species is

introduced to the system. We now demonstrate that regardless of the trait value this species holds, or the

parameter values for κ, θ, it cannot form a permanent three species system with the two already species

present.

Note that when equation (1.2) is used, the 3 × 3 matrix of competition coefficients has a determinant of

zero, i.e. is singular, and that therefore the model does not have a unique equilibrium point in the interior.

In Lotka-Volterra systems, this means that the system does not exhibit permanence (Theorem 13.5.1 in

Hofbauer and Sigmund, 1998b).

Therefore, no third species can coexist with the two species already present. We conclude that with

a linear function for competition, a maximum of two species can stably coexist and when a third species

is introduced, the model exhibits neither asymptotic stability nor permanence. The linear trade-off case

is degenerate, but it is useful in illustrating the dependence of the model on the form of the competition

function. We therefore switch our attention to a model utilising a nonlinear competition function.
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1.3.2 Generalised competition in the two species case

Consider a generalised, piecewise continuous, competition function c(xi − x j) = c(z) for z = xi − x j the

difference between the trait values of the two species, which is decreasing, such that c′(z) ≤ 0 for all z,

for two species. These species are different in two aspects, competitive ability and population growth rate

(effectively K and r respectively), both of which are determined by a single parameter xi for species i. We

assume that growth rate decreases linearly with xi, such that xi can be considered as the proportion of non

essential resource dedicated to competitive strength at the expense of population growth rate. It is simple to

scale the model such that we can define this growth rate by the function p(x) = 1 − x. This therefore means

that competitive ability must increase with xi when the second species remains unchanged. We assume that

the competition coefficients are a function of x1 − x2, so therefore can be treated by a function c(z) of a

single variable z. The competition coefficient ci j gives the negative effect of species j on species i, and is

defined by c(xi − x j). This means that c(z) must be a monotonically decreasing function of z. Note the

model can be scaled to ensure c(0) = 1 without any loss of information.

If two species have identical competitive ability, but differ in growth rate, then the faster growing species

would competitively exclude the slower grower, so an essential condition for coexistence is that c′(0) < 0.

Therefore, the system is given by

Ṅ1 = N1 (1 − x1 − N1 − c(z)N2) , (1.7)

Ṅ2 = N2 (1 − x2 − N2 − c(−z)N1) . (1.8)

where z = x1− x2. The condition for global stability of an interior fixed point is then given by c(z)c(−z) < 1,

which is therefore a further condition on the function c(z) for coexistence in the 2-species case.

It can be shown that an interior fixed point is given by

1 − x1 − c(z)(1 − x2) > 0, (1.9)

1 − x2 − c(−z)(1 − x1) > 0, (1.10)

for z = x1 − x2. The condition for global stability of an interior fixed point is given by c(z)c(−z) < 1, which

is therefore a further condition on the function c(z) for coexistence in the two species case.

We now assume without loss of generality that species 1 is the competitively dominant species , i.e.

x1 > x2, z > 0. By substituting x1 = z + x2 into (1.9) and (1.10), we can remove x1 from the expressions and
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consider the inequalities as functions of x2 and z;

1 − z − x2 − c(z)(1 − x2) > 0 (1.11)

1 − x2 − c(−z)(1 − z − x2) > 0. (1.12)

These can be rearranged to give expressions for x2 in terms of z;

x2 <
1 − z − c(z)

1 − c(z)
(1.13)

x2 >
(1 − z)c(−z) − 1

c(−z) − 1
(1.14)

These two expressions give an upper and lower bound on x2, between which there exists an interior fixed

point (such that both equilibria are in (0,∞) ). That is, both species coexist when

(1 − z)c(−z) − 1
c(−z) − 1

< x2 <
1 − z − c(z)

1 − c(z)
. (1.15)

Since the upper bound is larger than the lower for all z > 0 (Appendix 1.A), the size of the region of

coexistence can be found by calculating the difference between the integrals of the curves given in (1.13)

and (1.14). However, because we assume species are viable and have non negative trait values xi, we must

calculate ∫ 1

0
dz

(
max

(
0,

1 − z − c(z)
1 − c(z)

)
−max

(
0,

(1 − z)c(−z) − 1
c(−z) − 1

))
.

We can simplify this integrand by noting that since for a conex-concave function c(z), the right hand sides of

(1.13) and (1.14) are non increasing with respect to z (Appendix 1.A), we need only integrate to the point at

which those curves reach zero. If we define z∗ such that 1−z∗−c(z∗) = 0 and ẑ such that 1−(1− ẑ)c(−ẑ) = 0,

(these points are defined uniquely for convex-concave functions where zc′′(z) > 0 for z , 0 and c′(0) < −1,

when convex-concavity is not strict we define these points as the minimum value of z ≥ 0 that satisfy the

equalities), then the area of coexistence can be found by

2
(∫ z∗

0
dz

1 − z − c(z)
1 − c(z)

−

∫ ẑ

0
dz

(1 − z)c(−z) − 1
c(−z) − 1

)
(1.16)

where the factor of 2 is to include the other ordering of traits. It is relatively simple to show that with

these assumptions, coupled with the fact that c(−z) + c(z) = 2, coexistence is only possible if c′(0) < −1

(Appendix 1.A). This is in accordance with the work of Adler and Mosquera, who state that monoculture

will prevail when the steepness of the competition curve has magnitude less than 1.
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As an example, we use the modified version of the function used by Kisdi (1999) given by (1.4), scaled

such that the intraspecific competition coefficients are unity, and the parameter ε measured the greatest level

of dominance possible, so c(z) ∈ [1 − ε, 1 + ε] for all z. There is an issue in that z∗ and ẑ as defined above

cannot be found by simply rearranging these equations. However, as demonstrated in Figure 1.1, when we

numerically find the area of the region of coexistence, this area monotonically decreases as the parameter

Θ is increased. The likelihood of coexistence is maximised at Θ = 0, where the competition coefficients

are determined by a step function. Using Taylor series expansions of the functions F1(z) = 1 − z − c(z)

and F2(z) = (1 − z)c(−z) − 1, we can show that the area of coexistence tends to the results presented in

Section 1.3.3 as Θ approaches 0.

Figure 1.1: How the probability of coexistence changes with the slope of the competition kernel at
the origin: The probability of coexistence given by the convex-concave function (1.4) changes with the
parameter Θ, which determines the steepness of the curve at z = 0. Shown are the cases ε = 1 and ε = 1/2.

As a further example, we can investigate the piecewise linear function (1.3), where pairs of species with

similar trait values will have different effects on one another than pairs with different trait values, but that

once a threshold of dissimilarity is passed, all species have the same effect on one another. Note that this

approximates the smooth function (1.4) considered above. This gives two cases, as the function (1 − z)−1

will cross c(−z) on the constant part for small Θ, but the sloped part for slightly larger Θ. The two cases are

that where Θ < ε
(1+ε) and that where ε

(1+ε) < Θ < ε. In the case where Θ is small, we can write the above

integrals as

2
(∫ Θ

0

ε − Θ

ε
dz +

∫ ε

Θ

1 −
z
ε

dz −
∫ Θ

0

ε − Θ

ε
− zdz −

∫ ε
1+ε

Θ

1 −
1 + ε

ε
zdz

)

= 2
(
Θ −

Θ2

ε
+
ε

2
− Θ +

Θ2

2ε
− Θ +

Θ2

ε
+

Θ2

2
+

ε

2(1 + ε)2 +
ε2

2(1 + ε)2 −
ε

1 + ε
+ Θ −

Θ2

2
−

Θ2

2ε

)

=
ε2

1 + ε
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For larger Θ, we can write the integrals as

2

∫ Θ

0

ε − Θ

ε
dz +

∫ ε

Θ

1 −
z
ε

dz −
∫ ε−Θ

ε

0

ε − Θ

ε
− zdz


= 2

(
Θ −

Θ2

ε
+
ε

2
− Θ +

Θ2

2ε
−

1
2

+
Θ

ε
−

Θ2

2ε2

)

=
(ε − Θ)(Θ + ε(ε + Θ − 1))

ε2 .

We therefore find that the probability of two species coexisting is constant for small Θ < ε/(1 + ε), and a

decreasing function of Θ when the competitive difference between similar species is smaller, i.e. when Θ

is larger. Because in both this in the concave-convex case, the step function limit serves to maximise the

probability of two species coexisting, we now consider the discontinuous case in more detail, as this will

give an upper bound on the probability of coexistence for n species.

1.3.3 Discontinuous competition

In a similar model to that presented here Adler and Mosquera (2000) demonstrated how species richness

increases with the gradient of the competition function at the origin (i.e. when two individuals have the

same trait value), and this is supported by our results above. The logical extreme of this is that likelihood of

coexistence will be maximised if the gradient at the origin is infinite, and we therefore now consider a step

function for the competition coefficients, as given by (1.5). We note that Nowak and May (1994) used a very

similar model, although they were studying the effects of superinfection on virulence in parasites rather than

the number of different strains or species that the model could support. We recognise that such a competition

gradient is unlikely to be found in nature (although Kubota and Hara (1995) found limited evidence of total

competitive asymmetry in trees species in Northern Japan), but it is mathematically convenient to use this

function to analytically investigate upper bounds for the levels of biodiversity that can be supported on a

single trade-off. As illustrated for the two species case above, our results will be very close to the case

where the competition function is that used by Kisdi, and the piecewise linear function, mentioned above

when Θ is small, and also to the competition-colonisation trade-off model of Tilman (1994) that assumes

completely asymmetric competition between individuals of different trait values. Biologically, a species

requires a positive growth rate p(xi) in order to be able to fixate in the environment even in the absence of

competition. Therefore, the range of trait values xi is restricted such that for all possible xi, we have that

p(xi) > 0. While we continue to mostly consider the case p(xi) = 1 − xi, we return to the more generalised

notation to illustrate that in this case, the methods can be used for nonlinear p(xi). Note that for the case
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p(xi) = 1 − xi, the region of coexistence is unchanged from that considered in p-space.

Recall that the model with the step function (1.5) determining competition is given by

dNi

dτ
= Ni

p̄(xi) − (1 − ε)
∑
j∈Ai

N j − Ni − (1 + ε)
∑
j∈Bi

N j

 , (1.17)

where p̄(xi) = p(xi)/ρ (with ρ = max0≤x≤1 p(x)), τ = ρt, Ai = { j : 1 ≤ j ≤ n, x j < xi} is the set of all species

j with a lower trait value than species i, and Bi = { j : 1 ≤ j ≤ n, x j > xi} is the set of all species with trait

value greater than that of species i. Note that either of these sets may be empty.

For convenience we will now drop the bar on p, while remembering that now p has a maximum value

scaled to unity. When ε = 0, we get relative size independent, neutral competition, and because one species

has the inherent advantage in that it experiences a higher population growth rate, only one species can exist,

as shown in Appendix 1.B. When ε > 0, however, it is possible for more than one species to persist, as we

now show, starting with the two-species case.

If the model given by (2.2) and (1.5) has only two distinct species present, then it is possible for both

species to coexist providing there is a globally stable interior equilibrium point. Assuming x1 > x2 for

simplicity of notation, and without loss of generality, the model takes the form

dN1

dτ
= N1 (p(x1) − N1 − (1 − ε)N2) ,

dN2

dτ
= N2 (p(x2) − (1 + ε)N1 − N2) . (1.18)

For any interior fixed point to be stable the Jacobian matrix J at the fixed point N∗ = (N∗1 ,N
∗
2) must have

negative trace and positive determinant. The trace τ(J) = −(N∗1 + N∗2) is negative whenever the fixed point

exists, and the determinant given by ∆(J) = ε2N∗1 N∗2 is similarly positive whenever there exists an interior

fixed point. Therefore if the interior fixed point exists, it is globally stable. An interior steady state exists

when the bracketed terms in (1.18) are set to zero and the solution for N1,N2 is positive. Therefore the

conditions for coexistence are given by

p(x2)
1 + ε

> p(x1) > p(x2)(1 − ε). (1.19)

Since the trait values are limited to a finite range, it is possible to calculate the probability of coexistence

for two species chosen at random from a uniform distribution on x1, x2 ∈ [0, 1] by calculating the size of

the area within the unit box [0, 1]2 which satisfies (1.19) as well as the assumption x1 > x2. Here, we first

find the area in p−space for which there exists an interior fixed point, and then from that calculate the area
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(a) (b)

(c)

Figure 1.2: Coexistence of two species with completely asymmetric competition: The regions of coex-
istence for two species are plotted in p-space. (a) shows the coexistence regions for ε = 1 while the case
ε = 1/2 is shown in (b). Shaded regions in the upper left half of the plot are where both species coexist with
growth rates p1 < p2, or equivalently trait values x1 > x2. The regions to the bottom right of the plots repre-
sent the alternative ordering p1 > p2, x1 < x2. (c) shows how the probability of coexistence increases with
the asymmetry parameter ε, with large values indicating strong competitive asymmetry between individuals
of different trait values.
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in x−space. Since p is a decreasing function satisfying p(0) = 1, p(1) = 0, it is invertible with increasing

inverse p−1 that satisfies p−1(1) = 0, p−1(0) = 1, and hence the range of p−1 is [0, 1]. We first find the area

in the p1, p2 plane, writing pi = p(xi) for simplicity of notation, for which

p2

1 + ε
> p1 > p2(1 − ε), (p1, p2) ∈ [0, 1]2, (1.20)

and then map this to an area in x1, x2 space.

Since the case p(xi) = 1− xi is linear and maps [0, 1]2 onto itself, the probability of coexistence is equal

to the area of the x−space satisfying (1.19) which in turn equals the area in p−space satisfying (1.20).

The areas satisfying these conditions for ε = 1 and ε = 1/2 are shown in Figure 1.2. To calculate the

size of the area in the p1, p2 plane where both equilibrium populations are greater than zero, we note that

when (1.20) intersects the unit box, it forms a triangle T with vertices (0, 0), (1 − ε, 1) and (1/(1 + ε), 1).

The area of T in the p1, p2 plane is therefore given by

1
2

(
1

1 + ε
− (1 − ε)

)
=

ε2

2(1 + ε)
,

which is then multiplied by two to account for the other ordering of trait values p2 < p1 (i.e. x2 > x1) to

give the area as

A =
ε2

1 + ε
.

This area is an increasing function in ε, meaning that the greater the asymmetry observed in the competition

between species, the more likely it is that two species can coexist together, as anticipated by our numerical

simulations of the concave-convex function and analytical work on the piecewise linear function. Note that

the result here is identical to that when Θ is small in the piecewise linear case.

Communities with n-species

In communities with n > 2 species present, any interior fixed point is unique and globally stable. While

Nowak and May (1994) state that this result holds with a modification of the theory in Chapter 21.3 of

Hofbauer and Sigmund (1998a), we include our own proof in Appendix 1.C.

In order to find the region of trait space that permits an interior fixed point, we consider the model

written in the form
dNi

dτ
= Ni

pi(x) −
n∑

j=1

ci j(x)N j

 , (1.21)

where the ci j(x) competition coefficients combine to give the competition matrix C(x). In Appendix 1.D,
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we show that the volume of coexistence can be calculated from a determinant and is given explicitly by

Vn =


εn

(1+ε)n−1 even n ≥ 2

εn−1

(1+ε)n−1 odd n ≥ 3.

Therefore, for all 0 < ε ≤ 1, it is possible for any number n of species to coexist along a single competition-

fecundity trade-off. However it is increasingly difficult for all species to coexist as the number of species in

the environment increases, as shown by Figure 1.3.

Figure 1.3: Change of probability of coexistence as number of species increases: How the probability
of coexistence for different numbers n of species decreases with n is shown, along with how it changes with
ε, shown for n = 3, 4, 5 species coexistence

1.4 Discussion

Life-history trade-offs have a rich history in helping to explain how competitors may coexist, but relatively

few studies have quantified how rapidly the likelihood of coexistence declines with increasing number

of species within the community. Here we have considered a trade-off between competitive ability and

fecundity and have shown the probability of multiple species coexistence depends critically on the degree

of asymmetry ε between them. Large values for ε indicate large competitive asymmetry between species

with even nearby trait values, and it is here that coexistence is found to be most likely (see Figure 1.3).

However, as the number of species drawn from the pool increases, even small decreases in the competitive

asymmetry can lead to rapid declines in the likelihood of coexistence. The probability of sustaining at least

two species also depends on the slope of the competition function at c(z = 0), and this is determined by the

parameter Θ. As Θ decreases, the steepness of the competition curve increases, and so does the probability
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of the trade-off maintaining multiple species. Therefore, maximum coexistence is likely to be achieved at

high ε and low Θ.

The trade-off considered here is essentially the same as the competition-colonisation trade-off, which

has been much studied theoretically (e.g. Levin and Paine (1974); Hastings (1980); Tilman (1994)) and em-

pirically (e.g. Turnbull et al, 1999; Robinson et al, 1995; Cadotte, 2007). Although early theory suggested

any number of species might be able to coexist on this trade-off (May and Nowak, 1994; Tilman, 1994),

as we have shown here, coexistence is dependent upon the steepness of the trade-off function, and also on

the amount of asymmetric competition between the species. Recent theory that builds on this trade-off has

shown that high levels of coexistence are possible on a tolerance-fecundity trade-off, where species with

seeds that can tolerate wide ranges in environmental conditions are assumed to be larger, and therefore

fewer in number (Muller-Landau, 2010). However, this still invokes strong competitive asymmetry because

smaller seeded species are unable to germinate in environments outside of their tolerance zone, and it is

probable that even some ability to germinate in non-preferred patches might greatly reduce the amount of

coexistence that is possible.

Our results connect to the results of Adler and Mosquera (2000), who showed the shape of the trade-

off to be important for the number of species that can coexist; and with HilleRisLambers and Dieckmann

(2003) who found strong trade-offs tend to enhance the coexistence of two species sharing one resource.

We have extended this work to consider how rapidly the area for coexistence in trait-space diminishes with

the number of species in the community. Our analyses reveal that even with the trade-off assumptions that

most favour coexistence, the likelihood of coexistence diminishes very rapidly with the number of species,

and this suggests relatively few species are ever likely to be able to coexist on one trade-off. Moreover, our

results reveal that competitive asymmetry becomes more important in generating coexistence as the number

of species increases (Figure 1.3; equation (1.26)).

The methods we use are similar to those of Meszena et al (2006) who calculated the likelihood of

an interior fixed point existing and it’s dependence on their model parameters. However, we note the

existence of an interior fixed point is not sufficient for coexistence. For example, the symmetric May-

Leonard model for three species (May and Leonard, 1975), always admits an interior equilibrium, yet the

system only exhibits permanence when for each species, intraspecific competition is greater than twice

the sum of the interspecific effects of the other two species. As such, their model represents an upper

bound to the likelihood of coexistence. In the current paper, we address this by proving that the existence

of an interior equilibrium is exactly equivalent to the permanence of the system, therefore adding to the

conclusions made by Meszena et al.
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Our results therefore show how important competitive asymmetry is in generating and maintaining

large numbers of coexisting species; but how prevalent is competitive asymmetry in natural communities?

There is a large body of work to suggest competitive asymmetry is common in animal (e.g. Lawton and

Hassell, 1981; Morin and Johnson, 1988; Resetarits Jr, 1995; Costanzo et al, 2005) and plant communities

(e.g. Weiner, 1990; Connolly and Wayne, 1996; Keddy et al, 1997). However, to our knowledge, except

for seed size variation in plants (e.g. Turnbull et al, 1999), this competitive asymmetry has rarely been

connected to a life-history trade-off. It is worth noting that many of these studies consider only two species,

and the competition coefficients are often measured under one set of environmental conditions, so it is

not clear how much this asymmetry extends into large communities of competitors, and whether there is a

temporal fluctuation in the competitive hierarchy. One exception to this is a study by Keddy et al (1997) who

measured the competitive asymmetry between pairs of plant species drawn from a pool of 18 species. Their

work concluded that in fact competitive asymmetry increased with soil productivity, and this is because

light rather than soil nutrients became the limiting factor, and generally competition for light is expected to

be size asymmetric, whereas competition for soil nutrients is usually size symmetric (e.g. Weiner, 1990).

The model we analyse here is biologically rather simple, and there is much scope for extensions that

incorporate more realism. For example, as for most other models that study the competition-fecundity

or competition-colonisation trade-offs, we assume that intraspecific competition is identical for all trait

values (equation (1.17)); but it might be more realistic to assume that smaller individuals are better able

to share resources than larger individuals, meaning the intraspecific competition term now has to be trait

dependent as well. We believe relaxing this assumption would yield rather more complex dynamics than the

current model, including the possibility of founder control (i.e. unstable interior equilibria). For example,

Calcagno et al (2006) incorporated priority effects, whereby an adult plant cannot be displaced be a seed,

into a competition-colonisation model, and showed that this can actually increase coexistence. However,

when maximum colonisation rate, analogous to our maximum population growth rate, is heavily limited,

such preemptive competition generally ceases to be beneficial to coexistence. Therefore, this would reduce

the amount of coexistence compared to that found here, and would place greater dependence on multiple

trade-offs or other processes to generate coexistence between large numbers of species.

The models presented here have assumed linear intrinsic growth rate p in the absence of competition,

and linear or piecewise constant competition for communities with three or more species. Nonlinearity,

with suitable monotonicity conditions, can be easily incorporated into the function p, and the volume in

x−space can then be found through a change of variable in the volume integral. Moreover, changing p does

not impact on the globally stability of interior steady states, which, as shown, depends solely on the com-
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petition matrix C. For models with three or more species, studying nonlinear competition functions gives

the difficulty of not only finding volumes in space enclosed between curved surfaces, but also determining

which points in these volumes are globally stable. The alternative, focusing on coexistence measured by

permanence, also presents a serious challenge due to the lack of necessary and sufficient conditions for

permanence in general competitive Lotka-Volterra models for n > 3.

These extensions aside, we have shown here that competitive asymmetry could be very important in

maintaining several species on a single trade-off; but that for large numbers of species multiple trade-offs;

and/or other processes such as disturbance or natural enemies are required to maintain diverse competitive

communities. Nonetheless, it is clear that competitive asymmetry which is widely observed in empirical

studies could still interact with these other processes to increase, rather than decrease biodiversity as has

often been supposed (e.g. Keddy et al, 1997; Resetarits Jr, 1995).
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Appendices

1.A Effect of the slope c′(0) on coexistence

We note that since c(z) + c(−z) = 2 constant, we have that c(−z)− 1 = 1− c(z) > 0 for positive z. Therefore,

we can subtract (1.14) from (1.13) to get

(1 − z − c(z)) − ((1 − z)c(−z) − 1)
c(−z) − 1

=
z(c(−z) − 1)
(c(−z) − 1)

= z.

Therefore the upper and lower bounds for x2 coincide at z = 0, and for z > 0 the upper bound is always

greater than the lower, i.e there is always a region where coexistence is possible. Therefore, if the upper

bound (1.13) is non-increasing, both it and the lower bound (1.14) never exceed the value they achieve at

z = 0, and there is only a region of coexistence in the positive quadrant when the limit

lim
z→0

1 − z − c(z)
1 − c(z)

> 0.
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As both numerator and denominator tend to zero, we use l’Hopital’s rule to get that this limit is given by

−1 − c′(0)
−c′(0)

which is positive for c′(0) < −1.

It remains to demonstrate that (1.13) is non-increasing for positive z. The derivative of the function is

given by
c(z) − 1 − zc′(z)

(1 − c(z))2 .

If c′(z) = 0, then this becomes
−1

1 − c(z)
< 0,

since c(z) < 1 for all z > 0. When c′(z) < 0, then we note that the function is non-increasing for

z ≤
c(z) − 1

c′(z)
.

The derivative of the right hand side is given by

1 −
c′′(z)(c(z) − 1)

c′(z)2

which is greater than one for all positive z. Therefore, this point increases faster than z. Noting that the

derivative of (1.13) is zero when z = 0, we can therefore conclude that for all z > 0, this upper bound is

indeed non-increasing.

1.B The absence of asymmetry

Without losing any generality, we can order traits such that x1 > x2 > · · · > xn so that since p is decreasing,

p(x1) < p(x2) < · · · < p(xn). When ε = 0, equations (1.17) become

dNi

dτ
= Ni

p(xi) −
n∑

j=1

N j

 , i = 1, . . . , n.

Thus if i < k,
d
dτ

log(Ni/Nk) = p(xi) − p(xk) < 0.
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This shows that for i < k

Ni(τ) = Nk(τ)e(p(xi)−p(xk))τ → 0, τ→ ∞

since N(t) is bounded. This shows that Ni(τ) → 0 as τ → ∞ for i = 1, 2, . . . , n − 1. It is intuitive that the

remaining species density Nn(τ)→ p(xn) as τ→ ∞. This can be shown by first noting that the equation for

the dynamic of Nn reduces to the time-dependent logistic equation:

Ṅn = p(xn)Nn

(
1 −

Nn

K(t)

)
, (1.22)

where the time-dependent carrying capacity is given by

K(t) = p(xn)ep(xn)t/(
n∑

i=1

ep(xi)t).

One may verify that the explicit solution to (1.22) is

Nn(t) =
Nn(0)ep(xn)t

1 + Nn(0)
∑n

i=1

(
ep(xi )t−1

p(xi)

) → p(xn) as t → ∞.

We have thus shown that the species with minimum trait 0 will send any other species to extinction.

1.C Global stability of interior fixed points

Lemma 1. Whenever an interior fixed point exists for the n-species model given by (1.17), it is both unique

and globally asymptotically stable relative to the interior of the region of space where all Ni are positive,

and therefore the system displays permanence.

Proof. It is well known that when (2.2) admits an interior steady state, it is globally stable (also known as

LV-stable) if the matrix −C = ((−ci j(x))) is dissipative, that is, there exists a positive diagonal matrix D

such that the real symmetric matrix D(−C) + (−C)T D is negative definite, and therefore has only negative

eigenvalues (e.g. Hofbauer and Sigmund, 1998b). For the model with discontinuous competition, the com-

petition matrix takes the form (in the region x1 > x2 > · · · > xn) given by equation (1.25). Let D be a

positive diagonal matrix with diagonal entries θi (i = 1, . . . , n). Then (1.1), with competition matrix C as

in (1.25), admits a fixed point that globally attracts interior trajectories whenever the real symmetric matrix
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A = (DC + CT D), given by



2θ1 (1 − ε)θ1 + (1 + ε)θ2 · · · (1 − ε)θ1 + (1 + ε)θn

(1 − ε)θ1 + (1 + ε)θ2 2θ2 · · · (1 − ε)θ2 + (1 + ε)θn

(1 − ε)θ1 + (1 + ε)θ3 (1 − ε)θ2 + (1 + ε)θ3 · · · (1 − ε)θ3 + (1 + ε)θn

...
...

. . .
...

(1 − ε)θ1 + (1 + ε)θn (1 − ε)θ2 + (1 + ε)θn · · · 2θn


has all positive eigenvalues, which is the case if all the leading principal minors are positive.

We have fixed θi > 0 positive, so we restrict ourselves to looking at m × m leading principal minors of

the matrix A with m ≥ 2:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2θ1 (1 − ε)θ1 + (1 + ε)θ2 · · · (1 − ε)θ1 + (1 + ε)θm

(1 − ε)θ1 + (1 + ε)θ2 2θ2 · · · (1 − ε)θ2 + (1 + ε)θm

...
...

. . .
...

(1 − ε)θ1 + (1 + ε)θm (1 − ε)θ2 + (1 + ε)θm · · · 2θm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

As the determinant of a matrix is not changed when one row or column is subtracted from another, we then

subtract the (m − 1)th column from the mth column, and the ith column from the (i + 1)th column for all

1 ≤ i ≤ m − 1 to obtain the matrix

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2θ1 (1 + ε)(θ2 − θ1) · · · (1 + ε)(θm − θm−1)

(1 − ε)θ1 + (1 + ε)θ2 (1 − ε)(θ2 − θ1) · · · (1 + ε)(θm − θm−1)
...

...
. . .

...

(1 − ε)θ1 + (1 + ε)θm (1 − ε)(θ2 − θ1) · · · (1 − ε)(θm − θm−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Removing the common factors in columns 2 up to m give that the determinant has a factor

(−1)m−1
m−1∏
i=1

(θi − θi+1)
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which is then multiplied by

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2θ1 1 + ε 1 + ε · · · 1 + ε

(1 − ε)θ1 + (1 + ε)θ2 1 − ε 1 + ε · · · 1 + ε

(1 − ε)θ1 + (1 + ε)θ3 1 − ε 1 − ε · · · 1 + ε

...
...

...
. . .

...

(1 − ε)θ1 + (1 + ε)θm 1 − ε 1 − ε · · · 1 − ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Subtracting row m − 1 from row m, and row i from row i + 1 for all i < m gives this determinant as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2θ1 1 + ε 1 + ε · · · 1 + ε

(1 + ε)(θ2 − θ1) −2ε 0 · · · 0

(1 + ε)(θ3 − θ2) 0 −2ε · · · 0
...

...
...

. . .
...

(1 + ε)(θm − θm−1) 0 0 · · · −2ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2θ1 1 + ε 0 0 · · · 0

(1 + ε)(θ2 − θ1) −2ε 2ε 0 · · · 0

(1 + ε)(θ3 − θ2) 0 −2ε 2ε · · · 0
...

...
...

...
. . .

...

(1 + ε)(θm − θm−1) 0 0 0 · · · −2ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=(−1)m−1θ12mεm−1 − (1 + ε)2(2ε)m−2(−1)m−2 (θ2 − θ1 + θ3 − θ2 + · · · + θm − θm−1)

=(−1)m(2ε)m−2
(
(1 − ε)2θ1 − (1 + ε)2θm

)
.

Therefore, the m × m leading principal minor for m > 1 is given by

−(2ε)m−2
(
(1 − ε)2θ1 − (1 + ε)2θm

) m−1∏
i=1

(θi − θi+1). (1.23)

It remains to be shown that the θi can be chosen such that all leading principal minors (1.23) are positive,

which is the case when
(
(1 − ε)2θi − (1 + ε)2θ j

)
< 0 and (θi − θ j) > 0 for i < j. Setting

θi = n −
1

(1 + ε)n+1−i
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then we can use j − i ≥ 1 to calculate that

θi − θ j =

(
n −

1
(1 + ε)n+1−i

)
−

(
n −

1
(1 + ε)n+1− j

)
=

(1 + ε) j−i − 1
(1 + ε)n+1−i

≥
1 + ε − 1

(1 + ε)n+1−i > 0.

To show that
(
(1 − ε)2θi − (1 + ε)2θ j

)
< 0 we note that

(
(1 − ε)2θi − (1 + ε)2θ j

)
<

(
(1 − ε)2θ1 − (1 + ε)2θ j

)
<

(
(1 − ε)2θ1 − (1 + ε)2θn

)
and that for ε = 0, we have

(
(1 − ε)2θ1 − (1 + ε)2θn

)
= 0. Differentiating this with respect to epsilon gives

d
dε

(
(1 − ε)2θi − (1 + ε)2θ j

)
= −4n + 1 + 2

1 − ε
(1 + ε)n + n

(1 − ε)2

(1 + ε)n+1

≤ −4n + 1 + 2 + n < 0

for all 0 ≤ ε ≤ 1 and n ≥ 2. Therefore, since ε = 0 is a root for the function, for any ε > 0, we have

(
(1 − ε)2θ1 − (1 + ε)2θn

)
< 0

and therefore (
(1 − ε)2θi − (1 + ε)2θ j

)
< 0.

Therefore, all the leading principal minors are positive, meaning that A = DC + CT D is positive definite.

Therefore D(−C)+(−C)T D is negative definite, as required for global stability. Global stability immediately

implies permanence. �

1.D Size of the coexistence region

Here we calculate the probability of coexistence for an n species version of (1.17). Since we are using the

step function (1.5), the matrix C(x) is piecewise constant. At the interior fixed point the bracketed terms are

equal to zero, which therefore reduces the model to p(x) = C(x)N, with p the vector of the growth rate of

each species and N the vector with ith component Ni. Since C(x) is non-singular, this is the rearranged to
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give the solution N = C−1(x)p(x). We are interested in the volume of x-space for which N = C−1(x)p(x) > 0.

To find this volume, we find the volume in p-space where p1 < p2 < · · · < pn which satisfies, since then

x1 > x2 > · · · > xn and so C(x) is a constant, and non-singular matrix C, so that

C−1p = 0. (1.24)

Equation (1.24) defines a series of planes in p−space that all pass through the origin. When an ordering

pn > pn−1 > · · · > p1 is assumed without any loss of generality, these planes form an n dimensional pyramid

when intersected with the unit cube. The volume of this pyramid is then the probability of the n species

model permitting an interior fixed point, and therefore the probability of all n species coexisting due to the

stability result in Appendix 1.C.

With the ordering p1 < p2 < · · · < pn, equivalent to x1 > x2 > · · · > xn, the competition matrix C takes

the form

C =



1 1 − ε 1 − ε · · · 1 − ε

1 + ε 1 1 − ε · · · 1 − ε

1 + ε 1 + ε 1 · · · 1 − ε
...

...
...

. . .
...

1 + ε 1 + ε 1 + ε · · · 1


. (1.25)

It is relatively simple to show that C is non-singular, allowing us to calculate the volume of the n dimensional

pyramid. We need to find the n points at which n of the planes intersect the face pn = 1. To find these

points, we note that the edges of the n dimensional pyramid must be orthogonal to each of the n − 1 planes

in p−space defined by (1.24) that meet at that edge. Since C−1C = In, each column of C is orthogonal to

all bar one of the rows of C−1. Therefore, the edges of the n dimensional pyramid point in the direction of

the columns of C. These edges meet the plane pn = 1 at the non-zero corners of the n dimensional simplex,

so it is simple to show that these points are given by the columns of C, scaled such that the value of pn = 1.
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Therefore, the n non-zero vertices of the simplex that lie in the plane pn = 1 are given by

(
1

1 + ε
, 1, 1, 1, . . . , 1

)
,(

1 − ε
1 + ε

,
1

1 + ε
, 1, 1, · · · , 1

)
,(

1 − ε
1 + ε

,
1 − ε
1 + ε

,
1

1 + ε
, 1, · · · , 1

)
,

...(
1 − ε
1 + ε

,
1 − ε
1 + ε

,
1 − ε
1 + ε

, · · · ,
1

1 + ε
, 1

)
,

(1 − ε, 1 − ε, 1 − ε, · · · , 1 − ε, 1) .

Theorem 1. the probability of coexistence, is given by

Vn = P(coexistn) =


εn

(1+ε)n−1 even n ≥ 2

εn−1

(1+ε)n−1 odd n ≥ 3
. (1.26)

Proof. The volume of the n dimensional simplex is given by

V̄n =
1
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1+ε

1 1 1 · · · 1 1

1−ε
1+ε

1
1+ε

1 1 · · · 1 1

1−ε
1+ε

1−ε
1+ε

1
1+ε

1 · · · 1 1
...

...
...

...
. . .

...

1−ε
1+ε

1−ε
1+ε

1−ε
1+ε

1−ε
1+ε

· · · 1
1+ε

1

1 − ε 1 − ε 1 − ε 1 − ε · · · 1 − ε 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Since there are n! of these volumes, one for each ordering of the traits, so the total volume is Vn = n!V̄n.

Let Un = n!(1 + ε)n−1V̄n. Then

Un =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 + ε 1 + ε 1 + ε · · · 1 + ε 1 + ε

1 − ε 1 1 + ε 1 + ε · · · 1 + ε 1 + ε

1 − ε 1 − ε 1 1 + ε · · · 1 + ε 1 + ε

...
...

...
...

. . .
...

1 − ε 1 − ε 1 − ε 1 − ε · · · 1 1 + ε

1 − ε 1 − ε 1 − ε 1 − ε · · · 1 − ε 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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We now show that Un = ε2Un−2. To see this, first subtract the second row from the first row. Having done

this, in the new determinant subtract the first column from the second column. This gives

Un =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε 0 0 0 · · · 0 0

1 − ε ε 1 + ε 1 + ε · · · 1 + ε 1 + ε

1 − ε 0 1 1 + ε · · · 1 + ε 1 + ε

...
...

...
...

. . .
...

1 − ε 0 1 − ε 1 − ε · · · 1 1 + ε

1 − ε 0 1 − ε 1 − ε · · · 1 − ε 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which gives Un = ε2Un−2 as required. Now quick calculations show that U2 = ε2 and U3 = ε2 so that

Un = εn for n ≥ 2 even and Un = εn−1 for n ≥ 3 odd.

V̄n =
1
n!

εn

(1 + ε)n−1 n even

=
1
n!

εn−1

(1 + ε)n−1 n odd.

Vn =


εn

(1+ε)n−1 even n ≥ 2

εn−1

(1+ε)n−1 odd n ≥ 3.

�
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Chapter 2

The effect of disturbance intensity and

frequency on coexistence via a

fecundity-growth trade-off

This work was conducted in collaboration with David J Murrell and Stephen Baigent
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Abstract

Disturbance has been suggested as an important promotor of species coexistence, and the intermediate

disturbance hypothesis (IDH) suggests that diversity should be maximised at intermediate levels of distur-

bance. However, the mechanism by which disturbance is increased is often not explicitly stated in studies,

or is a composite measure containing many different aspects of disturbance. We use a stochastic lottery-type

model to demonstrate that among species competing for light along a fecundity-juvenile growth trade-off,

a) disturbance can increase or decrease diversity; b) the aspect of disturbance (intensity or frequency) that

is measured can make a dramatic difference to the qualitative results obtained; and these results are robust

to changes in system capacity (the number of individuals the system is capable of maintaining), and also

productivity.
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2.1 Introduction

One of the most persistent issues in ecology is how some communities, such as tropical forests, grasslands

and coral reefs maintain high levels of species diversity. Some mechanisms such as resource partitioning

(e.g. Sala et al, 1989; Schoener, 1974) and the storage effect (Warner and Chesson, 1985) are widely recog-

nised, while several previous studies (e.g. Denslow, 1987; Sousa, 1984) have suggested that disturbance

events may play an important part in promoting diversity in some systems. Disturbance, that is, an event

that results in the death of large number of individuals and alter niche opportunities (Shea et al, 2004),

creates an environment that prevents the exclusion of weaker competing species, such as pioneer species. If

levels of disturbance are too low, these pioneer-like species will be excluded, whereas if disturbance levels

are too high they will drive strong competitors with slow recruitment, for example late successional tree

species, to extinction. Thus only at intermediate disturbance levels is it possible for both early- and late-

successional species to coexist. It is on these arguments that the intermediate disturbance hypothesis (IDH)

suggests that intermediate levels of disturbance allow the maximal level of species diversity (e.g. Connell,

1978; Huston, 1979), producing a peaked diversity-disturbance relationship (DDR).

The IDH was proposed to address the specific issue of tree diversity in tropical forests and fish and coral

diversity in coral reefs (Connell, 1978), but can also be traced back to Grime (1973). Despite this long his-

tory, the fact that disturbances often occur infrequently, and because in many communities individuals may

be relatively long-lived, means it has been hard to test the IDH and empirical studies have shown mixed

results (see review in Mackey and Currie, 2001). Some support for the IDH has been found (e.g. Biswas

and Mallik, 2010; Molino and Sabatier, 2001; Rogers, 1993) while other studies reject the hypothesis (e.g.

Hubbell et al, 1999; Huxham et al, 2000). Bongers et al (2009) find that diversity does indeed peak at in-

termediate disturbance levels, but they also conclude that disturbance does not contribute much to diversity,

especially in wet or moist forests.

It has been argued that there are at least three different axes upon which disturbances should be mea-

sured: frequency; area affected; and intensity (Malanson, 1984; Miller, 1982; Sousa, 1984). However,

many empirical studies consider disturbance levels in forests as a single parameter, such as the total area

lost in a given time period (effectively frequency multiplied by intensity) (e.g. Molino and Sabatier, 2001;

Nakagawa et al, 2000; Peterson and Rebertus, 1997). Fire ecology studies have often acknowledged the dif-

ference between different factors influencing fire, such as ignition probability and spread (e.g. Kilgore and

Taylor, 1979; Turner and Romme, 1994), observing that most fires are of low intensity and high frequency

(Kilgore and Taylor, 1979), while spatial connectedness has an impact on overall fire intensity (Turner and

Romme, 1994). However, there remain relatively few theoretical studies that consider the relative impact of
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frequency and intensity of disturbances (but see Miller et al, 2011). In an early review of the empirical lit-

erature, Denslow (1980) indicated that communities that have infrequent but large patches cleared through

disturbance can be more diverse than those that suffer frequent, but small-scale disturbances (e.g. gaps

created by tree-fall). Hartshorn (1978) reported that in a Costa Rican forest most disturbances are caused

by relatively small gaps appearing after a tree falls and that as a consequence the forest is dominated by

shade-tolerant species. In a recent theoretical study, Miller et al (2011) show how disturbance intensity and

frequency have different effects on community dynamics and the emergence of the IDH depends greatly on

the combination of the two. It seems likely that this may be a significant factor behind the relative lack of

consensus on whether or not the classical IDH pattern is general in nature communities.

Productivity of a system, the rate at which new biomass is produced, is also known to have a sig-

nificant effect on disturbance; Kondoh (2001) used the dynamic equilibrium model of Huston (1979) to

demonstrate theoretically that an increase in productivity leads to an increase the disturbance levels that

give peak diversity. This is supported by empirical evidence as reviewed by Proulx and Mazumder (1998),

who report that species richness increases with disturbance in nutrient-rich environment, but decreases in

environments where nutrients are scarce. Both the theoretical and empirical results suggest that the nature

of a communities response to disturbance can be affected by the level of productivity. Kondoh (2001) sug-

gests these results are due to contrasting effects of disturbance and productivity; where disturbance favours

the stronger coloniser by creating more empty sites, productivity increases work to reduce the advantage of

strong colonisers by increasing the colonisation rate of all species.

Here we build on this work and consider the effects of disturbance frequency and intensity separately in

a two species forest model, in which there is a fecundity-growth trade-off with system capacity, the number

of individuals the community can support at saturation, as a parameter. Analyses of the model confirm that

the frequency and intensity of the disturbance can have significantly different effects, and that the emergence

of the IDH is dependent upon the combination of disturbance intensity and frequency. We also demonstrate

that thee results are robust to changes in system capacity and productivity.

2.2 The Model

We consider a lattice of a number M of fixed sites with size C. Each site can contain one adult individual

of one of two species present in the community, or in the absence of an adult individual, may contain

juveniles. These sites are observed in continuous time, and at times τ1, τ2, . . . there is an adult death, with

the individual randomly selected from a uniform distribution, such that each adult present in the community

has an equal chance of mortality. These death events are followed by competition among juveniles to claim
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the site that previously contained the dead adult. We assume

1. The death of adults and the growth of successful juveniles occur in a ratio of 1:1, such that the number

of adults present N is constant when considered at times τt, t = 1, 2, . . . . This enables us to consider

only the population dynamics of one species, with the population of the second species determined

by the relationship N1(t) + N2(t) = N, where t represents time as measured by the number of death

events that have occurred, and Ni(t) represents the population of species i is the population after

the t-th death event. We therefore consider the dynamics only of the species 1 population n, with

N1(t) = n,N2(t) = N − n.

2. The two species considered are identical in all bar two aspects. They differ only in annual per capita

seed production si and juvenile growth rates gi. These juvenile growth rates are considered to be a

linear growth from a seed of size 0 to an adult occupying the entire site, i.e. of size C. We assume

without loss of generality species 2 is the faster growing species, g2 > g1.

3. Both species are assumed to be asexual or self fertilizing, such that a single individual can produce

seeds and therefore offspring.

4. Following the death of an adult individual, the remaining N − 1 individuals produce seeds that can

colonise the empty site, or gap. Seeds cannot survive in the understorey, and die immediately. There-

fore, when an adult dies, the gap created is considered to be empty until new seeds arrive at that

site.

5. All seeds that arrive in a gap are considered viable, and in the absence of competition would success-

fully reach adulthood. They are produced in time according to a Poisson process with λi = siNi the

average number of seeds to be produced per unit time.

6. The seeds produced are spread uniformally between sites. After a death event, the expected number of

seeds from species i to arrive per unit time at the gap created is given by siN̂i/N, where
∑2

i=1 N̂i = N−1

due to the death of an individual.

7. Once seeds arrive in an site not containing any adults, they instantly begin to grow at rate gi, there

is no latency period. When all the juveniles in a given site combine to occupy the entire gap, that is

when the sum of their sizes is equal to C, then the smallest of these juveniles will die while the others

continue to grow. This continues until there is only a single individual remaining, which will then

occupy the site to adulthood. Note that since there is no intraspecific variation, this allows us to only

consider the first seed of each species to arrive at a site.

47



CHAPTER 2. THE EFFECT OF DISTURBANCE ON COEXISTENCE

8. Only considering the first seeds of each species to arrive in a gap, colonisation of a gap becomes a

race to colonise and grow to size C/2, and any other individuals present will have size less than C/2

and will therefore be killed when in competition wit the larger juvenile.

These assumptions allow us to model the system as a time homogeneous Markov Chain model where states

are defined by the number of species 1 adults n, each time step is the replacement of an individual adult that

dies, and the replacement of that individual is determined by the present populations of each species present

in the community. This, the number of species 1 individuals n will increase if an individual of species 2

dies, species 1 seeds arrive first and reach size C/2 before any subsequent species 2 seeds that arrive in the

site reach that height. A seed of species 2 cannot reach the height C/2 before species 1 if it arrives in the site

when species 1 has been present for a time greater than x = C(1/g2 − 1/g1)/2. As both species distribute

seeds randomly throughout the environment, the probability of species 1 increasing in number is given by

pn,n+1 =P(N1(1) = n + 1)|N1(0) = n) (2.1)

=
N − n

N
s1n

s1n + s2(N − n − 1)
exp

(
−s2

N − n − 1
N

x
)
,

where the exponential term is the probability that no seeds of species 2 arrive in time x. Similarly, species

1 will decline in numbers if it suffers a death, and species 2 claims the site, either arriving at the site first or

by successfully invading a site where species 1 juveniles are present, giving

pn−1,n =P(N1(1) = n − 1|N1(0) = n) (2.2)

=
n
N

s2(N − n)
s1(n − 1) + s2(N − n)

+
n
N

s1(n − 1)
s1(n − 1) + s2(N − n)

(
1 − exp

(
−s2

N − n
N

x
))
.

All other possibilities result in the populations of the two species remaining the same after a time step,

so we use a third function pn, n = 1 − pn,n+1 − pn,n−1 to fully define the transition probabilities, giving a

(N + 1) × (N + 1) tridiagonal transition matrix A, with Ai,i = pn,n, Ai,i+1 = pn,n+1, Ai,i−1 = pn,n−1. Note that

these rules ensure the system is closed, with no seeds arrived from outside the system, there therefore that

the probability of moving from a state where a species is absent to a state where it is present equals zero.

Mathematically, this gives a system with absorbing boundaries when either species is extinct; n ∈ {0,N}.

We also consider disturbance events that occur during the time step t → t + 1 with probability f =

(dNTD)−1 where TD is the expected number of years between disturbance events, and d is the expected

annual mortality rate (fixed at 1%). Within these events, individuals die with probability I (the intensity
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of the disturbance), before the remaining individuals compete to fill the emptied sites. Increasing either

frequency f or intensity I will result in an increase in total basal area lost over a given time frame, a

standard measure of disturbance (e.g. Molino and Sabatier, 2001; Peterson and Rebertus, 1997). During a

disturbance event, each individual has a probability I of mortality, resulting in ddist = d1 + d2 total deaths,

where di is the number of species i deaths. The remaining N −ddist individuals compete over the empty site,

with species 1 colonising if it reaches the site at least time x before species 2. Therefore, species 1 will take

a site with a probability defined by the function

S p1(n∗1, n
∗
2) =

s1n∗1
s1n∗1 + s2n∗2

exp
(
−s2x

n∗2
N

)
, (2.3)

where n∗1, n
∗
2 are the populations remaining immediately after the deaths from a disturbance event.

We mostly consider the case where each adult individual is reproductively active at all times, but in real

communities, the proportion of adults that are reproductively active can vary significantly. Therefore, we

also consider the case where in each time step, each individual is producing seeds with probability p, which

has the effect of reducing the productivity of the system. This parameter p is assumed to be time invariant

and independent of species abundance, as well as constant across species. This allows us to consider the

effects of seed limitation, which we compare with other ways of altering productivity.

2.3 Conditions for Coexistence

To determine whether two species coexistent in the model, we use a version of stochastic boundedness (e.g.

Chesson and Ellner, 1989; Ellner, 1989). Chesson (1982) demonstrated that if the average growth rates at

the boundaries of a lottery model with infinite sites are positive, the model is stochastically bounded, and

both species coexist. We therefore consider the expected change when a species is extremely rare, with a

single individual present (i.e. n = 1,N − 1), which we approximate using the function

AverageChange(n) = (1 − f )
[
pn,n+1 − pn,n−1

]
+ f

[
NIS p1(n(1 − I), (N − n)(1 − I)) − nI

]
.

(2.4)

The first term in (2.4) is the expected change when disturbance does not occur multiplied by the within-

event probability that there is no disturbance event. The second term indicates the expected change during

a disturbance as measured by the expected remaining populations. Here we have calculated the change for

the average number of deaths, but due to the non linearity in the function (2.3), Jensen’s inequality applies,
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and this is not the actual expected change, but an approximation. This approximation improves as system

capacity N is increased, as demonstrated in Appendix 2.A, and works well for N ≥ 500. Coexistence is

predicted for regions of parameter space where the following 2 inequalities both hold;

AverageChange(1) > 0, (2.5)

AverageChange(N − 1) < 0. (2.6)

Note that when there is no disturbance (TD = ∞), these conditions simplify to

p1,2 > p1,0 (2.7)

pN−1,N < pN−1,N−2. (2.8)

In biological terms, these conditions can be considered as the following: If there is a single individual of a

species remaining, for that species to persist it must produce offspring that successfully colonise at least one

other site before the adult dies. We show in Figure 2.1 and Appendix 2.B that this is a good approximation

of coexistence observed within time series simulations.

Unlike the work of Chesson (1982), we are modelling finite populations, rather than considering the

proportion of sites occupied by a species. Therefore, the boundary conditions are considered with a single

individual present, rather than being evaluated at 0 as in Chesson’s work. This combined with the non

zero probability of a single individual dying at a given time ensures that the only stable distribution for

the model as t → ∞ is P(N1(t) = 0) = P(N1(t) = N) = 1/2. That is, the coexistence predicted by

stochastic boundedness in a closed system is unstable. Despite this, as demonstrated by Figure 2.1, times

series simulations do demonstrate coexistence on ecological time scales. Further, as system capacity N

increases, the model is well approximated by considering the proportion of sites Qi containing species i.

Then, performing an analysis as in Chesson (1982) we can return the conditions for coexistence given above

when considering the asymptotic growth rate of a species with zero density. At lower system capacity, a low

level of immigration from elsewhere can give a fixed distribution where species can coexist, and as we show

in Appendix 2.B, a very low level of immigration produces a fixed, stable distribution that is maximised at

an internal point x ∈ [2,N] such that πx > π1, πN+1 where πi is the probability of having i − 1 species 1

individuals at the stable distribution) with approximately the same conditions as the stochastic boundedness

criteria outlined above.
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Figure 2.1: Time series simulations: (a) Time series simulations satisfying the conditions (2.7) but not
(2.8) (x=0.01) show extinction of the more fecund species 1. (b) When both conditions are satisfied
(x=0.035), both species will coexist in the environment over ecological time scales. (c) When (2.8) is
satisfied yet (2.7) is false (x=0.06), species 2 will go extinct. Lines show the mean and 95% confidence
intervals of 1000 simulations in each scenario. Parameters s1 = 500, s+2 = 50,N = 1000. Each simulation
was started from a uniformally selected random point between 50 and 950 species 1 individuals.
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2.4 Results

2.4.1 Coexistence without disturbances (TD = ∞)

Substituting in the probabilities that populations increase or decrease from (2.1) and (2.2) into the conditions

given by (2.7) and (2.8), coexistence of both species occurs when the growth rate factor x falls in the range

xmin =
N ln

(
s1(N−1)

s1(N−2)+s2

)
s2

< x <
N ln

(
s1(N−1)

s1+s2(N−2)

)
s2(N − 2)

= xmax. (2.9)

Note xmin and xmax are both positive, since s1 > s2 and g1 < g2. Extensive numerical simulations of the MC

confirm this to be a good approximation of the range of coexistence.

If the growth rates satisfy (2.9) then the model state tends to move away from the boundary, which

results in the survival of both species around a quasi-equilibrium where the probabilities of increasing and

decreasing species 1 numbers are identical. A quasi-equilibrium as discussed here is defined to be the point

n∗ at which the expected change is towards that value from both below and above, i.e.

AverageChange(n)


< 0 n > n∗,

> 0 n < n∗.
(2.10)

When x falls below xmin, the growth advantage of species 2 is not sufficient to overcome the disadvantage

it has when colonising sites, and it experiences extinction while species 1 persists in monoculture. When

x is above xmax, then the growth disadvantage of species 1 is too severe for it to survive, and species 2

eventually claims all sites. Within this range, however, long-term survival of both species is likely, and those

time series simulations that do display extinction will often show a long transient prior to a stochastically

driven extinction event. Figure 2.8 shows the increase in expected time to extinction within this range of

parameters, with time to extinction calculated without resorting to the approximation (2.4), but rather uses

the method outlined in Appendix 2.C.

The range of growth rates that give coexistence given by (2.9) is dependent on system capacity N. For

small N, an initial increase in system capacity widens the range of x for which coexistence is possible. The

likelihood of both species surviving for given parameter values s1, s2, x increases for two reasons. First,

there is now a greater region of parameter space that will support the long term survival of both species.

Second, there is also a longer transient prior to extinction, as the average distance of a population from the

boundary increases simply by virtue of there being more possible states. However, as N increases, the range
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Figure 2.2: Range of parameters giving coexistence without disturbance: The effects of system ca-
pacity N on the range of x that will promote coexistence in the fecundity-growth trade-off model without
disturbance. Should x be too large, the more fecund species will likely be driven to extinction, while if the
growth rates are very similar and x drops below the lower limit then the more fecund species will competi-
tively exclude the other species. When xmin > xmax at low N, founder control occurs. Parameter values are
s1 = 500, s2 = 50.

given by (2.9) asymptotes to a fixed range that depends on the fecundity of the two species given by

1
s2
−

1
s1
< x <

ln
(

s1
s2

)
s2

. (2.11)

The variation of xmin and xmax with system capacity N is shown in Figure 2.2. For all s1/s2 < 30, the

values of xmin, xmax are very closely approximated by (2.11) whenever N ≥ 500. We therefore conclude that

system capacity has limited effect on the population dynamics of most undisturbed forests. Effects such as

founder control, where species cannot coexist and the identity of the surviving species is determined by the

initial populations, can only occur in small or fragmented environments. However, Appendix 2.C shows

the time taken to reach equilibrium increases with system capacity, and this has some limited consequences

when considering the effects of disturbance in small systems; in small systems, the change in time to

extinction increases faster than the expected number of events per year, which causes an increase in the

range of parameters for which we predict coexistence. However, to what extent these effects are a product

of Jensen’s inequality are unclear, as the approximation (2.4) is least accurate for low N (Appendix 2.A). F

When productivity is altered, this can occur in two ways. Productivity, the production rate of new

biomass, can be in the form of increased seed numbers (fecundity) or by increased juvenile growth rate.

If juvenile growth rates are altered by a factor ζ for both species, then the effect is to alter the time x
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for which species 2 can succeed with a secondary invasion by a factor 1/ζ, such that, for example, a

doubling of juvenile growth rates halves the time species 1 juveniles spend vulnerable to competition. In

contrast, the effect of increased (or decreased) seed numbers by a factor φ, with each individual therefore

producing φsi seeds, is to increase (or decrease) the magnitude of the exponential term in P(increase(n)) and

P(decrease(n)) by a factor φ. This is equivalent to increasing (or decreasing) the time x for which ‘invasion’

is possible by the same factor. Note that if both growth rates and seed numbers vary with productivity the

effective value of x will be altered by a factor φ/ζ.

One further way that productivity can vary is if not all individuals are reproductively active at a given

moment in time. Studies have demonstrated that the proportion of individuals producing seeds can vary

widely, even over small spatial scales (Kettle et al, 2011). To model this, we assume that each individual

produces seeds within a time step with probability p. We show in Appendix 2.D that reducing productivity

in this way results in a new coexistence range

N ln
(

p2 s1(N−1)(N−2)
((N−1)p−1)(ps1(N−2)+s2)

)
s2

< x <
ln

(
(N−1)ps1

s1+ps2(N−2)

)
N

ps2(N − 2)
. (2.12)

which asymptotes to

1
p

(
1
s2
−

1
s1

)
< x <

ln
(

s1
s2

)
ps2

(2.13)

as system capacity N tends to infinity. This has two notable effects as system capacity increases. First, as

when individual seed values are reduced (φ < 1), the values for xmin, xmax are increased (by a factor 1/p).

The result of this increase is that larger differences in growth rates between species can give coexistence,

when compared to the coexistence range when p = 1. Second, xmin as given by (2.12) has an asymptote at

N = 1/p, where the value of xmin is infinite. Since coexistence requires x > xmin, coexistence cannot occur

on average for systems with capacity smaller than the threshold N = 1/p. Therefore, as p decreases, and

less individuals produce seeds at a given time, larger systems are required to get coexistence of both species

as shown in Figure 2.3.

2.4.2 The effects of disturbance events

When disturbance events are introduced, there are three possible scenarios to study. First, when x < xmin,

so that in the absence of disturbance the more fecund species 1 will exclude species 2, disturbance events

cannot increase diversity by supporting the second species. Second, if the system can exhibit coexistence

in the temporally homogeneous environment, moderate levels of disturbance (disturbance events with low

intensity I or very low frequency f ) will retain this coexistence, with a shift in equilibrium abundances
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Figure 2.3: Coexistence without disturbance for reduced productivity: The effects of altering the prob-
ability p of an individual being reproductively active on the range of growth differential x that gives coex-
istence, and how this varies with N, in an environment with no disturbance. Decreasing p results in larger
values of x predicting coexistence, while simultaneously requiring larger system capacity N to give this
region of coexistence. Parameter values s1 = 500, s2 = 50. Values of p used are (a) p = 0.05, (b) p = 0.2,
(c) p = 0.5, (d) p = 1, such that (d) recreates the region shown in Figure 2.2.

towards greater numbers of the more fecund species (results not shown). However, large intensities with

intermediate or high frequencies will lead to a loss of diversity, creating a monotonically decreasing DDR,

as species 1 will competitively exclude the less fecund species 2. The third scenario is more interesting:

when x > xmax, where in the absence of disturbance, the stronger competitor will competitively exclude the

more fecund species. Then it is possible that disturbance can promote coexistence. If the IDH holds, we

would expect to see the species richness to increase then decrease as the size of disturbances is increased.

Substituting the functions (2.1), (2.2) and (2.3) into the function given by (2.4) we can plot the region of

f − I parameter space that satisfies (2.5) and (2.6), revealing a region where long term coexistence occurs

(Figure 2.4). The boundary of this region is where approximately half the simulations are expected to

exhibit coexistence. In Appendix 2.E we examine how time series simulations match the predictions given

by using the approximation given by (2.4), and note that for high intensity disturbances, the approximation

becomes less accurate (see also Appendix 2.A). When intensity I = 1, at the first disturbance event,

all individuals die, and so neither species survives in the environment, and coexistence does not occur.
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However, in evaluating the expected change, the function is weighted towards non disturbance events when

frequency f is low. This can lead to an underestimation of the effects of high intensity disturbance events,

and predict coexistence for parameters where the death of both species is inevitable. Outside of this region

with very high intensity, the approximation accurately captures the behaviour of simulations.
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Figure 2.4: Coexistence with disturbance: The region of coexistence (shaded area) for x > xmax when
p = 1, and all individuals produce seeds within every event time step. Changes in disturbance frequency
or intensity can produce different DDRs, with the humped, unimodal DDR predicted by the IDH one of
several possible outcomes. Parameter values (a) s1 = 500, s2 = 50, x = 0.06,N = 1000.

Figure 2.4 shows that the effects of disturbance regimes can cause complex relationships between diver-

sity and disturbance, and it is possible to get very differently shaped DDR curves in this model, and this is

affected by which factor influencing disturbance is considered. Increasing intensity can give very different

responses to altering the frequency of disturbances. If f = (dNTD)−1 is fixed such that 1/ f < T , where T

is the expected time to extinction (see Appendix 2.C), increasing intensity will give a humped DDR. For

example, if ln(TD) = 1 is fixed in Figure 2.4, and intensity increased from I = 0.1, we initially see an

increase in diversity as intensity crosses the point I ≈ 0.25. As intensity is increased further, however, there
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is a decline in diversity at I ≈ 0.72. This produces the classic peaked DDR predicted by the IDH.

However, if the fixed frequency is low, coexistence is impossible for any intensity I, and so a flat DDR

is produced. Meanwhile, if intensity I is fixed, while frequency of disturbance is varied, there are three

possible scenarios: i) When I is low (e.g. I = 0.1), the stronger competitor, species 2, will dominate

regardless of frequency; ii) For intermediate intensities (e.g. I = 0.5), increasing frequency will cause

diversity to increase from one species to two (when ln(TD) ≈ 5 for I = 0.5), a monotonically increasing

DDR; iii) When intensity is high (e.g. I = 0.8), increasing frequency will match the predictions of the IDH,

giving a peaked DDR with coexistence occurring for intermediate frequencies (when I = 0.8, the peak in

diversity is predicted in the range 2 ≤ ln(TD) ≤ 6). However, this coexistence occurs for a narrow range of

TD (Figure 2.10 in Appendix 2.E).

Increasing system capacity has a similar effect as in the non disturbance case, where increasing sys-

tems size can increase the range of parameters that give coexistence slightly, but the region of coexistence

asymptotes quickly to a fixed region of parameter space as N increases. This is caused by a stabilisation

of the relationship between the dominant eigenvalue that determines the speed of community dynamics,

and the number of events that occur in a fixed time period. With a fixed death rate (here 1% per year), the

number of events that occur per year in the present model scales linearly with system capacity, such that in

a forest twice as large, we can expect to observe twice as many death events each year. As shown in Ap-

pendix 2.C, the eigenvalue that determines the pace of the dynamics, and thus the time to converge to either

the boundary or the internal quasi-equilibrium, asymptotes in a non linear fashion to 1. For small systems

(N < 300), an increase in system size will have an exponential effect on increasing the time to extinction.

This extended time to extinction increases the likelihood of an infrequent disturbance event occurring before

extinction. In other words, a long transient towards a community dominated by a competitively dominant

(e.g. shade-tolerant, late-successional) species will enable a shade-intolerant, pioneer species to be main-

tained before the next disturbance event shifts the environment into its favour. Once N increases above a

certain value, the change in time to extinction as a function of system capacity can be approximated by a

linear relationship. Thus, owing to this linear relationship, while the time to extinction (measured in events)

doubles as system capacity is doubled, the same change occurs in how many events are expected to occur.

Therefore, the disturbance frequencies that give coexistence (for a given intensity) remain unchanged as

system capacity increases further. This ensures that the systems response to disturbance regimes is robust

to changes in system capacity.

These results are also robust to changes in productivity. A decrease in growth rates or increase in average

seed production (such that φ/ζ > 1) will shift the values of x that give coexistence without disturbance to
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lower values. This in turn causes a shift in the disturbance intensities I that give coexistence for a fixed

x. If x ∈ (xmin, xmax), this change in productivity can cause the value of xmax to move below x, which

means that low intensity disturbances may no longer give coexistence. If species 2 excludes specie 1 in the

absence of disturbance, increasing φ/ζ will move the diversity peak where both species coexist to higher

disturbance intensities, matching the predictions of dynamic equilibrium models (Huston 1979; Kondoh

2001). In contrast, reducing φ/ζ by increasing growth rates or decreasing seed production will increase the

values of x for which coexistence occurs without disturbance (as determined by (2.12)).This has the effect

of lowering the intensities for which coexistence can occur.

However, while a change in productivity can alter the range of disturbance regimes for which coexis-

tence occurs for a given set of parameters, the qualitative results do not change. Using an approximation for

the expected change when individuals are reproductive with probability p < 1(outlined in Appendix 2.F)

it is possible to see that when seed production in decreased, the results are qualitatively similar, displaying

a ‘hockey stick’ type shape to the coexistence region (Figure 2.5). Figure 2.5 also shows how reducing p

has similar effects to a reduction in the value of x. While the asymptote to a fixed region as N increases

is slightly slower when p is reduced, coexistence still asymptotes to a fixed region as we increase system

capacity, demonstrating that these results are robust to changes in both productivity and system capacity.

2.5 Discussion

Disturbance is often considered an important driver of biodiversity and species richness (e.g. Denslow,

1987; Lawton and Putz, 1988; Sousa, 1984). We use a lottery type model to confirm that while it is possible

for two species to coexist along a fecundity-growth trade-off in a homogeneous environment, disturbance

events can dramatically increase the range of parameters for which coexistence is possible. Analysis shows,

in accordance with recent theory (Miller et al, 2011), that different factors influencing disturbance (here

frequency or intensity) can have very different effects, and may impact species richness in different ways.

We add to this theory by determining analytic conditions for coexistence under given disturbance regimes,

and by demonstrating that these conditions are robust to model type, productivity and system size. We

suggest these general results may explain in part some of the conflicting empirical results regarding the

IDH. Indeed, one consequence of our results is that it is possible for two forest fragments to exhibit different

diversity patterns, even though all species in both sites have the same vital rates (i.e. same seed productivity

and growth rates). Further, an increase in either disturbance frequency or intensity can have different effects,

and these effects are dependent on the underlying disturbance regime. For example, a region with infrequent

disturbances of intermediate intensity may show an increase in diversity as disturbances become more

58



CHAPTER 2. THE EFFECT OF DISTURBANCE ON COEXISTENCE

(a) (b)

1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time between disturbances ln(yrs)

In
te

ns
ity

 I

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Time between disturbances lnHyrsL

In
te

ns
ity

I
(c) (d)

1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time between disturbances ln(yrs)

In
te

ns
ity

 I

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Time between disturbances lnHyrsL

In
te

ns
ity

I

Figure 2.5: Coexistence with disturbance for reduced productivity: The effect of reducing the proba-
bility of an individual being reproductively active p on the disturbance regimes that predict coexistence.
Reducing p has a similar effect as transforming the growth rate differential x→ px. Shaded areas are where
coexistence is predicted. (a) and (c) show the region of predicted coexistence using the approximation
given in Appendix 2.F for s1 = 500, s2 = 10, x = 2 for (a) p = 0.75 and (c) p = 0.1. The approximation
is evaluated at ln(TD) = i, I = 0.1 j for all i ≤ 8, j ≤ 10, and a linear extrapolation used between points
(b) and (d) illustrate that the effect is the same as reducing x to (b) x = 1.5 and (d) x = 0.2. Note that
xmax = ln(500/10)/10 ≈ 0.39, such that (c) and (d) represent parameters where coexistence occurs in the
absence of disturbance.
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frequent, while a different forest with more frequent yet less intense disturbances may not exhibit this

increase in diversity with frequency (see Figure 2.4).

In general, our results indicate that it is important to consider the intensity and frequency of disturbance

events as separate parameters when studying the effects of disturbance on diversity levels, and emphasise

that past disturbances can have long-lasting effects, which persist for decades or centuries, in accordance

with Foster et al (1999). In the current model, these effects come in the form of persistence of inferior

competitor species, which can be sustained between disturbances that occur as infrequently as every 400

years. The result here is increased diversity within the canopy, but disturbance can effect several other

aspects of the environment, such as net primary production (e.g. Turner, 2010). These results, while arising

in a new model, are qualitatively similar to those of Miller et al (2011), adding weight to the suggestion

that the separation of factors controlling disturbance is an important consideration in studying the effects of

disturbance on a community. We build on this work by showing that these qualitative results are extremely

robust to changes in system capacity and productivity.

Our results also demonstrate that frequency and intensity can have different effects across a broad range

of system capacities and productivity levels. The model reproduces the results of Kondoh (2001) when dis-

turbance frequencies are high, showing a diversity peak at lower disturbance intensities when productivity

is reduced. We also find that disturbance regimes that maximise coexistence may be predicted by a com-

bination of system productivity and the life histories of species in the community. However, these results

are not applicable to alternative measures of disturbance. For example, a moderate change in productivity

has negligible effect on the community response to increased frequency. We therefore demonstrate that

the results of Kondoh are not universal, further emphasising the importance of considering different factors

determining disturbance.

Many plant populations are thought to be recruit limited (e.g. Clark et al, 1998; Eriksson and Ehrlén,

1992; Svenning and Wright, 2005), and this may be particularly important in very species rich communities,

where most species are locally quite rare (e.g. Svenning and Wright, 2005). By relaxing the assumption

that all individuals are reproductively active at the time of the disturbance, or otherwise altering the seed

production in the system, we also show the importance of seed limitation on the community dynamics.

Our analyses show that seed limitation generally increases difference in growth rates that allow species

to coexist, and this is in line with previous theory that shows recruit limitation often slows dynamics,

especially in species rich communities (Hurtt and Pacala, 1995). This again suggests that processes that

slow down the dynamics will act to help support the maintenance of competitively weaker (e.g. pioneer)

species. While modelling sexual (non-selfing) species would require a different analysis, sexual species
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may experience slower dynamics because they become both pollen and seed limited with pollen limitation

leading to reproductively active trees not bearing fruit. The consequences of sexuality in this context remain

an open question, and a more detailed model approach may be necessary.

Another aspect in which our results differ from those of Miller et al (2011) is that at very high frequen-

cies, their model exhibited a tailing off of coexistence (Figure 1 of Miller et al, 2011), resulting in a crescent

shaped region of coexistence. Our model does not present this tailing off, and even when f = 1, a relatively

broad range of intensities can give coexistence. We suggest that this is because our model allows for full

site replenishment following a disturbance event before a second disturbance is possible. Our assumption

makes the model computationally much simpler, at the expense of some realism. However, the assumption

of full replenishment will only alter outcomes at very high intensities, where very few individuals survive.

In the case where at least 2% of the system survives a disturbance event, this would allow for complete

replenishment, on average, between very common disturbance events, such as El Nino, which strikes with

a frequency of approximately once every 5 years. When the system considered is shrub- or grassland, we

anticipate that site replenishment will also be rapid.

While we only consider two species in the current model, previous work has argued that disturbances

may enhance coexistence in multi-species communities (e.g. Loehle, 2000; Roxburgh et al, 2004). Ear-

lier theory has suggested that infinitely many species can coexist along a spatially implicit competition-

colonisation trade-off (e.g. Tilman, 1994), and that spatial structure is not necessary for generating large

numbers of species (Adler and Mosquera, 2000) although for large numbers of species coexistence is highly

unlikely (Chapter 1; Nattrass et al, 2012). Further, Gyllenberg and Meszena (2005) show that the coexis-

tence of infinitely many species is structurally unstable. Chapter 4 of this thesis considers models featuring

greater species numbers, which we anticipate will produce qualitatively similar results, with many different

diversity curve shapes generated by different combinations of frequency and intensity, even when the over-

all biomass loss due to disturbance is identical. The key element to generating coexistence is that no one

species is superior across the entire range of disturbance gradient, and this means further underlying niche

differences are required in order to support higher number of species (e.g. Seifan et al, 2013). Nonetheless,

comparisons of different forests with different levels of disturbance frequency and intensity do exist. For

example, Denslow (1987) reports on two forests, one in Puerto Rico which has not experienced any hurri-

canes in the last 150 years, and one in Costa Rica which experiences a hurricane once every 20-30 years.

Despite having otherwise similar annual rainfall and topology, the former site supports only 88 tree species

in 16ha of study plots, whereas the latter supports 269 species in 12.4ha of plots. Although other differences

are apparent, such as the amount of human activity and isolation from the mainland, the Costa Rican forest
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does have a faster turnover of trees caused by tree fall and the theory presented here does predict the forest

with the more frequent but less intense disturbances to have the fewer species.

The current model does not include spatial heterogeneity. Previous studies suggest that spatial structure

does not have a significant effect of disturbance events and their aftermath in a number of circumstances,

such as when the disturbance does not have directionality (Frelich and Lorimer, 1991). However, given

that most seeds of most plants fall near to the parent, incorporating realistic dispersal kernels could in-

fluence the relative importance of disturbance to the community dynamics. Many plant communities show

within-species clustering, meaning nearby neighbours are quite likely to be conspecifics (Condit et al, 2000;

Murrell et al, 2001), and deaths of individuals leave gaps that most likely to be exploited by these neigh-

bours. Generally speaking it is expected that such localised dispersal should slow down the community

dynamics both in terms of time to expected exclusion (Gandhi et al. 1998) and also potentially during the

invasion process (Murrell, 2010). Which of these two effects dominates remains an open question for the

model presented here, and metapopulation theory suggests the effect on the dynamics might be quite com-

plex (Ovaskainen and Hanski, 2002). However, we suspect in many cases the effect of restricted dispersal

on all species will help maintain the weaker competitor in the community because restricted dispersal will

mean it can win some sites uncontested.

Often, disturbance is modelled using a single parameter, as reviewed by Shea et al (2004), yet we

demonstrate that identical overall disturbance rates can produce different environmental conditions, and

different diversity levels. This extends to the consideration of diversity curves as disturbance is varied. The

same change in overall disturbance levels can result in dramatically different diversity curves, with mono-

tonic curves and both peaked and U-shaped curves, although the latter are difficult to achieve. These results

are in accordance with the findings of Mackey and Currie (2001), who report that peaked and monotonic

DDRs are all relatively frequent, while U-shaped curves are much rarer. The differences in effect on biodi-

versity between the factors governing the total level of disturbance could therefore suggest an explanation

for the great variety of DDR shapes observed in nature. While we only consider two of these factors, fre-

quency and intensity, we find that an increase in intensity will often give a humped DDR, while an increase

in frequency of disturbance will present a monotonic or flat DDR, and this is robust to changes in all model

parameters. Once other factors of disturbance are considered, a still broader range of DDR shapes may be

explained by the variation of how disturbance is measured. Some recent empirical work has considered the

effects of different disturbance measures (e.g. Bertocci et al, 2005; Collins, 1987; Svensson et al, 2009), and

the work presented here suggests that it should remain a point of emphasis for empirical studies.
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Appendices

2.A Approximating the expected change function

When approximating the average change using the function given by (2.4), we must compare these results

to the actual expected change. Using the Law of Total Probability (P(A) =
∑

b∈B P(A|b)P(b)), where A is

the probability of increasing species 1 numbers by k individuals, and B the set of possible death numbers in

species 2, and summing the results weighted by k, the average change at the boundaries is given by

AvCh(1) =
−I + (N − 1)IN−1(1 − I)

dNTD
(2.14)

+
(1 − I)

∑N−2
k=1

∑N−2
j=k kI j(1 − I)N−2− j

(
N−2

j

)
S p1(1,N − 1 − j)k(1 − S p1(1,N − 1 − j)) j−k

(
j
k

)
dNTD

+

(
1 −

1
dNTD

)
(p1,2 − p1,0),

AvCh(N − 1) =
−IN−1(N − 1) + I(1 − IN−1)

dNTD
(2.15)

−
(1 − I)

∑N−2
k=1

∑N−2
j=k kI j(1 − I)N−2− j

(
N−2

j

)
S p1(N − 1 − j, 1) j−k(1 − S p1(N − 1 − j, 1))k

(
j
k

)
dNTD

+

(
1 −

1
dNTD

)
(pN−1,N − pN−1,N−2).

where S p1 is as defined in (2.3). Since these sums become computationally expensive for large system size,

we approximate these using (2.4). Figure 2.6 shows how the error varies when (2.4) is used to approximate

(2.14). The error of the approximations decreases with increased time between disturbances TD, decreased

intensity I, and increased system capacity, while Figure 2.7 shows the same effects of system size and dis-

turbance frequency for approximating the average change when N − 1 sites are occupied by species 1 given

by (2.15). However, in this case the relationship between error and intensity exhibits a peak in error size for

intermediate intensities. This may be because for the upper boundary condition (2.15), the exponential term

in (2.3) exhibits greater variation than in (2.14), and that this error is maximised at intermediate values of I.

While only the errors generated by one set of parameters are shown in Figures 2.6 and 2.7, the qualitative

results are robust to parameter changes.

2.B Stationary distributions, and the effects of low level immigration

In a closed system such as the one detailed above, if there is a non zero probability of reaching a state from

which there is zero probability of leaving, the only stable distribution is fixed at one of those absorbing
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states. On the model considered in the current manuscript, the result of this is that the stable distribution Π

is given by

πi =


1/2, i = 0,N

0, i = 1, 2, . . . ,N − 1.
(2.16)

Therefore, any coexistence suggested by invasion analysis is merely temporary. Over ecological timescales

of decades or centuries, both species may coexist over several generations,yet as time t tends to infinity, one

species will go extinct, although the identity of that species is unknown.

However, when low levels of immigration from outside the system is included, studying the stationary

distribution of a system without disturbance demonstrates that the stochastic boundedness conditions are

a good approximation of where coexistence is expected to occur (here coexistence is considered to occur

when the most probably state in the stationary distribution has both species present).

Compared to this definition of coexistence, we find that stochastic boundedness does slightly enlarge

the expected region of coexistence, but generally captures the expected behaviour well. With parameters

s1 = 500, s2 = 50,N = 1000, we find that when only 10 seeds of each species are expected to arrive in the

system each time step, stochastic boundedness conditions adjusted to include this low level of immigration

give an expected range of coexistence for 0.015 / x ' 0.046.

The stationary distribution is found by solving

Aπ = π (2.17)

where π is the stationary distribution such that πi is the probability of having i − 1 species 1 individuals

present.

The range of x which have an interior maximum is given by 0.02 / x / 0.041. If we consider pa-

rameters where an interior peak is present (πx > πx−1, πx+1 for some x ∈ [1,N − 1]), this range increases to

although the most likely state is still extinction of one species 0.019 / x / 0.043 although at the extremes of

this range, the most likely state the system occupies is extinction of one species. This slight overestimation

of range by the stochastic boundedness conditions is consistent across parameter changes, Combining this

observation with the time series simulations in Figure 2.1 we conclude that it is an appropriate approxima-

tion of the systems behaviour, over ecological timescales in the absence of immigration, and the behaviour

as t → ∞ when immigration is considered.
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2.C Expected time to convergence

The expected time to extinction of the system can be calculated easily in the case where there is no dis-

turbance. Defining the expected number of time steps taken to go from n individuals of species 1 in an

environment where disturbance does not occur to either of the absorbing boundaries (n = 0 or n = N when

one of the two species goes extinct) as kn, we can solve a series of simultaneous equations given by

kn =


0 n ∈ {0,N}

1 + pn,n+1kn+1 + pn,nkn + pn,n−1kn−1) 1 ≤ n ≤ N − 1
(2.18)

to determine the vector k of expected extinction time for each possible initial population. This varies with

growth rate differential x, as demonstrated in Figure 2.8, yet also increases with system capacity N, as

demonstrated in Figure 2.9. As system capacity increases by an order of magnitude, the expected time to

extinction increases by a greater ratio. This is especially the case within the range of x that invasion analysis

suggests gives two species coexistence. Here, increasing the system capacity from 100 to 1000 causes the

expected time to extinction to increase by approximately 12 orders of magnitude.

We can also find the expected time to convergence (be that extinction or an internal quasi-equilibrium)

by examining the eigenvalues of the transition matrix. The two absorbing boundaries mean that this matrix

is reducible, with two eigenvalues λ1,2 = 1, so the dynamics away from these boundaries are determined

by λ3, the largest eigenvalue with λ , 1. The convergence to either the boundary or the quasi-equilibrium

happens with rate λt
3. Figure 2.9 shows numerically generated λ3 for varied x ∈ {0.01, 0.035, 0.06} above,

below and within the non-disturbed coexistence region. In all cases, λ3 increases monotonically with N.

This indicates that time to convergence increases with system size. When x < (xmin, xmax), this extends the

time to extinction, allowing for less frequent disturbances to sustain both populations.

2.D Differential seed productivity

Suppose that not all individuals are reproductively active all the time. Instead, there is a probability p that

an individual is producing seeds at that moment. This effectively reduces the amount of competition for a

gap when one appears in the canopy.

We then consider the conditions for coexistence, i.e. (2.7) and (2.8). We assume that when the system

is almost entirely filled with one species, the seed production can be approximated by the mean, so in (2.7)

we assume the number of seeds produced by N − 2 individuals of species 2 is given by s2 p(N − 2). We
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can therefore solve (2.7) for x. Note that a single individual of species 1 can produce either s1 seeds (with

probability p) or 0 seeds (probability 1 − p). Using the relationship P(A) =
∑

b∈B P(A|b), where P(A) is the

probability of species 1 increasing from one individual to two, and B is the of all possible seed numbers

produced by species 1 (here the set {0, s1}), solving (2.7) gives

ln
(

(N − 1)ps1

s1 + ps2(N − 2)

)
N

ps2(N − 2)
> x.

Taking the limit as system capacity N tends to infinity, we find that an upper bound for x is given by

x <
ln

(
s1
s2

)
ps2

which merely differs by a factor of 1/p from the simpler base model.

Similarly, we can solve (2.8) for x as follows:

x >
N
s2

ln
(

p2s1(N − 1)(N − 2)
((N − 1)p − 1)(ps1(N − 2) + s2)

)

Again, taking the limit as system capacity N → ∞ gives

x >
s1 − s2

ps1s2
=

1
p

(
1
s2
−

1
s1

)

which again differs from the base model merely by a factor of 1/p. Simulations confirm that between these

boundaries, long term coexistence is observed.

2.E Comparison of simulation data with analytic predictions

We ran a range of time series simulations to verify the predictions given by our analytical results. Simula-

tions are run at I = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 and frequencies ln(TD) = 1, 2, 3, 4, 5, 6, 7, 8.

Each point has 20 simulations run for 105 time steps, and a linear interpolation algorithm is used between

data points. Dark colours in Figure 2.10(a) are indicative of high probability of coexistence, where both

species persist in the community after 105 time steps. The scale to the right shows the percentage of the

20 time series exhibit coexistence. This data indicates that while the outcomes are accurately predicted

by the analysis when disturbance events are very frequent (Figure 2.10(b)), there is a “tail” at high inten-

sity and intermediate frequency where coexistence is only possible for a very narrow range of frequencies.
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However, frequencies that are sufficiently high (such that the lines given by AverageChange(1) = 0 and

AverageChange(N − 1) = 0 are approximately constant in ln(TD)) the average change function provides

a good fit to the simulation data (Figure 2.10). This is also the case for simulations in a system of size

N = 10000, where the average change provides a good fit for frequencies where the region of coexistence

is approximately constant in f (results not shown).

2.F Approximation of expected change for p < 1

When not all individuals are reproductively active (p < 1), the average change at the boundaries is given by

AvChangeDist(1) = −I (2.19)

+ (1 − I)p

×

N−2∑
k=0

k
N−2∑
j=k

I j(1 − I)N−2− j
(
N − 2

j

) N−1 j∑
r2=0pr2 (1 − p)N−1− j−r2

(
N − 1 − j

r2

) (
s1e−s2 xr2/N

s1 + s2r2

)k (
1 −

s1e−s2 xr2/N

s1 + s2r2

) j−k (
j
k

)
+ (N − 1)IN−1(1 − I)

and

AvChangeDist(N − 1) = −(N − 1)IN−1 (2.20)

− (1 − I)p

×

N−2∑
k=1

k
N−2∑
j=k

I j(1 − I)N−2− j
(
N − 2

j

) N−1− j∑
r1=0pr1 (1 − p)N−1− j−r1

(
N − 1 − j

r1

) (
s1r1e−s2 x/N

s2 + s1r1

) j−k (
1 −

s1r1e−s2 x/N

s2 + s1r1

)k (
j
k

)
+ I(1 − IN−1)

However, these are computationally expensive, where the number of terms in the triple sum scales as N3,

so as system size increases, the calculation of (2.19) and (2.20) rapidly becomes unfeasible. Instead, we

use the normal approximation of the binomial distributions using the ‘integral2’ function in Matlab2012b,
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to approximate the expected changes at the boundaries with

AvChangeDistApprox(1) = −I (2.21)

+ (1 − I)p

N−2∑
k=1

k
∫ N−2

k
N (I(N − 2), I(N − 2)(1 − I), j)

[∫ N−1− j

0
N (p(N − 1 − j), p(1 − p)(N − 1 − j), r2)

×N

(
j
s1e−s2 xr2/N

s1 + s2r2
, j

s1e−s2 xr2/N

s1 + s2r2

(
1 −

s1e−s2 xr2/N

s1 + s2r2

)
, k

)
dr2

]
d j

+ (N − 1)IN−1(1 − I)

at the lower boundary and

AvChangeDistApprox(N − 1) = −(N − 1)IN−1 (2.22)

− (1 − I)p

N−2∑
k=1

k
∫ N−2

k
N(I(N − 2), I(1 − I)(N − 2), j)

[∫ N−1− j

0
N(p(N − 1 − j), p(1 − p)(N − 1 − j), r1)

×N

(
j
(
1 −

s1r1e−s2 x/N

s2 + s1r1

)
, j

s1r1e−s2 x/N

s2 + s1r1

(
1 −

s1r1e−s2 x/N

s2 + s1r1

)
, k

)
dr1

]
d j

+ I(1 − IN−1)

at the upper boundary, where N(x, y, z) is the PDF of a normal distribution with mean µ = x and variance

σ2 = y, analysed over the variable z.

The error for this approximation decreases with increased system capacity N. Evaluating for I =

0.1, 0.2, ..., 0.9 and ln(TD) = 1, 2, ..., 8, we find that the maximum error when N = 400 is 0.0025, ensuring

that even for relatively small N > 400, this is a good approximation of the expected change.
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Figure 2.6: Approximation errors for species 1 invasion: (a) How the error of the approximating function
for species 1 invasion changes with increased time between disturbances TD for various intensities I = 0.3
(blue, dashed lines), I = 0.6 (red, dashed lines with points), and I = 0.9 (black, solid line) (b) the effects
of increasing intensity I for fixed frequency ln(TD) = 1 (black, solid line), ln(TD) = 4 (red, dashed line
with points) and ln(TD) = 8 (blue, dashed line).. Errors are larger for higher intensity, but decrease as the
expected time between disturbances increases. (c-d) How the mean (c) and maximum (d) error size decrease
with increased system capacity N. The error was calculated for intensities I = 0.1, 0.2, 0.3, ..., 0.9 and time
between disturbances ln(TD) = 1, 2, 3, ..., 8. Parameters used are s1 = 500, s2 = 50, x = 0.06,N = 500.
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Figure 2.7: Approximation errors for species 2 invasion: (a) How the error of the approximating function
for species 1 invasion changes with increased time between disturbances TD for various intensities I =

0.3 (blue, dashed lines), I = 0.6 (red, dashed lines with points), and I = 0.9 (black, solid line) , and
(b) the effects of increasing intensity I for fixed frequency ln(TD) = 1 (black, solid line), ln(TD) = 4
(red, dashed line with points) and ln(TD) = 8 (blue, dashed line). Errors decrease as the expected time
between disturbances increases, but display a non-monotonic relationship to intensity, with the largest errors
produced by intermediate intensity. (c-d) How the mean (c) and maximum (d) error size decrease with
increased system capacity N. The error was calculated for intensities I = 0.1, 0.2, 0.3, ..., 0.9 and time
between disturbances ln(TD) = 1, 2, 3, ..., 8. Parameters used are s1 = 500, s2 = 50, x = 0.06,N = 500.

70



CHAPTER 2. THE EFFECT OF DISTURBANCE ON COEXISTENCE

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6

8

10

12

14

Growth differential x

E
xp

ec
te

d 
tim

e 
to

 e
xt

in
ct

io
n 

w
he

n 
n=

N
/2

: l
n(

T
)

Figure 2.8: How time to extinction varies with the difference in growth rates: The difference in growth
rates as measured by time available for invasion x effects the expected time to extinction, when mea-
sured from initial population n = N/2. Vertical lines represent xmin, xmax, and the region predicted to
give coexistence between these lines does display the highest expected time to extinction. Parameters are
s1 = 500, s2 = 50,N = 100.
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Figure 2.9: How time to extinction varies with system capacity: (a-c) The expected time to extinction
as it changes with system capacity N for each initial population. In the region where invasion analysis
suggests coexistence should occur, the increase in expected time to extinction with N is greatest, although
for all x, the increase is more rapid than the increase in system capacity. (d) The effect of system size on
dominant eigenvalue λ3 for x > xmax (crosses), x < xmin (diamonds) and x ∈ (xmin, xmax) (circles). Growth
rate when the system is away from the boundaries behaves like λt

3. As system capacity increases, λ3 tends
to 1, resulting in slower convergence to either the boundary or an interior quasi-equilibrium. Note that when
x ∈ (xmin, xmax, the convergence λ3 → 1 occurs more rapidly than for x outside this interval.
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Figure 2.10: Comparing simulation data with analytical predictions: (a) Simulation data showing how
stochasticity effects the predicted region of coexistence at high intensity. 20 time series simulations were
run for each point. The darker the shading, the greater the number of these time series that exhibited
coexistence after 105 time steps. Linear scaling is performed between data points. (b) The region of
coexistence predicted by invasion analysis. Parameters s1 = 500, s2 = 50, x = 0.06,N = 1000
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Abstract

Trade-offs are considered an important driver of species richness, as trade-offs between life history traits

allow for niche specialisation. Plant communities are thought to have three important life history traits;

fecundity, juvenile growth and defence against herbivores and/or abiotic pressures. We build upon the model

presented in Chapter 2 to consider a variety of trade-offs in an environment that experiences disturbance

events of varying intensity and frequency. Using invasion analysis, we enumerate the likelihood of each

of these trade-offs allowing to species to coexist, and find that trade-offs between all three traits are most

likely to promote coexistence, although this trade-off does not exhibit a significantly greater likelihood of

coexistence than a fecundity-growth trade-off. Further, we demonstrate that trade-offs involving growth

rate differences are robust to changes in community size, while a fecundity-defence trade-off cannot sustain

more than a single species in large communities.
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3.1 Introduction

No single species can allocate unlimited resources to each life history trait (Law, 1979; Tilman, 1982).

Instead, species life histories are determined by the allocation of limited resources to different areas of

need. In plant species, the three important life history traits are reproduction, growth from seedling to

adult, and defence against both herbivory and abiotic factors such as fire (Bazzaz et al, 1987). This leads

to trade-offs between life history traits. For example, a species with high levels of resource allocated to

increasing fecundity will not be able produce seeds of a large mass (Turnbull et al, 1999) and, since seed

size is positively correlated with juvenile growth rate, is therefore likely to experience a decrease in its

juvenile growth rate (Gross, 1984), or a species with rapid growth may be more susceptible to damage by

storm winds or other mortality pressures such as large scale herbivory (e.g. Wright et al, 2010; Fine et al,

2006). Theory has shown that these trade-offs can allow two or more species to coexist while competing for

the same resources in an environment (e.g. Kisdi and Geritz, 2003; Levins and Culver, 1971; Bonsall and

Mangel, 2004), suggesting that trade-offs are important for sustaining high levels of biodiversity in nature.

However, while some studies have compared several trade-offs (e.g. Tilman, 1990; Grime, 1977), little is

understood about how multiple trade-offs combine to affect community diversity, and whether trade-offs on

multiple axes increase diversity in an additive manner.

Conditions under which species coexist alongside others will also be dependent on other, abiotic factors.

For example, during a hurricane, some tree species experience high stem breakage and mortality, while

others suffer much lower mortality (Zimmerman et al, 1994). This is caused by increased wood density,

which correlates with breaking strength (Niklas, 1992). Wood density is also negatively correlated with

growth rates (King et al, 2005), suggesting that trade-offs between growth, defence against rare disturbance

events and fecundity may be complex. Understanding how these trade-offs interact is potentially crucial in

understanding how diversity is maintained.

Several previous studies have suggested that disturbance events also play an important role in promoting

and maintaining diversity (e.g. Sousa, 1984; Denslow, 1987). Recent theoretical work (Chapter 2; Miller

et al, 2011) shows that different measures of disturbance, such as frequency or intensity, will have very dif-

ferent effects, even when the total biomass lost to disturbance over a given time period is taken into account.

While many empirical studies consider disturbance as a single parameter (e.g. Molino and Sabatier, 2001;

Peterson and Rebertus, 1997; Nakagawa et al, 2000), some studies do demonstrate that different factors

determining disturbance can affect the community structure differently. Hall et al (2012) use bacterial pop-

ulations to experimentally demonstrate that the frequency and intensity of disturbance events have different

impacts, while Denslow (1980) indicates that communities with large, infrequent disturbances may be more
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diverse than those where disturbance events are more frequent, yet clear a smaller area (e.g. tree-fall gaps).

Here, all possible trade-offs between the three important plant life history traits - reproduction, juvenile

growth and defence - are considered in a two species model. Defence is taken here to mean the ability of

an individual to withstand a disturbance event, that is, an event that results in the death of large number of

individuals and alters niche opportunities within the community, while seed production (seed number per

capita per year) is used as the measure of fecundity. We therefore consider 8 models. The model where all

species are identical gives neutral dynamics, and the coexistence of the two species is governed by chance,

while the three models where the species differ in a single trait (no trade-off) demonstrate competitive

exclusion of the weaker species. When trade-offs are between two or more traits, the effects of system

capacity and varied disturbance regimes are considered, and we show that trade-offs between fecundity and

growth, or growth and defence, can support two species for large system sizes, as can a three dimensional

trade-off, although a fecundity-defence trade-off cannot. The probability of species disturbance defence

parameters resulting in coexistence is calculated, and we demonstrate that a three dimensional trade-off

gives the greatest likelihood of coexistence, an order of magnitude larger than that of a growth-defence

trade-off. Species specific disturbance intensities are then linked to allow comparison between the three

dimensional trade-off and a fecundity-growth trade-off, allowing us to test whether increasing the number

of trade-off axes has a significant effect on diversity. When disturbance affects all species equally, we

show that if the more fecund of the two species has a slight advantage in defence against disturbance, the

likelihood of coexistence is maximised, although this increase is marginal.

3.2 Models

Here, we build on the model presented in Chapter 2, introducing a single extra factor; we allow species

to differ in the level of resource they dedicate towards resistance to disturbance events, so an individual

of species i will experience a species specific probability of death during a disturbance Ii. The model

is described in a non disturbance time step by the following transition probabilities (where n = N1(t),

N − n = N2(t) and pi, j is the probability of moving from state i to state j);

pn,n+1 =
N − n

N
s1n

s1n + s2(N − n − 1)
exp

(
−s2

N − n − 1
N

x
)
, (3.1)

pn,n−1 =
n
N

s2(N − n)
s1(n − 1) + s2(N − n)

(3.2)

+
n
N

s1(n − 1)
s1(n − 1) + s2(N − n)

(
1 − exp

(
−s2

N − n
N

x
))
,

pn,n =1 − pn,n+1 − pn,n−1. (3.3)
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where si is the per capita annual seed production of species i, N is the system capacity - the maximum

number of adults that can be sustained by the environment, and x = C(1/g1 − 1/g2)/2 is a measure of

growth rate differences (with C canopy height and gi the sapling growth rate of species i).

During a disturbance event, each individual of species i will die with probability Ii. If there are di

deaths of species i, then the total deaths is given by d =
∑

i di. Note that d is now dependent on the

species composition of the community when the disturbance strikes, as well as the inherent properties of

the disturbance. The expected number of deaths is given by

d̄ =
∑

i

IiNi(t) (3.4)

where Ni(t) is the population of species i at time t. Once all d deaths occur, the remaining N − d individuals

compete for the opened sites in the system. If the populations of the two species are given by n∗1, n
∗
2 in the

immediate aftermath of a disturbance, the probability of each gap being successfully colonised by species

one is given by

S p1(n∗1, n
∗
2) =

s1n∗1
s1n∗1 + s2n∗2

exp
(
−s2x

n∗2
N

)
. (3.5)

We assess coexistence by considering invasion analysis. The average or expected change in a time step

is approximated by

AverageChange(n) =(1 − f )
(
pn,n+1 − pn,n−1

)
(3.6)

+ f (−nI1 + (nI1 + (N − n)I2)S p1(n(1 − I1), (N − n)(1 − I2))) .

This approximation does not account for Jensen’s inequality, yet Appendix 3.A shows that for each of the

models considered, the approximation at the boundaries (n = 1,N − 1) improves with system capacity N,

and fits the actual expected change well. Coexistence occurs when on average, both species increase when

rare; that is when

AverageChange(1) > 0, (3.7)

AverageChange(N − 1) < 0. (3.8)

We can now consider a collection of models by varying different combinations of the three traits; fe-

cundity, juvenile growth rate and defence or resistance to disturbance, using the parameter values shown

in Table 3.1. This gives a selection of 8 models, one where the species are identical, 3 where they differ

in a single parameter, 3 where they differ in two ways and the third parameter is equal, and a final model
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where species can differ in all three ways. The first four of these are trivial to analyse, but the models where

species differ in at least two of the life history parameters give more interesting results.

Table of baseline parameters
Parameter Description Default value

s1 per capita annual seed production of species 1 500
s2 per capita annual seed production of species 2 50
g1 growth rate of species 1 juveniles 13

(measured in mm/yr for diameter at breast height)
g2 growth rate of species 2 juveniles 13.21

(measured in mm/yr for diameter at breast height)
C size of individuals at canopy height 100

(measured in mm for diameter at breast height
x C(1/g1 − 1/g2)/2 0.06

time window (yrs) for successful secondary colonisation by species 2
N system capacity: number of individuals the region can support 1000
n number of species 1 individuals N/A

TD average time between disturbances in yrs 10
f within event disturbance probability 100/(TDN)
I1 intensity of disturbance for species 1 N/A
I2 intensity of disturbance for species 2 N/A
y Parameter linking species intensities; given by I1/I2 N/A

Table 3.1: Key parameters used in the model, along with default values where appropriate

3.3 Results

When all species are identical, the model is simply a one-dimensional random walk, where disturbance

events of intensity I merely increase the distance it is possible to travel in a single step. Coexistence in this

model is merely a function of chance. This model therefore acts as a neutral theory model without mutation

or speciation, where all species are equivalent and chance alone drives dynamics. If the species merely

differ in a single parameter, then we find that the species with the higher growth rate or fecundity, or with

the lower mortality in a disturbance regime will competitively exclude the other.

3.3.1 Fecundity-growth trade-off

The case where species differ in both fecundity and growth (I = I1 = I2) is analysed in detail in Chapter

2. In summary, for sufficiently low growth rate differentials x, the more fecund species 1 can competi-

tively exclude the rapidly growing species 2, both in the presence of disturbance and in an environment

without disturbance. For intermediate x, coexistence is possible in the homogeneous environment, and this

behaviour persists for low intensity or low frequency disturbances. As disturbance intensity increases (pro-
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viding the frequency f is greater than the expected time to extinction textinct), the fecundity advantage of

species 1 will lead to it competitively excluding species 2. Thus, disturbance can lead to a decrease in di-

versity. When x > xmax is large, species 2 will exclude the more fecund species 1 due to its superior growth

rate. In this case, disturbance has a more complex effect. For frequencies f such that 1/ f > textinct, interme-

diate disturbances will lead to coexistence of two species, while high intensities will allow the previously

excluded species 1 to claim all sites and exclude species 2. Low intensities are insufficient to change the

temporally homogeneous diversity. When 1/ f < textinct, species 2 will persist in monoculture. System size

impacts the region of coexistence by increasing textinct, extending the region of more complex behaviour.

For disturbances more frequent that textinct, the range of intensities that can give coexistence varies with

the growth rate differential x, and is maximised at x = xmax, and also with the difference in fecundities. As

seed numbers are varied, the maximum range of disturbance is at the point s1 = s2 exp(s2x). That is, the

range is maximised when the function I = 1 − ln(s1/s2)/(s2x), formed by setting AverageChange(1) = 0,

returns I = 0.

3.3.2 Fecundity-defence trade-off

When species have identical growth rates (x = 0), yet differ in disturbance response and fecundities si, it

is possible to find analytically the range of I1 − I2 space that gives coexistence for given fecundities si. We

assume species 1 is the more fecund s1 > s2, and define A(n) = (1− f )(pn,n+1− pn,n−1), which is independent

of I2. Setting AverageChange(1) = 0 and solving for I1 gives

I1 =
I2( f (N − 1)s1 − A(1)s2(N − 1)) + A(1)(s1 + s2(N − 1))

I2 f (N − 1)(s1 − s2) + f s2(N − 1) + A(1)s1

=
α1I2 + β1

γ1I2 + δ1
(3.9)

while setting AverageChange(N − 1) = 0 gives the curve

I1 =
I2( f (N − 1)s1 − A(N − 1)s2) + A(N − 1)(s1(N − 1) + s2)
I2 f (N − 1)(s1 − s2) + f s2(N − 1) + A(N − 1)s1(N − 1)

=
αN−1I2 + βN−1

γN−1I2 + δN−1
(3.10)
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where

αi = f (N − 1)s1 − A(i)s2(N − i),

βi =A(i)(s1i + s2(N − i)),

γi = f (N − 1)(s1 − s2),

δi = f s2(N − 1) + A(i)s1i.

The region of coexistence is therefore the area between the two curves, as demonstrated in Figure 3.1(a).

By noting that the indefinite integral of (ax + b)/(cx + d) is ax/c + (bc − ad) ln(d + cx)/c2 + const., we can

write a formula for the area of the region of I−space that predicts coexistence;

min
(
1,

∫ 1

0

α1I2 + β1

γ1I2 + δ1
dI2

)
−

∫ 1

0

αN−1I2 + βN−1

γN−1I2 + δN−1
dI2

= min
1, α1

γ1
+

(β1γ1 − α1δ1)(ln(δ1 + γ1) − ln(δ1)
γ2

1

 (3.11)

−
αN−1

γN−1
−

(βN−1γN−1 − αN−1δN−1)(ln(δN−1 + γN−1) − ln(δN−1)
γ2

N−1

.

The minimum is taken in the first term because for sufficiently large s1, the function given by (3.9) is greater

than one for all I2 ∈ (0, 1), but an intensity of greater than 1 is impossible. When

∫ 1

0

α1I2 + β1

γ1I2 + δ1
dI2 > 1 (3.12)

the inequality AverageChange(1) > 0 is satisfied for all possible combinations of disturbance defence

parameters I1, I2. Therefore, the area of the region of I−space satisfying (3.7) is equal to the size of the

whole region, 1. This minimum is not necessary in the second term, as the integrand

αN−1I2 + βN−1

γN−1I2 + δN−1

tends to one from below as s1 increases. Hence, the region of coexistence does not change with s1 in

a smooth manner, as shown in Figure 3.1(d). The peak range of coexistence is given by intermediate

s1 = 1425 (for fixed s2 = 50), with the region area tending to zero as the difference in species fecundities

tends to infinity. For the chosen parameters, and system size N = 1000, the peak probability of coexistence

(when intensities for the two species are chosen at random) is approximately 0.120.

Increasing frequency by reducing the expected time between disturbances TD also has a dramatic effect
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Figure 3.1: Fecundity-defence trade-off: (a) An example of the region of coexistence. The blue area
(top and left, dark shading) is where the more fecund species 1 can invade when rare, while the green
area (bottom and right, pale shading) gives the region where species 2 can invade. This only occurs when
species 2 has a significant defence advantage (I2 < I1). The region where they overlap (black) is the
region that gives coexistence. (b) The effects of changing system capacity on the area of the region of
I−space that predicts coexistence. The region of coexistence peaks in area at intermediate system capacity
N ≈ 850, and declines with system size above this value. (c) The change in the likelihood of coexistence
as time between disturbances TD is increased. The size of this region is maximised at intermediate values
of TD ≈ 10, and tends to 0 as TD goes to infinity. (d) The change in the likelihood of coexistence as
s1 is increased. Note the discontinuity where (3.9) becomes greater than one as s1 = 1425. Parameters
s1 = 500, s2 = 50,N = 1000,TD = 10 unless specified.
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on the results. For very low frequency, all combinations of defence responses exclude species 2, as the

fecundity disadvantage it experiences cannot be overcome. As frequency is increased, then very high I1 can

combine with low I2 to give a small region of coexistence. For example, if a species devotes a great deal of

resource to surviving fire, it could persist with a species very susceptible to fire but with a greater fecundity.

This advantage in fecundity ensures the species is better able to reach empty sites after a disturbance, and

is therefore likely to claim sites uncontested by the poorer coloniser. The range of parameters Ii that give

coexistence in this way increases with frequency until a threshold is reached (see Figure 3.1(c)) at which

point, it is possible for species 2 to outcompete species 1 if I2 << I1.

The region of I− space where coexistence is expected then begins to decline in area, as the two curves

comprising the boundaries of the region both tend to the curve I1 = I2s1/(I2s1 + s2(1 − I2)) as frequency f

tends to one (TD → 0). In the limit as f → 1 where ‘disturbance’ events are so frequent as to provide an

homogeneous environment themselves, both functions given by (3.9) and (3.10) are defined by this single

curve, and coexistence is not possible. If I1 > I2s1/(I2s1 + s2(1 − I2)) then species 2 will dominate the

environment, while if I1 < I2s1/(I2s1 + s2(1 − I2)) species 1 will exclude the less fecund species 2.

As system capacity N increases, the range of coexistence shows a peak at N ≈ 850. For wood or forest

sized systems above this value, the region area will decline rapidly with increased system capacity. When

the system capacity tends to infinity, the region of I−space giving coexistence tends to zero. A fecundity-

defence trade-off cannot sustain two species in a large system, and has little effect in promoting biodiversity

when system size reaches that of a forest or wood. The maximal effect on coexistence is restricted to a very

small range of parameters, with steep declines in the probability of coexistence when moving away from

these optimal parameter values.

3.3.3 Growth-defence trade-off

A growth-defence trade-off (s = s1 = s2 = 50) responds to changes in system capacity and frequency

in a very different manner to the fecundity-defence trade-off outlined above. Here frequency has lit-

tle effect provided that 1/ f < textinct, while if this condition is not satisfied, the faster growing species

will exclude its competitor for any disturbance intensity regime. The response to system size is simi-

lar to that of the fecundity-growth trade-off: as system capacity increases, the system asymptotes to a

fixed region where coexistence is predicted. We assume species 2 has the higher growth rate g2 > g1.

Setting AverageChange(1) = 0 and AverageChange(N − 1) = 0 gives I1 as quadratic functions of I2,
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LBR(I2),UBR(I2), outlined in Appendix 3.B. The solutions presented in Appendix 3.B are each of the form

−b ±
√

b2 − 4ac
2a

.

However, we note that each equation has one solution greater than one for all of the wide range of xs

considered here. The solution given by the positive square root in (3.17), and that given by the negative

square root in (3.18) are both above one for all parameters tested. Therefore, these roots do not affect the

behaviour of the system. The dynamics of the model are therefore determined by the negative square root

in (3.17) and the positive square root in (3.18) (see Appendix 3.B). We can numerically integrate to find the
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Figure 3.2: Growth-defence trade-off: (a) An example scenario, where coexistence can occur if both
species suffer high mortality in a disturbance event. The blue area (top and left, dark shading) is where
species 1 can invade when rare, while the green area (bottom and right, pale shading) gives the region
where the faster growing species 2 can invade. The region where they overlap (black) is the region that
gives coexistence. The white region exhibits founder control. Note that the slower growing species 1 can
only survive when it experiences lower intensities (I1 < I2). (b) The effects of changing system capacity
N on the likelihood of coexistence. As N increases, the probability of coexistence stabilises as the integral
asymptotes to a fixed value. (c) The change in the likelihood of coexistence as time between disturbances
TD is increased. The size of this region is maximised at intermediate values of TD ≈ 45, and tends to 0 as
TD goes to infinity. (d) The change in the likelihood of coexistence as x is increased. Note the discontinuity
where the size of the region of coexistence peaks at x ≈ 0.2. Parameters s = 50, x = 0.06,N = 1000,TD =

10 unless specified.
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area of the region of coexistence, using the following formula:

∫ 1

max(0,I∗)
LBR(I2)dI2 −

∫ 1

max(0,I∗)
UBR(I2)dI2, (3.13)

where I∗ < 1 is the point at which LBR(I∗) = UBR(I∗). This point exists, and is unique, for all parameters

tested, although confirming this uniqueness for any parameter choices is beyond the scope of the current

work. Note that for all parameters, LBR(1) = UBR(1). This numerical integration allows us to study the

behaviour of the system as x is varied. When x = 0 and the growth rates are identical, the species with

the most resistance to disturbance (lowest Ii) will exclude its competitor. As x is increased, four distinct

regions will occur, as in Figure 3.2(a). When both species display high resistance to disturbance (low Ii)

there is a small region where neither AverageChange(1) > 0 or AverageChange(N−1) < 0 are satisfied, and

founder control occurs, where coexistence does not occur and the successful species depends on the initial

populations, subject to stochastic noise. When both species have higher intensities, there exists a region

where coexistence is expected. Together the two regions of coexistence and founder control form a band

from across I−space that separate regions where species 1 and species 2 will exclude the other. We find the

region of coexistence peaks at intermediate x ≈ 0.2, when the probability of two species with randomised

defence regimes coexisting is approximately 0.15. As x increases beyond this, the region of coexistence

declines and tend to the region of I−space where I2 >> I1, eventually tending to zero as x tends to infinity.

3.3.4 Three dimensional trade-off

When species are allowed to vary in all three traits, fecundity, growth and defence, with s1 > s2, g1 < g2, the

region of coexistence is given by integrating the functions (3.17) and (3.18), as determined in Appendix 3.B.

For the three dimensional trade-off, this integral takes the form

∫ 1

max(0,I∗,I+)
LBR(I2)dI2 −

∫ 1

max(0,I∗,I++)
UBR(I2)dI2, (3.14)

where LBR(I∗) = UBR(I∗) with I∗ < 1, LBR(I+) = 0, and UBR(I++) = 0. For all parameters considered

here, these points are well defined and unique. As in the growth-defence case, the roots with the negative

square root are those that control the behaviour of the system. Numerically integrating, we can again calcu-

late the region of coexistence in I−space. The region of coexistence in I−space is shown in Figure 3.3(a).

Calculating the areas of coexistence shows that for fixed seed numbers, the area of coexistence will peak

at intermediate values of x, while for fixed x, the range of coexistence will increase as the discrepancy in

fecundities becomes more pronounced. This increase will asymptote to the point where it is not possible
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for species 2 to exclude species 1, but where a significant proportional of trait space will give coexistence

(See Figure 3.3(d,f)). The region of coexistence generated by this model is consistently larger than that of

the other two models (with s1 = 500, s2 = 50,TD = 10,N = 1000, we see that the maximum range of

coexistence is given when x ≈ 0.22, and this region of coexistence has area ≈ 0.271)

3.3.5 Linked intensities

It is perhaps unrealistic to allow the responses to disturbance to be unconstrained within I−space. Species

specific responses are likely to be linked, such that as one increases, the other also increases. For example,

a tropical storm may cause only low level disturbance intensities that differ between species. These species

may still differ should the tropical storm develop into a hurricane. However, we would anticipate that

this escalation of disturbance pressure would serve to increase the intensity experienced by both species.

To simulate this, we consider the simplest, linear, case where I1 = yI2, such that y is a measure of the

differences in the life history strategies of the two species, and I2 is the force of a given disturbance event,

normalised to the response of species 2. Note that for y , 1, one species will experience certain mortality

while the other may retain some individuals. This occurs since when I2 = 1, I1 = y , 1. Since I1 is strictly

increasing with I2, when 0 < y < 1 the intensity experienced by species one will be less than unity, I1 < 1.

Thus, while species 2 will go extinct in the next disturbance event, species 1 is expected to retain some of its

population, and therefore colonise the entire community. Similarly, when y > 1, when I2 = 1/y < 1, I1 = 1

and species one will go extinct in the next disturbance, while species 2 can survive. As intensity increases

beyond this point, the two intensities will converge at one, but as the species with the lower resistance

already experiences extinction, this will not affect the likelihood of species coexisting.

In the three dimensional trade-off model, we consider the effects of changing y on the range of distur-

bances that can give coexistence for the parameters s1 = 500, s2 = 50, x = 0.06,TD = 0.5.

We can then plot the average change at the boundary as a function of I2 for differing y. We find dra-

matically different behaviour as y varies. For y sufficiently large (y > 1.39 for the current parameters),

so that species 2 has a huge advantage in survival of a disturbance event, we find that for all intensities,

coexistence does not occur, and species 2 exists in monoculture. Here, the increased fecundity of species

1 is not sufficient to overcome the dual advantage of species 2, with its superior juvenile growth rate and

increased resistance to disturbance, as shown in Figure 3.4(a).

As y decreases, the behaviour then changes; AverageChange(1) > 0 is satisfied for a range of intermedi-

ate disturbance intensities. At the same time, AverageChange(N − 1) remains below zero for all intensities

I2, meaning that coexistence is possible for intermediate intensities, but either side of this range species 2
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Figure 3.3: Three-dimensional trade-off: (a) An example of I−space. The green/pale region to the bottom
and right are where the fast growing species 2 is dominant, while the blue/dark region (top and left) give
monoculture of the more fecund species 1. Where these regions overlap there is coexistence (black). (b), (c)
The change in the region of coexistence as x varies, with a peak at intermediate values. (d) The size of the
region given in (b) asymptotes as s1 increases. Parameters s1 = 500, s2 = 50, x = 0.06,N = 1000,TD = 10
used to generate images unless specified. (e) The size of the region of coexistence and how it varies with
x. The probability of coexistence increases rapidly with low x, and then experiences a slower increase for
0.046 < x < 0.22. Above x = 0.22 the probability of coexistence declines. (f) When s1 tends to infinity, a
large proportion of I−space can support both species, although species 2 dominance is not possible (s1 =

106).
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Figure 3.4: Effects of linking species specific disturbance intensities: Plots of AverageChange(1) (solid)
and AverageChange(N − 1) (dashed) for different y. Coexistence is expected to occur when the solid line
is above zero, while the dashed line is negative. (a) y = 1.5: AverageChange(N − 1) < 1 is satisfied for
all intensities, but AverageChange(1) > 0 never holds, so species 2 will exist in monoculture. (b) y = 1.2:
AverageChange(N − 1) < 1 is satisfied for all intensities, but AverageChange(1) > 0 holds for intermediate
intensities. Therefore, coexistence will occur at intermediate intensities while at low and high intensities,
species 2 will exist in monoculture. (c) y = 1.14: Both curves have two real roots in the interval [0, 1],
resulting in two bands of coexistence predicted by theory, with alternating monocultures surrounding them,
species 2 monoculture at low and very high intensities, and species 1 at intermediate intensities. Note
the higher band of predicted coexistence is not conformed by simulations, instead experiencing extinction
of a random species due to the high intensity of disturbance events. (d) y = 0.9: Both curves have a
single real root in the interval [0, 1], resulting in a band of coexistence predicted by theory at intermedi-
ate intensity, with species 2 dominating at lower intensities while species 1 dominates at high intensities.
AverageChange(1) > AverageChange(N − 1) for all I2.
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will competitively exclude species 1 (Figure 3.4(b)). For the given parameters, the range of y exhibiting this

behaviour is approximately 1.16 ≤ y ≤ 1.38. Decreasing y further, making the two species response to dis-

turbance more similar, the behaviour of the system changes once more. For y ≤ 1.15, AverageChange(N−1)

has two real roots, and is positive between these roots. When y > 1, both these roots occur in the interval

[0, 1), as do two roots of AverageChange(1). In this case, there are four distinct responses to disturbance

as it increases in intensity (see Figure 3.4(c)). At low intensity, disturbance events are not strong enough

to promote the more fecund species 1, so species 2 exists in monoculture. As intensity increases, then

AverageChange(1) > 0 is satisfied, while AverageChange(N − 1) < 0 continues to hold, giving coexistence

of both species. Further increasing intensity, however, will result in AverageChange(N − 1) becoming pos-

itive. Here, species 2 will be competitively excluded, and species 1 will monopolise the system. Increasing

intensity yet further results in AverageChange(N − 1) dropping back below zero, to give a secondary region

where our invasion analysis predicts coexistence. However, for the parameters studied, the intensity here

is high, and leaves a small remaining population (when N = 1000, the remaining population is, on aver-

age, approximately 30 individuals). This reduced population is very susceptible to the stochasticity in the

model, and all simulations result in one species going extinct by chance, although the identity of the sur-

viving species varies between simulations. Increasing intensity even more, we have that AverageChange(1)

also drops below zero, so our theory predicts species two monoculture, which is once again matched by

simulations, even given the extremely high intensities involved.

Once y ≤ 1 there is only one root of AverageChange(1) and one root of AverageChange(N − 1) in

the interval (0, 1) (See Figure 3.4(d)). We therefore see a different type of behaviour again, with species

2 excluding the more fecund species 1 at low intensities, coexistence occurring at intermediate intensities,

and species 1 excluding species 2 as high intensities.

As y decreases towards zero, the range of intensities that can support both species will tend to a small

interval, of width approximately 0.005, at very low intensities (0.005 / y / 0.01). We find that it is possible

only to slightly increase the range of intensities giving coexistence from that of the case y = 1, with y = 0.90

(2 significant figures) giving a small increase in intensity range leading to coexistence. The probability of

species with randomly selected, yet linked, intensities coexisting with y = 0.9 is given by 0.4666, only

slightly larger than the probability of coexistence when y = 1, given by 0.4663, but this value declines again

for y < 0.9. That is, when the more fecund species 1 has a slight advantage in resistance to disturbance, the

range of disturbances that the system can survive while maintaining its full biodiversity is maximised.
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3.4 Discussion

Both life history trade-offs and disturbance events have been suggested as mechanisms that can promote

and support high levels of diversity in nature (e.g. Adler and Mosquera, 2000; Denslow, 1987; Sousa, 1984;

Turnbull et al, 1999). Here, we demonstrate that trade-offs among the three major life history traits for plants

can give coexistence of at least two species competing within the same niche, and numerically quantify the

likelihood of coexistence for each trade-off. However, the effectiveness of these trade-offs in supporting

multiple species varies dramatically. Where species do not differ in juvenile growth rates, only small com-

munities can possibly support more than a single species, and even in these small communities coexistence

is extremely unlikely outside a very narrow range of parameters. This result suggests that a trade-off be-

tween seed production and resilience cannot realistically contribute to the diversity of a community. This

result has some support in the literature: from the data in Martin and Canham (2010), Martin et al (2010)

concluded that “it is unlikely that... survivorship come[s] at the expense of fecundity.” However, some

other studies do find a correlation between fecundity and defence (e.g. Marquis, 1984; Gwynn et al, 2005).

Gwynn et al (2005) demonstrate that, at least for animals, parasite resistance comes with a reproductive

cost, while Muller-Landau (2010) suggests there is a trade-off between fecundity and tolerance to shade

or drought. However, Muller-Landau (2010) considers disturbance rate m as a constant, identical across

species, and as a separate parameter to species specific tolerance hi, in a heterogeneous environment. Here,

in contrast, we consider a homogeneous environment in which species react differently to pulses of in-

creased death rate. While tolerance to constant environmental stress may indeed trade-off against fecundity,

we propose that the limited evidence for a trade-off between survival of a pulse-type disturbance, such as a

hurricane hitting a region of mature forest, and fecundity is a consequence of other, more strongly selected

trade-offs such as the growth-survival and fecundity-growth trade-offs.

Trade-offs observed in nature are likely to be complex. In one study, ter Steege and Hammond (2001)

found that wood density is positively associated with seed size, larger seeds produce denser wood in adult

trees. Seed mass has previously been found to correlate negatively with seed number (Turnbull et al, 1999),

and positively with both defence (Niklas, 1992) and plant growth rate (Gross, 1984). It therefore appears

probable that trade-offs may lead to correlations between other life history traits indirectly. However, these

results are somewhat equivocal, as wood density has also been reported to correlate with growth rate in a

negative manner (King et al, 2005). In communities with low intensity disturbance, species exhibit high

wood density, and produce few, large seeds, while in regions of higher disturbance, species with a greater

number of small seeds, and lower wood density are favoured (ter Steege and Hammond, 2001). These

correlations may constrain the parameters used in the current model, ensuring that only some ranges of
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parameter space can be reached in nature. While we consider wood density as a measure of defence here,

one potential effect of this complexity may be that increased density is selected for reasons not related to de-

fence, such as longevity in low disturbance landscapes where available sites appear infrequently (Laurance

et al, 2004).

Meanwhile, trade-offs between growth and either fecundity or disturbance resistance (or both) can sup-

port multiple species for any system capacity N. In a large system, we demonstrate that a trade-off involving

all three of the major plant traits will give a probability of randomly selected disturbance resistances sup-

porting two species higher than the probability given by a growth-defence trade-off alone. However, when

species responses to disturbance are proportional (such that disturbance intensity for one species is doubled,

the intensity for the second species is also doubled), the three dimensional trade-off does not significantly

improve the likelihood of coexistence when compared to a fecundity-growth trade-off. These results suggest

that the trade-off between fecundity and juvenile growth rate, or competition and colonisation, contributes

much more to the maintenance of biodiversity than trade-offs involving disturbance resistance.

The current model only includes two species, although disturbance is also anticipated to enhance co-

existence in multi-species communities (e.g. Loehle, 2000; Roxburgh et al, 2004). Theory has shown that

infinitely many species may coexist along a competition-colonisation trade-off (Tilman, 1994; Adler and

Mosquera, 2000), although this coexistence is either highly unlikely or structurally unstable (Nattrass et al,

2012; Gyllenberg and Meszena, 2005). In Chapter 4, the current model is extended to three species for

the trade-off between fecundity and growth, while the model where species differ in all three traits is also

considered. For tradeoffs between defence and either fecundity or growth, we anticipate qualitatively sim-

ilar results for a multi species model, whereby a fecundity-defence trade-off will be extremely sensitive to

changes in parameters, while a growth-defence trade-off is expected to be more robust. A further extension

of the model is to include spatial structure. While Chapter 4 again considers this in a simplified manner,

a full spatial structure may have dramatic effects on coexistence, due to the propensity for species to show

within-species clustering (Condit et al, 2000; Murrell et al, 2001) and limitations on dispersal. As in the

fecundity-growth model discussed in Chapter 2, we anticipate that spatial structure may assist the weaker

competitor, as restricted dispersal may allow it to win sites by default. One further aspect that may influence

the results is the fact many species in areas of high disturbance alter reproductive strategy. For example,

many species subject to fire disturbance have a dormant seed bank (e.g. Morgan and Neuenschwander,

1988; Valbuena and Trabaud, 2001). This seed bank allows species to survive disturbances where all adult

plants are destroyed. In the model considered here, the ability of adult individuals to withstand a distur-

bance makes them the equivalent of a dormant phase, yet the results may differ if dormancy occurs at the

91



CHAPTER 3. WHICH TRADE-OFF CONTRIBUTES MOST TO BIODIVERSITY?

seed stage.

We conclude that a trade-off between fecundity, in the form of per capita annual seed production, and

juvenile growth rates is more significant in sustaining biodiversity than trade-offs between growth and de-

fence or fecundity and defence, and while species specific reactions to disturbance can slightly improve the

likelihood of a fecundity-growth trade-off allowing two species coexistence, this increase is not significant.

This concurs with empirical studies, which have found a great deal of support for a trade-off between fecun-

dity and growth rate, or the equivalent competition-colonisation trade-off (e.g. Levins and Culver, 1971; Yu

and Wilson, 2001; Tilman, 1994; Adler and Mosquera, 2000). The high level of occurrence for this trade-off

indicates that it has been an important driver in the evolution of those diverse communities, allowing two

or more species to effectively occupy the same resource niche by the different allocation of that resource to

their life history traits. That a trade-off between growth and defence can support some coexistence suggests

that some support should be found for this trade-off in empirical studies, and this is indeed the case (e.g.

Wright et al, 2010; Fine et al, 2006). However, support for this is much less widespread than the fecundity-

growth or competition-colonisation trade-off, which further supports our conclusion that the latter is the

more significant driver of biodiversity.

Appendices

3.A Approximating the expected change function

The expected change for the model when at the lower boundary n = 1 is given by

AverageChangeReal(1) =
−I1 + (N − 1)IN−1

2 (1 − I1)
dNTD

(3.15)

+
(1 − I1)

∑N−2
k=1

∑N−2
j=k kI j

2(1 − I2)N−2− j
(

N−2
j

)
S p1(1,N − 1 − j)k(1 − S p1(1,N − 1 − j)) j−k

(
j
k

)
dNTD

+

(
1 −

1
dNTD

)
(p1,2 − p1,0),

while at the upper boundary n = N − 1, the expected change is given by

AverageChangeReal(N − 1) =
−IN−1

1 (N − 1) + I2(1 − IN−1
1 )

dNTD
(3.16)

−
(1 − I2)

∑N−2
k=1

∑N−2
j=k kI j

1(1 − I1)N−2− j
(

N−2
j

)
S p1(N − 1 − j, 1) j−k(1 − S p1(N − 1 − j, 1))k

(
j
k

)
dNTD

+

(
1 −

1
dNTD

)
(pN−1,N − pN−1,N−2).
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These are approximated using (3.6). Figure 3.5 shows how the size of the absolute error between the actual

expected change and the approximation declines with system capacity N for a trade-off between fecundity

and defence (x = 0), while Figures 3.6 and 3.7 show that this result holds for the growth-defence trade-

off (s1 = s2) and the three dimensional trade-off respectively. The error was calculated for intensities

I = 0.1, 0.2, 0.3, ..., 0.9 and time between disturbances ln(TD) = 1, 2, 3, ..., 8,, therefore giving 648 error

values for each system size. The approximation is accurate even at relatively small N > 400. While the

results from only one set of parameters are shown, these results are robust to parameter changes.

3.B Roots of average change for x > 0

Using Mathematica 8.0.1.0 to set AverageChange(1) = 0 and rearranging to solve for I1 gives the solution

−e−
(I2−1)s2(N−1)x

N

200s1N(s1 + s2(N − 2))e
s2(N−2)x

N

(
e−

(I2−1)s2(N−1)x
N − 1

)× (3.17)



s2
1

(
−100N(I2(N − 1) − 1)e

s2 x(I2(N−1)−1)
N

+((TD − 100)N − 100)e
s2(N−2)x

N − (N − 1)(TDN − 100)
)

+s1 s2

((
N2(100(I2 − 2) + TD) − 2N(50(I2 − 2) + TD) + 200

)
e

s2(N−2)x
N − 100(N − 2)N(I2(N − 1) − 1)e

s2 x(I2(N−1)−1)
N

)
+100(I2 − 1)s2

2(N − 2)(N − 1)Ne
s2(N−2)x

N

±

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

e−
2(I2−1)s2(N−1)x

N(
s2

1

(
−100N(I2(N − 1) − 1)e

s2 x(I2(N−1)−1)
N + ((TD − 100)N − 100)e

s2(N−2)x
N

−(N − 1)(TDN − 100)) + s1 s2

((
N2(100(I2 − 2) + TD) − 2N(50(I2 − 2) + TD) + 200

)
e

s2(N−2)x
N − 100(N − 2)N(I2(N − 1) − 1)e

s2 x(I2(N−1)−1)
N

)
+100(I2 − 1)s2

2(N − 2)(N − 1)Ne
s2(N−2)x

N

)2

−400s1N(s1 + s2(N − 2))e
s2 x(I2(−N)+I2+2N−3)

N

(
e−

(I2−1)s2(N−1)x
N − 1

)
×(

100I2 s1(N − 1)N(s1 + s2(N − 2))e
s2 x(I2(N−1)−1)

N

−(TDN − 100)(s2(I2(−N) + I2 + N − 1) + s1)(
(s1 + s2(N − 2))e

s2(N−2)x
N + s1(−N) + s1

))


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Similarly, the solution for I1 when AverageChange(N − 1) = 0 is given by

UBR(I2) = −
e

(3−2I2)s2 x
N

N200s1(N − 1)2(s1(N − 2) + s2)e
s2 x
N

(
e−

(I2−1)s2 x
N − 1

)× (3.18)
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
Note that for both the growth-defence trade-off, and the full three dimensional trade-off that also in-

cludes fecundity, one of the roots here is always above one. These roots are the positive square root for

LBR(I2), and the negative root for UBR(I2). Therefore, the roots used to calculate the size of the region of

coexistence are the negative and positive roots respectively.
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Figure 3.5: Fecundity-defence trade-off: (a-b) How the mean (a) and maximum (b) error size at the
lower boundary decrease with increased system capacity N. (c-d) How the mean (c) and maximum (d)
error size at the upper boundary decrease with increased system capacity N. The error was calculated for
intensities I1, I2 = 0.1, 0.2, 0.3, ..., 0.9 and time between disturbances ln(TD) = 1, 2, 3, ..., 8. Parameters used
are s1 = 500, s2 = 50. Error is calculated as |AverageChangeReal(n)−AverageChange(n)| for n = 1,N − 1.
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Figure 3.6: Growth-defence trade-off: (a-b) How the mean (a) and maximum (b) error size at the lower
boundary decrease with increased system capacity N. (c-d) How the mean (c) and maximum (d) error size
at the upper boundary decrease with increased system capacity N. The error was calculated for intensities
I1, I2 = 0.1, 0.2, 0.3, ..., 0.9 and time between disturbances ln(TD) = 1, 2, 3, ..., 8. Parameters used are s1 =

50, s2 = 50, x = 0.06. Error is calculated as |AverageChangeReal(n) −AverageChange(n)| for n = 1,N − 1.
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Figure 3.7: Fecundity-growth-defence trade-off: (a-b) How the mean (a) and maximum (b) error size at
the lower boundary decrease with increased system capacity N. (c-d) How the mean (c) and maximum (d)
error size at the upper boundary decrease with increased system capacity N. The error was calculated for
intensities I1, I2 = 0.1, 0.2, 0.3, ..., 0.9 and time between disturbances ln(TD) = 1, 2, 3, ..., 8. Parameters used
are s1 = 500, s2 = 50, x = 0.06. Error is calculated as |AverageChangeReal(n) − AverageChange(n)| for
n = 1,N − 1.

97



Chapter 4

Multi-species coexistence: the effects of

disturbance refugia on species richness

This work was conducted in collaboration with David J Murrell and Stephen Baigent
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Abstract

Determining the size and structure of nature reserves that are best suited to preserving species richness and

abundance is an important question for conservation, although it has received little theoretical attention. We

examine the effects of introducing protected reserves where disturbance pressure is removed, and investigate

the effects of varying the size of these reserves, by expanding the model presented in Chapter 2 to include

both additional species and a metapopulation structure. We find that spatial heterogeneity in disturbance

pressure is necessary to support n > 2 species in a community, while protected reserves are most likely to

increase γ diversity when they are smaller. We observe no relationship between reserve size and within-

reserve α diversity, although when reserves are small, an increase in species richness in the neighbouring,

unprotected area is observed.
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4.1 Introduction

Studies have suggested that disturbance, caused by either natural or anthropogenic events, play an important

role in maintaining high levels of species richness in a community (Connell, 1978; Huston, 1979; Sousa,

1984; Schoener, 1974). Most commonly, the case where the ability to colonise an empty habitat is traded

off against local competitiveness is considered (e.g. Tilman, 1994; Cadotte et al, 2006). In a constant en-

vironment, the poorer local competitor will be excluded, yet disturbance events can enable the persistence

of this poor competitor in the community by creating empty habitat. Then, the greater colonising ability of

the poor competitor enables long term survival (Sousa, 1984; Denslow, 1987; Connell, 1978; Grime, 1973;

Huston, 1979). It has been argued that there are at least three main axes upon which disturbance should be

measured (Malanson, 1984; Miller, 1982; Sousa, 1984), yet few theoretical studies have considered the in-

teraction of these factors; frequency; intensity; extent. We measure frequency as the expected time between

disturbances, while intensity is the mean proportion of the exposed community killed during a disturbance,

and extent is a measure of the proportion of a community exposed to a disturbance event. For example, a

treefall event within a forest is expected to be highly frequent, yet with very low intensity and extent, as

very little of the community is affected. On the other hand, forest fires are likely to be less frequent, while

covering a varying proportion of the community (extent). Individuals within the affected area are likely

to experience high mortality, and therefore fire disturbances are expected to have high intensity. Chapter

2 showed how frequency and intensity of disturbance affect community outcomes differently, as do Miller

et al (2011), but consideration of extent has been mostly limited in theoretical models.

Within community ecology, different processes act at different spatial scales (Levin, 1992). In particular,

the effects of disturbance may appear spatially uniform at a local scale, while at a regional level there

is observed spatial structure. This spatial structure may cause different regional diversity patterns from

those that are predicted by uniformly distributed disturbances (Vuilleumier et al, 2007). Regional processes

also affect local outcomes (Holt, 1993), as the interactions within local communities are influenced by the

flow of individuals between stands that can create mass effects (Shmida and Wilson, 1985) or source-sink

dynamics (Pulliam, 1988). The multi-scale structure is often modelled using a metapopulation structure,

where regional processes act on patches that experience their own local population dynamics. These patches

can be interpreted as whole communities, or a site occupied by a single individual (Tilman, 1994; Calcagno

et al, 2006).

Within a multiple scale framework, different types of diversity are often considered. Whittaker (1960)

considers three aspects of diversity. Two of these are measured at a local scale; α diversity is measured as the

number of species within a community or stand at a local scale, while β diversity is a between community
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measure of how different the sets of species observed in different patches or stands are. The diversity of

the region or landscape, known as γ diversity, can be calculated as a function of α and β diversity,

γ = f (α, β) for some function f . This formulation allows predictions of the species richness within a large

area from selected sampling points, as the resulting α diversity observations can be used to calculate the

region-wide, or γ, diversity.

Theory has shown that in a metapopulation system under disturbance, transitive competition networks,

where there is a strict competitive hierarchy, have lower diversity than intransitive networks (Caswell and

Cohen, 1991). Further, when patch quality varies, source-sink dynamics can occur, where by a species is

prevented from going extinct in one patch (the ‘sink’) by immigration into the patch from a separate patch

where it experiences conditions whereby it can persist (the ‘source’) (Pulliam, 1988). Theory suggests

optimal management for preserving communities is to focus attention on source patches (e.g. Runge et al,

2006), although determining best practice can be complex even when disturbance affects every patch equally

(Strasser et al, 2012).

Some management strategies, such as nature reserves or no-take zones in fishing territories, can provide

a mechanism by which disturbance is not uniform on a regional scale. However, there is disagreement on

whether a single large reserve or several small reserves most efficiently protect diversity (Simberloff and

Abele, 1982). Simberloff and Martin (1991) argued that small reserves may increase regional γ diversity

when competitive exclusion is important, via reduced dispersal of dominant species, while Ovaskainen

(2002) suggests that time to extinction is maximised for intermediate reserve size. Recent work by Lasky

and Keitt (2013) indicates that reserve size selection may consist of a trade-off between α and γ diversity,

where the former is maximised for large reserves containing many species, while smaller reserves may

contain less species locally, yet maximise the species richness at the landscape scale (γ diversity). However,

the reserve size question has received little attention from a spatial community theory perspective.

In this chapter, we develop and use a nested patch model to examine the effects of disturbance extent on

species richness. On a local scale, sites represent a single individual, as in Chapters 2 and 3. Therefore, the

lowest level of community structure is that of the preceding chapters, and we measure local, α diversity at

this scale. Further structure is imposed upon the model as we model two such communities, with potential

migration between them. Each of these two communities is considered a patch within a region composed of

the populations of both communities. We demonstrate that only two species can coexist along a fecundity-

growth trade-off when only a single scale is considered, yet when both regional and local dynamics are

accounted for, three species can coexist, demonstrating that nature reserves can increase γ, or regional,

diversity. Moreover, we show that this coexistence can occur at a local level (increased α diversity) when
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limited seed exchange between the regional patches occurs, and that this increase in local diversity may

be observed in the community neighbouring a reserve, rather than within the reserve itself. The potential

management consequences of these results in the case where disturbance is human induced (for example

forestry) are discussed.

4.2 The Model

We extend the lottery-type trade-off model of Chapters 2 and 3 to include a third species, in order to

determine whether a simple trade-off can support many species. The model assumes a completely filled

canopy, from which there is then a death of an individual chosen at random. If the population of species i is

given by ni, then species i will be the identity of the randomly selected individual with probability

di(n1, n2, n3) =
ni

n1 + n2 + n3
=

ni

N
(4.1)

for i ∈ {1, 2, 3}. Once this death has occurred, the remaining adult individuals in the system compete to

colonise the gap that has appeared through reproduction. If the species differ in juvenile growth rates gi,

then if two species are competing over a site, it can be shown that the slower growing species i must be

present in the site alone for time xi, j = C(1/gi +1/g j)/2, where C is the size of an adult individual, otherwise

the rapidly growing species j will outcompete it.

We assume that species 1 is the most fecund, while species 3 is the species that grows most rapidly.

Species 2 is considered to be a generalist, with intermediate seed production and juvenile growth rate. That

is;

s1 > s2 > s3, (4.2)

g1 < g2 < g3. (4.3)

We note that species 1 will colonise a gap if it arrives first, and is not invaded by either species 2 or 3.

Therefore, assuming that seeds are dispersed via a Poisson process (with rate λi = siNi(t)/N), the probability

of species 1 colonising a gap is given by

c1(n1, n2, n3) =
s1n1 exp(−s2x1,2n2/N) exp(−s3x1,3n3/N)∑3

k=1 sknk
, (4.4)

where si is the annual seed production per capita for species i.

There are two possible ways in which species 2 can claim a gap. First, if species 2 arrives in the gap
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first, and species 3 fails to invade in time x2,3 = x1,3 − x1,2, or second, if species 1 colonises the site first, yet

is invaded by species 2 within time x1,2, while species 3 does not invade afterwards. The first case occurs

with probability
s2n2 exp(−s3x2,3n3/N)∑3

k=1 sknk
,

but the second case is slightly more complex. Species 1 colonises the site first with probability s1n1/(
∑

sknk).

This is then invaded by an undetermined individual with probability 1−exp(−s2x1,2n2/N) exp(−s3x1,3n3/N),

and the identity of this successful invader is species 2 with probability s2n2/(s2n2 + s3n3). Finally, species

3 cannot invade this species 2 juvenile if species 2 is to claim the site. No species 3 individual arrives in the

site for time x2,3 with probability exp(−s3x2,3n3/N), and when this occurs species 2 claims the gap. Note

that if s3 = 0, the ratio s2n2/(s2n2 + s3n3) = 1 for all s2 , 0, and that if s2 = 0, then the ratio is simply 0 for

s3 , 0, meaning that since one species must go extinct before the other (in the non-disturbance case), the

singularity at s2 + s3 = 0 can be approximated by the appropriate limit (1 or 0 depending on the identity of

the species to go extinct first). Thus, the probability of species 2 claiming an empty site is given by

c2(n1, n2, n3) =
s1n1(1 − exp(−s2x1,2n2/N) exp(−s3x1,3n3/N))∑3

k=1 sknk

s2n2 exp(−s3x2,3n3/N)
s2n2 + s3n3

+
s2n2 exp(−s3x2,3n3/N)∑3

k=1 sknk
(4.5)

Species 3 will invade any site that the others fail to claim. If species 3 arrives first, invades the first coloniser

quickly, or invades a species 2 juvenile that has displaces a species 1 individual, then the gap will be filled by

a species 3 adult. These probabilities all add to one, so for simplicity of notation, we define the probability

of species 3 colonising as

c3(n1, n2, n3) = 1 − c1(n1, n2, n3) − c2(n1, n2, n3). (4.6)

4.2.1 Disturbance events

Disturbance events in the model are events that kill a proportion of individuals within a single time step,

opening up an increased number of gaps for the individuals to compete over, favouring strong colonists.

We model these events that occur within an event step with probability f = (dTDN)−1, where d = 0.01

is the intrinsic annual death rate, and TD is the expected number of years between disturbances. Within a

disturbance event, each individual of species i will die instantaneously with probability Ii, which therefore

represents both the probability of an individual dying, and the expected mortality rates for species i during

the disturbance. Once all ddist deaths have occurred (each individual has been subjected to mortality of rate
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Ii), the remaining adults will compete over the resulting gaps in the forest canopy. Each gap is ‘assigned’ a

new adult using the formulae given by (4.4), (4.5) and (4.6). However, note that in a disturbance event, it is

possible that 2 or more species go extinct simultaneously. If only two species survive the disturbance event,

the probabilities for recolonisation in Chapter 2 are used, while if only one species survives, it will claim all

sites. In the rare event where all individuals are destroyed in a disturbance, the system is considered extinct.

4.2.2 Metapopulation model

Whole Region

Community 1

Populations
n11 n12 n13

 - deaths
 - competition

Community 2

Populations
n21 n22 n23

 - deaths
 - competition

α12

Seed dispersal from
Community 1 to Community 2

α21

Seed dispersal from
Community 2 to Community 1

Figure 4.1: The metapopulation framework: We consider a region composed of two separated commu-
nities. Within each community, populations of each of the three species may persist, where individuals die
and seeds produced by the remaining adults compete over the resulting gap. Seeds can disperse between
patches, a seed produced when a site is available will disperse from community k to community l with
probability αk,l when a gap appears in the canopy.

The effects of dispersal limitation and localised disturbance on the results are also examined while

treating spatial patterns implicitly, using a metapopulation structure. The system is divided into two smaller

patches N1,N2 where each patch may experience different disturbance regimes. For example, the com-

munity N1 may be protected from disturbance by some geographical feature, which may also limit the
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connectedness of the two communities. Within each of these patches, dynamics occur as described above,

as individuals die and species compete for opened sites locally. It is within these two patches that we mea-

sure local, or α, species richness. We denote the populations of species i in community k by nk,i, with patch 1

containing the populations n1,1, n1,2, n1,3 while the second community consists of populations n2,1, n2,2, n2,3,

as shown in Figure 4.1.

Dispersal between patches is also considered. Each seed produced during a time step is assigned a

probability of being dispersed between the two patches. This probability is denoted αk,l, the probability of

a seed in community k dispersing to the other patch, containing community l, as denoted by the arrows in

Figure 4.1. The expected number of species i seeds competing for a gap created in community k is given

by (1 − αk,l)sink,i + αl,k sinl,i. A proportion αl,k of seeds produced in community l will disperse into the

community k, while αk,l of the seeds produced by species i individuals in community k leave the patch via

dispersal, leaving a proportion 1− αk,l to compete over the gap. Therefore, the probabilities of each species

claiming a site that is emptied in community k are given by

c1(S 1, S 2, S 3) =
S 1 exp(−x1,2S 2/N) exp(−x1,3S 3/N)∑3

k=1 S k
, (4.7)

c2(S 1, S 2, S 3) =
S 1(1 − exp(−x1,2S 2/N) exp(−x1,3S 3/N))∑3

k=1 S k

S 2 exp(−x2,3S 3/N)
S 2 + S 3

+
S 2 exp(−x2,3S 3/N)∑3

k=1 S k
(4.8)

c3(S 1, S 2, S 3) =1 − c1(S 1, S 2, S 3) − c2(S 1, S 2, S 3) (4.9)

where S i is the number of species i seeds present in the community after randomised dispersal has taken

place.

We also measure γ diversity in the metapopulation model, by combining the populations of both patches.

4.3 Results

4.3.1 Single patch environment with no disturbance

First, we consider the case with a single community in a single patch. We examine the persistence of the

three species over a range of x−space in the absence of disturbance. Since x2,3 = x1,3 − x1,2 from the

definition of xi, j, we can consider different combinations of x1,2 and x1,3 to get a complete picture of the

parameter space for growth rates for the species. Using fixed seed numbers s1 = 500, s2 = 100, s3 = 20 we

can examine the behaviour of the system under many different circumstances by simply varying the xi, j (See
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Figure 4.2). We simulate times series of population dynamics for a broad range of x1,2 and x1,3 and examine

the impact on community structure when moving between regions of x−space as shown in Figure 4.2,

while also examining the effects of the initial populations on the outcome. We run simulations that vary

initial populations by 100, considering all combinations of n1, n2, n3 that (a) satisfy that each species begins

with 100q individuals present for q ∈ {1, 2, 3, 4, 5, 6, 7, 8} and (b) the three populations sum to N = 1000.

When species 3 dominates both species 1 and 2 (top left), it dominates the three species environment as

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

x12

x1
3

Figure 4.2: The different regions of x−space: The regions of x−space that give coexistence for the 3
possible species pairs. Species 1 and 2 can coexist between the red, vertical lines. Species 1 and 3 coexist
between the black horizontal lines, while species 2 and 3 can coexist between the blue, diagonal lines. Seed
numbers used are s1 = 500, s2 = 100, s3 = 20.

expected, driving both other species to extinction. Similarly, when species 1 excludes each of the two

less fecund species, it also dominates in the three species case. However, when species 2 dominates both

the more fecund species 1 and the faster growing species 3 in pairwise competition (the right hand side

region of Figure 4.2), there is an element of founder control. When species 3 excludes species 1 in pairwise

competition, the outcome is driven by the initial populations. If species 2 is initially at a much lower

population than species 3, species 3 will persist in monoculture, while if the initial population of species 2

is sufficiently high, it will exclude both the fecund species 1 and the fast growing species 3. Similarly, when

species 1 excludes species 3, if the species 2 population in initially low, then species 1 will dominate the
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environment, while for higher initial populations species 2 dominates. When species 1 and 3 can coexist

but are both excluded by species 2, in the three species case, it is necessary for species 2 to have a high

initial population in order to persist, in which case it will exclude both other species. However, if species 2

has a lower initial population, then species 1 and species 3 will coexist together and exclude the generalist

species 2.

A similar pattern is observed when species 2 can coexist alongside one of the other species, yet excludes

the third species. When species 2 and 3 can persist together, and species 2 excludes species 1, then founder

control again occurs. If n2(0) is sufficiently high, species 1 will be driven to extinction and the species 2 and

3 coalition will persist, but if the initial population is too low, species 2 will be excluded, and the outcome

of the model simulations is determined by the two species interactions between the fecund species 1 and

the rapidly growing species 3. Similarly, when species 1 and 2 can coexist, and species 2 excludes species

3, a sufficiently low initial population will instead result in species 2 being excluded, and the outcome is

determined by the interactions of species 1 and 3, while a high initial population will exclude species 3,

allowing the species 1 and 2 coalition to thrive.

In all other cases, species 2 is excluded regardless of initial populations, and the behaviour of the model

is determined by the two species analysis of Chapter 2 applied to species 1 and 3.

4.3.2 Single patch environment with disturbance affecting all species equally

When setting Ii = I for all i ∈ {1, 2, 3}, such that disturbance affects all species equally, the response

of the system to disturbance is determined by the non-disturbance behaviour outlined above. We assume

frequency is sufficiently high to not have a significant effect (see Chapter 2) and consider the impact of

increasing disturbance intensity. If species 1 excludes both other species in a homogeneous environment,

the only effect disturbance has is to accelerate this. When species 1 coexists with either species 2 or species

3 in the homogeneous environment, then as disturbance intensity increases, it will exclude the less fecund

competing species, although they will still coexist at low intensity. When either species 2 or species 3

exists in monoculture in a disturbance free environment, as intensity is increased they will coexist along

side species 1. When intensity is increased further, species 1 will exclude the less fecund, rapid growth

species. When species 2 and 3 coexist in the disturbance free case, intensity can cause different community

structures. At low intensity, species 2 and 3 will continue to exclude species 1. As intensity increases, the

generalist species 2 will exclude both the less fecund species 3 and the poor local competitor species 1.

Increase intensity further, and species 1 and 2 will coexist while species 3 is excluded, while at very high

intensities, species 1 will exclude both species 2 and 3.
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4.3.3 Single patch environment with a defence specialist

In most cases, the generalist species 2 is outcompeted by the two specialists eroding some of its niche

from either side. Does a specialisation in defence against disturbance allow species 2 to survive alongside

the growth and colonisation specialists? We set I1 = I3 = yI2, and vary y > 1 so examine the effects of

defence specialism by species 2. We find that increasing the disturbance intensity will initially just repeat

the anticipated behaviour when all 3 species suffer the same intensity. For y sufficiently close to 1 (y = 1.1),

this will continue and the ‘expected’ behaviour will occur. However, for larger y (y = 2 and y = 10), as

intensity is increased further, the advantage in disturbance survival for species 2 becomes the dominant

force behind the dynamics, and both species 1 and 3 are excluded, with species 2 existing in monoculture.

We conclude that resistance to disturbance mortality of the generalist cannot increase biodiversity along a

fecundity-growth trade-off.

4.3.4 Metapopulation model

We now consider the metapopulation model described in Section 4.2.2. When disturbance regimes do

not differ between patches, coexistence of all three species at a region-wide scale cannot occur for any

level of between patch migration α1,2, α2,1 > 0 (e.g. Figure 4.3(a) and Figure 4.4(a)). This is the case

even when initial absence of a species from a patch will result in region wide exclusion of one of the

three species. We therefore focus on a region of trait space where any of the three species can persist

at differing levels of intensity for high frequency disturbances. From 4.3.2 we thus choose a region of

x−space where the result in a homogeneous environment is that the strong local competitor species 3 and

the generalist species 2 coexist, while excluding the fecund species 1. One such choice of parameters is

given in Table 4.1, which we use henceforth, although the results do not qualitatively change for other

parameters where species 2 and 3 exclude the fecund species 1 when disturbance is absent. Note that for

these chosen parameters, species 2 will be excluded in the non-disturbance case when it’s initial population

is too low. We select initial populations whereby species 2 has a sufficiently high population to persist in

the environment (ni,2(0) = 0.5Ni, ni,1(0) = 0.3Ni). Then species 1 is present when disturbance frequency

is high and for intensities I ≥ 0.75, which species 3 persists in the system for low intensities I ≤ 0.15.

Meanwhile, species 2 will persist for all intensities I ≤ 0.8. We assume that community 1 (size N1)

does not experience any disturbance (although simulations give qualitatively similar results providing the

disturbance regime in this community is of sufficiently low intensity to allow the persistence of the least

fecund species). For example, the first community may be a nature reserve where logging is prohibited,

while the second community experiences disturbance via logging. Thus, when entirely unconnected to the
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Parameter Value
s1 500
s2 100
s3 20

x1,2 0.05
x1,3 0.1
N 2000

Table 4.1: Parameters used for examination of patchy disturbance using metapopulation model

second community (α1,2 = α2,1 = 0), species 2 and 3 will persist.

When disturbance pressure varies between patches, regional coexistence is possible (Figure 4.4(b) and

(c)). As community 1 is protected from disturbance, the outcome of the dynamics in this patch is coexistence

of the two best local competitors, species 2 and 3, while the fecund species 1 is excluded. As disturbance

intensity is increased in the community in patch 2, however, the least fecund species 3 is excluded. For

some disturbance intensities (0.75 ≤ I ≤ 0.85 with the current parameters), species 1 and 2 will coexistence

in this community (Figure 4.3(b) shows I = 0.8,TD = 5), while for extremely high intensities, species 1

will live in monoculture, having excluded both competitors. When species 1 is present in community two,

the whole region will exhibit three species coexistence (Figure 4.4(b)).

As connectedness of the two communities (α1,2, α2,1) is increased, with seed dispersal or alternative

processes (e.g. the movement of adult plants by horticulturists) linking the two sites, it becomes possible

for the regional processes allowing multi-species coexistence to inflate local biodiversity. As shown in

Figure 4.3(c), the migration of seeds creates coexistence of three species in the disturbed community 2, as

the refuge community 1 has much fewer gaps created. This makes it more difficult for the excluded, fecund,

species to invade. In the disturbed community, however, there are a larger number of gaps are created

when a disturbance occurs, thus increasing the probability of settlement by the poor coloniser (species 3),

which would be excluded should there be no immigration from the refuge. At a regional scale, low levels

of inter-patch dispersal do not qualitatively affect the result, that of three species coexistence in the region

(Figure 4.4(b) and (c)). Note that if dispersal between patches is likely (high αk,l), then the population

behaves as would be expected for the single patch model considered above, and species 1 will be excluded.

In this scenario, the refuge in community 1 serves to allow persistence of the less fecund species 3 for

higher intensities than the single patch model, but three species coexistence cannot occur.

Effects of varied refuge patch size

As the proportion of the forest protected from disturbance N1/N is varied, we find that the range of con-

nectedness (α1,2 = α2,1 = α, which is varied in increments of 0.05) for which all three species can persist
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Figure 4.3: Effects of disturbance and dispersal on two community patches: How the two patch
metapopulation model responds to local disturbance and dispersal between sites. (a) When disturbance
regimes are the same in both communities, the dynamics mirror each other. With the parameters in Ta-
ble 4.1 and no disturbance, the most fecund species 1 is excluded in both patches. (b) When disturbance
occurs in community 2, but no seeds disperse between communities, the outcome of community 1 is unaf-
fected, species 2 and 3 are both present. In community 2, when TD = 5, I = 0.8, the least fecund species 3
is excluded, and species 2 coexists alongside species 1. (c) When disturbance occurs in patch 2 and there is
dispersal between sites, the outcome in community one, without disturbance, is largely unaffected, although
species 1 does occasionally gain some sites by dispersing seeds from community 2. However, these periods
are brief. In community two, dispersal of the least fecund species 3 can allow it to persist alongside the
two species that would exclude it without dispersal. The probability of a seed moving between patches in
these simulations is 0.05. Plot shows 5 simulations of each scenario for 50000 time steps. Black represents
species 1, species 2 is represented by blue, while species 3 populations are tracked by the green lines.
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Figure 4.4: Effects of disturbance and dispersal on regional γ diversity: How the two patch metapop-
ulation model populations appear as viewed across the whole region when responding to local disturbance
and dispersal between sites. (a) When disturbance regimes are the same in both communities, only two
species persist in the region. (b) When disturbance occurs in community 2, but no seeds disperse between
communities, all three species persist in the environment. Species 2 and 3 are present in community 1,
while species 1 and 2 are present in community 2, exposed to disturbance (Figure 4.3) (c) When distur-
bance occurs in patch 2 and there is dispersal between sites, the regional populations are largely unaffected
by low levels of seed dispersal, and all three species persist at similar population levels to the case where
dispersal does not occur. Plot shows 5 simulations of each scenario for 50000 time steps. Black represents
species 1, species 2 is represented by blue, while species 3 populations are tracked by the green lines.
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at a given intensity is maximised at an intermediate value of N1/N, as shown in Figure 4.5. Only refuges

below a certain proportion of the community can support all three species when there is mixing between the

two communities. When the refuge becomes large, and the unprotected area small, the effect is to reduce

the population of the fecund species 1. As this species requires the space created by disturbance events to

survive in the environment, the limited amount of space created by a disturbance, combined with the high

mortality of species one in this part of the environment, results in the extinction of the most fecund species.
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Figure 4.5: The effects of varied refuge size of the likelihood of three species coexistence. Shaded areas
represent the coexistence of all three species regionally after 50000 event time-steps. When α > 0, coex-
istence is only possible for relatively small refuges, while when the protected community is significantly
larger than the disturbed area, coexistence is not possible for any non-zero level of cross-colonisation. The
darker the shading, the greater percentage of simulations support 3 species.

4.4 Discussion

Understanding the ways in which species diversity is generated and supported is a crucial problem in ecol-

ogy, with great relevance for conservation practices. The role of environmental variability, such as distur-

bance events, is an important area of consideration. This is becoming more crucial, as climate change is
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predicted to have dramatic impacts on the frequency and intensity of such events (e.g. Webster et al, 2005).

In this chapter, the possibility of multi-species (n > 2) coexistence is examined in an environment defined

by the disturbance regimes. Within this model framework, with species differing only along a fecundity-

growth trade-off, it is only possible for more than two species to coexist if the environment has some spatial

heterogeneity combined with the temporal heterogeneity of disturbance events. In that case, the existence

of a protected community that does not experience disturbances that effect the neighbouring community

(for example, a nature reserve where logging is prohibited, or a no-take zone alongside a heavily trawled

region of ocean) can promote regional coexistence of more than two species. In addition, if limited disper-

sal occurs between the two communities, it is possible that the local species richness outside the protected

community will also be increased, without observing a corresponding increase within the reserve. This may

have important consequences for the placement and management of nature reserves, which often seek to

cover environmental regions that support all species (e.g. Margules et al, 1988; Scott et al, 2001).

The coexistence of three species within this model framework appears to be more robust when the

protected area, or refuge, is relatively small in comparison with the neighbouring environment. Small pro-

tected areas in large areas experiencing disturbance can enable the region-wide support of multiple species

for much higher levels of dispersal between the disturbed and protected communities. That small reserves

maximise regional coexistence concurs with the findings of Lasky and Keitt (2013), who find γ diversity

is maximised for small reserves. These results indicate that under some circumstances, where disturbance

comes in the form of human pressure such as logging, it may be possible that careful management of the

system would allow for a large area to be logged, while the region continues to support a large number of

species. While Lasky and Keitt (2013) find that large reserves have higher α diversity, we find that there is

no relationship between the number of species present within the reserve, although this may be due to the

small number of species in our model. Instead, the boost in γ diversity gained by small reserves is triggered

by an increase in an increase in species richness in the unprotected community neighbouring the reserve.

However, it is only possible for two species to coexist when the environment is considered as a single

patch, with no spatial heterogeneity, either with or without disturbance events. This result in the non-

disturbance case, where the environment is both spatially and temporally homogeneous, lends support to

previous predictions that coexistence is unlikely when species face a trade-off affecting per capita repro-

duction, such as the fecundity-growth trade-off considered here (Egas et al, 2004). However, these results

appear to conflict with empirical data, where coexistence of generalists and specialists is common (e.g.

Morris, 1996; Bonesi and Macdonald, 2004).

Further, if all three species are present in a single, isolated patch at t = 0, then the generalist species
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(here species 2) can only persist in the environment when the initial population is sufficiently high, in both

environments with and without disturbance. This result is in contrast to those of both Marvier et al (2004)

and Nagelkerke and Menken (2013), who find short term disturbances tend to favour generalist species. The

difference in our results may be a consequence of the assumption by Marvier et al that species that spread

tend to be generalists, while the model presented here assumes that the more fecund species is the most

successful coloniser, and therefore is the species to benefit from the creation of a large number of empty

sites. A second assumption here is that all species can survive in isolation across the entire disturbance gra-

dient (providing Ii < 1), and the niche segregation into fecundity specialist and light competition specialist

is dependent on the specific species composition of the region. In contrast, both the model of Marvier et al

(2004) and that of Nagelkerke and Menken (2013) assume specialist species can only survive in certain

habitat types, independent of the presence or absence of a competing species. The current model also pre-

dicts that allowing the generalist species an advantage in disturbance defence does not permit multi-species

coexistence. This may be because an increase in fecundity and an increase in defence against disturbance

effectively operate along the same environmental axis, both increasing fitness within a disturbance event.

The results presented here emphasise that disturbance can be a key contributor to species richness,

and that considering different factors that make up disturbance, including spatial structure, can be crucial

in predicting how a community will respond to disturbance pressure (see also Chapter 2). This chapter

examines the effects of disturbance extent, where a portion of the environment is protected, either naturally

or by governmental policy, and demonstrate that this can help promote species richness at different spatial

scales, as γ diversity is increased by protected communities, and the local α diversity can also be boosted

in one patch. Perhaps counter-intuitively, it is possible to observe an increase in local diversity outside the

refuge from disturbance, while no such increase is observed within the protected area. This suggests that

future empirical work should not only focus on events within the protected areas (e.g. Pyšek et al, 2002;

Kitchner, 1982), but must also consider the effects of introducing the reserve on neighbouring communities

that remain unprotected.
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General Conclusion

Tropical forests and other communities often exhibit very high species richness (e.g. Gentry, 1988; Valencia

et al, 1994; Walter et al, 1971), and understanding the mechanisms driving this diversity remains a crucial

problem within ecology. This coexistence does not fit the classical explanation, where each species occupies

its own niche, as most plant species require the same resources and, and use similar methods to gather

these resources (Silvertown, 2004). This thesis has focussed on the effects of competitive asymmetry and

disturbance events on species richness.

In Chapter 1, we begin by determining the effect of competitive asymmetry on the likelihood of species

coexisting. Specifically, we used a Lotka-Volterra type model to investigate how the asymmetry between

very similar species affects the probability of coexistence. We find that as the slope of the competition kernel

at zero increases, such that competition between similar species becomes more asymmetric, the likelihood

of randomly selected species coexisting is increased. Coexistence is dependent on the steepness of the

competition kernel at the origin, and the probability of coexistence is maximised when the competition

kernel is described by a step function, and the slope of the kernel is infinite. Further, the probability of

coexistence increases with the maximum degree of asymmetry between species, highlighting the importance

of competitive asymmetry in sustaining biodiversity. However, even with the trade-off assumptions that

maximise coexistence, we find that the likelihood of coexistence decreases as more species are introduced

into the system. This highlights that while asymmetry is an important driver of diversity, it is expected to

interact with other factors to sustain the highly diverse communities observed in nature.

In Chapter 2, we use the results of Chapter 1 to inform a more mechanistic, individual based model of

forest gap replenishment. Competitive asymmetry is included in the form of juvenile competition for light,

where by the tallest individual will always outcompete a smaller individual for a place in the canopy. We

use a lottery type model (Sale, 1978; Chesson and Warner, 1981) to simulate gap replacement in the canopy,
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where species differ in seed production (seed number per capita per annum) and juvenile growth rate. As in

the Lotka-Volterra model used in Chapter 1, coexistence is only possible when there is a trade-off between

these factors. We then extend this model to consider the effects of disturbance events on coexistence, and

find that disturbance can dramatically increase the range of parameters for which coexistence can occur. An

examination of the diversity-disturbance relationships (DDR) generated then occurs. One of the most signif-

icant hypotheses on the effects of disturbance on species richness is the intermediate disturbance hypothesis

(IDH). The IDH proposes that if disturbance is too low, late successional species, often species that produce

fewer, larger seeds, will exclude more fecund pioneer species. However, when disturbance pressure is high,

the pioneer species that can colonise empty sites effectively will exclude the less fecund, late successional

species. At intermediate levels of disturbance, both pioneer and late-successional species are expected to

coexist, resulting in a diversity peak at intermediate disturbance. However, this is not necessarily what we

observe. While for some choices of parameters, we found that an increase in disturbance intensity will pro-

duce the humped DDR, other DDRs are also common. We argue that the IDH is therefore only one possible

outcome, and that the effects of disturbance can vary, and depend upon the way disturbance is measured.

Different factors that influence disturbance can give very different responses, even though the average death

rate is identical. We also demonstrate that these results are robust to changes in system capacity, the max-

imum number of individuals a community can sustain, and show that increases/decreases in productivity

are equivalent to an increase/decrease in the difference between the juvenile growth rates of the species.

We therefore argue that productivity and the life history of the species present may allow the prediction of

disturbance impact on a community.

The model developed in Chapter 2 is broadened to consider different trade-offs in Chapter 3, where we

analyse the probability of coexistence for a variety of trade-offs within the lottery model framework. We

consider trade-offs that allow species to differ in disturbance defence, along with fecundity and juvenile

growth, and aimed to determine analytically which of these trade-offs are the strongest drivers of diversity.

We show that while trade-offs that include a variation in juvenile growth give coexistence that is robust to

changes in system capacity, a trade-off between fecundity and disturbance defence is highly sensitive to

changes in system capacity. Further, we show that coexistence is more likely for a fecundity-growth trade

off than either a trade-off between disturbance defence and either fecundity or growth., and that including

defence differences in a fecundity-growth trade-off does not significantly increase the likelihood of coexis-

tence. We conclude that the fecundity-growth trade-off - a particular form of the competition-colonisation

trade-off - is a significant driver of biodiversity, in accordance with previous studies and the results of Chap-

ter 1 (e.g. Adler and Mosquera, 2000; Nattrass et al, 2012; Tilman, 1994). Further, while there is limited
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empirical evidence for a fecundity-defence trade-off, this may be an effect of other, more strongly selected

trade-offs such as those between fecundity and growth, or growth and defence.

Finally, the lottery model is expanded to include a third species, and the conditions for greater than

two species coexistence are examined in Chapter 4. We find that in a single, well mixed community,

coexistence of all three species cannot occur. However, when species are organised using a strict fecundity-

growth trade-off, if the community consists of two patches where dispersal between patches is limited, and

the patches experience different disturbance pressures, regional coexistence of three species is possible. We

then consider the effects of disturbance extent by varying the size of a patch with no disturbance alongside

a patch where disturbance pressure is varied. We find that coexistence is more likely when the sheltered or

protected region is small compared to the area experiencing disturbance. The implications of these results

for human induced disturbance such as logging are discussed, and we find that the creation of nature reserves

may boost regional diversity, even when diversity within the reserve itself does not increase. This highlights

the importance of considering the effects of disturbance on multiple spatial scales, as the observed effects

may differ if focus is too narrow, and only diversity within reserves is considered.

This thesis has investigated the effects of disturbance events and various trade-offs on species richness.

In particular, we have examined how different factors that determine the overall disturbance regime can

have different effects on diversity, and shown combining these different disturbance factors can either boost

or decrease diversity. The model presented in Chapter 2 and developed in Chapters 3 and 4 may prove a

useful framework for future work on the effects of disturbance. This model attempts to reconcile aspects

of niche theory, where the differences between species determine the outcome of competition (e.g. Darwin,

1859; Tilman, 1980; Tilman and Wedin, 1991; Tilman, 1994), and neutral theory, where all species are

considered equivalent, and chance is the factor determining the long term dynamics of a community (e.g.

Hubbell, 1979; Chave, 2004; Hubbell, 2001). Here, chance is included via stochastic death and dispersal

of seeds, and can have a significant effect on the dynamics, while species are still distinguished by different

life history traits. Hence, chance can lead one species (or more) to extinction even when invasion analysis

suggests coexistence should occur. This is especially the case when the quasi-equilibria defined in Chapter 2

have one species maintained at a low population, close to 0. However, species do differ in life history traits,

and the model includes three of those traits; fecundity as measured by seed production per capita, juvenile

growth rates and defence against disturbance.

The separation of different factors influencing disturbance is a key step towards understanding the im-

pact of disturbance events. The results in Chapter 2 show that each of these factors can have very different

effects on diversity as disturbance regimes alter, with increases in intensity likely to produce humped DDRs,
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while a change in frequency is expected to produce an monotonic or flat DDR. This may help to explain the

inconclusive results from empirical studies regarding the IDH, and echoes the insight of Miller et al (2011),

who indicate that different disturbance regimes may give different results, even when the average death rate

is identical. Mackey and Currie (2001) reviewed the empirical evidence for the humped DDR predicted by

the IDH, yet found the DDR was peaked in only 16 of 87 studies. They found that monotonically increasing

or decreasing DDRs were almost as common as the peaked DDR, as were flat DDRs, where disturbance

has no effect on diversity. In Chapter 2, we find that the model predicts that each of these DDR types is

expected under certain parameter combinations. Both the empirical data and the model suggest that these

DDRs are common, although U-shaped DDRs, where diversity in minimised as intermediate disturbance,

are uncommon. The model developed here predicts that a U-shaped DDR will only occur for a narrow

band of changes in disturbance, which involve a decrease from high to intermediate intensity, while higher

frequency increases total area lost over a given time period. Mackey and Currie find only 3 studies which

suggest a U-shaped DDR occurs.

Frequency and intensity, however, are not the only factors influencing the impact a disturbance event

has. In Chapter 4, we expand the model to include an examination of disturbance extent. Through this,

we illustrate that a combination of disturbance extent and intensity/frequency can increase the regional

diversity. Further, this boost to diversity in the model occurs outside the protected, or reserve, region.

Therefore, the species area relationship, whereby large areas of a habitat are expected to contain more

species than a smaller region of the same habitat, suggests in the case modelled here, smaller regions that

are protected from disturbance may be more effective at promoting region wide coexistence of multiple

species (e.g. Arrhenius, 1921; Gleason, 1922; Connor and McCoy, 1979). Indeed, the current model does

predict this, where smaller relative reserve size can support higher regional diversity for a greater level of

mixing between patches than a relatively large reserve region.

Further, we note the potential of this model framework extends beyond the results discussed in this

thesis. At present, within each patch populations are assumed to be well mixed, although in reality, spatial

structure within a community is expected to have an important role to play (Murrell, 2010). The current

framework could be extended to include a true spatial structure, with the probability of site colonisation

by a given species now dependent on the position of the patch and the spatial structure of the population.

This extension is the subject of planned future work. The introduction of this spatial structure would also

allow for dispersal within and between patches to be governed by the same process, unlike in the current

model, where separate mathematical rules govern intra- and inter-patch seed dispersal. Further, extending

the model to include slow gap replenishment should also be possible, by introducing size structure such as
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that used in integral projection models (e.g. Zuidema et al, 2010; Rees and Ellner, 2009).

The mechanistic model considered in Chapters 2-4 only considered two or three species. One further

extension of the model would be to include an increased number of species. While niche theory has consid-

ered coexistence of large communities, these studies are often phenomenological models without an explicit

mechanism (e.g. Chapter 1; Nattrass et al, 2012; Kondoh, 2001; Adler and Mosquera, 2000). Even in these

models, coexistence of large numbers of species is unlikely (Chapter 1; Nattrass et al, 2012) or structurally

unstable (Gyllenberg and Meszena, 2005), while competitive asymmetry is crucial to what coexistence can

occur along a trade-off (e.g. Chapter 1; Nattrass et al, 2012; Adler and Mosquera, 2000). However, other

hypotheses could be included in the current model, and combining these may give a mechanistic explana-

tion for the coexistence of many species. Tilman (1982) suggests resource competition as a mechanism

that may support multiple species, and the inclusion of competition for multiple resources (rather than light

being considered as the only limiting resource as in the work presented here) may have a significant effect

on the results when disturbance is considered. Previous work has also suggested that predation or para-

sitism can enhance biodiversity (see review in Chase et al, 2002), although this result may not be as strong

as previously thought (Chesson and Kuang, 2008). Adding multiple trophic levels into the model may ex-

plain greater levels of diversity, but at the expense of tractability. In addition to this effect, another possible

driver of diversity is the Janzen-Connell hypothesis, which suggests host-specific predation or parasitism

may make the region close to a parent individual inhospitable to its offspring, thus creating space for other

species to persist (Janzen, 1970; Connell, 1972), although the theoretical work on this hypothesis is not

very mature at present. The model presented here attempts to combine aspects of niche theory and neutral

theory. Neutral theory relies only on the balance between stochastic extinction and immigration/speciation

to retain diversity. The work presented here illustrates that when species differ, as they are observed to

in nature, immigration or speciation is not necessary for long term coexistence. However, neutral theory

shows these to be a potentially important factor in sustaining diversity. While Chapter 4 demonstrates that

immigration can lead to increased diversity on a local scale, we do not consider speciation, or evolution

within a single species. We anticipate that including evolutionary dynamics will have complex effects, that

may decrease or increase diversity as evolutionary forces interact with the ecological processes considered

here.

To conclude, our investigation of the effects of disturbances has highlighted that simple hypotheses such

as the IDH may not be adequate to describe the community response to disturbance. Rather, we emphasise

the need to consider that different factors influencing the “total” disturbance rate may have dramatically

different effects on diversity, such as frequency, intensity and extent. In particular, we show that increases
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in frequency are unlikely to give the humped DDRs predicted by the IDH, while increases in intensity are

more likely to match the predictions of the IDH. Further, we show that in some cases, moderating the extent

of disturbance events by creating a sheltered region can improve regional diversity, although this increase

may not be observed if only changes within the reserve are measured. We suggest that for a full mechanistic

explanation of coexistence of multiple species, it may be necessary to consider models with multiple trade-

offs. Despite this, much theory remains focussed on only two species, perhaps for tractability reasons

(e.g. Miller et al, 2011; Chesson and Kuang, 2008). Building on the findings presented here to further

enhance our theoretical understanding of disturbance remains a crucial part of ecology, with the potential

to dramatically improve our management of the natural world.
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