
Estimation of the Image Quality in Emission
Tomography: Application to Optimisation of

SPECT System Design.

Niccoló Fuin
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Abstract 3

Abstract

In Emission Tomography the design of the Imaging System has a great influence on the quality

of the output image. Optimization of the system design is a difficult problem due to the compu-

tational complexity and to the challenges in its mathematical formulation. In order to compare

different system designs, an efficient and effective method to calculate the Image Quality is

needed.

In this thesis the statistical and deterministic methods for the calculation of the uncertainty

in the reconstruction are presented. In the deterministic case, the Fisher Information Matrix

(FIM) formalism can be employed to characterize such uncertainty. Unfortunately, computing,

storing and inverting the FIM is not feasible with 3D imaging systems. In order to tackle the

problem of the computational load in calculating the inverse of the FIM a novel approximation,

that relies on a sub-sampling of the FIM, is proposed. The FIM is calculated over a subset of

voxels arranged in a grid that covers the whole volume. This formulation reduces the computa-

tional complexity in inverting the FIM but nevertheless accounts for the global interdependence

between the variables, for the acquisition geometry and for the object dependency.

Using this approach, the noise properties as a function of the system geometry parameteri-

zation were investigated for three different cases. In the first study, the design of a parallel-hole

collimator for SPECT is optimized. The new method can be applied to evaluating problems like

trading-off collimator resolution and sensitivity. In the second study, the reconstructed image

quality was evaluated in the case of truncated projection data; showing how the subsampling

approach is very accurate for evaluating the effects of missing data.

Finally, the noise properties of a D-SPECT system were studied for varying acquisition pro-

tocols; showing how the new method is well-suited to problems like optimizing adaptive data

sampling schemes.
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Chapter 1

Introduction

1.1 Preamble

Emission computed tomography is a nuclear medicine tomographic imaging technique involv-

ing radio-active emission. This type of tomography differs from medical image modalities

such as computed tomography (CT) or magnetic resonance imaging (MRI), in which mor-

phological differences between tissues are exploited to gather information about the anatomy

of the patient. While these modalities are referred to as anatomical imaging modalities, nu-

clear medicine modalities are applied for the purpose of functional imaging, in which specific

metabolic or physiological processes are visualised.

In order to achieve this aim, first a radionuclide is combined with a molecule or with an ex-

isting pharmaceutical compound, to form a radio-pharmaceutical. Second, a very low dose of

this radio-pharmaceutical is administered to the patient, usually by intravenous injection. This

radio-pharmaceutical, once administered to the patient, can localise to specific organs or cel-

lular receptors. This property of radio-pharmaceuticals allows nuclear medicine the ability to

image a specific physiological process within a certain tissue or organ and to determine the

uptake of certain substances within the body to evaluate the risk of developing a certain disease.

The radionuclides can be categorised into two classes. The first class are the single photon

emitters which emit γ-photons that can be directly measured by the γ-camera. The second one

are positron emitters which emit positrons that annihilate with electrons up to a few millimeters

away, causing two γ photons to be emitted in opposite directions. Single photon emitters do not

produce collinear photons, and the acquisition must rely on the detection of individual photons

using collimated detectors with single photon emission computed tomography (SPECT) cam-
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era; whereas a positron emission tomography (PET) camera measures the number of emitted

positrons by coincidence detection without the need of collimation.

A reconstruction algorithm is then used to provide a three-dimensional image of the ra-

dioactivity distribution that is more likely, according the characteristics of the imaging system

and to prior belief, to have generated the photon emissions measured by the SPECT or PET

camera. Such measurement is uncertain due to the limited amount of information that the scan

may acquire. The dose of radio-pharmaceutical administered to the patient is limited by safety

constraints. Consequently, the number of photons acquired during SPECT and PET medical

acquisition is of the order of only a few millions to a few hundreds of millions. Discretising

the imaging volume in a few millions voxels, it is immediately understood how the uncertainty

associated with the photon counting process constitutes a major limitation in emission com-

puted tomography. The characterisation of the uncertainty associated with the measurement of

activity is essential in order to inform decision processes that arise in medical diagnosis and

to merge the information provided by the measurement of activity with information provided

by other imaging modalities and bio-markers. Furthermore it is essential to estimate the uncer-

tainty of the measurement produced by a given system set-up, in order to compare it with other

set-ups, thereby enabling the optimisation of the design of an imaging system.

1.2 Aim and Contributions

The main goal of this PhD work is to evaluate and optimise the design of SPECT imaging

systems by computing figures of merit that characterise the uncertainty in the estimation. Such

optimisation problems include the choice of a particular type of detector and collimator and

tuning of their design parameters, the choice of the number of cameras and their position. While

such class of design optimisation problems may be referred to as hard optimisation, the develop-

ment of adaptive SPECT systems has introduced a second class of soft optimisation problems,

where the parameters of the imaging system may be modified during the acquisition in order to

image certain desired properties of the underlying object and to adapt to the imaging conditions.

The introduction of adaptive optimisation problems emphasises the need for an efficient

method for the comparison of a set of different design parameters in a reasonably short time.
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In such cases, numerical simulations can be prohibitively expensive and therefore it is useful to

have approximate deterministic expressions of the figures of merit that characterise the uncer-

tainty in the estimation. From the Bayesian perspective, the Fisher Information Matrix (FIM)

can be employed to characterise the uncertainty of the reconstruction. Unfortunately, comput-

ing, storing and inverting the FIM is not feasible for the typical matrix size of 3-D imaging

systems, due to the high dimensionality of the imaging volume.

In order to tackle the problem of the computational load in inverting the FIM an approxi-

mation has been previously proposed by Qi and Leahy [2000], who argued that if we are only

interested in calculating the properties of an estimator in a single voxel i, it is acceptable to ig-

nore the non-stationarity of the FIM. The computations are done for voxel i, and therefore only

the i-th row of the FIM needs to be calculated. This local approximation of the FIM, is obtained

by replacing all rows of the FIM with the shifted version of its i− th row and then by inverting

this shift-invariant matrix in order to estimate the variance in each voxel i. Consequently the

FIM simply reduces to a circulant matrix and this approximation is referred to as the circulant

approximation.

However, since the tomographic imaging system measures the integral along lines that traverse

the entire imaging volume, the estimate of the activity in a given voxel and its uncertainty are

related to the estimate and to the uncertainty in every other location. The full FIM accounts

for such complex interdependence between all the voxels in the imaging volume; whereas the

aforementioned circulant approximation makes use of a single row of the FIM and does not

capture such interaction.

In this thesis, a novel algorithm for efficient estimation of the uncertainty in the recon-

struction, based on the FIM, is introduced. Our new formulation relies on sub-sampling the

FIM. The FIM is calculated over a subset of voxels arranged in a grid that covers the whole

volume. Every element of the FIM at the grid points is calculated exactly, accounting for the

acquisition geometry and for the object, without further approximation. This new formulation

reduces the computational complexity in inverting the FIM but nevertheless accounts for the

global interdependence between the variables.

The aim of this thesis is to describe the novel algorithm and to explore its use for the

optimisation of SPECT systems; emphasising how it enables us to explore the design of highly
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shift variant systems, as a result of distance dependent resolution, data truncation or adaptive

data sampling. Such systems include the standard rotating camera with parallel hole collimator

and an adaptive system for cardiac imaging, similar to the commercially available D-SPECT.

1.3 Outline

Chapter 2 provides background information about SPECT imaging which is essential for the

understanding of the subsequent chapters. The basic principle of SPECT imaging is briefly

explained, followed by a description of typical collimator and detector designs used for SPECT

systems. Then, the acquisition models are described, and the concepts of analytical and statis-

tical image reconstruction are introduced.

Chapter 3 summarises the statistical approach for the calculation of the uncertainty in the

reconstruction. First, the most common figures of merit used for image quality evaluation are

listed. Second, a method to quantify resolution for Penalized Likelihood estimators will be

discussed and the concept of Linearised Local Impulse Response will be introduced.

Chapter 4 summarises the deterministic method for the calculation of the uncertainty in

the reconstruction based on the calculation and inversion of the Fisher Information matrix.

First, the key concepts and the basic mathematical derivations of this method are described.

Second, the new methodology for approximate calculation of the FIM is introduced, and the

efficient implementation of the algorithm is described in detail. Third, a figure of merit for the

estimation of the image quality, based on the fundamental trade-off between bias and variance

that can be achieved in the reconstruction of emission tomograms, is presented.

In chapter 5 the approximated calculation of the FIM is employed for the optimization

of of a parallel hole collimator for SPECT. A key challenge in SPECT system design is the

achievement of a reasonable trade-off between resolution and detection efficiency. In order to

prove the reliability of the proposed approximation, we show that different subsamples of the

FIM yield the same optimal collimator aperture.

In chapter 6, in order to emphasize the benefits of the proposed approximation of the

FIM with respect to existing methods for the deterministic evaluation of the uncertainty; we

investigate how it can be employed to calculate the reconstructed image quality in the case of

region-of-interest reconstruction from truncated projection data.
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In chapter 7, the proposed novel algorithm is employed for the optimization of the camera

trajectory in an adaptive SPECT system. This experiment is also meant to highlight the per-

formance of the new method when used for optimization of systems with a highly shift-variant

response, in comparison with other methods for the calculation of the uncertainty, such as the

circulant approximation.

In conclusion, chapter 8 highlights the main contributions of this PhD work, discuss the

usefulness and limitations of the novel algorithm, draws general conclusions and gives some

suggestions for future work.
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Chapter 2

Background

The topic of estimation of image quality is of interest in any image formation problem where a

system is designed in order to produce images that will be used for a specific application. While

many contributions brought in this thesis can be applied to generic imaging problems, the moti-

vation for this work arose specifically from the problem of optimising a Single Photon Emission

Computed Tomography (SPECT) system design. Therefore, most of the investigations and dis-

cussions presented in this thesis focus on image quality assessment in emission tomography

with application to SPECT imaging. This background section introduces a summary of some

important aspects of emission tomography. First the design of the imaging systems and the

nature of the data produced by such systems are discussed. Second, we describe some of the

reconstruction methods that can used to form images from these data.

2.1 Emission Computed Tomography

Emission computed tomography is a medical imaging modality which provides functional in-

formation about physiological processes in the body. Its development has enabled safe and

non-invasive diagnostic capabilities for a variety of medical conditions where early and ac-

curate diagnosis is critical. For instance, it can be applied for the detection of breast, lung or

brain tumours, diagnosing myocardial perfusion defects, and imaging brain function in epilepsy,

Alzheimer’s disease or stroke patients [Brill and Beck, 2004]. Emission tomographic images

are also used to monitor the treatment of specific patients, as well as to evaluate the effectiveness

of new procedures and medications.

Typically, as a first step, a radio-tracer is introduced into a subject via injection. Radio-
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tracers are biological products whose carrier molecules, such as antibodies or ligands are cou-

pled to radioactive nuclides. When a radio-tracer is administered into the body, the radioactive

agent localises in the anatomical region or tissue of interest, thanks to the biochemical nature

of the carrier molecule.

Gamma rays (γ-rays) are emitted isotropically as a product of decaying atoms of the ra-

dionuclide. These emissions radiate from within the patient’s body at a rate proportional to

the concentration of the radiopharmaceutical. Although the quality of the image significantly

improves with the increase in the amount of radioactivity injected, the radiation exposure to in-

ternal organs imposes a limit on the dose. Therefore the dosage must be small enough to avoid

having unwanted biochemical effects.

As the γ-rays are emitted from the patient’s body, they are detected and recorded by the

imaging hardware. The measurements thus form a sort of histogram of the number of photons

absorbed at different locations on the surface of the detector. Generally speaking, the higher

the radioactivity distribution in some anatomical region, the higher the number of photons that

will be collected by the detector facing that region. Thus the photon counts collected from the

detector provide information about the radio-tracer uptake, representing functional information

about physiological processes in the body.

Emission tomography encompasses two families of imaging modalities, PET and SPECT.

This thesis is concerned with SPECT imaging whose features will be introduced in the follow-

ing.

2.1.1 Single-Photon Emission Computed Tomography

The radioactive tracers used in SPECT are γ - emitting radionuclides. When an atom of such

a radionuclide decays, γ - ray photons are emitted isotropically. The photons that pass through

the patient’s body are collected by the detector. The typical SPECT detector consists of a single

large NaI scintillation crystal that rotates around the patient and is known as an Anger gamma

camera [Anger, 1964]. The orbit of the rotating detector can be arbitrary, but in practice, it

is circular or elliptical. As the detector rotates at different angles along this orbit, it collects

counts of γ -ray photons emitted from the patient’s body. Figure 2.1 shows a representation of

a SPECT camera.

When a detector collects a photon, ideally, it is assumed that the photon emission occurred
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Figure 2.1: Simplified diagram for a Single Photon Emission Computed Tomography camera.

somewhere along a line of response (LOR), perpendicular to the detector surface. A high ra-

dioactivity distribution along a certain LOR leads to a high number of collected counts for this

LOR at the detector. The count of detected photons for each LOR can be viewed as a projection

(line integral) of the values of the radioactivity distribution along that line. All projection data,

for a single transverse plane, are collectively called a sinogram and can subsequently be used to

reconstruct an image of the radionuclide for that plane.

In SPECT, in order to obtain LOR information, a collimator is mounted in front of the

scintillation crystal so that the gamma photons can only enter at known angles. The collimator

holes are usually parallel to each other, although geometries with convergent or divergent open-

ings also exist. As the detector rotates around the object (usually in a step-and-shoot mode), a

full range of angles is obtained.

2.1.2 Detectors

A γ - ray detector is typically composed of a scintillation crystal that is coupled to a photo-

multiplier tube (PMT). The most commonly used scintillating material is thallium-activated

sodium iodide (NaI(Tl)) . When a γ - photon interacts inside a scintillation crystal, the crystal

absorbs the γ - ray photon and releases a burst of light photons onto the photocathodes of the

PMTs. This burst of light is therefore converted in a short electrical signal by the PMTs and
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these signals are then counted so that the number of detected γ-photons is recorded.

In order to produce an image it is fundamental to know the LOR along which the gamma

photon originated and the energy of the γ-ray interaction. It is therefore important to estimate

the location of the detected γ-photons and their energy.

In an Anger camera [Anger, 1964], a large crystal is optically coupled with many PMTs

(see Figure 2.2 - A). A PMT that is close to the position of interaction between the photon and

the crystal will capture more light than a PMT that is further away from the scintillation event.

The location of the interaction between the gamma ray and the crystal can be determined by

processing the voltage signals from the photomultipliers; in simple terms, the location can be

found by weighting the position of each photomultiplier tube by the strength of its signal, and

then calculating a mean position from the weighted positions. The total sum of the voltages from

each photomultiplier is proportional to the energy of the gamma ray interaction, thus allowing

discrimination between different radio-tracers or between scattered and direct photons.

The emission of light photons is subject to uncertainty and it has a spatial distribution. Hence,

the spatial location of a single scintillation event can only be measured with limited precision,

which can be approximated by a 2-D Gaussian distribution [Helmer et al., 1967]. Typically,

the full width at half maximum (FWHM) of the 2-D Gaussian distribution is used as a scalar

measure to specify the spatial resolution and is referred to as intrinsic resolution. The intrinsic

resolution of a gamma camera typically has a FWHM of 3-4 mm for a scintillation detector. The

energy resolution depends on the material of the scintillation crystal. For the most commonly

used crystal in SPECT (i.e. sodium iodide doped with thallium NaI(Tl)) the energy resolution

is around 10% FWHM at 140 keV.

As an interesting alternative solid-state detectors based on Cadmium Zinc Telluride (CZT)

crystals can be used. The most important feature of SPECT cameras based on CZT crystals is

that they can convert and digitalize gamma radiation in a single step, eliminating the need for

PMT technology. This allows the manufacturers to considerably reduce the bulkiness of the

system and increase the mobility of the camera as both weight and size are drastically reduced.

CZT are available as pixelated detector arrays with a typical intrinsic spatial resolution of 2.46

mm. Moreover CZT crystals offer higher energy resolution (in the range of 2−5% for 140 keV)

and intrinsic efficiency comparable to NaI(TI) [Butler et al., 2001] [Takahashi and Watanabe,
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Figure 2.2: A (left) - Scintillation event on a SPECT detector. The scintillation crystal is opti-

cally coupled with many PMTs. B (right) - In SPECT, due to finite collimator length and hole

size, photons are detected within some acceptance angle. This has the effect of increasing the

uncertainty in location of the photons with increasing distance from the collimator.

2001].

2.1.3 Collimator

In SPECT, a collimator is mounted in front of the gamma camera. The purpose of the colli-

mator is to achieve spatial localisation of the photon emissions in the imaging space. Since

single photons are emitted isotropically, it would be otherwise impossible to obtain LOR infor-

mation from the scintillation events in the crystal. The collimator is typically made of highly

attenuating materials such as lead or tungsten and is meant to prevent oblique γ-photons from

passing through to the scintillation crystal. Photons hitting on the collimator septa are ideally

absorbed. In practice, although the collimator material greatly attenuates γ-rays, some photons

pass through the lead with a probability given by Beer’s law. This is called septal penetration.

This penetration leads to an additional blur in the detector response.

Each collimator element allows the detection only of photons originating from a specific

range of angles around the direction parallel to the collimator hole. Generally speaking, a

narrow hole leads to a better LOR resolution but it also leads to a decrease in the number of

photons that reach the scintillation crystal, thereby lowering the detector sensitivity.

The design of the collimator highly influences the detection sensitivity and the system

resolution of a SPECT system, thus it is one of the key factors influencing the system response.
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Even if various collimator designs have been presented in the literature, the most conventional

collimator used for clinical SPECT is still the parallel hole collimator. It consists of a two-

dimensional array of parallel holes whose shape can be circular, square or hexagonal. An

enlarged view of a parallel hole collimator and of the detector for a SPECT system is shown in

Figure 2.2 - B.

The need for collimation in SPECT systems is one of the main factors that contribute to

shift-variance of the system response. Since, as illustrated in Figure 2.2 - B, photons originating

from a specific range of angles enter the collimator hole, the system response varies as a func-

tion of distance from the detector. As a result, not all areas of the imaging volume contribute

to the measurements in the same way. A photon entering at a particular hole of the collimator

could have originated in a greater range of locations within the body if it originated at dis-

tance D2 rather than at distance D1 < D2 . Therefore, there is increasing spatial ambiguity

with increasing distance from the detector. The response of a parallel hole collimator can be

approximated by a depth-dependent Gaussian function whose FWHM increases linearly with

distance.

A discussion on how the design of the collimator influences the system response and an

analysis on the effects of the collimator design on the image quality will be presented in Chapter

5.

2.1.4 Collimator-Detector Response: Sensitivity and Resolution

As discussed in the previous sections, the projection of a point source at a single detector angular

position is influenced by a number of factors related to collimator and detectors in gamma

cameras, thus referred to as the collimator-detector response (CDR) . The CDR is characterised

by two factors: the detection sensitivity and the system resolution.

Detection Sensitivity

The detection sensitivity can be defined as the percentage of emitted photons that are detected

and recorded. It is determined by the detection efficiency of the γ - camera and by the geometric

efficiency of the collimator.

The detection efficiency of the γ camera is given by the ratio between the number of photons

that are actually counted by the detector and the number of photon that hit the surface of the
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scintillation crystal.

The geometric efficiency of a collimator is given by the ratio between the number of photons

that hit the surface of the crystal and the number of photon emitted, in the ideal case in which

the photons are not attenuated by the object.

In SPECT imaging, since physical collimation is needed in order to obtain LOR information, a

large fraction of the incident photons are rejected. Collimators therefore exhibit low geometric

efficiencies , of the order of ∼ 0.01%.

For the parallel hole collimator the geometric efficiency is nearly not distance-dependent. How-

ever, this is not always the case for other collimator designs.

System Resolution

The resolution of a SPECT system is determined by the intrinsic response of the gamma camera

and the collimator geometric response.

Intrinsic response: Aside from the effect of collimators, the detector system itself demonstrates

an intrinsic uncertainty in position estimation of incident gamma rays, as described in section

2.1.2. This uncertainty is referred to as intrinsic response and can be approximated by a 2-D

Gaussian distribution.

Geometric response: As described in the previous section, the collimator dimensions define

the acceptance angle within which incident photons are accepted. Subsequently, the geomet-

ric response function becomes wider with increasing distance from the collimator surface, and

strongly depends on the particular design of each collimator. The uncertainty about the origin of

the detected photons is modelled by a Point Spread Function (PSF) . The PSF of a gamma cam-

era describes the photon count density distribution at the detector surface when a point source

is imaged. For parallel hole collimators, the PSF is approximated by a Gaussian function whose

width is determined by the collimator aperture. A scalar measure for the collimator resolution

is then defined as the FWHM of that Gaussian, which is determined by the collimator geom-

etry as well as the distance between the location of the point source and the gamma detector.

Combining the intrinsic resolution and the collimator resolution yields the system resolution:

FWHMsystem =
√
FWHM2

detector + FWHM2
intrinsic (2.1)

Typically, for parallel hole collimators, the system resolution is assumed to be shift-invariant on
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planes parallel to the detector surface but it is dependent on the distance from the detector.

2.1.5 Acquisition Model and Camera Trajectory

In SPECT imaging, the acquisition mode can be either planar or tomographic.

In planar imaging, a two dimensional (2D) projection is acquired at each detector head without

performing the rotation of the gamma camera. Since anatomical structures along the projection

direction are overlaid, the 3D information of the imaged subject is lost.

The aim of the tomographic imaging instead is to obtain a three dimensional (3-D) represen-

tation of the radiotracer distribution. The detector heads therefore need to rotate around the

patient to obtain projection data from different angles. These projection data however cannot

be interpreted directly but a reconstruction method needs to be applied in order to obtain a 3-D

image.

The tomographic acquisition mode usually involves the rotation of the camera along a cir-

cular trajectory at constant speed around the centre of the imaging volume so that the detector

collects photons during the same time interval for each angular position. Recently, new cam-

era designs based on compact solid state detectors units (such as the D-SPECT system) allow

movements that would not be achievable with conventional gamma cameras, allowing for a re-

gion centric acquisition (see chapter 7). Changing the trajectory, just like for any parameter of

the acquisition system, the interdependence of the information changes. So, changing camera

trajectory, one might collect more information about certain regions and less about other re-

gions, leading to a shift-variance in the response.

The trajectory of the gamma camera has a profound effect on the uncertainty in estimation of

the radio-tracer distribution. Therefore an accurate model of the camera trajectory is important

for reconstruction.

2.1.6 Physical Effects: Attenuation and Scatter

The measurement data are influenced from certain physical effects that are not directly related

to the detector response. Gamma photons are dependent on two physical effects known as

attenuation and scatter.
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Attenuation

A significant fraction of emitted photons are either absorbed or deviated as they interact with

their surrounding material. As a result, the number of photons reaching the γ - camera is only

a fraction of the number of photons emitted from the activity distribution within the object.

This effect is generally called attenuation. Photons are attenuated as they travel through the

surrounding material from their point of origin to the detector surface. The attenuation is an

exponential function of the distance travelled and the attenuation coefficient of the surrounding

materials µ (that expresses the probability of interaction per unit length). The survival proba-

bility of a photon [Macovski, 1983] as it travels between two points along the y-axis is given

by:

patt = exp

{
−
∫ y2

y1

µ(y)dy

}
(2.2)

where y1 = (x, y1, z) is the point of emission and y2 = (x, y2, z) is a position on the collimator

surface.

The effect of attenuation can be corrected, during reconstruction, by including the distribution

of attenuation coefficients in the system model. In order to include attenuation effects, a trans-

mission scan must be performed to estimate the attenuation map µ(x, y, z). For example, the

attenuation map can be obtained from a Computed Tomography (CT) image which is registered

with the SPECT image. However, since the attenuation coefficients are energy-dependent, the

values from the CT image are first converted into the values corresponding to the energy of the

emitted photons before they can be used for attenuation correction.

Scatter

A fraction of the emitted photons interact with free or bound electrons as they travel through

light-materials such as water or soft tissues. When photons undergo this elastic collision with

electrons, they lose part of their energy and they are deflected by an angle dependent on the

amount of energy lost. This effect is called Compton scatter.

If a photon experiences Compton scatter, it has not originated along the LOR that is detected.

This leads to a degradation in quantification and spatial resolution accuracy. Since scattered

photons typically have less energy than unscattered photons, scattered events can be eliminated
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by energy discrimination. For example, in technetium-99m (99mTc) SPECT imaging, the photo-

peak is at 140 keV and, if photons are detected at lower energies, they are considered to be

scattered photons and they are rejected. However, since scintillating detectors have a limited

energy resolution, some scattered photons will still be counted. For the most commonly used

scintillation crystals in SPECT (i.e., NaI(Tl)), the energy resolution is around 10% FWHM at

140 kev. Solid-state CZT detectors present an energy resolution of 3-6% at 140 keV. They can

therefore be considered an interesting alternative for the development of new SPECT cameras.

2.2 Discrete System Model

The acquisition model characterizes a linear operator H , which we will refer to as the system

operator, mapping the object space to the measurement space.

Generally speaking, when we model a real system, we must make certain approximations

and therefore different models can have different properties. In tomography, several choices for

the system model can be made; which include the idealised continuous model, used in analytical

reconstruction, the continuous-to-discrete model and the discrete-to-discrete model.

Since, in practice, tomographic systems can acquire only a finite number of measurements

and statistical reconstruction algorithms can estimate only a finite number of image intensity

parameters, a discrete model is adopted in the rest of this thesis.

Let λ denote the radioactive tracer distribution to be imaged and underlying the measure-

ment data ν obtained by the imaging system. For this three dimensional (3D) model, both the

measurement data and the object space are discretized. In a discrete representation of the object

λ a set of basis function has to be chosen. We discretise the continuous function, expressing

the rate of emission of γ-radiation, using a voxel basis, where λ = [λ1, ..., λN ]T denotes the

vector of emission rates. Our choice of the volume element for the basis function is the usual

cubic voxel, but other shapes have been studied as well [Matej and Lewitt, 1996] [Yendiki and

Fessler, 2004]. The basis functions are spatially localized volume elements, arranged on a grid

over the object space. In the rest of the thesis, x and y denote the in-plane coordinates, z repre-

sents the axial coordinates of the discretized volume, Nx, Ny, Nz denote the number of voxels

along each direction and N = Nx ×Ny ×Nz denotes the total number of voxels.

In a discrete representation of the measurement data, the M photon counts collected by the de-
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tector are lexicographically reordered in a vector ν = [ν1, ..., νM ]T . The detector unit respon-

sible for collecting each of these M counts is referred to as a detector bin and is a conceptual

unit since, in SPECT, it does not correspond to a physical detector element.

In emission tomography, the mean projection measurements ν are assumed to be related

to the discretized object λ, by the following discrete linear model:

νd(λ) =
N∑
i=1

hdiλi (2.3)

ν(λ) = Hλ (2.4)

the matrixH is the M ×N system matrix whose elements {hdi} represent the probability that

photons emitted from voxel i are detected in detector unit d. It is possible to decompose the

system matrix into multiple components that characterise the different physical aspects of the

system response:

νd(λ) =
N∑
i=1

cdadibdisiλi

= [D[cd](A ·B)D[si]λ]d

(2.5)

where D[·] produces a diagonal matrix from the vector-valued argument.

For a typical SPECT model the cd terms represent the detector efficiency, the adi (or, equiv-

alently, the matrix A) terms represent the attenuation factors, bdi terms (or, equivalently, the

matrixB) denotes the geometric system model and the si terms denotes the spatial variation in

sensitivity. The system matrix therefore models the propagation and detection of un-scattered

photons, encompassing the depth-dependent response of the collimator, the position-dependent

geometric efficiency, the scanning pattern of the detectors and attenuation through the propa-

gating medium. In this model we do not take into account the contribution of scattered photons,

though the system matrixH , in principle, may encompass scatter events.

2.3 Noise Model

In Emission Tomography the inherent randomness in the activity emission results in randomness

in the measurements, which can be treated as Poisson-distributed conditionally independent
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random variables [Rockmore and Macovski, 1976] [Yu and Fessler., 2000].

In the case of Emission Tomography, the conditional probability distribution associated

with photon counting is therefore Poisson distributed with expectationHλ:

p(νd|λ) =
e−[Hλ]d([Hλ]d)

νd

νd!
(2.6)

and the measurement data acquired by a real tomographic imaging system are related to the true

radioactivity distribution, as in the following equation:

ν ∼ Poisson{Hλ}, (2.7)

If we consider H as known, following the discussion in the previous section, the image recon-

struction problem in emission tomography consists of estimating λ given the data ν, where ν

is a realization of the random vector in (2.7).

2.4 Space-Invariant vs Space-Variant Systems

The definition of collimator-detector response has been presented in section 2.1.4. The

collimator-detector response can be modelled in different ways.

A simple model of the collimator-detector response is the strip-integral model. In this

model, illustrated in Figure 2.3 A , the CDR is simply modelled as a cuboid stripe. The bdi

term is therefore proportional to the volume of intersection between the cuboid stripe corre-

sponding to the d-th bin and the i-th voxel. Considering this model, the measurements are

not depth-dependent and radially uniformly spaced. Therefore the system response is approxi-

mately space-invariant except for discretisation effects.

However in SPECT, as discussed in section 2.1.4, the projection of a point source at a sin-

gle detector angular position is influenced by a number of factors related to collimator and de-

tectors in gamma cameras. The CDR is typically modelled by a depth-dependent Point Spread

Function (PSF) which takes the form of a Gaussian function. Since the bdi terms are chosen to

specify a depth-dependent response with a Gaussian profile then the system response becomes

space-variant.

Sample patterns for a single detector response are shown for the strip integral model and a

depth-dependent Gaussian model in Figures 2.3 B and C, respectively.
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Figure 2.3: Modelling the detector response in a discrete tomographic system model. A (left)

- Strip integral model. B (centre) - Sample pattern for an ideal detector-collimator response. C

(right) - Sample pattern for a SPECT, depth-dependent, detector-collimator response.

The geometric response of the system is important when studying the properties of an

imaging system. Thus, we discuss how the geometric response varies spatially.

For the discrete model, presented in section 2.2, the geometric response of the system is

defined by:

B′Bei (2.8)

where ei is the unit basis vector for the voxel i. Hence, the geometric response is defined by the

choice of the bdi terms in equation (2.5).

For an acquisition geometry that involves the rotation of the camera along a circular trajectory

covering 360◦, we will have, on average, worst resolution for voxels near the centre of the Field

Of View (FOV) rather than for voxels at the edges of the FOV; and since the resolution changes

with detector angle, we will have an anisotropic response at the edges of the FOV. Moreover it

should be noted that incorporating the effects of attenuation and detector efficiencies will lead

to an increase in the space-variance of SPECT system response.

In Figure 2.4 A and B we illustrate the geometric response for the strip-integral model and

for the depth-dependent Gaussian model respectively. We calculated the geometric response of

the system, as in equation 2.8, for 37 voxels locations uniformly distributed on the central plane



2.5. Tomographic Image Reconstruction 36

Figure 2.4: Comparison of space-invariant and space-variant geometric responses. A (left) -

A set of space-invariant geometric responses for the strip integral model. B (right) - A set of

space-variant geometric responses for the depth-dependent Gaussian model.

of the imaging volume. From Figure 2.4 we can see how the geometric response of the system

is, in fact, shift-invariant; whereas the responses for the depth-dependent Gaussian model are

shift-variant and anisotropic.

2.5 Tomographic Image Reconstruction

In equation (2.3) the measurement data ν were defined in the form of projections through the

true activity distribution λ. These projection data can not be used directly to inform decision

processes that arise in medical diagnosis. It would be extremely difficult for a physician to

determine the exact position of an abnormality within the imaging volume by looking at the

projection data only. Moreover, it is not possible to accurately quantify the radio-tracer uptake

within a volume of interest directly from the measurement data. This implies the need for a re-

construction method. The reconstruction problem consists in recovering λ from its projections

ν, therefore somehow returning the data in the projection space, back to the object space.

In the previous section, the concept of geometric response of a system was introduced,

and we discussed how it depends on the collimator-detector response and its diverse physical

characteristics. Nevertheless, the resolution of the reconstructed images can be significantly

lower than this geometric response, as it is also affected by the reconstruction method applied
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to the data. This effect is undesirable, since important details may be lost if the resolution

of reconstructed images is not fine enough. On the other hand, noise reduction is also an

important feature of a reconstruction method, since noise artifacts degrade the quality of the

image. Thus, since a trade-off between fine resolution and low noise level arises, the choice of

the reconstruction method has a profound influence on the image quality.

Analytical reconstruction methods, such as Filtered Back Projection (FBP), have been ex-

tensively studied and widely clinically used in CT reconstruction. Such methods are based on

the idealised continuos model. They calculate an estimate of the activity distribution, from the

measurement data, ignoring measurement noise in the formulation of the problem and treating

the arising noise-related problems by post-filtering operations [Natterer, 1986]. Moreover, an-

alytical methods require certain standard geometries (e.g., parallel rays and complete sampling

in radial and angular coordinates) and therefore incorporating a detailed SPECT system model

in FBP methods is not straightforward. In this PhD work, we focus on statistical methods for

image reconstruction, since they can overcome all these limitations.

In this section, some commonly-used statistical reconstruction methods are described, dis-

cussing how each of them deals with the trade-off that arises between resolution and noise

properties.

2.5.1 Statistical Reconstruction

Statistical reconstruction methods are based on the discrete model presented in section 2.2

where both the measurement data and the object space are discretized.

Using a statistical reconstruction method we seek to estimate λ from ν by maximizing an

objective function Ψ(λ) of the form

Ψ(λ) = L(ν,Hλ)− βR(λ) (2.9)

λ̂ = arg max
λ≥0

Ψ(λ) (2.10)

where L(·, ·) and R(·) are referred to as the likelihood function and the penalty function re-

spectively. β ≥ 0 is a regularization parameter (or hyper-parameter) that controls the relative

weight of the two terms. The non-negativity constraint λ ≥ 0 is needed only on physical
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grounds, rather than mathematical. In Emission Tomography, in fact, λ consists of photon

emission densities and therefore can not include negative values.

Equation (2.9) defines a penalized likelihood reconstruction method when the choice for

L(·, ·) is the log of the conditional likelihood p(ν|λ) of the data ν given the true activity distri-

bution λ. In the case of Emission Tomography, where the conditional probability distribution

associated with measurement data is Poisson; the likelihood p(ν|λ) is defined as in equation

(2.6) and consequently the log-likelihood equals:

L(λ,ν) = log p(ν|λ) =
∑
d

(−[Hλ]d + νd log([Hλ]d)− log νd!) (2.11)

There is no closed analytical form that expresses explicitly λ̂ in terms of ν, when the probability

distribution associated with measurement data is Poisson. In other words, the cost function

(2.10) defines λ only implicitly as a function of ν, hence iterative algorithms are needed.

Assuming that the cost function in equation (2.9) has a unique maximiser and that we

iterate the algorithm until the estimate λ̂ converges to the maximum, the choice of the algorithm

has no effect on the quality of the estimate λ̂. A sufficient condition for the uniqueness of the

solution is that the cost function in equation (2.9) is strictly concave and coercive [Ahn and

Fessler, 2003].

Setting β = 0 in (2.9), we rely on an unregularised reconstruction method, which max-

imises the L(·, ·) function alone. This method is referred to as the Maximum Likelihood Esti-

mation (MLE) . However, due to the fact that the problem is ill-conditioned, to the fact that the

maximizer in (2.10) may be not unique, and to the noise in the measurement data; an unreg-

ularised reconstruction method yields unacceptably noisy estimates. A strategy to reduce the

noise is therefore needed.

We can find in the literature a wide range of methods to reduce the noise in the reconstruc-

tion. Each method presents certain advantages and disadvantages. In the following we present

a brief discussion of several, popular methods.

2.5.2 Stopping-Rule

For many algorithms, one of the simplest approaches to noise reduction is to initialise the algo-

rithm with a smooth image and then to stop iterating well before convergence [Hebert, 1990]
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[Veklerov and Llacer, 1987] [Barrett et al., 1994]. As an example, if we initialise the algo-

rithm with a uniform image, and we look at the estimate after each iteration, we can see how

the reconstructed image starts as very smooth and becomes visually more noisy with increas-

ing iteration, as high frequency components begin to appear [Barrett et al., 1994]. Therefore,

stopping the algorithm before convergence acts as a kind of regularisation and the number of

iterations then becomes the parameter that controls the noise/resolution trade-off. Using this

method for noise reduction, the quality of the estimate becomes dependent on the image used

for initialisation. In section 2.5.5 we will discuss several algorithms that are used for perform-

ing the objective function maximisation in (2.9). Stopping rules are only meaningful for those

algorithms, i.e. MLEM [Shepp and Vardi, 1982] and OSEM [Hudson and Larkin, 1994]. For

other algorithms, i.e. coordinate ascent algorithms, stopping the algorithm before convergence

has no noise regularisation effect, since the high frequencies converge just as fast as the low

frequencies. Thus, the resolution properties become dependent on the iterative algorithm that is

used and on how far it is iterated.

2.5.3 Post-Smoothed Maximum Likelihood

Another method is to allow the unregularised maximum-likelihood algorithm to iterate until

convergence and then to achieve noise reduction by post-smoothing the noisy reconstructed

estimate [Beekman et al., 1998] [Slijpen and Beekman, 1999]. It is also possible to filter

the estimated image after each iteration [Jacobson et al., 2000] [Silverman et al., 1990]. The

maximum-likelihood estimator iterated until convergence attempts to obtain an ideal recon-

struction with a delta impulse response. The resolution properties of the estimator are therefore

completely determined by the post-smoothing filter operator which can be customised in order

to control the resolution/variance trade-off. An advantage of this method is that a variety of

post-smoothing filters can be applied at the expense of a single iterative solution.

However this method presents also disadvantages. Since the problem is typically ill-

conditioned, unregularised MLEs tend to take many iterations to converge to a solution. More-

over, in case where there are multiple maximisers, and therefore multiple solutions, applying

a post-smoothing filter to the reconstructed estimate will not make the solution unique. If the

system matrix H has full rank, then the ML estimate is unique in the case where there are no

non-negative solutions to the system of equations ν = Hλ. In practice, however, this full rank
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Figure 2.5: Statistical reconstruction with and without regularisation. Reconstruction of mea-

surements obtained for a piecewise constant image are plagued by noise in a pure maximum-

likelihood reconstruction (left), but the noise can be greatly reduced by regularising the re-

construction (right). A (left) - Maximum Likelihood Reconstruction. B (right) - Regularised

Likelihood Reconstruction.

property is quite difficult to verify.

2.5.4 Penalised-Likelihood Estimation

The introduction of the regularisation function R(·) in equation (2.9) corresponds to the Pe-

nalised likelihood Estimator (PLE) estimator with a smoothness prior. The function R(·) is

typically a roughness penalty that has a smoothing effect on the estimate by penalising the inten-

sity differences between neighbouring voxels [Geman and McClure, 1985][Hebert and Leahy,

1989][Lange, 1990]. With the introduction of an appropriate penalty term R(·), we achieve not

only noise reduction, but also convergence acceleration and we ensure the uniqueness of the

solution.

Making use of the PLE, the resolution/variance trade-off in the reconstructed image is

controlled by the regularisation parameter (or hyper-parameter) β. A smaller β in equation (2.9)

gives more weight to the likelihood function L(·, ·), resulting in a noisier estimate, whereas a

larger β gives more weight to the penalty function, resulting in a smoother estimate. Two

examples of reconstructions of noisy measurement data iterated to nearly reach convergence

using a unregularised ML Estimator and using a PL Estimator with a large value of β, are

shown in Figure 2.5 - A and Figure 2.5 - B respectively.
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The actual form of the penalty function itself also significantly affects the quality of the esti-

mate.

The penalty function can take a wide variety of forms. However, we will restrict this

discussion to the description of the most commonly used prior, which is the quadratic prior:

R(λ) =
∑
i

1

2

∑
k∈Ki

wik(λi − λk)2 (2.12)

where Ki indicates the set of voxels whose intensities are to be combined . Typically, differ-

ences only between each element and its nearest neighbours are defined in (2.12) and this set of

voxels is called a neighbourhood of voxel i (or clique).

A first order penalty includes voxel’s vertical and horizontal neighbours, whereas a second or-

der penalty included also the voxel’s diagonal neighbours [Hebert and Leahy, 1989].

The penalty weights wik give the possibility to specify a different amount of regularisation for

each neighbourhood, allowing for local resolution control. In order to assure that (2.9) has a

unique solution when the likelihood function L(·, ·) is concave, we choose the quadratic penalty

function (which is a symmetric concave function) to be a non-negative definite function. There-

fore, the weights wik are constrained to be non-negative.

If the weights are identical, regardless of the voxel location in the object space, R(λ) is called

a shift-invariant penalty. If the penalty is shift-invariant and weights are identical for all pairs

in the neighbourhood, the penalty is called a uniform penalty. For example, a conventional

uniform first-order penalty is defined by wik = 1 for the horizontal and vertical neighbours and

wik = 0 otherwise. A uniform second-order penalty includes wik = 1/
√

2, for the diagonal

neighbours (where the
√

2 term is a distance scaling).

Penalised-likelihood (PL) methods present advantages over other regularisation tech-

niques. Using PL methods the conditioning of the reconstruction problem is improved and

the convergence rate of the iterative algorithm used for optimisation tends to increase.

However, the use of penalty functions present some possible disadvantages. The most

notable disadvantage is the non-intuitive relation between the penalty function and the res-

olution properties of the reconstructed image. The use of a shift-invariant post-smoothing

approach leads to a shift-invariant resolution response, whereas the use of a shift-invariant

uniform penalty function results in a shift-variant resolution response (as we will discuss
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in chapter 3). However, such limitations may only represent problems with conventional

penalty functions. Specially designed penalty functions to correct for space-variant resolu-

tion properties inherent in PL estimators have been introduced in [Stayman and Fessler, 2000].

2.5.5 Reconstruction Algorithms

Several algorithms are presented in the literature, that are used for performing the objective

function maximisation in (2.9). In the case in which we are using a reconstruction method in

order to maximise an objective function; the algorithm itself does not affect the solution. Only

the speed at which the algorithm reaches convergences is affected by the characteristics of the

algorithm.

The most commonly used iterative algorithm in emission tomography is the Maximum

Likelihood Expectation Maximisation (ML-EM) algorithm, which is based on EM algorithm

for the maximisation of the likelihood. The EM iteration alternates between performing an ex-

pectation (E) step, which creates a function for the expectation of the log-likelihood evaluated

using the current estimate for the parameters, and a maximisation (M) step, which computes

parameters maximising the expected log-likelihood found on the E step. First, ML-EM, when

applied to the Poisson model, guarantees non-negativity of the solution; second, ML-EM guar-

antees convergence (for proof of convergence, see [Shepp and Vardi, 1982]).

Certain algorithms are not guaranteed to converge. For example, practical application of the

expectation maximisation (EM) algorithm has been facilitated by the introduction of ordered

subsets (OS) [Hudson and Larkin, 1994]. The OS method consists in accelerating the algo-

rithm by processing only a subset of projection data at each iteration. However, how these

subsets are chosen affects the image that is reconstructed, and therefore the algorithm may not

be guaranteed to converge.

For PL estimation, the EM algorithm can not be applied (at least not in the formulation

presented in [Shepp and Vardi, 1982]), since a closed form solution for the M-step does not exist

for a generic choice of the penalty function. In order to calculate the PL estimate, an interesting

possibility is to use the One Step Late EM (OSL-EM) introduced by Green [1990]. OSL-EM is

not guaranteed to converge and does not impose non-negativity. However the algorithm behaves

well in most practical cases as long as the prior has a relatively small importance. Several algo-
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rithms to calculate the PL estimate with guaranteed convergence have been developed. As an

example, Pierro [1995] gave an alternative derivation of the MLEM algorithm using surrogate

functions, which leads to a natural extension of the MLEM algorithm to penalised likelihood

estimators, with guaranteed convergence. The algorithm presented in [Pierro, 1995] is no longer

an expectation maximisation algorithm, but it is a convergent algorithm that becomes identical

to MLEM if the weight of the penalty is set to zero.

In the previous paragraphs, a discussion on how the form of the Likelihood function L(·, ·)

and of the Penalty function R(·) affects the quality of the estimate has been presented. All the

algorithms described in the previous paragraphs contain a forward projection and a backprojec-

tion operation (although the backprojection is not always necessary, e.g. simulated anealing).

Thus, another characteristic of the model in use, that affects the quality of the reconstructed

image, is the accuracy of the system model H . As an example, a less accurate backprojector

Hb 6= H ′ is sometimes substituted for adjoint operator in order to accelerate the reconstruc-

tion algorithm. However, since a typical iterative algorithm applies both the forward projector

H and the backprojector H ′ once at each iteration, the error due to a mismatch between the

two operators may accumulate, resulting in artifacts [Zeng and Gullberg, 2000]. Therefore a

trade-off between accuracy of the system model and computational burden (associated with a

more complex model) arises.

In this thesis, we have used for reconstruction an accelerated GPU (graphics processing

unit) implementation of the ML-EM algorithm for ML estimation and of the OSL-EM algo-

rithm for PL estimation, implemented as part of the NiftyRec toolbox Pedemonte et al. [2010].

In Nyftirec, the backprojector operator is carefully implemented to match the adjoint of the

projector operator. The error between the two operators is given by:

〈Hλ,ν〉
〈λ,H∗ν〉

− 1 = 0.0016 ∀λ,ν ∈ R (2.13)

This mismatch of the 0.16% will be assumed in the rest of this thesis to not affect the recon-

structed image quality.
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2.6 Data Collection

In the next two chapters, different methods for the characterisation of the image quality and

several Figures Of Merit (FOMs) will be presented.

The data used for image quality assessment in emission tomography can be collected by

performing real measurements of phantoms, specially designed for different FOMs. As an

example, the Jaszczak phantom, a phantom consisting of line sources with varying diameters,

is often used for resolution studies. A phantom consisting of hot and cold spots on a uniform

background is also used for evaluation of contrast recovery.

In the last two decades, several numerical simulation algorithms based on the Monte

Carlo method have also been developed to simulate commercially available imaging systems

for SPECT [Jan et al., 2004] [Toossi et al., 2010]. These Monte-Carlo simulators are capable of

accommodating complex scanner geometry and imaging configurations, while including com-

prehensive physics modelling abilities. Millions of photons are simulated and tracked starting

from their emission point, and taking into account the photon-electron interactions in the patient

body tissues and in the detector materials. The use of a Monte-Carlo simulator therefore permits

the implementation of a realistic system matrix, at the price of time consuming simulations.

In this PhD work we perform simulations using computer phantoms and the simplified

convolution-based forward projector implemented as part of the NiftyRec toolbox [Pedemonte

et al., 2010]. The use of computer phantoms and of a convolution-based projector algorithm to

simulate data acquisition, is less realistic than either performing real measurements or using a

Monte-Carlo simulator, but sufficiently accurate for our purposes and much less time consum-

ing. The use of a convolution-based projector algorithm permits the generations of thousands of

noise realisations from the same noiseless projection data. A process that would be impractical

or extremely time consuming with one of the other two methods described above. As will be

shown in the next chapter, being able to reconstruct thousands of noise realisation is in fact

fundamental if one wants to perform a statistical calculation of the image quality.
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Chapter 3

Statistical Evaluation of Image Quality

In this chapter we summarise the statistical approach for the calculation of the uncertainty in

the reconstruction.

In chapter 2 section 2.5.1, the statistical reconstruction method to estimate the activity distribu-

tion λ from the measurement data ν has been introduced. A reconstruction algorithm provides

an image of the activity distribution that is most likely, according to the characteristics of the

imaging system and to prior belief, to have generated the photon interactions measured by the

imaging system. Such measurement is uncertain due to the limited amount of information that

the scan may acquire. Thus, it is essential to estimate the uncertainty of the measurement pro-

duced by a given system set-up, in order to compare it with other set-ups, thereby enabling the

optimisation of the design of an imaging system.

The estimation of the uncertainty in the reconstruction is an application-dependent prob-

lem, since it is highly influenced by many factors including the system design, the estimator,

the specific reconstruction algorithm and the activity uptake and distribution. Therefore, as we

will show in the following sections of this chapter, the calculation of the uncertainty is not only

system- and estimator-dependent but it is also object-dependent.

Since this PhD work focuses on system optimisation, it is important to decouple the cal-

culation of the uncertainty from the properties of the specific reconstruction algorithm in use.

The Figure Of Merits (FOMs) presented in this chapter, such as mean and covariance of the es-

timator, are therefore derived using the assumption that the estimate is computed by completely

maximising the objective function.

In order to (effectively) maximise the objective function, the reconstruction algorithm must be
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iterated to convergence. Therefore these FOMs are not applicable to unregularised methods that

make use of a stopping rule to terminate the reconstruction algorithm at early iterations (before

the maximiser is reached).

There has been much work in the literature, on analysing the statistical properties of an esti-

mator as a function of the number of iterations. Barrett et al. [1994] introduced a method to

estimate the variance by identifying how noise is propagated through EM iterations. These

methods have been extended to identify the mean and variance properties of PL and OSEM

estimates as a function of iteration [Wilson et al., 1994] [Soares et al., 2000] [Qi, 2003] [Soares

et al., 2005]. The FOMs introduced in this chapter are somewhat easier to use because they

are independent on the specific reconstruction algorithm, provided that sufficient iterations are

used to maximise the cost function.

The FOMs presented in this chapter are also derived assuming that the estimator objective

function has a unique solution and therefore a unique global maximiser. To ensure uniqueness

of the solution, an appropriate regularisation penalty is included in order to obtain a strictly con-

cave objective function. Bias is however unavoidable for Penalised-Likelihood (PL) estimators

and an effective method for quantifying resolution properties of such estimators is needed.

A simple technique for investigating the resolution properties of an imaging system is to

reconstruct a test phantom consisting of line sources with varying diameters. Imaging a test

phantom we directly show the features that can be resolved. However, the resolution of these

lines would depend not only on their dimensions, but also (non-linearly) on the intensity of the

lines, on the intensity of the background the lines are immersed in and even on activity distribu-

tion in regions that are possibly far from the location of the lines. Resolution is therefore said

to be spatially and object dependent.

In order to account coherently for the spatial and object dependency of the resolution, more spe-

cific tasks need to be considered. To this extent, task-specific FOMs, based on the performance

of human or mathematical observers in classification, such as the detection of a certain class of

tumours, have been defined and explored by Barrett et al. [1998], Barrett et al. [2006], Khurd

and Gindi [2005], Gifford et al. [2005], Gilland et al. [2006], Yendiki and Fessler [2006].

Moreover, SPECT system optimisation can be evaluated based on the fundamental trade-off

between bias and variance that can be achieved in the reconstruction of emission tomograms
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[Nuyts, 2009] [Vunckx et al., 2008a] [Vunckx et al., 2008b] [Zhou et al., 2010]. In this chap-

ter, a method to quantify resolution and variance for PL estimators will be discussed and the

concept of Linearised Local Impulse Response(LLIR) will be introduced.

3.1 Statistical Method for the Calculation of the Uncertainty in the

Estimation

In chapter 2 section 2.5.1, an objective function Ψ(λ) has been introduced. This objective

function depends on the unknown parameters λ and the noisy measurements ν and can be

expressed as:

Ψ(λ,ν) = L(ν,Hλ)− βR(λ) (3.1)

where L(·, ·) andR(·) are referred to as the likelihood function and the penalty function respec-

tively. An estimator λ̂ = λ̂(ν) was defined as the constrained maximizer of the following cost

function:

λ̂ = arg max
λ≥0

Ψ(λ,ν) (3.2)

In the following, it will be assumed that Ψ(·,ν) has a unique solution and therefore a unique

global maximiser λ̂ = λ̂(ν).

In practice, since there is no closed form for (3.2), a reconstruction algorithm is iterated to

convergence in order to maximize this objective function. A reconstruction algorithm therefore

provides an estimate of the radioactivity distribution but such estimation is uncertain, due to the

limited amount of information that the scan may acquire.

The reference method, or frequentist approach, used to calculate the uncertainty of the

estimation involves the calculation of λ̂ for Nr independent experiments, where the expected

measurement values ν are kept fixed, while the noise is sampled from the Poisson distribution.

Assuming the number of noise realisations Nr to be a large number, the mean of the

estimate over the noise realisations

λ̌ =
1

Nr

Nr∑
n=1

λ̂(νn) (3.3)
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can be considered as a good approximation of the expectation value E[λ̂].

The FOMs to characterise the statistical properties of the estimator are defined in the fol-

lowing.

Bias

The Bias is defined as the difference between the expectation value of the estimate and the true

values of the parameters to be estimated (the true activity distribution):

Bias(λ̂) = E[λ̂]− λ = λ̌− λ (3.4)

Variance

The variance of an estimator can be defined as follows:

Var(λ̂) = E[(λ̂− E[λ̂])2] = E[(λ̂− λ̌])2] (3.5)

If the variance have to be estimated from the data themselves, the sample variance can be

calculated as:

Var(λ̂) =
1

Nr

Nr∑
n=1

(
λ̂(νn)− E[λ̂]

)2
=

1

Nr

Nr∑
n=1

(
λ̂(νn)− λ̌

)2
(3.6)

Covariance

The Covariance provides a measure of the strength of the correlation between one variable and

all the other variables. If one is interested in how the variation in one voxel i is correlated to the

variation in all the other voxels, it is possible to calculate the Covariance matrix for each pair of

variables as:

Cov(λ̂i, λ̂j) = E[(λ̂i − E[λ̂i])(λ̂j − E[λ̂j ])] = E[(λ̂i − λ̌i])(λ̂j − λ̌j ])] (3.7)

If the variance have to be estimated from the data themselves, the sample covariance for a voxel

i can be calculated as:

Cov(λ̂i) =

Nr∑
n=1

N∑
j

(
λ̂i(νn)− E[λ̂i]

)(
λ̂j(νn)− E[λ̂j ]

)

=

Nr∑
n=1

N∑
j

(
λ̂i(νn)− λ̌i

)(
λ̂j(νn)− λ̌j

) (3.8)
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3.1.1 Variance as a Function of the Number of Iterations

The FOMs presented in the previous section are derived using the assumption that the estimate

is computed by completely maximising the objective function.

In order to effectively maximise the objective function, the reconstruction algorithm must be

iterated to nearly reach convergence. The number of iterations needed to reach the point of

convergence depends on many factors; the system design, the object to be imaged, the specific

reconstruction algorithm and the penalty function. For every experiment presented in chapters

5, 6 and 7, the objective function, Ψ = L− βR, will be plotted as a function of the number of

iterations to visually show the rate of convergence for the specific system under investigation.

In this section, a simple experiment that visually shows the variance properties of an ML

estimator as a function of EM iterations is presented.

The estimator variance is here calculated for a SPECT system. The SPECT system is based

on a detector that rotates 360◦ around the centre of the imaging volume. The imaging volume

dimensions are 128 × 128 × 1 cubic voxels of 2.46 mm. The detector efficiency terms cd, the

attenuation factors adi and the spatial variation in sensitivity terms si are set to 1. The geometric

response is depth-dependent and therefore shift variant. The SPECT camera is placed at a

distance of 162 mm from the centre of the imaging volume and is equipped with a Low Energy

High Resolution collimator (LEHR). The intrinsic response is set to 3.6 mm, the collimator

has a linearly varying depth-dependent Gaussian response that has a slope of 0.0533, which

corresponds to 9.44 mm FWHM at the centre of the field of view.

The phantom used was a uniform disk positioned at the centre of the image space, with diameter

D = 157 mm. The level of activity in the background was set to the 10% of the activity in the

disk. From this activity distribution, projection data, ν, has been simulated with 1 million total

mean counts. A series of independent noise realisations was computed using a pseudo-random

Poisson noise generator (from the IRT toolbox [Fessler, 2012]) The projection data have been

reconstructed using the ML-EM algorithm included in the Niftyrec toolbox [Pedemonte et al.,

2010]. Images of the variance for the ML estimator as a function of iterations are presented

in Figure 3.1. From the image profiles in 3.1 - B we can remark that when the algorithm is

stopped at 20 iterations the variance in the centre of the disk is lower than the variance at the

borders. This effect is due to the fact that a SPECT system has a coarser resolution in the
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centre of the FOV rather then at the edges. In fact, even if the depth-dependent geometric

response is modelled both in the projection and in the backprojection operator, if one stops

the reconstruction algorithm at early iterations, a spatial dependent bias is introduced in the

estimate.

When the reconstruction is stopped at 200 iterations the algorithm starts compensating for the

depth-dependent geometric response and the variance has approximatively uniform values in

the whole disk.

Finally, at 2000 iterations, if the system matrix H is non-singular and when the algorithm

almost reaches the point of convergence, the off-centre voxels have a lower variance than the

central voxels of the phantom. When the algorithm is iterated almost to convergence, it fully

compensates for the geometric response, leading to an estimate that is approximately unbiased.

Under the assumption that the estimate is approximately unbiased, the variance becomes the

only FOM to quantify the uncertainty in the reconstruction. Therefore, Figure 3.1 shows a

fairly intuitive result: a coarser geometric response in the centre of the FOV introduces higher

uncertainty in the estimation and thereby a higher variance in that region of the phantom.

3.1.2 Estimated Variance as a Function of the Number of Noise Instances

In this section the estimated variance properties of a ML estimator, for a shift-variant SPECT

system, are studied as a function of the number of noise instances.

In section 3.1, it has been stated that the frequentist approach for the calculation of the un-

certainty involves the estimation of λ̂ for Nr independent experiments, where the expected

measurement values ν are kept fixed, while the noise is sampled from the Poisson distribution.

In this section we consider what happens when the number of noise instances Nr increases.

Images of variance for the ML estimator as a function of the number of noise instances are

presented in Figure 3.1. The system under analysis is equivalent to the idealised SPECT system

presented in the previous section.

The variance image obtained from the reconstruction of 20 noise instances is rather noisy, due

to the finite number of repeated experiments. From Figure 3.1 it is possible to notice that

the variance images become smooth with increasing number of noise realisations. In fact,

the variance images, generally speaking, should be smooth because neighbouring voxels are

affected by similar levels of noise.
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In chapter 5, 6 and 7, it will be shown how, for photon counts typical of SPECT imaging,

as the number of noise instances increases, the penalised maximum-likelihood estimator attains

equality of the Uniform Cramér-Rao bound asymptotically and the estimated variance closely

resembles the approximated deterministic calculation of the variance based on the Fisher Infor-

mation method (presented in the next chapter).

3.2 Quantifying Resolution

In the two previous sections, the asymptotic properties of the ML estimator have been briefly

discussed. Under the assumption that the system matrix H is non-singular and the positivity

constraint is not active, the ML estimator is likely to be asymptotically efficient and asymptoti-

cally unbiased. Therefore, in the hypothetical case in which one performs an infinite sequence

of experiments, iterating to convergence the algorithm used to maximise the ML objective func-

tion, the estimator attains equality of the Cramér-Rao bound (presented in section 4.4) and an

expectation that equals λ. However, in practice, the full rank property of the system matrix

(non-singularity) seems quite difficult to verify and the conditions of asymptotic efficiency and

asymptotic unbiasedness are not so certain. This problematic circumstance is addressed by in-

cluding an appropriate regularisation penalty in equation (3.2) that leads to a strictly concave

objective function (and therefore the maximiser in 3.2 to have an unique solution). Bias how-

ever is unavoidable for PL estimators, and an effective method for quantifying the resolution

properties of such estimators is needed.

In this section, methods to quantify resolution are discussed and the concept of Linear Lo-

cal Impulse Response (LLIR) for penalised-likelihood estimators is introduced.

Before the Local Impulse Response is discussed as a method for resolution quantification, some

sample reconstructions using a PL estimator, where non-uniform resolution properties are read-

ily apparent, are presented. The aim is to demonstrate that non-uniform resolution properties

can arise even in reconstructions from noiseless projection data and from intrinsically shift-

invariant systems. The resolution properties of an image are, in fact, not only system- and

estimator-dependent but are also object-dependent. A simple technique for investigating the

resolution properties of an imaging system is to reconstruct a test phantom. Imaging a test

phantom, we directly show the features that can be resolved.
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Figure 3.1: Top figure: A - Images of the variance for ML estimator as a function of the number

of iterations and as a function of the number of noise instances. Bottom figure: Image profiles

that show the differences in the variance images at increasing number of noise instances. B

(left) - 20 iterations. C (centre) - 200 iterations. D (right) - 2000 iterations. Black (∗) - 20 noise

instances. Blue (+) - 200 noise instances. Red (◦) - 2000 noise instances.
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3.2.1 Non-uniform Resolution in Ideal Emission Tomography

The resolution properties of a penalised-likelihood estimator are here studied for an idealised

emission tomographic system.

The system is based on a detector that rotates 360◦ around the centre of the imaging volume.

The imaging volume dimensions are 128 × 128 × 1 cubic voxels of 2.46 mm. The detector

efficiency terms cd, the attenuation factors adi and the spatial variation in sensitivity terms si

are set to 1. The geometric responseB′Bei is assumed to be shift-invariant except for discreti-

sation effects.

The phantom presents a hot circular region on the right, a cold circular region on the left, a

background ellipse (see Figure 3.2 - A) . Additionally, a small hot spot is placed in the centre

of each circular region. From this activity distribution noiseless projection data, ν, has been

simulated.

The noiseless projection data have been reconstructed using the Niftyrec algorithm for PL esti-

mation [Pedemonte et al., 2010]. The algorithm has been iterated to nearly reach convergence

in order to maximise the cost function in equation (3.2). A Maximum Likelihood estimate,

where the hyperparameter is set to β = 0 , is shown in Figure 3.2 - B . Since the system is

shift-invariant, the ML estimate yields shift-invariant resolution properties and all the regions

of the image are smoothed identically. A PL estimate where β = 10−3 is shown in Figure 3.2

- C. Comparing the ML and PL reconstructions, a decreased contrast in the small hot spot (in

the hot region) for the PL reconstruction can be noted. The non-uniform resolution properties

are more evident looking at the image profiles in Figure 3.2 - D. The profiles of the two hot

spots in the ML image are nearly identical, since both have the same contrast (height relative

to local background) and nearly identical shape. However, the hot spots in the PL image have

different contrast, since in the cold region the height relative to the local background is roughly

80% with respect to the true spot relative height, as opposed to 50% for the spot in the hot re-

gion. For this specific phantom, this is due to the resolution being much lower in the hot region

than in the cold region. This experiment therefore demonstrates the well-known non-uniform

resolution properties of a PL estimator even for an ideal imaging system [Fessler and Rogers,

1996]. Strictly speaking, however, the resolution properties in a voxel of interest do not depend

only on the intensity of the background the voxels are immersed in; since, when the prior has a
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Figure 3.2: Non uniformities for PL estimator in ideal emission tomography reconstruction

using a test phantom. Non uniform resolution properties arise even in the case of an idealised

shift-invariant system model. A (top left) - True activity distribution. B (top centre) - ML

estimate. C (top right) - PL estimate. D (bottom) - Image profiles: Black line (∗) - true activity

distribution. Blue line (+) - ML estimate. Red line (◦) - PL estimate.

quadratic form (so thatR is independent of λ), the resolution properties depend on the object λ

only through the projections ν. Due to the characteristics of tomographic acquisition, the esti-

mated activity in a given voxel is affected by the counts acquired in all detector bins whose rays

intersect that voxel. The uncertainty, and consequently the resolution, in the voxel of interest

is therefore dependent on the uncertainty in all voxels that are located along the path of these

lines.
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Figure 3.3: Non uniformities in SPECT reconstruction using a Jaszczak test phantom. A (left)

- Activity distribution. B (centre) - ML estimate. C (right) - PL estimate.

3.2.2 Non-uniform Resolution in SPECT

In this section, the resolution properties of a Penalised-Likelihood estimator for a shift-variant

SPECT system are studied by reconstructing a test phantom.

The SPECT system model is equivalent to the idealised model presented in the previous section

except that the geometric response B′Bei is depth-dependent and therefore shift variant. The

SPECT camera is placed at a distance of 162 mm from the centre of the imaging volume and

is equipped with a Low Energy High Resolution collimator (LEHR) . The intrinsic response

is set to 3.6 mm, the collimator has a linearly varying depth-dependent Gaussian response that

has a slope of 0.0533, which corresponds to 9.44 mm FWHM at the centre of the field of view.

We simulated a 236 mm diameter Jaszczak phantom with rod diameters of 6.4, 9, 10.25, 12.8,

17.9, and 25.6 mm. The activity distribution for this phantom is shown in Figure 3.3 - A. Figure

3.3 - B and Figure 3.3 - C show reconstructions of noiseless data using an ML estimator and a

PL estimator, respectively. For the PL estimator there is coarser resolution at the centre of the

field of view than at the edges. Moreover Figure 3.3 - C shows that the nonuniform resolution

properties are also anisotropic with increased radial blur. It should be noted, in fact, that the rods

appear slightly elliptical. While these phantom reconstructions are helpful in demonstrating the

possible anisotropy of the resolution properties of a PL estimator; it is difficult to identify the

local properties quantitatively. Therefore, it is important to look at the local impulse response

at various locations to quantify the local resolution properties.
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3.3 The Linearised Local Impulse Response

In the previous section, the object-dependent resolution properties of an estimator have been

demonstrated. Test phantoms for resolution quantification are often very different from the typ-

ical activity distributions that are being imaged in a real scan. Therefore, sample reconstructions

of test phantoms are not necessarily reliable to investigate resolution properties of an estima-

tor. Moreover because resolution properties are shift-variant for SPECT, it is difficult to fully

investigate resolution properties with a single phantom.

It is possible to fully represent the resolution properties of a system, with a shift-invariant

response, by means of a shift-invariant convolutional filter. This filter is referred to as the

Impulse Response function, since it refers to the reaction of a shift-invariant system in response

to an impulse function. This concept has been extended, for purposes of resolution investigation

in Emission Tomography, by looking at reconstructions with impulses added to an object of

interest [Fessler, 1996] [Stamos et al., 2010]. These responses therefore depend on the location

of the impulse and are referred to as Local Impulse Response (LIR) .

The local impulse response for the i-th voxel is defined as:

LIRi(λ̂) = lim
δ→0

E
[
λ̂(ν(λ+ δei))

]
− E

[
λ̂(ν(λ))

]
δ

(3.9)

where ei is the i-th unit vector. The Local Impulse Response characterises the estimator, system

and object dependent resolution properties. The LIR measures the change in the mean recon-

structed image, due to perturbation of a particular voxel in the noiseless object and it is local

in two different senses. First, it is a function of the index i, reflecting the shift-variant system

response. Second, it is dependent on the location in the N dimensional space through the as-

sumed parameter λ, reflecting the object dependency. It should be noted that E
[
λ̂
]

= λ for

unbiased estimators, in which case LIR(λ̂) = ei. PL estimators, however, are always biased,

so the LIR will appear to have the shape of a bump-function as will be shown in the following

sections.

The statistical calculation of the LIR implies the reconstruction until convergence of a

set of noisy measurements for every pixel j under investigation. In the context of emission

tomography, it has been observed by several investigators [Barrett et al., 1994] [Wilson et al.,
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1994] [Carson et al., 1994] that the mean over multiple noise realizations for a likelihood-based

estimators is approximately equal to the value that one obtains reconstructing a noiseless data

set:

λ̌ = E
[
λ̂(ν)

]
≈ λ̂(ν(λ)) (3.10)

This approximation is equivalent to make the assumption that the likelihood estimator is locally

linear. Therefore substituting (3.10) in (3.9) it yields the definition of Linearised Local Impulse

Response (LLIR) :

LLIRi(λ̂) ≈ lim
δ→0

λ̂(ν(λ+ δei))− λ̂(ν(λ))

δ
(3.11)

which leads to a much less computational expensive calculation of the LIR.

3.3.1 Sample Linearised Local Impulse Response for SPECT

In this section, equation (3.11) is used to investigate the resolution properties of a PL estimator

at different locations in the reconstructed image.

The shift-variant SPECT system model is equivalent to the one described in section 3.2.2. The

digital phantom in Figure 3.4 - A is similar to the phantom presented in section 3.2.1. This

128 × 128 × 1 phantom is composed of a warm background ellipse, a cold left disc, and a

hot right disc, with relative emission intensities of 2, 1, and 3. From this activity distribution,

noiseless projection data, ν, have been simulated.

The sample locations are marked by the × symbols in figure 3.4 - A. Choosing a PL estimator

with a Poisson noise model and a conventional uniform quadratic penalty, equation (3.11) has

been used to estimate the Linearised Local Impulse Response at these locations. The regular-

isation parameter for this particular estimator was chosen to be β = 10−3. The contours of

these linear local impulse responses are presented in Figures 3.4 - B, C and D. Contours are

formed at 25%, 50%, 75%, and 99% of the peak value. Moreover, the profiles of these linear

local impulse responses are presented in Figure 3.4.

This investigation demonstrates the shift-variant resolution properties of a PL estimator for a

conventional SPECT system. From the linear local impulse responses in Figure 3.4, it is pos-

sible to observe a broader response in the hot disc region with respect to the cold disc region.
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For this specific experiment, we could deduce that a PL estimator introduce greater smoothing

in high activity regions. However, when R has a quadratic form (so that R is independent of

λ), then remarkably the local impulse response given by (3.11) depends on the object λ only

through its projections ν. Since a given voxel is primarily affected by the counts acquired in

all detector bins whose rays intersect it, each voxel sees a different uncertainty and hence a

different effective smoothing parameter. For voxels where data certainty is smaller, the PL es-

timate will give more weight to the prior, which (being a smoothness prior) will cause more

smoothing. In emission tomography, voxels with higher activity yield rays with higher counts

and hence more uncertainty. Thus, penalised-likelihood methods using the standard uniform

penalty have lower spatial resolution in voxels that are intersected by rays with higher counts.

Moreover, as one might expect, due to the depth-dependent detector response, the local im-

pulse responses are broader near the centre of the field of view and narrower at the edges of

the phantom. From Figure 3.4 the anisotropic resolution responses at different locations in the

reconstructed image are also evident.

3.4 Figures Of Merit for Image Quality

For the calculation of the Image Quality, usually a trade-off between the resolution properties

and the noise properties of the estimator arises. An approach widely used in emission imaging

is to define a scalar measure for the bias and to consider the trade-off between bias and variance.

Therefore bias and variance properties are often combined in one FOM.

3.4.1 Contrast Recovery Coefficient

Evaluating the local impulse response serves as an important tool for resolution investigation.

Despite the fact that we can learn much by investigating the form of the local impulse response,

a scalar measure for resolution quantification is needed. It is possible to reduce the function

in equation (3.11) to a scalar measure by considering the local Contrast Recovery Coefficient

(CRC) , which is defined as the i-th element of the local impulse response calculated for the

i-th voxel:

CRCi = LLIRii(λ̂) (3.12)

The CRC can be used as an alternative to the full-width at half maximum (FWHM) as a measure



3.4. Figures Of Merit for Image Quality 59

0

0
0

0

0

0

0

0

1

1

1

1

2

2

2 3

3

4

4 5

0

0

0

0

0

0

0

0

0

1

1

1

1

1

2

2

2

2

3

3

3 4
4

0

0

0

0

0

0

0

0

0

1

1

1

1

1

2

2

2

2

3

3

3

44

5

0 10 20 30 40 50 60
−1

0

1

2

3

4

5

6x 10
−4

L
L

IR

0 10 20 30 40 50 60
−1

0

1

2

3

4

5

6x 10
−4

L
L

IR

0 10 20 30 40 50 60
−1

0

1

2

3

4

5

6
x 10

−4

L
L

IR

Figure 3.4: LLIRs contours and profiles, at different locations of the phantom, for a SPECT

system and PL estimator. A (top) - Activity distribution and sample positions for the Linearised

Local Impulse Response investigation. B (centre left) - LLIR contour for the left location in

the cold disc. C (centre) - LLIR contour for the right location in the hot disc. D (centre right)

- LLIR contour for the top location in the proximity of the phantom edge. E (bottom left) -

LLIR profile for the left location in the cold disc. F (bottom centre) - LLIR profile for the right

location in the hot disc. G (bottom right) - LLIR profile for the top location in the proximity of

the phantom edge.
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of resolution. There is a direct correspondence between the CRC-value and a certain resolution

expressed in FWHM, if the Impulse Response is a Gaussian-shaped function, which is not

always the case in emission tomographic imaging. To achieve some insight into the relationship

between these two metrics, a study has been performed in [Qi and Leahy, 2000]. In this study,

the FWHM and the CRC were compared for voxels at different radial distance from the scanning

axis. Since the local impulse response is not symmetric, a mean FWHM in the transaxial plane

was computed, using the mean FWHM area of the contour at half maximum. Even if this study

indicates a monotonic relationship between the mean FWHM and the CRC for every voxel;

the asymmetry of the LIR presupposes that any scalar measure of resolution at a point will be

deficient in characterising the resolution response. However, for our purposes, the CRC has

a distinct advantages over the FWHM in terms of the possibility to directly compute it from

equation (3.11).

3.4.2 Contrast to Noise Ratio

In the rest of this thesis, we consider the Contrast to Noise Ratio (CNR) in voxel i as figure of

merit for image quality calculation.

CNRi =
CRCi√
V ari

(3.13)

It accounts for the trade off between quantification accuracy and noise in the reconstructed

image, combining these two properties as one FOM.

3.4.3 Signal to Noise Ratio

Another commonly used figure of merit is the Signal-to-Noise Ratio (SNR) which is

SNRj =
Signal√
V ar

(3.14)

with Signal defined as the voxel value in the reconstructed image λ̂i.

3.5 Proposed Experimental Set-Up

For a systematic optimisation of a system, one would have to estimate the properties of the esti-

mator (covariance and the LLIRs) not only considering a single phantom but a class of objects.

The computational complexity of the statistical method, involving reconstruction to conver-

gence of thousands of noise realisations, has therefore precluded a systematic optimisation of
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the system design for a wide range of system parameters.The problem is further complicated

by the choice of the regularisation parameter β.

In this section, a criterion for the choice of β and description of purpose-made GPU ac-

celerated reconstruction software are presented. The reconstruction software is capable of pro-

cessing multiple reconstructions in parallel, enabling the estimation of the reference variance in

a reasonably short time (see table 4.1).

A series of independent noise realisations was computed using a pseudo-random Poisson

noise generator (of the IRT toolbox [Fessler, 2012]), based on the rejection sampling algo-

rithm described at page 293 of [Vetterling et al., 2002]. The noisy data sets were reconstructed

using an accelerated GPU implementation of the One Step Late algorithm for PL estimation,

implemented as part of the NiftyRec toolbox [Pedemonte et al., 2010]. 10000 iterations were

performed. A smoothing prior with a small weight β = 10−12 was included in the cost func-

tion. The value of the regularisation parameter was chosen after trial and error, as a minimum

value that nearly guarantees convergence within 10000 iterations. The calculation of the vari-

ance is based on 10240 noise realisations. The number of noise instances is a multiple of 1024

(10 times) as NiftyRec can process concurrently up to 1024 reconstructions in order to make

efficient use of the GPU. 10 repetitions were chosen in order to obtain satisfactory images of

variance. Though often variance is calculated with much smaller sample size and number of

iterations, we found that such large numbers are necessary to obtain a good estimate of the

variance.

Deterministic approximations for the mean and covariance of the PL estimator are pre-

sented in the next chapter. Moreover, in chapter 5, 6 and 7, the results obtained with the

reference statistical method based on the reconstruction of multiple noise realisations will be

compared with the results obtained from these deterministic approximations based on the Fisher

Information method. It will be shown that such large numbers of noise realisations are neces-

sary in order to meaningfully compare the results obtained with the statistical method with the

results obtained with the deterministic FIM-based method.
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Chapter 4

Deterministic Evaluation of Image Quality

4.1 Introduction

In this chapter the deterministic approach for the estimation of the uncertainty in the recon-

struction is summarised. Closed form analytical expressions of the statistical properties (such

as mean and variance) of the PL estimator, as defined in chapter 2, are unavailable. The ab-

sence of an explicit analytical expression makes it difficult to study the noise properties of the

estimator λ̂. In contrast, one can easily analyse the statistical properties of linear reconstruc-

tion methods such as the FBP method [Chesler et al., 1977]. Thus, in chapter 3, it has been

shown how it is possible to rely on numerical simulations to examine statistical properties of

nonlinear estimators. Although empirical studies are important, deterministic expressions, even

if approximate, can be convenient for designing imaging systems, and for comparing estima-

tors. A SPECT system may be evaluated based on the fundamental bias/variance trade-off of

the estimator and one would like to be able to easily study the estimator characteristics over a

range of system parameters. In such cases, numerical simulations can be prohibitively expen-

sive and therefore it is useful to have approximate expressions of the mean and covariance of

the PL estimator.

These approximations have been derived by Fessler and Rogers [1996] using the implicit func-

tion theorem, the Taylor expansion and the chain rule of differentiation. The expressions are

defined solely in terms of the partial derivatives of the cost function used for estimation. Since

partial derivatives are used in the derivation, the approximations presented in this chapter are

restricted to problems where λ is a continuous parameter vector. Therefore, strictly speaking,

the approach is not applicable to problems where inequality constraints are imposed. For un-
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regularised estimation methods, it is often necessary to impose a non-negativity constraint on

λ̂. However, for cost functions that include an appropriate penalty function for regularisation,

non-negativity constraints are active relatively infrequently. Negative values can be avoided by

keeping the weight of the prior beta low enough [Bruyant, 2002]. An approach that tackles this

problem has been proposed by [Li et al., 2004], where they introduce a generalisation based on

truncated Gaussian distributions.

The approximations presented in this chapter are derived using the assumption that the

estimate is computed by completely maximising the cost function. Approximations for mean

and covariance of the estimator will be defined at point of convergence.

The use of these deterministic approximations of the mean and the covariance of the es-

timator has been explored for the purpose of measuring image quality in [Fessler and Rogers,

1996] [Qi and Leahy, 2000] [Stayman and Fessler, 2000] and for the purpose of system de-

sign optimisation in [Nuyts, 2009] [Zhou et al., 2010] [Vunckx et al., 2008a]. SPECT systems

may, in fact, be evaluated based on the fundamental trade-off between bias and variance that

can be achieved in reconstructed images and such trade-offs may be derived analytically using

the Cramer-Rao type bounds [Hero et al., 1996] [Meng and Clinthorne, 2004] [Meng and Li,

2000]. All these deterministic approximations imply the calculation and the inversion of the

Fisher Information Matrix (FIM) and they are referred to as Fisher Information-based methods

in the remainder of this manuscript.

Unfortunately, computing, storing and inverting the FIM is not feasible for the typical

matrix size of 3D imaging systems. In order to tackle the problem of the computational load

in inverting the FIM, an approximation has been previously proposed. Qi et al. [Qi and Leahy,

2000] argued that if we are only interested in calculating the properties of an estimator in a

single voxel i, it is acceptable to ignore the non-stationarity of the FIM. The computations are

done for voxel i, and therefore only the i-th row of the FIM needs to be calculated. This local

approximation of the FIM, explained in more detail in section 4.5.1 of this chapter, is obtained

by replacing all rows of the FIM with the shifted version of its i − th row. Consequently the

FIM simply reduces to a circulant matrix and this approximation is referred to as the circulant

approximation.

However, due to the characteristics of tomographic acquisition, the estimated activity in
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a given voxel is affected by the counts acquired in all detector bins whose rays intersect that

voxel. The uncertainty (or variance) in the voxel of interest is dependent on the uncertainty in all

voxels that are located along the path of these lines. The uncertainties of all those other voxels

are also dependent on the uncertainty in all voxels that are located along the path of the lines that

intersect them. Therefore, the influence of the distribution of activity in distant voxels on the

uncertainty in a voxel of interest depends, comprehensively, on the tomographic reconstruction

approach. However, since in a SPECT system with parallel hole (PH) collimators, the counts

in the detector bins are the expressions of the integral of the emitted photons originating from a

conical volume (and not simply from a line), the interdependence between the voxels becomes

even more complex. The full FIM accounts for such complex interdependence between all the

voxels in the imaging volume; whereas the aforementioned circulant approximation makes use

of a single row of the FIM and does not capture such interaction (see section 4.5.4).

In this chapter, a novel algorithm for efficient estimation of the uncertainty in the recon-

struction, based on the Fisher Information, is introduced. This new formulation relies on sub-

sampling the FIM. The FIM is calculated over a subset of voxels arranged in a grid that covers

the whole volume. Every element of the FIM at the grid points is calculated exactly, account-

ing for the acquisition geometry and for the object, without further approximation. This new

formulation, presented in section 4.5.2, reduces the computational complexity in inverting the

FIM but nevertheless accounts for the global interdependence between the variables.

The main aim of this thesis is to emphasise the benefits of this new approximation of the

FIM with respect to the aforementioned circular approximation for the optimisation of SPECT

systems with highly shift-variant response (as a result of distance dependent resolution and

adaptive data sampling).

4.2 Mean and Covariance of Implicit Estimators

In chapter 2 section 2.5.1 an objective function Ψ(λ) has been introduced:

Ψ(λ,ν) = L(ν,Hλ)− βR(λ) (4.1)

that depends on unknown parameters λ and noisy measurements ν and where L(·, ·) and R(·)

are referred to as the likelihood function and the penalty function respectively. An estimator



4.2. Mean and Covariance of Implicit Estimators 65

λ̂ = λ̂(ν) is here defined as the unconstrained maximiser of this cost function:

λ̂ = arg max Ψ(λ,ν) (4.2)

In the following, Ψ(λ) is assumed to be a suitably regular function, so that the partial derivatives

used below exist. Ψ(·,ν) is also assumed to have a unique maximum and therefore a unique

global maximiser λ̂ = λ̂(ν).

4.2.1 Mean Approximation

In this section an approximation for the calculation of the mean of the estimator λ̂ is described.

In equation 3.3, we defined the mean over multiple noise realisations for a likelihood-based es-

timator. In general, calculation of the mean, E[λ̂], can be extremely computationally expensive.

However, as already described in section 3.3, assuming that the cost function Ψ is locally linear

in ν, the expectation of the estimate is approximately equal to the value produced by applying

the estimator to noiseless data:

λ̌ = E[λ̂(ν)] ≈ λ̂(ν) (4.3)

This approach requires modest computation, and it has been used extensively by investigators

in emission tomography [Barrett et al., 1994] [Wilson et al., 1994] [Carson et al., 1994].

4.2.2 Covariance Approximation

In this section, the approximations for the deterministic calculation of the covariance of the

estimator λ̂ are described. In the following, the covariance matrix will be derived as the inverse

of the Hessian of the posterior distribution calculated at the PL estimate; where the Hessian is

the sum of two matrices: the Fisher Information Matrix and the Hessian of the penalty function.

These approximations follow the derivations of Fessler [1996].

Covariance Approximation 1

A necessary condition for λ̂ to be the maximiser of (4.1) is that the following equation must be

satisfied for any i:

∂

∂λi
Ψ(λ,ν)|λ=λ̂(ν) = 0, i = 1, . . . , N. (4.4)

This equation can be written concisely in vector form as:
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Σ(λ̂,ν) = ∇[1,0]Ψ(λ̂,ν) = 0 (4.5)

where∇[1,0] =

[
∂

∂λ1
, . . . ,

∂

∂λN

]
is the row gradient operator, which returns a vector of partial

derivatives with respect to the first argument of Ψ.

Equation (4.5) requires Ψ to be a suitably regular function, and therefore restricts the approxi-

mation to continuous parameters. This is the reason why this covariance approximation can not

account for non-negativity constraints.

Performing the first-order Taylor series expansion of Σ, the following equation is obtained:

Σ(λ̂) ≈ Σ(λ̌,ν) +∇[1,0]Σ(λ̌,ν)(λ̂− λ̌) (4.6)

where the linearisation point is chosen to be the approximated mean of the estimator, λ̌, as in

equation (4.3). The N ×N matrix Γ = ∇[1,0]Σ is the Hessian of Ψ

Γ = ∇[1,0]Σ(λ̌,E [ν]) = ∇[2,0]Ψ(λ̌,ν) (4.7)

where the∇[2,0] operator yields a matrix whose (i, j) -th element is
∂2

∂λi∂λj
.

It is then possible to equate the approximation (4.6) to zero, using (4.5), yielding:

Σ(λ̌,ν) ≈ −Γ(λ̂− λ̌) = −∇[2,0]Ψ(λ̌,ν)(λ̂− λ̌) (4.8)

Assuming that the Hessian Γ is invertible (i.e. if the cost function Ψ is strictly concave) and

rearranging equation (4.8), the following linearised approximation for the estimator is obtained:

λ̂ ≈ λ̌−
[
∇[2,0]Ψ(λ̌,ν)

]−1
Σ(λ̌,ν)

≈ λ̌− Γ−1Σ(λ̌,ν)

(4.9)

Taking the covariance of both sides of (4.9) yields the following covariance approximation

Cov(λ̂) ≈
[
∇[2,0]Ψ(λ̌,ν)

]−1
Cov{Σ(λ̌,ν)}

[
∇[2,0]Ψ(λ̌,ν)

]−1
≈ Γ−1Cov{Σ(λ̌,ν)}Γ−1

(4.10)
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Covariance Approximation 2

As a further approximation, it is possible to linearise Σ around the mean of the measurements

data ν:

Σ(λ̌, ν) ≈ Σ(λ̌, ν) +∇[0,1]Σ(λ̌, ν)(ν − ν) (4.11)

where

∇[0,1]Σ(λ,ν) = ∇[1,1]Ψ(λ,ν) (4.12)

and the∇[1,1] operator yield a matrix whose the (i, d) -th element is
∂2

∂λi∂νd
.

This linearisation leads to the second approximation:

Cov{Σ(λ̌,ν)} ≈
[
∇[1,1]Ψ(λ̌, ν)

]
Cov{ν}

[
∇[1,1]Ψ(λ̌, ν)

]′
(4.13)

which, substituted into (4.10), yields the following covariance approximation:

Cov{λ̂} ≈
[
∇[2,0]Ψ(λ̌, ν)

]−1 [
∇[1,1]Ψ(λ̌, ν)

]
Cov{ν}·

·
[
∇[1,1]Ψ(λ̌, ν)

]′ [
∇[2,0]Ψ(λ̌, ν)

]−1 (4.14)

To summarize, (4.10) and (4.14) are expressions for the estimator covariance that depend only

on the partial derivatives of the cost function Ψ, and do not require an expression for the implicit

function λ̂(ν). These approximations do depend on λ̌, which one usually computes using (4.3)

by applying the reconstruction algorithm to the noise free data ν.

Covariance Approximation for Penalised Likelihood Estimators

In this section, the covariance approximation is derived for the penalised likelihood estimators

of the form expressed in equation (4.1). Substituting (4.1) into (4.14), we obtain:

Cov{λ̂} ≈
[
−∇[2,0]L(λ̌, ν) +∇[2,0]R(λ̌)

]−1 [
∇[1,1]L(λ̌, ν)

]
Cov{ν}·

·
[
∇[1,1]L(λ̌, ν)

]′ [
−∇[2,0]L(λ̌, ν) +∇[2,0]R(λ̌)

]−1 (4.15)

For the Poisson model in (2.6) the partial derivatives of the log-likelihood are:
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∂L

∂λi
(λ,ν) =

M∑
d

hdi

(
νd∑N

k hdkλk

)
∂2L

∂λi∂λj
(λ,ν) = −

M∑
d

hdihdjνd

(
∑N

k hdkλk)
2

∂2L

∂λi∂νd
(λ,ν) =

hdi∑N
k hdkλk

(4.16)

Making use of a uniform quadratic penalty function R(λ) of the form presented in (2.12), and

noting that this smoothing penalty may be written in matrix form as:

R(λ) =
1

2
λ′Rλ, (4.17)

the N ×N matrix,R, is the Hessian of the quadratic penalty and has elements defined by:

Rjk =


p∑
l=1

1

2
(wlj + wjl) k = j

−wjk k 6= j

(4.18)

Therefore the partial derivatives can be expressed in matrix form as:

∇[2,0]Ψ(λ̌,ν) = H ′D

[
νd(λ)

ν2d(λ̌)

]
H − βR

∇[1,1]Ψ(λ̌,ν) = −H ′D
[

1

νd(λ̌)

] (4.19)

It should be noted that the measurements data have independent Poisson distributions and there-

fore that Cov{ν} = D [νd(λ)]. Substituting (4.19) into (4.14) we obtain the following approx-

imation to the covariance of the estimator:

Cov(λ̂) =

[
H ′D

[
νd(λ)

ν2d(λ̌)

]
H − βR

]−1
H ′D

[
1

νd(λ̌)

]
D [νd(λ)] ·

·D
[

1

νd(λ̌)

]
H

[
H ′D

[
νd(λ)

ν2d(λ̌)

]
H − βR

]−1 (4.20)

and then, simplifying, the following expression is obtained:

Cov{λ̂} ≈ [F − βR]−1 F [F − βR]−1 (4.21)
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where F is an approximation of the Fisher Information Matrix defined as:

F (λ) = H ′D

[
νd(λ)

νd(λ̌)2

]
H (4.22)

whereas the Fisher Information Matrix is normally defined as the minus of the matrix of expec-

tations of the second partial derivatives of the log-likelihood (as described in section 4.4).

4.3 Linear Local Impulse Response

Recalling from section 3.3, the local impulse response describes how the estimate λ̂ would

change due to a point-like perturbation of the true object at a given spatial location.

As already stated in section 4.2.1, the mean over multiple noise realisations, for a pe-

nalised likelihood estimator, is approximately equal to the value that one obtains reconstructing

a noiseless data set. This approximation is equivalent to making the assumption that the like-

lihood estimator is locally linear. Thus, as already stated in section 3.3, this approximation

results in the definition of Linearised Local Impulse Response:

LLIRi(λ̂) ≈ lim
δ→0

λ̂(ν(λ+ δei))− λ̂(ν(λ))

δ

= ∇λ̂(ν(λ))∇ν(λ)ej

(4.23)

where∇λ̂ =
∂

∂λi
λ̂ is a N ×M matrix and∇ν =

∂

∂λi
ν and is a M ×N matrix.

This formulation leads to a much less computational expensive calculation of the LIR. How-

ever, even the calculation of the LLIR is computationally expensive since it implies a noiseless

reconstruction for each voxel i. Noting, from (4.23), that the LLIR is equivalent to the gradient

of λ̂; to further reduce the computational burden, an approximated deterministic formulation of

the LLIR is introduced in the following.

The definition of local impulse response given in (4.23) leads to expressions that depend

on the gradient of the estimator λ̂. We apply the chain rule to differentiate (4.5) with respect to

ν as follows:

∇[2,0]Ψ(λ̂(ν),ν)∇λ̂(ν) +∇[1,1]Ψ(λ̂(ν),ν) = 0 (4.24)

Solving the above equation yields the following general expression for the estimator gradient:
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∇λ̂(ν) =
[
∇[2,0]Ψ(λ̂(ν),ν)

]−1 [
−∇[1,1]Ψ(λ̂(ν),ν)

]
(4.25)

Combining (4.25) with (4.23) yields the following expression for the Linearised Local Impulse

Response for penalised likelihood estimators:

LLIRi(λ̂) =
[
∇[2,0]L(λ̌, ν) +∇[2,0]R(λ̌)

]−1 [
−∇[1,1]L(λ̌, ν)

]
∇ν(λ)ei (4.26)

Substituting (4.19) into (4.26) and noting that ∇ν(λ)ej = Hej , we obtain the following ex-

pression:

LLIRi(λ̂) =

[
H ′D

[
νd(λ)

ν2d(λ̌)

]
H − βR(λ̌)

]−1
H ′D

[
1

νd(λ̌)

]
Hei

= [F − βR]−1 F ei

(4.27)

where

F = H ′D

[
1

ν(λ̌)

]
H (4.28)

It should be noted that, in the above equations, we assume νd(λ) to equal νd(λ̌) and that the

above equation therefore differs from (4.22). However, when the system model H closely

approximates the actual system, and when the regularisation term approaches zeros, usually λ̌

approaches λ and this approximation becomes reasonable.

The local impulse response therefore depends on the regularisation term through its Hes-

sian, R. In equation (4.27) it is clear that LLIRi(λ̂) approaches ei as R approaches zero, for

well-conditioned problems.

4.4 The Fisher Information Matrix

In the previous section, the Fisher Information Matrix (FIM) of the likelihood has been in-

troduced in the definition of the deterministic approximations for covariance and the LLIR of

penalised likelihood estimators. Generally speaking, this matrix plays a key role in the analysis

of both spatial resolution and noise properties of image reconstruction methods based on the

Poisson model.
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The FIM, F (λ), is a N ×N symmetric matrix whose (i, j)-th element are defined by the

expected values of the second partial derivatives of the log-likelihood:

Fij(λ) = −E
[

∂2

∂λj∂λi
ln p(ν|λ)

]
= −E

[
∂2

∂λj∂λi
L(ν,λ)

] (4.29)

where p(ν|λ) is the conditional probability distribution associated with photon counting, that,

in Emission Tomography, is Poisson distributed (see equation 2.6). It can be shown that F is

positive semi-definite (positive definite if non-singular).

Considering an unbiased estimator as a maximiser of the log-likelihood function; a necessary

condition for the solution of such estimator is to set the first derivatives of the log-likelihood

to zero (see equation (4.5)). The second derivatives of the log-likelihood give us instead infor-

mation about the quality of the estimator and the FIM can be considered as a measure of the

sharpness of the log-likelihood function, around the ML estimate λ̂. A sharp curve around the

value of the estimate λ̂ corresponds to a well-posed problem, whereas a flat curve around λ̂

corresponds to an ill-posed problem.

The second partial derivatives of the log likelihood have been defined in equation (4.19).

Therefore for the Poisson model, the (i, j)-th element of the Fisher information matrix is cal-

culated as:

F (λ) = −E
[

∂2L

∂λi∂λj

]
=

M∑
d

hdihdjνd

(
∑N

i hdiλi)
2

=
M∑
d

hdihdj
νd

=
M∑
d

hdihdj∑N
i hdiλi

(4.30)

The matrix form of (4.30) is given by

F (λ) = H ′D

[
1

νd(λ)

]
H (4.31)

The first assumption we make in (4.30), in order to calculate the FIM, is that the reconstruc-

tion is locally linear, meaning that the mean of the noisy reconstruction can be well estimated

by the reconstruction of noiseless data. This in turn means that to calculate the FIM we need
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to know the activity distribution in advance. The exact FIM is a function of the reciprocal of

the mean measurement data at individual sinogram bins, which are unknown for real datasets.

Fessler and Rogers in [Fessler and Rogers, 1996] argued that, even for real noisy measure-

ments, it is possible to predict the variance simply by replacing ν with ν in (4.30). While this

approximation works well for high count studies, it is heavily biased in low count situation, and

needs further investigation. Moreover, another problem that could arise is the fact that the real

measurement data may present zero values at individual sinogram bins, νd = 0. In this case,

the FIM would present infinite values, clearly leading to an incorrect estimation of the variance.

This problem is avoided in the experiments presented in the rest of this thesis by always setting

the background of the object to a non-zero value, therefore imposing νd 6= 0.

It is also important to remark that the inverse of the Fisher information defines the lower

bound on the variance of an unbiased estimator.

The Cramér-Rao Bound

For any unbiased estimator λ̂ of λ, assuming that F is non-singular, the variance is bounded by

the following inequality:

Var(λ̂i) ≥
[
F−1(λ)

]
ii

(4.32)

which is known as the Cramér-Rao Bound (CRB) [Cramér, 1946]. Placing a bound on the

covariance matrix of the estimator, we obtain

Cov(λ̂) ≥ F−1(λ) (4.33)

where this inequality means only that Cov(λ̂)−F−1(λ) is positive semi-definite. An estimator

that achieves this lower bound is called efficient. Therefore, if an estimator λ̂ is unbiased and

efficient, the covariance matrix of the estimate is the Inverse of the Fisher Information Matrix.

Covariance bounds are useful for establishing performance limits of estimators, and for

imaging system design. In the presence of regularisation, the estimators can be biased so the

inverse of the Fisher information is not an accurate approximation to the estimator covariance.
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The Cramér-Rao Bound for Biased Estimators

In order to present a succinct derivation of the Cramér-Rao bound for biased estimators, the

definition of mean gradient of an estimator is introduced in the following:

U ij =
∂

∂λ
E[λ̂] =



∂

∂λ1
E[λ̂1]

∂

∂λ2
E[λ̂1] · · · ∂

∂λN
E[λ̂1]

∂

∂λ1
E[λ̂2]

∂

∂λ2
E[λ̂2] · · · ∂

∂λN
E[λ̂2]

...
...

. . .
...

∂

∂λ1
E[λ̂N ]

∂

∂λ2
E[λ̂N ] · · · ∂

∂λN
E[λ̂N ]


(4.34)

where each column of U is the local-impulse response (LIR) as defined in (4.27) and therefore

U = [F − βR]−1 F (4.35)

For an arbitrary estimator λ̂, whose mean gradient matrix is U , its covariance matrix must

satisfy:

Cov(λ̂) ≥ U · F−1 ·U ′ (4.36)

Another form for this bound uses the bias:

Bias(λ) = E[λ̂]− λ (4.37)

with its corresponding bias gradient matrix

Q = U − I (4.38)

Thus we can write the biased CRB as follows:

Cov(λ̂) ≥ [Q+ I] · F−1 · [Q+ I]′ (4.39)

It should be noted that, if λ̂ is an unbiased estimator for λ, then E[λ̂] = λ so U = I and

Q = 0, leading to the conventional CRB for unbiased estimators.

Moreover substituting (4.35) in (4.36) we obtain

Cov{λ̂} ≥ [F − βR]−1 F [F − βR]−1 (4.40)
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which is the Cramer-Rao bound for penalised likelihood estimators when the probability asso-

ciated with the data measurements is Poisson distributed.

4.5 Efficient Calculation of the FIM

In the previous section, it has been described how the Fisher Information Matrix can be em-

ployed to characterise the statistical properties (such as mean and covariance) of a PL estima-

tor. Unfortunately, computing the FIM inverse is intractable, since we are dealing with a large

matrix of size N ×N = (Nx ×Ny ×Nz)
2.

4.5.1 The Circulant Approximation of the FIM

A computationally efficient approximation in calculating the inverse of the FIM has been pre-

viously proposed for the design of space-variant penalties that yield space-invariant impulse

response functions [Stayman and Fessler, 2000] [Stayman and Fessler, 2004a] [Qi and Leahy,

2000].

Qi and Leahy [2000] argued that if it is reasonable to assume that the FIM varies slowly

with position and if one is interested in calculating the effects of a quadratic prior in terms of

bias gradient and variance in a voxel i, then it is acceptable to ignore the shift-variance of the

FIM. The basic idea is to use a local invariance assumption in the context of shift-variant system

modelling.

The computations are done for voxel i and therefore only the i-th row of the FIM needs

to be calculated. For representation purposes, the elements of the i - th column of the Fisher

Information Matrix can be re-ordered in order to represent an “image” associated with the i - th

voxel. The assumption implies that these “images” vary smoothly as one moves to the column

of the FIM associated with the neighbouring voxels. A second assumption implies that these

“images” have a local support; meaning that, for the i - th column, the non-zero values are

concentrated in the proximity of the (i, i) location in the FIM. Therefore when estimating the

LLIRi and the variance at the voxel i, we assume that these are largely determined by the i -

th column of the FIM.

This local approximation of the FIM is obtained by replacing all rows of the FIM with the

shifted version of its i − th row so that the resulting matrix F i has a block Toeplitz structure.

This shift-invariant matrix is then inverted in order to estimate the variance in each voxel i. This
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approximation is referred to as the circulant approximation, since it simply reduces the FIM to

a circulant matrix. The computations in (4.21) therefore become tractable as a circulant matrix

can be diagonalised using a Discrete Fourier Transform (DFT) . It is then possible to rewrite the

formulas of the covariance and of the LLIR for a voxel i, in the Fourier domain, as [Stayman

and Fessler, 2000]:

Covicirc(λ̂) ≈ F−1
{

F{ei} · F{HTD[1/νd]Hei}
|F{HTD[1/νd]Hei}+ F{βRei}|2

}
(4.41)

LLIRicirc(λ̂) ≈ F−1
{
F{ei} · F{HTD[1/νd]Hei}
F{HTD[1/νd]Hei}+ F{βRei}

}
(4.42)

where · denotes element-by-element multiplication and the division is an element-by-element

division. The term ei is the unit basis vector for the voxel i. The function F{·} takes the DFT

of its argument and D[·] produces a diagonal matrix whose diagonal entries are the reciprocal

of the noiseless projection data νd.

The true Fisher Information F must be a positive semi-definite matrix, or equivalently, its

eigenvalues must be real and non-negative. The circulant matrix used as an approximation is

not guaranteed to have this property. Consequently, the row of the FIM, [F · ei], is modified in

order to impose the symmetry condition. The elements of the i-th row of F are first re-ordered

as a 3-D matrix f . For an Nx × Ny × Nz imaging volume, this 3-D matrix is shifted so that

the i-th voxel is moved to the centre voxel (Nx/2 + 1, Ny/2 + 1, Nz/2 + 1). In order to ensure

that the 3 - D Fourier coefficients are real, the following symmetry is introduced:

f(i, j, k) = max{f(i, j, k), f(Nx − i+ 1, Ny − j + 1, Nz − k + 1)} (4.43)

Finally, any negative coefficient of the DFT of the resulting matrix are truncated to zero.

For a uniform quadratic prior, its hessian R already has a block Toeplitz structure. How-

ever, if a spatially variant prior is used, it is possible to apply the locally invariant approximation

Ri in a similar manner to that described above for F .

From (4.41) we can see how the approximated estimate of Covi(λ̂) for a single voxel

position i can be simply computed with a projection, a backprojection and a few fast Fourier

transforms [Nuyts, 2009]. However, it should be noted that the aforementioned method must

be repeated for each voxel under investigation.
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The circulant approximation method is well suited for the calculation of the uncertainty

for systems whose response can be approximated as shift-invariant; or in the case one wants to

estimate the local effects that a penalty function has on bias gradient and variance. However

this method does not account for the global interdependence between the estimates in all the

voxels; it therefore can not incorporate the effects of long-range correlations (e.g., evaluation

of the effects of data truncation or missing data).

4.5.2 A Subsampled version of the FIM

In this section we propose a different approach for calculating the inverse of the FIM. The

FIM is calculated over a subset of voxels arranged in a grid that covers the whole volume.

This formulation reduces the computational complexity in inverting the FIM but nevertheless

accounts for the global interdependence between the variables. The FIM is calculated over a

subset of the voxel indexesG ⊂ [1, . . . , N ] arranged in a grid that covers the whole volume. We

define a subsampled version of the FIM calculated over a subset λG of the full set of parameters

λ:

FGij =
M∑
d=1

hdihdj∑N
b=1 hbdλb

with i, j ∈ G (4.44)

This is equivalent to saying that, in the estimation of the covariance, we are accounting for the

interdependence between a subset of voxels i, j ∈ G only, assuming that, for the remaining

voxels i, j /∈ G, the PL estimate λ̂ is equal to the true value of λ.

The approximate deterministic calculation of the covariance is simply obtained by substituting

the FIM with its subsampled (4.44) version in the definition of the covariance matrix presented

in (4.21):

Cov(λ̂G) ≈ [FG − β ·RG]−1 · FG · [FG − β ·RG]−1 (4.45)

and equivalently, the approximate deterministic calculation of the LLIR is simply obtained by

substituting (4.44) in (4.27):

LLIRi(λ̂G) ≈ [FG − β ·RG]−1 · FGei (4.46)

The number of elements in the full FIM equals N2, whereas the number of elements of the
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subsampled FIM equals N2
G; therefore reducing the computational burden in inverting the sub-

sampled FIM.

The Hessian of the quadratic penalty R is not dependent on λ and therefore can be pre-

calculated. Analogously to F , the subsampled version of the penalty function RG is obtained

by selecting the elements of the matrix R that correspond to the points in the grid. In the

methodology presented in the next section, a quadratic penalty function with a small weight

has been included with the only purpose of enforcing the estimator to have a unique solution

and therefore to guarantee the regularised FIM ([F − βR]) to be invertible. However, since in

practice we subsample the matrix, the Hessian of the quadratic prior R reduces to a diagonal

matrixRG = Rii ∗ I (whereRii is the value of the diagonal elements of the uniform quadratic

prior R and I is an identity matrix of size NG ×NG). Thus, the addition of the term βRG, to

aid the inversion of [FG − βRG], can be seen as a sort of Tikhonov regularisation.

Two examples of grids are pictured in Figure 4.1, for a small imaging volume of 6× 6× 6

voxels. In Figure 4.1-A the grid accounts for the interdependence between every point in the

imaging volume, in Figure 4.1-B, the grid accounts for the interdependence between half of

the voxels in the imaging volume. This model allows the user to design the grid and therefore

to define the degree of approximation in the calculation of the FIM. In section 4.5.4, visual

representations of the FIM and of the Covariance matrix are presented for the full FIM, the

subsampled FIM and the circulant approximation. A discussion on how the missing FIM entries

between the grid points affect the accuracy of the results is also presented in section 4.7.

4.5.3 GPU Accelerated Implementation

Every element of the FIM at the grid points is calculated exactly, accounting for the acquisition

geometry and the object without further approximation. If the grid has NG nodes, the FIM is

of size NG × NG and symmetrical, so filling the matrix requires the computation of
1

2
N2
G +

1

2
NG elements. Naive computation of the FIM requires one projection for the denominator

of (4.44) and M sums of products (SOPS) for each of the
1

2
N2
G +

1

2
NG elements of the half

FIM. The proposed algorithm is inspired by the rotation-based algorithm proposed by Zeng and

Gullberg [Zeng and Gullberg, 1992]. The collimator-detector response is captured by a depth

dependent Point Spread Function (PSF). Information being additive over the detector bins, the

FIM element Fij is the sum of Fmij contributions from the M camera positions indexed with
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Figure 4.1: Example of grids for the estimation of the uncertainty. A (top left) the grid accounts

for the correlation between every point in the imaging volume (full FIM). B (top right) the

grid accounts for the correlation between 1/8 of the voxels in the imaging volume (subsampled

FIM). C (Bottom left) The central plane of the grid displayed in A. D (Bottom right) The central

plane of the grid displayed in B.
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Figure 4.2: Rotation-based algorithm for fast computation of the Fisher Information Matrix: 3-

D schematic representation. Algorithm: 1) For each Gamma camera (grey plane) position, the

activity λ is resampled on a regular grid parallel to the camera plane and projected; 2) The grid

points (yellow spheres) for the Fisher Information Matrix (FIM) are reinterpolated on the same

parallel grid; 3) For each pair of points in the FIM grid, the FIM element is updated with the

information relative to the current camera, which only depends on the region of the projection

Z (black square) where the two PSFs Xi (red square) and Xj (blue square) intersect.

m = 1, · · · ,M . The algorithm is based on interpolation of the activity and of the FIM grid on

a regular grid aligned with each camera. By re-interpolating the activity and the FIM grid on a

regular grid, the PSF can be applied more efficiently in the frequency domain as all points that

are at a given distance lie on the same plane. The PSF is non-zero within a box X (see Figure

4.2). The algorithm for the evaluation of the elements of the FIM consists of the following

steps:

1) Compute projection of λ for each camera position.

2) Compute FIM elements for each camera position:

a. Re-sample the FIM grid positions on the voxel grid parallel to the camera by tri-linear

interpolation.

b, For each pair of points i, j in the FIM grid

i. Compute coordinates of the box Z, on the camera plane, where the two PSFs Xi

Xj intersect (if they intersect).
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Table 4.1: Computation times for the calculation of the FIM and its inverse.

g1 g2 g3

Grid Size 27648 6912 3072

NVidia GeForce GTX-285 348s 30s 19s

Reference method 18 hours

ii. If Xi and Xj intersect, update the FIM element by integrating (4.44) over the inter-

section box Z.

The algorithm is implemented in the CUDA (aka Compute Unified Device Architecture) pro-

gramming language for parallel execution on Graphics Processing Units (GPU). Tri-linear re-

sampling is performed in hardware by the texture fetch unit of the GPU at the cost of a single

memory access. Coalesced memory access is achieved by partitioning the memory transfers in

blocks. The convolutions are calculated with the 2D-FFT (Fast Fourier Transform) and IFFT

(Inverse Fast Fourier Transform) routines included in the NVidia CUFFT library. A tailor made

GPU kernel computes the projection (sum of planes) with high device occupancy and max-

imises memory coalescing. A second kernel computes the integral in each intersection box

(2-b-ii): each GPU thread computes the integral (for the current camera position), for a pair

of points in the grid, so that the integrals for multiple pairs are evaluated concurrently on the

multi-processors of the GPU. Each thread decides if the two PSFs intersect, then it loads from

the global memory of the GPU device the sections of the PSFs that intersect and the projection

data in the area of intersection Z (see Figure 4.2). Finally, the thread computes the integral (2-

b-ii) in the intersection box. After completion of the partial FIM for a single camera position,

the process is repeated for another camera position, accumulating the elements of the FIM, as,

according to (4.44), information is additive. Computation times are reported in table 4.1. The

GPU-accelerated algorithm for the computation of the FIM has been implemented by Stefano

Pedemonte. This algorithm has been integrated in the Niftyrec reconstruction software toolbox

[Pedemonte et al., 2010] and has Matlab and Python interfaces which enable real time scripting

interaction and full flexibility in the definition of the grid.
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4.5.4 Subsampled FIM vs Circulant FIM

In this section, the link between the shift-variance of the system and the different approxima-

tions of the FIM is illustrated with an example. Figure 4.3 show the full Fisher Information

Matrix (Figure 4.3 A-B), the subsampled Fisher Information Matrix (Figure 4.3 C-D) and the

Circulant Fisher Matrix (Figure 4.3 E-F) for a simple experiment where the system is a standard

SPECT camera equipped with a Low Energy High Resolution (LEHR) collimator. One element

of the FIM is, by definition (equation (4.29)), the second order mixed partial derivative of the

log-likelihood with respect to the activity in two locations. These figures use “linear indices”

through the volume to which grey values proportionally to the FIM elements are assigned. The

indexing pattern of choice is the somewhat natural raster scanning pattern, where we start in the

top left corner of the image and we run through the rows and columns.

The SPECT system is based on a detector that rotates 360% around the centre of the

imaging volume. The imaging volume dimensions are 96×96×1 cubic voxels of 2.46 mm. The

detector efficiency terms cd, the attenuation factors adi and the spatial variation in sensitivity

terms si are set to 1. The geometric response is depth-dependent and therefore shift variant.

The SPECT camera is placed at a distance of 123 mm from the centre of the imaging volume

and is equipped with a LEHR collimator. The intrinsic response is set to 3.6 mm, the collimator

has a linearly varying depth-dependent Gaussian response that has a slope of 0.0562, which

corresponds to 7.89 mm FWHM at the centre of the field of view.

The phantom used was a uniform disk positioned at the centre of the image space, with diameter

D = 24.6 mm. The level of activity in the background was set to the 10% of the activity in

the disk. The uniform background was a disk positioned in the centre of the image space, with

radius 106.3 mm and height 29.5 mm.

It should be noticed that solving equation (4.41), for a voxel of interest i, is equivalent

to the inversion of a column of the FIM as if the full FIM were a block circulant matrix with

circulant blocks (for the 2-D case), which we refer to as F̃ . This is equivalent to creating a new

matrix by extracting the i-th column from the full FIM, F̃
i

= F i, and then obtaining from this

vector the remaining columns of F̃ by an appropriate circulant shift in 2D so that the peak of

F i becomes centered at the voxel corresponding to each column index.

Therefore we show, in Figure 4.3 E-F, the circulant Fisher Matrix for the calculation of the
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variance of a voxel of interest i in the centre of the FOV; whereas we show in Figure 4.3 A-B

the FIM for all the points in the FOV and in Figure 4.3 C-D the FIM for 1/4-th of the points.

As already described in section 4.5.3, all elements of the subsampled FIM at the grid points are

calculated exactly, accounting for the acquisition geometry and for the object. We can see, in

fact, how in the subsampled FIM we account for the system response and for the object depen-

dency, whereas with the circulant approximation method we make the assumption that the FIM

(and therefore the system response) is shift invariant. The number of elements in the full FIM

and in the circulant FIM equals N2, whereas the number of elements of the subsampled FIM

equals (N/2)2; therefore highly reducing the computational burden in inverting the subsampled

FIM. Since the FIM is a very large matrix and therefore difficult to display, we show the FIMs

for the 2-D case. Therefore the full FIM has 9216 points and the subsampled FIM has 2304

points.

However, what is ultimately of interest is the inverse of (F − βR) (the Covariance matrix).

Figure 4.4 shows the Covariance matrix calculated from the full FIM (Figure 4.4 A), the Co-

variance matrix calculated from the subsampled FIM (Figure 4.4 D) and the Covariance matrix

calculated using the circulant approximation method (Figure 4.4 B). Figure 4.4 B displays the

Covariance matrix obtained by row-by-row inversion of the circulant FIM, where each column

of the matrix is evaluated separately using (4.41). Symmetry is then imposed on the circulant

Covariance matrix by performing Covcirc = (Covcirc + Cov′circ)/2. The resulting Covariance

matrix obtained using the circulant approximation is spatially variant (non circulant) but clearly

does not show the same structure as the full FIM inverse, (F − β · R)−1, in Figure 4.4 A.

We can therefore deduce that the circulant FIM can not incorporate the effects of shift-variancy,

since it does not account for a depth-dependent collimator response. A direct visual comparison

between the inverse of the full FIM, (F − β ·R)−1, and the inverse of the subsampled FIM,

(FG − β · RG)−1, is arduous, because of the different size of the two matrices. Hence we

show, in Figure 4.4 C, a matrix which are obtained selecting the voxels at the locations of the

covariance matrix obtaind from the full FIM that correspond to locations of the elements of the

subsampled matrix and then rebinning the selected voxels in a smaller matrix of size (N/2)2.

Clearly, the inverse of the subsampled FIM, (FG − β · RG)−1, will not be exact at the grid

points because of the missing off-diagonal FIM entries between the grid points, however the
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matrices in 4.4 C and 4.4 D exhibit the same structure. This encompass the capability of the

method to incorporate non-stationary system functions and effects of long-range correlations.

4.6 Image Quality Quantification for System Design

In this paragraph, a figure of merit for SPECT system design based on the trade-off between

the bias and the variance that can be achieved in the reconstruction of emission tomograms, is

introduced.

Under the assumption that the system matrix H is non-singular and imposing β = 0 in

(3.2), the maximum likelihood estimator is asymptotically efficient and asymptotically unbi-

ased. One approach to system design, for the unbiased estimator, is to choose the parameters

of the imaging system that would produce the least error (minimum variance) in the asymptotic

case. This simply involves the inversion of the FIM, to obtain the covariance of the estimator,

and is referred to as the Cramer-Rao bound (see equation (4.32)).

However such approach is problematic because, in practice, the full rank property of the

system matrix (non-singularity) is quite difficult to verify. This problem is addressed by includ-

ing the regularisation penalty of equation (3.2) that leads to a strictly concave cost function and

makes F − β ·R in (4.21) invertible. However bias is unavoidable for penalised estimators, so

the unbiased Cramer-Rao bound is not-applicable.

The approach that is widely used in emission imaging is to obtain a local measure of

the bias gradient, using the Linearised Local Impulse Response(LLIR) for the i-th voxel as in

equation (4.27), and to consider the trade-off between bias and variance for the optimisation of

the system. In [Hero et al., 1996], a particular type of PL estimator including an appropriate

space-variant quadratic smoothing prior has been shown to achieve the Uniform Cramer Rao

Bound (UCRB). However the space-invariant prior further contributes to space-variance in the

bias gradient, as it has been shown in section 3.2.1. Therefore including and designing an

appropriate space-variant penalty function lacks practical justification for the optimisation of

the design of the imaging system.

To enable comparison between different systems at equal bias gradient, we rely on an

adaptation of (4.45) and (4.46) where a post-smooth filter P is added to the equations:
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Figure 4.3: Fisher Information Matrix for the experiment in section 4.5.4. Comparison between

full FIM, subsampled FIM and Circulant FIM. A (top left) - Full FIM, grid 9216 with points. B

(top right) - A zoom-in part of A. C (central left) - subsampled FIM, grid with 2304 points. D

(central right) - A zoom-in part of C. E (bottom left) - Circulant FIM for a voxel of interest i in

the centre of the FOV only. F(bottom right) - A zoom-in part of E
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A B

DC

Figure 4.4: Inverse of (FG−β·RG)−1 for the experiment in section 4.5.4. Comparison between

the Covariance matrix obtained from the full FIM, the subsampled FIM and obtained by row-

by-row inversion of the circulant FIM, where each column of the matrix is evaluated separately

using (4.41). A - Covariance matrix obtained from the Full FIM, grid with 9216 points. B -

Covariance matrix obtained by row-by-row inversion of the circulant FIM. C - Matrix obtained

selecting the voxels at the locations of the full FIM that corresponds to locations of the elements

of the grid for the subsampled FIM. D - Covariance matrix obtained from the subsampled FIM,

grid with 2304 points.
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Cov(λ̂G) ≈ P T · [FG − β ·RG]−1 · FG · [FG − β ·RG]−1 · P (4.47)

LLIRi(λ̂G) ≈ P T · FG · [FG − β ·RG]−1 · P · ei (4.48)

where FG and RG are the subsampled version of the FIM and the subsampled version of the

hessian of quadratic penalty, respectively. It should be noted thatFG andRG can be substituted

with circulant approximation of the FIM, F circ, and with the circulant approximation of the

Hessian of the penalty function, Rcirc, in the above equation, if one wants to rely on the

circulant approximation method for the calculation of bias and variance in a voxel of interest i.

In equations (4.47) and (4.48), the penalty functionR with a small regularisation parame-

ter is included with the only purpose of making the cost function strictly concave. Therefore the

bias property of the estimator is mainly determined by the filter function P . In order to com-

pare different systems, first, a target bias gradient function is defined as an isotropic Gaussian

P t (described by its Full Width at half Maximum FWHMt). Consequently, for every system,

an anisotropic post-smooth filter P is designed, so that the LLIRi in (4.48) matches the target

isotropic Gaussian function P t. Designing a specific post-smooth filter for every system under

investigation, the noise properties of the estimator can be compared at equal bias gradient. For

more details on the achievability of the bound for this method and on how it compares with

UCRB, see [Meng and Clinthorne, 2004].

The method presented in equations (4.48) and (4.47) corresponds to iterating the algo-

rithm used to maximise the PL objective function (3.2) to convergence and then convolving the

solution with an anisotropic filter P in order to impose a fixed target bias gradient Pt.

Relying on this method a post-smooth filter P has to be specifically designed for every

system under investigation. A method for the design of this filter was first introduced by Zhou

et al. [2010] and is described in the following.

Design of the Post-Smooth Filter

Firstly, for every system η, the Local Impulse Response LLIRiη(λ̂) (which is described by its

FWHMη) is calculated as in (4.46). An isotropic Gaussian target function P t is defined so

that FWHMt ≥ FWHMη (which implies that post-smoothing is always needed to achieve
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the target bias gradient). The post smoothing filter P is finally defined taking into account the

deviation between LLIRiη(λ̂) and the target isotropic Gaussian P t:

P[k] =

 Pt[k]/Biη[k] if <(Biη[k]) ≥ 0.005

0 if <(Biη[k]) < 0.005
(4.49)

where Pt , P and Biη are the Fourier transforms of P t, P and LLIRiη(λ̂), k is the index of the

elements in the Fourier domain and <(·) denotes the real part of a complex number. Applying

the filter P to the LLIR in (4.46) ensure that the final Local Impulse Response LLIRi(λ̂) in

(4.48) equalsP t. The only parameter to optimize then, is the variance Vari = Covii with Covii

calculated as in equation (4.47).

4.6.1 Figure Of Merit: the Contrast to Noise Ratio

We can now reduce (4.47) and (4.48) to a scalar measure by taking into account only the

variance and the Contrast Recovery Coefficient (CRC) for the voxel i, which are defined as

V ari = Covii and CRCi = LLIRii (the CRC can be seen as an alternative to the FWHM as

a measure of bias, see section 3.4.1). Thanks to the fixed resolution after post-smoothing, the

CRC should be more or less constant; the only parameter to optimise then is the variance. In

the rest of this thesis, however, we consider the Contrast to Noise Ratio (CNR) in voxel i as

figure of merit for image quality:

CNRi =
CRCi√
V ari

(4.50)

4.7 Discussion

In this chapter, approximate expressions of the mean and the covariance of the PL estimator has

been obtained via the FIM, as expressed in (4.3) and (4.21).

In order to tackle the problem of the computational load in calculating and inverting the

FIM, it has been proposed to approximate it with a circulant matrix (see section 4.5.2). The

circulant FIM is generally considered to yield a good approximation of the covariance matrix

for nearly shift-invariant systems, however 3-D imaging systems are inherently shift variant,

presenting a block-circulant FIM even in case of an ideal uniform object in the FOV.

In section 4.5.2, we introduced a new approximation which relies on a subsampled version

of the FIM that addresses the shortcomings of the circulant approximation (see section 4.5.4).
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The sub-sampled FIM trades off computational complexity and accuracy of the estimation, en-

abling the adaptation of the accuracy of the estimation based on the available computational

resources. When sufficient resources are available, the GPU-accelerated software described in

section 4.5.3 can compute the covariance matrix exactly using the full FIM, F . One important

advantage of the scalable sub-sampled FIM approximation is that the algorithm provides an

estimate of the full covariance matrix, though sub-sampled, accounting for the global interde-

pendence between the variables of the tomogram.

Evaluation of the effect of sub-sampling, however, is complicated by the trade-off that

arises. It is not possible to define an absolute criterion for the choice of the sub-sampling

scheme. The contributions to the FIM at a given camera position, for a given pair of grid

points, arise only from overlap in the projected PSF from those points (as shown graphically

in Figure 4.2). The implication is that the grid points must be close enough to ensure there is

overlap between the projected PSFs. This condition depends on many factors, including: the

image volume size, the voxel size, the size of the PSF, the camera trajectory etc. This condition

refers to accuracy of the FIM entry for those two points, but does not apply to accuracy of

its inverse, which will suffer from missing points even if the “overlapping PSF” condition is

met. Therefore, a general criterion to define a relationship between the subsampling and the

reliability of the variance estimation, can not be provided. This criterion depends in fact on the

properties of the specific system.

The sub-sampled FIM formulation and the software tool described in this paper may be

employed for the optimisation of a range of design parameters of emission imaging systems.

However only three guidelines can be given, so far, for the choice of the subsampling scheme.

The first is trivially to adopt the most dense grid for the available computational resources.

The second is to restrict the grid volume to a specific region of the FOV, in case we know

in advance that activity is present only in that region of interest. The third refers to adaptive

imaging systems, where the system adapts during acquisition, in response to the projection data,

and therefore where the computational resources are limited by the real-time requirements. For

a specific adaptive imaging system and for the specific parameter we want to modify during

acquisition, a sufficient condition of optimality needs to be defined. This condition accounts for

the trade-off between accuracy of the estimate and computational complexity. Once a sufficient
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condition of optimality is defined, the subsampling model should be chosen prospectively by

comparing the estimates of the optimum scanning parameters for different subsampling models,

with the parameters obtained from the reference method.

4.8 Proposed Experimental Set-Up

The model presented in section 4.5.2 allows the user to design the grid and therefore to define

the degree of approximation in the calculation of the FIM. For the deterministic method, the

subsampled version of the FIM has been calculated over three different grids of g1 = 27648,

g2 = 6912 and g3 = 3072 points equally distributed over the slice intersecting the point (or

region of interest) of interest and the two neighbouring slices. It should be noted that grid g1 is

fully sampled over the three slices of interest and therefore, in the following, this FIM will be

referred to as the full FIM.

The variance images displayed in the following chapters (5, 6 and 7), are obtained by re-

ordering the diagonal of the covariance matrix Cov(λ̂) calculated as in (4.45). For the full

FIM (g1), the diagonal of Cov(λ̂) is simply reshaped to a three dimensional matrix, whereas

for grids g2 and g3 every point of the diagonal of Cov(λ̂) is allocated to the respective points of

the grid in the imaging volume. A trilinear interpolation is then performed in order to facilitate

the visual comparison between the variance images obtained with the different subsamplings. It

should be noted that a direct interpolation on Cov(λ̂) can not be performed. However in order

to calculate the CNR in (4.50), which is the figure of merit for the optimisation of the system

design, we rely directly on the subsampled CovG(λ̂), without performing any interpolation.

To clarify this point, Figure 4.5 is included, which refers to a 2-D imaging system. In Figure

4.5 - A we show an example of grid g2 for the estimation of the uncertainty. The image voxel

indices are in red and the points for a grid g2 are in grey color. Figure 2 - B shows the respective

covariance matrix. Grey pixels are the locations where the elements of the Covariance obtained

with the subsampled FIM are non-zero. Figure 4.5 - C shows a compact representation of the

Covariance matrix obtained with the subsampled FIM. The number of cells in B is equal to the

square of the number of cells in A and the number of grey cells in B is equal to the square

of the number of grey cells in A. This example points out that direct bilinear interpolation of

CovG(λ̂) can not be performed and perhaps filling of the covariance matrix is material for
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Figure 4.5: Schematic representation of a grid and respective subsampled covariance matrix. A

- An example of grid g2 is shown. The image voxel indices are in red and the grid points are

grey. B - Respective covariance matrix. Grey pixels are the locations where the elements of the

covariance matrix obtained with the subsampled FIM are non-zero. C - Compact representation

of the covariance matrix obtained with the subsampled FIM.

further investigation.

A more closely spaced grid gives a more precise estimation of the variance but at the

cost of increased computational complexity of the estimation. The computation time needed to

calculate the FIMs and their inverse are presented in table 4.1. Variance images obtained with

the circulant approximation will be also presented for comparison. Every pixel of the images is

calculated according to equation (4.41).
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Chapter 5

Collimator Design: Resolution-Sensitivity

trade-off

In SPECT, the design of the collimator determines the detection efficiency and the system res-

olution. Hence it is one of the key factors influencing the system response.

For an image to be formed, ideally, there must be a one-to-one correspondence between the

direction of emission of a γ-ray from a radioactive source and its point of detection. As already

described in 2.1.3, the purpose of the collimator is to achieve such spatial localisation of the

photon emissions, in the imaging space.

Although a large number of collimator designs is available, in this chapter we focus on the

optimisation of Parallel Holes (PH) collimators, which are the most widely used collimators in

clinical nuclear medicine.

For parallel hole collimators, each collimator element allows the detection only of photons

originating from a specific range of angles around the direction parallel to the collimator hole.

Generally speaking, a narrow hole leads to a better resolution but also it leads to a decrease

in the number of photons that reach the scintillation crystal, therefore lowering the detector

sensitivity.

The detection sensitivity and the system resolution are both monotonically increased with the

opening of the collimator aperture and decreased with the septa length of the collimator. Hence,

there is no straightforward way to improve these two properties simultaneously by adjusting the

collimator geometry, and a trade-off between resolution and sensitivity arises.

In the last few decades, optimisation of the collimator has essentially proceeded by trial



92

and error: certain designs that have proven good image quality for certain imaging conditions,

such as a certain energy range, have been designed and standardised [Keller, 1994]. Only in the

last few years the problem has been treated systematically, driven by the need to compare and

optimise collimator designs prospectively, by computer simulation. The developments of tools

for the estimation of the uncertainty allows us to accelerate the design process by exploring

the design space in software simulations. Optimisation of the design of the collimator is still

an open and challenging problem and several evaluation strategies have been presented in the

literature.

Task-specific Figures Of Merit (FOMs), based on the performance of human or mathemat-

ical observers in classification tasks, such as the detection of a certain class of tumours, have

been defined and explored by Barrett et al. [1998]. Measures of performance on such tasks

[Barrett and Myers, 2004] can be used to optimise collimator properties.

The ideal observer [Barrett and Myers, 2004] has been applied in the context of optimising pin-

hole SPECT in planar emission imaging. Other attempts to optimise apertures in SPECT have

used approaches that differ from the ideal-observer method. For example, Zheng and Gullberg

[2002] applied a human-performance emulating mathematical observer, a channelized hotelling

observer, in the reconstruction domain, to optimise a parallel-hole collimator. In other studies

more realistic tasks have been used. As an example, a joint detection and localisation task is

medically more realistic than the pure detection task, since a physician must localise a lesion

in an image. A general ideal observer for this task was proposed by Khurd and Gindi [2005].

In [Zhou and Gindi, 2008] this task has been applied for the optimisation of a parallel hole

collimator.

Moreover, SPECT collimator designs can be evaluated based on the fundamental trade-off

between bias and variance that can be achieved in the reconstruction of emission tomograms

[Nuyts, 2009] [Vunckx et al., 2008a] [Vunckx et al., 2008b] [Zhou et al., 2010]. Such tradeoffs

may be derived analytically using the Cramer-Rao type bounds [Hero et al., 1996] [Meng and

Clinthorne, 2004] [Meng and Li, 2000] which imply the calculation and the inversion of the

Fisher Information Matrix (FIM). In this chapter, the Fisher Information Matrix method will

be used to characterise the uncertainty in the reconstruction for the purposes of parallel hole

collimator optimisation.
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Computing, storing and inverting the FIM is not practical for the typical matrix size of 3D

SPECT imaging systems. In order to tackle the problem of the computational load in inverting

the FIM, two approximations have been presented in chapter 4. The circulant approximation

has been presented in section 4.5.1 and the subsampled FIM approximation has been presented

in section 4.5.2.

The aim of this chapter is to explore the use of the subsampled FIM approximation for the

optimisation of parallel hole collimators in SPECT; emphasising how it enables us to explore

the design of highly shift invariant systems as a result of distance dependent resolution. The

results obtained with the approximate subsampled FIM method are compared with the circulant

approximation method and with the reference method based on reconstruction of multiple noise

instances (see chapter 3).

Before the subsampled FIM approximation can be applied routinely to evaluate and optimise

a collimator design (see appendix A), two sets of experiments are performed for validation

purposes. The subsampled FIM and the circulant FIM methods are applied for the calculation

of the variance of a NCAT phantom and a uniform phantom. The first experiment is performed

simply to validate the deterministic method with a realistic phantom. The second experiment

is performed to investigate the relation between the optimal collimator aperture and the target

resolution.

5.1 Collimator Design Parameters

Nuclear medicine imaging collimators are characterised mainly by their imaging properties: ge-

ometric resolution and detection sensitivity. Although physical measurements are required for

the determination of system response, collimators are affected by numerous secondary problems

that are only indirectly related to the geometry. For example, the penetration of the radiation

through the collimator septa, the visibility of the collimator hole pattern in the images, weight

constraints imposed by the camera gantry, the minimal septal thickness imposed by the limita-

tions of fabrication, and the effects of scattering within the collimator. If a collimator is properly

designed, the secondary effects should not be noticeable. However, naive designs based exclu-

sively on geometry without careful attention to the secondary problems may introduce either

images that are significantly degraded or collimators that are not feasible for clinical use. There-
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fore collimator-detector system optimisation is a fundamental part of the design process. In this

chapter we will concentrate on optimising the geometrical parameters of the design that affects

the sensitivity and resolution. The secondary design consideration are briefly covered in this

chapter since, in future investigations (see chapter 8), they will be taken into account for the

design of new collimator geometries.

Parallel Hole (PH) collimator is the most widely used collimator in clinical nuclear

medicine. The collimator usually consists of a two-dimensional array of parallel holes. The col-

limator allows only those photons nearly perpendicular to the detector surface to pass through,

without being absorbed in the collimator material, and produces a planar image the same size

as the source object. The variation between different parallel hole collimators is confined to the

hole shape and to the geometric dimensions that describe the holes. Many hole shapes and pat-

terns have been tested over the past few decades; these include: hexagonal, square, triangular

and circular holes (a review of this can be found in Henkin et al. [1996])

The most important design parameters of a parallel hole collimator are: the length of the

holes l; the diameter of the holes (or, for hexagonal holes, the perpendicular ”face-to-face” dis-

tance) v; the thickness of the septa q; and, finally, the material used to make the collimator.

In order to understand the relationship between these parameters and collimator properties,

such as spatial resolution, geometric efficiency and penetration fraction, three types of events

should be considered. The desirable, geometrically collimated gamma-rays traverse the colli-

mator entirely within a hole, without contacting the septal material. Penetrating gamma-rays

go through one or more septal walls without interacting, while scattered photons are deflected

into the detector by a Compton interaction in a septum. The collimator penetration and scatter

components are generally undesirable because their point of origin in the source is uncertain

compared to their point of detection in the scintillation crystal. Large numbers of penetrating or

scattering photons can contribute a substantial background to the image, thereby degrading the

contrast of important image features. The spatial resolution, efficiency and penetration fraction

of a parallel, multi-hole collimator were first discussed by Anger [1964].

5.1.1 Collimator Spatial Resolution

The spatial resolution of a parallel-hole collimator is expressed as the full width at half-

maximum (FWHM) of the point spread function (PSF). The PSF for the parallel hole collimator
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is here described with the analytical depth-dependent model described by Anger [1964]. This

model expresses the FWHM of the Gaussian at location x, y, z as:

FWHM(x, y, z) =
v(CD(x, y, z) + l2)

l2
(5.1)

where CD(x, y, z) is the distance between (x, y, z) and the detector plane, l2 = l − 2/µ and µ

is the total linear attenuation coefficient of the collimator material (µ = 22.7cm−1 for lead at a

photon energy of 140keV ). This formula was modified from that presented by Anger [1964], by

considering that the collimator septa length, l, should be reduced on both ends by approximately

1/µ due to penetration effects [Jaszczak et al., 1986]. We use the acronym FWHM (without

argument (x, y, z)) to denote the collimator aperture that corresponds to the centre of the image

space.

It is clear from (5.1) that the spatial resolution of the collimator deteriorates with increasing

distance from the collimator face. The resolution increases with reduction in hole diameter and

increase in hole length but both these parameterisations reduce geometric efficiency. Also,

it should be noted that the resolution changes less over a given range of collimator-source

distances for larger values of collimator thickness. In other words, the slope of the collimator

response (meaning the slope of the resolution as a function of distance line) is less for thicker

collimators. It should be noted that the single scalar parameter in (5.1) does not offer a complete

description of the collimator’s PSF or its Fourier transform, whose detailed shape depends upon

the shape of the collimator holes.

As already described in chapter 2 section 2.1.3, the overall resolution of a gamma-camera

image is given by the 2-D convolution of the collimator PSF with the intrinsic detector’s PSF.

The intrinsic PSF is usually well approximated by a radially symmetric Gaussian function; with

a FWHM of 3.6 mm is typical for a current conventional γ-camera. For the sake of simplicity,

if we also approximate the collimator’s PSF by a Gaussian function, then the combined system

spatial resolution is approximately given by the following quadrature sum:

FWHMsystem =
√
FWHM2

collimator + FWHM2
intrinsic (5.2)

For most collimators used to date in nuclear medicine studies, the overall system resolution is

dominated by the collimator resolution.
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5.1.2 Geometric Efficiency

The geometric efficiency of a collimator system, E, is closely related to the collimator aperture

and can be defined as the fraction of photons, emitted by a point source in the volume, that are

detected in the detector bins if there is no attenuation. This efficiency is effectively independent

of the source to collimator distance (under usual imaging conditions) and for the PH collimator

with square holes, E is estimated as:

E =
v4

4πl22(v + q)2
(5.3)

The geometric efficiency is then dependent on the FWHM of the PSF and is assumed to degrade

approximately as the square of the geometric spatial resolution.

The collimator’s efficiency determines the number of gamma-ray counts that may be recorded,

for a given activity distribution, in a given scan time.

5.1.3 Septal penetration

The geometric response is further degraded owing to the penetration of some photons through

the collimator septa; but no analytical treatment of this effect appears to exist in the literature.

Most collimator designers have used an ad-hoc “rule”, allowing a certain small fraction of

gamma-rays to penetrate along the minimum path length through a single septum (e.g. Keller

[1994]), in order to account for penetration.

Several investigators have successfully used numerical ray-tracing methods [Muehllehner,

1973] [Beck and Redtung, 1985] [Han et al., 1999] or Monte Carlo simulation techiniques [Jan

et al., 2004] [Cot et al., 2002] [Staelens et al., 2007] to examine the penetration component.

In appendix A a method for the investigation of new collimator design is introduced and in

section A.2 the implementation of a ray-tracing algorithm is described. This algorithm has been

used to model the geometric response and the septal penetration of novel collimator geometries.

As a general consideration for the design of the collimator, it should be noted that when the

collimator hole spacing, v+q, becomes large compared to the intrinsic resolution of the gamma-

camera, then the hole pattern can become visible in the projection images, therefore leading to

artifacts [Newiger and Jordan, 1985]. System designers should take this into consideration,

especially when designing collimators for high-energy isotopes which present high penetration
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factors and therefore need collimators with thicker septa.

5.1.4 Collimator Scatter

An analytic description of the collimator scatter component has eluded researchers. This effect

is caused by photons that scatter in the collimator septa and still remain within the detection

energy window.

A practical measurement of the effect of the collimator on gamma-camera performance, showed

sensitivity changes on the order of 1%-2% due to scattering from the collimator [Moore et al.,

1992]. Similar to septal penetration, collimator scatter can be evaluated using Monte Carlo

simulation techniques.

5.2 Experiments

5.2.1 System Description

The SPECT system is based on a detector of size 236.16 mm × 236.16 mm. The detector

rotates over 360◦ at a regular angular step of 2◦. The axis of rotation is the line parallel to the

detector surface through the centre of the image volume. The imaging volume dimensions are

96× 96× 12 cubic voxels of 2.4 mm. Photon counts are binned on a grid of 96× 12 pixels of

2.46 mm and the intrinsic resolution is set to 3.6 mm. The distance CD = 123 mm between

the centre of the image volume and the detector surface is constant during the tomographic

acquisitions.

We consider a parallel hole collimator consisting of a two-dimensional array of square

holes with septa thickness q = 0.2 mm, hole diameter v, and length l. The diameter and the

length of the hole are left unknown since they define the collimator aperture. The collimator

aperture is characterised by the Point Spread Function (PSF). The PSF for the parallel hole

collimator is described by the analytical depth-dependent Gaussian model in (5.1).

5.2.2 Statistical method based on Reconstruction of Multiple Noise Realisations

For the reference statistical method, the noisy data sets are reconstructed using an accelerated

GPU implementation of the PL estimation, implemented as part of the NiftyRec toolbox [Pede-

monte et al., 2010]. The depth-dependent Gaussian that characterises the collimator response

is modelled both in the projector and in the backprojector operator. 10000 iterations are per-

formed in order to maximise the cost function.
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Figure 5.1: Objective function Ψ curves as a function of number of iterations. The different

curves represent the objective function for different collimator apertures: FWHM = 5.9 mm

to FWHM = 11.08 mm (from dark grey � to light gray ∗). All the curves are scaled with

respect to their maximum value.

A smoothing prior with a small weight β = 10−12 is included in the cost function. The value of

the regularisation parameter is chosen after trial and error, as a minimum value that nearly guar-

antees convergence within 10000 iterations. In Figure 5.1, the objective function Ψ = L− βR,

for the digital phantom described in 5.2.5, is plotted as a function of the number of iterations.

The different curves represent the objective function Ψ for different collimator apertures.

The calculation of the LLIR implies one reconstruction for each voxel i as in equation (3.11). A

first reconstruction of the object from noiseless projection data is performed and iterated until

convergence. The LLIR for each voxel i under investigation is then computed by performing

the reconstruction (until convergence) of the noiseless projection of the object perturbed by an

impulse in i.

In order to impose a fixed target bias gradient P t, the estimated image, obtained iterating the

reconstruction algorithm to convergence, is convolved with an anisotropic filter P . The post-

smooth filter P has do be specifically designed for every system under investigation (i.e., for

every collimator parameterisation) as in 4.6.

A series of independent noise realisations is computed using a pseudo-random Poisson noise

generator. The variance is calculated as in 3.1 and is based on 10240 noise realisations. The
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reconstruction algorithm in use relies on the discrete model presented in 2.2, where both the

image space and the detection space are digitised into voxels with finite size. However, since

the variance is calculated for a post-smoothed image with a predefined target resolution; as long

as the voxel size is sufficiently small compared to the target resolution (which is the case in our

study), the effect of the discretisation on the variance is small and can be considered negligible.

5.2.3 Deterministic Method based on the Fisher Information

For the deterministic method, the subsampled version of the FIM has been calculated over three

different grids of g1 = 27648, g2 = 6912 and g3 = 3072 points equally distributed over the

slice intersecting the point (or region of interest) of interest and the two neighbouring slices. It

should be noted that grid g1 is fully sampled over the three slices of interest and therefore, in

the following, the respective FIM will be referred to as the full FIM.

The LLIR for a voxel of interest i is calculated as in equation (4.46) for the subsampled

FIM and as in equation (4.42) for the circulant approximation of the FIM.

In order to impose a fixed target bias gradient P t, as for the reference statistical method, a

post-smooth filter P has to be specifically designed for every collimator parameterisation (see

section 4.6). The calculation of the covariance is then performed as in equation (4.47).

The variance images in Figures 5.2 (C-D-E) and 5.3 (C-D-E), are obtained by re-ordering

the diagonal of the covariance matrix Cov calculated as in (4.47). As described in section 4.8,

a trilinear interpolation is then performed in order to facilitate the visual comparison between

the variance images obtained with the different grid models. Variance images obtained with the

circulant approximation method are also presented for comparison. Every pixel of the images

in Figures 5.2 (F) and 5.3 (F), are calculated according to equation (4.41).

5.2.4 Experiment A: NCAT Phantom

The first experiment is performed simply to validate the deterministic method with a realistic

phantom. The phantom used for this experiment was a heart phantom (NCAT) [Segars, 2001].

The activity within the phantom was λ = 8kBq/cm3 in the left and right ventricle myocardium,

λ = 3.4kBq/cm3 in the left and right ventricle chamber, λ = 0.9kBq/cm3 in the lungs and

λ = 0.6kBq/cm3 in the background. The collimator hole diameter is v = 1 mm, collimator

hole length l = 35 mm and collimator aperture has FWHM = 7.89 mm.
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5.2.5 Experiment B: Collimator Aperture Optimisation

This experiment is performed to derive the relation between the optimal collimator aperture

FWHMopt and the target resolution Pt for a uniform phantom. The CNR, defined in equation

(4.50), is used as the figure of merit for collimator aperture optimisation and therefore the

collimator aperture which corresponds to the maximal CNR will be considered as optimal.

The phantom used was a uniform sphere positioned at the centre of the image volume, with

diameter D = 39 mm. The activity concentration in the sphere was set to λ = 8kBq/cm3

and in the background, to λ = 2.4kBq/cm3. During the experiment, the collimator aperture

varies from FWHM = 5.9 mm to FWHM = 11.08 mm. The target resolutions are set to

FWHMt = 12, 14 and 16 mm.

The CNR is calculated for the central point of the sphere.

5.3 Results

In the following sections 5.3.1 and 5.3.2, the results for the two different digital phantoms and

different collimator parameterisations are shown and discussed. The results are obtained with

the presented subsampled approximation of the FIM and, for validation and comparison, with

the circulant approximation of the FIM and with the reference statistical method. In section 5.4,

all validation points are gathered to get a global overview of the agreement between the new

method and the reference method.

5.3.1 Experiment A: NCAT Phantom

The calculated variance images for the NCAT phantom are shown in Fig. 5.2. Fig. 5.2-B shows

the variance image obtained from the reconstruction of 10240 noisy projection data sets. Fig.

5.2 C-D-E show the corresponding images calculated with the full FIM for grid g1 = 27648

and with the subsampled Fisher Information for grid g2 = 6912 and g3 = 3072 respectively.

Fig. 5.2-F shows the variance image calculated with the circulant approximation of the FIM.

Fig. 5.2-G shows the horizontal profiles.

From these images we can infer that both the method based on the subsampled Fisher Infor-

mation Matrix and the method based on the circulant approximation of the FIM approximately

predict the variance of the PL estimator, presenting minor, but obvious, differences with respect

to the variance obtained with the reference method. The variance image obtained from the re-
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construction of multiple noise realisations is rather noisy, due to the finite number of repeated

experiments (10240). The variance images predicted with the FIM method, generally speaking,

are smooth because neighbouring voxels are affected by similar levels of noise. However a

sparser grid gives a more approximated estimation, as we can see in Fig. 5.2-F. In fact, a fun-

damental limitation of the subsampled FIM approach is that fine detail is being lost as the grid

becomes more sparse. We noticed that, for such a complex phantom, performing the calculation

with a grid g4 = 1728 points or less, would lead to incorrect results.

Both the method based on the subsampled FIM and the method based on the circulant approxi-

mation of the FIM are somewhat less accurate near the edge of the finite support used in image

reconstruction, for unknown reasons. This effect (which has been reported also in another study

[Zhang-O’Connor and Fessler, 2007]) can lead to a discrepancy exceeding 10% and it is more

noticeable, in case of low level of activity, in the off-center voxels of the phantom [Li et al.,

2004].

5.3.2 Experiment B: Collimator Aperture Optimisation

The calculated variance images for a uniform sphere phantom at a collimator aperture

FWHM = 7.89 mm are displayed in Figure 5.3. Figure 5.3-B shows the variance image

obtained from the reconstruction of 10240 noisy projection data sets. Figure 5.3 C-D-E show

the corresponding images calculated with the full FIM for grid g1 = 27648 and with the sub-

sampled Fisher Information for grid g2 = 6912 and g3 = 3072 respectively. Figure 5.3-F shows

the variance image calculated with the circulant approximation of the FIM. Figure 5.3-G shows

the horizontal profiles.

Once again, for this experiment, we can see how both the method based on the subsampled

Fisher Information Matrix and the method based on the circulant approximation of the FIM ap-

proximately predict the variance of the PL estimator, presenting minor differences with respect

to the variance obtained with the reference method.

These results show that the off-centre voxels have a lower variance than the central voxels

of the phantom. This well-known observation [Alpert et al., 1982] is explained by the fact that,

with a SPECT system, some of the planes through off-centre voxels have less intersection area

with the phantom and are less multiplexed with neighbouring voxels than planes through the

central voxels.
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Figure 5.2: Variance images for the NCAT phantom obtained with a standard SPECT system.

A (top left) - NCAT phantom. B (top central) - reference method (variance image obtained from

the reconstruction of 10240 noisy projection data sets), C (top right) - Full Fisher Information-

based method with grid g1, D (central left) - Subsampled Fisher Information based method

with grid g2, E (central) - Subsampled Fisher Information based method with grid g3, F (central

right)- Variance image obtained with the circulant approximation method. G (bottom)- Variance

profiles at the centre of the heart: reference method (black line - ∗), grid g1 (blue line - +), grid

g2 (red line - ◦), grid g3 (green line - ×), circulant (cyan line - �).
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Figure 5.3: Variance images of a uniform sphere obtained with a standard SPECT system. A

(top left) - Sphere phantom. B (top centre) - reference method (variance image obtained from

the reconstruction of 10240 noisy projection data sets), C (top right) - Full Fisher Information-

based method with grid g1, D (central left) - Subsampled Fisher Information based method

with grid g2, E (central) - Subsampled Fisher Information based method with grid g3, F (central

right)- Variance image obtained with the circulant approximation method. G (bottom)- Variance

profiles at the centre of the sphere: reference method (black line - ∗), grid g1 (blue line - +),

grid g2 (red line - ◦), grid g3 (green line - ×), circulant (cyan line - �).
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Figure 5.4 shows the optimal collimator aperture for the central point of the sphere ob-

tained with the reference method, with the full FIM (grid g1), with the subsampled FIM method

for grid g2 and grid g3, and with the method based on the circulant approximation. The optimal

apertures are plotted for the three different target resolutions Pt = 12mm, 14mm, and 16mm.

From the three plots, we can see how we obtain the same maximum CNR (so in turn, minimum

variance) with the reference method, with the full FIM, with the two different subsamples of the

FIM and with the circulant approximation method. We can see also how the optimal aperture

varies almost linearly in relation with the target resolution imposed in the reconstruction. Sim-

ilar results were presented in another study [Zhou et al., 2010] which claims that the FWHM

of the parallel hole collimator aperture that yields the minimum variance equals, for volume

imaging, the spatial resolution divided by
√

3.

However, from Figure 5.4 we can also notice that a sparser grid (i.e. grid g3) gives a more ap-

proximated estimation of the CNR for small collimator apertures (FWHM = 5.9 to 7.8 mm)

The minimum grid spacing is in fact determined by the size of the PSF, which implies that an

higher spatial resolution requires more closely spaced grid points. It therefore seems that the

subsampling approach would be less sensitive to the effects of spatial resolution than is the

full FIM approach, for small collimator apertures, when the grid becomes sparse. The effects

of changing spatial resolution on the CRB are reflected locally, and these effects will be lost

because of the missing points between the grid points if the grid is too sparse.

The way the algorithm has been designed permits the degree of approximation in the esti-

mation to be defined by the user. Therefore a trade-off between computational complexity and

reliability of the estimation of the CNR arises. We noticed that, in this case, performing the

calculation with a grid g4 = 1728 points or less, would lead to incorrect results. The minimum

number of grid points necessary to obtain a reliable estimation of the CNR depends on the char-

acteristics of the system under investigation (for a discussion on the selection of the number of

grid points, see section 4.7).

5.4 Validation

A validation for the subsampled Fisher Information-based variance calculation method is pre-

sented in the following.
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Figure 5.4: CNRs for different collimator apertures (from FWHM = 5.9 mm to FWHM =

11.08 mm), obtained with the reference method (black line - ∗), with the method based on the

Fisher Information with grid g1 (blue line - +), with grid g2 (red line - ◦), grid g3 (green line -

×) and with the circulant approximation method (cyan line - �). Optimal collimator apertures

are calculated for target resolutions Ptarget = 12 mm (A - top figure), 14 mm (B - central

figure) and 16 mm (C - bottom figure).
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Table 5.1: Validation of the Subsampled FIM for the NCAT phantom.

Ncat CC SEE int RC

g1 0.9933 2.03 e-04 -0.00413 0.97292

g2 0.9420 2.63 e-04 -0.00433 0.94042

g3 0.9392 3.04 e-04 -0.00454 0.93924

g4 0.9289 0.0046 -0.01069 0.91321

g5 0.9028 0.0061 -0.01803 0.89534

Validation of the Subsampled FIM in comparison with the Reference Statistical Method for the

experiment presented in section 5.3.1. CC: Correlation Coefficent. SEE: Standard Error of

the Estimate. int:intercept of the least squares fit. RC: regression coefficient of the least

squares fit.

For the experiments presented in section 5.3.1 and 5.2.5, the variance obtained with the ref-

erence statistical method is plotted with respect to the variance predicted with the Fisher

Information-based method, for grid g1 = 27648 points, grid g2 = 6912 points, grid g3 = 3072

points, grid g4 = 1728 points and grid g5 = 1106 points. A least squares fitting is performed

through the data. The regression coefficients, the intercepts of the line, the correlation coeffi-

cients and the standard error of the estimate are presented in Table 5.1 and Table 5.2. In the

experiment presented in section 5.2.5, the variance is calculated for a range of collimator aper-

tures, the validation results presented in Table 5.2 encompass the least squares fitting through

all this data.

All validation points for the experiment in section 5.3.1 for those three grid models and

for the circulant approximation method are shown in Figure 5.5. In these figures, the standard

deviation calculated with the reference method with respect to the standard deviation predicted

with the subsampled FIM method and with the circulant approximation method are plotted. The

solid line was fitted to minimise the least squares distance between these points.
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Figure 5.5: Validation of the Fisher information-based standard deviation calculation method

for different grids for the experiment presented in section 5.3.1. The standard deviation obtained

with 10240 repeated simulations is plotted with respect to the standard deviation predicted with

the Fisher information-based method. A (top left)- grid g1, B (top right) - grid g2, C (bottom

left) - grid g3 and D (bottom right) - circulant approximation. Spatial information is given by

the colour of the dots. The light grey dots represent voxels which are more distant from the

rotation axis (off-centre voxels); whereas the dark grey dots represent voxels which are closer

to the rotation axis (central voxels). A colour bar with the respective distance from the rotation

axis (in mm) is displayed for every plot.
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Table 5.2: Validation of the Subsampled FIM for the uniform phantom.

Sphere CC SEE int RC

g1 0.9871 1.62 e-04 -0.00158 0.97934

g2 0.9741 4.47 e-04 -0.00438 0.96172

g3 0.9470 5.72 e-04 -0.00868 0.93471

g4 0.9084 0.0018 -0.01422 0.89297

g5 0.8900 0.0025 -0.01896 0.82733

Validation of the Subsampled FIM in comparison with the Reference Statistical Method for the

experiment presented in section 5.2.5. CC: Correlation Coefficent. SEE: Standard Error of

the Estimate. int:intercept of the least squares fit. RC: regression coefficient of the least

squares fit.

5.5 Discussion

Although it has not been thoroughly tested yet, the method for the quantification of the uncer-

tainty in the estimate, presented in section 4.5.2, should also be valid for the investigation of

other collimator configurations in SPECT (i.e. slit-slat or multi-pinhole collimators), given its

capability to account for highly shift-invariant system responses. In addition this method can

be applied to PET as well.

Our method differs from the methods presented in [Nuyts, 2009] by the use of post-

smoothed PL instead of post-smoothed MLEM. With our method, a target resolution can be

easily imposed, which has the advantage of enabling comparison of different designs at the

same resolution and that only one parameter has to be considered for optimisation (the variance

in the voxel of interest, or equivalently its CNR). At the same time, including a regularisation

penalty in the cost function we guarantee the invertibility of [F −βR] and therefore the unique-

ness of the solution. Even if a small regularisation parameter is used with the only purpose of

making the cost function strictly concave; the introduction of a penalty function R, leads to

shift-variant resolution properties of the estimator. This effect hinders the possibility of using

a global figure of merit and therefore the uncertainty of the estimate needs to be calculated
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locally.

Given this consideration, it is important to discuss the computational performance of the

subsampled FIM method with respect to the circulant approximation method. With the circu-

lant approximation method, for each examined voxel, 1 projection, 1 backprojection, 1 Fourier

transformation, 2 inverse Fourier transformations and 2 convolutions (for post-smoothing) are

required. It is obvious that the efficiency is much higher than that of the reference method,

if only a few points (up to several 100s) are under investigation. Some previously published

methods, like [Qi and Leahy, 1999], go even further in their approximations. They try to isolate

shift-invariant factors, like the geometric projection matrix for positron emission tomography

(PET) imaging. Since it is the same for all voxels, it only has to be calculated once. This saves a

lot of computation time. For a SPECT, however, it seemed impossible to distinguish and isolate

shift-invariant factors. Another possibility is to isolate the matrices that are independent of the

object, like the camera geometry matrix in [Qi and Leahy, 2000] [Stayman and Fessler, 2004b],

such that it is sufficient to calculate them in advance. However, this is not useful for collimator

design or for the examination of design parameters, since each camera geometry is only tested

once.

The computation times for the calculation of the subsampled FIM and its inverse are presented

in table 4.1. Thanks to an efficient GPU implementation, our novel algorithm for the estimation

of the uncertainty, drastically reduces the computational complexity in calculating the FIM and

its inverse, making the algorithm a good candidate for fast design optimisation. Even if the pro-

posed approximation implies the calculation and the inversion of the FIM only once for each

set of system parameters; it should be noted that, for the optimisation of the collimator design

at a fixed target resolution, 2 convolutions are also required for each voxel under examination.

From the experiment presented in section 5.3.2, it can be seen that the subsampled FIM

method and the circular FIM method give very similar results for the central point of a uniform

sphere. It has been found that the optimal collimator aperture is proportional to the target

resolution that is imposed in the reconstruction. Similar results were presented in a study of

pinhole imaging system [Fessler, 1998], which claims that, in order to minimise the variance

of the emission-rate density estimate at a particular spatial resolution, the pinhole size should

be proportional to that resolution. Furthermore, another study [Zhou et al., 2010] shows that
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for the PH collimator, the FWHM of the aperture that yields the minimal variance equals, for

volume imaging, the desired spatial resolution divided by
√

3.

From the results shown in section 5.3.2, we can also notice that a sparser grid gives a more

approximated estimation of the CNR for small collimator apertures. It therefore seems that the

subsampling approach would be less sensitive to the effects of spatial resolution than is the full

FIM approach, for small collimator apertures, when the grid becomes too sparse.

Evaluation of the effect of subsampling is therefore complicated by the trade-off that arises

between the subsampling and the reliability of the variance estimation. A general criterion to

define a relationship between the subsampling and the reliability of the variance estimation, can

not be provided. This criterion depends in fact on the properties of the specific system.
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Chapter 6

Region Of Interest Reconstruction

6.1 Introduction

In single-photon emission computed tomography (SPECT), measurement projection data can

be truncated when the camera’s field of view is smaller than the object to be imaged.

In the last few years, several companies have developed small dedicated cardiac SPECT

systems with different designs. These dedicated systems have a smaller field of view (FOV)

than a full-size clinical system. Thus, data truncation has become the norm rather than the

exception in these systems. If small detectors are used, truncated projections must be used to

reconstruct a region of interest (ROI) within the boundary of the object.

The Region-Of-Interest (ROI) reconstruction using truncated projections data, may be also

referred to as the interior problem. This problem does not have an analytical, closed form, so-

lution [Natterer, 1986]. This mathematical conclusion is, in general, correct; however, many

researchers are seeking solutions to the interior problem if some constraints or some additional

information about the object to be imaged can be enforced during reconstruction [Defrise et al.,

2006] [Clackdoyle et al., 2004] [Clackdoyle and Noo, 2004] [Zou et al., 2005].

These studies results in several sufficient conditions for exact ROI reconstruction, where incom-

plete projection can be used to uniquely and reliably determine the unknown image of a region

of the object. One of the limitations of analytical ROI reconstruction methods is that they are

specifically designed for one type of truncation and for one type of imaging geometry. An in-

version formula developed for a particular type of truncation situation often can not be applied

to other cases. So far, there is no ROI reconstruction theory that can handle all the truncation

cases and imaging geometries in a unified framework.
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In contrast, statistical reconstruction methods (see 2.5.1), which are based on discrete mod-

els, are more flexible in handling truncated projection data. If some data in the projections are

missing due to truncation effects, the corresponding rows in the system matrix are simply set to

zero, and no further modification is required. Therefore, iterative reconstruction methods entail

reconstruction of the whole object regardless of the size of the ROI, while analytical methods

are capable of produce an image only of voxels inside an ROI.

Data truncation results in an underdetermined system of imaging equations, which may

lead to non-unique solutions. In order to study the uniqueness of the solution, the concept of

singular value decomposition is introduced and is used to evaluate the characteristics of the

system operator.

[Zhang and Zeng, 2007] demonstrated that generic common statistical reconstruction al-

gorithms are able to exactly reconstruct an ROI, under the conditions that the convex ROI is

fully sampled and a single image value in a sub-region within the ROI is known. If the ROI in-

cludes a sub-region that is outside the patient body, then these conditions can be easily satisfied.

We must point out, however, that an “exact” reconstruction is only possible in a theoretically

ideal situation where data are noiseless, sampled on the detector with an infinitesimal sampling

interval, and sampled angularly with an infinitesimal angular interval.

Given these considerations, it is necessary to study the noise properties of statistical re-

construction methods in the presence of truncated projection data. In this chapter, simulation

experiments are designed to investigate the statistical properties of the estimator under two dif-

ferent truncation cases. In the first case, the ROI includes peripheral regions that satisfy the

data sufficiency condition [Defrise et al., 2006]. In the second case, an internal ROI that does

not qualify for exact and stable reconstruction [Natterer, 1986] is considered. For each case, we

simulate different amounts of missing data.

A PL estimation algorithm has been used to reconstruct the two types of ROI, namely,

peripheral ROI and interior ROI. One potential benefit of statistical ROI reconstruction over

analytical ROI reconstruction formule is that the PL estimation algorithm can handle the two

classes of problems in a unified framework, and no prior information about the ROI is needed.

Moreover, statistical reconstruction methods account for measurement noise in the problem for-

mulation.
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In this chapter, it will be shown that a peripheral ROI, which satisfies the analytical data suf-

ficiency condition, can be accurately reconstructed using the PL estimation algorithm, while

the interior ROI reconstruction results in images that suffer from artifacts. These results are

consistent with corresponding analytical investigations.

In order to study the noise properties of the estimator under the two different truncation

cases, the statistical method (see chapter 3.1), based on the reconstruction of multiple noise

instances, and the deterministic FIM-based method have been used for the calculation of the

uncertainty. For the deterministic method, a comparison of the variance obtained from the full

FIM, from the subsampled FIM and from the circulant FIM method is performed. One main

contribution of this chapter is that it exposes certain pitfalls of the circulant approximation,

when the effects of data truncation are investigated.

6.2 Singular Value Decomposition

The figures of merit for the calculation of the image quality discussed in the preceding chapters

have focused on the statistical properties of the estimator used for reconstruction. The system

operator H itself, can also provide information that is useful for investigating the stability of

an ROI solution. In this section, a framework for analysing the system operator, using the tool

of singular value decomposition (SVD) , is presented.

The singular value decomposition (SVD) method has been used to study the 2D interior

problem of the Radon transform by Maass [1992]; while others used numerical evaluation of

the SVD to study the performance of medical imaging systems [Zeng and Gullberg, 1997]

[Jorgensen and Zeng, 2008] [Clarkson et al., 2010] and to study the interior problem [Zeng and

Gullberg, 2012].

Ideally, the system matrixH would be invertible. However, this condition is quite difficult

to verify and it is generally found that this matrix is singular; even when the system operator

only approximates the true imaging system. One way to explore the singularity of H is to use

the singular-value decomposition (SVD) theory.

The SVD ofH ′H is given by

H ′H = V ΣV ′ (6.1)
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TheN×N matrix V is a non-singular orthonormal matrix with each row of V being a singular

vector ofH . σ = D [σ1, σ2, . . . , σt, 0, ·, 0] is a diagonal matrix whose values σ1 ≥ σ2 ≥ · · · ≥

σt > 0 are the singular values ofH ′H , or equivalently, the square of the singular values ofH .

The SVD provides a condition number to diagnose the system of linear equations. The

condition number is defined as the ratio of the largest singular value and the smallest singular

value of H ′H . The condition number indicates how sensitive the solution is to the noise in

the projection data ν. A system of linear equations with a low condition number is said to be

well-conditioned, while a system with a high condition number is said to be ill-conditioned.

An ill-conditioned system of equations presents some small or zero singular values. Sin-

gular vectors with very small or zero singular values can hardly be measured by the imaging

system.

Since missing data increases the ill-conditioning of the system matrix; many singular vectors

often have very small singular values if the projection data are truncated or incomplete.

These singular vectors form a set of basis of the null space of the system matrix:

null(H) = span {vt+1,vt+2, ·,vN} (6.2)

where t is a threshold index chosen such that σj’s values drop abruptly to zero for j > t on the

singular value spectrum of the system matrix.

6.3 Experiments

6.3.1 System Description

The SPECT system is based on a detector of size 236.16 mm × 236.16 mm. The detector

rotates over 360◦ at a regular angular step of 2◦. The axis of rotation is the line parallel to the

detector surface through the centre of the image volume. The imaging volume dimensions are

96 × 96 × 12 cubic voxels of 2.4 mm. Photon counts are binned on a grid of 96 × 12 pixels

of 2.46 mm and the intrinsic response is set to 3.6 mm. The distance CD = 123 mm between

the centre of the image volume and the detector surface is constant during the tomographic

acquisitions.

We consider a parallel hole collimator consisting of a two-dimensional array of square
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holes with septa thickness q = 0.2 mm, hole diameter v = 1.2 mm, and length l = 35 mm.

The collimator has a linearly varying depth-dependent Gaussian response that has a slope of

0.0562, which corresponds to 7.89 mm FWHM at the centre of the field of view.

In this experiment we investigate the effect on image variance for region-of-interest recon-

struction from truncated projection data. Truncation is caused by a limited detector size. Only

a certain number of detector bins u are used to measure data. Note that the Field Of View in

this truncation situation forms cylinder of specific radius depending on the level of truncation.

During the experiment, the ROI diameter varies from u = 96 to u = 16 (from 236.16 mm to

39.36mm). Truncation is simply modelled by setting to zero the rows of the system matrixH ,

that corresponds to the missing projection data νd (due to truncation).

6.3.2 Singular Value Decomposition for ROI Acquisition

The singular value decomposition (SVD) method has been used to study the properties of the

imaging system in case of truncation of the projection measurements.

The SVD ofH ′H has been calculated as in equation (6.1).

It should be noted thatH ′H , which is here in matrix form, can also be formulated as:

Crosstalk = H ′H =
M∑
d

hdihdj (6.3)

This matrix will be referred to, in the following, as the crosstalk matrix (see Barret [Barrett

et al., 1995]) and it corresponds to the nominator of equation (4.29), that defines the Fisher

Information Matrix. It is therefore straightforward to calculate the crosstalk matrix, using the

purpose-made GPU accelerated software for the calculation of the FIM described in 4.5.3, by

simply imposing νd = 1 in the denominator of equation (4.29).

In section 4.5.3, a method to sparsify the FIM has been introduced. This sparsified matrix

was referred to as the subsampled Fisher Information Matrix. In the same way, it is possible

to calculate the crosstalk matrix in equation (6.3) over a subset of the voxel indexes G ⊂

[1, . . . , N ] arranged in a grid that covers the whole volume. The subsampled version of the

crosstalk matrix is calculated over three different grids of g1 = 27648, g2 = 6912 and g3 =

3072 points equally distributed over the slice intersecting the point (or ROI) of interest and the

two neighbouring slices. It should be noted that grid g1 is fully sampled over the three slices of
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interest and therefore, in the following, it will be referred to as the full crosstalk matrix; whereas

grid g2 and g3 will be referred to as subsampled crosstalk matrices.

The singular value decomposition of H ′H has been calculated for the different levels

of truncation. The SVD is calculated using MATLAB’s built-in function. The singular value

spectra for the full and the subsampled crosstalk matrices are presented, and the condition

numbers for different levels of truncation are calculated to give a scalar measure for the accuracy

of the solution.

6.4 A Data Sufficiency Condition for The Interior Problem

As described in the previous sections, in many applications of Emission Computed Tomography

there is only a limited region of the object to be imaged that is of interest. It is desirable to

identify the smallest set of line integrals required to accurately reconstruct this ROI. However,

a general criterion to determine whether a given family of line integrals is sufficient for exact

and stable reconstruction of a ROI has, to date, eluded researchers.

A data sufficiency condition for region of interest reconstruction from truncated projection

data has recently been introduced in [Defrise et al., 2006]. This study shows that analytical

reconstruction algorithms are able to exactly reconstruct the ROI under the conditions that the

convex ROI is fully sampled and the image value in a sub-region within the ROI is known.

If the ROI includes a sub-region that is outside the patient body, then the conditions can be

easily satisfied. Although the derivation of Defrise’s algorithm [Defrise et al., 2006] is based on

the concept of differentiated backprojection and finite Hilbert transform inversion [Noo et al.,

2004] [Pan et al., 2005] [Sidky and Pan, 2005]; applying these tools is not mandatory when

effectively reconstructing the ROI, especially since a closed form analytic inversion formula for

the truncated Hilbert transform has not been derived. A statistical reconstruction method can be

applied to the truncated projection data set, taking into account the entire support of the object

and any additional prior information.

Zhang and Zeng [2007] investigated the use of statistical iterative algorithms for the ROI

reconstruction from truncated projection data. However this study considers only bias in the

reconstruction from noiseless data, disregarding noise. Evaluation of the effect of noise in case

of truncated emission data is one of the contributions of this chapter.
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Experiment A - A Subregion Within the ROI is Known

In this experiment, the statistical properties of the estimator, for ROI reconstruction from trun-

cated projection data, are investigated in the case that the ROI satisfies the data sufficiency

conditions described above.

Figure 6.1-A shows the software phantom where the sphere in the centre of the FOV rep-

resents the heart and the off-centre sphere represents the liver. The intensity of the heart and

that of the liver are equal and are set to λ = 8kBq/cm3, whereas the activity in the background

is set to zero. The Field-Of-View in this truncation situation forms cylinders of different radii

depending on the level of truncation. The size and the position of the central sphere has been

chosen in order to have the sphere always in the ROI, whereas the off-centre sphere is gradually

more and more outside the ROI with increasing truncation level. Since the central sphere is sur-

rounded by a zero background and the sphere is entirely in the ROI, for any level of truncation,

the data sufficiency condition is satisfied.

Experiment B - Interior Problem

In this experiment, the statistical properties of the estimator are investigated in case the ROI to

be reconstructed is entirely inside the boundary of the object. This problem is typically defined

as the interior problem and is not uniquely solvable.

The phantom, shown in Figure 6.1 - B is a uniform sphere positioned in the centre of the

image space, with diameter D = 24.6 mm. The activity in the sphere is set to λ = 8kBq/cm3

and to λ = 4kBq/cm3 in the background. The size and the position of the sphere has been

chosen in order to have the sphere always in the ROI, whereas the activity in the background is

gradually more and more outside the ROI with increasing truncation level.

6.4.1 Statistical Reconstruction and Statistical Calculation of the Uncertainty

In order to reconstruct the truncated projection data, an iterative PL reconstruction with an

added quadratic regularisation penalty has been used. The noisy data sets are reconstructed to

convergence, using an accelerated GPU implementation of the algorithm for PL estimation, im-

plemented as part of the NiftyRec toolbox [Pedemonte et al., 2010]. It should be noted that, for

ROI reconstruction, the matrix that samples the object space must be large enough to contain

the whole support of the object even if only a region of interest is to be reconstructed.
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Figure 6.1: The interior problem in emission tomography. The red circle represents the ROI

for the maximum level of truncation. A (left) - The image value in a sub-region within the

ROI is known. An exact and stable reconstruction can be achieved. B (right) - The ROI to be

reconstructed is entirely inside the boubdary of the object. For this measurement configuration,

the ROI can not be reconstructed exactly (the solution is not unique)

10000 iterations are performed in order to maximise the cost function. A smoothing prior with

a weight β = 10−8 is included in the cost function. The value of the regularisation parameter

is chosen after trial and error, as a minimum value that nearly guarantees convergence within

10000 iterations. In Figure 6.2 the objective function Ψ = L − βR, for the digital phantom

described in 6.4 - A, is plotted as a function of the number of iterations. The different curves

represent the objective function for different levels of truncation.

A series of independent noise realisations is computed using a pseudo-random Poisson noise

generator. The mean and the variance are calculated as in equation (3.3) and (3.6) respectively,

for both the experiments presented in 6.4 - A and 6.4 - B. Moreover the covariance is calculated

for a voxel in the centre of imaging volume as in equation (3.8).

The number of noise instances is 10240. NiftyRec can process concurrently up to 1024 recon-

structions in order to make efficient use of the GPU and 10 repetitions are chosen in order to

obtain satisfactory images of variance.
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Figure 6.2: Objective functions Ψ curves as a function of number of iterations. The different

curves represent the objective functions for different levels of truncation. Truncation is caused

by a limited detector size. The ROI diameter varies from u = 96 to u = 36 (from dark grey �

to light grey ∗). All the curves are scaled with respect to their maximum value.

6.4.2 Deterministic Method based on the Fisher Information

The main contribution of this chapter is given by the evaluation of noise properties of the system,

in case of truncated projection data. The effect on the variance of the estimate, for region-

of-interest reconstruction from truncated projection data, is evaluated using the deterministic

derivation based on the Fisher Information matrix.

For the deterministic method, the subsampled version of the FIM has been calculated over

three different grids of g1 = 27648, g2 = 6912 and g3 = 3072 points equally distributed over

the slice intersecting the point (or ROI) of interest and the two neighbouring slices.

The calculation of the covariance is then performed as in equation (4.47) for different levels

of truncation. The variance images in Figures 6.7 (B-C-D) are obtained by re-ordering the

diagonal of the covariance matrix Cov calculated as in (4.47). As described in section 4.8, a

trilinear interpolation is then performed in order to facilitate the visual comparison between the

variance images obtained with the different grid models. Variance images obtained with the

circulant approximation method are also presented for comparison. Every pixel of the image in

Figure 6.7 (E), is calculated according to equation (4.41).

The variance for a plane intersecting a point in the centre of the FOV and the CNR for a voxel
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positioned in the centre of the sphere are calculated for both the phantoms presented in 6.4 - A

and 6.4 - B.

6.5 Results

In the following sections 6.5.2 and 6.5.3, results from ROI reconstruction for two different trun-

cation cases (namely, the peripheral ROI and the interior ROI), are shown and discussed. The

results are obtained with the presented subsampled approximation of the FIM and, for validation

and comparison, with the circulant approximation of the FIM and with the reference statistical

method. In section 6.5.1 results obtained with the singular value decomposition (SVD), to study

the properties of the imaging system in case of truncation of the projection measurements, are

discussed. In section 6.5.4, all validation points are gathered to get a global overview of the

agreement between the new method and the reference method. In section 6.6 a visual represen-

tation of the Fisher Information matrices for the different approximation methods, is shown for

comparison.

6.5.1 Singular Value Decomposition for ROI Acquisition

Figure 6.3 - A shows the singular value spectra of the system operatorH with different levels of

truncation. Truncation is caused by a limited detector size. The different curves show the SVD

spectra for ROI diameter varying from u = 96 to u = 16 (from 236.16 mm to 39.36 mm).

For increasing level of truncation, as the ROI becomes smaller, an increasing number of singular

vectors present a singular value that is nearly zero, indicating that the system matrix becomes

more ill- conditioned.

Figure 6.3 - A shows the singular value spectra for the full crosstalk matrix with grid

g1 = 27648, whereas Figure 6.3 - B shows the singular value spectra for the subsampled

crosstalk matrix with grid g2 = 6912. Comparing the two figures, it is easy to notice that calcu-

lating the SVD for the subsampled crosstalk matrix is equivalent to performing a subsampling

of the singular value spectrum. The singular values for every singular vector obtained from

the subsampled crosstalk matrix are equivalent to the singular values obtained from the full

crosstalk matrix for the respective singular vectors. Therefore, the points of inflection of the

curves are equivalent with both methods. It should be noted that, for representation purposes,

the vertical axis in the plots of Figure 6.3 present the same scale. Thus, the maximum values of
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Table 6.1: Condition numbers for the interior problem

Svd Interior u = 96 u = 76 u = 56 u = 36

g1 1.81 e+05 4.71 e+24 8.13 e+25 4.74 e+26

g2 4.29 e+03 2.15 e+23 6.89 e+23 1.02 e+25

g3 1.05 e+03 7.50 e+22 8.27 e+23 1.56 e+25

g4 4.23 e+02 2.37 e+22 1.69 e+23 2.44 e+23

Condition numbers of the full crosstalk matrix with grid g1 = 27648 points and of the

subsampled crosstalk matrices with grid g2 = 6912 points, grid g3 = 3072 points and grid

g4 = 1728 points. The condition number are presented for each grid and for different levels of

truncation ranging from u = 96 to u = 16.

Figure 6.3 - A are not displayed.

The condition number provides a scalar measure to evaluate the system of linear equations.

The condition number is defined as the ratio of the largest singular value and the smallest singu-

lar value of H ′H . The condition numbers of the full crosstalk matrices and of the subsampled

crosstalk matrices for different levels of truncation are presented in table 6.1. The absolute val-

ues of the condition numbers for the two methods are obviously different since subsampling is

performed on the singular value spectra and the maximum singular values for the full crosstalk

matrices are most likely to differ from the maximum singular values for the subsampled case.

6.5.2 A - A Subregion Within the ROI is Known

Figures 6.4 and 6.5 show images of the mean, the variance and the covariance calculated with

the statistical reference method based on the reconstruction of 10240 noise realisations, for the

non-truncated and the truncated cases respectively.

From these images we can see that ROI reconstruction from truncated projection data can

lead to nearly unbiased reconstruction in a well-sampled ROI, under the condition in which the

image value in a sub-region within the ROI is known.

Images of the mean for the non-truncated and truncated case are presented in Figures 6.4-A

and 6.5-A. These images are congruent and present good accuracy throughout the circular ROI.
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Figure 6.3: SVD spectra for the interior problem. A (top) - Singular value spectra for the full

crosstalk matrix with grid g1 = 27648. B (bottom) - Singular value spectra for the subsampled

crosstalk matrix with grid g2 = 6912. Truncation is caused by a limited detector size. The

different curves show the SVD spectra for ROI diameter varying from u = 96 to u = 36 (from

236.16 mm to 88.56 mm). Black (∗) - ROI diameter u = 96, no truncation is performed. Blue

(+) - ROI diameter u = 76. Red (◦) - ROI diameter u = 56. Cyan (�) - ROI diameter u = 36.
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The absolute value of the difference between the non-truncated and the truncated cases does not

exceed the 8.2% of the maximum intensity and the average value of this absolute difference is

the 2.3% of the maximum intensity.

Outside the ROI, where projections are truncated and data are available only from certain cam-

era positions, the reconstruction algorithm overestimates the amount of activity in that region.

Figures 6.4-B and 6.5-B report the variance (standard deviation) and Figures 6.4-F and

6.5-F the covariance for a point in the centre of the FOV. In the non-truncated case the off-

centre voxels have a lower variance than the central voxels of the phantom, whereas, for the

truncated case, the variance is higher in the sphere outside the ROI. Even if ROI reconstruction

from truncated projection data can lead to nearly unbiased reconstruction, in a well-sampled

ROI, when the reconstruction algorithm is iterated to convergence; we noticed that a decrease

in ROI size leads to an increase in variance, not only outside the ROI but also inside it. For this

specific experiment we observe an overall increase in standard deviation of 6% in the centre of

the sphere positioned inside the ROI. Moreover from the covariance profiles, we can observe

a change in the statistical dependence between the estimate of the activity outside the ROI and

the estimate of the activity inside the ROI, in case of truncation of the projection data. For

the truncated case, in fact, the covariance does not have a localised content and therefore the

uncertainty in a point in the centre of the FOV depends on the estimate of the activity outside

the ROI.

6.5.3 B - Interior Problem

The mean and the variance images obtained with the reference statistical method, from trun-

cated projection data with a ROI diameter u = 36, for a uniform sphere phantom and uniform

non-zero background, are presented in Figure 6.6 - B and Figure 6.6 - C. The digital phantom

used for this experiment is shown in Figure 6.6 - A. Figure 6.6 - D shows the horizontal profiles

for the digital phantom and for the mean image. From these images we can see how, iterating

the reconstruction algorithm to convergence (performing 10000 iterations), we obtain an esti-

mate of the true unknown object λ with severe artifacts near the borders of the ROI. For this

measurement configuration, where the ROI to be reconstructed is entirely inside the boundary

of the object, the image inside this region can not be reconstructed exactly (since the solution is

not unique) and the estimate is therefore biased.
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Figure 6.4: Non-truncated case. A (top left) - average image. B (top centre) - standard deviation

image. C (top right) - activity phantom. D (bottom left) Black - diagonal profile of the average

image. Red - diagonal profile of the phantom. E (bottom centre) - diagonal profile of the

standard deviation image. F (bottom right) - diagonal profile of the covariance for a point at the

centre of the FOV. The standard deviation in the point in the centre of the FOV equals 0.332.
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Figure 6.5: Truncated case. A (top left) - average image. B (top centre) - standard deviation

image. C (top right) - activity phantom; the ROI is circled in red. D (bottom left) -Black -

diagonal profile of the average image. Red - diagonal profile of the phantom. E (bottom centre)

- diagonal profile of the standard deviation image. F (bottom right) - diagonal profile of the

covariance for a point at the centre of the FOV. The standard deviation in the point in the centre

of the FOV equals 0.349

.
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It should be noted that, since there is no unique solution for the interior problem, the

variance outside the ROI, theoretically, should present infinite value. However, the fact that

we are including a smoothing prior to the cost function results in a variance outside the ROI

that presents high but finite values. Even if the interior problem is not uniquely solvable, it

is interesting to study the noise properties of the estimator for truncated emission data, using

different approximations for the deterministic FIM-based method.

Fig. 6.7 shows variance images from truncated projection data with a ROI diameter u = 36. The

variance image obtained from multiple noisy data sets and the variance images obtained from

the full FIM and the subsampled FIM method with different grids are in good agreement. For

the voxels outside the ROI, the variance increases considerably in respect to the non truncated

case. Outside the ROI, in fact, we do not have full sampling, since we acquire data from that

region only at certain angular positions of the camera.

The variance image obtained with the circulant approximation of the FIM method is displayed

in Fig. 6.7 - E. From this image, we can notice an increase in variance in the voxels outside

the ROI with respect to the non-truncated case. However the aforementioned effect is less

accentuated with respect to the increase in variance estimated with full FIM method and with

the subsampled FIM method in the same region. The horizontal profiles are shown in Fig. 6.7-F.

In Fig. 6.8 the CNR for a voxel in the centre of the sphere is plotted for different ROI

diameters u = 96, · · · , 16. The calculation of the CNR is obtained with the reference method

(reconstruction of 1024 noisy data sets), with our novel approach for the approximation of the

FIM (with grid of g1 = 27648 (full FIM), g2 = 6912, g3 = 3072 points) and, for comparison,

with the circulant approximation based on a single row of the FIM.

For this specific experiment we observe an overall decrease in CNR of 10% compared to the

non-truncated case, using the reference method based on multiple noise realisations for the

calculation of the variance. An important observation is that we see no effect due to truncation

with the circulant approximation of the FIM (as stated in [Zhou et al., 2010]) whereas with

the sumbsampled FIM, since we account for the interdependence between the voxels, we see

a decreased CNR (increased variance) with increased level of truncation. This is an important

feature of the method that we have introduced, because it enables the optimisation of systems

for interior imaging, which is not possible with existing methods.
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Figure 6.6: Mean and variance images from truncated projection data with a ROI diameter

u = 36, for a uniform sphere phantom and uniform non-zero background. A (top left) - Digital

phantom. B (top centre) - Mean image. C (top right) - Variance image. D (bottom) - Black line:

phantom profile. Red line: mean profile.
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Figure 6.7: Interior tomography: Variance images for a uniform sphere phantom obtained with

truncated projection data with ROI diameter u = 36. A (top left) - Reference method (variance

image obtained from the reconstruction of 10240 noisy projection data sets), B (top central) -

Full Fisher Information-based method with grid g1, C (top right) - Subsampled Fisher Informa-

tion based method with grid g2, D (central left) - Subsampled Fisher Information based method

with grid g3, E (central)- Variance image obtained with the circulant approximation method. F

(bottom)- Variance profiles at the centre of the heart: reference method (black line - ∗), grid g1

(blue line - +), grid g2 (red line - ◦), grid g3 (green line - ×), circulant (cyan line - �).
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Figure 6.8: Interior tomography: CNR for different levels of truncation for a voxel in the center

of the sphere. ROI diameter (from left to right) u = 96, · · · , 16. Black line (∗) - CNR obtained

with the reference method. Blue line (+) - CNR obtained with full FIM method with grid g1.

Red line (◦) - CNR obtained with subsampled FIM method with grid g2. Green line (×) - CNR

obtained with subsampled FIM method with grid g3. Cyan line (�) - CNR obtained from the

circulant approximation method.

6.5.4 Validation

In section 6.5.3 we prove how our new approximation for the calculation of the FIM well pre-

dicts the variance of the estimate in case of truncation of the projection data. A validation for

the subsampled Fisher Information-based variance calculation method, in case of data trunca-

tion, is presented in the following.

For the experiment presented in section 6.4, the variance obtained with the reference statisti-

cal method is plotted with respect to the variance predicted with the Fisher Information-based

method, for grid g1 = 27648 points, grid g2 = 6912 points, grid g3 = 3072 points, grid

g4 = 1728 points and grid g5 = 1106 points. A least squares fitting is performed through the

data. The regression coefficients, the intercepts of the line, the correlation coefficients and the

standard error of the estimate for every experiment are presented in Table 6.2.

All validation points for the experiment in section 6.4 for those three grid models and for

the circulant approximation method are shown in Figure 6.9. In these figures, the standard

deviation calculated with the reference method with respect to the standard deviation predicted
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Table 6.2: Validation of the Subsampled FIM

Inter CC SEE int RC

g1 0.9539 2.33 e-04 -0.0022 0.9529

g2 0.9417 4.90 e-04 -0.0047 0.9106

g3 0.9208 8.25 e-04 -0.0062 0.8687

g4 0.8942 0.0024 -0.0146 0.8174

g5 0.8296 0.0029 -0.0201 0.7955

Validation of the Subsampled FIM in comparison with the Reference Statistical Method for the

experiment presented in section 6.4. CC: Correlation Coefficent. SEE: Standard Error of the

Estimate. int:intercept of the least squares fit. RC: regression coefficient of the least squares

fit.

with the subsampled FIM method and with the circulant approximation method are plotted. The

solid line was fitted to minimise the least squares distance between these points. From these

images it is possible to see how the subsampled FIM method well determines the variance of

the estimate, although the level of approximation increases when the grid becomes more sparse.

The correlation coefficient between the variance obtained with the reference statistical method

and the variance obtained with the subsampled FIM with grid g1, grid g2 and grid g3 ranges

from 0.9 to 1. The Standard Error of the Estimate does not exceed 0.001.

Figure 6.9-D shows the least squares fitting between the reference method and the results ob-

tained with the circular FIM. The fitted line is inclined towards the x-axis (slope 0.424, y-

intercept 0.017), which means that the circulant method systematically underestimates the stan-

dard deviation. It is therefore clear from this figure that this approximation of the FIM does not

account properly for truncation effects in the estimation of the variance.

6.6 Discussion

In this chapter we have used an iterative PL reconstruction algorithn with an added quadratic

regularisation penalty to reconstruct two types of ROIs, namely, peripheral ROIs, and the inte-

rior ROIs.
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Figure 6.9: Validation of the Fisher information-based standard deviation calculation method

for different grids, in case of truncated data. The standard deviation obtained with 10240 re-

peated simulations is plotted with respect to the standard deviation predicted with the Fisher

information-based method. A (top left)- grid g1, B (top right) - grid g2, C (bottom left) - grid

g3 and D (bottom right) - circulant approximation. Spatial information is given by the colour

of the dots. The light grey dots represent voxels which are more distant from the rotation axis

(off-centre voxels); whereas the dark grey dots represent voxels which are closer to the rotation

axis (central voxels). A colour bar with the respective distance from the rotation axis (in mm)

is displayed for every plot.
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We found that peripheral ROIs, which satisfy the analytical data sufficiency condition

presented in section 6.4, can be exactly reconstructed using the PL reconstruction algorithm,

while reconstructed images for the interior problem suffer from artifacts. These results are

consistent with corresponding analytical data sufficiency conditions. The potential benefit of

ROI statistical reconstruction with the PL algorithm over analytical ROI reconstruction method

is that the PL reconstruction can handle both classes of problems in a unified framework.

For a general interior tomography case, it is extremely difficult to know the true value of

the activity distribution from a certain region within the ROI. It has been suggested to perform a

quick scout scan which is truncation-free to obtain an approximate estimate of the true activity

distribution. However, the scout images are rather noisy due to the limited amount of data

acquired and it may be difficult to determine the exact position of the object boundary from

such images.

Given these considerations, it is important to study the statistical properties of the estimator

(in terms of bias and variance) in case of interior ROI reconstruction from truncated projection

data. In this chapter, simulation experiments have been presented to investigate the statistical

properties of the estimator under the two different truncation cases. The peripheral ROI recon-

struction and the interior ROI reconstruction have been investigated simulating different levels

of truncation. In both cases the estimator λ̂, suffers from increased variance, depending on the

amount of data truncation. Even if peripheral ROI reconstruction can lead to nearly unbiased re-

construction, in a well-sampled ROI, we noticed that a decrease in ROI size leads to an increase

in variance, not only outside the ROI but also inside it.

In section 6.5.3 of this chapter, a comparison between the results obtained using the sub-

sampled FIM approximation and the circulant FIM approximation, in case of truncation, is

presented. From these results, we can see how with the circulant approximation the variance

inside the ROI appear to be independent of the present of truncation in the projection data,

which is inconsistent with the results obtained with all the other methods for the calculation of

the variance (and hence of the CNR).

Comparison of the variance (the diagonal of the covariance matrix) obtained from the cir-

culant approximation, with the full FIM and with the reference statistical method, has therefore

highlighted certain pitfalls of the circulant approximation in case of data truncation. In the fol-
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lowing, the link between the shift-variance properties of the system response and the different

approximations of the FIM, in case of data truncation, is discussed and illustrated with an ex-

ample.

Figure 6.10 shows the full Fisher Information Matrix (Figures 6.10 A-B) the subsampled Fisher

Information Matrix with grid g2 (Figures 6.10 C-D) and the circulant Fisher Matrix (Figures

6.10 E-F) for the experiment described in section 6.4. Since the FIM is a very large matrix and

therefore difficult to display, we show the FIMs for the 2-D case. Therefore the full FIM has

g1 = 9216 points and the subsampled FIM has g2 = 2304 points.

As already described in section 4.5.2, all elements of the subsampled FIM at the grid points are

calculated exactly, accounting for the acquisition geometry and for the object. We can see, in

fact, how in the subsampled FIM we account for the system response and for the object depen-

dency, whereas with the circulant approximation method we make the assumption that the FIM

(and therefore the system response) is shift invariant.

However, what is ultimately of interest is the inverse of (F − β ·R) (the covariance matrix).

Figure 6.11 shows the covariance matrix calculated from the full FIM (Figure 6.11 A), the

covariance matrix calculated from the subsampled FIM with grid g2 (Figure 6.11 C) and the

covariance matrix calculated using the circulant approximation method (Figure 6.11 B) for the

experiment described in section 6.4. The covariance matrix calculated using the circulant ap-

proximation method is spatially variant (non circulant) but clearly does not show the same struc-

ture as the covariance obtained from the full FIM in Figure 6.11 A. We can therefore deduce

that the circulant FIM can not incorporate the effects of shift-variance, since it does not account

for the effects of data truncation or missing data. Clearly, the inverse of (FG − β ·RG)−1 will

not be exact at the grid points because of the missing off-diagonal FIM entries between the grid

points, however the matrices in 6.11 A and 6.11 C exhibit the same structure. This encompasses

the capability of the method to incorporate non-stationary system models, effects of long-range

correlations and data truncation.

In conclusion we can infer that no effect due to truncation is observed with the circu-

lant approximation of the FIM, whereas the subsampling approach seems to be very accurate

for evaluating the effects of data truncation or missing data, since it accounts for the inter-

dependence between all the voxels, This is an important feature of the method that we have
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Figure 6.10: Fisher Information Matrix for the experiment in section 6.4. Comparison between

full FIM, subsampled FIM and Circulant FIM. A (top left) - Full FIM, grid 9216 with points. B

(top right) - A zoom-in part of A. C (central left) - subsampled FIM, grid with 2304 points. D

(central right) - A zoom-in part of C. E (bottom left) - Circulant FIM for a voxel of interest i in

the centre of the FOV only. F(bottom right) - A zoom-in part of E.
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A B C

Figure 6.11: Inverse of F − β ·R (Covariance matrix) for the experiment in section 6.4. Com-

parison between the Covariance matrix obtained from the full FIM, the subsampled FIM and

obtained by row-by-row inversion of the circulant FIM, where each column of the matrix is

evaluated separately using (4.41). A - Covariance matrix obtained from the Full FIM, grid

g1 = 9216 points. B - Covariance matrix obtained by row-by-row inversion of the circulant

FIM. C - Covariance matrix obtained from the subsampled FIM, grid g2 = 2304 points.
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introduced, because it enables the optimisation of systems for interior imaging and of imag-

ing systems that depart from the uniformly sampled circular trajectory of SPECT (as we will

demonstrate in the next chapter).
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Chapter 7

Changing Acquisition Trajectory: The

D-SPECT System

7.1 Introduction

The D-SPECT system (Spectrum Dynamics, Caesarea, Israel), based on novel detector tech-

nology and a unique acquisition geometry, offers potential advantages in nuclear imaging com-

pared to conventional gamma camera single photon emission computed tomography (SPECT)

systems [Erlandsson et al., 2009] [Gambhir et al., 2009].

The design of a SPECT system has remained unchanged for many years. As described in sec-

tion 2.1.2 and section 2.1.3, the primary components of this system are a collimator that limits

the direction of the incoming photons, a scintillation crystal and a set of photomultiplier tubes

that determine the location and the energy of the detected photons. The acquisition geometry

usually involves the rotation of the camera along a circular trajectory at constant speed around

the centre of the imaging volume; so that the detector collects photons during the same time

interval for each angular position. Most commonly, dual detectors are used where both speed

of rotation and detector location tend to be limited by the bulk of the overall system.

The disadvantages of scintillation detectors include bulkiness and relatively poor energy res-

olution. Solid-state detectors have long been used in spectroscopic applications due to their

superior energy resolution, but have not been widely used in medical imaging for reasons of

stability, practicality and cost. Solid-state detectors based on cadmium zinc telluride (CZT)

can operate at room temperature, and recent technical advances have led to the development of

pixelated CZT detector units appropriate for medical imaging applications [Wagenaar, 2004].
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The absence of PM tubes allows for a compact and flexible design.

The design of the D-SPECT system is based on 9 arrays of CZT solid-state detectors units.

This novel technology greatly reduces the bulkiness of the detectors and permits movements

that would not be achievable with conventional gamma cameras.

This new design overcomes some limitations inherent to a SPECT system, allowing for a region-

centric acquisition. By choosing to spend more time directing the detector heads towards a

Region Of Interest (ROI), one can allocate more time to collect data from more informative

regions at the expense of collecting less data from less informative regions (as for example

outside the body contour). The trajectory of the gamma camera has a profound effect on the

overall uncertainty of the measurement and on how the uncertainty is distributed throughout

the imaging volume. Moving the camera along a circular trajectory at constant speed around

the centre of the imaging volume produces, intuitively, optimum retrieval of the information

when the object is (roughly) uniform and the PSF ideally not depth-dependent. Changing the

detector angular movements allowing for a non uniform scanning pattern, just like for any

other parameter of the acquisition system, the interdependence of the information changes and

the D-SPECT system response may be highly shift-variant. Moreover, in the D-SPECT as in

every SPECT system, there is an inherent space-variancy due to the intrinsic depth dependent

response of the collimator and to the object dependency. Calculating the reconstructed image

quality in a region-of-interest (ROI) is a complex problem that depends also on the presence of

activity and on the system response outside the ROI.

It is therefore fundamental to compare different acquisition protocols and to investigate the

influence of the presence of activity outside the ROI when optimising the design of this system.

The D-SPECT is an example of adaptive system, where the acquisition protocol (in terms

of the camera trajectory and their position) can be modified depending on the data acquired

during the scan, so as to image certain desired properties of the underlying object. In order

to adapt the response of a system during acquisition, a set of different design parameters have

to be compared in a reasonably short time. Thanks to a dedicated GPU implementation, the

novel algorithm for the estimation of the uncertainty (presented in 4.5.2) drastically reduces the

computational complexity and therefore is a good candidate method for adaptive optimisation

problems.
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The aim of this chapter is therefore to explore the use of the subsampled FIM approximation

to compare a set of candidate scanning patterns and to optimise the acquisition protocol; em-

phasising how it enables us to explore the design of highly shift variant systems as a result of

distance dependent resolution and adaptive data sampling.

The results obtained with the approximate subsampled FIM method are compared with the

circulant approximation method (see section 4.5.1) and with the reference method based on

reconstruction of multiple noise instances (see section 3).

7.2 System Description

Several new systems have recently been designed utilising semiconductors for detecting γ-

photons [Madsen, 2007] [Patton et al., 2007]. Although presenting different scanning geome-

tries, these systems, based on solid-state detectors, are all characterised by a compact design,

and provide significantly higher count sensitivity, as well as spatial and energy resolution, than

conventional SPECT systems.

7.2.1 CZT Detectors

Semiconductor detectors are solid-state devices that provide direct conversion of absorbed γ-

ray energy into an electronic signal. Because there is no need for an intermediate high-gain

amplification stage, these devices are compact and operate at low voltage. The absorbed energy

from a γ-ray interaction liberates charge carriers (electrons and holes) within the charge-free de-

pletion zone of the semiconductor. The induced charge on the terminals generates an electronic

pulse with an amplitude proportional to the absorbed energy. Because there is no intermediate

conversion stage, the precision of the signal is better than that of scintillators, resulting in cor-

respondingly better energy resolution. Solid-state detectors based on cadmium zinc telluride

(CZT) can operate at room temperature, and recent technical advances have led to the devel-

opment of detector units appropriate for medical imaging applications [Wagenaar, 2004]. The

intrinsic efficiency for CZT would be comparable to NaI(Tl) if the crystals were equally thick,

however CZT crystals are typically thinner than scintillation crystals. CZT are available as pix-

elated detector arrays with a typical intrinsic spatial resolution of 2.46 mm and present a better

energy resolution (than scintillator detectors) in the range of 2%- 5% for 140- keV γ-rays..
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Table 7.1: pD-SPECT System Parameters

Detector block 1 2 3 4 5 6 7 8 9

Detector distance (mm) 228 203 205 229 248 256 254 249 262

FWHM (mm) 7.93 7.18 7.25 7.97 8.54 8.79 8.70 8.56 8.96

7.2.2 The D-SPECT System

In this section, the design of the novel D-SPECT system is described.

The commercial D-SPECT camera system is based on 9 collimated CZT detector columns

arranged in a curved configuration in order to conform to the shape of the left side of the patient

chest (Figure 7.1-A). Each detector column is then placed at a different distance from the centre

of the imaging volume (Table 7.1). Each of the nine detector blocks is composed of 16 × 96

individual pixels with a size of 2.46mm in both dimensions, resulting in a total detector surface

of 39.36 mm× 236.16 mm.

The tungsten parallel-hole collimators used by Spectrum Dynamics are shorter (21.7mm)

and have larger square holes (2.46 mm) than the standard LEHR parallel-hole collimators.

This collimator design results in a linearly varying depth-dependent Gaussian response that has

a slope of 0.136, which corresponds to 16.8 mm FWHM at the centre of the field of view. The

acceptance solid angle (10.847 − 1023 sr) is therefore more than 8 times that of the standard

LEHR lead parallel-hole SPECT collimator (1.264− 1023 sr). The square collimator holes are

in registration with the crystal detector array, with 1 CZT pixel for each hole.

In this chapter we consider an adaptive SPECT system similar to the commercially avail-

able D-SPECT [Erlandsson et al., 2009]. In the following we refer to this adaptive SPECT

system as the pseudo D-SPECT (pD-SPECT) . The design of the pD-SPECT differs from the

commercially available D-SPECT in both the design of its collimators and the specifications

of the acquisition protocol. Each detector block is equipped with a square PH collimator with

septa thickness q = 0.2 mm, hole diameter v = 1.03 mm and collimator length l = 35 mm.

The FWHMs, which depend on the distance of every detector from the centre of the FOV, are

presented in Table 7.1. The square collimator holes are in registration with the pixelated detec-

tor array, with 4 collimator holes for each CZT pixel.
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It can be noted that the collimator of the pD-SPECT system presents a response which is com-

parable to that of a LEHR collimator used in conventional SPECT. Therefore we do not account

for higher sensitivity due to a broader collimator aperture but only for higher sensitivity due to

a region-centric acquisition.

7.2.3 Acquisition Protocol

During data acquisition in the standard scanning mode, each of the nine individual detector

blocks rotates in synchrony around its central axis in order to cover the whole field of view

(FOV).

The adaptive dynamic sequence consists of two options:

Open-Sweep Acquisition: Each detector block rotates 110◦ in order to cover the whole FOV,

performing 60 regular angular steps. In order to obtain a more complete tomographic sampling,

the complete set of detectors is translated by 9◦ and the open-sweep acquisition is performed

for a second time.

Region of Interest Acquisition: After a preliminary sweep mode scan, the operator defines a

ROI contour. This ROI is then used to generate a specific scanning pattern, designed in such

a way that each detector should spend more time acquiring data coming from the direction of

the ROI than from regions outside. Data from the whole FOV are still acquired, however, so

as to avoid truncation. The sequence of acquisition is therefore adapted in order to minimise

the uncertainty in the ROI. The search of optimum scanning sequences is constrained by the

following algorithm: each detector head covers the full angular span of ϕ3 − ϕ0 = 110◦,

performing 60 angular steps δϕ (Figure 7.1 B):

δϕ =



t((ϕ3 − ϕ2) + (ϕ1 − ϕ0))

T (1− S)
if ϕ0 < ϕ ≤ ϕ1

(ϕ2 − ϕ1)

TS
if ϕ1 < ϕ ≤ ϕ2

t((ϕ3 − ϕ2) + (ϕ1 − ϕ0))

T (1− S)
if ϕ2 < ϕ ≤ ϕ3

(7.1)

where T is the total scanning time, ta = T/60 is the constant scanning time for every angular

step, ϕ1 and ϕ2 are the angles subtended by the rays intersecting the centre of the detector and

tangent to the ROI contour. The complete set of detectors is then translated by 9◦; a new set of

60 angular steps is defined and the region centric acquisition is performed a second time.
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Figure 7.1: A (left) - Position of pD-SPECT detectors. B (right) - angular movement of a single

pD-SPECT detector. Angular span of the FOV: ϕ3 − ϕ0. Angular span of the ROI: ϕ2 − ϕ1.

The only parameter defined in order to describe the scanning pattern is the time ratio S that

each detector spends acquiring data from the ROI rather than from the surrounding region.

7.3 SVD for Different Acquisition Protocols

In chapter 6, the singular value decomposition (SVD) method has been used to study the prop-

erties of the imaging system in case of truncation of the projection measurements. Changing

the camera trajectory has a profound effect on the overall system response and on its variability

throughout the imaging volume. If with the Open-Sweep Acquisition (S = 0.45) the imaging

volume is uniformly scanned, a ROI acquisition with S = 1 could lead to missing data in the

projection domain, depending on the size and position of the ROI. It is therefore interesting

to study the SVD of the system operator for different acquisition protocols, ranging from the

open-sweep acquisition to the ROI-only acquisition.

The SVD of H ′H has been calculated as in equation (6.1), using the MATLAB’s built-

in function. The singular value spectra for the full and the subsampled crosstalk matrices are

shown in Figure 7.3. The condition numbers for different acquisition protocols are presented in

Table 7.2.

7.4 Statistical Calculation of the Uncertainty

In order to reconstruct the projection data, an iterative PL reconstruction, which converges to

an image that maximises the Poisson likelihood of the data, with an added quadratic smooth-
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Figure 7.2: Objective function Ψ curves as a function of number of iterations. The different

curves represent the objective function for different scanning patterns of a pD-SPECT system.

The scanning pattern is defined by its time ratio S which varies ranging from S = 0.45, to

S = 0.9 (from dark gray � to light gray ∗). All the curves are scaled with respect to their

maximum value.

ness penalty, has been used. The noisy data sets were reconstructed using an accelerated GPU

implementation of the One Step Late algorithm for PL estimation, implemented as part of the

NiftyRec toolbox [Pedemonte et al., 2010].

10000 iterations are performed in order to maximise the cost function. A smoothing prior with a

weight β = 10−10 was included in the cost function. The value of the regularisation parameter

was chosen after trial and error, as a minimum value that nearly guarantees convergence within

10000 iterations. In Figure 7.2, the objective function Ψ = L − βR, for the digital phantom

described in 7.5 - A, is plotted as a function of the number of iterations. The different curves

represent the objective function for different acquisition protocols.

A series of independent noise realisations is computed using a pseudo-random Poisson

noise generator. The mean and the variance are calculated as in equation (3.3) and (3.6) re-

spectively. The number of noise instances is 10240. NiftyRec can process concurrently up to

1024 reconstructions in order to make efficient use of the GPU and 10 repetitions were chosen

in order to obtain satisfactory images of variance.
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7.4.1 Deterministic Method based on the Fisher Information

For the deterministic method, the subsampled version of the FIM has been calculated over three

different grids of g1 = 27648 (full FIM), g2 = 6912 and g3 = 3072 points equally distributed

over the slice intersecting the point (or ROI) of interest and the two neighbouring slices.

The calculation of the covariance is then performed as in equation (4.47) for different acquisi-

tion protocols. The variance images in Figures 7.8 (B-C-D) and 7.9 (B-C-D), are obtained by

re-ordering the diagonal of the covariance matrix Cov calculated as in (4.47). For the full FIM

(g1), the diagonal of Cov is simply reshaped to a three dimensional matrix, whereas for grids g2

and g3 every point of the diagonal of CovG is allocated to the respective points of the grid in the

imaging volume. As described in section 4.8, a trilinear interpolation is then performed in order

to facilitate the visual comparison between the variance images obtained with the different grid

models.

Variance images obtained with the circulant approximation method are also presented for com-

parison. Each pixel of the images in Figures 7.8 (E) and 7.9 (E), is calculated according to

equation (4.41).

7.5 Experiments

The main aim of this set of experiments is to compare different acquisition protocols for the

D-SPECT system and to investigate the influence of the presence of activity outside the ROI in

the optimisation.

7.5.1 A - NCAT Phantom

The first experiment is performed to compare different acquisition protocols with a realistic

phantom.

The phantom used for this experiment is a heart phantom (NCAT) [Segars, 2001]. The ac-

tivity within the phantom was λ = 8kBq/cm3 and λ = 4kBq/cm3 in the right and left

ventricle myocardium respectively, λ = 0.6kBq/cm3 in the left and right ventricle chamber,

λ = 0.6kBq/cm3 in the lungs, λ = 8kBq/cm3 in the liver and λ = 0.1kBq/cm3 in the

background. The image volume dimensions are 96× 96× 12 cubic voxels of 2.46 mm.

For this experiment, the scanning pattern varies ranging from S = 0.45, to S = 0.9

(where S = 0.45 is the time ratio for the open-sweep modality). The mean and the variance
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are calculated using the statistical method for the calculation of the uncertainty. The CNRs are

calculated for the central point of the ROI at a constant target resolution FWHMt = 12 mm.

7.5.2 B - Contrast Phantom

The second experiment is performed to investigate the influence of the presence of activity out-

side the ROI in the optimisation of the acquisition protocols.

The software phantom is a uniform sphere positioned at a mean distance from the detectors of

205 mm. The sphere is then positioned in the half of the FOV closest to the detectors, where

there is complete tomographic sampling. The activity in the sphere is set to λ = 8kBq/cm3

and the background activity is set to three different levels λBK1 = 0.9kBq/cm3, λBK2 =

2.2kBq/cm3 and λBK3 = 4.4kBq/cm3. The image volume dimensions are 96 × 96 × 12

cubic voxels of 2.46 mm.

We perform, for each of the three different backgrounds in the object, a set of experiments in

which the scanning pattern varies ranging from S = 0.45, to S = 0.9.

For this experiment, the deterministic FIM based method for the calculation have been used

for the calculation of the LLIR and the variance. Results obtained with the subsampled FIM

approximation, the circulant approximation and the reference method are presented for com-

parison. The CNRs are calculated for the central point of the ROI at a constant target resolution

FWHMt = 12 mm.

7.6 Results

In the following sections 7.6.2 and 7.6.3, results for different acquisition protocols for a pD-

SPECT system are shown and discussed. The results are obtained with the presented subsam-

pled approximation of the FIM and, for validation and comparison, with the circulant approxi-

mation of the FIM and with the reference statistical method. In section 7.6.1, results obtained

with the singular value decomposition (SVD) are discussed to study the properties of the imag-

ing system. In section 7.7, all validation points are gathered to get a global overview of the

agreement between the new method and the reference method.

7.6.1 SVD for Different Acquisition Protocols

Figure 7.3 - A shows the singular value spectra of the system operatorH , for different acquisi-

tion protocols of a pD-SPECT system. The ROI is the one defined for the experiment in section
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7.5.1. The acquisition protocol is determined by the time ratio that ranges from S = 0.45, the

open-sweep acquisition, to S = 1, for a ROI-only acquisition.

Performing an open-sweep acquisition, the imaging volume is uniformly scanned and only few

singular vectors present a singular value below that is nearly zero. For increasing time ratio S,

as we allocate more time directing the detector heads towards the ROI, an increasing number

of singular vectors present a singular value that is nearly zero, indicating that the system matrix

becomes increasingly more ill-conditioned. It should be noted, however, that only for S = 1

the singular value spectrum presents a significant number of singular values close to the zero

value, since a ROI-only acquisition leads to missing data in the projection domain.

Figure 7.3 - A shows the singular value spectra for the full crosstalk matrix with grid

g1 = 27648, whereas Figure 7.3 - B shows the singular value spectra for the subsampled

crosstalk matrix with grid g2 = 6912. As previously discussed in section 6.5.1, comparing

these figures, it is possible to infer that calculating the SVD for the subsampled crosstalk matrix

is equivalent to performing a subsampling of the singular value spectrum. Therefore, the points

of inflection of the curves are equivalent with the two methods. It should be noted that, for

representation purposes, the vertical axis in the plots of Figure 6.3 present the same scale.

Thus, the maximum values of Figure 6.3 - A are not displayed.

The condition numbers of the full crosstalk matrices and of the subsampled crosstalk ma-

trices, for different acquisition protocols, are presented in table 6.1. The absolute values of the

condition numbers for the two methods are obviously different since subsampling is performed

on the singular value spectra and the maximum singular values for the full crosstalk matrices

are most likely to differ from the maximum singular values for the subsampled case.

Thus the condition number alone can not be employed as a metric for comparison between dif-

ferent systems when subsampled crosstalk matrices (or subsampled Fisher matrices) are used.

7.6.2 A - NCAT Phantom

Figure 7.4 and 7.6 show the mean image obtained from the reconstruction of 10240 noisy

projection data sets, for two different slices of an NCAT phantom. In Figure 7.4 the slice

includes the left and right ventricle myocardium, whereas in Figure 7.6 the slice includes the

apex of the heart and part of the liver. Figure 7.4 - A and 7.6 - A show the two corresponding

slices of the digital phantom. Figure 7.4 - B - C - D and 7.6 - B - C - D show the mean images
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Figure 7.3: for the D-SPECT for different acquisition protocols. A (top) - Singular value spectra

for the full crosstalk matrix with grid g1 = 27648. B (bottom) - Singular value spectra for the

subsampled crosstalk matrix with grid g2 = 6912. The different curves show the SVD spectra

for time ratios varying from S = 0.45 to S = 1. Black (∗) - Time ratio S = 0.45, open-sweep

acquisition. Blue (+) - Time ratio S = 0.65. Red (◦) - Time ratio S = 0.85. Cyan (�) - Time

ratio S = 1.
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Table 7.2: Condition numbers for the pD-SPECT system with different acquisition protocols.

Svd pD-SPECT S = 0.45 S = 0.65 S = 0.85 S = 1

g1 4.43 e+03 7.28 e+03 9.33 e+03 1.76 e+04

g2 220.94 400.94 694.12 5.98 e+03

g3 65.33 116.75 215.9 3.04 e+03

g4 35.26 59.62 109.13 925.95

Condition numbers of the full crosstalk matrix with grid g1 = 27648 points and of the

subsampled crosstalk matrices with grid g2 = 6912 points, grid g3 = 3072 points and grid

g4 = 1728 points. The condition number are presented for each grid and for different time

ratios, ranging from S = 0.45 to S = 1.

for time ratio S = 0.45, S = 0.85 and S = 1. The horizontal profiles for the digital phantom

and for the mean images are given in Figure 7.4 - E and 7.6 - E. From these images we can

see how the structure inside the ROI can be accurately resolved for both time ratios S = 0.45

and S = 0.75. On the contrary, for time ratio S = 1, in both slices, the amount of activity in

the right ventricle is underestimated. From Figure 7.6 - D we can also see how for time ratio

S = 1 the reconstructed image outside the ROI (the liver) is affected by severe artifacts. From

these results we can therefore deduce that for time ratios S = 0.45 and S = 0.75 the activity

distribution can be accurately reconstructed, whereas for time ratio S = 1 the reconstructed

image is affected by artifacts.

The calculated variance images for the two slices of the NCAT phantom are shown in

Figure 7.5 and Figure 7.7. Figure 7.5 - A - B - C - D and 7.7 - A - B - C - D show the variance

images for time ratios S = 0.45, S = 0.65, S = 0.85 and S = 1. The horizontal profiles for

the variance images are given in Figure 7.5 - E and 7.7 - E.

From these images we can see how, for an NCAT phantom, changing the detector angular

movements and allocating more time to collect data from a ROI, the variance inside the ROI

decreases with increasing time ratio S. We can however notice how with time ratio S = 1 the

variance in the ROI is higher than the variance obtained with time ratio S = 0.65 and S = 0.85.

Moreover from Figure 7.7 we can see how, with increasing time ratio S, the variance increases
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in the liver whereas the variance inside the ROI decreases. This effect on the variance is due

to the fact that with increasing time ratio S more time is spent on the ROI at the expense of

acquiring less information on the surrounding region. Though the information that is ultimately

acquired about the ROI also depends on the information that is acquired in the surrounding

region, imaging an NCAT phantom, the net effect of increasing S is to increase the overall

information about the activity in the ROI.

The optimum time ratio obtained with the proposed approach is a complex function of

many factors, including the location of the ROI with respect to the orbit of the camera and the

relative location and strength of the background features. Sampling angles corresponding to

larger probabilities for detecting the gamma rays originated from the ROI are generally more

important, whereas sampling angles that lead to greater sensitivity to strong background fea-

tures are generally less favourable. For an NCAT phantom where the amount of activity in the

background is low with respect to the activity in the ROI an acquisition protocol that spend

more time acquiring data from the ROI may be preferable. For time ratio S = 1, there is an

increase level of variance due to missing data in the projection domain. A ROI-only acquisition

is therefore not recommended even when imaging a cardiac phantom.

7.6.3 B - Contrast Phantom

Figures 7.8 and 7.9 show the calculated variance for a slice intersecting the centre of the sphere

for time ratio S = 0.45 and 0.85 respectively and background set at λ = 2.2kBq/cm3 .

Figures 7.8-A and 7.9-A show the results obtained from the reference statistical method based

on the reconstruction of multiple noise realisations. The results obtained with the deterministic

method based on a subsampled version of the FIM are shown in Figures 7.8-B and 7.9-B for a

grid characterised by g1 = 27648 points and in Figures 7.8-C and 7.9-C for a grid of g2 = 3072

points. Moreover the results obtained with the circulant approximation of the FIM method

are shown in Figures 7.8-D and 7.9-D. The profiles of the image taken from a diagonal line

intersecting the centre of the sphere are shown in the Figures 7.8-E and 7.9-E.

From the images obtained with the reference method and with the full and subsampled

FIM, we see how with increasing time ratio S, the variance increases in the region outside the

ROI whereas the variance in the uniform sphere decreases. This intuitive effect on the uncer-

tainty in the measurements is due to the fact that, with an open-sweep acquisition, the entire
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Figure 7.4: Mean images obtained from the pD-SPECT system with varying scanning pattern

time ratio. The mean images are obtained from the reconstruction of 10240 noisy projection

data sets. A (top left) - A slice of the digital NCAT phantom including the left and right ventricle

myocardium. The ROI is highlighted by a red line. B (top centre-left) - Mean image for time

ratio S = 0.45. C (top centre-right) - Mean image for time ratio S = 0.75. B (top right) - Mean

image for time ratio S = 1. E (bottom) - Mean image profiles over a diagonal intersecting the

centre of the ROI: digital phantom (black line - ∗), time ratio S = 0.45 (blue line - +), time

ratio S = 0.85 (red line - ◦), time ratio S = 1 (cyan line - �).
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Figure 7.5: Variance images obtained from the pD-SPECT system with varying scanning pat-

tern time ratio. The variance images are obtained from the reconstruction of 10240 noisy pro-

jection data sets. The slice of the digital NCAT phantom includes the left and right ventricle

myocardium. A (top left) - Variance image for time ratio S = 0.45. B (top centre-left) -

Variance image for time ratio S = 0.65. C (top centre-right) - Variance image for time ratio

S = 0.85. B (top right) - Variance image for time ratio S = 1. E (bottom) - Variance image

profiles over a diagonal intersecting the centre of the ROI: time ratio S = 0.45 (blue line - +),

time ratio S = 0.65 (red line - ◦), time ratio S = 0.85 (magenta line - ×), time ratio S = 1

(cyan line - �).
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Figure 7.6: Mean images obtained from the pD-SPECT system with varying scanning pattern

time ratio. The mean images are obtained from the reconstruction of 10240 noisy projection

data sets. A (top left) - A slice of the digital NCAT phantom including the the apex of the heart

and part of the liver. The ROI is highlighted by a red line. B (top centre-left) - Mean image

for time ratio S = 0.45. C (top centre-right) - Mean image for time ratio S = 0.75. B (top

right) - Mean image for time ratio S = 1. E (bottom) - Mean image profiles over a diagonal

intersecting the centre of the ROI: digital phantom (black line - ∗), time ratio S = 0.45 (blue

line - +), time ratio S = 0.85 (red line - ◦), time ratio S = 1 (cyan line - �).
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Figure 7.7: Variance images obtained from the pD-SPECT system with varying scanning pat-

tern time ratio. The variance images are obtained from the reconstruction of 10240 noisy pro-

jection data sets. The slice of the digital NCAT phantom includes the apex of the heart and part

of the liver. A (top left) - Variance image for time ratio S = 0.45. B (top centre-left) - Variance

image for time ratio S = 0.65. C (top centre-right) - Variance image for time ratio S = 0.85.

B (top right) - Variance image for time ratio S = 1. E (bottom) - Variance image profiles over

a diagonal intersecting the centre of the ROI: time ratio S = 0.45 (blue line - +), time ratio

S = 0.65 (red line - ◦), time ratio S = 0.85 (magenta line - ×), time ratio S = 1 (cyan line -

�).
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FOV is scanned uniformly, whereas with increasing time ratio S more time is spent on the ROI

at the expense of acquiring less information on the surrounding region. Once again, for this set

of experiments, using the circulant approximation of the FIM method, the aforementioned ef-

fect of increasing variance outside the ROI with increasing time ratio S is less accentuated with

respect to the increase in variance obtained from the full FIM method and also with respect to

the increase in variance obtained from the subsampled FIM method, since the circulant method

does not account for effects of long distant correlations.

The plots in Figure 7.10 show the variation of CNR in the central voxel of the sphere

for different acquisition protocols whose time ratio varies ranging from S = 0.45 to S =

0.9. Three experiments were performed for different values of the activity in the background

λBK1 = 0.9kBq/cm3 (Figure 7.10-A), λBK2 = 2.2kBq/cm3 (Figure 7.10-B) and λBK2 =

4.4kBq/cm3 (Figure 7.10-C). From these plots it can be seen that the optimal scanning pattern

is sensitive to the level of activity in the background. If the activity in the background is high

with respect to the activity in the ROI, an acquisition that more uniformly scans the whole FOV

may be preferable. This effect is captured by the subsampled Fisher Information based method

with grid g1 and grid g2, whereas it is not captured by the circulant approximation of the FIM

method. The circulant approximation method only accounts for the increased sensitivity in the

ROI with increased time ratio S; whereas it does not account for the effects of long distant

correlations due to a non-uniform scanning pattern.

In order to reinforce the observation that there is an influence of the acquisition parameters

on the covariance; in Figure 7.11, we show images of covariance of a point in the centre of

the sphere, for two different scanning patterns whose time ratios are S = 0.45 and 0.9 (from

left to right). The covariances have been calculated using the reference method (which implies

the reconstruction of multiple noise realisations). From these images we can deduce that with

increasing time ratio S, there is a change in the dependency between the presence of activity

outside the ROI and the uncertainty of the estimation inside the ROI.

7.7 Validation

In section 7.6.3, we prove how our new approximation for the calculation of the FIM well pre-

dicts the variance of the estimate for different acquisition protocols of a pD-SPECT system.
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Figure 7.8: Variance images of a uniform sphere (λ = 8kBq/cm3) and uniform background

(λ = 2.2kBq/cm3) obtained from the pD-SPECT system with scanning pattern time ratio

S = 0.45. A (top left) - reference method (variance image obtained from the reconstruction of

10240 noisy projection data sets). B (top right) - Fisher Information-based method with grid g1

(full FIM). C (central left) - Fisher Information based method with grid g2. D (central right) -

Variance image obtained with the circulant approximation method. E (bottom) - Image profiles

over a diagonal intersecting the centre of the sphere: reference method (black line - ∗), grid g1

(blue line - +), grid g2 (red line - ◦), circulant approximation method (cyan line - �)
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Figure 7.9: Variance images of a uniform sphere (λ = 8kBq/cm3) and uniform background

(λ = 2.2kBq/cm3) obtained from the pD-SPECT system with scanning pattern time ratio

S = 0.9. A (top left)- reference method (variance image obtained from the reconstruction of

10240 noisy projection data sets). B (top right) - Fisher Information-based method with grid g1

(full FIM). C (central left) - Fisher Information based method with grid g2. D (central right) -

Variance image obtained with the circulant approximation method. E (bottom) - Image profiles

over a diagonal intersecting the centre of the sphere: reference method (black line - ∗), grid g1

(blue line - +), grid g2 (red line - ◦), circulant approximation method (cyan line - �)
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Table 7.3: Validation of the Subsampled FIM for the pD-SPECT system.

Dspect CC SEE int RC

g1 0.95928 2.43 e-04 -0.00464 0.94834

g2 0.92837 3.47 e-04 -0.00646 0.89897

g3 0.89902 4.90 e-04 -0.01069 0.81060

g4 0.82983 0.0026 -0.01864 0.79574

g5 0.79345 0.0032 -0.02287 0.76643

Validation of the Subsampled FIM in comparison with the Reference Statistical Method for the

experiment presented in section 7.6.3. CC: Correlation Coefficent. SEE: Standard Error of

the Estimate. int: intercept of the least squares fit. RC: regression coefficient of the least

squares fit.

A validation for the subsampled Fisher Information-based variance calculation method is pre-

sented in the following.

For the experiment presented in section 7.6.3, the variance obtained with the reference statisti-

cal method is plotted with respect to the variance predicted with the Fisher Information-based

method, for grid g1 = 27648 points, grid g2 = 6912 points, grid g3 = 3072 points, grid

g4 = 1728 points and grid g5 = 1106 points. A least squares fitting is performed through the

data. The regression coefficients, the intercepts of the line, the correlation coefficients and the

standard error of the estimate for every experiment are presented in Table 7.3.

Figure 7.12 and Figure 7.13 show all validation points for the experiment in section 7.6.3,

with time ratio S = 0.45 and S = 0.9 respectively. In these figures, the standard deviation

calculated with the reference method with respect to the standard deviation predicted with the

subsampled FIM method and with the circulant approximation method are plotted. The solid

line was fitted to minimise the least squares distance between these points.

From these images we can observe how the subsampled FIM method well determines the

variance of the estimate, although the level of approximation increases when the grid becomes

more sparse. The correlation coefficient between the variance obtained with the reference sta-

tistical method and the variance obtained with the subsampled FIM with grid g1 and grid g2
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ranges from 0.9 to 1. The Standard Error of the Estimate does not exceed 0.001.

Figure 7.12-D shows the least squares fitting between the reference method and the results ob-

tained with the circular FIM for time ratio S = 0.45. From this figure, we can see how the

circulant approximation method well determines the variance for the open-sweep acquisition

and how the results obtained with the least squares fitting are comparable with the results ob-

tained with the full FIM. Figure 7.12-D shows the least squares fitting between the reference

method and the results obtained with the circular FIM for time ratio S = 0.9. In this case,

the fitted line is inclined towards the x-axis (slope 0.77, y-intercept 0.044), which means that

the circulant method systematically underestimates the standard deviation. It is therefore clear

from this figure that this approximation of the FIM does not account properly for the effects of

long distant correlations due to a non-uniform scanning pattern.

7.8 Discussion

The D-SPECT camera provides a novel photon collection method and scanning geometry that

permits the independent movement of multiple detector columns in order to achieve a region-

centric acquisition. The D-SPECT system has been developed to improve the trade-off between

spatial resolution and sensitivity inherent in conventional SPECT systems. A direct compari-

son of the performances of a D-SPECT system with respect to a conventional SPECT system

has been performed by Erlandsson et al. [2009]. In this study, the D-SPECT system presents

a significant improvement in sensitivity with respect to the conventional SPECT system. The

count improvement has been demonstrated in terms of absolute measurement in both planar

and tomographic modes and it is due to the combined wide-angle collimator and region centric

acquisition.

A higher spatial resolution for the D-SPECT system with respect to the conventional SPECT

has been demonstrated in cardiac phantom studies and was confirmed in cardiac patient studies,

with a better myocardial edge definition noted in both cases [Gambhir et al., 2009]. However,

in this study, the D-SPECT image of the activity was reconstructed accounting for resolution

modelling, while the conventional SPECT was reconstructed not accounting for that. Moreover,

in this specific experiment, the D-SPECT camera could come closer to the heart than the con-

ventional SPECT system, because of its smaller dimensions. This explain why, for the specific
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experiment presented in [Gambhir et al., 2009], a collimator with poorer resolution could lead

to a reconstructed images with superior resolution.

Reconstructed spatial resolution is estimator and object-dependent and a comparative study for

a set of different phantoms has not been performed yet. The system is designed specifically for

cardiac SPECT use and the advantages in resolution and sensitivity of the D-SPECT camera

reported from cardiac imaging may not necessary hold as other organs are imaged.

We considered an adaptive SPECT system similar to the D-SPECT as an example of a system

in which the camera trajectory can be modified in response to the characteristics of the under-

lying activity distribution. The design of the pseudo D-SPECT differs from the commercially

available D-SPECT in the design of its collimators. The collimator used for the simulations per-

formed in this chapter has a response which is comparable to that of a LEHR collimator used in

conventional SPECT. Therefore we do not account for higher sensitivity due to a broader colli-

mator aperture but only for higher sensitivity due to a region-centric acquisition. The main aim

of this chapter is, in fact, to compare different acquisition protocols for a pD-SPECT system

and to investigate the influence of the presence of activity outside the ROI in the optimisation.

This study therefore plays a role in studying the performance of the D-SPECT system, not only

for a single phantom but for a class of objects.

The optimum time ratio for the acquisition protocols is a complex function of many factors,

including the location of the ROI with respect to the position of the cameras and the relative

location and strength of the background features. While the effects of these factors are coupled

to each other and therefore difficult to quantify, one may draw a general conclusion from these

results: the optimal scanning pattern is sensitive to the level of activity in the background.

With increasing time ratio S, the uncertainty in the estimation in the ROI is increasingly more

dependent on the presence of activity outside the ROI. If the activity in the background is high

with respect to the activity in the ROI , an acquisition that more uniformly scans the whole FOV

may be preferable. Therefore calculating the reconstructed image quality in a region of interest

(ROI) is a complex problem that depends also on the presence of activity and on the system

response outside the ROI. This observation emphasises the need for a fast method to compare

different acquisition protocols. The statistical method based on the reconstruction of multiple

noise instances is in fact extremely time consuming.
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In order to be able to compare a set of candidate scanning patterns we use a deterministic

method, based on an approximated expression of the Fisher Information Matrix (FIM). In sec-

tion 4.5.2, a new formulation that relies on a subsampled version of the FIM has been presented.

This formulation reduces the computational complexity in inverting the FIM but nevertheless

accounts for the global interdependence between the variables. The results obtained with the

approximate subsampled FIM method are compared with the circulant approximation method

(see section 4.5.1) and with the reference method based on reconstruction of multiple noise

instances. The circulant approximation of the FIM has been used in the past to evaluate adap-

tive angular sampling in SPECT imaging [Meng and Li, 2011]. However, the incapability of

the method to incorporate non-stationary system models and effects of long-range correlations

(e.g., evaluation of the effects of data truncation or missing data) has lead to counterintuitive

results. In this chapter, the subsampled FIM method has been shown to enable the exploration

of design spaces previously precluded by the use of the circulant approximation, such as the

evaluation of effects of changing camera trajectory and the optimisation of adaptive data sam-

pling.

The recent development of adaptive SPECT systems has introduced a class of optimisa-

tion problems where the parameters of the imaging system may be modified in order to image

certain desired properties of the underlying object and in order to adapt, during acquisition, in

response to the projection data. The D-SPECT is an example of such a system, where the acqui-

sition protocol (in terms of the trajectory of the cameras) can be modified depending on the data

acquired during the scan. In order to adapt the response of the system during acquisition, a set

of different design parameters have to be compared in real time. Thanks to the novel approxi-

mation of the FIM and thanks to an efficient GPU implementation, our novel algorithm for the

estimation of the uncertainty, drastically reduces the computational complexity and therefore is

a good candidate method for such optimization problems.
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Figure 7.10: CNRs for different scanning patterns of the pD-SPECT system, obtained from

the reference method (black line - ∗), from the Subsampled Fisher Information based method

with grid g1 (blue line - +), from the Subsampled Fisher Information based method with grid

g2 (red line - ◦) and from the circulant approximation method (cyan line - �). The time ratio

ranges from S = 0.45 to S = 0.85. The optimal time ratios are calculated for different level of

background λBK1 = 0.9kBq/cm3 (A - top figure), λBK2 = 2.2kBq/cm3 (B - central figure)

and λBK2 = 4.4kBq/cm3 (C - bottom figure). The target resolution Ptarget = 12 remains the

same for all the experiments.
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Figure 7.11: Images of covariance for a point in the centre of the uniform sphere for different

acquisition protocols of a pD-SPECT system. The covariances are calculated with the reference

statistical method. D-SPECT system with different acquisition protocols: time ratio S = 0.45

(A - left figure) and time ratio S = 0.9 (B - right figure).
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Figure 7.12: Validation of the Fisher information-based standard deviation calculation method

for a pD-SPECT acquisition protocol with time ratio S = 0.45. The standard deviation obtained

with 10240 repeated simulations is plotted with respect to the standard deviation predicted with

the Fisher information-based method. A (top left) - grid g1, B (top right) - grid g2 and C

(bottom)- circulant approximation. Spatial information is given by the colour of the dots. The

light grey dots represent voxels which are more distant from the rotation axis (off-centre voxels);

whereas the dark grey dots represent voxels which are closer to the rotation axis (central voxels).

A colour bar with the respective distance from the rotation axis (in mm) is displayed for every

plot.
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Figure 7.13: Validation of the Fisher information-based standard deviation calculation method

for a pD-SPECT acquisition protocol with time ratio S = 0.9. The standard deviation obtained

with 10240 repeated simulations is plotted with respect to the standard deviation predicted

with the Fisher information-based method. A (top left) - grid g1, B (top right) - grid g2 and

C (bottom)- circulant approximation. Spatial information is given by the colour of the dots.

The light grey dots represent voxels which are more distant from the rotation axis (off-centre

voxels); whereas the dark grey dots represent voxels which are closer to the rotation axis (central

voxels). A colour bar with the respective distance from the rotation axis (in mm) is displayed

for every plot.
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Chapter 8

Conclusions and Future Work

8.1 Main Contributions and General Discussion

An overview on the main contributions of this PhD work is proposed in this section.

The most important contributions of this thesis are the derivation, validation and application of

a novel algorithm for the characterisation of the system design in Emission Tomography. The

main aim of this new approach is to introduce a less computationally expensive approximation

of the FIM, that still takes into account the global interdependence between the variables. We

have applied the method for the estimation of the optimal parameters of a SPECT system, in

comparison with both the circulant approximation and the reference statistical method based

on the reconstruction of multiple noise instances.

We have pointed out the shortcomings of the circulant approximation for a range of optimisa-

tion problems where the system response is markedly shift-variant. Such optimisation problems

include the choice of a collimator and the tuning of its parameters and the choice of the scan-

ning parameters of a D-SPECT system. Moreover the sub-sampled FIM method enables the

exploration of design spaces previously inaccessible by the circulant approximation, such as

the evaluation of effects of data truncation in interior tomographic imaging.

8.1.1 Estimation of the Uncertainty

In chapter 2, a cost function for the PL Estimator λ̂ has been defined. The absence of a closed

analytical formulation that expresses λ̂ explicitly in terms of ν makes it difficult to study the

properties (e.g. mean and covariance) of the PL estimator λ̂ defined in section 2.5.1. Thus, in
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order to compare system designs, one has to compute time-consuming simulations of thousands

of reconstructions, as described in chapter 3. The computational complexity of such simulations

hinders the on-line optimisation of the parameters of adaptive imaging systems. Alternatively,

an approximate estimate of the covariance may be obtained via the FIM, as described in chapter

4. In order to tackle the problem of the computational load in calculating and inverting the

FIM, it has been proposed to approximate it with a circulant matrix (see section 4.5.1). The

use of the circulant approximation has been explored for the purpose of measuring the image

quality in [Fessler and Rogers, 1996] [Qi and Leahy, 2000] [Stayman and Fessler, 2000] and

for system design optimisation in [Nuyts, 2009] [Zhou et al., 2010] [Vunckx et al., 2008a]. The

computational complexity of the reference method, involving reconstruction to convergence us-

ing thousands of noise realisations, has precluded a systematic evaluation of the effect and the

limitations of the circulant approximation. For a systematic characterisation of the effect of the

circulant approximation on the estimates of the covariance matrix, one would have to consider

not only a single phantom, but a class of objects. The problem is further complicated by the

choice of the regularisation parameter β.

In this thesis we have described a criterion for the choice of β and a purpose- made GPU accel-

erated reconstruction software that processes multiple reconstructions in parallel (see chapter

3), enabling the estimation of the reference variance in a reasonably short time (see table 4.1).

The circulant FIM is generally considered to yield a good approximation of the covariance ma-

trix for nearly shift-invariant systems, however 3-D imaging systems are inherently shift vari-

ant, presenting a block-circulant FIM even in the case of an ideal uniform object in the FOV.

Comparison of the variance (the diagonal of the covariance matrix) obtained from the circulant

approximation, with the full FIM and with the reference statistical method, has highlighted cer-

tain pitfalls of the circulant approximation.

The first contribution of this paper consists in having highlighted these effects. Comparison of

the variance (the diagonal of the covariance matrix) obtained from the circulant approximation,

with the full FIM and with the reference statistical method, are presented in chapter 5, chapter

6 and chapter 7.

The second and main contribution of this thesis is the introduction of a new approximation

which relies on a subsampled version of the FIM and that addresses the shortcomings of the cir-
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culant approximation (see section 4.5.2). A comparison between the subsampled FIM method

and the circulant approximation of the FIM has also been performed in chapter 5, chapter 6

and chapter 7. The experiments show good results in comparison with the circulant approxi-

mation, for the specific choice of the metric of image quality based on the CNR. The results

obtained with the subsampled Fisher information matrix, in fact, outperform the results obtained

with the circulant approximation, when compared with the reference statistical method. Fur-

thermore, the approximation based on the subsampled FIM shows certain effects that are not

visible with the circulant approximation, enabling the exploration of design spaces that were

previously forbidden. In particular, the subsampled FIM approach is well-suited for situations

where the voxel variance is significantly influenced by activity outside of its neighbourhood,

such as when there is high activity in regions of the phantom that are distant from the voxel of

interest.

Regarding the relationship between the subsampling and reliability of the estimate of the

covariance, we would like to point out that the algorithm described in the paper has been de-

signed to reduce the computational complexity of the estimation of the covariance matrix. It

has indeed been designed to enable a fast calculation of the image quality, in order to modify

the parameters of an adaptive system during acquisition. The way the proposed algorithm has

been designed permits the degree of approximation in the estimation to be defined by the user.

Hence a trade-off between computational complexity and reliability of the estimation of the

covariance matrix arises.

The sub-sampled FIM formulation and the software tool described in this paper may be em-

ployed for the optimisation of a range of design parameters of emission imaging systems. How-

ever, it is not possible to define an absolute criterion for the choice of the sub-sampling scheme.

In chapter 4, we suggest that a test must be performed for every system under investigation.

Moreover we present a criterion for the selection of the grid size under which the subsampled

FIM method can provide a reliable estimate of the image quality for varying conditions.

A validation for the subsampled Fisher Information-based variance calculation method was

performed for every experiment presented in chapter 5, chapter 6 and chapter 7. For validation

purposes, the variance obtained with the reference statistical method was plotted with respect to

the variance predicted with the Fisher Information-based method, for grid g1 = 27648 points,
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grid g2 = 6912 points, grid g3 = 3072 points, grid g4 = 1728 points and grid g5 = 1106

points. A least squares fitting was performed through the data. The regression coefficients, the

intercepts of the line, the correlation coefficients and the standard error of the estimate for every

experiment were presented in table 5.2, table 6.2 and table 7.1.

The method can an be applied to a variety of systems and design parameters in emission

computed tomography. However, evaluation of the trade-off between computational complexity

and accuracy of the estimates for the optimum parameters is an open problem and needs to be

evaluated case by case.

The code is available on-line (URL: http://niftyrec.scienceontheweb.net) and is open source,

in order to foster further development and the evaluation of the algorithm for varying imaging

conditions and sub-sampling schemes.

8.1.2 Experimental Findings

/media/LACIE/thesis In chapter 5, chapter 6 and chapter 7 several simulation studies were de-

scribed, with the purpose of illustrating how the sub-sampled FIM method enables the explo-

ration of design spaces previously forbidden by the circulant approximation. In these chapters,

we show how our new algorithm applies to a range of optimisation problems where the system

response is markedly shift-variant. Such problems include choice of a parallel hole collimator

for SPECT and the tuning of its parameters, as well as the evaluation of the reconstructed im-

age quality in the case of missing projection data and for different acquisition protocols for the

D-SPECT system.

Even if the main purpose of the experiments presented in these chapters was to present

some possible applications for the novel algorithm and to illustrate the reliability of our approx-

imation, some general conclusions may be drawn from these results.

From the experiment presented in chapter 5, it has been found that the optimal collimator

aperture is proportional to the target resolution imposed in the reconstruction. Similar results

were presented in an other study [Zhou et al., 2010], where it has been shown that for parallel

hole collimators, the FWHM of the aperture that yields the minimal variance equals the desired

spatial resolution divided by
√

3 (for volume imaging).

In chapter 6, simulation experiments have been performed to investigate the statistical

properties of the estimator under two different truncation cases. The peripheral ROI reconstruc-
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tion and the interior ROI reconstruction have been investigated simulating different levels of

truncation. It has been found that for both truncation cases, a decrease in ROI size leads to

an increase in variance, not only outside the ROI but also inside it. To our knowledge, this

characterisation of the noise properties of the estimator for truncated acquisition has not been

previously reported.

In chapter 7, simulation experiments have been performed to compare different acquisition

protocols for a D-SPECT systems and to investigate the influence of the presence of activity

outside the ROI in the optimisation. It has been found that the optimal scanning pattern is

sensitive to the level of activity in the background. With increasing time ratio S, the uncertainty

in the estimation in the ROI is increasingly dependent on the presence of activity outside the

ROI.

8.1.3 Summary of the Contributions

A summary of the most important contributions of this PhD work is presented in the following:

• Formulation of the problem concerning the selection of the optimum design of a tomo-

graphic imaging system in the information theoretic framework (chapter 3 and chapter

4).

• Development of a purpose-made GPU accelerated reconstruction software that processes

multiple reconstructions in parallel, enabling the estimation of the reference variance in

a reasonably short time (chapter 3). This reconstruction software has been developed by

Stefano Pedemonte [Pedemonte et al., 2010].

• Formulation of a deterministic method, based on a subsampled Fisher Information Ma-

trix, for the efficient estimation of the uncertainty in emission computed tomography (4).

• Investigation of the noise properties of the estimator, in case of interior ROI reconstruc-

tion from truncated projection data (chapter 6).

• Optimisation of the acquisition protocols for a D-SPECT system, investigating the influ-

ence of the presence of activity outside the ROI in the evaluation of the image quality

(chapter 7).
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8.2 Suggestions for Future Work

In this section, suggestions are made for improvement of the proposed algorithm and for its

future application to the optimisation of novel collimator designs and a novel adaptive system.

8.2.1 Improvement of FIM-based Method

The Fisher information-based method is an efficient and reliable deterministic method to study

the properties (e.g. mean and covariance) of the PL estimator λ̂. However, this method presents

some limitations due to the approximations made during its derivation. One of the major lim-

itations is that the calculation of the uncertainty based on the Fisher Information is restricted

to problems where λ is a continuous parameter in RN , thus, strictly speaking, its results are

not comparable with methods where non-negativity constraints are imposed on λ̂. However,

for cost functions that include an appropriate penalty function for regularisation, non-negativity

constraints are active relatively infrequently. Negative values can be avoided by keeping the

weight of the prior beta low enough [Bruyant, 2002]. An approach to tackle this problem has

been presented by Li et al. [2004], with assumptions that still affect the approximation accuracy.

How to overcome this limitation is thus still an open question.

The sub-sampled FIM trades off computational complexity and accuracy of the estimation,

enabling the adaptation of the accuracy of the estimation based on the available computational

resources. When sufficient resources are available, the GPU-accelerated software (described

in section 4.5.2) can compute the full covariance matrix exactly on a grid g1. One important

advantage of the scalable sub-sampled FIM approximation is that the algorithm provides an

estimate of the full covariance matrix, though sub-sampled, accounting for the global interde-

pendence between the variables of the tomogram. This enables the use of global metrics for

system design optimisation. In other fields of imaging, where the lesser dimensionality of the

parameter space enables the storage and inversion of the full FIM, a wide range of global op-

timality criteria has been explored, such as D-optimality [Delzell et al., 2012] and I-optimality

[Khodja et al., 2012]. In the future, a global figure of merit that can account for the off-diagonal

entries of the FIM will be investigated.

The experiments presented in this paper account for a uniform attenuation map. If the

attenuation map or model for randoms and scatter are available, they can be included in the
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calculation of the Fisher Information Matrix to study their effect on image quality.

The proposed approximation for the prediction of the covariance matrix can also be useful

in the context of task specific system optimisation strategies. In these studies the image quality

assessment is based on the performance of numerical observers in classification, such as in the

detection of a specific class of tumours. The ideal observer requires the computation of the

inverse covariance matrix. The circulant approximation of the Fisher information matrix has

been applied in the domain of numerical observers before [Yendiki and Fessler, 2006]. It would

therefore be interesting to compare the circulant FIM approximation with the subsampled FIM

approximation when using this particular figure of merit for image quality evaluation.

It might also be interesting to compare the subsampled FIM approach with the “small ROI

method” proposed in [Cloquet et al., 2010], which avoids the computation of the entire Fisher

information matrix by evaluating the Fisher elements only for voxels within a neighbourhood

of a point of interest. This formulates invertible sub-matrices of the Fisher information matrix,

which are then used to estimate the best achievable variance.

In addition, a comparison between the subsampled FIM approach with the Non Uniform

Object-Space Pixelation (NUOP) approach is being performed in collaboration with the Uni-

versity of Ghent. In the NUOP method, suggested by Meng and Li [2009], the image-space

is divided in non-uniformly sized “voxels”. In particular, the voxel size increases as we go to

regions further away from the region of interest. In this way we keep approximately the same

image quality in the ROIs as when the image is divided into voxels with the smallest size con-

sidered, but the system modelling becomes much more efficient. In other words, this means

that we can reduce the size of the image-space from N to Nnuop, with Nnuop < N , thereby

reducing the size of the FIM toNnuop×Nnuop , while still obtaining a good evaluation of image

quality in the ROIs. To apply the NUOP, we start with a uniform image-space, of sizeN , whose

voxels have the smallest size that we want to consider. Afterwards the image-space is divided

in regions according to how many voxels we want to group together to form larger voxels (the

rebinning strategy). Neighbouring voxels within the same region and with the same activity

value are grouped together to form a cube (when possible), and this larger voxel is given a new

index m ∈ {1, . . . , Nnuop} in the non-uniform image-space. For a more detailed explanation

of the algorithm see [Meng and Li, 2009].
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This method can significantly increase the efficiency of the calculation of the variance at voxel

i, since it only requires the inversion of a Nnuop ×Nnuop matrix. Note that in this formulation

only voxels with the same activity value can be grouped together. As such, the method is spe-

cific to each phantom, and to get a significant speed up in the case of a realistic phantom we

need to first approximate the phantom to have reasonably large regions with uniform activity

values and only then apply the approximation, which can be a downside of the approach.

In essence, the difference between the two methods is that in the subsampled approach the ap-

proximation is made at the level of the FIM, by only keeping some of the matrix elements,

whereas in the NUOP it is made at the level of the image-space (in fact, it was originally pre-

sented as a method to speed up reconstruction). The subsampled algorithm also does not require

patches of nearly uniform activity in the image, although the more variability in the FIM the

less accurate the approximation will be.

8.2.2 Design of Novel Collimators

In chapter 5 the use of the subsampled FIM approximation has been explored for the optimisa-

tion of parallel hole collimators in SPECT; emphasising how it enables us to explore the design

of highly shift variant systems as a result of distance dependent resolution. In appendix A a

method for the investigation of new collimator design is introduced and the implementation of

a ray-tracing algorithm is described. This ray-tracing algorithm can be used to model the geo-

metric response and the septal penetration of novel collimator geometries.

Traditionally collimators are fabricated using folded sheets of foil, or are cast using moulding

methods. The recent development of novel production techniques [Abe et al., 2009] has intro-

duced the possibility to design collimators, for clinical SPECT, with septa geometries that differ

from the conventional parallel holes.

In the future, the efficient method for the estimation of the image quality presented in this thesis

and the ray-tracing algorithm presented in appendix A will be used to investigate the design of

novel collimator geometries, optimised for a range of different phantoms.

8.2.3 Interior Problem

In chapter 6 the deterministic FIM-based method has been used to investigate the noise proper-

ties of the estimator in case of interior ROI reconstruction from truncated projection data.
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Simulation experiments have been presented to investigate the statistical properties of the esti-

mator under two different truncation cases: the peripheral ROI reconstruction and the interior

ROI reconstruction. It has been shown that even if peripheral ROI reconstruction can lead to

nearly unbiased reconstruction, the interior ROI reconstruction results in images that suffer

from artifacts.

The presence of artifacts is expected to be reflected in the covariance matrix. However, there is

no straight- forward way to estimate or quantify the artifacts directly from covariance matrix.

It would therefore be interesting to develop a methodology to obtain quantitative evaluation of

the artifacts with an efficient deterministic method.

8.2.4 D-SPECT System optimization

In chapter 7, the novel design of a D-SPECT system has been presented. The D-SPECT camera

provides a novel photon collection method and scanning geometry that permits the independent

movement of multiple detector columns in order to achieve a region-centric acquisition. The

D-SPECT system has been developed to improve the trade-off between spatial resolution and

sensitivity inherent in conventional SPECT systems.

However, the system is designed specifically for cardiac SPECT use. The advantages in resolu-

tion and sensitivity of the D-SPECT camera reported from cardiac imaging may not necessarily

hold as other organs are imaged.

In chapter 7, the deterministic method, that relies on a subsampled version of the FIM, has been

used to compare different acquisition protocols for a D-SPECT system and to investigate the

influence of the presence of activity outside the ROI in the optimisation. This study therefore

plays a role in studying the performance of the D-SPECT system, not only for a single phantom

but for a class of objects.

This efficient method will be used in the future to investigate novel D-SPECT collimator ge-

ometries for a range of objects. Moreover the subsampled FIM-based method will be used to

design the scan pattern of each single detector individually and to adapt the system design, in

real time, during acquisition.
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8.2.5 Adaptive Systems

The recent development of adaptive SPECT systems has introduced a class of optimisation

problems where the parameters of the imaging system may be modified in order to image cer-

tain desired properties of the underlying object and in order to adapt, during acquisition, in

response to the projection data. The D-SPECT is an example of such a system, where the ac-

quisition protocol (in terms of the trajectory of the cameras) can be modified depending on the

data acquired during the scan.

However, a set of different design parameters has to be compared in real time in order to adapt

the response of the system during acquisition. Thanks to the novel approximation of the FIM

and thanks to an efficient GPU implementation, our novel algorithm for the estimation of the

uncertainty drastically reduces the computational complexity and is therefore a good candidate

method for such optimisation problems.

However, the deterministic FIM-based method poses a problem when used for the optimisation

of adaptive systems in real time. The first assumption we make in (4.30), in order to calculate

the FIM, is that the reconstruction is locally linear, meaning that the mean of the noisy recon-

struction can be well estimated by the reconstruction of noiseless data. This in turns means that

we need to know the activity distribution in advance to be able calculate the FIM. Fessler and

Rogers [1996] argued that even for real noisy measurements we can predict the variance simply

by replacing ν with ν in (4.30). However this approximation may be problematic and even-

tually cause convergence problems when the scanning parameters are updated iteratively. The

optimisation of adaptive systems is thus still an open problem and it needs further investigation.

8.3 Publications Arising from Thesis Work

8.3.1 International Journals

• N. Fuin, S. Pedemonte, S. Arridge, S. Ourselin, B. Hutton. Efficient Determination of

the Uncertainty for the Optimization of SPECT System Design : A Subsampled Fisher

Information Matrix. IEEE Transactions on Medical Imaging (Accepted pending minor

revision).
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8.3.2 International Conference Proceedings

• N. Fuin, S. Pedemonte, S. Arridge, S. Ourselin, B. Hutton. Use of the Fisher Information

Matrix to Optimize the Acquisition Protocol for a D-SPECT System. IEEE Nuclear

Science Symposium and Medical Imaging Conference (NSS/MIC), 2012, pp. 2137 -

2142.

• N. Fuin, S. Pedemonte, S. Arridge, S. Ourselin, B. Hutton. Subsampled Fisher Informa-

tion Matrix for Efficient Estimation of the Uncertainty in Emission Tomography. IEEE

Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012, pp.

2251 - 2256.

• N. Fuin, A. Bousse, S. Pedemonte, S. Arridge, S. Ourselin, B. Hutton. Collimator De-

sign in SPECT, an Optimisation Tool. IEEE Nuclear Science Symposium and Medical

Imaging Conference (NSS/MIC), 2010, pp. 2061 - 2065 .

• A. Bousse, N. Fuin, K. Erlandsson, S. Pedemonte D. Kazantsev S. Ourselin, S. Arridge

B. Hutton. Point Spread Function Optimization in SPECT. IEEE Nuclear Science Sym-

posium and Medical Imaging Conference (NSS/MIC), 2010, pp. 3149 - 3154.
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Appendix A

Methodology for the Optimisation of Novel

Collimator Design

In chapter 5 the use of the subsampled FIM approximation has been explored for the optimisa-

tion of parallel hole collimators in SPECT; emphasising how it enables us to explore the design

of highly shift variant systems as a result of distance dependent resolution. Thanks to an effi-

cient GPU implementation, the novel algorithm for the estimation of the uncertainty, drastically

reduces the computational complexity in calculating the FIM and its inverse, making the algo-

rithm a good candidate for fast collimator design optimisation.

In this appendix a method for the investigation of new collimator design is introduced. Although

no results have been obtained yet, this method allows us to accelerate the optimisation process,

permitting the investigation of completely novel collimator geometries whose properties are

not described analytically. In section A.2, we describe the implementation of a ray-tracing al-

gorithm that can be used to model the geometric response and the septal penetration of novel

collimator geometries. In section A.3, we describe the use of a genetic Algorithm (GA) to deter-

mine the optimal collimator design . A GA was selected, among other optimisation techniques

(i.e. Powell’s method or Simulated Annealing), as it gives us a greater chance of finding an

optimal solution when the optimisation space presents multiple local minima or is a curved flat

valley.

Traditionally collimators are fabricated using folded sheets of foil, or are cast using mould-

ing methods. The recent development of novel production techniques [Abe et al., 2009] has

introduced the possibility to design collimators, for clinical SPECT, with septa geometries that
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differ from the conventional parallel holes.

In the future, the efficient method for collimator design presented in this appendix will be used

to investigate the design of novel and unforeseen collimator geometries, optimised for a range

of different phantoms.

A.1 Design Parameters and Cost Function

In chapter 5, we discussed the optimisation of the geometrical parameters of parallel hole (PH)

collimators that affect geometric resolution and detection sensitivity. The PH collimator usu-

ally consists of a two-dimensional array of parallel holes and variation between collimators is

confined to the geometric dimensions that describe the holes.

In order to design a novel collimator, we allow for a wider choice of the collimator’s geom-

etry parameters. First, we propose a single layer collimator geometry that does not necessarily

imply parallel holes, but could involve a polygonal shape of the septa. The parameters that de-

fine the optimisation space are: the length of the holes through the collimator l; the thickness of

the septa on the side of the collimator that faces the scintillation crystal q1; the thickness of the

septa on the external side of the collimator q2; the shorter diameter of the holes v; and, finally,

the material used to make the collimator. It can be noted that the septa can have any polygonal

shape. Second, a multilayer geometry has been proposed. The additional parameters that define

the optimisation space in this case are: the number of collimator layers nl and the distances

between those layers o. The constraints imposed to the dimensions are due to: weight con-

straints imposed by the camera gantry, the minimal septa thickness imposed by the limitations

of fabrication and the visibility of collimator hole pattern in the images. Some constraints, with

regard to geometrical symmetry, can be also imposed in order to maintain spatial invariance

of the PSF along planes parallel to the detector surface. Changing the aforementioned design

parameters to find new and possibly unforeseen collimator designs, one would probably lead

to a change in other parameters, including e.g. the (local) convergence of the collimator. That

would imply a projector/backprojector that can deal with all these potential collimators. While

for parallel-hole SPECT the implementation of a projector/backprojector is relatively simple, it

can be more complex for alternative geometries. In order to address this problem, an approach,

based on angular rebinning, to compute the projector/backprojector operator for any SPECT
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system has been proposed in [Bousse et al., 2013].

A cost function for design optimisation, based on the trade-off between bias and variance

of the estimator, was introduced in section 4.6.1. In order to compare different systems param-

eterisation, a target bias gradient is defined. Consequently, for every system parameterisation,

a specific post-smooth filter is designed and the variance of the estimator can be compared at

equal bias gradient. Thus, the cost function is given by the variance of the estimator at a fixed

target bias gradient.

A flowchart of the optimisation method presented in this appendix is shown in Figure

A.1. Given the set of design parameters and the cost function described above; a Genetic

Algorithm (GA) was selected to stochastically guide the algorithm through the solution space

to the optimal design of the collimator. Note that in order to obtain the fitness score for each set

of parameters, we have to perform the whole ray-tracing process described in the next section.

Figure A.1: Flow chart of the method for optimisation of novel collimator designs.
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A.2 Ray-Tracing Algorithm

As already described in chapter 2, the uncertainty about the origin of the detected photons is

modelled by a Point Spread Function (PSF). The PSF of a gamma camera describes the photon

count density distribution at the detector surface when a point source is imaged.

In orderer to obtain the PSF for novel collimator geometries, we introduce a ray-tracing algo-

rithm that models the detection efficiency, the geometric response and the septal penetration

in the collimator, since no analytical treatment of this effect appears to exist in the literature

(except for standard collimators).

The model that we use consists of a point source above the collimator and a simple de-

tector below the collimator which detects all photons that strike it. The probability that such a

photon will actually reach the image plane is determined by the distance travelled through the

collimator septum and the attenuation coefficient of the collimator material. The septal scatter

on the contrary is not taken into account.

The fundamental idea of the ray-tracer program is shown in Figure A.2. A photon emitted by

the source ’A’, enters the collimator at point ’B’, travels through part of a collimator septum,

exits the collimator at ’C’, and finally is imaged by the scintillation camera at point ’D’ [Han

et al., 1999]. By tracing rays through the collimator and finding the distance travelled in the

septum, the flux of γ-photons that reach the detector ’D’ is determined. Afterwards, in order

to account for the intrinsic response of the detector, the obtained collimator PSF is convolved

with the intrinsic gamma-camera’s PSF. The intrinsic PSF is usually well approximated by a ra-

dially symmetric Gaussian function, with FWHM = 3.6 mm as per current Anger cameras;

although a different function could be determined for alternative detectors.

The PSF of the collimator, for a single source-to-detector distance, is found by repeating this

process for more than 4 millions rays, discretised by angle of emission at the point source.

Moreover for a complete characterisation of the system response the PSF has to be calculated

for several point source-to-detector distances, hence the need for a fast algorithms where ray-

tracing process is performed in parallel.

The algorithms have been implemented in the CUDA programming language for parallel execu-

tion on Graphics Processing Units (GPU). The ray-tracing algorithm implemented in NiftyRec

[Pedemonte et al., 2010] is based on the efficient ray-box intersection algorithm described on the
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Siggraph Education web-site (http://www.siggraph.org/education/ materials/HyperGraph/ray-

trace/rtinter3.htm). Each GPU thread casts one ray from the point source to one of the detector

pixels, computes the coordinates of the intersection with the volume of the septa and integrates

the attenuation coefficient along the ray, re-sampling with tri-linear interpolation the attenuation

coefficient at regular intervals.

Figure A.2: Raytracer: rays are traced from the source to the detector.

The results obtained using the ray-tracing algorithm described above are in agreement with

measurements of FWHM from a LEHR collimator (GE Healthcare), within an accuracy of 2%.

A.3 Optimisation Using Genetic Algorithm

Upon review of the optimisation techniques available in the literature, a Genetic Algorithm

(GA) was selected to stochastically guide the algorithm through the solution space to the opti-

mal design of the collimator.

Hollande [1975] showed that a GA combines both exploration (random search) and ex-

ploitation (hill-climbing) at the same time, in an optimal way. Combinations of those two

strategies (Simulated Annealing) can be quite effective, but it is difficult to know where the best

balance lies. Another potentially useful point is that genetic algorithm is intrinsically parallel.

Most other algorithms are serial (Gradient Descent and Powell algorithm has been used) and

can only explore the solution space to a problem in one direction at time. GA, in the contrary,

can explore the solution space in multiple directions at once, giving a greater chance of finding

an optimal solution when the optimisation space presents multiple local minima or is a curved
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flat valley. The GA also enables the creation of virtual entities without requiring an understand-

ing of the procedures or parameters used to generate them, which is useful when we are solving

a global optimisation problem [Beasley et al., 1993].

The creation of the initial population of our GA does not involve any specific initialisation. The

only constraints imposed to the dimensions are due to limitations of fabrication or are related

to the visibility of the collimator hole pattern in the images.

A flow chart of the algorithm is shown in Figure A.3. The GA uses populations of geno-

types consisting of strings of binary digits. Those populations are usually read-out for producing

an offspring, which is then evaluated according to a fitness criteria before being selectively re-

produced. At each step a ray-tracing process is performed to obtain a PSF, which is then used

to evaluate the cost function (variance of the estimator at a fixed target resolution) for each

set of parameters (genotypes). Giving more probability of selection to high-scored genotypes,

these are selected for a subsequent genetic manipulation process consisting of two steps. In

the first step, the crossover operation, recombining the dimensions (genes) of each two selected

genotypes (chromosomes), is executed. Various types of crossover operators are found in the

literature. For this study, the single point crossover operation was selected for use. During the

second step, the dimension at one or more randomly selected positions of the chromosomes

are altered, this is known as mutation. The mutation process helps overcome trapping at local

minima. The offspring produced by the genetic manipulation process are the next population to

be evaluated. The cycle of evolution is then repeated until convergence.

Because of a high rate of correlation among the parameters, a high number of individuals

in the population is required [Goldberg, 1989] (400 population individuals, 20 elite individuals).

Evolution was tested with different values of crossover fraction and mutation rate, in order to

find a set of parameters that avoid genetic drift and provide a better convergence. Furthermore,

in order to avoid premature convergence or slow finishing, the parent selection technique of

choice is the fitness ranking where the individuals are sorted in order of raw fitness, and then

reproductive fitness values are assigned according to rank [Baker, 1985].
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Figure A.3: Flow chart of the Genetic Algorithm.

A.4 Conclusion

In the last few decades, the optimisation of the collimator has essentially proceeded by trial

and error: certain designs that have proven good image quality for certain imaging conditions,

such as a certain energy range, have been designed and standardised [Keller, 1994]. Only in the

last few years the problem has been treated systematically, driven by the need to compare and

optimise collimator designs prospectively, by computer simulation.

The development of a new method for the estimation of the uncertainty allows us to accelerate

the optimisation process, permitting the fast calculation of a cost function. The ray-tracing

algorithm models the detection sensitivity and the collimator response in software simulations,

permitting the investigation of completely novel collimator geometries whose properties are not

described analytically. Moreover, the use of a genetic algorithm allows us to optimise multiple

collimator parameters at the same time without making assumptions about which one takes

priority.

All the different algorithms that compose this method exploit the use of parallel coding and

have been implemented in the CUDA programming language for execution on GPU, thereby

considerably reducing the computational complexity. In the future, this efficient method will be
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used to investigate the design of novel collimator geometries, optimised for a range of different

phantoms.
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