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Abstract 
 

High intensity focused ultrasound (HIFU) enables highly localised, non-invasive tissue 

ablation, and its efficacy in the treatment of a range of cancers, including those of the 

kidney, prostate and breast has been demonstrated. HIFU offers the ability to treat deep-

seated tumours locally, and potentially bears fewer side effects than more established 

treatment modalities such as resection, chemotherapy and ionising radiation. There 

remain, however, a number of significant challenges which currently hinder its 

widespread clinical application. One of these challenges is the need to transmit 

sufficient energy through the ribcage to ablate tissue at the required foci whilst 

minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and 

reflect ultrasound strongly. This sometimes results in overheating of bone and overlying 

tissue during treatment, leading to skin burns. Successful treatment of a patient with 

tumours in the upper abdomen therefore requires a thorough understanding of the way 

acoustic and thermal energy is deposited. In this thesis, an approach which predicts the 

acoustic field of a multi-element HIFU array scattered by human ribs, the topology of 

which was obtained from CT scan data, has been developed, implemented and 

validated. It is based on the boundary element method (BEM). Dissipative mechanisms 

were introduced into the propagating medium, along with a complex surface impedance 

condition at the surface of the ribs. A reformulation of the boundary element equations 

as a constrained optimisation problem was carried out to solve the inverse problem of 

determining the complex surface normal velocities of a multi-element HIFU array that 

best fitted a required acoustic pressure distribution in a least-squares sense. This was 

done whilst ensuring that an acoustic dose rate parameter at the surface of the ribs was 

kept below a specified threshold. The methodology was tested at an excitation 

frequency of 1 MHz on a spherical section multi-element array in the presence of 

human ribs. It was compared on six array-rib topologies against other methods of 

focusing through the ribs, including binarised apodisation based on geometric ray 

tracing, phase conjugation and the DORT method (décomposition de l’opérateur de 

retournement temporel). The constrained optimisation approach offers greater potential 

than the other focusing methods in terms of maximising the ratio of acoustic pressure 

magnitudes at the focus to those on the surface of the ribs whilst taking full advantage 

of the dynamic range of the phased array. 
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travelling in positive x direction. Acoustic pressure magnitudes along the x-axis on the 

side of shadow zone. Solid lines: BEM. Dotted lines: analytical solution. 

 

Figure 4.2 Burton-Miller formulation on a perfectly spherical scatterer of 5 mm radius 

in a non-attenuating medium. Incident field: unit amplitude 1 MHz plane wave 

travelling in positive x direction. Acoustic pressure magnitude calculated on the surface 

of the sphere, on the x-axis, on the side of the shadow zone. Comparison for ten values 

of the coupling coefficient with the analytical solution. 

 

Figure 4.3 Percentage difference between acoustic pressure results in figure 4.2 and the 

analytical solution at the first seven eigenfrequencies, corresponding to interior radial 

modes of sphere. Comparison for ten values of the coupling coefficient with the 

analytical solution. 

 

Figure 4.4 Burton-Miller formulation on a perfectly spherical scatterer of 5 mm radius 

in a non-attenuating medium for αc = 0.1. Incident field: unit amplitude plane wave 

travelling in positive x direction. Acoustic pressure magnitudes along the x-axis on the 

side of the shadow zone. Solid lines: BEM. Dotted lines: analytical solution. 

 

Figure 4.5 Percentage difference between acoustic pressure results in figure 4.4 and the 

analytical solution. Comparison along x-axis on the side of the shadow zone at seven 

first eigenfrequencies corresponding to interior modes of the sphere with analytical 

solution. 
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Figure 4.6 Burton-Miller formulation on a perfectly spherical scatterer of 5 mm radius 

in a non-attenuating medium for αc = 0.1. Incident field: unit amplitude plane wave 

travelling in positive x direction. Acoustic pressure magnitude on the surface of the 

sphere at (5, 0, 0) mm as a function of the number of GMRES iterations. Comparison 

with analytical solution. 

 

Figure 4.7 Percentage difference between acoustic pressure results in figure 4.6 and the 

analytical solution. 

 
Figure 4.8 Surface Helmholtz formulation for a perfectly rigid spherical scatterer of 5 

mm radius in an attenuating medium with properties representative of human liver. 

Incident field: unit amplitude plane wave travelling in positive x direction. Acoustic 

pressure magnitudes along the x-axis on the side of the shadow zone. Solid lines: BEM. 

Dotted lines: analytical solution. 

 

Figure 4.9 Percentage difference between acoustic pressure results in figure 4.6 and 

analytical solution. Comparison along x-axis on the side of the shadow zone at seven 

first eigenfrequencies corresponding to interior modes of sphere against analytical 

solution. 

 

Figure 4.10 Surface Helmholtz formulation on a locally reacting spherical scatterer of 5 

mm radius with properties representative of rib bone in an attenuating medium with 

properties representative of human liver. Incident field: unit amplitude plane wave 

travelling in positive x direction. Acoustic pressure magnitudes along the x-axis on the 

side of the shadow zone. Solid lines: BEM. Dotted lines: analytical solution. 

 

Figure 4.11 Percentage difference between acoustic pressure results in figure 4.8 and 

analytical solution. Comparison along x-axis on the side of the shadow zone at seven 

first eigenfrequencies corresponding to interior modes of sphere against analytical 

solution. 

 

Figure 4.12 Surface Helmholtz formulation on a locally reacting spherical scatterer of 5 

mm radius with properties representative of rib bone immersed in an attenuating 

medium with properties representative of human liver. Incident field: 1 MHz unit 
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amplitude plane wave travelling in positive x direction. Acoustic pressure magnitudes 

along the x-axis on the side of the shadow zone. 

 

Figure 4.13 Percentage difference between acoustic pressure results in figure 4.10 and 

analytical solution. Comparison along x-axis on the side of the shadow zone at 1 MHz. 

 

Figure 4.14 Acoustic pressure magnitude on the surface of a locally reacting 5 mm 

radius sphere insonated by a 1 MHz plane wave travelling in the positive x direction in a 

dissipative medium. Element dimensions: 0.5 mm (three elements per wavelength mesh 

density). 

Figure 4.15 Acoustic pressure magnitude on the surface of a locally reacting 5 mm 

radius sphere insonated by a 1 MHz plane wave travelling in the positive x direction in a 

dissipative medium. Element dimensions: 0.25 mm (six elements per wavelength mesh 

density). 

 

Figure 4.16 Cylindrical scatterer with hemispherical end-caps used for BEM validation: 

height 22cm and radius 1 cm. 

 

Figure 4.17 Burton-Miller formulation on a perfectly rigid cylindrical scatterer with 

hemispherical end-caps with αc = 0.1. Cylinder height: 22 cm. Cylinder radius: 1cm. 

Incident field: unit amplitude 1 MHz plane wave travelling in positive z direction in a 

non-attenuating medium. Acoustic pressure magnitudes along the z-axis on the side of 

the shadow zone. The analytical solution for an infinite cylinder is shown for 

comparison. 

 

Figure 4.18 Burton-Miller formulation on a perfectly rigid cylindrical scatterer with 

hemispherical end-caps with αc = 0.1. Cylinder height: 22 cm. Cylinder radius: 1cm. 

Incident field: unit amplitude 1 MHz plane wave travelling in positive z direction in a 

non-attenuating medium. Acoustic pressure magnitude on the surface of the scatterer is 

shown. 

 

Figure 4.19 Burton-Miller formulation on a perfectly rigid cylindrical scatterer with 

hemispherical end-caps with αc = 0.1. Cylinder height: 22 cm. Cylinder radius: 1cm. 

Incident field: unit amplitude 1 MHz plane wave travelling in positive z direction in a 

non-attenuating medium. Acoustic pressure magnitude in the y-z plane. 
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Figure 4.20 Surface Helmholtz formulation on a perfectly rigid cylindrical scatterer 

with hemispherical end-caps (αc = 0). Cylinder height: 22 cm. Cylinder radius: 1cm. 

Incident field: unit amplitude 1 MHz plane wave travelling in positive z direction in an 

attenuating medium. Acoustic pressure magnitudes along the z-axis on the side of the 

shadow zone. Comparison against analytical solution for an infinite cylinder. 

 

Figure 4.21 Surface Helmholtz formulation on a perfectly rigid cylindrical scatterer 

with hemispherical end-caps with αc = 0.1. Cylinder height: 22 cm. Cylinder radius: 

1cm. Incident field: unit amplitude 1MHz plane wave travelling in positive z direction 

in an attenuating medium. Acoustic pressure magnitude on the surface of the scatterer is 

displayed. 

 

Figure 4.22 Surface Helmholtz formulation on a perfectly rigid cylindrical scatterer 

with hemispherical end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident 

field: unit amplitude 1 MHz plane wave travelling in positive z direction in an 

attenuating medium. Acoustic pressure magnitude in the y-z plane. 

 

Figure 4.23 Surface Helmholtz formulation on a locally reacting cylindrical scatterer 

with hemispherical end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident 

field: unit amplitude 1 MHz plane wave travelling in positive z direction in an 

attenuating medium. Mesh density: three elements per wavelength. Acoustic pressure 

magnitudes along the z-axis on the side of the shadow zone. Comparison against 

analytical solution for an infinite cylinder. 

 

Figure 4.24 Surface Helmholtz formulation on a locally reacting cylindrical scatterer 

with hemispherical end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident 

field: unit amplitude 1 MHz plane wave travelling in positive z direction in an 

attenuating medium. Mesh density: three elements per wavelength. Acoustic pressure 

magnitude on the surface of the scatterer. 

 

Figure 4.25 Surface Helmholtz formulation on a locally reacting cylindrical scatterer 

with hemispherical end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident 

field: unit amplitude 1 MHz plane wave travelling in positive z direction in an 
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attenuating medium. Mesh density: three elements per wavelength. Acoustic pressure 

magnitude in the y-z plane. 

 

Figure 4.26 Surface Helmholtz formulation on a locally reacting cylindrical scatterer 

with hemispherical end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident 

field: unit amplitude 1 MHz plane wave travelling in positive z direction in an 

attenuating medium. Mesh density: six elements per wavelength. Acoustic pressure 

magnitudes along the z-axis on the side of the shadow zone. Comparison against 

analytical solution. 

 

Figure 4.27 Surface Helmholtz formulation on a locally reacting cylindrical scatterer 

with hemispherical end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident 

field: unit amplitude 1 MHz plane wave travelling in positive z direction in an 

attenuating medium. Mesh density: six elements per wavelength. Acoustic pressure 

magnitude on the surface of the scatterer. 

 

Figure 4.28 Surface Helmholtz formulation on a locally reacting cylindrical scatterer 

with hemispherical end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident 

field: unit amplitude 1 MHz plane wave travelling in positive z direction in an 

attenuating medium. Mesh density: six elements per wavelength. Acoustic pressure 

magnitude in the y-z plane. 

 

Figure 4.29 Scattered acoustic pressure magnitude in the y-z plane. Mesh density: three 

elements per wavelength. Surface Helmholtz formulation on a locally reacting 

cylindrical scatterer with hemispherical end-caps. Cylinder height: 22 cm. Cylinder 

radius: 1cm. Incident field: unit amplitude 1 MHz plane wave travelling in positive z 

direction in an attenuating medium. 

 

Figure 4.30 Scattered acoustic pressure magnitude in the y-z plane. Mesh density: six 

elements per wavelength. Surface Helmholtz formulation on a locally reacting 

cylindrical scatterer with hemispherical end-caps. Cylinder height: 22 cm. Cylinder 

radius: 1cm. Incident field: unit amplitude 1 MHz plane wave travelling in positive z 

direction in an attenuating medium. 
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Figure 4.31 Near field and far field calculation of the on-axis acoustic pressure 

magnitude generated by a plane circular piston rigidly vibrating in an infinite baffle. 

 

Figure 4.32 Frontal view of 256 element HIFU phased array with regular spatial 

arrangement of elements. 6 mm element diameter, 4 cm diameter central aperture, 16 

cm array diameter, 18 cm focal length, 1 MHz frequency of operation. 

 

Figure 4.33 Acoustic pressure magnitude in x-z plane resulting from field of 256 

element 1 MHz multi-element array with regular spatial arrangement of elements. 

Uniform unit amplitude velocity and zero phase. 

 

Figure 4.34 Acoustic pressure magnitude in y-z plane resulting from field of 256 

element 1 MHz multi-element array with regular spatial arrangement of elements. 

Uniform unit amplitude velocity and zero phase. 

 

Figure 4.35 Frontal view of 256 element HIFU random phased array configuration. 6 

mm element diameter, 4 cm diameter central aperture, 16 cm array diameter, 18 cm 

focal length, 1 MHz frequency of operation. 

 

Figure 4.36 Acoustic pressure magnitude in x-z plane resulting from field of 256 

element 1 MHz multi-element array with pseudo-random spatial arrangement of 

elements. Uniform unit amplitude velocity and zero phase. 

 

Figure 4.37 Acoustic pressure magnitude in y-z plane resulting from field of 256 

element 1 MHz multi-element array with pseudo-random spatial arrangement of 

elements. Uniform unit amplitude velocity and zero phase. 

 

Figure 4.38 STL representation of ribs 8-12 of the right side of an adult male attached 

to the spine. 

 

Figure 4.39 Section of ribs 9-12 of the right side of an adult male. 

 

Figure 4.40 Position of ribs with respect to HIFU array looking through the ribs 

towards the transducer face, in the negative z direction. 
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Figure 4.41 Position of ribs with respect to the HIFU array. Dotted lines join the 

centroid of each array element to the geometric focus of the array. 

 

Figure 4.42 Incident acoustic pressure magnitude generated by the 1 MHz random 

phased HIFU array for spherical focusing case in the y-z plane. 

 

Figure 4.43 Acoustic pressure magnitude on the surface of the ribs resulting from 

sonication by the 1 MHz random phased HIFU array for an intercostal treatment 

location approximately 3 cm behind the ribcage, between ribs 10 and 11 on right side. 

Spherical focusing case on perfectly rigid ribs in a non-attenuating medium. 

 

Figure 4.44 Acoustic pressure magnitude on the rib surface resulting from sonication 

by the 1 MHz random phased HIFU array for an intercostal treatment location 

approximately 3 cm behind the ribcage, between ribs 10 and 11 on right side. Spherical 

focusing case on perfectly rigid ribs in a non-attenuating medium. Contour of ribs 

shown in bone colour. 

 

Figure 4.45 Magnitude of scattered acoustic pressure in the y-z plane resulting from 

sonication by the 1 MHz random phased HIFU array for an intercostal treatment 

location approximately 3 cm deep into ribcage between ribs 10 and 11 on right side. 

Spherical focusing case on perfectly rigid ribs in a non-attenuating medium. Contour of 

ribs shown in bone colour. 

 

Figure 4.46 Acoustic pressure magnitude on the surface of the ribs resulting from 

sonication by the 1 MHz random phased HIFU array for an intercostal treatment 

location approximately 3 cm deep into ribcage between ribs 10 and 11 on right side. 

Spherical focusing case on perfectly rigid ribs in an attenuating medium. 

 

Figure 4.47 Acoustic pressure magnitude on the rib surface resulting from sonication 

by the 1 MHz random phased HIFU array for an intercostal treatment location 

approximately 3 cm behind the ribcage, between ribs 10 and 11 on right side. Spherical 

focusing case on perfectly rigid ribs in an attenuating medium. Contour of ribs shown in 

bone colour. 
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Figure 4.48 Magnitude of scattered acoustic pressure in the y-z plane resulting from 

sonication by the 1 MHz random phased HIFU array for an intercostal treatment 

location approximately 3 cm deep into ribcage between ribs 10 and 11 on right side. 

Spherical focusing case on perfectly rigid ribs in an attenuating medium. Contour of 

ribs shown in bone colour. 

 

Figure 4.49 Acoustic pressure magnitude on the surface of the ribs resulting from 

sonication by the 1 MHz random phased HIFU array for an intercostal treatment 

location approximately 3 cm deep into ribcage between ribs 10 and 11 on right side. 

Spherical focusing case on locally reacting ribs in an attenuating medium. 

 

Figure 4.50 Acoustic pressure magnitude on the rib surface resulting from sonication 

by the 1 MHz random phased HIFU array for an intercostal treatment location 

approximately 3 cm behind the ribcage, between ribs 10 and 11 on right side. Spherical 

focusing case on locally reacting ribs in an attenuating medium. Contour of ribs shown 

in bone colour. 

 

Figure 4.51 Magnitude of scattered acoustic pressure in the y-z plane resulting from 

sonication by the 1 MHz random phased HIFU array for an intercostal treatment 

location approximately 3 cm deep into ribcage between ribs 10 and 11 on right side. 

Spherical focusing case on locally reacting ribs in an attenuating medium. Contour of 

ribs shown in bone colour. 

 

Figure 4.52 Acoustic pressure magnitude on the surface of the ribs resulting from 

sonication by the 1 MHz random phased HIFU array for an intercostal treatment 

location approximately 3 cm deep into ribcage between ribs 10 and 11 on right side. 

Spherical focusing case on locally reacting ribs in an attenuating medium. Fine mesh 

(six elements per wavelength). 

 

Figure 4.53 Acoustic pressure magnitude on the rib surface resulting from sonication 

by the 1 MHz random phased HIFU array for an intercostal treatment location 

approximately 3 cm behind the ribcage, between ribs 10 and 11 on right side. Spherical 

focusing case on locally reacting ribs in an attenuating medium. Contour of ribs shown 

in bone colour. Fine mesh (six elements per wavelength). 
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Figure 5.1. Frontal view of HIFU multi-element array configuration used for the 

reduced complexity problem. 1 cm element diameter, 60 cm array diameter, 50 cm focal 

length, 100 kHz frequency of operation. 

 

Figure 5.2 Position of cylindrical scatterer with respect to focused array. 

 

Figure 5.3. Acoustic pressure magnitude in y-z plane resulting from field of 100 kHz 

multi-element array. Uniform unit amplitude velocity and zero phase. Contour of 

cylinder shown in black. 

 

Figure 5.4. Incident acoustic pressure magnitude in y-z plane resulting from field of 100 

kHz multi-element array (no scatterer). Uniform unit amplitude velocity and zero phase. 

 

Figure 5.5 Acoustic pressure magnitude on surface of cylinder resulting from field of 

100 kHz multi-element array. Uniform unit amplitude velocity and zero phase. 

 

Figure 5.6. Source velocity magnitudes resulting from constrained minimisation. 

 

Figure 5.7. Source velocity phases resulting from constrained minimisation. 

 

Figure 5.8. Acoustic pressure magnitude on surface of cylinder resulting from field of 

100 kHz multi-element array. Source velocity distribution obtained from constrained 

minimisation. 

 

Figure 5.9. Acoustic pressure magnitude in y-z plane resulting from field of 100 kHz 

multi-element array. Source velocity distribution obtained from constrained 

minimisation. 

 

Figure 5.10 Normalised acoustic pressure magnitude in y-z plane resulting from field of 

100 kHz multi-element array. Uniform unit amplitude velocity and zero phase (spherical 

focusing). 

 

Figure 5.11 Normalised acoustic pressure magnitude in y-z plane resulting from field of 

100 kHz multi-element array. Source velocity distribution obtained from constrained 

minimisation. 
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Figure 6.1 Position of ribs with respect to HIFU array looking in the negative z 

direction, through the ribs and towards the transducer. Array-rib configuration 1. 

 

Figure 6.2 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Spherical focusing. Array-rib configuration 1. 

 

Figure 6.3 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-rib configuration 1. 

 

Figure 6.4 Source velocity magnitudes resulting from binarised apodisation based on 

ray tracing. Array-rib configuration 1. 

 

Figure 6.5. Source velocity phases resulting from binarised apodisation based on ray 

tracing. Array-rib configuration 1. 

 

Figure 6.6 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Binarised apodisation based on geometric ray tracing. Array-

rib configuration 1. 

 

Figure 6.7 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Binarised apodisation based on geometric ray tracing. Array-rib 

configuration 1. 

 

Figure 6.8 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

point source of unit source strength, positioned at the global origin. Array-rib 

configuration 1. 

 

Figure 6.9 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 1. 

 

Figure 6.9 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 1. 

 

Figure 6.11 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Phase conjugation. Array-rib configuration 1. 
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Figure 6.12 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib configuration 1. 

 

Figure 6.13 Source velocity magnitudes resulting from DORT method. Array-rib 

configuration 1. 

 

Figure 6.14 Source velocity phases resulting from DORT method. Array-rib 

configuration 1. 

 

Figure 6.15 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. DORT method. Array-rib configuration 1. 

 

Figure 6.16 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib configuration 1. 

 

Figure 6.17 Source velocity magnitudes resulting from constrained optimisation. Array-

rib configuration 1. 

 

Figure 6.18 Source velocity phases resulting from constrained optimisation. Array-rib 

configuration 1. 

 

Figure 6.19 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Constrained optimisation. 

 

Figure 6.20 Acoustic pressure magnitude in y-z plane resulting from resulting. 

Constrained optimisation. Array-rib configuration 1. 

 

Figure 6.21 Position of ribs with respect to HIFU array for configuration 2. 

 

Figure 6.22 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Spherical focusing. Array-rib configuration 2. 

 

Figure 6.23 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-rib configuration 2. 
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Figure 6.24 Source velocity magnitudes resulting from binarised apodisation based on 

ray tracing. Array-rib configuration 2. 

 

Figure 6.25. Source velocity phases resulting from binarised apodisation based on ray 

tracing. Array-rib configuration 2. 

 

Figure 6.26 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Binarised apodisation based on geometric ray tracing. Array-

rib configuration 2. 

 

Figure 6.27 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Binarised apodisation based on geometric ray tracing. Array-rib 

configuration 2. 

 

Figure 6.28 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

point source of unit source strength, positioned at the global origin. Array-rib 

configuration 2. 

 

Figure 6.29 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 2. 

 

Figure 6.30 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 2. 

 

Figure 6.31 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Phase conjugation. Array-rib configuration 2. 

 

Figure 6.32 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib configuration 2. 

 

Figure 6.33 Source velocity magnitudes resulting from DORT method. Array-rib 

configuration 2. 

 

Figure 6.34 Source velocity phases resulting from DORT method. Array-rib 

configuration 2. 
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Figure 6.35 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. DORT method. Array-rib configuration 2. 

 

Figure 6.36 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib configuration 2. 

Figure 6.37 Source velocity magnitudes resulting from constrained optimisation. Array-

rib configuration 2. 

 

Figure 6.38 Source velocity phases resulting from constrained optimisation. Array-rib 

configuration 2. 

 

Figure 6.39 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Constrained optimisation. Array-rib configuration 2. 

 

Figure 6.40 Acoustic pressure magnitude in y-z plane resulting from resulting. 

Constrained optimisation. Array-rib configuration 2. 

 

Figure 6.41 Position of ribs with respect to HIFU array for configuration 3. 

 

Figure 6.42 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Spherical focusing. Array-rib configuration 3. 

 

Figure 6.43 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-rib configuration 3. 

 

Figure 6.44 Source velocity magnitudes resulting from binarised apodisation based on 

ray tracing. Array-rib configuration 3. 

 

Figure 6.45. Source velocity phases resulting from binarised apodisation based on ray 

tracing. Array-rib configuration 3. 

 

Figure 6.46 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Binarised apodisation based on geometric ray tracing. Array-

rib configuration 3. 
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Figure 6.47 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Binarised apodisation based on geometric ray tracing. Array-rib 

configuration 3. 

 

Figure 6.48 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

point source of unit source strength, positioned at the global origin. Array-rib 

configuration 3. 

 

Figure 6.49 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 3. 

 

Figure 6.50 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 3. 

 

Figure 6.51 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Phase conjugation. Array-rib configuration 3. 

 

Figure 6.52 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib configuration 3. 

 

Figure 6.53 Source velocity magnitudes resulting from DORT method. Array-rib 

configuration 3. 

 

Figure 6.54 Source velocity phases resulting from DORT method. Array-rib 

configuration 3. 

 

Figure 6.55 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. DORT method. Array-rib configuration 3. 

 

Figure 6.56 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib configuration 3. 

 

Figure 6.57 Source velocity magnitudes resulting from constrained optimisation. Array-

rib configuration 3. 
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Figure 6.58 Source velocity phases resulting from constrained optimisation. Array-rib 

configuration 3. 

 

Figure 6.59 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Constrained optimisation. Array-rib configuration 3. 

 

Figure 6.60 Acoustic pressure magnitude in y-z plane resulting from resulting. 

Constrained optimisation. Array-rib configuration 3. 

Figure 6.61 Position of ribs with respect to HIFU array for configuration 4. 

 

Figure 6.62 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Spherical focusing. Array-rib configuration 4. 

 

Figure 6.63 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-rib configuration 4. 

 

Figure 6.64 Source velocity magnitudes resulting from binarised apodisation based on 

ray tracing. Array-rib configuration 4. 

 

Figure 6.65. Source velocity phases resulting from binarised apodisation based on ray 

tracing. Array-rib configuration 4. 

 

Figure 6.66 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Binarised apodisation based on geometric ray tracing. Array-

rib configuration 4. 

 

Figure 6.67 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Binarised apodisation based on geometric ray tracing. Array-rib 

configuration 4. 

 

Figure 6.68 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

point source of unit source strength, positioned at the global origin. Array-rib 

configuration 4. 
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Figure 6.69 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 4. 

 

Figure 6.70 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 4. 

 

Figure 6.71 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Phase conjugation. Array-rib configuration 4. 

 

Figure 6.72 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib configuration 4. 

 

Figure 6.73 Source velocity magnitudes resulting from DORT method. Array-rib 

configuration 4. 

 

Figure 6.74 Source velocity phases resulting from DORT method. Array-rib 

configuration 4. 

 

Figure 6.75 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. DORT method. Array-rib configuration 4. 

 

Figure 6.76 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib configuration 4. 

 

Figure 6.77 Source velocity magnitudes resulting from constrained optimisation. Array-

rib configuration 4. 

 

Figure 6.78 Source velocity phases resulting from constrained optimisation. Array-rib 

configuration 4. 

 

Figure 6.79 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Constrained optimisation. Array-rib configuration 4. 

 

Figure 6.80 Acoustic pressure magnitude in y-z plane resulting from resulting. 

Constrained optimisation. Array-rib configuration 4. 
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Figure 6.81 Position of ribs with respect to HIFU array for configuration 5. 

 

Figure 6.82 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Spherical focusing. Array-rib configuration 5. 

 

Figure 6.83 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-rib configuration 5. 

 

Figure 6.84 Source velocity magnitudes resulting from binarised apodisation based on 

ray tracing. Array-rib configuration 5. 

 

Figure 6.85. Source velocity phases resulting from binarised apodisation based on ray 

tracing. Array-rib configuration 5. 

 

Figure 6.86 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Binarised apodisation based on geometric ray tracing. Array-

rib configuration 5. 

 

Figure 6.87 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Binarised apodisation based on geometric ray tracing. Array-rib 

configuration 5. 

 

Figure 6.88 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

point source of unit source strength, positioned at the global origin. Array-rib 

configuration 5. 

 

Figure 6.89 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 5. 

 

Figure 6.90 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 5. 

 

Figure 6.91 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Phase conjugation. Array-rib configuration 5. 
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Figure 6.92 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib configuration 5. 

Figure 6.93 Source velocity magnitudes resulting from DORT method. Array-rib 

configuration 5. 

 

Figure 6.94 Source velocity phases resulting from DORT method. Array-rib 

configuration 5. 

 

Figure 6.95 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. DORT method. Array-rib configuration 5. 

 

Figure 6.96 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib configuration 5. 

 

Figure 6.97 Source velocity magnitudes resulting from constrained optimisation. Array-

rib configuration 5. 

 

Figure 6.98 Source velocity phases resulting from constrained optimisation. Array-rib 

configuration 5. 

 

Figure 6.99 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Constrained optimisation. Array-rib configuration 5. 

 

Figure 6.100 Acoustic pressure magnitude in y-z plane resulting from resulting. 

Constrained optimisation. Array-rib configuration 5. 

 

Figure 6.101 Position of ribs with respect to HIFU array for configuration 6. 

 

Figure 6.102 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Spherical focusing. Array-rib configuration 6. 

 

Figure 6.103 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-rib configuration 6. 
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Figure 6.104 Source velocity magnitudes resulting from binarised apodisation based on 

ray tracing. Array-rib configuration 6. 

 

Figure 6.105. Source velocity phases resulting from binarised apodisation based on ray 

tracing. Array-rib configuration 6. 

 

Figure 6.106 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Binarised apodisation based on geometric ray tracing. Array-

rib configuration 6. 

Figure 6.107 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Binarised apodisation based on geometric ray tracing. Array-rib 

configuration 6. 

 

Figure 6.108 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

point source of unit source strength, positioned at the global origin. Array-rib 

configuration 6. 

 

Figure 6.109 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 6. 

 

Figure 6.110 Source velocity magnitudes resulting from phase conjugation. Array-rib 

configuration 6. 

 

Figure 6.111 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Phase conjugation. Array-rib configuration 6. 

 

Figure 6.112 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib configuration 6. 

 

Figure 6.113 Source velocity magnitudes resulting from DORT method. Array-rib 

configuration 6. 

 

Figure 6.114 Source velocity phases resulting from DORT method. Array-rib 

configuration 6. 
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Figure 6.115 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. DORT method. Array-rib configuration 6. 

 

Figure 6.116 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib configuration 6. 

 

Figure 6.117 Source velocity magnitudes resulting from constrained optimisation. 

Array-rib configuration 6. 

 

Figure 6.118 Source velocity phases resulting from constrained optimisation. Array-rib 

configuration 6. 

 

Figure 6.119 Acoustic pressure magnitude on surface of ribs resulting from field of 1 

MHz multi-element array. Constrained optimisation. Array-rib configuration 6. 

 

Figure 6.120 Acoustic pressure magnitude in y-z plane resulting from resulting. 

Constrained optimisation. Array-rib configuration 6. 

 

Figure 6.121 Acoustic pressure magnitude along the x-axis for all focusing methods. 

Array-rib configuration 1. 

 

Figure 6.122 Acoustic pressure magnitude along the y-axis for all focusing methods. 

Array-rib configuration 1. 

 

Figure 6.122 Acoustic pressure magnitude along the x-axis for all focusing methods. 

Array-rib configuration 2. 

 

Figure 6.123 Acoustic pressure magnitude along the y-axis for all focusing methods. 

Array-rib configuration 2. 

 

Figure 6.124 Acoustic pressure magnitude along the x-axis for all focusing methods. 

Array-rib configuration 3. 

 

Figure 6.125 Acoustic pressure magnitude along the y-axis for all focusing methods. 

Array-rib configuration 3. 
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Figure 6.126 Acoustic pressure magnitude along the x-axis for all focusing methods. 

Array-rib configuration 4. 

 

Figure 6.127 Acoustic pressure magnitude along the y-axis for all focusing methods. 

Array-rib configuration 4. 

 

Figure 6.128 Acoustic pressure magnitude along the x-axis for all focusing methods. 

Array-rib configuration 5. 

 

Figure 6.129 Acoustic pressure magnitude along the y-axis for all focusing methods. 

Array-rib configuration 5. 

 

Figure 6.130 Acoustic pressure magnitude along the x-axis for all focusing methods. 

Array-rib configuration 6. 

 

Figure 6.131 Acoustic pressure magnitude along the y-axis for all focusing methods. 

Array-rib configuration 6. 
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Figures in appendices 
 

Figure A.1 Cylindrical scatterer with hemispherical end-caps. 1 cm radius, total height 

22 cm (including an additional 0.5 cm radius for the hemispherical end-caps at either 

end). Meshed to include at least 3 elements per wavelength at 1 MHz. 

 

Figure B.1 Position of spherical scatterers with respect to focused array. 

 

Figure B.2 Acoustic pressure magnitude on the surface of the spheres. Spherical 

focusing case. 

 

Figure B.3 Acoustic pressure field resulting from the spherical focusing. 

 

Figure B.4 Singular values of diagonal matrix 

 

Figure B.5 Acoustic pressure on surface of spheres resulting from the focusing vector 

obtained from the first column of [W(ω)]. This vector focuses on the most reflective 

scatterer. 

 

Figure B.6 Acoustic pressure field resulting from the focusing vector obtained from the 

first column of [W(ω)]. This vector focuses on the most reflective scatterer. 

 

Figure B.7 Acoustic pressure on surface of spheres resulting from the focusing vector 

obtained from the second column of [W(ω)]. This vector focuses on the least reflective 

scatterer. 

 

Figure B.8 Acoustic pressure field resulting from the focusing vector obtained from the 

second column of [W(ω)]. This vector focuses on the least reflective scatterer. 

 

Figure B.9 Acoustic pressure on surface of spheres resulting from the focusing vector 

obtained from the third column of [W(ω)]. 

 

Figure B.10 Acoustic pressure field resulting from the focusing vector obtained from 

the third column of [W(ω)]. 
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Figure B.11 Acoustic pressure on surface of spheres resulting from the focusing vector 

obtained from the fourth column of [W(ω)]. 

 

Figure B.12 Acoustic pressure field resulting from the focusing vector obtained from 

the fourth column of [W(ω)]. 

 

Figure B.13 Acoustic pressure on surface of spheres resulting from the focusing vector 

obtained from the fifth column of [W(ω)]. 

 

Figure B.14 Acoustic pressure field resulting from the focusing vector obtained from 

the fifth column of [W(ω)]. 

 

Figure B.15 Acoustic pressure on surface of spheres resulting from the focusing vector 

obtained from the sixth column of [W(ω)]. 

 

Figure B.16 Acoustic pressure field resulting from the focusing vector obtained from 

the sixth column of [W(ω)]. 

 

Figure B.17 Acoustic pressure magnitude on the surface of the spheres. DORT method. 

 

Figure B.18 Acoustic pressure field resulting from the DORT method. 

 

Figure B.19 Acoustic pressure field in the vicinity of the focus resulting from the 

spherical focusing. 

 

Figure B.20 Acoustic pressure field in the vicinity of the focus resulting from the 

application of the DORT method.  
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Chapter 1 
Introduction 

 

1.1 Overview 

 

The liver is a common site of occurrence for both primary and secondary tumours (Yan and 

Hart 2009, Vaezy et al 2001). Hepatocellular carcinoma, the most common form of liver 

cancer, is the third most common cause of cancer related death worldwide (Bridges et al 

2011). The incidence of liver cancer is on the rise in Europe (Piorkowsky 2009) and in 2010, 

there were 4241 people in the UK diagnosed with liver cancer (Cancer Research UK 

website). High-intensity focused ultrasound (HIFU) enables highly localised, non-invasive 

tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, 

including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated 

tumours locally, and potentially bears fewer side effects than more established treatment 

modalities such as resection, chemotherapy and ionising radiation. In the context of treating 

liver tumours, there remain a number of significant challenges which currently hinder its 

widespread clinical application, mainly arising from the interaction of the ribs with the 

ultrasonic field from the HIFU transducer. 

 

Existing theoretical descriptions of trans-costal HIFU are often inadequate, in that they do not 

provide a rigorous 3D treatment of how an ultrasonic field is scattered by human ribs. 

Furthermore, existing approaches to solving the inverse problem of focusing the field of a 

multi-element HIFU array through the ribcage, whilst sparing the ribs and maintaining 

ablative pressures at the focus, may not be optimal. There is consequently substantial scope 

for improving HIFU treatment planning strategies for tumours of the liver, through the use of 

validated theoretical models. The first aim of this work is to investigate a forward model 

based on the boundary element method (BEM) to predict the scattering of the acoustic field 

of a multi-element HIFU by human ribs, the topology of which may be obtained from MR or 

CT scan data. The second aim is to use this forward model to investigate the inverse problem 

of focusing the field of a HIFU array inside the ribcage, whilst sparing the ribs, using existing 
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and novel methods. In this chapter, background information on the treatment of tumours of 

the liver will be outlined. A brief description and history of HIFU will be provided. The 

challenges of trans-costal HIFU and the deficiencies of current approaches will be mentioned. 

The specific objectives of the work will be defined. 

 

1.2 Background 

 

1.2.1 Challenges of treating liver tumours 

 

The first choice of therapy for liver cancer is either surgical resection or transplantation 

(Vaezy et al 2001, Cha et al 2010). The suitability of a patient for surgical resection is highly 

dependent on the size, location and number of tumours (Vaezy et al 2001, Carpizo and 

D’Angelica 2009). The prognosis for patients having undergone a resection remains poor, 

often due to the fact that other tumours may have been present during surgery, but remained 

undetected due to their small size (Vaezy et al 2001, Tomlinson et al 2007). Moreover, the 

risks associated with conventional surgical treatments render them unsuitable for the majority 

of patients: resection is an invasive procedure which involves the loss of large amounts of 

blood. Thus, the ability to ablate tumours accurately and non-invasively within the liver will 

have considerable clinical impact. 

 

1.2.2 HIFU 

 

HIFU is a medical procedure which uses high amplitude ultrasound to heat and ablate a 

localised region of tissue. High energy may be accurately targeted within a well-defined and 

predetermined volume and tissue destruction may be achieved without damaging the 

overlying tissue (ter Haar et al 1989). Early work on high-intensity focused ultrasound 

(HIFU) was carried out in the 1940s by Lynn et al (1942, 1944) in the context of 

neurosurgery, and involved targeting areas in the brains of cats, monkeys and dogs with 

ultrasound, after a section of skull bone had been removed, and observing resulting lesions. 

Subsequent work performed by Fry et al (1954) involved concentrating high-energy 

ultrasound into a target volume and indicated the ability to produce isolated deep-seated 

legions in the brain using four quartz transducers, arranged to allow their beams to overlap 

within the tissue target. Griffith et al (1967) carried out an experimental study in pigs to test 

the feasibility of producing arterial damage from trackless lesions in the spinal cord by 
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focused ultrasound, with the intention of reducing pelvic pain. Their conclusions were 

positive, suggesting that this could be an effective and safe surgical intervention in humans. 

Lizzi et al (1978) employed HIFU to seal tears in the retina, and for glaucoma treatment. The 

ability to produce high-intensity focused beams improved substantially with the introduction 

of piezoceramic and piezocomposite transducers. This, combined with increasingly higher 

resolution imaging modalities such as MR, has led to the efficacy of HIFU being 

demonstrated for the treatment of a range of different cancers (Crum et al 2010), including 

those of the liver (Wu et al 2003, Wu et al 2004, Illing et al 2005, Leslie et al 2012), prostate 

(Sanghvi et al 1996, Ahmed et al 2012), kidney (Illing et al 2005, Ritchie et al 2010) and 

breast (ter Haar and Coussios 2007). It is currently estimated that there have been over 47000 

prostate cancer treatments and more than 50000 treatments for abdominal tumours, 

osteosarcoma, uterine fibroids and thyroid worldwide (ter Haar 2013 personal 

communication). HIFU has received FDA approval for the treatment of uterine fibroids, and 

its safety and efficacy continues to be established (Voogt et al 2012). 

 

1.2.3 Challenges of trans-costal HIFU treatment 

 

As a non-invasive focused therapy, HIFU offers considerable advantages over techniques 

such as chemotherapy and surgical resection, in terms of its low risk of harmful side effects 

(ter Haar et al 1989). Despite this, there are a number of difficulties which currently hinder its 

more widespread clinical application in the context of trans-costal treatment. One of these 

difficulties is the need to transmit sufficient energy through the ribcage to induce tissue 

necrosis at the required location whilst minimising the formation of side lobes. This is true 

not only of liver cancers, but also of renal cancers and pancreatic tumours. Rib bones both 

absorb and reflect ultrasound strongly. As such, a common side effect of focusing ultrasound 

in regions located behind the ribcage is the overheating of bone and surrounding tissue, 

which can lead to skin burns (Wu et al 2004, Li et al 2007). 

 

Multi-element random spherical phased arrays are currently showing great promise in 

overcoming the limitations, such as side lobe formation, lack of electronic steering and lack 

of beam shaping capabilities of single-element transducers (Gavrilov and Hand 2000, Pernot 

et al 2003, Tanter et al 2007, Aubry et al 2008, Hand et al 2009). Nevertheless, the 

successful treatment of intra-abdominal cancers requires a thorough understanding of the way 

in which the ultrasonic pressure field from a HIFU array is scattered by the ribcage. This is 
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likely to rely on a treatment planning strategy which uses a numerical solution to ultrasonic 

wave propagation problems on anatomical data, the topology of which has been obtained 

from computed tomography (CT) or magnetic resonance (MR) scans. Hence, a model capable 

of predicting the pressure distribution both on the ribs and in the surrounding tissue must 

form an important part of treatment planning. 

 

There have been several attempts to investigate the theoretical and experimental feasibility 

and efficacy of trans-costal HIFU. Due to the computational challenges involved for large 

domain dimensions at megahertz frequencies, many models have relied on simplified 

shadowing techniques (Botros et al 1998, Bobkova et al 2010, Li et al 2007, Yuldashev et al 

2013). Whilst these techniques may replicate features of wave propagation during trans-costal 

HIFU treatments, they do not accurately address the actual scattering and diffraction 

mechanisms involved in complex 3D structures and are likely to be of limited use for 

treatment planning applications. Moreover, full wave 3D models for propagation in 

heterogeneous media in the presence of bone still present major computational challenges. 

 

1.3 Aims and objectives 

 

1.3.1 Statement of problem 

 

HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side 

effects than more established treatment. There remain however a number of significant 

challenges which currently hinder its widespread clinical application. Successful HIFU 

treatment of intra-abdominal tumours requires transmitting sufficient energy through the 

ribcage to ablate tissue at the required foci, whilst also minimising the formation of side lobes 

and sparing healthy tissue. It was discussed in section (1.2.3) that ultrasound is both strongly 

absorbed and reflected by ribs, and how this sometimes results in overheating of bone and 

overlying tissue during treatment, leading to skin burns. Successful treatment of a patient 

with tumours in the upper abdomen therefore requires a thorough understanding of the way 

acoustic and thermal energy is deposited. In the context of trans-costal HIFU applications, 

full wave 3D models for propagation in heterogeneous media in the presence of bone still 

present major computational challenges. As such, linear models capable of accurately 

modelling effects of scattering by human ribs in 3D have an important role to play in an 
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initial evaluation of the feasibility of treatment planning, particularly where transducer field 

optimisation is required. 

 

1.3.2 Objectives 

 

The first overall aim of this work is to develop, implement and validate a forward modelling 

approach based on BEM to predict the acoustic field of a multi-element HIFU array scattered 

by human ribs, the topology of which may be obtained from MR or CT scan data. The second 

aim is to use this forward model to investigate approaches to solving the inverse problem of 

focusing the field of multi-element HIFU array whilst sparing the ribs. 

 

The specific objectives are as follows: 

 

• to review existing approaches to modelling ultrasonic fields in the presence of ribs 

• to justify the role of BEM in modelling HIFU fields in the presence of ribs 

• to provide a theoretical description of BEM applied to acoustic scattering problems 

• to implement and validate the BEM code and to apply it to an acoustic scattering 

problem involving a multi-element HIFU source in the presence of human ribs 

• to review existing methods for focusing HIFU fields through ribs and to propose a 

novel method based on constrained optimisation 

• to compare the efficacy of different focusing methods on a range of array-rib 

configurations 

• to define areas suitable for further development. 

 

1.3.3 Outline 

 

Prior work on the modelling of HIFU beams will be reviewed in Chapter 2, with emphasis 

placed on trans-costal simulations. The limitations of existing methods in dealing accurately 

with the scattering of the field of a HIFU array by human ribs will be outlined, and it will be 

explained why BEM is particularly suited to this application. Chapter 3 will provide a 

theoretical description of BEM applied to acoustic scattering problems. The model 

assumptions will be stated and justified. The description and implementation of the BEM 

code used in this thesis (supplied by PACSYS Ltd, PAFEC Program for Automatic Finite 
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Element Calculations website) was originally written as a separate chapter but it was decided 

to confine it to Appendix A. Chapter 4 will describe the validation of the BEM code against 

known analytical solution. This chapter will also feature a review of HIFU sources alongside 

a description of the multi-element transducer used in this thesis. Finally, forward BEM 

calculations on human ribs will be presented. Chapter 5 will feature a review of the existing 

focusing methods which have been used in the literature in the context of trans-costal HIFU 

for sparing the ribs. A novel constrained optimisation method using BEM as the forward 

model will be suggested and described, and an example on a reduced complexity model 

presented. Chapter 6 will compare the efficacy of the inverse methods described in Chapter 5 

on six array-rib configurations in an aim to assess which method is most effective at sparing 

the ribs whilst maintaining high focal pressures. Chapter 7 will present the conclusions from 

this thesis work followed by a discussion of areas for future work. 

 

1.4 Summary 

 

The efficacy of HIFU for treating a range of cancers has been clearly demonstrated. In the 

case of treatment of liver tumours, HIFU shows promise in overcoming some of the 

limitations of established treatment modalities. However, there remain a number of 

difficulties which currently hinder its more widespread clinical application, which include 

overheating of the ribs and overlying tissue, and the formation of side lobes. It has been 

discussed that successful treatment of tumours of the liver and, more generally, of the upper 

abdomen, is likely to rely on a planning strategy which uses a numerical solution to ultrasonic 

wave propagation problems on anatomical data. This thesis will initially review existing 

studies which address this problem, and suggest an approach, based on BEM, which can 

overcome the limitations of these existing approaches. The first overall aim of this work is to 

develop, implement and validate a forward BEM model to predict the acoustic field of a 

multi-element HIFU array scattered by human ribs, the topology of which may be obtained 

from MR or CT scan data. The second aim is to use this forward model to investigate 

approaches to solving the inverse problem of focusing the field of multi-element HIFU array 

whilst sparing the ribs. 
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Chapter 2 
Review of Numerical Methods for Modelling HIFU 

Fields in the Presence of Bone 

 

2.1 Overview 

 

Over the past fifty years, computational methods have gained widespread acceptance 

and made significant contributions in many fields of science and engineering, including 

medical ultrasound. In complex systems where physical behaviour cannot be readily 

underpinned by analytical solutions, numerical solutions must be sought. This is 

particularly true when attempting to devise treatment planning strategies based on 

anatomical data. Numerical solutions usually involve constructing a quantitative 

mathematical model of the system where the behaviour of infinitesimally small 

elements (or regions) is established based on the relationships between the system 

variables, defined by the governing differential equations. A solution to the problem is 

then obtained within a defined domain for specific conditions, expressed on the 

boundary of the domain. 

 

In this chapter, approaches to modelling the propagation of ultrasonic waves in soft 

tissue in the presence of bone will be reviewed. In HIFU applications, the propagation 

of an ultrasonic wave in tissue is generally nonlinear. As the wave propagates forward it 

distorts, creating harmonics and in some cases, acoustic shocks. Initially, some of the 

nonlinear acoustic wave equations more widely used in HIFU will be reviewed. Whilst 

a rigorous theoretical treatment of attenuation in biological media remains beyond the 

scope of this thesis, a brief overview of the topic will be provided. In the context of 

trans-costal HIFU applications, it will be explained why full wave 3D models for 

propagation in heterogeneous media in the presence of bone still present major 

computational challenges. It will be argued that linear models capable of accurately 

modelling effects of scattering by human ribs in 3D have an important role to play in an 

initial evaluation of the feasibility of treatment planning. This may be particularly 

important in applications where transducer field optimisation is required: since several 
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runs of the forward propagation model may be required to solve an inverse problem, 

and thus, linear models may be of value. 

 

Studies involving simulations of trans-costal and trans-skull HIFU will be reviewed and 

it will be explained why existing modelling methods and approaches used are 

inadequate for achieving the aims and objectives stated in section 1.3. It will be argued 

why the boundary element method (BEM) is particularly suited to attaining these 

objectives. 

 

2.2 Review of acoustic equations for propagation of ultrasound in tissue 

 

2.2.1 Constitutive equations 

 

The dynamics of a viscous, heat-conducting fluid are described by four equations. These 

are (Hamilton and Blackstock 1998, p42): 

 

• the conservation of mass or continuity equation 

• the conservation of momentum equation 

• the energy or entropy balance equation 

• the equation of thermodynamic state. 

 

In Eulerian coordinates, i.e. relative to fixed spatial coordinates, these equations are 

expressed below. 

 

The conservation of mass equation is expressed as: 

 
𝐷𝜌
𝐷𝑡

+ 𝜌∇��⃗ ∙ 𝑢�⃗ =0         (2.1) 

 

where 

• ρ is the mass density 

• t denotes time 

• 𝑢�⃗  is the fluid particle velocity vector 

• 𝐷
𝐷𝑡

= 𝜕
𝜕𝑡

+ 𝑢�⃗ ∙ ∇��⃗  is the material time derivative 

• ∇��⃗ = 𝚤 𝜕
𝜕𝑥

+ 𝚥 𝜕
𝜕𝑦

+ 𝑘�⃗ 𝜕
𝜕𝑧
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The conservation of momentum equation is given by: 

 

𝜌 𝐷𝑢��⃗
𝐷𝑡

+ ∇��⃗ 𝑃 = 𝜇∇2𝑢�⃗ + �𝜇𝐵 + 1
3
𝜇� ∇��⃗ �∇��⃗ ∙ 𝑢�⃗ �     (2.2) 

 

where  

• P is the thermodynamic pressure 

• µ is the shear viscosity 

• 𝜇𝐵 is the bulk or volume viscosity. 

 

The shear viscosity accounts for momentum diffusion between adjacent fluid particles 

of differing velocity. The bulk viscosity describes losses arising from changes in 

volume in the fluid. At low frequencies, the bulk viscosity provides an approximate 

description of non-equilibrium deviations between the actual local pressure and P 

(Hamilton and Blackstock 1998, p43). A more general form of the conservation of 

momentum equation would involve acknowledging that non-equilibrium deviations 

involve relaxation. This is discussed further in section 2.2.6. If we assume that 

relaxation times are much shorter than the timescale of the acoustic disturbance, the 

entropy equation is given by: 

 

𝜌 𝐷𝑠
𝐷𝑡

= 𝜅∇2𝑇 + 𝜇𝐵�∇��⃗ ∙ 𝑢�⃗ �
2

+ 1
2
𝜇 �𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3
𝛿𝑖𝑗

𝜕𝑢𝑘
𝜕𝑥𝑘

�
2
   (2.3) 

 

where 

• s is the specific entropy 

• T is the absolute temperature 

• κ is the thermal conductivity. 

 

Cartesian tensor notation (Brillouin 1964, p36) was used to express the final term in 

equation (2.3), where 𝑢𝑖 denotes the particle velocity vector component along direction 

𝑥𝑖 and 𝛿𝑖𝑗 is the Kronecker delta. 𝛿𝑖𝑗 = 1 for 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 for 𝑖 ≠ 𝑗. 

 

The equation of state is written as: 

 

𝑃 = 𝑃(𝜌, 𝑠)         (2.4) 
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In this chapter, we are concerned with nonlinearities up to, and including, second order 

terms. The order is defined in terms of the acoustic Mach number which, in turn, is 

defined as the ratio of the peak particle velocity to the equilibrium speed of sound. If it 

is assumed that the entropy perturbations generated as a by-product of the sound field 

are of second order, a second order expansion of the equation of state in the form of a 

Taylor series about the equilibrium state  (𝜌0, 𝑠0) yields: 

 

𝑝 = 𝑐02𝜌′ + 𝑐02

𝜌0

𝐵
2𝐴
𝜌′2 + �𝜕𝑃

𝜕𝑠
�
𝜌,0
𝑠′      (2.5) 

 

where 

• 𝑝 is the acoustic pressure 

• 𝑐0 is the equilibrium speed of sound 

• 𝜌′ is the density perturbation 

• 𝑠′ is the entropy pertubation 

• 𝐵
𝐴

= �𝜌0
𝑐02
� �𝜕

2𝑃
𝜕𝜌2

�
𝑠,0

 is the nonlinear parameter. 

 

2.2.2 The Westervelt equation 

 

By discarding terms of third order and higher in equations (2.1), (2.2), (2.3) and (2.4), 

and by neglecting the Lagrangian density term ℒ (Westervelt 1963, Aanonsen et al 

1984, Hamilton and Blackstock 1998, p55), 

 

ℒ = 𝜌0𝑢2

2
− 𝑝2

2𝜌0𝑐02
        (2.6) 

 

a second order wave equation known as the Westervelt equation (2.7) may be derived. 

 

∇2𝑝 − 1
𝑐02

𝜕2𝑝
𝜕𝑡2

+ 𝛿0
𝑐04

𝜕3𝑝
𝜕𝑡3

= − 𝛽
𝜌0𝑐04

𝜕2𝑝2

𝜕𝑡2
      (2.7) 

 

where 

• 𝛿0 is the diffusivity of sound 

• 𝛽 = 1 + 𝐵/2𝐴 is the coefficient of nonlinearity. 

 

54



The diffusivity of sound is given by: 

 

𝛿0 = 1
𝜌0
�4
3
𝜇 + 𝜇𝐵� + 𝜅

𝜌0
� 1
𝑐𝑣
− 1

𝑐𝑝
�      (2.8) 

 

where 𝑐𝑣 and 𝑐𝑝 are the specific heat capacities at constant volume and constant 

pressure, respectively. To second order, for a progressive plane, spherical or cylindrical 

wave, ℒ = 0. The extent to which the Lagrangian density term may be neglected in the 

case of a general beam depends on whether cumulative nonlinear effects dominate local 

nonlinear effects (Aanonsen et al 1984). 

 

2.2.3 The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation 

 

In cases where the acoustic waves propagate primarily in a single direction, it is 

common to make the parabolic approximation on the diffraction operator (Kuznetsov 

1971). This approximation is justified as follows: if the positive z-axis denotes the 

nominal axis of the sound beam and a is the source radius, it is assumed that 𝑘𝑎 ≫ 1, 

where k is the acoustic wave number. This implies that the beam is reasonably 

directional and located in the vicinity of the z-axis. In a retarded frame of reference, the 

wave profile is perceived to vary more slowly spatially in the direction of the beam than 

in directions transverse to the beam. This is described in more detail by Hamilton and 

Blackstock (1998, p60). The KZK equation is expressed as follows (Zabolotskaya and 

Khokhlov 1969, Kuznetsov 1971): 

 
𝜕2𝑝
𝜕𝑧𝜕𝜏

− 𝑐0
2
�𝜕

2𝑝
𝜕𝑥2

+ 𝜕2𝑝
𝜕𝑦2

� − 𝛿0
2𝑐0

3
𝜕3𝑝
𝜕𝜏3

= 𝛽
2𝜌0𝑐0

3
𝜕2𝑝2

𝜕𝜏2
     (2.9) 

 

where 𝜏 = 𝑡 − 𝑧
𝑐0

 is the retarded time. 

 

The KZK equation is perhaps the most commonly used equation for modelling HIFU 

fields, owing mainly to the ease with which it can be implemented compared with full 

wave equations. Many efficient algorithms exist which solve the KZK equation both in 

the frequency domain and in the time domain (Aanonsen et al 1984, Lee and Hamilton 

1995). More recently, Hajihasani et al (2009) developed a generalised time domain 

numerical algorithm to solve the diffraction term of the KZK equation, allowing for a 
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3D solution. However, as the KZK equation assumes that field variations transverse to 

the direction of propagation are slow compared to axial variations, the parabolic 

approximation limits the equation’s validity to about 15° from the axis of propagation 

(Tappert 1977, p224). Additionally, the KZK equation is a one-way wave equation and 

thus does not model reflections, scattering, and heterogeneities. Furthermore, many 

HIFU transducers have an aperture diameter of similar dimension to their focal length. 

Analysis of such transducers may also be limited when using the parabolic 

approximation, and their fields are better described by the Westervelt equation 

(Yuldashev and Khokhlova 2011). 

 

2.2.4 Mechanisms of attenuation in soft tissue 

 

Attenuation mechanisms in pure water are primarily viscous in nature, and result in a 

pressure amplitude attenuation coefficient of plane waves proportional to the frequency 

squared for frequencies between 3 MHz and 70 MHz (Duck 1990, p99). Experimental 

observation indicates that 𝛼, the ultrasonic attenuation coefficient in tissue, has a power 

law dependence on frequency of form (Duck 1990, p101): 

 

𝛼 = 𝑎𝛼𝑓𝑏𝛼         (2.10) 

 

where 𝑎𝛼 and 𝑏𝛼 are constants determined experimentally. The power law exponent 𝑏𝛼 

is typically between 1 and 1.5 (Szabo 2004, p4−6). Attenuation of ultrasonic waves in 

tissue results from two mechanisms: acoustic scattering due to inhomogeneities in the 

medium, and acoustic absorption. Attenuation in tissue is known to be dominated by 

absorption. In the low megahertz frequency range, the scatter component of attenuation 

in soft tissue accounts for about 10% to 15% of the total attenuation (Duck 1990, p121). 

The losses in tissue due to absorption are known to be dominated by relaxation 

mechanisms (Markham et al 1951, Nachman et al 1990, Duck 1990, p100). Relaxation 

refers to the time required for a medium to establish equilibrium in a new 

thermodynamic state produced by a change in one or more of the state variables 

(Landau and Lifshitz 2011, p308). The physical description of ultrasound attenuation in 

soft tissue is not straightforward and there is no universal theoretical explanation of 

observed relaxation processes, although the equations derived using different 

approaches are of similar form once linearised (Nachman et al 1990). An augmented 

form of the one-dimensional nonlinear wave equation (Burgers’ equation) was derived 
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by Pierce (1989, p591) to include an arbitrary number of relaxation mechanisms. For 

linear acoustic propagation in inhomogeneous media, Nachman et al (1990) proposed 

an equation suitable for accounting for relaxation losses in tissue. A formulation 

accounting for an arbitrary number of relaxation losses was implemented in a nonlinear 

full wave model by Pinton et al (2011), based on a seismic wave field model 

(Emmerich and Korn 1987). 

 

Involving the sum of the relaxation absorption terms to account for effects of 

attenuation in tissue can be both memory-intensive and expensive from a computational 

time point of view. An approach which involves a spatially varying fractional derivative 

can be a more computationally efficient approach to modelling attenuation in lossy 

media which follows an arbitrary power law. Such an approach was proposed by Chen 

and Holm (2004). This approach was later refined to include an extended operator 

which accounted for power law absorption as required by the Kramers-Kronig relations 

(Treeby et al 2012). The Kramers-Kronig relations, which link attenuation and 

dispersion (i.e. the dependence of the phase velocity in the medium with frequency), 

ensure that causality of the system is satisfied (O’Donnel et al 1981). 

  

2.2.5 Linear acoustic wave equation in heterogeneous absorbing media 

 

The wave equations considered thus far for the modelling of ultrasound propagation in 

tissue have included effects of nonlinearity to second order. Whilst the propagation of 

ultrasonic waves in tissue in applications such as HIFU is indeed nonlinear, there is 

some justification for considering linear approaches to modelling. It has been shown 

that correcting for aberrations introduced by the presence of bone need not require 

nonlinear propagation models and that linear approaches generally suffice (Pinton et al 

2011). Furthermore, nonlinear behaviour in HIFU applications is likely to be mainly 

confined to the central focal lobe (Yuldashev and Khokhlova 2011). Hence, although a 

more rigorous treatment of the focal region may be required, useful information can be 

obtained from linear models when investigating HIFU fields. Moreover, for problems 

which may be computationally challenging to solve when accounting for nonlinearities, 

linear propagation models can act as an initial guess and provide a benchmark against 

which more sophisticated models may be compared. This is particularly true of field 

optimisation problems. 
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Differing biological tissues will have properties which may be dissimilar in terms of 

their density, speed of sound and attenuation. For example, there is a large difference in 

the properties of soft tissue such as liver, and hard tissue such as ribs (Duck 1990, 

p103−110). Being able to account for such heterogeneities in ultrasound simulations in 

humans is of importance in applications such as trans-skull HIFU and trans-costal 

HIFU. The linear wave equation in heterogeneous absorbing media may be used for this 

(Aubry et al 2003): 

 

�1 + 𝛼0(𝑟) 𝜕
𝜕𝑡
� �𝜌0(𝑟)∇��⃗ ∙ � 1

𝜌0(𝑟)𝑝(𝑟, 𝑡)�� − 1
𝑐0(𝑟)2

𝜕2𝑝(𝑟,𝑡)
𝜕𝑡2

= 𝑆0(𝑟, 𝑡)  (2.11) 

 

where 

• 𝛼0 is the absorption 

• 𝑆0 is an acoustic source term 

• 𝑟 is the position vector. 

 

2.3 Ultrasonic propagation modelling in biological media in the presence of  bone 

 

2.3.1 Approaches based on nonlinear acoustic modelling 

 

Li et al (2007) describe a theoretical and experimental study to assess the effect of ribs 

on the field of a HIFU transducer 36 mm diameter focal length 143 mm 1.13 MHz. The 

ribs were modelled as idealised cuboid objects and were assumed to be perfect 

absorbers. An alternating direction implicit backward finite difference scheme (Lapidus 

and Pinder 1989) was used to solve the KZK equation in the frequency domain in 3D. 

Porcine ribs were used experimentally. Good agreement was obtained between theory 

and experiment for the first and second harmonics in the focal plane.  

 

Yuldashev et al (2013) carried out a theoretical study on the effects of nonlinear 

propagation associated with the field of a HIFU source in the presence of idealised 

perfectly absorbing ribs, consisting of parallel strips. A 1 MHz phased array consisting 

of 254 elements was used. A 3D implementation of the Westervelt equation (Westervelt 

1963) on a parallel computing platform was used. This was implemented using an 

operator splitting approach described by Yuldashev and Khokhlova (2011). Simulations 
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in water and in water backed by soft tissue were carried out in the presence of the 

idealised ribs. 

 

The methods of modelling the trans-costal HIFU process proposed by Li et al (2007) 

and Yuldashev et al (2013) account for effects of nonlinearities and frequency-

dependent absorption. Inclusion of the full Laplacian operator by Yuldashev et al 

(2013) in the form of the Westervelt equation described in section (2.2.5) allows for 

more accurate modelling of the field of highly focused sources. There are nevertheless 

some simplifications in these formulations regarding the modelling of the ribs. The first 

simplification is that the ribs are considered to be perfect absorbers. In reality, whilst it 

is true that ribs possess an attenuation coefficient higher than that of soft tissue and 

water (Mast et al 1999, Aubry et al 2008 and El-Brawany et al 2009), the velocity of 

propagation of longitudinal waves in, and the density of, rib bone are respectively 4080 

m s-1 and 1912 kg m-3 (Wein et al 2008). For water and soft tissue, these properties are 

approximately 1500 m s-1 and 1000 kg m-3. It may easily be shown (Kinsler et al 1982, 

p126) that the resulting pressure reflection coefficient at the interface between a semi-

infinite medium of soft tissue and a semi-infinite medium of rib bone is of the order of 

0.7. This indicates that, for a simple interface and in the case of normal incidence, most 

of the acoustic energy is in fact reflected rather than absorbed. In the context of 

accurately evaluating the acoustic pressure on the surface of ribs for quantification of 

the rate of energy absorption per unit volume, it is clear that assuming the ribs to be 

either perfect reflectors or perfect absorbers is likely to lead to large uncertainties. The 

implementation of a boundary condition on the surface of the ribs may be desirable and 

is precluded by these approaches. The second simplification in the studies by Li et al 

(2007) and Yuldashev et al (2013) is related to the idealisation of the shape of the ribs. 

These were assumed to be parallel thin strips or cuboid objects. Simulations on such 

simplified shapes may reveal features of the effects of scattering which occur when a 

HIFU source is insonating human ribs. However, as human ribs are intricate 3D objects, 

it is likely that simulations on parallel strips are of limited use for treatment planning 

applications. One of the goals of this thesis involves a rigorous treatment of the ribs and 

of how these scatter the incident field of a HIFU source. Whilst investigating idealised 

ribs is certainly of interest, it is a prerequisite to achieving this goal to use a method 

which allows for anatomical data obtained from MR or CT scans to be imported into the 

forward model of acoustic propagation.  
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Pinton et al (2011) implemented a 3D finite difference time domain (FDTD) model of 

the full wave equation on a distributed computing platform to study the effects of 

nonlinear ultrasound propagation on HIFU exposures inside a dessicated human skull 

placed in a water tank. Anatomical data from CT scans was used. The wave equation 

used enabled the effects of nonlinearity, attenuation, multiple scattering, reflection and 

refraction to be accounted for. A 20-cycle Gaussian pulse with a fundamental frequency 

of 1 MHz was used in this study. Numerical results were compared against experiment, 

demonstrating good agreement up to the third harmonic. 

 

Whilst full wave 3D FDTD techniques could, in principle, be used to model ultrasound 

propagation in the context of trans-rib HIFU propagation, this would result in large 

domain sizes, which may be challenging from a computational point of view. This and 

other limitations of FDTD will be discussed further in section 2.4. These may be 

partially overcome through the use of more computationally efficient approaches, such 

as k-space pseudospectral methods (Tabei et al 2002). In pseudospectral methods, the 

calculation of the partial derivatives in the governing equation for ultrasound 

propagation is carried out using Fourier collocation methods, which involve computing 

the derivatives of the interpolating polynomial basis functions using a fast Fourier 

transform. This significantly relaxes the requirement on the density of the 

computational grid compared to FDTD methods. The k-space pseudospectral method is 

discussed in more detail by Tabei et al (2002). It has been applied to model the 

nonlinear propagation of ultrasonic waves in 3D in heterogeneous media using a 

modified Westervelt equation with power law absorption (Treeby et al 2012). Whilst 

the k−space pseudospectral method can deal somewhat with weak inhomogeneities in 

the propagating medium, it becomes increasingly inaccurate when dealing with large 

local spatial variations in the speed of sound, such as at a soft tissue/bone interface 

(Treeby et al 2012). 

 

2.3.2 Approaches based on linear acoustic modelling 

 

FDTD methods have been successfully applied to modelling a range of linear HIFU 

problems in the context of treatment planning based on simulations on anatomical data 

involving soft tissue and bone. FDTD methods are attractive in that they can readily be 

applied to any set of differential equations by approximating the differential operators 

with simpler localised algebraic expressions at given nodal locations of the domain. 
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Mast et al (1999) produced FDTD simulations which modelled the propagation of 

pulsed waves through the ribcage. Using cross-sections obtained from cadaver scanned 

anatomical data, ultrasonic propagation of longitudinal waves through fat, muscle, 

connective tissue, cartilage and bone was simulated in 2D.  

 

Aubry et al (2003) carried out an experimental demonstration of non-invasive trans-

cranial adaptive focusing based on data from prior CT scans. The linear wave equation 

for propagation of acoustic waves in heterogeneous media (see equation 2.11) was 

solved in three dimensions in a cuboid volume of dimensions 70 mm × 10 mm × 30 

mm. Simulations were carried out using an in-house FDTD solver at a fundamental 

frequency of 1.5 MHz. On the computing platform used at the time, simulations took 

approximately 20 hours to complete. 

 

Further work on the simulation of trans-skull ultrasound has been carried out by 

Deffieux and Konofagou (2010). This was carried out in view of studying the effects of 

different transducer parameters on targeting areas of the brain relevant to Parkinson’s 

and Alzheimer’s disease, for the opening the blood-brain-barrier for targeted drug 

delivery. CyberLogic Wave3000, (CyberLogic website) a commercially available full 

wave visco-elastic FDTD solver, was used to perform simulations on anatomical data 

from human and primate skulls, obtained from CT scans. Wave3000 produces a 

solution to the 3D linear visco-elastic wave equation in heterogeneous media (Kauffman 

et al 2008). Whilst the software features the ability to model shear wave propagation in 

both solids and liquids, Deffieux and Konofagou (2010) only considered the 

propagation of longitudinal waves, as mode conversion from compressional to shear 

waves inside the skull is not deemed significant at an incidence angle less than 20° 

(White et al 2006). Pulsed excitation from a single-element HIFU transducer was used, 

with a fundamental frequency ranging from 100 kHz to 1 MHz. The authors concluded 

that treatment planning using an experimentally validated numerical model offers a 

means of evaluating trans-cranial focusing to induce opening of the blood-brain barrier 

through human and primate skulls, at the centre of the targeted brain region.  

 

Aubry et al (2008) produced two-dimensional FDTD simulations on cross-sections of 

human ribs immersed in water, the topology of which was obtained from CT scans. The 

bone was modelled as an isotropic solid. These simulations were carried out in an effort 

to improve the understanding of the way in which the acoustic beam from a multi-
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element HIFU phased array is affected by the ribs. Three periods of a 1 MHz 

fundamental frequency pulse were used. 

 

2.4 Limitations of existing approaches to ultrasonic propagation modelling in 

biological media in the presence of bone 

 

As discussed in section 2.3.1 modelling approaches based on one-way wave 

propagation which involve the KZK or the Westervelt equation are of limited use for 

rigorously investigating the way in which human ribs scatter the field of a HIFU 

transducer. Whilst full wave approaches based on FDTD methods have the advantage of 

being relatively straightforward to realise for purely acoustic problems, and can be 

generalised to three dimensions and easily be implemented using cluster computing, 

they possess a number of disadvantages when applied to trans-costal HIFU simulations. 

 

FDTD simulations require the entire computational domain to be discretised, and the 

grid spatial discretisation must be sufficiently fine to resolve both the shortest acoustic 

wavelength and the smallest geometrical feature in the model. For 3D trans-costal 

applications, this results in large computational domains, which in turn leads to long 

solution times. For example, the guidelines in the Wave3000 manual (CyberLogic 

website) imply that approximately 100 GB of RAM would be required to solve a 1 MHz 

FDTD problem in a 20 cm3 volume of water. It will be seen in Chapter 4 that a spatial 

domain size of that order is required for trans-costal HIFU simulations. A computing 

platform with such RAM specifications was not available in the context of this work. 

Additionally, FDTD methods will require the computational domain to be truncated, 

generally using a perfectly acoustically matched layer (PML) or an absorbing boundary 

condition. A PML is an absorbing layer that encloses the computational domain. It is 

governed by a nonphysical set of equations that cause anisotropic absorption (Berenger 

1994, Berenger 1996, Yuan et al 1997). Whilst perfectly matched layers are 

reflectionless for the exact wave equation, numerical reflections are often present once 

the equations have been discretised. 

 

HIFU simulations employing FDTD techniques have relied on pulsed wave excitations. 

For example, Aubry et al (2008) employed three periods at a central frequency of 1 

MHz. Nevertheless, HIFU exposure times are generally of the order of several seconds 

for a single thermal ablation (Wang et al 2009). This effectively results in quasi-
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continuous wave conditions. At megahertz frequencies, impractical computational times 

may ensue when using FDTD methods to simulate quasi-continuous wave conditions. 

Another option is to use a pulse which contains the frequency of interest and to let the 

solution time extend so that effects of multiple scattering eventually decay due to 

dissipative mechanisms. The resulting response at the required frequency may then be 

obtained using a Fourier transform. This may however necessitate long solution times 

for media such as water, where effects of attenuation are small compared with tissue. 

 

As of result of truncation errors in the finite difference approximations, there is an 

impact on the accuracy of the numerical solution. This leads to effects of numerical 

dispersion as the waves propagate through the computational grid (Chung 2002, p88). A 

choice of 10 to 20 grid points per acoustic wavelength at the maximum frequency of 

interest is often used to minimise such effects (Treeby et al 2012). This is nevertheless 

dependent on the size of the computational domain, together with the order of the finite 

difference scheme. 

 

Finally, since FDTD methods are generally implemented on a domain approximated 

using a Cartesian grid, boundaries of complex shape become difficult to define. A 

consequence of this is that the vector normal to boundary surfaces of complex shape, 

such as ribs, cannot be accurately defined at a given location. This makes boundary 

conditions on such surfaces difficult to express accurately (Banerjee 1994, p2). Finite 

element modelling (FEM) techniques can overcome such issues. FEM involves 

discretising the system by non-infinitesimal finite elements where the system variables 

are locally approximated by shape functions and the elements are then assembled, thus 

providing an approximation to the physical system (Zienkiewicz and Taylor 1994). In 

FEM, the discretisation of the domain is not usually restricted to elements of cuboid 

shape, which provides a more accurate means of dealing with boundaries of complex 

shape. Nevertheless, both FEM and FDTD require the entire computational domain to 

be meshed, which inevitably renders them computationally expensive on large three-

dimensional systems. 

 

2.5 The case for the boundary element method 

 

The boundary element method (BEM) is a numerical analysis technique used to obtain 

the solution of partial differential equations (PDE) associated with a particular physical 
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problem with well-defined boundary conditions. In BEM, the PDE is essentially 

reformulated into an integral equation that is defined on the boundary of the domain and 

an integral that relates the boundary solution to the solution at any point in the domain. 

The former is referred to as the boundary integral equation (BIE). The BIE may then be 

solved by discretising the surfaces defined by the domain boundaries into smaller 

regions known as boundary elements. A major advantage of BEM over other numerical 

schemes such as FEM or FDTD is that the discretisation occurs only over the surfaces 

rather than over the entire domain. This eliminates the need to consider domain 

truncation effects and substantially reduces the problem size as it is reduced from 3D to 

2D. Furthermore, boundaries of complex shape can be accurately modelled and 

conditions on the boundary defined in a more precise fashion than FDTD methods. 

BEM can readily handle radiation, scattering and interior acoustic problems. 

 

Hence, BEM has the potential to produce a 3D solution to the scattering of continuous 

waves by ribs of arbitrary shape at megahertz frequencies, without some of the 

disadvantages associated with the other numerical schemes described in this chapter. 

Furthermore, BEM enables the definition of a boundary condition on the surface of the 

scatterer in the form of a surface impedance condition. This implies that analyses 

involving ribs do not have to be restricted to perfectly absorbing or reflecting objects. 

This is crucial if calculating a dose-related quantity at a location on the surface of the 

ribs is required, since this quantity is likely to be related to acoustic pressure (Duck 

2009). 

 

From the point of view of planning the treatment of tumours of the upper abdomen, as 

was discussed in Chapter 1, there is a requirement to investigate methodologies for 

solving the following inverse problem: focusing the field of a HIFU array inside the 

ribcage such that it results in ablative pressures at the required locations whilst ensuring 

that an ultrasonic dose-related quantity on the surface of the ribs does not exceed a 

given damage threshold. This requires the use of a suitable forward model capable of 

addressing the effects of scattering on 3D anatomical data. Solving this type of inverse 

problem is likely to require the use of constrained optimisation techniques. As discussed 

in section 2.2.6, for problems which present computational challenges to solve when 

accounting for nonlinearities, linear propagation models can act as an initial guess and 

provide a benchmark against which more sophisticated models can be assessed. Solving 

inverse problems will generally require more computational time than a single run of a 
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forward model. Hence, a good starting point to tackling this inverse problem is to use a 

forward model which assumes linear propagation of ultrasound. The reduced number of 

degrees of freedom generated by BEM when compared against methods which require 

the entire computational domain to be discretised reinforces the case for the use of BEM 

in the forward propagation model. 

 

Care must be taken in implementing BEM since the transformed BIE is often less well 

behaved than the original differential equation, where problems of singularity and non-

uniqueness may arise, particularly in scattering problems. Furthermore, the matrices 

derived from the discretisation of the BIE are often complex, non-symmetric and fully-

populated. These issues will be discussed further in Chapter 3. 

 

2.6 Summary 

 

In this chapter, existing approaches to modelling the propagation of ultrasonic waves in 

soft tissue in the presence of bone have been reviewed. Widely used equations 

describing the nonlinear propagation of ultrasonic waves in tissue have been reviewed, 

and a brief description of attenuation mechanisms in biological media was provided. In 

the context of trans-costal HIFU applications, it has been explained why full wave 3D 

models for propagation in heterogeneous media in the presence of bone still present 

major computational challenges. It has been argued that linear models capable of 

accurately modelling effects of scattering by human ribs in 3D have an important role to 

play in an initial evaluation of the feasibility of treatment planning particularly where 

transducer field optimisation is required. Prior modelling approaches used in the context 

of trans-skull and trans-rib HIFU have been reviewed and it was found that they were 

ill-suited for describing the scattering of the field of a HIFU array by human ribs under 

continuous wave conditions. A brief description of BEM has been presented with 

emphasis on why this method is particularly attractive for solving the problem described 

above. The advantages of BEM include only having to mesh the surface of the scatterer 

rather than the entire computational domain, not having to deal with domain truncation 

effects, the lack of numerical dispersion, the ability to model complex scatterer 

geometries and to apply the relevant boundary conditions on the surface of these 

scatterers. The suitability of BEM as a forward model for solving transducer field 

optimisation problems presence in the presence of ribs has been outlined. Details of 

BEM will be described in Chapter 3. 
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Chapter 3 
Methodology: Boundary Element Methods 
 

3.1 Overview 

 

This chapter presents an overview of the forward mathematical modelling method 

employed within this body of work. A method of simulating the forward problem of the 

scattering of an ultrasonic wave by ribs, the topology of which will be obtained from 

anatomical data, is required. It was shown why boundary element methods are 

particularly well-suited to describe such a problem in Chapter 2. The boundary integral 

form of the Helmholtz equation, also known as the Kirchhoff-Helmholtz equation will 

be derived for scattering problems. The boundary conditions on the surface of the 

scatterer will be discussed.  Issues of singularity and non-uniqueness associated with the 

Kirchhoff-Helmholtz equation and its discretisation will be reviewed, and how they 

may be overcome will be described. It will then be shown that the problem to be solved 

takes the form of a system of linear algebraic equations. The underlying assumptions 

will be reviewed and discussed in the context of trans-costal HIFU simulations. 

 

3.2 The Kirchhoff-Helmholtz equation 

 

This work will be restricted to the linearised wave equation. Only time harmonic waves 

with a time dependence of 𝑒i𝜔𝑡 will be considered, where 

 

• i2 = −1 

• 𝜔=2𝜋𝑓, where f is the frequency 

• t is time. 

 

Unless specified, all analyses will be carried out in three-dimensional Cartesian space, 

so that a location inside the domain is defined in terms of the coordinates x, y and along 

the global Cartesian axes, by a position vector  𝑟 as follows: 
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𝑟 = �
𝑥
𝑦
𝑧
�         (3.1) 

 

Real physical quantities such as the acoustic pressure, 𝑝, and the particle velocity 

vector, 𝑢�⃗ , are represented as follows: 

 

𝑝(𝑟, 𝑡) = 𝑅𝑒�𝑝(𝑟)𝑒i𝜔𝑡�       (3.2) 

 

𝑢�⃗ (𝑟, 𝑡) = 𝑅𝑒�𝑢�⃗ (𝑟)𝑒i𝜔𝑡�       (3.3) 

 

𝑝(𝑟) and 𝑢�⃗ (𝑟) are complex functions of the position vector 𝑟. Since the analyses will be 

confined to the frequency domain, the acoustic pressure and particle velocity may 

therefore be considered only in terms of their dependency on the position vector. 

 

The starting point of the BEM for the acoustic scattering problems considered in this 

work will be the Helmholtz equation, which describes the propagation of time-harmonic 

acoustic waves in a homogeneous isotropic inviscid medium. 

 

∇2𝑝(𝑟) + 𝑘2𝑝(𝑟) = 0        (3.4) 

 

k is the wave number, defined as 𝑘 = 2𝜋𝑓/𝑐, where c is the (complex) velocity of 

propagation of acoustic waves in the medium. k may be a complex quantity. 

 

For analyses carried out in the time domain, a causality condition is required to reflect 

the fact that an acoustic event cannot physically have an effect before it has occurred. In 

the frequency domain, the causality condition cannot be expressed as a condition in 

time, and takes the form of the Sommerfeld radiation condition. Causality is then 

expressed by the integrability condition, implicit in assuming that a Fourier 

representation of the wave exists, and becomes a condition in space, in this case a 

boundary condition at infinity (Pierce 1989, p178). The Sommerfeld radiation condition 

may be defined in terms of the acoustic pressure as follows (Pierce 1989, p178): 

 

lim‖𝑟‖→∞|𝑟|�𝜕𝑝(𝑟)
𝜕‖𝑟‖

+ i𝑘𝑝(𝑟)� → 0      (3.5) 
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The Sommerfeld radiation condition essentially implies that acoustic disturbances tend 

to zero at infinity. Consider an exterior domain V bounded by an imaginary surface Λ 

and by a closed surface S. Let Λ be at a sufficiently large distance from the acoustic 

sources, and from S, that the boundary condition on Λ satisfies the Sommerfeld acoustic 

radiation condition (see figure 3.1). 

 

 
Figure 3.1 Diagram of domain for exterior scattering problem. 

 

Consider an acoustic pressure field 𝑝(𝑟) generated in V by a source term 𝑄(𝑟), 

described by the inhomogeneous Helmholtz equation as follows: 

 

∇2𝑝(𝑟) + 𝑘2𝑝(𝑟) = −𝑄(𝑟),∀𝑟 ∈ 𝑉      (3.6) 

 

Let the Green’s function be defined as a solution to the Helmholtz equation with a 

singularity at the source point (i.e. a point source of unit source strength): 

 

∇2𝐺�𝑟|𝑟𝑞� + 𝑘2𝐺�𝑟|𝑟𝑞� = −𝛿�𝑟 − 𝑟𝑞�,∀𝑟 ∈ 𝑉    (3.7) 

 

where 𝛿�𝑟 − 𝑟𝑞� is the Dirac delta function. The Green’s function represents the effect 

of a unit source at any field point 𝑟𝑞 on the point of observation 𝑟. In three-dimensional 

space, the Green’s function is given by: 
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𝐺�𝑟|𝑟𝑞� = 𝑒−i𝑘�𝑟��⃗ −𝑟��⃗ 𝑞�

4𝜋�𝑟−𝑟𝑞�
        (3.8) 

 

By virtue of the reciprocity of the Green’s function, i.e. 𝐺�𝑟|𝑟𝑞� = 𝐺�𝑟𝑞|𝑟�, equation 

(3.7) is also valid if the derivatives are taken with respect to 𝑟𝑞. Hence, 

 

∇𝑞2𝐺�𝑟|𝑟𝑞� + 𝑘2𝐺�𝑟|𝑟𝑞� = −𝛿�𝑟 − 𝑟𝑞�,∀𝑟𝑞 ∈ 𝑉    (3.9) 

 

where 

 

∇𝑞2≡
𝜕2

𝜕𝑥𝑞2
+ 𝜕2

𝜕𝑦𝑞2
+ 𝜕2

𝜕𝑧𝑞2
        (3.10) 

 

By multiplying equation (3.6) (written in terms of 𝑟𝑞) by 𝐺�𝑟|𝑟𝑞� and equation (3.9) by 

𝑝�𝑟𝑞�, and subtracting one from the other, we have: 

 

𝐺�𝑟|𝑟𝑞�∇𝑞2𝑝�𝑟𝑞� − 𝑝�𝑟𝑞�∇𝑞2𝐺�𝑟|𝑟𝑞� = 𝑝�𝑟𝑞�𝛿�𝑟 − 𝑟𝑞� − 𝐺�𝑟|𝑟𝑞�𝑄�𝑟𝑞� (3.11) 

 

By integrating equation (3.11) over V, 𝑟𝑞 being the variable of integration, and by 

making use of the sifting property of the Dirac delta function, we have: 

 

∫ �𝐺�𝑟|𝑟𝑞�∇𝑞2𝑝�𝑟𝑞� − 𝑝�𝑟𝑞�∇𝑞2𝐺�𝑟|𝑟𝑞��𝑑𝑉𝑉 = 𝑝(𝑟) − 𝑝𝑖(𝑟),∀𝑟 ∈ 𝑉 (3.12) 

 

where the incident acoustic pressure 𝑝𝑖(𝑟), i.e. the pressure in absence of the scatterer, 

is given by 

 

𝑝𝑖(𝑟) = ∫ 𝐺�𝑟|𝑟𝑞�𝑄�𝑟𝑞�𝑑𝑉𝑉        (3.13) 

 

By applying Green’s second theorem to equation (3.12), the volume integral may be 

transformed into a surface integral over the area defined by the union of the surface S of 

the scatterer and the surface Λ at infinity. By virtue of the Sommerfeld radiation 

condition being satisfied at infinity, the integral over Λ tends to zero, and only the 

integral over S need be considered. Hence, equation (3.12) may be written as: 
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∫ �𝑝�𝑟𝑞�
𝜕𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞

− 𝜕𝑝�𝑟𝑞�
𝜕𝑛𝑞

𝐺�𝑟|𝑟𝑞�� 𝑑𝑆𝑆 = 𝑝(𝑟) − 𝑝𝑖(𝑟),∀𝑟 ∈ 𝑉  (3.14) 

 

where 

 
𝜕
𝜕𝑛𝑞

≡ 𝑛�⃗ 𝑞 ∙ ∇��⃗          (3.15) 

 

and 𝑛�⃗ 𝑞 denotes a unit vector normal to S at 𝑟𝑞 and pointing from the surface into the 

exterior volume V. The total acoustic pressure 𝑝(𝑟) may be expressed as the sum of the 

incident pressure 𝑝𝑖(𝑟) and the pressure scattered by the surface S, 𝑝𝑠(𝑟), ∀𝑟 ∈ 𝑉. 

Equation (3.14) is known as the Kirchhoff-Helmholtz equation. This integral form of 

the Helmholtz equation has important applications in calculating the field induced by 

sources scattered by finite boundaries and is valid ∀𝑟 ∈ 𝑉. For locations on the surface 

S, the Kirchhoff-Helmholtz equation takes a slightly different form. Consider a 

hemisphere of radius ε surrounding the observation point 𝑟 on S and let ε tend to zero. 

Let the surface defined by this hemisphere be S2 (see figure 3.2).  

 
Figure 3.2 Hemisphere of radius ε surrounding the observation point 𝑟 on S. 
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Let the S1 be defined so that 𝑆 = 𝑆1 ∪ 𝑆2 in the limit of  ε → 0. Since the Dirac delta 

function is zero at all locations on S2, we have: 

 

∇𝑞2𝐺�𝑟|𝑟𝑞� + 𝑘2𝐺�𝑟|𝑟𝑞� = 0,∀𝑟 ∈ 𝑆2     (3.16) 

 

Consider now an observation point lying on S. By following the same procedure as for 

an observation point located in V and by carrying out the surface integration over 

𝑆1 ∪ 𝑆2 ∪ 𝛬, recalling that the integral over Λ vanishes, we have: 

 

∫ �𝑝�𝑟𝑞�
𝜕𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞

− 𝜕𝑝�𝑟𝑞�
𝜕𝑛𝑞

𝐺�𝑟|𝑟𝑞�� 𝑑𝑆1𝑆1
+       

∫ �𝑝�𝑟𝑞�
𝜕𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞

− 𝜕𝑝�𝑟𝑞�
𝜕𝑛𝑞

𝐺�𝑟|𝑟𝑞�� 𝑑𝑆2𝑆2
= −𝑝𝑖(𝑟),∀𝑟 ∈ 𝑆 (3.17) 

 

The second integral on the left hand side of equation (3.17) is calculated as follows: 

 

∫ �𝑝�𝑟𝑞�
𝜕𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞

− 𝜕𝑝�𝑟𝑞�
𝜕𝑛𝑞

𝐺�𝑟|𝑟𝑞�� 𝑑𝑆𝑆2
= lim𝜀→0 �𝑝(𝑟) 𝜕

𝜕𝜀
�𝑒

𝑖𝑘𝜀

4𝜋𝜀
�2𝜋𝜀2� = −1

2
𝑝(𝑟)  

(3.18) 

 

For scattering problems, the integral representation of the solution to the 

inhomogeneous Helmholtz equation is therefore given by: 

 

�
∫ �𝑝�𝑟𝑞�

𝜕𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞

− 𝜕𝑝�𝑟𝑞�
𝜕𝑛𝑞

𝐺�𝑟|𝑟𝑞�� 𝑑𝑆𝑆 = 1
2
𝑝(𝑟) − 𝑝𝑖(𝑟),∀𝑟 ∈ 𝑆

∫ �𝑝�𝑟𝑞�
𝜕𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞

− 𝜕𝑝�𝑟𝑞�
𝜕𝑛𝑞

𝐺�𝑟|𝑟𝑞�� 𝑑𝑆𝑆 = 𝑝(𝑟) − 𝑝𝑖(𝑟),∀𝑟 ∈ 𝑉
  (3.19) 

 

3.3 Boundary conditions on the surface of the scatterer 

 

The boundary conditions on S express the constraints of the field value and its normal 

derivative on the surface. These are associated with the properties of the surface. For 

perfectly reflective surfaces, two types of boundary condition are possible: the 

Neumann condition, 

 
𝜕𝑝(𝑟)
𝜕𝑛

= 0,∀𝑟 ∈ 𝑆        (3.20) 
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 and the Dirichlet condition, 

 

𝑝(𝑟) = 0,∀𝑟 ∈ 𝑆        (3.21) 

 

The Neumann condition corresponds to an acoustically perfectly rigid boundary whilst 

the Dirichlet condition corresponds to a pressure-release or acoustically soft boundary. 

Most physical interfaces are not accurately described by either the Neumann or the 

Dirichlet conditions. In the case of a locally reacting surface, the normal derivative of 

the acoustic pressure on S may be obtained by considering the linearised conservation of 

momentum equation for harmonic excitation: 

 

−∇��⃗ 𝑝 = i𝜔𝜌0𝑢�⃗          (3.22) 

 

where 𝜌0 is the density of the medium in the exterior domain and 𝑢�⃗  the particle velocity 

vector. Assuming continuity of the normal component of the particle velocity vector and 

continuity of the acoustic pressure, equation (3.22) must be satisfied in V as well as on 

S. By taking the scalar product of each side of equation (3.22) with the inward normal 

vector on S, we have: 

 

−∇��⃗ 𝑝 ∙ 𝑛�⃗ = iω𝜌0𝑢�⃗ ∙ 𝑛�⃗         (3.23) 

 

or 

 
𝜕𝑝
𝜕𝑛

= iω𝜌0𝑢𝑛         (3.24) 

 

where un is the inward normal component of 𝑢�⃗  on S. The boundary condition on a 

locally reacting surface is given by Morse and Ingard (1968, p422): 

 
𝑝
𝑢𝑛

= 𝑧1 = 𝜌1𝑐1        (3.25) 

 

where 𝑧1 is the acoustic impedance of the surface and 𝜌1 and 𝑐1 are respectively the 

density and speed of sound associated with the medium of the scatterer. Hence, a locally 

reacting impedance condition on the surface of the scatterer may be defined as follows. 

 

72



𝜕𝑝(𝑟)
𝜕𝑛

= i𝑘 𝜌0𝑐
𝜌1𝑐1

𝑝(𝑟),∀𝑟 ∈ 𝑆       (3.26) 

 

In the context of this work, the boundary conditions on S which are of interest are the 

Neumann condition (acoustically hard surface) and the locally reacting impedance 

condition in equation (3.26). 

 

3.4 Discretisation of the Kirchhoff-Helmholtz equation 

 

We require a solution 𝑝(𝑟) which satisfies: 

 

• the Helmholtz equation in V 

• the Sommerfeld radiation condition at infinity 

• the boundary condition 𝜕𝑝(𝑟)
𝜕𝑛

= 𝑔(𝑟),∀𝑟 ∈ 𝑆, where 𝑔(𝑟) = i𝑘 𝜌0𝑐
𝜌1𝑐1

𝑝(𝑟) is 

assumed to be a continuous function defined on S and is assumed to have a 

continuous first derivative. 

 

The above set of conditions describes what is known as an exterior Neumann boundary 

value problem, which can be solved by discretisation of the Kirchhoff-Helmholtz 

equation. Difficulties arise, however, as the solution of the integral equation relies on 

the numerical evaluation of singular, oscillatory integrands. On the surface of the 

scatterer, the Green’s function along with its normal derivative becomes singular as the 

source location 𝑟𝑞 approaches the observation location 𝑟. Despite the singularity in the 

integration kernel, the integrals on the left hand side of equation (3.19) are regular, 

although care must be taken in their numerical evaluation (Meyer et al 1978). In 

addition to the singularity issues associated with the integration kernel for observation 

locations on S, the problem as described by the Kirchhoff-Helmholtz equation suffers 

from non-uniqueness at frequencies of excitation approaching an eigenvalue of one of 

the (fictitious) modes of the cavity inside the scatterer. The discretised form of the 

Kirchhoff-Helmholtz equation (3.19) is often referred to as the surface-Helmholtz 

integral formulation. The fully populated square matrix formed by discretising equation 

(3.19) for observation points on S then becomes close to singular. The method which 

appears to offer the best compromise in terms of application of the Helmholtz integral 

equation to exterior acoustic problems involving scatterers of arbitrary shape remains 

the Burton-Miller formulation (Chien et al 1990). This formulation solves for a linear 
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combination of equation (3.19) for observation points on S and its derivative with 

respect to the outward normal vector on S at source locations r  (Burton and Miller 

1971): 

 

∫ �𝑝�𝑟𝑞� �
𝜕𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞

+ 𝛼𝑐
𝜕2𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞𝜕𝑛

� − 𝜕𝑝�𝑟𝑞�
𝜕𝑛𝑞

�𝐺�𝑟|𝑟𝑞� + 𝛼𝑐
𝜕𝐺�𝑟|𝑟𝑞�

𝜕𝑛
�� 𝑑𝑆𝑆 =   

1
2
𝑝(𝑟) + 𝛼𝑐

2
𝜕𝑝(𝑟)
𝜕𝑛

− 𝑝𝑖(𝑟) − 𝛼𝑐
𝜕𝑝𝑖(𝑟)
𝜕𝑛

,∀𝑟 ∈ 𝑆   (3.27)
  

where αc is the coupling coefficient, which can be chosen as i/k (Kress R 1985), 

although the optimal value for this coefficient is problem-specific. For example, in a 

problem involving the scattering of a plane wave by a perfectly rigid sphere at a natural 

frequency of the interior problem, Liu and Rizzo (1991) find that αc = 0.3333i/k appears 

to generate better agreement with the analytical solution than αc =  i/k for a fixed 

number of C1 continuous elements. C1 continuity implies that the element shape 

functions and their slope are required to be continuous (Zienkiewicz and Taylor 1994, 

p32). Some numerical experimentation is therefore likely to be required for scatterers 

with known analytical solutions, in order to help underpin values of αc suitable for the 

problem being solved. 

 

Burton and Miller (1971) have demonstrated that issues of non-uniqueness are 

overcome using the formulation in equation (3.27) and that a unique solution is obtained 

for every wave number. Although the solutions of the surface integral equation and of 

the normal derivative equation are non-unique at characteristic frequencies of the 

interior Dirichlet and Neumann problems, respectively, both solution spaces have a null 

space at their intersection. However, if the wave number associated with the medium in 

the exterior volume has a non-zero imaginary part, solving the discretised form of 

equation (3.19) for observation points on S may be sufficient, as the fictitious modes of 

the cavity inside the scatterer are likely to be dampened (Colton and Kress 1983, p81 

and p84). Again, this is likely to be problem-specific and numerical experimentation 

with complex wave speeds of interest may be required to assess the validity of 

proceeding without the normal derivative formulation in equation (3.27). This 

validation would have to be carried out at frequencies corresponding to 

eigenfrequencies of the interior problem, for scattering problems with known analytical 

solution. 
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The surface S will now be discretised into a finite number Np of patches. By using a 

shape function [M] over each boundary element to interpolate the acoustic pressure and 

its derivative, the Kirchhoff-Helmholtz equation on S may be represented as follows: 

 

∑ �𝑝�𝑟𝑞,𝑗�� ∫ �𝜕𝐺
�𝑟|𝑟𝑞,𝑗�
𝜕𝑛𝑞,𝑗

+ 𝛼𝑐
𝜕2𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞,𝑗𝜕𝑛

�𝑆𝑗

𝑁𝑝
𝑗=1 [𝑀]𝑑𝑆𝑗− ∑ �𝜕𝑝

�𝑟𝑞,𝑗�
𝜕𝑛𝑞,𝑗

� ∫ �𝐺�𝑟|𝑟𝑞,𝑗� +𝑆𝑗

𝑁𝑝
𝑗=1

𝛼𝑐
𝜕𝐺�𝑟|𝑟𝑞,𝑗�

𝜕𝑛
� [𝑀]𝑑𝑆𝑗 = 1

2
𝑝(𝑟) + 𝛼𝑐

2
𝜕𝑝(𝑟)
𝜕𝑛

− 𝑝𝑖(𝑟) − 𝛼𝑐
𝜕𝑝𝑖(𝑟)
𝜕𝑛

,∀𝑟 ∈ 𝑆 (3.28) 

 

where Np is the total number of boundary elements. In the case of constant pressure 

patches, [M] is simply equal to 1. More generally, the shape function for an n node 

element is of the following form: for eight-noded quadratic isoparametric C0 continuity 

patches, the shape function [M] is established as follows (Zienkiewicz and Taylor 1994, 

p153). 

 

�
𝑥
𝑦
𝑧
�
T

= ⌊𝑀1 𝑀2 ⋯ 𝑀𝑛⌋ �

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
⋮ ⋮ ⋮
𝑥𝑛 𝑦𝑛 𝑧𝑛

�     (3.29) 

 

n is the number of element nodes, T denotes the transpose and (xi, yi, zi) represents the 

coordinates in the global Cartesian axis set at node i. In this case, n = 8. C0 continuity 

implies that the element shape functions are continuous (Zienkiewicz and Taylor 1994, 

p32). Unlike C1 elements, no such condition is imposed on their slope. The term 

‘isoparametric’ refers to the fact that the element geometry and the acoustic pressure 

interpolation function on the element are governed by the same shape function [M]. 

Hence, 

 

𝑝(𝑥,𝑦, 𝑧) = ∑ 𝑝(𝜉𝑖, 𝜂𝑖)𝑀𝑖
𝑛
𝑖=1        (3.30) 

 

Let the local coordinate system on a curvilinear element be defined in terms of the 

variables ξ and η, as shown in figure 3.3: 

 

75



 
Figure 3.3 Eight node isoparametric quadrilateral element. Node numbers are shown in black. Local 

coordinate values are displayed in red. 

 

Integrals over a quadrilateral patch in equation (3.28) take the form: 

 

∫ 𝑈𝑒�𝑟, 𝑟𝑞,𝑗�[𝑀]𝑑𝑆𝑗𝑆𝑗
        (3.31) 

 

where Ue is a function involving the Green’s function or its normal derivatives. After a 

transformation to local coordinates, the above integral may be expressed as follows: 

 

∫ ∫ 𝑈𝑒�𝑟, 𝑟𝑞,𝑗�[𝑀]|𝐽𝑒|𝑑𝜉𝑑𝜂1
−1

1
−1       (3.32) 

 

The expression for the Jacobian 𝐽𝑒 is given as follows (Wu 2000, p53): 

 

|𝐽𝑒| = �𝜕𝑟
𝜕𝜉

× 𝜕𝑟
𝜕𝜂
�        (3.33) 

 

The shape function may be shown to take the form below for eight node isoparametric 

quadrilateral patches. For corner nodes (i.e. nodes 1, 2, 3 and 4), we have (Lachat and 

Watson 1976): 

 

𝑀𝑖 = 1
4

(1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖)(𝜉𝜉𝑖 + 𝜂𝜂𝑖 − 1)     (3.34) 

 

At mid-side nodes, we have: 
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𝑀𝑖 = 1
4

(1 − 𝜉2)(1 + 𝜂𝜂𝑖), 𝜉𝑖 = 0      (3.35) 

 

𝑀𝑖 = 1
4

(1 − 𝜂2)(1 + 𝜉𝜉𝑖), 𝜂𝑖 = 0      (3.36) 

 

The hypersingular integrand in equation (3.27), involving the second derivative of the 

Green’s function is strongly singular and cannot be integrated numerically in its current 

form (Meyer et al 1978). It may be regularised following the procedure outlined by Liu 

and Rizzo (1991), by rewriting as follows: 

 

∫ 𝑝�𝑟𝑞�
𝜕2𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞𝜕𝑛

𝑑𝑆𝑆           

= ∫ 𝜕2

𝜕𝑛𝑞𝜕𝑛
�𝐺�𝑟|𝑟𝑞� − 𝐺̅�𝑟|𝑟𝑞��𝑝�𝑟𝑞�𝑑𝑆 + ∫

𝜕2𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞𝜕𝑛𝑆𝑆 𝑝�𝑟𝑞�𝑑𝑆    

= ∫ 𝜕2

𝜕𝑛𝑞𝜕𝑛
�𝐺�𝑟|𝑟𝑞� − 𝐺̅�𝑟|𝑟𝑞��𝑝�𝑟𝑞�𝑑𝑆𝑆        

+∫
𝜕2𝐺̅�𝑟|𝑟𝑞�
𝜕𝑛𝑞𝜕𝑛𝑆 �𝑝�𝑟𝑞� − 𝑝(𝑟) − �𝑟𝑞 − 𝑟� ∙ ∇��⃗ 𝑝(𝑟)�𝑑𝑆     

+𝑝(𝑟)∫
𝜕2𝐺̅�𝑟|𝑟𝑞�
𝜕𝑛𝑞𝜕𝑛

𝑑𝑆 + ∇��⃗ 𝑝(𝑟) ∙ ∫ �𝑟𝑞 − 𝑟�𝑆
𝜕2𝐺̅�𝑟|𝑟𝑞�
𝜕𝑛𝑞𝜕𝑛

𝑑𝑆𝑆 ,∀𝑟 ∈ 𝑉 (3.37) 

 

where 𝐺̅�𝑟|𝑟𝑞� is the static case Green’s function and is equal to 1
4𝜋�𝑟𝑞−𝑟�

 . 

 

According to Liu and Rudolphi (1991), when r  is in the exterior volume, the last two 

integrals in equation (3.29) are given by: 

 

∫
𝜕2𝐺̅�𝑟|𝑟𝑞�
𝜕𝑛𝑞𝜕𝑛

𝑑𝑆𝑆 = 0        (3.38) 

 

and 

 

∫ �𝑟𝑞 − 𝑟�𝑆
𝜕2𝐺̅�𝑟�𝑟𝑞�
𝜕𝑛𝑞𝜕𝑛

𝑑𝑆 = ∫ 𝑛�⃗ 𝑞𝑆
𝜕𝐺̅�𝑟�𝑟𝑞�

𝜕𝑛
𝑑𝑆     (3.39) 

 

Substituting equations (3.38) and (3.39) into equation (3.37), and then back into the 

normal derivative component of equation (3.27), and placing r  on S gives: 
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𝜕𝑝(𝑟)
𝜕𝑛

+ ∫
𝜕2𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞𝜕𝑛𝑆 �𝑝(𝑟) − 𝑝�𝑟𝑞� − ∇��⃗ 𝑝(𝑟) ∙ �𝑟𝑞 − 𝑟��𝑑𝑆     

+∫ 𝜕2

𝜕𝑛𝑞𝜕𝑛
�𝐺�𝑟|𝑟𝑞� − 𝐺̅�𝑟|𝑟𝑞��𝑝�𝑟𝑞�𝑑𝑆 = ∫

𝜕𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑆𝑆 �∇��⃗ 𝑝�𝑟𝑞� − ∇��⃗ 𝑝(𝑟)� ∙ 𝑛�⃗ 𝑞𝑑𝑆  

+∫ 𝜕
𝜕𝑛
�𝐺�𝑟|𝑟𝑞� − 𝐺̅�𝑟|𝑟𝑞��𝑆 𝑛�⃗ 𝑞 ∙ ∇��⃗ 𝑝�𝑟𝑞�𝑑𝑆 + 𝜕𝑝𝑖(𝑟)

𝜕𝑛
,∀𝑟 ∈ 𝑆  (3.40) 

 

The integrals in equation (3.40) are weakly singular integrals at most. These, as well as 

the other integrands in equation (3.27), can be treated for 3D eight node quadrilateral 

isoparametric elements using the Lachat-Watson transformation (Lachat and Watson 

1976). This involves subdividing the quadrilateral elements into triangular patches each 

with a local coordinate system and a modified Jacobian. This transformation has the 

advantage of causing the modified Jacobian in the integral over the triangular patch 

containing the singularity to vanish (Gaul et al 2003, p191). The remaining integrals 

may then be solved using Gaussian-Legendre quadrature (Zienkiewicz and Taylor 1994, 

p172). 

 

It is well known that theory imposes a C1 smoothness requirement (i.e. continuity of the 

slope of the unknown quantity occurring between elements) on the density function (in 

this case ( )rp 
) of the hypersingular BIEs (Chien et al 1990). After discretisation of 

equation (3.40), the normal derivative of the acoustic pressure may be discontinuous 

across element boundaries when employing C0 elements. Chien et al (1990) and Liu and 

Rizzo (1991) have nevertheless suggested that this requirement may be relaxed and that 

the C0 smoothness requirement, though mathematically unjustifiable, may suffice. This 

requirement may be somewhat eschewed by using the approach described by Francis 

(1993), in which the normal derivative terms are computed at the element centroids. 

This is then combined with the regular BIE by association of each normal derivative 

equation with the eight nodes of the element on which the calculation point for that 

equation is located. 

 

By formulating equation (3.40) for all position vectors r  on S corresponding to each 

node on the mesh of the surface, a linear system of equations may be generated. 

 

[𝐻]{𝑝} − [𝐺] �𝜕𝑝
𝜕𝑛
� + {𝑝𝑖} + 𝛼𝑐 �

𝜕𝑝𝑖
𝜕𝑛
� = {0}     (3.41) 

 

78



The BEM formulation described by equation (3.41) is known as the collocation BEM, 

where the approximated BIE is evaluated at the interpolation nodes. After discretisation 

of the surface into a number of discrete patches defined by nodal points, it is assumed 

that the BIE is satisfied at these points. It is the earliest variant of BEM (Yu et al 2010). 

It should be noted that there are other BEM formulations which exist, including the 

Galerkin BEM. The Galerkin BEM discretisation procedure employs a weighted 

residual technique and is particularly advantageous in dealing with surface geometries 

which are not smooth, including sharp edges and cracks (Yu et al 2010). Forming the 

Galerkin BEM matrices however requires the evaluation of 4D integrals, which may be 

costly from a computational point of view. The investigation of Galerkin and other 

BEM was considered beyond the scope of this thesis. 

 

For a Neumann condition on S, the normal derivative vector of acoustic pressures at 

nodal locations on S is {0}. For a locally reacting impedance condition on S, it is related 

to the acoustic pressure by equation (3.26). Equation (3.41) need therefore only be 

solved for the acoustic pressures {p} at nodal positions on S. From knowledge of the 

incident pressure field and its normal derivative on S, together with the boundary 

element matrices [H] and [G], {p} may be obtained through matrix inversion. [H] and 

[G] are generally complex, fully-populated and non-symmetric. Hence, for large 

problem sizes, storing all the elements of [H] and [G] simultaneously may potentially 

become problematic due to limited availability of RAM on a computing platform. In 

such cases, the generalised minimal residual method (Saad and Schultz 1986) may be 

used. This is discussed in Appendix A. 

 

Once the acoustic pressures on the surface S of the scatterer are known, the pressure 

𝑝(𝑟) at any location in the exterior volume Vext may then be obtained by solving: 

 

∫ �𝑝�𝑟𝑞�
𝜕𝐺�𝑟|𝑟𝑞�
𝜕𝑛𝑞

− 𝜕𝑝�𝑟𝑞�
𝜕𝑛𝑞

𝐺�𝑟|𝑟𝑞�� 𝑑𝑆𝑆 = 𝑝(𝑟) − 𝑝𝑖(𝑟),∀𝑟 ∈ 𝑉  (3.42) 

 

The acoustic pressures and their normal derivatives at locations on S are known from 

solving equation (3.41) and from the boundary condition on S. The integral in equation 

(3.42) does not present any particular problems and may be solved by Gaussian 

quadrature: there are no non-uniqueness issues and singularities do not occur since the 

observation location is located in the exterior volume V. Nevertheless, at field locations 
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close to the surface S, it may be necessary to increase the integration order to obtain an 

accurate solution, as the integration kernels may become close to singular. 

 

3.5 Underlying assumptions 

 

3.5.1 Heterogeneity of soft tissue surrounding the scatterers 

In the boundary element formulation described in this chapter, the acoustic medium 

surrounding the ribs is assumed to extend to infinity and the soft tissue (i.e. muscle, skin 

and fat) is treated as a homogeneous medium. The speed of propagation of longitudinal 

waves is generally comparable in different soft tissues, and is approximately 1500 m s-1 

(Duck 1990, p75 and p95). The same is true of the density (Duck, 1990 p137). 

Furthermore, Hynynen and Fan (1992) developed and tested a computational model 

based on a Rayleigh-Sommerfeld diffraction integral which took reflection and 

refraction of an ultrasound beam at tissue interfaces into account, and concluded that the 

effect of the interfaces between soft tissues was small and could often be ignored. It 

may therefore not be unreasonable to consider the acoustic medium surrounding the 

bone as homogeneous. If multiple tissue volumes need modelling, this could in 

principle be achieved using BEM through a combination of interior and exterior 

formulations (Elysée 2011). This would necessitate meshing the closed surfaces 

associated with each region (e.g. skin, fat, liver tissue, bone). Such a formulation is 

beyond the scope of this thesis. 

 

During HIFU treatment, the ultrasonic transducer is not usually coupled directly to the 

abdomen of the patient as it is generally of spherical-section shape, as will be discussed 

in Chapter 4. Instead, a water coupling region is placed between the transducer and the 

abdomen. Whilst the density and speed of sound in water are not dissimilar to those in 

soft tissue, the attenuation coefficient in liver tissue is approximately three orders of 

magnitude higher than that in water at 20°C at 1 MHz (Duck 1990, p75 and p104, Fan 

and Hynynen 1994). Neglecting this will have an impact on the acoustic pressures 

calculated at the focus, which may be considerably underestimated. A correction for the 

acoustic pressure transmitted at the water/tissue interface could be applied using a 

Rayleigh-Sommerfeld diffraction integral (Hynynen and Fan 1992 and 1994), but this is 

beyond the scope of this work. 
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3.5.2 Normal velocity boundary condition at the location of the ultrasonic sources 

In the context of using BEM for the simulation of trans-costal HIFU, a number of 

assumptions have to be made. It is assumed that the ultrasonic sources are defined 

simply in terms of an incident acoustic pressure field. As such, no normal velocity 

boundary condition is imposed at the surface of the HIFU transducer, therefore making 

it impossible to account for multiple reflections between the surface of the source and 

the ribs. 

 

3.5.3 Acoustic nonlinearity 

 

The effects of nonlinear propagation are not considered in this thesis. It is however well 

known that HIFU fields can result in highly nonlinear behaviour in the focal region 

leading to distortion of the acoustic waveform and transfer of energy from the 

fundamental frequency towards higher order harmonics (Wu et al 2004). Nevertheless, 

from the point of view of treatment planning, it has been shown that correcting for 

aberrations introduced by the presence of bone need not require nonlinear propagation 

models and that linear approaches generally suffice (Pinton et al 2011). Furthermore, 

nonlinear behaviour is likely to be confined mainly to the central focal lobe (Yuldashev 

et al 2013). However, at the focus, nonlinear behaviour is a certainty if tissue necrosis is 

induced. Hence, although a more rigorous treatment of the focal region may be required, 

useful information can be obtained from linear models when investigating energy 

depositions at the surface of the ribs. A full-wave nonlinear 3D model for propagation 

of ultrasound in tissue allowing for shock wave formation and for sharp discontinuities 

at the media interfaces (e.g. tissue/bone) would be required to deal with nonlinearities in 

the presence of ribs. Such a model is beyond the scope of this work. 

 

3.5.4 Through-bone transmission 

 

It has been discussed that the interface between the exterior medium and the bone would 

be modelled by either assuming the ribs are perfectly rigid, or by using a locally 

reacting surface impedance condition (see section 3.3). Considering the ribs as perfectly 

rigid objects was deemed a necessary initial stage before adding more complexity to the 

model, in the form locally reacting boundary condition. Nevertheless, a locally reacting 

surface impedance condition neglects any transmission through the bone medium, and 

this could contribute to the total acoustic pressure in the exterior domain inside the 
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ribcage. This assumption is however not unreasonable. Indeed, Aubry et al (2008) 

confirmed the shadowing effect of the ribs through two-dimensional finite difference 

numerical simulations and measurement. It was noted that the ratio between the 

amplitude of the waves propagating between the ribs and the waves propagating 

through the ribs was equal to 6.03 in the experiment and to 7.04 in the simulations. This 

result is perhaps not surprising owing to the high attenuation coefficient of bone relative 

to that of soft tissue (El-Brawany et al 2009, Duck 1990, p104). 

 

3.5.5 Generation of shear waves in bone 

 

It is well known that both longitudinal and shear waves can be generated in bone 

(Kohles et al 1997, Mast et al 1999). As bone is a highly attenuating medium compared 

to soft tissue, absorption of shear waves may play an important part in heating of the 

bone. Indeed, Nell and Myers (2010) produced axisymmetric calculations describing an 

8 cm diameter 1.1 MHz HIFU transducer insonating a water/soft tissue/bone interface, 

predicting an off-axis temperature rise of up to 30% higher when absorption of shear 

waves was included in the bone medium. 

 

A full elastodynamic formulation would be required to deal with this phenomenon 

accurately. This could in principle be achieved using an elastodynamic BEM frequency 

domain formulation such as that proposed by Chaillat et al (2007). Another candidate 

approach would consist of using a FEM/BEM method (Macey 1987), where the exterior 

domain would be modelled using BEM patches, and the interior domain using structural 

finite elements. These formulations are likely to be computationally expensive and 

remain beyond the scope of this thesis. It is acknowledged that this is a limitation of the 

method proposed for the forward model. 

 

3.6 Summary 

An overview of BEM for exterior scattering problems, for which the integral 

representation of the solution to the inhomogeneous Helmholtz equation was derived, 

has been provided. This equation is also referred to as the Kirchhoff-Helmholtz integral 

equation. 

Two formulations describing the boundary condition on the ribs are considered as part 

of this work. 
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• A Neumann boundary condition, where the ribs are considered as perfectly rigid 

surfaces where the normal derivative of the acoustic pressure is zero throughout 

their surface. 

• A locally reacting boundary condition, where it is assumed that the surface is 

locally reacting, and where the normal derivative of the acoustic pressure on the 

surface of the ribs is a linear function of the acoustic pressure. 

It has been explained how the discretisation of the Kirchhoff-Helmholtz integral 

equation gives rise to issues of singularity and non-uniqueness when the exterior 

medium is attenuating. It was shown how a Burton-Miller formulation (Burton and 

Miller 1971) could overcome the non-uniqueness problem. This formulation solves for 

a linear combination of the Kirchhoff-Helmholtz integral equation for observation 

points on the surface S of the scatterer, and its derivative with respect to the outward 

normal vector on S. This nevertheless gives rise to a hypersingular integrand involving 

the second derivative of the Green’s function, which cannot be integrated numerically in 

its current form (Meyer et al 1978). It has been shown how using the procedure 

described by Liu and Rizzo (1991) could help regularise this integral, thus giving rise to 

integrals which are weakly singular at most, and which can be solved using Gaussian-

Legendre quadrature after a coordinate transformation. When the medium is attenuating 

and the imaginary part of the wave number is non-zero, Colton and Kress (1983, p81 

and p84) suggest that a Burton-Miller formulation may not be required. Whether or not 

this applies to the problems addressed in this thesis will have to be determined using 

numerical experiments. It has been shown that the discretised problem takes the form of 

a system of linear equations involving fully-populated and complex matrices. 

 

Finally, the assumptions made in the forward modelling method were stated and 

discussed. These included the following: 

 

• heterogeneity of soft tissue surrounding the scatterers 

• no normal velocity boundary condition is imposed at the surface of the HIFU 

transducer 

• linearity of acoustic wave propagation 

• no through-bone transmission 

• no generation of shear waves in rib bone. 
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A description of the computational implementation using the PAFEC software can be 

found in Appendix A. This also includes details of the parallelisation of the software on 

a dedicated Linux computer cluster. Details of the programme code can be found in 

Appendix E. 
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Chapter 4 
The Forward Problem: Results 
 

4.1 Overview 

 

In this chapter, the forward problem of predicting the scattering of the acoustic pressure 

field generated by a HIFU source by human ribs will be described. The modelling 

method used relies on the BEM approach described in Chapter 3. A description of its 

implementation on a dedicated computer cluster, using the generalised minimal residual 

(GMRES) method can be found in Appendix A. 

 

When using a numerical method to solve a given problem, it is crucial to test its 

implementation on configurations for which known analytical solutions exist. Whilst 

this may not be a sufficient condition to assess the validity of the implementation, 

particularly on more complex problems for which there may not be any known 

analytical solutions, this testing is a necessary step and helps provide an assessment of 

the method. There are well-established solutions which describe the scattering of a time-

harmonic plane wave by spheres analytically (Morse and Ingard 1968, p418). These 

analytical solutions exist for a range of boundary conditions on the surface of the 

sphere, including a Neumann boundary condition for which the normal derivative of the 

acoustic pressure is zero throughout the surface, and a Dirichlet boundary condition, 

where it is assumed that the surface is locally reacting, and where the normal derivative 

of the acoustic pressure on the surface of the sphere is a linear function of the acoustic 

pressure. As discussed in Chapter 3, both these boundary conditions on the surface of 

the ribs will be considered. 

 

A known analytical solution for a time-harmonic plane wave scattered by an infinite 

cylinder, when the direction of the propagation vector is perpendicular to the axis of the 

cylinder, exists (Morse and Ingard 1968, p401). This solution can be useful in 

benchmarking the BEM formulation for trans-costal HIFU applications. Indeed, long 

cylinders, where the height is much greater than the radius, possess a shape not unlike 
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ribs. Furthermore, the acoustic pressure close to the surface of a long finite cylinder 

halfway along its height should display features of the results provided by the analytical 

solution for an infinite cylinder. Hence, this comparison can serve as a useful validation 

tool alongside analyses of spheres. Additionally, comparison of the analytical solution 

of the scattering of a plane wave by an infinite cylinder with equivalent BEM results for 

a finite cylinder may yield important conclusions for analyses on ribs. This is 

particularly valid if the height of the cylinder is much greater than its diameter. 

 

The comparison of BEM results against known analytical solutions is also important in 

that it may help underpin any numerical issues that result from a poor choice of model 

input parameters related to the accuracy and convergence of the solution. These model 

input parameters are as follows: 

 

• the mesh density of the surface of the scatterer(s) 

• the number of iterations employed in the GMRES algorithm (see Appendix A) 

• the value of the coupling coefficient αc employed in the Burton-Miller 

formulation 

• the integration order used in the Gaussian-Legendre quadrature routines 

(Zienkiewicz and Taylor 1994, p172) when evaluating the integrals in the 

Kirchhoff-Helmholtz equation for receiver locations in the exterior domain. 

 

It is well known that, for eight node isoparametric quadrilateral elements, the rule of 

thumb of using a mesh density of at least three elements per wavelength corresponding 

to the wave speed in the exterior domain is generally required to mesh the surface of the 

scatterer (Hughes 2001, p101). This criterion may nevertheless be problem-dependent 

and it will need to be assessed by comparing BEM results against analytical solutions. 

Also, the finer the mesh, the more closely it will match the topology of the surface 

under investigation. For scatterers of complex shape, the mesh density may have to be 

increased in certain regions to capture the topology of the surface. This may however 

result in too large a number of degrees of freedom, thus increasing run times and 

computational requirements. Furthermore, if the outer surface of the scatterer is 

obtained from MR or CT data, it is also possible that additional uncertainty may be 

introduced when refining the mesh, particularly if the boundary element patches are of 

dimensions which are of the order of the spatial resolution of the imaging modality. The 

effects of uncertainties in a mesh topology could be assessed by producing modified 
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meshes in which the coordinates of nodal locations are varied within the bounds of the 

spatial uncertainties of the imaging modality. The impact of these coordinate 

modifications on the BEM results could then be examined and quantified. Such 

analyses, whilst relevant, will remain beyond the scope of this thesis. 

 

As discussed in Appendix A, the GMRES scheme will converge after m iterations when 

solving a linear system of equations of the form 𝑨𝒙 = 𝒃, where 𝑨 is of dimension m × 

m. We have seen that m is likely to be of the order of 105 for human rib topologies 

meshed for an excitation frequency of 1 MHz. Full convergence of the solution may 

however not necessarily be required to achieve the desired accuracy in the surface 

acoustic pressures and the acoustic pressures in the exterior domain. Numerical 

experiments on scattering problems for which there are known analytical solutions are 

therefore vital to establishing this. The element dimensions in the mesh in figure A.1 

(Appendix A) are approximately of dimension 0.5 mm × 0.5 mm, making them of the 

order of the spatial resolution that is achievable using MR or CT imaging. This is a 

limitation that must be acknowledged and accepted as part of this work. 

 

As discussed in section 3.4, the value of αc employed in the Burton-Miller formulation 

may have an impact on the accuracy of the solution when using a fixed number of 

surface patches. Furthermore, it was mentioned that a Burton-Miller formulation may 

not be necessary in cases where the imaginary part of the speed of sound in the exterior 

domain is non-zero. Again, carrying out numerical experiments on scattering problems 

for which there are known analytical solutions will help establish which value of 𝜶𝒄 to 

use. 

 

When evaluating the acoustic pressure at locations in the exterior domain, the 

integration kernel in equation (3.19) at a receiver 𝒓�⃗  may become close to singular when 

𝒓�⃗  is very close to the surface S of the scatterer. In the context of this work, we will 

generally not be interested in determining acoustic pressures at locations very close to S 

accurately. Rather, we are interested in pressures on the surface of the scatterer and 

those at the vicinity of the focus of the HIFU transducer. Fourth order Gaussian-

Legendre quadrature routines were therefore maintained throughout the calculations in 

this thesis. It will be demonstrated that this is indeed sufficient for the field locations of 

interest. 
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Here, once the requirements regarding the modelling input parameters affecting 

accuracy and convergence of the solution have been demonstrated as underpinned 

through numerical experiments, a section will be devoted to the modelling of the HIFU 

source. The transducer throughout this thesis is of spherical-section, multi-element type, 

with a pseudo-random arrangement of the elements on its surface. The transducer type 

and its specifications (i.e. its dimensions and frequency of operation) will be detailed 

and a justification as to why this type of source has been used will be provided. The 

transducer modelling methodology will also be described. 

 

Finally, the incident transducer acoustic pressure field will be used as input data for 

BEM analyses using a mesh of scatterers derived from human rib data. These analyses 

will feature gradual added complexity with regards to the ribs and the propagating 

medium, as follows: 

 

• perfectly rigid ribs in a homogeneous non-attenuating medium (Neumann 

boundary condition) 

• perfectly rigid ribs in a homogeneous attenuating medium (Neumann boundary 

condition) 

• locally reacting ribs with a surface impedance condition in a homogeneous 

attenuating medium (Dirichlet boundary condition). 

 

4.2 Analytical solutions for scattering of time-harmonic plane acoustic waves by 

simple scatterers 

 

4.2.1 Spherical scatterers 

 

4.2.1.1 Perfectly rigid spherical scatterer in a homogeneous medium 

 

It is assumed that the centre of the sphere is at the global origin. Let a be the radius of 

the sphere. The spatial component of the acoustic pressure generated by a plane wave of 

unit amplitude travelling to the right along a polar axis, so that 𝑥 = 𝑟cos𝜃 and 𝑦 =

𝑟sin𝜃, may be expressed as (Abramowitz and Stegun 1964, p440): 

 

𝑝𝑖 = 𝑒−𝑖𝑘𝑟cos𝜃 = ∑ (2𝑛 + 1)(−i)𝑛𝑗𝑛(𝑘𝑟)𝑃𝑛(cos𝜃)∞
𝑛=0    (4.1) 
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where 𝑗𝑛 denotes the spherical Bessel function of order n and 𝑃𝑛 denotes the Legendre 

polynomial. The scattered component of the wave, 𝑝𝑠, is given by (Morse and Ingard 

1968, p419): 

 

𝑝𝑠 = ∑ 𝐴𝑛ℎ𝑛
(2)(𝑘𝑟)𝑃𝑛(cos𝜃)∞

𝑛=0       (4.2) 

where ℎ𝑛
(2) denotes the spherical Hankel function of order n of the second kind and 𝐴𝑛 

are coefficients to be determined. 

 

The total acoustic pressure in the exterior domain is given by the sum of the incident 

and scattered pressures. 

 

𝑝(𝑟,𝜃) = ∑ (2𝑛 + 1)(−i)𝑛𝑗𝑛(𝑘𝑟)𝑃𝑛(cos𝜃)∞
𝑛=0 + ∑ 𝐴𝑛ℎ𝑛

(2)(𝑘𝑟)𝑃𝑛(cos𝜃)∞
𝑛=0 (4.3) 

 

For a perfectly rigid sphere, 𝜕𝑝
𝜕𝑟

= 0 for r = a. By differentiating equation (4.3) with 

respect to r and using the orthogonality of the Legendre polynomial (Kreyszig, p241), 

we have: 

 

𝐴𝑛 = − (2𝑛+1)(−i)𝑛𝑗𝑛′(𝑘𝑎)

ℎ𝑛
(2)′(𝑘𝑎)

       (4.4) 

 

where ′ denotes the derivative of the spherical Bessel and Hankel functions with respect 

to the function argument. 

 

The expressions derived in this section are also valid for wave numbers with a non-zero 

imaginary part. 

 

4.2.1.2 Locally reacting spherical scatterer in a homogeneous medium 

 

For a sphere with a locally reacting surface impedance condition, we have 𝜕𝑝
𝜕𝑟

=

i𝑘 𝜌0𝑐
𝜌1𝑐1

𝑝(𝑎) for r = a (see equation 3.26). Using the same procedure as in section 

4.2.1.1, we have: 

 

𝐴𝑛 = −
(2𝑛+1)(−i)𝑛�𝑗𝑛′ (𝑘𝑎)−i𝑘

𝜌0𝑐
𝜌1𝑐1

𝑗𝑛(𝑘𝑎)�

ℎ𝑛
(2)′(𝑘𝑎)−i𝑘

𝜌0𝑐
𝜌1𝑐1

ℎ𝑛
(2)(𝑘𝑎)

     (4.5) 
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4.2.2 Cylindrical scatterers 

 

4.2.2.1 Perfectly rigid cylindrical scatterer in a homogeneous medium 

Consider a plane wave of unit amplitude scattered by an infinite perfectly rigid cylinder 

of radius a. Let the global Cartesian x-axis be the axis of the cylinder and assume that 

the plane wave is propagating along the positive z-axis. Since the cylinder is of infinite 

length, the analysis need only be carried out in the y-z plane. Consider a local two-

dimensional axis set in the y-z plane centred at the global origin where the position is 

defined by r and θ where z = r cosθ and y = r sinθ. The spatial dependence of the 

incident pressure field may be expressed as (Abramowitz and Stegun 1964, p361): 

 

𝑝𝑖 = 𝑒−𝑖𝑘𝑟cos𝜃 = ∑ 𝜀𝑛(−i)𝑛𝐽𝑛(𝑘𝑟)cos (𝑛𝜃)∞
𝑛=0     (4.6) 

 

where 

 

𝜀𝑛 = �1,𝑛 = 0
2,𝑛 > 0        (4.7) 

 

and 𝐽𝑛 is the Bessel function of the first kind of order n. 

 

The scattered wave may be expressed as (Morse and Ingard 1968, p401): 

 

𝑝𝑠 = ∑ 𝐴𝑛𝐻𝑛
(2)(𝑘𝑟)cos(𝑛𝜃)∞

𝑛=0       (4.8) 

 

where 𝐻𝑛
(2) denotes the Hankel function of the second kind of order n. 

 

The total acoustic pressure in the exterior domain is given by the sum of the incident 

and scattered pressures: 

 

𝑝(𝑟,𝜃) = ∑ 𝜀𝑛(−i)𝑛𝐽𝑛(𝑘𝑟)cos (𝑛𝜃)∞
𝑛=0 + ∑ 𝐴𝑛𝐻𝑛

(2)(𝑘𝑟)cos(𝑛𝜃)∞
𝑛=0  (4.9) 

 

By noting that for a perfectly rigid cylinder, 𝜕𝑝
𝜕𝑟

= 0 for r = a, by differentiating equation 

(4.9) with respect to r and using the orthogonality of the cosine function, we have: 
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𝐴𝑛 = −𝜀𝑛(−i)𝑛𝐽𝑛′(𝑘𝑎)

𝐻𝑛
(2)′(𝑘𝑎)

        (4.10) 

 

The expressions derived in this section are also valid for wave numbers with a non-zero 

imaginary part. 

 

4.2.2.2 Locally-reacting cylindrical scatterer in a homogeneous medium 

 

For an infinite cylinder with a locally reacting surface impedance condition, we have 
𝜕𝑝
𝜕𝑟

= i𝑘 𝜌0𝑐
𝜌1𝑐1

𝑝(𝑎) for r = a (see equation 3.26). Using the same procedure as in section 

4.2.2.1, the following expression for 𝐴𝑛 is obtained: 

 

𝐴𝑛 = −
𝜀𝑛(−i)𝑛�𝐽𝑛

′(𝑘𝑎)−i
𝜌0𝑐
𝜌1𝑐1

𝐽𝑛(𝑘𝑎)�

𝐻𝑛
(2)′(𝑘𝑎)−i

𝜌0𝑐
𝜌1𝑐1

𝐻𝑛
(2)(𝑘𝑎)

      (4.11) 

 

As in the prior cases, this expression also applies to wave numbers with a non-zero 

imaginary part. 

 

4.3 Validation of BEM against analytical solutions 

 

4.3.1 Scattering of a plane wave by a perfectly rigid sphere in a non-attenuating medium 

 

A mesh of a spherical scatterer was generated using CATIA v5 Advanced Meshing 

Tools (CATIA v5 website) with eight node quadrilateral elements. The sphere was 

chosen to be of 5 mm radius, which is representative of the dimension of the cross-

section of human ribs (Mohr et al 2007). The external medium was assumed to have 

water-like properties. The speed of sound was assumed to be 1500 m s-1 and the 

medium density was taken as 1000 kg m-3. The surface of the scatterer was meshed 

ensuring three elements per wavelength (corresponding to the wave speed in the exterior 

domain) at 1 MHz. This corresponds to element dimensions of 0.5 mm, resulting in a 

mesh containing 4610 nodes. A Burton-Miller formulation was used so that the non-

uniqueness problem associated with the discretisation of the Kirchhoff-Helmholtz 

equation could be overcome. The scattering problem was solved at the first seven 

eigenfrequencies, corresponding to radial modes of the internal cavity of the sphere, to 

test the robustness of the Burton-Miller formulation. These occur at frequencies where 
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an integer number of half-wavelengths exists along the radius of the sphere, or for ka = 

nπ, where a is the radius of the sphere and n is a positive integer. The first seven 

eigenfrequencies are therefore: 0.15 MHz, 0.30 MHz, 0.45 MHz, 0.60 MHz, 0.75 MHz, 

0.90 MHz and 1.05 MHz. The sphere was centred at the global origin and the axis of 

propagation of the plane wave was chosen as the positive x-axis. 

 

The value of the coupling coefficient αc was varied between 0 and 1 in steps of 0.1. A 

fixed number of 40 iterations of the GMRES algorithm was used. The matrix-vector 

products in the GMRES scheme were parallelised over 150 cores of a dedicated Linux 

cluster. Each iteration of the GMRES algorithm took approximately two minutes to 

complete, leading to run times of around 80 minutes for each job. Figure 4.1 shows 

BEM results for the acoustic pressure magnitude along the x-axis. Results on the side of 

the shadow zone between 5 mm and 25 mm, resulted from the unit-amplitude plane 

wave excitation for the coupling coefficient being set to zero. These are compared 

against the analytical solution in equation (4.3). Throughout this section, the series in 

equation (4.3) was truncated at n = 100. 

 

Figure 4.1 shows the results for the scattering of a plane wave by a perfectly rigid 

sphere along the x-axis, on the side of the shadow zone at the first seven 

eigenfrequencies corresponding to the internal radial modes of the sphere. The shadow 

zone is defined as the area behind the scatterer with no direct line-of-sight from the 

receptor to the source where the sound wave may diffract around the scatterer. BEM 

results using αc = 0 in the Burton-Miller formulation are displayed alongside results 

from the analytical solution in equations (4.3) and (4.4). 
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Figure 4.1 Surface Helmholtz formulation on a perfectly spherical scatterer of 5 mm radius in a non-

attenuating medium. Incident field: unit amplitude 1 MHz plane wave travelling in positive x direction. 

Acoustic pressure magnitudes along the x-axis on the side of shadow zone. Solid lines: BEM. Dotted 

lines: analytical solution.  

 

It can be seen that the results in figure 4.1 demonstrate very poor agreement against the 

analytical solution as a result of setting the coupling coefficient in the Burton-Miller 

formulation to zero. This confirms the necessity of having a non-zero coupling 

coefficient in this type of formulation when analysing scattering problems at 

frequencies close to those corresponding to the internal modes of the scatterer. The 

influence of the value of αc on the acoustic pressure magnitude calculated using BEM is 

shown in figure 4.2. The BEM calculations were carried out at a location on the surface 

of the sphere, on the side of the shadow zone, positioned on the x-axis at x = 5 mm. 
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Figure 4.2 Burton-Miller formulation on a perfectly spherical scatterer of 5 mm radius in a non-

attenuating medium. Incident field: unit amplitude 1 MHz plane wave travelling in positive x direction. 

Acoustic pressure magnitude calculated on the surface of the sphere, on the x-axis, on the side of the 

shadow zone. Comparison for ten values of the coupling coefficient with the analytical solution. 

 

Figure 4.3 shows the resulting percentage difference in the BEM results in figure 4.2 

compared to the analytical solution. 
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Figure 4.3 Percentage difference between acoustic pressure results in figure 4.2 and the analytical 

solution at the first seven eigenfrequencies, corresponding to interior radial modes of sphere. Comparison 

for ten values of the coupling coefficient with the analytical solution. 

 

Figure 4.3 shows that the BEM results for the acoustic pressures on the surface of the 

sphere on the x-axis and on the side of the shadow zone are within  −3.5% and +2% 

respectively of the analytical solution for all ten values of αc and for all seven 

eigenfrequencies considered. However, of the values of αc investigated here, the 

coupling coefficient which appears to provide the best agreement with the analytical 

solutions is αc = 0.1. For the mesh size considered here, and for 40 iterations of the 

GMRES algorithm, the acoustic pressure magnitude at (5, 0, 0) mm is underestimated 

by approximately 2%. Figure 4.4 shows the acoustic pressure magnitudes along the x-

axis, on the side of the shadow zone for αc = 0.1 at the seven first eigenfrequencies of 

the interior cavity of the sphere, together with a comparison against the analytical 

solution. 
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Figure 4.4 Burton-Miller formulation on a perfectly spherical scatterer of 5 mm radius in a non-

attenuating medium for αc = 0.1. Incident field: unit amplitude plane wave travelling in positive x 

direction. Acoustic pressure magnitudes along the x-axis on the side of the shadow zone. Solid lines: 

BEM. Dotted lines: analytical solution. 

 

Figure 4.5 shows the percentage difference between the Burton-Miller BEM results in 

figure 4.4 and the analytical solution provided by equations (4.3) and (4.4). 
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Figure 4.5 Percentage difference between acoustic pressure results in figure 4.4 and the analytical 

solution. Comparison along x-axis on the side of the shadow zone at seven first eigenfrequencies 

corresponding to interior modes of the sphere with analytical solution. 

 

Figure 4.4 and 4.5 show agreement of the BEM results along the x-axis on the side of 

the shadow zone within −2% and +0.5% of the analytical solution at the seven first 

eigenfrequencies corresponding to interior radial modes of the sphere. It can be seen 

that the agreement deteriorates as the excitation frequency increases. This is expected, 

as the mesh density was kept the same throughout these analyses. Use of a finer mesh 

will yield better agreement against the analytical solution at higher frequencies, as will 

be demonstrated in section 4.3.3. 

 

In order to justify the use of 40 iterations of the GRMES scheme, a graph of the 

acoustic pressure magnitude at (5, 0, 0) mm on the surface of the sphere was plotted as a 

function of the number of GMRES iterations (see figure 4.6). A coupling coefficient 

of αc = 0.1 was used. 
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Figure 4.6 Burton-Miller formulation on a perfectly spherical scatterer of 5 mm radius in a non-

attenuating medium for αc = 0.1. Incident field: unit amplitude plane wave travelling in positive x 

direction. Acoustic pressure magnitude on the surface of the sphere at (5, 0, 0) mm as a function of the 

number of GMRES iterations. Comparison with analytical solution. 

 

Figure 4.7 shows the percentage difference between the Burton-Miller BEM results in 

figure 4.6 and the analytical solution provided by equations (4.3) and (4.4). 
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Figure 4.7 Percentage difference between acoustic pressure results in figure 4.6 and the analytical 

solution. 

 

In this case, it can be seen that the GMRES scheme converges to within −1.4% of the 

analytical solution after 20 iterations. Beyond this number of iterations, there is little 

improvement in the accuracy of the BEM results. This is most likely due to 

discretisation errors in the mesh of the surface of the sphere. 

  

4.3.2 Scattering of a plane wave by a perfectly rigid sphere in an attenuating medium 

 

The calculations described in section 4.3.1 were repeated for the same sphere and 

incident pressure field, this time assuming a complex speed of sound in the exterior 

domain. The attenuation coefficient of plane waves was assumed to be 12.3 Np m-1 at 1 

MHz. This value is representative of that of liver (Duck 1990, p104). The acoustic 

medium properties considered as part of the underlying work were chosen to be 

representative of those of soft tissue and are as follows: the medium density is ρ = 1000 

kg m-3. The complex wave number k is given by (Kinsler et al, p143): 

 

𝑘 = 𝜔
𝑐0
− i𝛼         (4.12) 
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where c0 = 1500 m s-1 and α is the attenuation coefficient in the propagating medium. 

The complex speed of sound in the medium is therefore 𝑐 = 𝜔
𝑘

= 1500 + 4.4046i m s-1. 

A linear dependency of the attenuation coefficient on frequency was assumed. This is 

also appropriate for liver tissue (Lin et al 1987). The GMRES scheme was again 

parallelised over 150 cores. Each GMRES iteration took about one minute to complete, 

as terms resulting from the discretisation of the hypersingular integral in equation (3.27) 

were not required to be evaluated. Run times for each job were therefore of the order of 

40 min.  

 

 
Figure 4.8 Surface Helmholtz formulation for a perfectly rigid spherical scatterer of 5 mm radius in an 

attenuating medium with properties representative of human liver. Incident field: unit amplitude plane 

wave travelling in positive x direction. Acoustic pressure magnitudes along the x-axis on the side of the 

shadow zone. Solid lines: BEM. Dotted lines: analytical solution. 

 

Figure 4.9 shows the percentage difference between the BEM results in figure 4.8 and 

the analytical solution in equations (4.3) and (4.4). 
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Figure 4.9 Percentage difference between acoustic pressure results in figure 4.6 and analytical solution. 

Comparison along x-axis on the side of the shadow zone at seven first eigenfrequencies corresponding to 

interior modes of sphere against analytical solution. 

 

Figures 4.8 and 4.9 show agreement of the BEM results along the x-axis between −2% 

and +1% of the analytical solution at the seven first eigenfrequencies corresponding to 

interior radial modes of the sphere. It can be seen that, as described by Colton and Kress 

(1983, p81 and p84), using a wave number with a non-zero imaginary part can indeed 

help eliminate the non-uniqueness problem associated with the fictitious modes of the 

cavity inside the scatterer. For an attenuation coefficient which is representative of that 

of human liver, figure 4.9 demonstrates that a Burton-Miller formulation may not be 

required. As with results in section 4.3.2, the agreement of the BEM results with the 

analytical solution tends to worsen as the excitation frequency increases. Again, this is 

due to the mesh density being maintained at three elements per wavelength at 1 MHz. 

 

4.3.3 Scattering of a plane wave by a locally reacting sphere in an attenuating medium 

 

The term in the surface Helmholtz integral equation containing the normal derivative of 

the acoustic pressure was now introduced in order to implement a locally reacting 

surface with a known specific admittance, described by the Dirichlet boundary 

condition in equation (3.41). The properties of the scatterer were chosen to be 

representative of rib bone. The density of the scatterer was assumed to be 1912 kg m-3 
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and the speed of sound of longitudinal waves 4080 m s-1 (Wein et al 2008). The 

attenuation coefficient of the scatterer was assumed to be 47.2 Np m-1 at 1 MHz (El-

Brawany et al 2009). The analysis described in section 4.3.2 was then repeated. The 

comparison of the BEM results with the analytical solution in equations (4.3) and (4.5) 

is displayed in figure 4.10. 

 

 
Figure 4.10 Surface Helmholtz formulation on a locally reacting spherical scatterer of 5 mm radius with 

properties representative of rib bone in an attenuating medium with properties representative of human 

liver. Incident field: unit amplitude plane wave travelling in positive x direction. Acoustic pressure 

magnitudes along the x-axis on the side of the shadow zone. Solid lines: BEM. Dotted lines: analytical 

solution. 

 

Figure 4.11 shows the percentage difference between the BEM results in figure 4.10 and 

the analytical solution in equations (4.3) and (4.5). 
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Figure 4.11 Percentage difference between acoustic pressure results in figure 4.10 and analytical 

solution. Comparison along x-axis on the side of the shadow zone at seven first eigenfrequencies 

corresponding to interior modes of sphere against analytical solution. 

 

Figure 4.11 shows that BEM acoustic pressure predictions at distances between 10 mm 

and 25 mm from the surface of the sphere along the x-axis and the shadow zone are 

within ±2% of the analytical solution provided by equations (4.3) and (4.5). At an 

excitation frequency of 0.9 MHz, the BEM predictions disagree with the analytical 

solution by 8% between x = 5 mm and x = 0.01 mm. This suggests that, for the same 

scatterer size and incident field, a finer mesh is required than for a perfectly rigid 

scatterer when implementing a Dirichlet boundary condition. 

 

Further results are shown below (see figure 4.12) for a 1 MHz incident plane wave for 

the same spherical scatterer but with varying mesh densities. In addition to the mesh 

density employed in previous examples, a finer mesh was generated ensuring six 

elements per wavelength (corresponding to the wave speed in the exterior domain) at 1 

MHz, which corresponds to element dimensions of 0.25 mm. This resulted in a mesh 

containing 47036 nodes. A comparison of the BEM results along the x-axis and on the 

side of the shadow zone of the locally reacting sphere is displayed in figure 4.12 for the 

coarser and finer meshes, alongside results from the analytical solution in equation (4.3) 

and (4.5). 
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Figure 4.12 Surface Helmholtz formulation on a locally reacting spherical scatterer of 5 mm radius with 

properties representative of rib bone immersed in an attenuating medium with properties representative of 

human liver. Incident field: 1 MHz unit amplitude plane wave travelling in positive x direction. Acoustic 

pressure magnitudes along the x-axis on the side of the shadow zone. 

 

The percentage difference between BEM results for both mesh densities and the 

analytical solution is shown in figure 4.13. 
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Figure 4.13 Percentage difference between acoustic pressure results in figure 4.12 and analytical 

solution. Comparison along x-axis on the side of the shadow zone at 1 MHz. 

 

Figures 4.12 and 4.13 show that both mesh densities produce results for the acoustic 

pressure magnitude on the side of the shadow zone and on the x-axis that are within 

±2% of the analytical solution for values of x between 10 mm and 25 mm away from 

the sphere. However, at the surface of the sphere, the BEM results for the lower mesh 

density case (i.e. 0.5 mm element size) show that the acoustic pressure on the surface of 

the sphere at x = 5 mm is overestimated by approximately 11%. Meshing scatterers of 

dimensions which are of the order of human ribs using a mesh density of six elements 

per wavelength is likely to result in BEM problems with a very large number of degrees 

of freedom, thus increasing both RAM requirements and computational times. 

Nevertheless, investigation of the case of a locally reacting scatterer in a dissipative 

medium is a crucial component of this thesis. At this stage, it is important that a 

compromise be sought between computational run times and accuracy. A factor which 

requires consideration for this compromise is the end-goal of this thesis. This is the 

prediction of the acoustic pressure on the surface of the ribs, the rate of energy 

absorption per unit mass (Nyborg 1981), and the investigation of means of reducing 

these quantities below a specified threshold, whilst also maintaining focal pressures 

above another specified threshold. Hence, although comparisons in the shadow zone are 

important, they are also more likely to be contaminated by numerical noise, since 

acoustic pressures here will be of a lower magnitude than at locations where the 
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wavefront is insonating the scatterer. Acoustic pressure magnitudes on the surface of the 

sphere are displayed in figures 4.14 and 4.15 for the case of 0.5 mm and 0.25 mm 

element sizes, respectively. 

 

 
Figure 4.14 Acoustic pressure magnitude on the surface of a locally reacting 5 mm radius sphere 

insonated by a 1 MHz plane wave travelling in the positive x direction in a dissipative medium. Element 

dimensions: 0.5 mm (three elements per wavelength mesh density). 
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Figure 4.15 Acoustic pressure magnitude on the surface of a locally reacting 5 mm radius sphere 

insonated by a 1 MHz plane wave travelling in the positive x direction in a dissipative medium. Element 

dimensions: 0.25 mm (six elements per wavelength mesh density). 

 

The acoustic pressure resulting from BEM calculations for these mesh densities was 

compared at locations (−5, 0, 0) mm, (0, 5, 0) mm and (0, 0, 5) mm. These locations 

were chosen as it is intuitively expected that high, moderate and low pressure 

magnitudes will respectively occur at the first, second and third location. The results are 

summarised in table 4.1. 

 
Table 4.1: Acoustic pressure magnitude at selected locations on the surface of a 5 mm radius locally 

reacting sphere insonated by a 1 MHz plane wave travelling along the positive x direction in a dissipative 

medium. Comparison for two BEM mesh densities against the analytical solution. 

Position on 

sphere surface 

(mm) 

 

Acoustic pressure 

magnitude, 

BEM, 0.5 mm element 

size 

(Pa) 

Acoustic pressure 

magnitude, 

BEM, 0.25 mm element 

size 

(Pa) 

Acoustic pressure 

magnitude, 

Analytical solution 

(Pa) 

(−5, 0, 0) 1.75 1.77 1.78 

(0, 5, 0) 0.924 0.927 0.926 

(0, 0, 5) 0.344 0.318 0.309 
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Table 4.1 shows that acoustic pressures are more accurately estimated using BEM at 

locations on the sphere which are not in the shadow zone. The acoustic pressure 

magnitude on the surface of the sphere at (−5, 0, 0) mm obtained using BEM with the 

coarser mesh is underestimated by around 1.3% when compared with the analytical 

solution. 

 

4.3.4 Scattering of a plane wave by a perfectly rigid cylinder in a non-attenuating 

medium 

 

Numerical experiments involving the scattering of a plane wave by a sphere are 

important as they provide a means of benchmarking BEM results against a known 

analytical solution. It is, however, useful to consider geometrical shapes which bear a 

closer resemblance to ribs, for which there are also known analytical solutions. One 

such shape is the infinite cylinder. Whilst the BEM implementation was carried out only 

in 3D, it is useful to consider a cylinder with hemispherical end-caps, whose height is 

much larger than its radius. The dimensions of this geometrical shape considered here 

will be of the order of those of a human rib. A total cylinder height of 22 cm was opted 

for (including the end-caps) and the radius was chosen as 1 cm. The radius of each 

hemispherical end-cap was chosen as 0.5 cm. It was assumed that the incident acoustic 

pressure field was that of a unit-amplitude plane wave travelling in the positive z 

direction. The axis of the cylinder was chosen to be the Cartesian x-axis (see figure 

4.16). 
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Figure 4.16 Cylindrical scatterer with hemispherical end-caps used for BEM validation: height 22cm and 

radius 1 cm. 

 

When meshing the surface of this cylinder with three elements per wavelength for 

analysis at 1 MHz (i.e. using an element length of 0.5 mm), the resulting mesh contains 

168655 nodes. While comparisons of BEM analyses on such a cylinder against the 

analytical solutions in equations (4.9), (4.10) and (4.11) would not be expected to yield 

exact agreement, in part due to effects of diffraction of the incident waves by the end-

caps, features of the analytical solution can be expected to be reproduced. Furthermore, 

the large value of the cylinder height compared with its radius will help ensure 

comparison against the analytical solution for a plane wave scattered by an infinite 

cylinder at locations close to the scatterer. Figure 4.17 shows comparison of the BEM 

results against the analytical solution on the side of the shadow zone and along the z-

axis between z = 1.2 cm and z = 20 cm. A Burton-Miller formulation was used, with the 

coupling coefficient set to 0.1. 40 iterations of the GMRES scheme were used. The 

analysis was parallelised over 150 cores of a dedicated computer cluster, resulting in run 

times of approximately 10 minutes per GMRES iteration. 
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Figure 4.17 Burton-Miller formulation on a perfectly rigid cylindrical scatterer with hemispherical end-

caps with αc = 0.1. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 1 MHz 

plane wave travelling in positive z direction in a non-attenuating medium. Acoustic pressure magnitudes 

along the z-axis on the side of the shadow zone. The analytical solution for an infinite cylinder is shown 

for comparison. 

 

Figure 4.17 shows good agreement between the analytical solution and the BEM 

formulation at distances less than 0.2 cm from the surface of the cylinder along the z-

axis on the side of the shadow zone of the scatterer. At distances further away from the 

cylinder outer wall and on the side of the shadow zone, oscillations of the BEM results 

about the analytical solution are apparent. This is to be expected and corresponds to 

constructive and destructive interference of the edge wave at the hemispherical end-caps 

(Morse and Ingard 1968, p449). A bias is nevertheless present in which the BEM results 

appear somewhat shifted from the analytical solution. This is particularly noticeable in 

figure 4.17 at z = 5 cm where the BEM predicted pressure magnitudes are lower than 

those predicted by the analytical solution, even when accounting for the oscillations. 

This bias was also noticeable on rigid spherical scatterers, as discussed in section 4.3.1. 

As with the spherical scatterers, it is likely that refining the mesh would result in better 

agreement, although further calculations would be necessary to confirm this. 

 

A 3D plot of the acoustic pressure magnitudes on the surface of this cylinder is shown 

in figure 4.18. 
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Figure 4.18 Burton-Miller formulation on a perfectly rigid cylindrical scatterer with hemispherical end-

caps with αc = 0.1. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 1 MHz 

plane wave travelling in positive z direction in a non-attenuating medium. Acoustic pressure magnitude 

on the surface of the scatterer is shown. 

 

Figure 4.18 clearly shows a doubling of acoustic pressure at locations on the surface for 

which z = 1 cm, which are exposed to normal incidence of the plane wave. This result is 

expected for a perfectly reflecting surface. 

 

Figure 4.19 shows a visualisation of the acoustic pressure magnitude in the exterior 

domain at locations in the y-z plane. 
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Figure 4.19 Burton-Miller formulation on a perfectly rigid cylindrical scatterer with hemispherical end-

caps with αc = 0.1. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 1 MHz 

plane wave travelling in positive z direction in a non-attenuating medium. Acoustic pressure magnitude in 

the y-z plane. 

 

The shadow zone is clearly visible and is described by the region where acoustic 

pressures are significantly lower than at other field locations, i.e. at positive values of z 

close to the cylinder and for y = 0. 

 

4.3.5 Scattering of a plane wave by a perfectly rigid cylinder in an attenuating medium 

 

The calculations in section 4.3.4 were repeated for the same scatterer and incident 

pressure field, this time assuming a complex speed of sound of 1500 + 4.405i m s-1 in 

the exterior domain. This corresponds to an attenuation coefficient of plane waves of 

12.3 Np m-1 at 1 MHz. This further validation was carried out to justify setting the 

coupling coefficient in the Burton-Miller formulation to zero. As in section 4.3.4, the 

analysis was parallelised over 150 cores of a dedicated computer cluster, resulting in 

approximately five minutes per GMRES iteration. The run times were about half of 

those for the scattering analysis of the cylinder in a non-attenuating medium. This is due 

to the fact that, in the surface Helmholtz formulation employed here, terms resulting 
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from the discretisation of the hypersingular integral in equation (3.27) need not be 

computed. A comparison between the analytical solution and BEM calculations on the 

side of the shadow zone is displayed in figure 4.20. 

 

 
Figure 4.20 Surface Helmholtz formulation on a perfectly rigid cylindrical scatterer with hemispherical 

end-caps (αc = 0). Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 1 MHz 

plane wave travelling in positive z direction in an attenuating medium. Acoustic pressure magnitudes 

along the z-axis on the side of the shadow zone. Comparison against analytical solution for an infinite 

cylinder. 

 

Figure 4.20 shows good agreement with the analytical solution for an infinite cylinder 

and the BEM implementation of the Helmholtz integral equation for a finite cylinder, at 

distances less than 0.2 cm from the surface of the cylinder along the z-axis on the side 

of the shadow zone. As in section 4.3.4, oscillations about the analytical solution can be 

observed in the BEM results. Again, these are due to constructive and destructive 

interference from the waves diffracted by the end-caps of the cylinder. Figure 4.20 

displays no artefacts of numerical instability associated with the non-uniqueness of the 

solution of the discretised version of equation (3.27), demonstrating that any fictitious 

internal modes of the scatterers are being damped out, as was the case for the spherical 

scatterer (see section 4.3.2). As in figure 4.17, there appears to be a bias in the BEM 

results relative to the analytical solution. It is again likely that the BEM results are 

slightly underestimated due to the mesh density used. 
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The acoustic pressure magnitude on the surface of the locally reacting cylinder resulting 

from a unit amplitude 1 MHz incident plane travelling along the positive z-axis is 

displayed in figure 4.21. 

 

 
Figure 4.21 Surface Helmholtz formulation on a perfectly rigid cylindrical scatterer with hemispherical 

end-caps with αc = 0.1. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 

1MHz plane wave travelling in positive z direction in an attenuating medium. Acoustic pressure 

magnitude on the surface of the scatterer is displayed. 

 

The corresponding acoustic pressure magnitudes in the exterior domain are displayed at 

locations in the y-z plane in figure 4.22. 
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Figure 4.22 Surface Helmholtz formulation on a perfectly rigid cylindrical scatterer with hemispherical 

end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 1 MHz plane wave 

travelling in positive z direction in an attenuating medium. Acoustic pressure magnitude in the y-z plane. 

 

As in figure 4.19, the shadow zone is clearly visible. The average acoustic pressure 

magnitude decays in the positive z direction, due to the implementation of a speed of 

sound with a non-zero imaginary part. 

 

4.3.6 Scattering of a plane wave by a locally reacting cylinder in an attenuating medium 

 

The term in the surface Helmholtz integral equation (3.19) which contains the normal 

derivative of the acoustic pressure was now accounted for, in order to implement the 

Dirichlet boundary condition described by equation (3.26). The properties of the 

scatterer were representative of rib bone, as described in section 4.3.3: the density of the 

scatterer was set to be 1912 kg m-3 and the speed of sound of longitudinal waves to 

4080 m s-1. An attenuation coefficient of 47.2 Np m-1 at 1 MHz was assumed. The 

analysis described in section 4.3.5 was then repeated. The results were compared 

against the analytical solution for scattering by an infinite cylinder in equations (4.9) 

and (4.11). When parallelised over 150 cores, run times were approximately 5 minutes 
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per GMRES iteration, thus indicating that the computation of terms involving the 

Dirichlet boundary does not add significant extra time to the analysis. 

 

 
Figure 4.23 Surface Helmholtz formulation on a locally reacting cylindrical scatterer with hemispherical 

end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 1 MHz plane wave 

travelling in positive z direction in an attenuating medium. Mesh density: three elements per wavelength. 

Acoustic pressure magnitudes along the z-axis on the side of the shadow zone. Comparison against 

analytical solution for an infinite cylinder. 

 

The acoustic pressure on the surface of the locally reacting cylinder resulting from a 

unit amplitude 1 MHz incident plane travelling along the positive z-axis is displayed in 

figure 4.24. 
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Figure 4.24 Surface Helmholtz formulation on a locally reacting cylindrical scatterer with hemispherical 

end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 1 MHz plane wave 

travelling in positive z direction in an attenuating medium. Mesh density: three elements per wavelength. 

Acoustic pressure magnitude on the surface of the scatterer. 

 

The acoustic pressure magnitude at field locations in the y-z plane is displayed in figure 

4.25. 
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Figure 4.25 Surface Helmholtz formulation on a locally reacting cylindrical scatterer with hemispherical 

end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 1 MHz plane wave 

travelling in positive z direction in an attenuating medium. Mesh density: three elements per wavelength. 

Acoustic pressure magnitude in the y-z plane. 

 

In addition to the oscillations caused by diffraction of the incident wave by the end-

caps, additional oscillations with a lower spatial period are apparent in figure 4.23. The 

magnitude of these oscillations appears to decrease as the distance from the scatterer 

along the positive z-axis increases. In order to help identify the nature of this artefact, 

the mesh density on the surface of the scatterer was doubled to six elements per 

wavelength, resulting in a mesh containing 673850 nodes. The analysis was 

subsequently re-run. Run times per GMRES iteration were approximately one hour 

when parallelising the jobs over 150 cores. This represents a twelve-fold reduction in 

computational speed compared with the BEM analysis on the three element per 

wavelength mesh. 
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Figure 4.26 Surface Helmholtz formulation on a locally reacting cylindrical scatterer with hemispherical 

end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 1 MHz plane wave 

travelling in positive z direction in an attenuating medium. Mesh density: six elements per wavelength. 

Acoustic pressure magnitudes along the z-axis on the side of the shadow zone. Comparison against 

analytical solution. 

 

The corresponding acoustic pressure magnitude on the surface of the cylinder is 

displayed in figure 4.27. 
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Figure 4.27 Surface Helmholtz formulation on a locally reacting cylindrical scatterer with hemispherical 

end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 1 MHz plane wave 

travelling in positive z direction in an attenuating medium. Mesh density: six elements per wavelength. 

Acoustic pressure magnitude on the surface of the scatterer. 

 

Despite the differences in acoustic pressure on the side of the shadow zone between the 

coarser and finer mesh analysis, there is little percentage difference in the maximum 

acoustic pressure magnitudes predicted on the surface of the scatterer. The analyses on 

the mesh containing three elements per wavelength and six elements per wavelength 

both predict a maximum acoustic pressure magnitude of 1.9 Pa, located at (0, 0, −10) 

mm.  These conclusions are similar to those reached for analyses on locally reacting 

spherical scatterers in section 4.3.3. 

 

Figure 4.28 shows the acoustic pressure magnitude in the y-z plane for the analysis on 

the six-element-per-wavelength mesh. 
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Figure 4.28 Surface Helmholtz formulation on a locally reacting cylindrical scatterer with hemispherical 

end-caps. Cylinder height: 22 cm. Cylinder radius: 1cm. Incident field: unit amplitude 1 MHz plane wave 

travelling in positive z direction in an attenuating medium. Mesh density: six elements per wavelength. 

Acoustic pressure magnitude in the y-z plane. 

 

There is overall very good qualitative agreement between the pressure field plots in 

figures 4.25 and 4.28. This suggests that it is indeed at only locations in the shadow 

zone, where acoustic pressure magnitudes are low compared with those in other regions, 

that significant disagreement occurs. This is likely to be due to the fact that they are 

more prone to numerical noise. An additional useful comparison is that of the 

scatterered acoustic field. This represents the difference between the total acoustic 

pressure and the incident acoustic pressure and, as such, gives a clear indication of the 

effect of the scatterer. Figures 4.29 and 4.30 show the scattered pressure field magnitude 

at locations in the y-z plane for the BEM analysis on the three-element-per-wavelength 

mesh and the six-element-per-wavelength cylinder meshes, respectively. 
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Figure 4.29 Scattered acoustic pressure magnitude 

in the y-z plane. Mesh density: three elements per 

wavelength. Surface Helmholtz formulation on a 

locally reacting cylindrical scatterer with 

hemispherical end-caps. Cylinder height: 22 cm. 

Cylinder radius: 1cm. Incident field: unit amplitude 

1 MHz plane wave travelling in positive z direction 

in an attenuating medium.  

Figure 4.30 Scattered acoustic pressure magnitude 

in the y-z plane. Mesh density: six elements per 

wavelength. Surface Helmholtz formulation on a 

locally reacting cylindrical scatterer with 

hemispherical end-caps. Cylinder height: 22 cm. 

Cylinder radius: 1cm. Incident field: unit amplitude 

1 MHz plane wave travelling in positive z direction 

in an attenuating medium.  
 

Figures 4.29 and 4.30 demonstrate that when considering the effects of scattering by the 

cylinder independently from the incident plane wave, there is good qualitative 

agreement between the analysis using three elements per wavelength and that using six 

elements per wavelength at locations outside the shadow zone and close to the cylinder. 

 

4.4 Modelling of the HIFU Source 

 

4.4.1 Review of HIFU Sources 

 

Many types of HIFU transducers have been used in a clinical context. Work performed 

by Fry et al (1954) involved concentrating high-energy ultrasound into a target volume 

and showed the ability to produce isolated deep-seated legions in animal brains using 

four quartz transducers, arranged to allow their beams to overlap within the tissue 

target. More commonly, HIFU transducers are of spherical-section shape so that the 

ultrasound beam is concentrated at the focal point, resulting in a local acoustic pressure 

maximum at this point. In its simplest form, the design of a HIFU transducer involves a 

single piezoceramic device where the focusing of the beam may be carried out either by 

machining the piezoceramic element into a spherically curved surface (Fry 1978, Hill 

and ter Haar 1995 and Rivens et al 1996), or by fronting a flat element with a suitably 
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designed lens (Hill 2004 and Fjield et al 1997). In the context of HIFU ablation, a 

commercially available system using such a source exists: the Chongqing Haifu JC 

system (Chongqing, China). A number of clinical trials have been conducted in liver 

with this device (for example Wu et al 2004, Kennedy et al 2004 and Leslie et al 2012). 

The Chongqing Haifu system, fully described by Wu et al (2001), employs an 

extracorporeal single element PZT–4 piezoceramic transducer operating at 0.8–1.6 

MHz. The diameter of the device is 12 cm with a focal length of 9–16 cm, achieved 

using interchangeable treatment heads. Tumours are identified and targeted using a 

central 3.5–5 MHz diagnostic ultrasound probe mounted in a central aperture, which is 

aligned along the same axis as the therapeutic transducer. The diagnostic and 

therapeutic transducers are mounted in a reservoir of degassed water, under the 

treatment table. The ultrasound axis of propagation is directed upwards and the 

degassed water provides acoustic coupling between transducer and patient. 

Translational movement of the transducer is possible along the three orthogonal 

Cartesian axes, and rotational movement about the long axis of the bed is facilitated by 

the chains inside a cylindrical gantry at one end of the table. All movement is controlled 

electronically from the adjacent computer terminals. Although such a system, based on 

a single focused transducer, has the advantage of being relatively simple from the point 

of view of its construction and that it only requires a single channel of electronics to 

power the therapeutic device, it has a number of disadvantages. One of these is the 

requirement to steer the therapeutic transducer mechanically to treat clinically relevant 

volumes of tissue. This results in an increase in treatment time. In the context of trans-

costal treatment of liver tumours, another is the limitations of focusing at the desired 

location through the ribcage whilst avoiding excessive heating of soft tissue and bone. 

As ribs strongly absorb and reflect ultrasound, trans-costal HIFU treatment may result 

in overheating of bone and overlying tissue during treatment, leading to skin burns (Wu 

et al 2004, Li et al 2007 and Leslie et al 2012). Hence, care must be taken so that 

sufficient energy is delivered through the ribcage to ensure that acoustic pressures at the 

treatment location are above the ablation threshold at the focus while at the same time 

maintaining the formation of side lobes to a minimal level. When using a single-element 

HIFU transducer, treatment planning variables are limited to the position of the device 

with respect to the treatment location, the ultrasonic intensity (governed by the electrical 

excitation of the transducer), the frequency of excitation, the duration of the ultrasonic 

pulses and the temporal delay between pulses. These variables may not alone be 
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sufficient to provide an adequate treatment plan which spares the ribs whilst causing 

tissue necrosis at the required locations. 

 

For a given single-element device, there is a limit to the excitation frequency 

bandwidth. This is often limited to the frequency of the thickness extension mode of the 

piezoceramic element and its third harmonic. Acoustic beams produced by single-

element devices are therefore fixed in shape at a given frequency of excitation, and 

modification of the focal size can only be accomplished by changing the physical 

properties of the transducer. 

 

As a result of the limitations associated with single-element HIFU transducers, Ebbini et 

al (1988) suggested the use of a cylindrical-section ultrasound phased array applicator 

for hyperthermia cancer therapy in order to achieve precise control of localised heating 

patterns by electronic steering of the focused beam around the periphery of the tumour. 

The same group later proposed a spherical-section phased array for application in deep 

localised hyperthermia (Ebbini and Cain 1991). This array consisted of square elements 

forming a rectangular lattice on the surface of the sphere. These studies involved 

numerical simulations which demonstrated the potential of multi-element phased arrays 

for overcoming the limitations of single-element HIFU transducers. Building on this 

approach, Botros et al (1998) describe a method in which the design of a HIFU array 

was optimised using the pseudo-inverse technique (minimum norm least-squares 

solution) and by enforcing a constrained preconditioned pseudo-inverse method. The 

procedure calculates the required primary sources on the array while maintaining 

minimal power deposition over solid obstacles. 

 

A known disadvantage of ultrasound phased arrays is the unwanted presence of grating 

lobes. These may be avoided by employing an inter-element spacing of half an acoustic 

wavelength in the propagating medium (Goss et al 1996). At MHz frequencies, which 

are generally used for therapeutic applications, the wavelength in tissue and water is 

approximately 1.5/f mm, where f is the frequency of excitation in MHz. This places 

severe limitations on the array element size. Whilst this is less of a problem for imaging 

arrays, therapeutic phased arrays are likely to require larger elements than do imaging 

applications, in order to induce the tissue heating required for ablation purposes, 

particularly if practical and financial constraints are placed on the number of channels 

available to drive the elements of the array. Goss et al (1996) considered a 108 multi-
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element phased array with a hexagonal distribution of plane circular sources of 8 mm 

diameter, on a segment of the surface of a spherical shell. The driving frequency was 

2.1 MHz. By randomly driving a subset of 64 of the 108 elements, they demonstrated 

both through numerical simulations and experimentally that the performance of the 

array improved in terms of grating lobe reduction. By simulating the performance of a 

spherical-section multi-element array with pseudo-random distribution of sources on its 

surface, they noted improved performance of the array in terms of both grating lobe 

magnitude with respect to focal peak and electronic steering capability. Goss et al 

(1996) also suggested that the use of a sparse arrangement of sources on a phased array 

may help lower the cost of the HIFU system and simplify its experimental 

implementation. Using the above study as a starting point Gavrilov and Hand (2000) 

carried out a theoretical sensitivity analysis involving the design of spherical-section 

multi-element arrays, where the number of elements, their spatial arrangement, their 

degree of sparseness, their diameter and the frequency of excitation were varied as 

follows: 

 

• number of array elements: 64, 128, 255, 256 and 1024 

• element diameter: 2.5, 5, 7 and 10 mm. 

• frequency of excitation: 1, 1.5 and 2 MHz. 

 

Pseudo-random, square, hexagonal and annular distributions of elements on a spherical 

shell of 12 cm radius of curvature were considered. Out of all the configurations, a 

pseudo-random spatial arrangement of 5 mm diameter elements on a spherical-section 

of 11 cm diameter with a radius of curvature of 12 cm and driven at frequencies of 1–

1.5 MHz performed best in terms of suppression of grating lobes, steering capability in 

the vicinity of the geometric focus and ability to generate multiple foci.  

 

The suppression of grating lobes using a spherical-section phased array with non-

pseudo-random spatial distribution of elements was achieved by Lu et al (2005). A 

genetic optimisation algorithm was used on a phased array with 256 elements of 

quadrilateral shape. Off-axis steering of the beam together with the generation of 

multiple foci was also achieved. This study suggests that a pseudo-random array may 

not necessarily be a pre-requisite to eliminating grating lobes. This nevertheless requires 

adjustment of the velocity magnitude and phase for each element, including for focusing 

at the geometric focus of the array. This means that, to generate a field where grating 
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lobes are suppressed, some elements of the array have to be driven at lower amplitude 

compared to others. Hence, the acoustic pressure at the geometric focus resulting from 

the optimal source velocity distribution is likely to be reduced compared to that 

generated by an array with the same design specifications but with a pseudo-random 

spatial arrangement of the elements, which is known to supress side lobes for the 

spherical focusing case (Hand and Gavrilov, 2000). In applications which require the 

ablation of deep-seated tumours, and with elements and electronics featuring a finite 

dynamic range, this may be an unnecessary limiting factor. This may significantly 

reduce the ultrasonic power delivered at the focus and an increase in treatment time may 

occur as a result. 

 

In the context of investigation of the scattering of a HIFU source by the ribs, and 

solving the problem of focusing through the ribcage, a number of considerations for the 

transducer design is required. These include the frequency of excitation, the size and 

shape of the array, the number of elements on the array, its radius of curvature, clinical 

considerations (e.g. resulting treatment time) and cost/benefit. From the studies 

reviewed in this section, it can be concluded that piezoelectric spherical-section HIFU 

phased arrays are suitable candidates for the trans-costal treatment of tumours of the 

liver. Furthermore, the advent of multi-element array transducers driven by multi-

channel electronics offers significant advantages over concave single-element 

piezoelectric devices. Multi-element arrays have the ability to compensate for tissue and 

bone heterogeneities and to steer the beam electronically by adjusting the time delays in 

each channel to produce constructive interference at the required location, thus 

minimising the requirement for mechanical repositioning of the transducer (Sun and 

Hynynen 1999, Hand et al 2009). Hence, the HIFU transducer design considered in this 

thesis will be of spherical-section multi-element type. Furthermore, a pseudo-random 

arrangement of the elements on the surface of the device will be opted for. 

 

4.4.2 Incident pressure field calculation 

 

When solving the discretised form of the Kirchhoff-Helmholtz equation for receiver 

locations on the surface S of the ribs, the incident acoustic pressure pi at nodal locations 

on S is required (see equation 3.41). This is the acoustic field resulting from the acoustic 

sources in the exterior volume V in the absence of scatterers. Additionally, if a Burton-
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Miller formulation is chosen, we also require the normal derivative of the acoustic 

pressure at the centroid of the boundary element patches which discretise the surface S. 

 

A rigorous simulation of a multi-element HIFU array would entail modelling the 

complex electrical and mechanical interactions which occur within the device and the 

acoustic interactions with the surrounding medium: it is well-known that applying a 

sinusoidal voltage at the electrodes of a piezoelectric element may not result in uniform 

vibrational behaviour at its front face (Ikegami et al 1974, Guo et al 1992). Whilst it is 

possible to develop a model which accounts for the full electrical to acoustical transfer 

characteristics using finite element modelling techniques (Hughes 2001), a full three-

dimensional model of a multi-element phased array presents huge computational 

challenges due to the large dimensions compared with the wavelengths involved. To 

date, there does not appear to be any published work where this has been attempted. In 

this thesis, it is primarily the scattering of the HIFU acoustic pressure field by the ribs 

which is of interest. Hence, an accurate description of the electrical, mechanical and 

acoustic interactions which take place between the HIFU transducer and the acoustic 

medium remains beyond the scope of this work. Simplified descriptions of HIFU arrays, 

such as those described by Daum and Hynynen (1999), Gavrilov and Hand (2000), 

Pernot et al (2003) and Bobkova et al (2010) may be sufficient, based on the good 

agreement obtained between simulated and measured acoustic pressure fields. This type 

of description was chosen in this study, and is detailed below. 

 

The incident acoustic pressure field pi, (i.e. the field produced by the HIFU array in the 

absence of scatterers), was modelled as a superposition of plane circular piston sources, 

assumed to be rigidly vibrating in an infinite baffle. Piezocomposite technology has led 

to phased arrays with predictable beam patterns. The reduction of inter-element 

mechanical cross-talk has been made possible through reduction of transverse wave 

propagation across the surface of the device (Fleury et al 2003), so this approach is not 

unreasonable. This approach is valid if nonlinear propagation in the acoustic medium is 

ignored. The approach used by Daum and Hynynen (1999) and Gavrilov and Hand 

(2000) is based on a Rayleigh integral, where each element of the array was discretised 

into a finite number of point sources lying along a Cartesian grid in a coordinate system 

local to the element. Each point source is then weighted by the surface area ∆𝑆𝑒 of the 

square patch that it occupies, and by the velocity Un of the element. At a field location 
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𝑟, an approximation to the acoustic pressure may be obtained by considering the 

following weighted sum: 

 

𝑝𝑖(𝑟) = i𝜌𝑐𝑘
2𝜋

∆𝑆𝑒 ∑ 𝑈𝑛 ∑
𝑒−i𝑘�𝑟��⃗ −𝑟��⃗ 0,𝑚�

�𝑟−𝑟0,𝑚�
𝑁𝑠
𝑚=1

𝑁
𝑛=1      (4.13) 

 

• N is the total number of array elements 

• NS is the number of point sources used to represent each element 

• 𝑟0,𝑚 represents a location on the surface of the mth circular source. 

 
A similar approach was chosen here. There exists an analytical solution for the on-axis 

acoustic pressure generated by a plane circular piston, rigidly vibrating in an infinite 

baffle (Kinsler et al 1982, p179): 

 

𝑝near field(𝑟) = 𝜌0𝑐𝑈 �𝑒
−𝑖𝑘‖𝑟‖ − 𝑒−𝑖𝑘�‖𝑟‖2+𝑎2�     (4.14) 

 

At distances corresponding to the far field of the source, this expression may be 

approximated as follows (Kinsler et al 1982, p179): 

 

𝑝far field(𝑟) = i𝜌0𝑐𝑈𝑘𝑎
2 𝑒

−i𝑘‖𝑟��⃗ ‖

2‖𝑟‖
      (4.15) 

 

Figure 4.31 shows the analytical solution and far field approximation for the on-axis 

acoustic pressure resulting from a 1 m s-1 source velocity at 1 MHz for the above plane 

piston and acoustic medium properties. The properties of the acoustic medium were 

representative of liver tissue and are described in section 4.3.2. 
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Figure 4.31 Near field and far field calculation of the on-axis acoustic pressure magnitude generated by a 

plane circular piston rigidly vibrating in an infinite baffle. 

 

Analysing the results in figure 4.31 shows that, provided the on-axis field location is 

more than 5 cm away from the centroid of the piston, the far field approximation for the 

acoustic pressure magnitude is within 0.7% of the analytical near field solution. On the 

basis of these results, and by virtue of the fact that field locations which are in the near 

field of any element of the HIFU array are not of interest, the far field approximation 

will be used to compute the incident acoustic pressure field on the surface of the ribs in 

equation (3.41). Whilst equation (4.15) is valid on the axis of a transducer element, 

there also exists an approximate expression for the off-axis far field of the acoustic 

pressure (Kinsler et al 1982, p179). 

 

For calculation of the acoustic pressure field generated by a multi-element HIFU array, 

consider the following. The main axis of the HIFU array is assumed to be the Cartesian 

z-axis, the global origin being positioned at the geometric focus of the array. Consider a 

circular source whose centroid is located at (0, 0, -F). The position of the centroid of 

each circular element on the array may then be inferred from a combination of two 

rotations: 

 

• by β radians about the global Cartesian y-axis; 

• by α radians about the global Cartesian x-axis. 
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In a local Cartesian axis set obtained by rotating the global axis set by β j and αj about 

the global y and x axes respectively, and translating by –F in the global z-direction, the 

incident acoustic pressure pi,j radiated by the jth element on the array is given by 

(Kinsler et al 1982, p179): 

 

𝑝𝑖,𝑗�𝑥𝑗′,𝑦𝑗′, 𝑧𝑗′� = i𝜌0𝑐𝑎𝑈𝑗J1 �
𝑘𝑎𝑅𝑗
�𝑟𝚥′����⃗ �

� 𝑒
−i𝑘�𝑟𝚥

′����⃗ �

𝑅𝑗
     (4.16) 

 

where 

 

• 𝑥𝑗′, 𝑦𝑗′ and 𝑧𝑗′ are the coordinates in the local Cartesian axis set corresponding to 

the jth source 

• 𝑟𝚥′���⃗ = �𝑥𝑗′,𝑦𝑗′, 𝑧𝑗′� 

• 𝑅𝑗 = �𝑥𝑗′
2 + 𝑦𝑗′

2 

• Uj is the piston velocity, which contains both magnitude and phase information 

• J1: is the Bessel function of the first kind, of order one. 

 
For each piston source on the spherical bowl array, the transformation from local to 

global coordinates can be obtained as follows: 

 

�
𝑥
𝑦
𝑧
� = �

1 0 0
0 cos𝛼𝑗 −sin𝛼𝑗
0 sin𝛼𝑗 cos𝛼𝑗

� �
cos𝛽𝑗 0 sin𝛽𝑗

0 1 0
−sin𝛽𝑗 0 cos𝛽𝑗

��
𝑥𝑗′

𝑦𝑗′

𝑧𝑗′
� + �

0
0
−𝐹

�  (4.17) 

 
The total incident pressure pi radiated by the multi-element HIFU array at location 

𝑟 = (𝑥,𝑦, 𝑧) in the global Cartesian axis set is therefore given by: 

 

𝑝(𝑟) = ∑ i𝜌𝑐𝑎𝑈𝑗J1 �
𝑘𝑎𝑅𝑗
�𝑟𝚥′����⃗ �

� 𝑒
−i𝑘�𝑟𝚥

′����⃗ �

𝑅𝑗
𝑁
𝑗=1       (4.18) 

 

where Rj and 𝑟𝚥′���⃗  can be determined from the global coordinate values using the 

transformation in equation (4.17). In the case where a Burton-Miller formulation is 

required, and the coupling coefficient αc in equation (3.40) is non-zero, the derivative 
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of the acoustic pressure with respect to the outward normal vector 𝑛�⃗  on S may be 

obtained as follows: 

 

𝜕𝑝𝑖
𝜕𝑛

= ∇��⃗ 𝑝𝑖 ∙ 𝑛�⃗ =

⎝

⎜
⎛

𝜕𝑝𝑖
𝜕𝑥
𝜕𝑝𝑖
𝜕𝑦
𝜕𝑝𝑖
𝜕𝑧 ⎠

⎟
⎞
∙ 𝑛�⃗         (4.19) 

 

For the jth piston source on the HIFU array, we have: 
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⎜
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The partial derivatives in the Jacobian matrix in equation (4.20) can be obtained from 

the coordinate transformation outlined in equation (4.17). The total incident pressure 

derivative with respect to the outward normal vector 𝑛�⃗  on S is therefore given by: 
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The analytical expressions for the partial derivatives of the incident acoustic pressure 

with respect to the Cartesian coordinates in local axis sets corresponding to each 

element on the HIFU phased array are as follows: 

 

𝜕𝑝𝑖.𝑗
𝜕𝑥𝑗

′ = 𝑈𝑗𝜌𝑐𝑎𝑥𝑗′𝑒
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𝜕𝑝𝑖.𝑗
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𝜕𝑝𝑖.𝑗
𝜕𝑧𝑗

′ = 𝑈𝑗𝜌𝑐𝑎𝑧𝑗′𝑒
−i𝑘�𝑟𝚥′����⃗ � �� 1
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𝑅𝑗3

J0 �
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4.4.3 HIFU array specifications 

 

The HIFU transducer modelled in this thesis was of spherical-section with a central 

aperture (to allow for the insertion of a diagnostic treatment head for image guidance 

purposes), populated with N = 256 plane circular elements mounted onto its surface. 

Guidelines for the dimensions involved were obtained from the literature (Gavrilov and 

Hand 2000, Bobkova et al 2010) and from prior in-vivo applications (Visioli et al 

1999). The elements were each of a = 3 mm radius. Larger values for a will result in an 

increased likelihood of scattering from the ribs whilst smaller values would be difficult 

to manufacture and may result in insufficient acoustic power generation to induce tissue 

necrosis. A radius of curvature of F = 18 cm was used to ensure applicability to deep-

seated tumours. The diameter of the central aperture was 4 cm. The outer diameter of 

the HIFU transducer was 16 cm, giving an F-number of 1.125. Initially, a regular spatial 

arrangement of the transducer elements was chosen, with the centroids of the sources 

positioned along a lattice when projected onto the x-y plane. A frontal view of the array 

is shown in figure 4.32. 
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Figure 4.32 Frontal view of 256 element HIFU phased array with regular spatial arrangement of 

elements. 6 mm element diameter, 4 cm diameter central aperture, 16 cm array diameter, 18 cm focal 

length, 1 MHz frequency of operation. 

 

Using equation (4.18), the acoustic pressure resulting from all elements of the array 

vibrating with 1 m s-1 velocity magnitude, and with uniform phase was calculated. 

Results in the x-z and y-z planes are shown in figures 4.33 and 4.34, respectively. 

 

 
Figure 4.33 Acoustic pressure magnitude in x-z plane resulting from field of 256 element 1 MHz multi-

element array with regular spatial arrangement of elements. Uniform unit amplitude velocity and zero 

phase. 
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Figure 4.34 Acoustic pressure magnitude in y-z plane resulting from field of 256 element 1 MHz multi-

element array with regular spatial arrangement of elements. Uniform unit amplitude velocity and zero 

phase. 

 

The peak focal pressure generated by the regular array is approximately 4.45 MPa. 

Figures 4.33 and 4.34 clearly show that, in addition to the presence of the main focal 

lobe centred at the global origin, two grating lobes are located along the x and y axes, 

approximately 3.5 cm away from the main lobe in the x-z and y-z planes, respectively. 

These lobes are at −7.7 dB relative to the main lobe. The use of multiple foci can be 

desirable from the point of view in terms of minimising treatment times from the point 

of view of treatment planning. This approach has been suggested using phased array 

transducers by Ebbini and Cain (1989) and by Wan et al (1996) and has demonstrated 

the feasibility of enlarging the lesion size in both the lateral (y) and elevational (x) 

direction. Nevertheless, Melodelima and Cathignol (2004) have argued that in order to 

achieve a reduction in treatment times on a deep-seated tumour, it is desirable to 

increase the focal zone in the axial direction, or along the z-axis in this case. 

Furthermore, as the grating lobes produced by the HIFU array displayed in figure 4.32 

are approximately 7 cm apart, the use of such an array would preclude the treatment of 

tumours less than 7 cm in diameter, as healthy tissue may be destroyed. Even so, it 

would be very difficult to treat a volume of 7 cm in diameter, as any mechanical 

steering of the array may also induce tissue necrosis in unwanted locations. Any 

steering would have to be achieved electronically. 
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The above simulations involving a multi-element array with regular spatial arrangement 

reinforce the findings outlined in section 4.4.1 and strengthen the case for using an array 

with a pseudo-random element arrangement of elements on its surface, which has the 

ability to reduce grating lobes when compared against the performance of arrays with a 

regular spatial distribution of elements (Pernot et al 2003). A spherical-section multi-

element array with pseudo-random arrangement of the elements on its surface has been 

designed. Other than the distribution of the elements on its surface, the specifications of 

the pseudo-random array were the same as those of the regular array in figure 4.32. A 

frontal view of the array is shown in figure. 4.35. 

 

 
Figure 4.35 Frontal view of 256 element HIFU random phased array configuration. 6 mm element 

diameter, 4 cm diameter central aperture, 16 cm array diameter, 18 cm focal length, 1 MHz frequency of 

operation. 

 

The acoustic pressure resulting from all elements of the array vibrating at 1 m s-1 

velocity magnitude and with uniform phase was calculated using equation (4.18). 

Results in the x-z and y-z planes are displayed in figures 4.36 and 4.37, respectively. 
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Figure 4.36 Acoustic pressure magnitude in x-z plane resulting from field of 256 element 1 MHz multi-

element array with pseudo-random spatial arrangement of elements. Uniform unit amplitude velocity and 

zero phase. 

 

 
Figure 4.37 Acoustic pressure magnitude in y-z plane resulting from field of 256 element 1 MHz multi-

element array with pseudo-random spatial arrangement of elements. Uniform unit amplitude velocity and 

zero phase. 

 

The peak acoustic focal pressure in figures 4.36 and 4.37 is approximately 4.44 MPa, 

which is not significantly decreased compared with the 4.45 MPa produced by the 

regular array. More importantly, the grating lobes seen with regular element spacing are 

no longer visible when using a pseudo-random arrangement of the elements. 
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These features, together with the justification for the array specifications outlined earlier 

in this section, make the array in figure 4.35 a suitable candidate for investigation of the 

scattering of HIFU field by human ribs. This array will also be used when considering 

the inverse problem of optimising the magnitudes and phases of the transducer element 

velocities in order to induce tissue necrosis at the required foci, whilst keeping the 

pressure on the ribs below a chosen threshold, and ensuring minimal formation of side-

lobes. 

 

4.5 BEM calculations on human ribs 

 

4.5.1 Rib mesh 

 

The rib topology was obtained from an adult male human cadaver in 

STereoLithography (STL) format. This data is displayed in figure 4.38. 

 

 
Figure 4.38 STL representation of ribs 8-12 of the right side of an adult male attached to the spine. 

 

Ribs 9-12 on the right side were truncated from the spine and closed surfaces were fitted 

over each rib using Geomagic® (Geomagic website). CATIA v5 Advanced Meshing 

Tools (CATIA v5 website) were used to mesh the surfaces. The sections of the ribs 

which were meshed are displayed in figure 4.39. The mesh contains 200921 nodes. 

Rib 8 

Rib 9 

Rib 10 

Rib 11 

Rib 12 
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Figure 4.39 Section of ribs 9-12 of the right side of an adult male. 

 

The position of the ribs with respect to the multi-element array described in section is 

shown in figures 4.40 and 4.41. The geometric focus of the array is approximately 3 cm 

behind the ribcage under the intercostal space between ribs 10 and 11. This 

configuration was in part chosen to assess the feasibility of the BEM technique, 

although it is relevant to clinical applications where shallow tumours may be targeted. 

These may be more problematic to treat than those lying deeper because the higher 

energy density at the skin increases the risk of skin burn.  

 

Rib 9 

Rib 10 

Rib 11 

Rib 12 
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Figure 4.40 Position of ribs with respect to HIFU array looking through the ribs towards the transducer 

face, in the negative z direction. 

 

 
Figure 4.41 Position of ribs with respect to the HIFU array. Dotted lines join the centroid of each array 

element to the geometric focus of the array. 
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4.5.2 Meshing and convergence considerations 

 

As described in section 4.2, numerical experiments carried out on spherical and 

cylindrical scatterers established that, at the excitation frequency of interest (1 MHz) 

and for perfectly rigid scatterers, it is generally sufficient to produce a mesh of the 

surface involving three elements per wavelength corresponding to the wave speed in the 

exterior domain, when using C0 continuous eight node isoparametric quadrilateral 

patches. Furthermore, 40 iterations of the GMRES scheme appeared to provide 

sufficient accuracy for the BEM solution on the side of the shadow zone. Nevertheless, 

when imposing a Dirichlet locally reacting surface impedance condition, predictions of 

the acoustic pressure on the side of the shadow zone close to and on the surface of the 

scatterer were overestimated by up to 11%. Furthermore, oscillations were observed in 

the case of a finite cylindrical scatterer with hemispherical end-caps, which were not 

believed to originate from diffraction effects off the end-caps. These oscillations 

reduced as the surface mesh was refined thus suggesting that they may be numerical in 

nature. Despite these issues, acoustic pressures on the surface of the scatterer which are 

of higher magnitude, together with acoustic pressures further away from the scatterer, 

were estimated with good accuracy. For example, in the case of a locally reacting 

sphere, the acoustic pressure at the diametrically opposite end to the shadow zone on the 

surface was estimated within 2% of the analytical solution. Use of a finer mesh resulted 

in a large increase in computing times. This was approximately one order of magnitude 

greater in the case of the locally reacting cylindrical scatterer considered in section 4.3.5 

where the mesh density was doubled. Whilst such run times for forward problems may 

not be particularly problematic, investigating mesh densities of six elements per 

wavelength when solving inverse problems on the computing platform used in the 

context of this thesis may present significant challenges. Hence, a compromise was 

adopted and all simulations discussed from hereon will involve scatterers meshed at 

three elements per wavelength of the wave speed in the medium in the exterior domain, 

together with 40 iterations of the GMRES scheme. An exception will be made on a 

reference case of a locally reacting rib mesh to ensure the validity of this approach, 

where a mesh density of six elements per wavelength will be used. 

 

The use of fourth order Gaussian-Legendre quadrature routines (Zienkiewicz and Taylor 

1994, p172) proved sufficient in terms of accuracy. This order was maintained for the 

remainder of the calculations.  
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4.5.3 Scattering of a multi-element spherical-section array by perfectly rigid human ribs 

immersed in a non-attenuating medium 

 

Using the incident field described by equation (4.16), a Burton-Miller formulation was 

used to calculate the acoustic pressures on the surface of the rib topology described in 

section 4.5.1. The spherical focusing case was considered, where each element of the 

array was assumed to be vibrating at 1 m s-1 and with uniform phase. Acoustic 

properties representative of water were used, with a speed of sound of 1500 m s-1 and a 

density of 1000 kg m-3. The computations were distributed over 100 cores of a 

dedicated cluster, which resulted in run times of approximately 16 minutes per iteration. 

The incident acoustic pressure field in the absence of the ribs is displayed in figure 4.42. 

 

 
Figure 4.42 Incident acoustic pressure magnitude generated by the 1 MHz random phased HIFU array for 

spherical focusing case in the y-z plane. 

 

The acoustic pressure magnitudes on the surface of the ribs are displayed in figure 4.43. 
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Figure 4.43 Acoustic pressure magnitude on the surface of the ribs resulting from sonication by the 1 

MHz random phased HIFU array for an intercostal treatment location approximately 3 cm behind the 

ribcage, between ribs 10 and 11 on right side. Spherical focusing case on perfectly rigid ribs in a non-

attenuating medium. 

 

The acoustic pressure magnitudes generated in the y-z plane are shown in figure 4.44, 

where the ribs have been sectioned to aid the visualisation of the acoustic field. 

 

 
Figure 4.44 Acoustic pressure magnitude on the rib surface resulting from sonication by the 1 MHz 

random phased HIFU array for an intercostal treatment location approximately 3 cm behind the ribcage, 

between ribs 10 and 11 on right side. Spherical focusing case on perfectly rigid ribs in a non-attenuating 

medium. Contour of ribs shown in bone colour. 
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Inserting the ribs between the array and the focus causes the acoustic pressure 

magnitude to decrease from 40 MPa to 27 MPa at the focus, representing a 27% drop. 

Scattering in the acoustic medium in front of ribs 10 and 11 are observed. The 

maximum acoustic pressure on the surface of the ribs is 11.5 MPa. Unlike the case of 

cylindrical and spherical scatterers insonated by a plane wave, the multi-element array 

causes highly localised acoustic pressure magnitude maxima to occur on the surface of 

the ribs. In this particular array-element geometry rib 11 appears to experience the 

highest level of exposure to the incident field. 

 

Through a qualitative comparison in the vicinity of the focal regions in the y-z plane in 

figures 4.42 and 4.44, it can be observed that, although the ribs introduce some mild 

aberrations, there is no splitting of the focus. This observation is inconsistent with the 

results reported by Khokhlova et al (2010), where the obstacles considered were not 

anatomical in shape, but were spatially periodic rectangular-shaped strips. This is likely 

to be due in part to the large intercostal spacing on the rib topology relative to the 

wavelength in the propagating medium. Furthermore, in human ribs, the intercostal 

spacing between two adjacent ribs is unlikely to be uniform throughout, which 

introduces more complexity in diffraction patterns than would occur when analysing 

periodic scatterers of regular shape. It will be demonstrated in Chapter 6 that effects of 

splitting of the focus do indeed occur when insonating specific rib topologies with the 

multi-element HIFU array described in figure 4.35. 

 

The scattered field, i.e. the difference between the total acoustic pressure in figure 4.44 

and the incident acoustic pressure in figure 4.42, is shown below, in figure 4.45.  
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Figure 4.45 Magnitude of scattered acoustic pressure in the y-z plane resulting from sonication by the 1 

MHz random phased HIFU array for an intercostal treatment location approximately 3 cm deep into 

ribcage between ribs 10 and 11 on right side. Spherical focusing case on perfectly rigid ribs in a non-

attenuating medium. Contour of ribs shown in bone colour. 

 

Figure 4.45 confirms qualitatively that rib 11 and, to a lesser extent rib 10, are 

responsible for a large part of the scattering of the incident field from the HIFU array. 

This conclusion can intuitively be reached by observing figure 4.41 and noting that it is 

only these two ribs which are in the “cone” of the HIFU array. 

 

The methodology described in this chapter for analysing the scattering of a multi-

element HIFU array by perfectly rigid ribs immersed in a non-dissipative medium has 

been published in Physics in Medicine and Biology (Gélat et al 2011) and in Journal of 

Physics: Conference Series (Gélat et al 2012). An earlier human rib topology was used 

in the above studies, which was generated from anatomical CT scan data obtained from 

The Virtual Family (Christ et al 2010) for ribs 9 to 12 on the right side of an adult male. 

A reprint of these publications is included in Appendix D. 

 

4.5.4 Scattering of a multi-element spherical-section array by perfectly rigid human ribs 

immersed in an attenuating medium 

 

The analysis in section 4.5.2 was repeated, this time using the complex speed of sound 

described in section 4.32 to account for effects of attenuation in the propagating 

medium. Again, the BEM calculations were parallelised over 150 cores resulting in run 
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times of approximately 8 minutes per GMRES iteration. These run times are shorter 

than for the Burton-Miller formulation, as the evaluation of the hypersingular integral in 

equation (3.27) was not required here. The resulting acoustic pressure magnitude on the 

surface of the ribs is shown in figure 4.46. 

 

 
Figure 4.46 Acoustic pressure magnitude on the surface of the ribs resulting from sonication by the 1 

MHz random phased HIFU array for an intercostal treatment location approximately 3 cm deep into 

ribcage between ribs 10 and 11 on right side. Spherical focusing case on perfectly rigid ribs in an 

attenuating medium. 

 

Accounting for attenuation in the acoustic medium surrounding the ribs results in much 

lower maximum acoustic pressure amplitude on the surface of the ribs compared with 

the non-attenuating case displayed in figure 4.43. The maximum value of the acoustic 

pressure magnitude on the surface of the ribs is reduced from 11.5 MPa in figure 4.43 to 

2.0 MPa in figure 4.46. It is nevertheless interesting to note that the pattern of local 

maxima looks similar from a qualitative point of view in both. In the context of 

investigating concepts of acoustic dose and acoustic dose rate, the peak acoustic 

pressure on the surface of the ribs is likely to be of crucial importance, since the rate of 

energy absorption per unit mass is proportional to the square of the acoustic pressure 

magnitude (Nyborg 1981, Duck 2009). 

 

The acoustic pressure magnitude in the y-z plane is displayed in figure 4.47. 
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Figure 4.47 Acoustic pressure magnitude on the rib surface resulting from sonication by the 1 MHz 

random phased HIFU array for an intercostal treatment location approximately 3 cm behind the ribcage, 

between ribs 10 and 11 on right side. Spherical focusing case on perfectly rigid ribs in an attenuating 

medium. Contour of ribs shown in bone colour. 

 

The acoustic pressure magnitude at the focus is reduced from 4.4 MPa in figures 4.36 

and 4.37 to 3.3 MPa in figure 4.47, when ribs are inserted in front of the array. The 

effects of scattering of the acoustic field are more clearly visible than in figure 4.44, 

owing to the reduction in focal pressure arising from inclusion of attenuation in the 

propagating medium. Aside from this, the acoustic pressure magnitude pattern in the 

vicinity of the focus is qualitatively very similar to the non-attenuating medium case in 

figure 4.44. 

 

The scattered pressure field is displayed in figure 4.48, again showing that ribs 10 and 

11 are responsible for most of the backscatter. 
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Figure 4.48 Magnitude of scattered acoustic pressure in the y-z plane resulting from sonication by the 1 

MHz random phased HIFU array for an intercostal treatment location approximately 3 cm deep into 

ribcage between ribs 10 and 11 on right side. Spherical focusing case on perfectly rigid ribs in an 

attenuating medium. Contour of ribs shown in bone colour. 

 

4.5.5 Scattering of a multi-element spherical-section array by locally reacting human 

ribs immersed in an attenuating medium 

 

The locally reacting surface impedance Dirichlet boundary was investigated next. The 

impedance value at the surface of the ribs was obtained from a knowledge of the speed 

of sound, the attenuation and density for ribs described in section 4.3.3. The resulting 

acoustic pressure magnitude on the surface of the ribs is displayed in figure 4.49. 
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Figure 4.49 Acoustic pressure magnitude on the surface of the ribs resulting from sonication by the 1 

MHz random phased HIFU array for an intercostal treatment location approximately 3 cm deep into 

ribcage between ribs 10 and 11 on right side. Spherical focusing case on locally reacting ribs in an 

attenuating medium. 

 

The pattern of local maxima on the surface of the ribs in figure 4.49 is qualitatively 

similar to that in figures 4.43 and 4.46. The maximum value of the acoustic pressure 

magnitude is nevertheless reduced from 2.0 MPa in figure 4.46 to 1.6 MPa in figure 

4.49. The fact that the ribs are no longer considered to be perfectly rigid implies that not 

all the acoustic energy is being reflected, and some energy is being transmitted and/or 

absorbed by the ribs. The rate of energy absorption per unit mass is overestimated by 

56% if the ribs are considered as being perfectly rigid. This will have important 

ramifications in the context of treatment planning. 

 

The acoustic pressure magnitude in the y-z plane is displayed in figure 4.50. 
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Figure 4.50 Acoustic pressure magnitude on the rib surface resulting from sonication by the 1 MHz 

random phased HIFU array for an intercostal treatment location approximately 3 cm behind the ribcage, 

between ribs 10 and 11 on right side. Spherical focusing case on locally reacting ribs in an attenuating 

medium. Contour of ribs shown in bone colour. 

 

The acoustic pressure magnitude at the focus is 3.2 MPa, which is approximately 0.1 

MPa lower than for the case of perfectly rigid ribs immersed in an attenuating medium. 

Although the ribs absorb some of the acoustic energy generated by the HIFU source, the 

focal pressure is not greatly affected. This is likely to be due to the fact that, at the 

focus, there is minimal contribution from diffraction for this particular array-rib 

geometry. 

 

The scattered component of the acoustic pressure field is displayed in figure 4.50, 

showing again that ribs 10 and 11 are responsible for most of the effects of scattering. 
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Figure 4.51 Magnitude of scattered acoustic pressure in the y-z plane resulting from sonication by the 1 

MHz random phased HIFU array for an intercostal treatment location approximately 3 cm deep into 

ribcage between ribs 10 and 11 on right side. Spherical focusing case on locally reacting ribs in an 

attenuating medium. Contour of ribs shown in bone colour. 

 

4.5.6 Scattering of a multi-element spherical-section array by locally reacting human 

ribs immersed in an attenuating medium: fine mesh 

 

The calculations in section 4.5.5 were repeated using the same rib topology but meshed 

at six elements per wavelength corresponding to the wave speed in the exterior domain. 

As discussed in section 4.5.2, this was carried out in order to confirm the validity of 

using scatterers meshed at three elements per wavelength in conjunction with 40 

iterations of the GMRES scheme. The resulting mesh contained 1213340 nodes and 

404444 boundary element patches. Approximately one week of computing time was 

required to complete this job, when parallelising it over 150 cores. 

 

The resulting acoustic pressure magnitude on the surface of the ribs is displayed in 

figure 4.52. 
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Figure 4.52 Acoustic pressure magnitude on the surface of the ribs resulting from sonication by the 1 

MHz random phased HIFU array for an intercostal treatment location approximately 3 cm deep into 

ribcage between ribs 10 and 11 on right side. Spherical focusing case on locally reacting ribs in an 

attenuating medium. Fine mesh (six elements per wavelength). 

 

The pattern of local maxima on the surface of the ribs in figure 4.52 is qualitatively 

similar to that in figure 4.49, which displayed results for the coarser mesh. The 

maximum value of the acoustic pressure magnitude remains 1.6 MPa. When accounting 

for significant figures to double precision, the coarse mesh results represent a 

percentage difference of −0.7% relative to those provided by the fine mesh. 

 

The acoustic pressure magnitude in the y-z plane is displayed in figure 4.53. 
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Figure 4.53 Acoustic pressure magnitude on the rib surface resulting from sonication by the 1 MHz 

random phased HIFU array for an intercostal treatment location approximately 3 cm behind the ribcage, 

between ribs 10 and 11 on right side. Spherical focusing case on locally reacting ribs in an attenuating 

medium. Contour of ribs shown in bone colour. Fine mesh (six elements per wavelength). 

 

The acoustic pressure magnitude at the focus is 3.2 MPa. When including significant 

figures to double precision, the coarse mesh results in figure 4.50 correspond to a 

percentage difference of +0.1% relative to the finer mesh case. It can be concluded that, 

for this specific transducer array and rib configuration, there is minimal benefit in 

doubling the surface mesh density when it comes to evaluating maximum values of the 

acoustic pressure magnitude on the surface of the ribs and in the focal plane. 

 

4.6 Summary 

 

This chapter discusses the methodology employed in solving the forward problem of the 

scattering of a multi-element spherical-section HIFU array by human ribs, using BEM. 

Initially, numerical experiments involving the scattering of plane waves by spherical 

scatterers and cylindrical scatterers with hemispherical end-caps were conducted. Three 

types of analyses were considered: 

 

• perfectly rigid scatterers in a homogeneous non-attenuating medium (Neumann 

boundary condition) 

• perfectly rigid scatterers in a homogeneous attenuating medium (Neumann 

boundary condition) 
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• locally reacting scatterers with a surface impedance condition in a homogeneous 

attenuating medium (Dirichlet boundary condition). 

 

In the case of scattering of plane waves by spheres, a direct comparison with analytical 

solutions was possible. The scattering of plane waves by cylindrical scatterers with 

hemi-spherical end-caps was also investigated. The results were compared against the 

analytical solution for the scattering of a plane wave by an infinite cylinder. At an 

excitation frequency of 1 MHz and for perfectly rigid scatterers, the numerical 

experiments demonstrated that it is generally sufficient to produce a mesh of the surface 

involving three elements per wavelength corresponding to the wave speed in the 

exterior domain, when using C0 continuous eight node isoparametric quadrilateral 

patches. Furthermore, 40 iterations of the GMRES scheme appeared to provide 

sufficient accuracy of the BEM solution on the side of the shadow zone. Nevertheless, 

when imposing a Dirichlet locally reacting surface impedance condition, predictions of 

the acoustic pressure on the side of the shadow zone close to, and on, the surface of the 

scatterer were overestimated by up to 11% in the case of spheres. Furthermore, 

oscillations which were not believed to originate from diffraction effects were observed 

in the case of a finite cylindrical scatterer with hemispherical end-caps. These 

oscillations were diminished as the mesh of the surface was refined thus suggesting that 

they may be numerical in origin. Despite these issues, acoustic pressures on the surface 

of the scatterer which were not located in the shadow zone, together with acoustic 

pressures further away from the scatterer, were estimated with good accuracy.  

 

An important aim of this thesis is to use the forward BEM model to investigate methods 

of minimising acoustic pressure magnitudes on the surface of ribs whilst maintaining 

high focal pressures. Hence, it is likely to be the surface locations at which highest 

values of the acoustic pressure magnitude occur and the pressures in the vicinity of the 

focus which are of most relevance. On the basis of this premise, the results on locally 

reacting spherical and cylindrical scatterers described above suggest that the use of a 

three-element-per-wavelength mesh of the scatterer is a suitable for BEM analyses on 

locally reacting human ribs. Use of a finer mesh was demonstrated to result in a large 

increase in computing times. This may render solving inverse problems on the 

computing platform used in the context of this thesis difficult. 
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Through a literature search, a suitable phased array transducer design for trans-costal 

HIFU simulations was determined. The transducer is of spherical-section type, with a 

central aperture. It features 256 circular elements of 3 mm radius, with a pseudo-random 

spatial arrangement of the elements on its surface. The frequency of operation is 1 MHz 

and the transducer F-number is 1.125, with a radius of curvature of 18 cm. 

 

BEM calculations on human ribs were performed using the above HIFU array to 

provide the incident acoustic field, modelled as a superposition of plane circular pistons 

vibrating rigidly in an infinite baffle. The transducer was positioned so that its 

geometric focus was approximately 3 cm deep, behind the intercostal space between 

ribs 10 and 11. The phased array was assumed to be spherically focusing, so that all 

elements were vibrating at 1 m s-1 and with uniform phase. Acoustic pressure magnitude 

maps on the surface of the ribs were obtained, together with acoustic pressure 

magnitude plots in the y-z plane. Calculations were carried out for perfectly rigid ribs in 

a lossless medium and subsequently in an attenuating medium, with properties 

representative of those of human liver. A final set of calculations was carried out on 

locally reacting ribs in an attenuating medium with properties representative of human 

liver. The ribs were assumed to have surface impedance properties representative of rib 

bone. These calculations demonstrated the limitations of assuming that the ribs are 

perfectly rigid scatterers. Indeed, the rate of energy absorption per unit mass, which is 

proportional to the square of the acoustic pressure magnitude (Nyborg 1981, Duck 

2009), was overestimated by 56% when considering the ribs to be perfectly rigid. A 

calculation involving a mesh density of six elements per wavelength, corresponding to 

the wave speed in the exterior domain, was carried out on this set of locally reacting 

human ribs in an attenuating medium. Post-processing of the results demonstrated that 

there was little benefit in refining the mesh by a factor of two, considering the large 

increase in computational time, which was increased by a factor of approximately 30 

when using the finer mesh. The percentage difference between the peak focal and 

maximum rib surface pressures for the finer mesh were both within ±1% of those for the 

coarser mesh. This provided further justification for maintaining a mesh density of three 

elements per wavelength. 
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Chapter 5 
The Inverse Problem: Methods 
 

5.1 Overview 

 

Chapters 3 and 4 have dealt with the description and validation of a forward modelling 

BEM approach to investigate the scattering of a multi-element spherical-section HIFU 

phased array by human ribs. The implementation of this BEM approach is described in 

Appendix A. The forward model is an important goal for this thesis work. This chapter 

is concerned with methodologies used for exploiting this forward modelling technique 

to solve the following inverse problem: optimal values for the real and imaginary parts 

of the element velocities of each element of the HIFU array are required so that the 

acoustic pressures at specified locations in the exterior domain best fit a required field 

distribution. At the same time, we wish to ensure that acoustic pressure magnitudes on 

the surface of the ribs are maintained below a specified threshold. Several approaches 

have been suggested in the literature to help solve this problem. These include binarised 

apodisation based on geometric ray tracing, phase conjugation (i.e. the frequency 

domain equivalent of time-reversal acoustics), an approach based on the decomposition 

of the time-reversal operator (DORT method), as well as a constrained optimisation 

approach. Binarised apodisation, phase conjugation and the DORT method will first be 

described and reviewed, after which the advantages and the limitations of each will be 

discussed. A method of solving the inverse problem using a constrained optimisation 

approach will then be described and tested on a reduced complexity problem. It will be 

demonstrated that the implementation of a constrained optimisation method as proposed 

in this thesis presents specific advantages as a treatment planning strategy, when 

compared with the other approaches investigated. 
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5.2 Description of focusing methods 

 

5.2.1 Binarised apodisation based on geometric ray tracing 

 

The use of a linearly segmented spherical-section transducer, in which all active 

elements were driven in phase to achieve a beam profile which avoids excessive heat 

deposition at the surface of the ribs, was proposed by Civale et al (2006). A significant 

decrease in the temperature rise on the surface of the ribs was observed when three edge 

segments directly over the position of the ribs were switched off compared with when 

all segments were active, thereby indicating potential for treating liver tumours. This 

concept was extended by Liu et al (2007), who proposed a method where the 

application of a dynamic element activation strategy on a spherically curved two-

dimensional array would decrease the absorption of ultrasonic energy by the ribs and 

prevent them from overheating during the HIFU treatment. They carried out a numerical 

study based on a modified Rayleigh-Sommerfeld integral approach in which the 

feasibility of using a spherical-section ultrasound phased array for trans-rib liver tumour 

thermal ablation was investigated. This approach was implemented in multi-layered 

media and was based on the formulation described by Fan and Hynynen (1992, 1994). 

The acoustic and thermal responses were investigated, with ensuing thermal dose 

calculations (Sapareto and Dewey 1984, Dewey 1994). Based on the feedback from 

anatomical imaging, array elements obstructed by the ribs were deactivated in an effort 

to minimise heat deposition on the ribs. These elements were identified by means of a 

geometric ray tracing approach between the focus and the array elements. Liu et al 

(2007) compared the specific absorption rate at the focus and on the surface of the ribs 

to assess the efficacy of the method. The specific absorption rate (SAR), also known as 

the acoustic dose rate (Duck 2009), may be defined as the time-averaged relaxational 

absorption per unit volume. Under continuous wave conditions and for linear wave 

propagation, this quantity 〈𝑞𝑣〉 is equivalent to the time-averaged rate of heat generation 

by relaxational absorption per unit volume and may be expressed as follows (Nyborg 

1981): 

 

〈𝑞𝑣〉 = 𝛼𝑎
|𝑝|2

𝜌0𝑐0
       (5.1) 
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where 

• 𝛼𝑎 is the absorption coefficient arising from relaxation mechanisms when the 

shear viscosity is set to zero 

• |𝑝| is the acoustic pressure magnitude 

• 𝜌0 is the medium equilibrium density 

• 𝑐0 is the equilibrium velocity of sound. 

 

The brackets 〈 〉 denote a temporal average. These will be omitted in the remainder of 

this thesis and the specific absorption rate will be referred to as 𝑞𝑣 or SAR. It should be 

noted that 𝛼𝑎 and the attenuation coefficient of plane waves 𝛼 (which is used to define 

the complex wave number) are distinct quantities. The attenuation coefficient accounts 

for effects of scattering in a propagating medium as well as those of absorption (Duck 

1990, p100). In tissue, the scattering coefficient is not always negligible compared to 

the attenuation coefficient. This is particularly true of fatty liver, where methods of 

characterising abnormal retention of lipids within the hepatic cells have been suggested, 

exploiting the echogenicity of the fatty tissue (Ribeiro and Sanches 2009). A rigorous 

treatment of absorption and scattering mechanisms in tissue is beyond the scope of this 

thesis, and the approach used by Liu et al (2007) and Cochard et al (2009) will be used, 

in which it is assumed that backscatter is negligible so that the attenuation coefficient 

and the absorption coefficient may be equated to one another. 

 

Quesson et al (2010) have described a method for selecting which elements of a HIFU 

transducer array to deactivate, based on the relative location of the focal point and the 

ribs as identified from anatomical MR data. This method was implemented both ex vivo 

and in vivo in pig liver and was compared against the case in which all elements were 

activated. Temperature variations near the focus and ribs were monitored using MR 

thermometry, and the benefit of deactivating selected array elements for sparing the ribs 

from excessive heating whilst still ensuring high enough temperatures for tissue ablation 

at the focus was demonstrated. A similar approach has been adopted by Marquet et al 

(2011), who described investigations of trans-rib HIFU using both ex vivo human ribs 

immersed in water, and in vivo in pigs (with 3D movement detection and compensation 

implemented). 
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The deactivation of transducer elements obstructed by ribs, or so-called binarised 

apodisation, described by Liu et al (2007), Quesson et al (2010), Bobkova et al (2010) 

and Marquet et al (2011), may be suboptimal, although practical in a clinical setting, as 

acknowledged by Quesson et al (2010). This approach does not directly address the 

inverse problem of optimising the magnitudes and phases of the transducer element 

drive voltage for transmission of sufficient energy through the ribcage to induce tissue 

necrosis at the required focus, whilst keeping the pressure on the ribs below a chosen 

threshold and ensuring minimal formation of side lobes. Furthermore, binarised 

apodisation may hamper the treatment of deep-seated abdominal tumours in humans, 

since deactivation of elements may significantly reduce the ultrasonic intensities 

delivered at the focus. Additionally, in order to reach the temperature rise required for 

tissue necrosis, an increase in treatment time may occur as a result of deactivation of 

transducer elements. 

 

Given its widespread use in trans-costal HIFU applications, binarised apodisation based 

on geometric ray tracing was selected as one of the methods against which to compare 

and benchmark results from the constrained optimisation approach developed in this 

thesis (described in section 5.2.4). The binarised apodisation technique employed here 

was similar to that described by Quesson et al (2010). Rays were traced from the 

geometric focus of the array onto the surface of each element of the HIFU array. Each 

element was discretised into 276 points positioned along a regular Cartesian grid within 

the plane of each element. Rays traced from each point to the focus which came within 

0.25 mm of any node on the rib mesh were discarded: this distance corresponds to half 

the maximum quadratic patch dimension on the rib mesh. Elements with over 50% of 

their surface shadowed were deactivated. Other elements were assigned 1 m s-1 normal 

velocity and zero phase. The resulting array element velocity distribution was then used 

as input data for the BEM forward model described in Chapter 3. 

 

5.2.2 Time-reversal acoustics and phase conjugation 

 

The time reversal process is based on the time invariance of the linear wave equation in 

a non-dispersive medium (Fink 1992). Consider the propagation of transient acoustic 

waves in a lossless inhomogeneous medium. It is assumed that the speed of sound c and 

the density ρ are both functions of the position vector 𝑟. The propagation equation for 

an acoustic pressure field 𝑝(𝑟, 𝑡) may be written as (Fink 1992): 
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∇��⃗ ∙ �∇
��⃗ 𝑝
𝜌0
� − 1

𝜌0𝑐2
𝜕2𝑝
𝜕𝑡2

= 0       (5.2) 

 

It is easily shown that, if 𝑝(𝑟, 𝑡) is a solution to equation (5.2), so is 𝑝(𝑟,−𝑡). This 

property denotes the invariance under a time reversal process. If the medium has a 

frequency-dependent attenuation, the propagation equation may contain odd-order time 

derivatives of the acoustic pressure (Nachman et al 1990), and the invariance under time 

reversal would then be lost (Fink 1992). Nevertheless, if attenuation is implemented in 

the form of a complex wavenumber, invariance under time reversal is retained as there 

are no odd order time derivatives. 

 

The concept of a time-reversal mirror allows for the focusing of a multi-element 

transducer array at a specified location. The elements are assumed to work in pulse-echo 

mode, so that they can both emit and record signals. The process of time-reversal 

focusing involves three steps. The first step involves transmitting pulses from each array 

element through the medium to the target. The target will then generate a scattered 

pressure field that propagates through the medium back to the transducer array 

elements. The second step then involves each element of the array recording the 

backscattered signal received. In the final step, the signals are time-reversed and 

forward-propagated. The acoustic pressures will then propagate through the medium, 

and aberrations will be compensated for, thus causing the wavefront to focus on the 

target. 

 

Consider an array of N transmit-receive transducers. The time reversal process may be 

described in matrix notation, in the frequency domain. Let 𝑘𝑙𝑚(𝑡) represent the impulse 

response from element m to element l of the array. Let 𝑒𝑚(𝑡) be the input signal 

corresponding to the mth element of the array, with 1 ≤ m ≤ N. The output signal 𝑟𝑙(𝑡) at 

the lth array element, for 1 ≤ l ≤ N, is given by (Prada 1996): 

 

𝑟𝑙(𝑡) = ∑ 𝑘𝑙𝑚(𝑡) ⊗𝑒𝑚(𝑡)𝑁
𝑚=1       (5.3) 

 

where ⊗ denotes a convolution operation in time. By taking the Fourier transform of 

equation (5.3), we have: 

 

159



𝑅𝑙(𝜔) = ∑ 𝐾𝑙𝑚(𝜔)𝐸𝑚(𝜔)𝑁
𝑚=1       (5.4) 

 

where the upper-case letters denote Fourier transforms of the received (R) and emitted 

(E) signals. Since equation (5.4) is valid for 1 ≤ l ≤ N, it may be re-written in matrix 

notation as follows: 

 

{𝑅(𝜔)} = [𝐾(𝜔)]{𝐸(𝜔)}       (5.5) 

 

where {𝑅(𝜔)} and {𝐸(𝜔)} are the vectors of the transmitted and received signals, 

respectively. [𝐾(𝜔)] is the inter-element array transfer matrix and is of dimension N×N. 

From the reciprocity principle, the inter-element transfer function from element l to 

element m is the same as that from element m to element l. Hence, 

 

𝐾𝑙𝑚(𝜔) = 𝐾𝑚𝑙(𝜔)        (5.6) 

 

and the matrix [𝐾(𝜔)] is symmetrical. At a given frequency, the time reversal process 

may be described as follows. Consider the initial input vector {𝐸0(𝜔)}. The resulting 

output vector is then, according to equation (5.5): 

 

{𝑅0(𝜔)} = [𝐾(𝜔)]{𝐸0(𝜔)}       (5.7) 

 

Phase conjugation represents the frequency domain equivalent of the time reversal 

operation (Prada et al 1996). Hence, the updated vector of input signals {𝐸1(𝜔)} which 

focuses on the target is: 

 

{𝐸1(𝜔)} = [𝐾(𝜔)]∗{𝐸0(𝜔)}∗       (5.8) 

 

and the resulting output signal at a given angular frequency is therefore: 

 

{𝑅1(𝜔)} = [𝐾(𝜔)][𝐾(𝜔)]∗{𝐸0(𝜔)}∗     (5.9) 

 

where * denotes the conjugate transpose for matrices and the complex conjugate for 

vectors. 
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In the context of the work in this thesis, we are dealing with monochromatic waves. 

Hence, it is appropriate to consider phase conjugation rather than time-reversal 

acoustics as a method of focusing through the ribcage. Furthermore, the methodology 

adopted in this thesis was formulated with the application of treatment planning based 

on anatomical data in mind. Whilst it may be desirable, it is therefore not essential to 

rely upon a procedure which can be implemented in real time. The phase conjugation 

method was therefore implemented as follows: 

 

• a monochromatic 1 MHz point source was placed at the geometric focus of the 

HIFU array with a source strength of unity 

• a BEM calculation was carried out with the ribs in place, thus providing the 

acoustic pressure on the surface of the scatterers 

• at a post-processing stage, the acoustic pressures on the surface of each 

transducer element were obtained, at 276 discrete locations along a Cartesian 

grid within the plane of each element 

• the acoustic pressures were averaged over the surface of each element, and their 

complex conjugate obtained 

• the normal velocity of each element of the array was obtained by normalising 

the above acoustic pressures so that the maximum resulting velocity did not 

exceed the upper limit of the dynamic range, which was defined as 1 m s-1 

• using the above focusing vector, another BEM calculation was then carried out, 

thus obtaining updated acoustic pressures on the surface of the ribs and resulting 

field pressures. 

 

If linearity and spatial reciprocity assumptions are valid in a heterogeneous medium, the 

time-reversal process corresponds to a spatially and temporally matched filter of the 

propagation operator (Tanter et al 2000, Tanter et al 2001). This implies that the time-

reversal process maximises the output amplitude at a given location and at a given time 

for a given input energy. Nevertheless, the time-reversal process will only optimise the 

acoustic pressure amplitude at the focus. It does not impose any constraints on the field 

around the focus (Tanter et al 2001). It is nevertheless possible to extend the time-

reversal focusing technique based on the inversion of the propagation operator. The 

latter is defined as the transfer matrix relating locations at elements of an array to a set 

of control points. This transfer matrix is obtained in a similar way to the inter-element 

array transfer matrix [𝐾(𝜔)], except that it is the responses between elements of the 
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array and a set of field locations which are considered. This has been carried out in the 

frequency domain (Tanter et al 2000) and in the time domain (Tanter et al 2001). This 

methodology could in principle be used to tackle the inverse problem of delivering 

ablation-level focal pressures whilst sparing the ribs, and would bear some resemblance 

to that proposed by Botros et al (1998), who described a method in which the design of 

a HIFU array was optimised using the pseudo-inverse technique (minimum norm least-

squares solution) and by enforcing a constrained preconditioned pseudo-inverse 

method. The procedure calculates the required primary sources on the array while 

maintaining minimal power deposition over solid obstacles such as the ribs. In 

principle, the approaches proposed by Tanter et al (2000) and Botros et al (1998) could 

be implemented using BEM as the forward propagation model. Indeed, the forward 

model proposed by Botros et al (1998), suffers from limitations in that it is two-

dimensional and that the shape of the rib contours is idealised. These approaches have 

not been attempted in this thesis study, and the phase conjugation methodology will be 

implemented as described earlier in this section. 

 

5.2.3 Decomposition of the time reversal operator (DORT) method 

 

The DORT method is based on an iterative time reversal process and consists of the 

construction of the wave fronts that are invariable under a time reversal process (Prada 

et al 1995, Prada et al 1996, Prada 2002). It is understood from the description of the 

three steps of time reversal described in section 5.2.2, and from equations (5.7) to (5.9), 

that the second emitted wave of a time reversal process can be used as the first emitted 

wave of the next time reversal process. If this operation is repeated in an iterative loop, 

this gives rise to the iterative time reversal process (Prada et al 1995). The iterative time 

reversal process can be shown to be convergent. It will converge towards a different 

value depending on whether the number of iterations is even or odd (Prada et al 1995). 

A consequence of the iterative time reversal process when implemented on well 

resolved point-like scatterers is that, after several iterations, the waves focusing on less 

reflective targets will tend to disappear, and the wavefront which focused on the most 

reflective target remains (Prada et al 1995). A scatterer is said to be well resolved if it 

can be focused on without sending energy to other scatterers. As such, effects due to 

multiple scattering are not accounted for. 
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For an array comprising N transducers functioning in both transmitting and receiving 

mode, the time reversal operator matrix can be obtained from the matrix of the inter-

element transfer functions [K(ω)], for a time-invariant, linear system. The time reversal 

operator (TRO) is then defined as[𝐾(𝜔)]∗ [𝐾(𝜔)] (see equation 5.9), where * denotes 

the conjugate transpose. The TRO is Hermitian and with positive eigenvalues, and its 

eigenvectors are invariant wave fronts of the time-reversal process. The diagonalisation 

of the TRO is equivalent to the singular value decomposition (SVD) of the array 

response matrix [K(ω)], from a mathematical point of view. This can be written as 

follows (Prada 2002): 

 

[𝐾(𝜔)] = [𝑉(𝜔)][Λ(𝜔)][𝑊(𝜔)]∗      (5.10) 

 

where 

• [𝑉(𝜔)] and [𝑊(𝜔)] are unitary matrices and the columns of [𝑊(𝜔)] are the 

eigenvectors of the TRO 

• [𝛬(𝜔)] is a real diagonal matrix of the singular values. 

 

In practice, the array response matrix [𝐾(𝜔)] is measured by emitting a pulse on each 

array element successively and measuring the corresponding echoes from the scatterers 

on the N transducers, as described in section 5.2.2. Due to noise which is inherent in any 

measurement system, it may be the case that the measured matrix [𝐾(𝜔)] is not 

symmetric. It is therefore common practice to replace the off-diagonal terms [𝐾𝑙𝑚(𝜔)] 

and [𝐾𝑚𝑙(𝜔)] with the average value of the two, i.e. 1
2

[𝐾𝑙𝑚(𝜔) + 𝐾𝑚𝑙(𝜔)] (Prada et al 

1996). This practice may also have to be adopted on numerical simulations due to the 

presence of numerical noise. 

 

The DORT method has been validated for the detection of and focusing on point-like 

scatterers (Prada et al 1996). Scatterers are however not generally isotropic or point-

like. In such cases, the scatterer is associated with several invariants of the time-reversal 

operator. Aubry et al (2006) studied such invariants in the case of rigid cylinders, which 

were either well or poorly resolved. Nguyen and Gan (2010) developed the DORT 

method to solve the acoustic inverse scattering problem associated with a small metallic 

scatterer, where the approach estimated both the position of the scatterer and its physical 

properties. In the case of scatterers which are well resolved, each singular vector 
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associated with a significant singular value focuses on one portion of the scatterer. In 

the case of scatterers which are not well resolved, such as anatomical ribs, this gives rise 

to several singular vectors. As a result of the complex geometries arising in ribs, it is not 

possible to associate a particular singular vector with some part of the ribs without 

numerical re-propagation (Cochard et al 2011). 

 

In the context of trans-rib HIFU treatment, the objective is not to focus selectively on 

the ribs, but rather to avoid energy depositions on the surface of the scatterer. Song et al 

(2007) describe how the emissions focusing on the scatterer in the DORT method may 

be removed from those that focus on the target using an orthogonal projection in the 

frequency domain. After carrying out an SVD on the array response matrix, as 

described in equation (5.10), the singular values of the diagonal matrix [𝛬(𝜔)] need to 

be analysed and a threshold determined to separate the singular vectors into two 

categories: those associated with the higher singular values which focus on the ribs, and 

those associated with the lower singular values which do not send energy to the 

scatterer. This procedure is described by Cochard et al (2009). 

 

By projecting the focusing vector orthogonally onto the first set of eigenvectors 

associated with the higher singular values, we have: 

 

�𝑈projected� = {𝑈focus} − ∑ ({𝑊𝑖}∗{𝑈focus})𝑖max
𝑖=1 {𝑊𝑖}   (5.11) 

 

where 

• {𝑊𝑖} is the ith column of [𝑊(𝜔)] 

• 𝑖max is the number of eigenvectors associated with the higher singular values. 

• �𝑈projected� represents the orthogonal projection of the array element normal 

velocity focusing vector {𝑈focus}. 

 

{𝑈focus} is generally chosen as the vector of array element velocities which will focus at 

the desired location in absence of the scatterer. Hence, for focusing at the geometrical 

centre of the spherical-section array, this would correspond to the spherical focusing 

case. 

 

The application of the DORT method to focus through ribs immersed in water has been 

discussed by Cochard et al (2009) in 2D and by Cochard et al (2011) in 3D. Using a 
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singular value decomposition of the inter-element array response matrix, an excitation 

weight vector was obtained which is orthogonal to the subspace of emissions focusing 

on the rib. When applied to the array, this excitation vector enhances the acoustic 

energies deposited at the focal point compared with those on the ribs. 

 

The DORT method has the advantage of not requiring any prior imaging of the 

scatterers. It however requires the measurement of N2 transfer functions, where N is the 

number of array elements. If multi-channel electronics are available, this procedure may 

be parallelised, so that N responses may be acquired simultaneously for each excitation. 

Nevertheless, there are limitations associated with this method. In particular, multiple 

scattering is not accounted for. Whether or not this is significant when investigating 

anatomical ribs, is likely to be dependent on their geometry as well as their acoustic 

properties, and those of the surrounding medium. Furthermore, in the experiments 

described by Cochard et al (2009) and Cochard et al (2011), the SAR at the surface of 

the ribs was estimated by removing the ribs, placing a hydrophone at the location of the 

ribs to measure the acoustic pressure, and calculated using literature values for the 

properties of rib bone. Whilst alternatives to this approach may be challenging to 

implement in practice, it is nevertheless likely that this approach will introduce a 

considerable uncertainty in the measurement, as rib bone is not perfectly absorbing. 

Finally, there is an issue in determining the value of imax, the number of eigenvectors 

associated with the higher singular values: unlike well resolved point-like scatterers, it 

is not straightforward to separate the ‘signal’ from the ‘noise’ in the singular values of 

the diagonal matrix. 

 

The use of BEM as a forward model to analyse the scattering by ribs of the field from a 

multi-element HIFU array may prove to be a useful tool for further assessment of the 

efficacy of the DORT method for focusing into the ribcage whilst avoiding energy 

depositions at the surface of the ribs. Indeed, the scattered field at locations on the 

surface of the array elements is straightforward to obtain using BEM. Obtaining the 

[𝐾(𝜔)] matrix numerically is however likely to be a time-consuming affair, since the 

contribution of each individual element on the array must be evaluated at the location of 

all elements of the array, thereby necessitating N = 256 forward calculations. The way 

in which the output from the BEM forward calculations feeds into the DORT method is 

described further in Appendix B. 
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5.2.4 Constrained optimisation using BEM as the forward model 

 

5.2.4.1 Formulation of inverse problem 

 

The DORT method has the advantage of not requiring CT or MR imaging of the ribs. 

Furthermore, Ballard et al (2010) proposed an experimentally validated method of an 

adaptive, image-based refocusing algorithm of dual-mode ultrasound arrays in the 

presence of scatterers. This approach and the DORT method both have the advantage of 

not requiring any prior knowledge of the location of the ribs. There is nonetheless a key 

limitation discussed by Cochard et al (2011) when it comes to using the DORT method 

applied to trans-costal HIFU applications. The SAR gain, which is defined as the 

logarithmic ratio of the SAR at the focus and at the ribs, was evaluated to assess the 

DORT method. However, this gain does not depend on the acoustic power emitted by 

the HIFU transducer. Whilst the DORT method may generate a vector of element 

velocities for which this gain is optimal, it may not be relevant in a clinical context if 

the acoustic pressures at the focus are insufficient to induce tissue necrosis and if the 

dynamic range of the elements and electronics prohibit scaling the element velocities so 

as to induce this. The DORT method may therefore proscribe the array from being used 

to its full potential, particularly when it comes to inducing tissue necrosis of deep-seated 

tumours. It was also seen that the binarised apodisation approach based on geometric 

ray tracing, whilst easy to implement, may be suboptimal (see section 5.2.1). 

 

There is therefore a requirement to solve the inverse problem of focusing the field of a 

multi-element HIFU array inside the ribcage whilst ensuring that the acoustic dose rate 

on the surface of the ribs does not exceed a given damage threshold, using a suitable 

forward model capable of addressing the effects of scattering and diffraction on 3D 

anatomical data. A constrained optimisation approach for solving this inverse problem 

will be formulated using BEM as the forward model. This work was the subject of a 

peer-reviewed paper published in Physics in Medicine and Biology (Gélat et al 2012). A 

reprint of this paper is included in Appendix D. It is assumed that a surface Helmholtz 

formulation will be used throughout this chapter, so the Burton-Miller coupling 

coefficient αc is set to zero. Recall equation (3.41) for a perfectly rigid scatterer: 
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[𝐻]{𝑝surf} = −{𝑝𝑖}        (5.12) 

where [𝐻] is the boundary element matrix and the acoustic pressures on the surface S 

have been relabelled {𝑝surf}. Whilst the derivation in this section will only consider a 

perfectly rigid scatterer, it is straightforward to generalise this to a locally reacting one. 

 

Let the incident field be a linear combination of plane circular pistons rigidly vibrating 

in an infinite baffle. The incident field on S is a linear combination of the source 

velocities of each piston. Equation (5.12) may therefore be rewritten as: 

 

[𝐻]{𝑝surf} = −[𝛽]{𝑈}       (5.13) 

   

where the elements of [𝛽] may be obtained analytically in the far-field (see equation 

4.16) or by solving the Rayleigh integral in the near-field. [𝛽] is of dimension M × N, 

where M is the number of nodes on the surface S after its discretisation and N is the 

number of plane pistons. {𝑈} is the vector of source velocities and is of dimension N × 

1. 

 

Consider equation (3.42), where the position vectors are located in the exterior volume 

Vext. Again, the term on the left-hand-side of equation (3.42), involving the normal 

derivative of the acoustic pressure on S, was zero in this derivation. When evaluated 

numerically, the integral may be expressed as a weighted sum of the pressures on S. 

Additionally, the incident pressure at any given field location is a linear combination of 

the source velocities. Hence, for a specified number of locations in the exterior volume, 

we have: 

 

[𝑄]{𝑝surf} = {𝑝ext} − [𝛾]{𝑈}       (5.14) 

 

where [𝑄] is a matrix of weighting coefficients obtained from the Gaussian quadrature 

routines and the acoustic pressures in the exterior volume Vext have been relabelled 

{𝑝ext}. The coefficients in [𝛾] may be obtained from the Rayleigh integrals relating each 

plane piston on the multi-element array to each location in Vext. 

 

The vector of surface pressures may be eliminated by combining equations (5.13) and 

(5.14): 
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([𝛾]− [𝑄][𝐻]−1[𝛽]){𝑈} = {𝑝ext}      (5.15) 

Equation (5.13) may be rewritten as follows: 

 

−[𝐻]−1[𝛽]{𝑈} = {𝑝surf}       (5.16) 

or 

 

[𝐴]{𝑈} = {𝑝surf}        (5.17) 

 

where [𝐴] = −[𝐻]−1[𝛽]. 

 

Equations (5.15) may be re-written as follows: 

 

[𝐶]{𝑈} = {𝑝ext}        (5.18) 

 

where [𝐶] = [𝛾]− [𝑄][𝐻]−1[𝛽]. 

 

All quantities in equation (5.18) will generally be complex. When investigating an 

inverse problem involving complex quantities, it is often convenient to reformulate in 

terms of purely real variables by rewriting equation (5.18) as follows: 

 

�Re[𝐶] −Im[𝐶]
Im[𝐶] Re[𝐶] � �

Re{𝑈}
Im{𝑈}� = �Re{𝑝ext}

Im{𝑝ext}
�     (5.19) 

 

or 

 

�𝐶̂��𝑈�� = {𝑝̂ext}        (5.20) 

 

We wish to obtain a set of real and imaginary parts of source velocities which best fit a 

prescribed field pressure distribution in a least-squares sense such that: 

 

• the acoustic pressure magnitudes on S do not exceed a threshold defined by 

𝑝surfmax 

• the source velocity y magnitudes do not exceed the upper bound of the dynamic 

range of each element 𝑈max. 
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This may be expressed as a least-squares optimisation problem with nonlinear 

constraints: 

min𝑈�
1
2
��𝐶̂��𝑈�� − {𝑝̂ext}�2

2
 such that �

|{𝑝surf}| ≤ 𝑝surfmax
|𝑈| ≤ 𝑈max

  (5.21) 

 

There are a number of commercially available and open source solvers which can solve 

the type of problem described by equation (5.21). The NAG® Numerical Library e04us 

(NAG® website) routine was used to carry out the constrained optimisation, as initial 

tests against other solvers, including the Matlab™ Optimisation Toolbox, demonstrated 

superior performance of the NAG® solver. Routine e04us is designed to minimise an 

arbitrary smooth sum of squares function subject to constraints, which may include 

simple bounds on the variables, linear constraints and smooth nonlinear constraints. It 

employs a sequential quadratic programming method described by Bonnans et al (2006 

p490). A brief description of the algorithm is provided by Gill et al (2001). A full 

description of sequential quadratic programming methods is beyond the scope of this 

thesis, and the reader is referred to Gill et al (1981) for more information. The partial 

derivatives of the constraints and of the cost function with respect to the optimisation 

variables were supplied as input data to routine e04us. Providing the solver with this 

data generally greatly enhances the computational efficiency of the routine (Gill et al 

2001). Details of the cost function and Jacobian matrices can be found in Appendix C. 

 

5.2.4.2 Testing of inverse problem formulation on a reduced complexity model 

 

The work described in this section was published in Journal of Physics: Conference 

Series (Gélat et al 2013). A reprint of this work is included in Appendix D. The 

reformulation of the boundary element approach described in section 5.2.4.1 was tested 

on a reduced complexity problem involving a 256 element spherical-section phased 

array with a pseudo-random distribution of the elements on its surface. Each element 

was vibrating at a frequency of 100 kHz, and a perfectly rigid cylindrical scatterer was 

placed between the array and its geometric focus. The elements on the array were each 

of radius a = 1 cm. A radius of curvature of F = 50 cm was used. The outer diameter of 

the HIFU transducer was 60 cm. A frontal view of the array is shown in figure 5.1. 
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Figure 5.1 Frontal view of HIFU multi-element array configuration used for the reduced complexity 

problem. 1 cm element diameter, 60 cm array diameter, 50 cm focal length, 100 kHz frequency of 

operation. 

 

It is acknowledged that both the frequency of operation of the array and its dimensions 

do not represent what is commonly used for trans-costal HIFU (Gavrilov and Hand 

2000). Furthermore, it is not the intention to rescale the dimensions and frequency of 

operation of the array shown in figure 4.33. Investigation of a reduced-size problem 

such as this is however both relevant and beneficial prior to applying the methodology 

to trans-costal HIFU frequencies and dimensions, which demands much greater 

computational resources. Given the knowledge that beam characteristics are different in 

this reduced complexity problem compared to those associated with trans-costal HIFU, 

this approach nevertheless serves the purpose of establishing the efficiency of the 

inversion algorithm. 

 

In order to obtain the coefficients of the [A] matrix described by equation (5.17), we 

must solve equation (5.12). This is equivalent to launching a forward BEM calculation 

for N incident fields, each incident field vector representing a column of the matrix [𝛽]. 

The current GMRES implementation of the BEM approach recalculates the coefficients 

of the boundary element matrices at each iteration of the algorithm (see Appendix A). It 
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is therefore more efficient to vectorise the process so that we may simultaneously solve 

for any number of right-hand-sides, depending on the RAM available. 

 

The scatterer was meshed using isoparametric eight-node quadratic patches ensuring at 

least three elements per wavelength for a wave speed of 1500 + 4.405i m s-1. This 

corresponds to an absorption coefficient of 47.2 Np per metre at 1 MHz (assuming a 

power law with a linear dependence on frequency). The density of the medium was 

assumed to be 1000 kg m-3. The axis of symmetry of the cylindrical scatterer with 

hemispherical end-caps was chosen to be parallel to the x-axis located −5 cm away from 

the geometric focus of the array in the z-direction (towards the array). The mesh 

contained 6950 nodes. This arrangement is illustrated in figure 5.2. 

 

 
Figure 5.2 Position of cylindrical scatterer with respect to focused array. 

 

From a knowledge of [𝐻]−1[𝛽], the acoustic pressure on the surface of the cylinder may 

be obtained using equation (5.16) for a given distribution of source velocities. In order 

to formulate the cost function and the constraints, the spherical focusing case of all 

elements vibrating in phase and with unit velocity amplitude was investigated. The 

acoustic pressure magnitudes at selected locations in the y-z plane are shown in figure 
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5.3. The corresponding incident pressure field (i.e. in absence of the scatterer) is shown 

in figure 5.4. 

 

 

 

 

 

Figure 5.3 Acoustic pressure magnitude in y-z 

plane resulting from field of 100 kHz multi-

element array. Uniform unit amplitude velocity 

and zero phase. Contour of cylinder shown in 

black. 

 Figure 5.4 Incident acoustic pressure magnitude 

in y-z plane resulting from field of 100 kHz multi-

element array (no scatterer). Uniform unit 

amplitude velocity and zero phase. 

 

The resulting acoustic pressure magnitude on the surface of the cylinder is shown in 

figure 5.5. 

 

 

Figure 5.5 Acoustic pressure magnitude on surface of cylinder 

resulting from field of 100 kHz multi-element array. Uniform unit 

amplitude velocity and zero phase. 
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Figures 5.3 and 5.4 show that inserting the cylindrical scatterer between the array and 

the focus causes the acoustic pressure magnitude at the focus to drop from 9 MPa to 6 

MPa. Figure 5.5 shows that the maximum pressure amplitude on the surface of the 

cylinder is 5.8 MPa for all elements of the array vibrating at an amplitude of 1 m s-1 and 

with uniform phase. The value of 𝑝surfmax in equation (5.21) was chosen so as to 

generate a 30% decrease in the acoustic pressure on the surface of the scatterer. Umax 

was taken as 1 m s-1. The vector of pressures in the exterior volume in the cost function 

(i.e. the ‘desired’ field pressure distribution) was generated from incident pressure field 

values at 5192 equally spaced locations in the y-z plane such that −3 cm ≤ y ≤ 3 cm and 

−3 cm ≤ z ≤ 3 cm, the focus of the array being at the global origin. Locations inside a 

1.5 cm radius around the axis of the scatterer were removed. 

 

According to the manual describing NAG® routine e04us (NAG website), scaling of 

the problem is likely to reduce the number of iterations required and make the problem 

less sensitive to perturbations in the data, thus improving the condition of the problem. 

It is suggested that, in the absence of better information, it is sensible to make the 

Euclidean lengths of each constraint of comparable magnitude. The problem was 

therefore scaled by a factor of 10-6 and the constraints involving the source velocities 

were scaled by a factor of 106 so that they were of the same order of magnitude as those 

for surface pressure magnitudes. Initial values of the optimisation variables were all 

specified as 1/√2 m s-1 so that the magnitudes of the source velocities were initially at 

the upper end of the specified dynamic range. This generated a solution for the 

optimisation variables where both sets of constraints were satisfied. If the rescaling was 

not carried out prior to the optimisation, the NAG® solver either became unstable or 

returned results which did not satisfy the constraints. 

 

The real and imaginary parts of the velocities were subsequently rescaled and the 

surface and field pressures calculated. Figures 5.6 and 5.7 respectively display the 

magnitudes and phases of the element velocities of the array resulting from the 

constrained optimisation. It was verified that the velocity magnitudes did not exceed 1 

m s-1. 

 

173



 

 

 
Figure 5.6 Source velocity magnitudes resulting 
from constrained optimisation. 

 Figure 5.7 Source velocity phases resulting from 
constrained optimisation. 

 

Figure 5.8 shows the acoustic pressure magnitude on the surface of the cylinder, 

resulting from the source velocity distribution displayed in figures 5.6 and 5.7. This 

acoustic pressure magnitude did not exceed 4 MPa. A 30% reduction in the acoustic 

pressure magnitude on the surface of the cylinder was therefore generated compared 

with the spherical focusing case. 

 

 
Figure 5.8 Acoustic pressure magnitude on surface of cylinder resulting from field of 100 kHz multi-

element array. Source velocity distribution obtained from constrained optimisation. 

 

Figure 5.9 shows the acoustic pressure magnitude in the y-z plane resulting from the 

source velocity distribution displayed in figures 5.6 and 5.7. 
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Figure 5.9. Acoustic pressure magnitude in y-z plane resulting from 

field of 100 kHz multi-element array. Source velocity distribution 

obtained from constrained optimisation. 

 

This particular configuration makes it challenging for the majority of the acoustic 

energy to be transmitted to the vicinity of the focus, owing to the close proximity of the 

scatterer to the focal region of the array. This is further hindered by the cylinder’s large 

diameter compared with the beam of the array, as shown in figure 5.3. The acoustic 

pressure magnitude at the focus shown in figure 5.10 is reduced by 14% compared with 

the spherical focusing case. To investigate how side lobes were affected by the 

constrained optimisation, the acoustic pressure magnitudes normalised to their value at 

the focus are displayed in figure 5.10, where all elements are vibrating with unit 

amplitude and uniform phase, and in figure 5.11, where the optimised velocity values 

were used. 
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Figure 5.10 Normalised acoustic pressure 

magnitude in y-z plane resulting from field of 100 

kHz multi-element array. Uniform unit amplitude 

velocity and zero phase (spherical focusing). 

 Figure 5.11 Normalised acoustic pressure 

magnitude in y-z plane resulting from field of 100 

kHz multi-element array. Source velocity 

distribution obtained from constrained 

optimisation. 

 

Figure 5.11 shows that an overall reduction in the side-lobes relative to the focus was 

achieved as a consequence of the constrained optimisation compared with the uniform 

amplitude and phase results displayed in figure 5.10. Furthermore, a reduction in the 

backscattered signal is clearly visible in figure 5.11 compared with figure 5.10. 

 
5.3 Summary 
 

This chapter has described methods for exploiting the forward BEM model to solve the 

inverse problem of focusing the field of a multi-element HIFU array through the 

ribcage. This procedure involves determining optimal values for the real and imaginary 

parts of the velocities of each element of the HIFU array so that the acoustic pressures at 

specified locations in the exterior domain best fit a required field distribution. 

Furthermore, the acoustic pressure magnitudes on the surface of the ribs should ideally 

be maintained below a specified threshold. The following approaches were initially 

identified: 

 

• binarised apodisation based on geometric ray tracing 

• phase conjugation (the frequency domain equivalent operation to time-reversal 

acoustics) 

• the DORT method. 
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It was shown how the binarised apodisation approach, whilst practical to implement, 

may be suboptimal, as it does not directly address the inverse problem. Instead, it 

requires elements of the HIFU array to be switched off if they are occluded by a section 

of the ribs. This may be clinically effective but is also somewhat limiting. Indeed, 

switching off a large number of elements may significantly reduce focal pressures. 

 

The phase conjugation process was seen to maximise the output amplitude pressure at a 

given location and at a given time for a given input energy. Nevertheless it will only 

optimise the acoustic pressure amplitude at the focus and does not impose any 

constraints on the field around the focus or on the ribs. 

 

The DORT method has the advantage of not requiring any prior knowledge of the 

location of the scatterers, and only requires the measurement of the inter-element 

transfer matrix. It enables a vector focusing on point-like well resolved scatterers to be 

determined. The DORT method may be modified to separate and remove the emissions 

which focus on the scatterer from those that focus on the target, using an orthogonal 

projection in the frequency domain. It was explained that the DORT method may have 

limitations when applied to trans-costal HIFU applications: whilst it may generate a 

vector of element velocities for which the ratio of acoustic dose rate at the focus and on 

the ribs is optimal, it may not be relevant in a clinical context. Indeed, if the acoustic 

pressures at the focus are insufficient to induce tissue necrosis and if the dynamic range 

of the elements and electronics prohibit scaling of element velocities so as to induce 

this, the DORT method may limit the array from being used to its full potential. 

 

Alongside these approaches, a constrained optimisation approach was proposed for 

solving the inverse problem, and has been formulated using BEM as the forward model. 

Using the discretised form of the Helmholtz integral equation for locations in the 

exterior volume and on the surface of the scatterer, the inverse problem of determining 

the complex velocities of a multi-element array which produces an acoustic pressure 

field that best fits a required acoustic pressure distribution in a least-squares sense was 

formulated such that: 

 

• the pressure magnitude on the surface of the scatterer did not exceed a specified 

threshold 
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• the amplitude of the velocity of each element on the array was bounded by 

maximum value defined by the dynamic range. 

 

This approach was tested on a reduced complexity model involving the scattering from 

a perfectly rigid cylinder with hemispherical end-caps by a 100 kHz 256 element 

spherical-section array. Employing a NAG® library solver, a least-squares optimisation 

with nonlinear constraints was carried out to solve the inverse problem, where the 

gradients of the objective function and of the constraints with respect to the optimisation 

variables were provided as input data. The solver returned a set of real and imaginary 

parts for the source velocities which satisfied both sets of constraints, hence reducing 

side lobes and acoustic pressures on the surface of the scatterer compared to the case 

when all elements are driven with uniform phase and amplitude. These results are 

encouraging and warrant the investigation of the constrained optimisation approach to 

focus the field of a multi-element phased array inside the ribcage whilst sparing the ribs 

and its comparison with other methods discussed in this chapter. 
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Chapter 6 
The Inverse Problem: Results 
 

6.1 Overview 

 

Chapter 5 reviewed candidate methodologies for soling the inverse problem of focusing 

the field of a multi-element HIFU phased array through the ribcage, using BEM as the 

forward model. In this chapter, these methods were tested on a range of array-rib 

configurations. To test the validity and robustness of the focusing methods, a total of six 

configurations will be investigated, three of which will feature human ribs (or a 

variation thereof) and three others, idealised ribs. There are two principle reasons for 

including idealised ribs in this study. The first is because human anatomical rib data 

suitable for meshing was not straight forward to obtain. Clearly, a single configuration, 

realistic as it may be, cannot be relied upon for assessment of the various methods of 

focusing. Hence the requirement to carry out some simulations on idealised ribs. The 

second reason is that many trans-costal HIFU studies have used such idealised ribs both 

experimentally and theoretically (Botros et al 1998, Bobkova et al 2010, Khokhlova et 

al 2010, Ballard et al 2010) and have extrapolated their conclusions to human ribs. 

Whilst deductions from these studies may be of clinical significance, human ribs may 

differ significantly from idealised scatterers. The study in this chapter may therefore 

help evaluate whether studies on idealised ribs are relevant for assessment of trans-rib 

HIFU techniques. 

 

As discussed in Chapter 5, results for the following focusing methods will be obtained, 

using BEM as the forward model.  

 

• Binarised apodisation based on geometric ray tracing. 

• Phase conjugation. 

• The DORT method. 

• The constrained optimisation method based on the NAG® e04us solver (NAG® 

website). 
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The exterior medium is assumed to be attenuating and to have properties representative 

of human liver. The ribs are assumed to be locally reacting, with a surface impedance 

representative of rib bone. All methods of focusing through the ribs will then be 

implemented on the six array-rib topologies discussed earlier. Results for spherical 

focusing will initially be obtained. The ability of each method to focus through the 

ribcage, whilst at the same time reducing local acoustic pressure maxima on the surface 

of the ribs, will be benchmarked against  each other using the criteria based on the 

specific absorption rate (SAR) defined in equation (6.1). The SAR gain criterion 𝐺SAR is 

defined by Cochard et al (2009) as the logarithmic ratio of the SAR on the target to the 

SAR on the point to be spared. In this work, we will consider the SAR gain relative to 

the maximum SAR observed on the surface of the ribs: 

 

𝐺SAR = 10 log 𝑞𝑣,focus
max (𝑞𝑣,ribs)

      (6.1) 

 

where 𝑞𝑣,focus denotes the SAR at the focus and 𝑞𝑣,ribs the SAR on the ribs. 

max (𝑞𝑣,ribs) denotes the maximum value of 𝑞𝑣,ribs. This SAR gain gives information 

about the hot spot level, but is masked by the spatial averaging and is relevant if heat 

diffusion is low (Cochard et al 2009). An SAR gain based on the spatial average of the 

SAR over the surface of the ribs was investigated by Cochard et al (2009), but is 

beyond the scope of this thesis. Ultimately, a heat transfer analysis would be required to 

relate the acoustic field distribution on the surface of the ribs to the temperature rise at 

required locations. This is also beyond the scope of this thesis. 

 

In addition to the SAR gain, the peak focal pressure relative to the maximum level 

available from the phased array will also be used to assess the focusing quality. 

 

6.2 Human ribs: Array-rib configuration 1 

 

6.2.1 Description 

 

The first configuration used to assess the trans-rib focusing methods was described in 

section 4.5.1. It corresponds to the geometric focus of the array being located on a line 

through the intercostal space equidistant between ribs 10 and 11 and approximately 3 

cm deep behind the ribcage. This configuration was in part chosen to assess the 
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feasibility of the BEM technique, although it is relevant to clinical applications in which 

shallow tumours may be targeted. These may be more problematic to treat than more 

deep seated ones because the higher energy density at the skin increases the risk of skin 

burn. The configuration is shown again in figure 6.1. 

 

 

Figure 6.1 Position of ribs with respect to HIFU array looking in the 

negative z direction, through the ribs and towards the transducer. 

Array-rib configuration 1. 

 

6.2.2 Spherical focusing 

 

Whilst the spherical focusing on this rib-array configuration was already investigated in 

section 4.5.5, the results are recapitulated here for the sake of completeness. 
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Figure 6.2 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-rib 

configuration 1. 

 Figure 6.3 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Spherical focusing. Array-rib 

configuration 1. 

 

It can be seen that the maximum focal pressure is 3.2 MPa, and the maximum acoustic 

pressure on the surface of the ribs is 1.6 MPa. This results in an SAR gain of 7.2 dB. 

 

6.2.3 Binarised apodisation based on geometric ray tracing 

 

The method of binarised apodiation described in section 5.2.1 was applied to the current 

array-rib configuration, thus producing the source velocity distribution displayed in 

magnitude and phase in figures 6.4 and 6.5, respectively. 

 

 

 

 

Figure 6.4 Source velocity magnitudes resulting 

from binarised apodisation based on ray tracing. 

Array-rib configuration 1. 

 Figure 6.5. Source velocity phases resulting from 

binarised apodisation based on ray tracing. Array-

rib configuration 1. 
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The above velocity distribution results in 73 elements of the phased array being 

switched off (approximately 29% of all elements). The velocity distribution in figures 

6.4 and 6.5 was then used as input data to the forward BEM model, which generated the 

acoustic pressure magnitudes on the surface of the ribs shown in figure 6.6. The 

corresponding pressure magnitudes in the y-z plane, obtained at the post-processing 

stage, are displayed in figure 6.7. 

 

 

 

 

Figure 6.6 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Binarised apodisation based 

on geometric ray tracing. Array-rib configuration 

1. 

 Figure 6.7 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Binarised apodisation based on 

geometric ray tracing. Array-rib configuration 1. 

 

The implementation of the binarised apodisation method on this rib-array configuration 

gives rise to a maximum acoustic pressure on the surface of the ribs of 1.0 MPa, with a 

peak focal pressure of 3.0 MPa. This produces an SAR gain of 11 dB. A qualitative 

reduction in the backscattered pressure can be observed when comparing figures 6.7 and 

6.3. 

 

6.2.4 Phase conjugation 

 

The phase conjugation method described in section 5.2.2 first requires the calculation of 

the acoustic pressure field generated by a monochromatic point source. For focusing at 

the geometric centre of the array, the source must, in this case, be positioned at the 

global origin. The acoustic pressure field produced by such a point source in the 

presence of the ribs is displayed in the y-z plane in figure 6.8. Acoustic pressures at 

183



locations within a 5 mm radius from the singularity at the global origin were removed 

from the plot, so as to allow better visualisation of the field. 

 
Figure 6.8 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz point source of unit 

source strength, positioned at the global origin. Array-rib configuration 1. 
 

Figure 6.8 clearly shows the effect of shadowing by the ribs, particularly for ribs 10 and 

11. The source element velocities required for the phase conjugation calculation were 

obtained following the procedure described in section 5.2.3. These are displayed in 

magnitude and phase in figures 6.9 and 6.10, respectively. 

 

 

 

 

Figure 6.9 Source velocity magnitudes resulting 

from phase conjugation. Array-rib configuration 

1. 

 Figure 6.10 Source velocity phases resulting 

from phase conjugation. Array-rib configuration 

1. 
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It can be seen that the pattern of velocity magnitudes in figure 6.9 is not dissimilar to 

that obtained in figure 6.4, when using binarised apodisation based on geometric ray 

tracing. The elements which are shadowed by the ribs are indeed ascribed lower 

velocity amplitudes by the phase conjugation process than those which are not. The 

focusing vector defined by the above source velocity distribution yields the acoustic 

pressure magnitude on the surface of the ribs shown in figure 6.11. The acoustic field 

pressures in the y-z plane are shown in figure 6.12. 

 

 

 

 

Figure 6.11 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib 

configuration 1. 

 Figure 6.12 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Phase conjugation. Array-rib 

configuration 1. 

 

The phase conjugation method on this rib-array configuration gives rise to a maximum 

acoustic pressure on the surface of the ribs of 0.79 MPa, with a peak focal pressure of 

2.7 MPa. This produces an SAR gain of 12 dB. 

 

6.2.5 DORT 

 

The DORT method was implemented as described in section 5.2.3 and in Appendix B. 

The value used for imax, i.e. the number of eigenvectors associated with the higher 

singular values, was 25, as this maximised the SAR gain. This produced the focusing 

vector shown in terms of the magnitude of the array element velocity magnitudes and 

phases in figures 6.13 and 6.14, respectively. 
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Figure 6.13 Source velocity magnitudes resulting 

from DORT method. Array-rib configuration 1. 
 

Figure 6.14 Source velocity phases resulting 

from DORT method. Array-rib configuration 1. 

 

The corresponding BEM acoustic pressure magnitudes on the surface of the ribs and in 

the y-z plane are displayed in figures 6.15 and 6.16, respectively. 

 

 

 

 

Figure 6.15 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib 

configuration 1. 

 Figure 6.16 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. DORT method. Array-rib 

configuration 1. 

 

The DORT method on this rib-array configuration gives rise to a maximum acoustic 

pressure on the surface of the ribs of 1.0 MPa, with a peak focal pressure of 2.1 MPa. 

An SAR gain of 7.6 dB is achieved. 

 

6.2.6 Constrained optimisation 

 

For this particular array-rib configuration, the value of 𝑝surfmax in equation (5.21) was 

chosen as 45% of the maximum value of the pressure magnitude on the surface of the 
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ribs resulting from spherical focusing. This 45% value is not necessarily of clinical 

significance and was chosen in part to illustrate the technique, but also because higher 

values would violate the constraints imposed on the element velocity magnitudes (recall 

that Umax in equation 5.21 is selected to be 1 m s-1). It is understood that in clinical 

applications, a damage threshold related to a dose quantity would have to be established 

experimentally. Defining a damage threshold and a dose quantity remains beyond the 

scope of this thesis, as is providing a full treatment planning code. Nevertheless, the 

advantage of employing a constrained optimisation approach is that the option exists to 

set tailored upper and lower bounds to field and source quantities which may be specific 

to the patient and to the HIFU system employed. 

 

The cost function was formed by choosing {𝑝̂ext} in equation (5.21) as follows: the 

vector of pressures in the exterior volume featured in the cost function (i.e. the ‘desired’ 

field pressure distribution) was generated from pressure field values in absence of ribs 

at 9261 equally spaced locations in a 21×21×21 cubic Cartesian grid such that -1.5 cm ≤ 

x, y, z ≤ 1.5 cm, the focus of the array being at the global origin. 

 

The surface mesh of the ribs contains 200921 nodes (see section 4.5.2). It is both 

impractical and unnecessary to impose a constraint at all these locations on the surface 

of the scatterer. Too high a number of constraints may result in numerical instability and 

some locations on the surface of the ribs are highly unlikely to exceed 𝑝surfmax, in 

particular those not directly facing the array. Hence, surface locations associated with 

pressure magnitudes below 40% of the maximum pressure resulting from spherical 

focusing (i.e. locations on the rib surface where the pressure was less than 0.64 MPa) 

were not included in the constraints. This resulted in only 3390 constraints associated 

with the pressure magnitude on the ribs being required, along with the 256 constraints 

for the magnitude of the element velocities. After the optimisation, it was verified that 

the acoustic pressure magnitude at all nodes on the surface of the ribs was below the 

chosen threshold. 

 

For reasons specified in section 5.2.4.2, initial values of the optimisation variables were 

all specified as 1/√2 m s-1 and the problem was scaled by a factor of 10-6. In addition to 

this, the constraints involving the source velocities were scaled by a factor of 106 so that 

they were of the same order of magnitude as the surface pressure magnitude constraints. 
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With the above input conditions, a solution was obtained for the focusing vector by 

following the procedure outlined in section 5.2.4. The real and imaginary parts of the 

velocities were subsequently rescaled and the surface and field pressures calculated. 

Figures 6.17 and 6.18 respectively display the magnitudes and phases of the element 

velocities of the array resulting from the constrained optimisation. It was verified that 

the velocity magnitudes did not exceed 1 m s-1. 

 

 

 

 

Figure 6.17 Source velocity magnitudes resulting 

from constrained optimisation. Array-rib 

configuration 1. 

 Figure 6.18 Source velocity phases resulting 

from constrained optimisation. Array-rib 

configuration 1. 

 

The velocity distributions in figures 6.17 and 6.18 were then used as input data to the 

BEM formulation. The acoustic pressure magnitudes on the surface of the ribs and in 

the y-z plane are displayed in figures 6.19 and 6.20. 
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Figure 6.19 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Constrained optimisation. 

Array-rib configuration 1.  

 Figure 6.20 Acoustic pressure magnitude in y-z 

plane resulting from resulting. Constrained 

optimisation. Array-rib configuration 1. 

 

It was verified that the maximum surface pressure magnitude was 0.88 MPa. The 

acoustic pressure magnitude at the focus is 3.1 MPa, hence providing an SAR gain of 12 

dB. Figure 6.20 shows that an overall qualitative reduction in the back-scattered 

acoustic pressure is achieved as a consequence of the constrained optimisation, when 

compared against the uniform amplitude and phase results displayed in figure 6.3. 

Although the constrained optimisation algorithm is unsuccessful at rendering a peak 

pressure of 4.4 MPa which was obtained in the absence of ribs (see figures 5.34 and 

5.35), it is now only 3% lower than in the case of spherical focusing in the presence of 

ribs (see figure 6.3). 

 

6.3 Human ribs: Array-rib configuration 2 

 

6.3.1 Description 

 

Array-rib configuration 2 represents a variation on configuration 1 as follows. The ribs 

were translated by 2 cm and −3 cm in along the y and z axes, respectively, so that the 

geometric focus of the array was positioned approximately 6 cm directly behind rib 11, 

behind the ribcage. This scenario represents an extreme configuration where the target 

is directly behind one of the ribs, which is likely to result in a more challenging 

treatment planning situation. Indeed, as the transducer is now closer to the surface of the 

ribs, this is likely to result in a lower SAR gain for the spherical focusing case, which 
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may make the inverse problem more challenging. The configuration is shown in figure 

6.21. 

 
Figure 6.21 Position of ribs with respect to HIFU array for configuration 2. 

 

6.3.2 Spherical focusing 

 

Spherical focusing on array-rib configuration 2 results in the acoustic pressure 

magnitude on the surface of the ribs displayed in figure 6.22 and the field pressure 

magnitude in the y-z plane shown in figure 6.23. 

 

 

 

Figure 6.22 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-

rib configuration 2. 

 Figure 6.23 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-element 

array. Spherical focusing. Array-rib configuration 

2. 
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The data in figure 6.22 shows that the maximum acoustic pressure on the surface of the 

ribs is 2.2 MPa. The acoustic pressure at the focus in figure 6.23 is 3.4 MPa. This 

results in an SAR gain of 5.1 dB. 

 

6.3.3 Binarised apodisation based on geometric ray tracing 

 

The method of binarised apodiation described in section 5.2.1 was applied to the current 

array-rib configuration, thus producing the source velocity distribution displayed in 

magnitude and phase in figures 6.24 and 6.25, respectively. 

 

 

 

 

Figure 6.24 Source velocity magnitudes resulting 

from binarised apodisation based on ray tracing. 

Array-rib configuration 2. 

 Figure 6.25. Source velocity phases resulting 

from binarised apodisation based on ray tracing. 

Array-rib configuration 2. 

 

The above velocity distribution results in 62 elements of the phased array being 

switched off (approximately 24% of all elements). The velocity distribution defined by 

the data in figures 6.24 and 6.25 was then used as input data to the forward BEM model, 

which generated the acoustic pressure magnitudes on the surface of the ribs shown in 

figure 6.26. The corresponding pressure magnitudes in the y-z plane, obtained at the 

post-processing stage, are displayed in figure 6.27. 
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Figure 6.26 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Binarised apodisation based 

on geometric ray tracing. Array-rib configuration 

2. 

 Figure 6.27 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Binarised apodisation based on 

geometric ray tracing. Array-rib configuration 2. 

 

The implementation of the binarised apodisation method on this rib-array configuration 

gives rise to a maximum acoustic pressure on the surface of the ribs of 1.5 MPa, with a 

peak focal pressure of 3.2 MPa. This produces an SAR gain of 7.9 dB. In addition to a 

qualitative reduction in the backscattered pressure when compared with the spherical 

focusing case, the pressure magnitude on rib 11 is reduced by 0.7 MPa. 

 

6.3.4 Phase conjugation 

 

The first stage of the phase conjugation calculation, i.e. the acoustic pressure field 

produced by a point source in the presence of the ribs, is displayed in the y-z plane in 

figure 6.28, with field locations within a 5 mm radius from the singularity removed. 
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Figure 6.28 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz point source of unit 

source strength, positioned at the global origin. Array-rib configuration 2. 
 

Figure 6.28 shows the effect of shadowing by the ribs. The source element velocities 

required for the phase conjugation calculation are displayed in magnitude and phase in 

figures 6.29 and 6.30, respectively. 

 

 

 

 

Figure 6.29 Source velocity magnitudes resulting 

from phase conjugation. Array-rib configuration 

2. 

 Figure 6.30 Source velocity phases resulting 

from phase conjugation. Array-rib configuration 

2. 

 

The pattern of velocity magnitudes in figure 6.29 bears some resemblance to that in 

figure 6.24. Clearly, much of the shadowing is caused by rib 11. At locations on the 

array where this shadowing is caused, the phase conjugation process generates lower 

values of the velocity amplitudes. The focusing vector defined by the above source 

velocity distribution yields the acoustic pressure magnitude on the surface of the ribs 
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shown in figure 6.31. The acoustic field pressures in the y-z plane are shown in figure 

6.32. 

 

 

 

 

Figure 6.31 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib 

configuration 2. 

 Figure 6.32 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Phase conjugation. Array-rib 

configuration 2. 

 

The phase conjugation method applied to this rib-array configuration gives rise to a 

maximum acoustic pressure on the surface of the ribs of 1.3 MPa, with a peak focal 

pressure of 2.8 MPa. This produces an SAR gain of 8.2 dB. 

 

6.3.5 DORT 

 

A value used for imax of 30 was used in this implementation of the DORT method, as 

this maximised the SAR gain. This generated the focusing vector shown in terms of the 

magnitude of the array element velocity magnitudes and phases in figures 6.33 and 

6.34, respectively. 
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Figure 6.33 Source velocity magnitudes resulting 

from DORT method. Array-rib configuration 2. 
 

Figure 6.34 Source velocity phases resulting 

from DORT method. Array-rib configuration 2. 

 

The corresponding BEM acoustic pressure magnitudes on the surface of the ribs and in 

the y-z plane are displayed in figures 6.35 and 6.36, respectively. 

 

 

 

 

Figure 6.35 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib 

configuration 2. 

 Figure 6.36 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. DORT method. Array-rib 

configuration 2. 

 

The DORT method on this rib-array configuration gives rise to a maximum acoustic 

pressure on the surface of the ribs of 1.2 MPa, with a peak focal pressure of 2.0 MPa. 

An SAR gain of 5.6 dB is achieved. 

 

6.3.6 Constrained optimisation 

 

A solution was obtained for the focusing vector by following the procedure outlined in 

section 5.2.6 except that an additional constraint was added in the optimisation. This 
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was in the form of a lower bound value set on the focal pressure, equal to the pressure at 

the focus for the spherical focusing case. Implementing this additional constraint 

slightly improved the SAR gain. Figures 6.37 and 6.38 respectively display the 

magnitudes and phases of the element velocities of the array resulting from the 

constrained optimisation. 

 

 

 

 

Figure 6.37 Source velocity magnitudes resulting 

from constrained optimisation. Array-rib 

configuration 2. 

 Figure 6.38 Source velocity phases resulting 

from constrained optimisation. Array-rib 

configuration 2. 

 

The velocity distributions in figures 6.37 and 6.38 were subsequently used as input data 

to the BEM formulation. The acoustic pressure magnitudes on the surface of the ribs 

and in the y-z plane are displayed in figures 6.39 and 6.40. 

 

 

 

 

Figure 6.39 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Constrained optimisation. 

Array-rib configuration 2.  

 Figure 6.40 Acoustic pressure magnitude in y-z 

plane resulting from resulting. Constrained 

optimisation. Array-rib configuration 2. 
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For this particular array-rib geometry, the constrained optimisation routine could not 

locate a set of source velocities that would satisfy the constraints on the surface of the 

ribs. Indeed, the maximum surface pressure magnitude was 1.5 MPa, leading to only a 

31% reduction in maximum pressure amplitude of the surface of the ribs instead of the 

requested 45%. Nevertheless, the acoustic pressure magnitude at the focus is 3.4 MPa, 

which is the same as for the spherical focusing case. An SAR gain of 8.3 dB is obtained, 

which is greater than that provided by the phase conjugation method. 

 

6.4 Human ribs: Array-rib configuration 3 

 

6.4.1 Description 

 

Array-rib configuration 3 results from a modification in the rib topology used thus far in 

this thesis. Using CATIA v5 (CATIA v5 website), the ribs were rotated and translated 

to form an arrangement in which the intercostal spacing was as close as possible to 0.7 

mm throughout. Some sections of the ribs had to be “shaved off” to achieve this. This 

particular intercostal distance was chosen because it is close to the smallest that might 

be expected to be encountered clinically (Nunn and Slavin 1980). Clearly, this 

configuration is not entirely realistic, as the intercostal spacing will vary throughout the 

ribcage. Nevertheless, this arrangement retains features of human ribs and provides a 

challenging situation for trans-rib HIFU treatment. The phased array was positioned so 

that its geometric focus was positioned approximately 3 cm behind rib 10, into the 

ribcage. The configuration is shown in figure 6.41. 
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Figure 6.41 Position of ribs with respect to HIFU array for array-rib configuration 3. 

 

6.4.2 Spherical focusing 

 

Spherical focusing on array-rib configuration 3 results in the acoustic pressure 

magnitude on the surface of the ribs shown in figure 6.42 and the field pressure 

magnitude in the y-z plane shown in figure 6.43. 

 

 

 

 

Figure 6.42 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-rib 

configuration 3. 

 Figure 6.43 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Spherical focusing. Array-rib 

configuration 3. 

 

The data in figure 6.42 shows that the maximum acoustic pressure on the surface of the 

ribs is 1.6 MPa. The acoustic pressure at the focus in figure 6.43 is 1.7 MPa. This 

results in an SAR gain of 1.7 dB. Effects of scattering from the ribs are more prominant 

than for the spherical focusing cases on configurations 1 and 2, owing to the narrower 
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intercostal spacing in this configuration. Effects of splitting at the focus reported by 

Khokhlova et al (2010) are clearly visible, with side lobes approximately 3.7 dB relative 

to the main lobe, located ±2.5 mm along the y-axis from the global origin. 

 

6.4.3 Binarised apodisation based on geometric ray tracing 

 

The method of binarised apodiation based on geometric ray tracing apply to array-rib 

configuration 3  produces the source velocity distribution displayed in magnitude and 

phase in figures 6.44 and 6.45, respectively. 

 

 

 

 

Figure 6.44 Source velocity magnitudes resulting 

from binarised apodisation based on ray tracing. 

Array-rib configuration 3. 

 Figure 6.45. Source velocity phases resulting 

from binarised apodisation based on ray tracing. 

Array-rib configuration 3. 

 

The above velocity distribution results in 165 elements of the phased array being 

switched off (approximately 64% of all elements). The velocity distribution defined by 

the data in figures 6.44 and 6.45 was then used as input data to the forward BEM model, 

which generated the acoustic pressure magnitudes on the surface of the ribs shown in 

figure 6.46. The corresponding pressure magnitudes in the y-z plane, obtained at the 

post-processing stage, are displayed in figure 6.47. 
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Figure 6.46 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Binarised apodisation based 

on geometric ray tracing. Array-rib configuration 

3. 

 Figure 6.47 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Binarised apodisation based on 

geometric ray tracing. Array-rib configuration 3. 

 

The implementation of the binarised apodisation method on this rib-array configuration 

gives rise to a maximum acoustic pressure on the surface of the ribs of 0.92 MPa, with a 

peak focal pressure of 1.3 MPa. This produces an SAR gain of 4.2 dB. 

 

6.4.4 Phase conjugation 

 

The first stage of the phase conjugation calculation, i.e. the acoustic pressure field 

produced by a point source in the presence of the ribs, is displayed in the y-z plane in 

figure 6.48, with acoustic pressures at field locations in the vicinity of the singularity 

removed. 

 

 

200



 
Figure 6.48 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz point source of unit 

source strength, positioned at the global origin. Array-rib configuration 3. 
 

Figure 6.48 shows a stronger qualitative effect of shadowing by the ribs, compared with 

the point source calculation on array-rib configurations 1 and 2. The source element 

velocities required for the phase conjugation calculation are displayed in magnitude and 

phase in figures 6.49 and 6.50, respectively. 

 

 

 

 

Figure 6.49 Source velocity magnitudes resulting 

from phase conjugation. Array-rib configuration 

3. 

 Figure 6.50 Source velocity phases resulting 

from phase conjugation. Array-rib configuration 

3. 

 

Again, it can be seen that the pattern of velocity magnitudes in figure 6.49 bears some 

resemblance with that in figure 6.44. The focusing vector defined by the above source 

velocity distribution yields the acoustic pressure magnitude on the surface of the ribs 
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shown in figure 6.51. The acoustic field pressures in the y-z plane are shown in figure 

6.52. 

 

 

 

 

Figure 6.51 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib 

configuration 3. 

 Figure 6.52 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Phase conjugation. Array-rib 

configuration 3. 

 

The phase conjugation method applied to this rib-array configuration gives rise to a 

maximum acoustic pressure on the surface of the ribs of 0.63 MPa, with a peak focal 

pressure of 1.2 MPa. This produces an SAR gain of 7.2 dB. Compared with spherical 

focusing and binarised apodisation, the phase conjugation method is successful in 

greatly reducing the acoustic pressure scattered by rib 10 (see figures 6.43, 6.47 and 

6.52). 

 

6.4.5 DORT 

 

An imax of 75 was used in this implementation of the DORT method. This value 

maximised the SAR gain. This generated the magnitude and phase of the focusing 

vector shown in figures 6.53 and 6.54, respectively. 
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Figure 6.53 Source velocity magnitudes resulting 

from DORT method. Array-rib configuration 3. 
 Figure 6.54 Source velocity phases resulting 

from DORT method. Array-rib configuration 3. 

 

The corresponding BEM acoustic pressure magnitudes on the surface of the ribs and in 

the y-z plane are displayed in figures 6.55 and 6.56, respectively. 

 

 

 

 

Figure 6.55 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib 

configuration 3. 

 Figure 6.56 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. DORT method. Array-rib 

configuration 3. 

 

The DORT method on this rib-array configuration generates a maximum acoustic 

pressure on the surface of the ribs of 0.77 MPa, with a peak focal pressure of 0.97 MPa. 

An SAR gain of 3.3 dB is achieved. 

 

6.4.6 Constrained optimisation 

 

A solution was obtained for the focusing vector by following the procedure outlined in 

section 5.2.6. An additional constraint in the form of a lower bound value set on the 
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focal pressure, equal to the pressure at the focus for the spherical focusing case was 

added in the optimisation. Furthermore, 1260 constraints were added at the locations of 

grating lobes in the form of lower bounds set to half of the acoustic focal pressure 

magnitude. These additional constraints were imposed to improve the SAR gain and 

reduce the magnitude of the grating lobes. The presence of grating lobes or multiple foci 

has been argued to reduce patient treatment times by producing large treatment volumes 

of thermally ablated tissue relative to single foci fields (Daum and Hynynen 1999, 

Filonenko et al  2004, Hand et al 2009). This may nevertheless complicate subsequent 

heat transfer analyses, so there is a requirement to try and minimise side lobes to cover 

the treatment volume with a more uniform temperature distribution. When setting the 

lower bound for the acoustic pressure magnitude at the locations of the grating lobes to 

less than half of the acoustic focal pressure, the optimisation routine did not yield a 

solution. Figures 6.57 and 6.58 respectively display the magnitudes and phases of the 

element velocities of the array resulting from the constrained optimisation. 

 

 

 

 

Figure 6.57 Source velocity magnitudes resulting 

from constrained optimisation. Array-rib 

configuration 3. 

 Figure 6.58 Source velocity phases resulting 

from constrained optimisation. Array-rib 

configuration 3. 

 

The velocity distributions in figures 6.57 and 6.58 were subsequently used as input data 

to the BEM formulation. The acoustic pressure magnitudes on the surface of the ribs 

and in the y-z plane are displayed in figures 6.59 and 6.60. 
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Figure 6.59 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Constrained optimisation. 

Array-rib configuration 3.  

 Figure 6.60 Acoustic pressure magnitude in y-z 

plane resulting from resulting. Constrained 

optimisation. Array-rib configuration 3. 

 

Whilst the NAG® constrained optimisation solver found a local minimum, not all of the 

constraints were satisfied. Indeed, the maximum surface pressure magnitude is 1.2 MPa 

and the acoustic pressure magnitude at the focus is 1.7 MPa. This corresponds in a 26% 

reduction in the maximum acoustic pressure at the surface of the ribs, instead of the 

requested 45%. The resulting SAR gain is 4.6 dB, which is 2.6 dB lower than that 

provided by the phase conjugation method. Nevertheless, the peak focal pressure 

obtained in this instance is 0.5 MPa higher than that with the phase conjugation method. 

The narrow intercostal spacing compared with array-rib configurations 1 and 2, in this 

arrangement makes it challenging to retain high focal pressures alongside an SAR gain 

comparable with the phase conjugation method. 

 

6.5 Idealised ribs: Array-rib configuration 4 

 

6.5.1 Description 

 

Due to limited availability of anatomical rib data in STL format, analyses of idealised 

rib geometries were considered. The configurations consisted of a regular spatial 

arrangement of three cuboid scatterers with rounded edges. The total height of the 

idealised ribs (i.e. the dimension along the x-axis) was 5 cm. The scatterers were 

positioned so that the geometric focus was located 3 cm behind the central idealised rib. 

The idealised ribs were considered to be symmetrical about the y-z plane. Whilst these 

scatterers are considerably shorter than the human ribs considered in configurations 1, 2 
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and 3, their position within the “cone” of the HIFU source was such that scattering by 

the end-caps was not significant. The thickness of the scatterers (i.e. the dimension 

along the axis of propagation) was 5 mm.  Based on the range of rib dimensions 

described by Mohr et al (2007), the minimum rib width can be expected to vary 

between 4 mm and 10 mm. Furthermore, Liu (2000) reported that the intercostal space 

around the sternum can be expected to be less than 10 mm in most cases. Additionally, 

Nunn et al (1980) reported a lower limit for intercostal space in humans of 

approximately 6 mm. Based on this information, a “best case” array-rib configuration 

was arrived at, with a 4 mm rib width and a 10 mm intercostal spacing. This 

configuration is shown in figure 6.61. 

 
Figure 6.61 Position of ribs with respect to HIFU array for array-rib configuration 4. 

 

6.5.2 Spherical focusing 

 

Spherical focusing on array-rib configuration 4 resulted in the acoustic pressure 

magnitude on the surface of the ribs shown in figure 6.62 and the field pressure 

magnitude in the y-z plane shown in figure 6.63. 
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Figure 6.62 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-rib 

configuration 4. 

 Figure 6.63 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Spherical focusing. Array-rib 

configuration 4. 

 

The maximum surface pressure on the idealised ribs is 1.7 MPa. The peak focal 

pressure is 3.0 MPa. This generates an SAR gain of 6.4 dB. It can be seen that effects of 

splitting at the focus are visible, with grating lobes approximately ±3 mm from the focal 

lobe. The magnitude of these grating lobes is approximately –4.8 dB relative to that of 

the main lobe. 

 

6.5.3 Binarised apodisation based on geometric ray tracing 

 

The method of binarised apodisation based on geometric ray tracing was applied to 

array-rib configuration 4. It produced the source velocity distribution displayed in 

magnitude and phase in figures 6.64 and 6.65, respectively. 
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Figure 6.64 Source velocity magnitudes resulting 

from binarised apodisation based on ray tracing. 

Array-rib configuration 4. 

 Figure 6.65. Source velocity phases resulting 

from binarised apodisation based on ray tracing. 

Array-rib configuration 4. 

 

The above velocity distribution results in 179 elements of the phased array being 

switched on (or approximately 30% of all elements). The velocity distribution defined 

by the data in figures 6.64 and 6.65 was then used as input data to the forward BEM 

model, which generated the acoustic pressure magnitudes on the surface of the ribs 

shown in figure 6.66. The corresponding pressure magnitudes in the y-z plane, obtained 

at the post-processing stage, are displayed in figure 6.67. 

 

 

 

 

Figure 6.66 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Binarised apodisation based 

on geometric ray tracing. Array-rib configuration 

4. 

 Figure 6.67 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Binarised apodisation based on 

geometric ray tracing. Array-rib configuration 4. 

 

The implementation of the binarised apodisation method on this rib-array configuration 

gives rise to a maximum acoustic pressure on the surface of the ribs of 0.90 MPa, with a 
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peak focal pressure of 2.7 MPa. Compared with the spherical focusing case, this 

improves the SAR gain by 5.6 dB, providing an SAR gain of 11 dB. Again, splitting of 

the focus is observed, with grating lobes positioned at ±3 mm along the y-axis from the 

main lobe. The magnitude of these grating lobes is approximately –3.7 dB relative to 

that of the main lobe. This represents a slight deterioration in the focusing of the array 

compared with the spherical focusing case, for which the side lobes were –4.8 dB lower 

than the main lobe. 

 

6.5.4 Phase conjugation 

 

The first stage of the phase conjugation calculation, i.e. the acoustic pressure field 

produced by a point source in the presence of the ribs, is displayed in the y-z plane in 

figure 6.68, with acoustic pressures at field locations in the vicinity of the singularity 

removed. 

 
Figure 6.68 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz point source of unit 

source strength, positioned at the global origin. Array-rib configuration 4. 
 

The source element velocities required for the phase conjugation calculation are 

displayed in magnitude and phase in figures 6.69 and 6.70, respectively. 
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Figure 6.69 Source velocity magnitudes resulting 

from phase conjugation. Array-rib configuration 

4. 

 Figure 6.70 Source velocity phases resulting 

from phase conjugation. Array-rib configuration 

4. 

 

The focusing vector defined by the above source velocity distribution yields the 

acoustic pressure magnitude on the surface of the ribs shown in figure 6.71. The 

acoustic field pressures in the y-z plane are shown in figure 6.72. 

 

 

 

 

Figure 6.71 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib 

configuration 4. 

 Figure 6.72 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Phase conjugation. Array-rib 

configuration 4. 

 

The phase conjugation method applied to this rib-array configuration gives rise to a 

maximum acoustic pressure on the surface of the ribs of 0.60 MPa, with a peak focal 

pressure of 2.1 MPa. This produces an SAR gain of 12 dB. For this specific array-rib 

configuration, the phase conjugation method provides an SAR gain comparable with 

that from the binarised apodisation method, although the peak focal pressure is reduced 
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by 0.6 MPa. The grating lobes are now −3.5 dB relative to the main lobe, which 

represents a deterioration by 1.3 dB compared against the spherical focusing case. 

 

6.5.5 DORT 

 

An imax of 137 was used in this implementation of the DORT method, as this value 

maximised the SAR gain. This generated the magnitude and phase of the focusing 

vector shown in figures 6.73 and 6.74, respectively. 

 

 

 

 
Figure 6.73 Source velocity magnitudes resulting 

from DORT method. Array-rib configuration 4. 
 Figure 6.74 Source velocity phases resulting 

from DORT method. Array-rib configuration 4. 

 

The corresponding BEM acoustic pressure magnitudes on the surface of the idealised 

ribs and in the y-z plane are displayed in figures 6.75 and 6.76, respectively. 
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Figure 6.75 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib 

configuration 4. 

 Figure 6.76 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. DORT method. Array-rib 

configuration 4. 

 

The DORT method on this rib-array configuration generates a maximum acoustic 

pressure on the surface of the ribs of 0.59 MPa, with a peak focal pressure of 1.6 MPa. 

An SAR gain of 9.9 dB is achieved. Owing to the regular shape of the scatterers, these 

are perhaps closer to being well-resolved than human ribs. As such, better results are 

obtained in terms of the SAR gain than for human ribs, when using the DORT method. 

Furthermore, a qualitative reduction in the backscattered pressure can be observed 

compared with the spherical focusing case. The grating lobes are now −4.4 dB relative 

to the amplitude of the focal lobe. 

 

6.5.6 Constrained optimisation 

 

The procedure outlined in section 5.4.6 was followed, thus adding additional constraints 

to improve the SAR gain and reduce the magnitude of the grating lobes. Figures 6.77 

and 6.78 respectively display the magnitudes and phases of the element velocities of the 

array resulting from the constrained optimisation. 
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Figure 6.77 Source velocity magnitudes resulting 

from constrained optimisation. Array-rib 

configuration 4. 

 Figure 6.78 Source velocity phases resulting 

from constrained optimisation. Array-rib 

configuration 4. 

 

The velocity distributions in figures 6.77 and 6.78 were subsequently used as input data 

to the BEM formulation. The acoustic pressure magnitudes on the surface of the 

idealised ribs and in the y-z plane are displayed in figures 6.79 and 6.80. 

 

 

 

 

Figure 6.79 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Constrained optimisation. 

Array-rib configuration 4.  

 Figure 6.80 Acoustic pressure magnitude in y-z 

plane resulting from resulting. Constrained 

optimisation. Array-rib configuration 4. 

 

The NAG® constrained optimisation solver found a local minimum satisfying the 

constraints associated with the acoustic pressure magnitude on the ribs. Indeed, the 

maximum surface pressure magnitude is 0.92 MPa and the acoustic pressure magnitude 

at the focus is 3.0 MPa. This achieves the required 45% reduction in the maximum 

acoustic pressure at the surface of the ribs compared with the spherical focusing case. 

The resulting SAR gain is 12 dB, which is effectively the same as that provided by the 
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phase conjugation method. Nevertheless, the peak focal pressure obtained here is almost 

twice that obtained with the phase conjugation method. Furthermore, the grating lobes 

are now 5.1 dB lower than the main lobe. 

 

6.6 Idealised ribs: Array-rib configuration 5 

 

6.6.1 Description 

 

Based on the information given in section 6.5.1, a configuration of idealised ribs 

representing an “average case” was generated. The intercostal spacing and rib width 

were respectively chosen as the arithmetic mean of the upper and lower bounds 

described in section 6.5.1. This represented an intercostal spacing of 8 mm with a rib 

width of 7 mm. This configuration is displayed in figure 6.81. 

 
Figure 6.81 Position of ribs with respect to HIFU array for array-rib configuration 5. 

 

6.6.2 Spherical focusing 

 

Spherical focusing on array-rib configuration 5 resulted in the acoustic pressure 

magnitude on the surface of the ribs shown in figure 6.82 and the field pressure 

magnitude in the y-z plane shown in figure 6.83. 
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Figure 6.82 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-rib 

configuration 5. 

 Figure 6.83 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Spherical focusing. Array-rib 

configuration 5. 

 

The maximum surface pressure on the idealised ribs is 1.7 MPa. The peak focal 

pressure is 2.3 MPa. This generates an SAR gain of 4.2 dB. Due to the increased 

shadowing produced by the wider scatterers and narrower space between them, 

deterioration in SAR gain and peak focal pressure is observed compared with the 

spherical focusing case for array-rib configuration 4. It can be seen that effects of 

splitting at the focus are visible, with grating lobes positioned approximately ±3 mm 

either side of the focal lobe. The magnitude of these is approximately –2.5 dB relative 

to that of the main lobe. 

 

6.6.3 Binarised apodisation based on geometric ray tracing 

 

The method of binarised apodisation based on geometric ray tracing applied to array-rib 

configuration 5 produces the source velocity distribution displayed in magnitude and 

phase in figures 6.84 and 6.85, respectively. 
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Figure 6.84 Source velocity magnitudes resulting 

from binarised apodisation based on ray tracing. 

Array-rib configuration 5. 

 Figure 6.85. Source velocity phases resulting 

from binarised apodisation based on ray tracing. 

Array-rib configuration 5. 

 

The above velocity distribution results in 129 elements of the phased array being 

switched off (approximately 50% of all elements). The velocity distribution defined by 

the data in figures 6.84 and 6.85 was then used as input data to the forward BEM model, 

which generated the acoustic pressure magnitudes on the surface of the ribs shown in 

figure 6.86. The corresponding pressure magnitudes in the y-z plane, obtained at the 

post-processing stage, are displayed in figure 6.87. 

 

 

 

 

Figure 6.86 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Binarised apodisation based 

on geometric ray tracing. Array-rib configuration 

5. 

 Figure 6.87 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Binarised apodisation based on 

geometric ray tracing. Array-rib configuration 5. 

 

The implementation of the binarised apodisation method on this rib-array configuration 

gives rise to a maximum acoustic pressure on the surface of the ribs of 0.94 MPa, with a 
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peak focal pressure of 1.8 MPa. This produces an SAR gain of 7.2 dB. The SAR gain is 

3 dB better than for the spherical focusing case, and a qualitative reduction in the 

backscattered acoustic pressure is observed. The grating lobes centred at approximately 

±3 mm from the main lobe along the y-axis are visible in figure 6.87. These are 

approximately −2.4 dB lower than the amplitude of the main lobe, as in the spherical 

focusing case. 

 

6.6.4 Phase conjugation 

 

The first stage of the phase conjugation calculation, i.e. the acoustic pressure field 

produced by a point source in the presence of the ribs, is displayed in the y-z plane in 

figure 6.88, with acoustic pressures at field locations in the vicinity of the singularity 

removed. 

 

 
Figure 6.88 Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz point source of unit 

source strength, positioned at the global origin. Array-rib configuration 5. 
 

The source element velocities required for the phase conjugation calculation are 

displayed in magnitude and phase in figures 6.89 and 6.90, respectively. 
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Figure 6.89 Source velocity magnitudes resulting 

from phase conjugation. Array-rib configuration 

5. 

 Figure 6.90 Source velocity phases resulting 

from phase conjugation. Array-rib configuration 

5. 

 

The focusing vector defined by the above source velocity distribution yields the 

acoustic pressure magnitude on the surface of the ribs shown in figure 6.91. The 

acoustic field pressures in the y-z plane are shown in figure 6.92. 

 

 

 

 

Figure 6.91 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib 

configuration 5. 

 Figure 6.92 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Phase conjugation. Array-rib 

configuration 5. 

 

The phase conjugation method applied to this rib-array configuration gives rise to a 

maximum acoustic pressure on the surface of the ribs of 0.65 MPa, with a peak focal 

pressure of 1.9 MPa. This produces an SAR gain of 11 dB. The amplitude of the grating 

lobes at ±3 mm along the y-axis is now −2.8 dB relative to the main lobe. 
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6.6.5 DORT 

 

An imax of 130 was used in this implementation of the DORT method, as this value 

maximised the SAR gain. This generated the magnitude and phase of the focusing 

vector shown in figures 6.93 and 6.94, respectively. 

 

 

 

 
Figure 6.93 Source velocity magnitudes resulting 

from DORT method. Array-rib configuration 5. 
 Figure 6.94 Source velocity phases resulting 

from DORT method. Array-rib configuration 5. 

 

The corresponding BEM acoustic pressure magnitudes on the surface of the idealised 

ribs and in the y-z plane are displayed in figures 6.94 and 6.95, respectively. 

 

 

 

 

Figure 6.95 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib 

configuration 5. 

 Figure 6.96 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-element 

array. DORT method. Array-rib configuration 5. 
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The DORT method on this rib-array configuration generates a maximum acoustic 

pressure on the surface of the ribs of 0.78 MPa, with a peak focal pressure of 1.2 MPa. 

An SAR gain of 5.3 dB is achieved together with a qualitative reduction in the 

backscattered pressure compared with the spherical focusing case. Whilst the SAR gain 

is improved by 1.1 dB with respect to the spherical focusing case, it is still inferior to 

that provided by binarised apodisation and by phase conjugation. The grating lobes are 

now 2.7 dB below the amplitude of the main lobe. 

  

6.6.6 Constrained optimisation 

 

The procedure outlined in section 6.4.6 was repeated, thus adding additional constraints 

to improve the SAR gain and reduce the magnitude of the grating lobes. Figures 6.97 

and 6.98 respectively display the magnitudes and phases of the element velocities of the 

array resulting from the constrained optimisation. 

 

 

 

 

Figure 6.97 Source velocity magnitudes resulting 

from constrained optimisation. Array-rib 

configuration 5. 

 Figure 6.98 Source velocity phases resulting 

from constrained optimisation. Array-rib 

configuration 5. 

 

The velocity distributions in figures 6.97 and 6.98 were subsequently used as input data 

to the BEM formulation. The acoustic pressure magnitudes on the surface of the 

idealised ribs and in the y-z plane are displayed in figures 6.99 and 6.100. 
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Figure 6.99 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Constrained optimisation. 

Array-rib configuration 5.  

 Figure 6.100 Acoustic pressure magnitude in y-z 

plane resulting from resulting. Constrained 

optimisation. Array-rib configuration 5. 

 

The NAG® constrained optimisation solver finds a local minimum satisfying the 

constraints associated with the acoustic pressure on the surface of the ribs. Indeed, the 

maximum surface pressure magnitude is 0.94 MPa and the acoustic pressure magnitude 

at the focus is 2.3 MPa. This achieves the required 45% reduction in the maximum 

acoustic pressure at the surface of the ribs compared against the spherical focusing case. 

The resulting SAR gain is 9.2 dB, which is 1.8 dB lower than for phase conjugation. 

Nevertheless, the peak focal pressure obtained in this instance is 0.5 MPa higher than 

that obtained with the phase conjugation method. The grating lobes are 2.9 dB lower 

than the amplitude of the main lobe. 

 

6.7 Idealised ribs: Array-rib configuration 6 

 

6.7.1 Description 

 

Based on the information described in section 6.5.1, a configuration of idealised ribs 

representing a “worst case” scenario was generated. The intercostal spacing and rib 

width were respectively chosen as the lower and upper bounds of the ranges depicted in 

section 6.5.1. This represented an intercostal spacing of 6 mm with a rib width of 10 

mm. This configuration is displayed in figure 6.101. 
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Figure 6.101 Position of ribs with respect to HIFU array for array-rib configuration 6. 

 

6.7.2 Spherical focusing 

 

Spherical focusing on array-rib configuration 6 resulted in the acoustic pressure 

magnitude on the surface of the ribs shown in figure 6.102 and the field pressure 

magnitude in the y-z plane shown in figure 6.103. 

 

 

 

 

Figure 6.102 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Spherical focusing. Array-rib 

configuration 6. 

 Figure 6.103 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Spherical focusing. Array-rib 

configuration 6. 

 

The maximum surface pressure on the idealised ribs is 1.8 MPa. The peak focal 

pressure is 1.3 MPa. This generates a negative SAR gain of −1.4 dB, due to the further 

increased shadowing produced by the wider scatterers and narrower space between 
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them compared with array-rib configurations 4 and 5. The backscattered signal is now 

so large that it interacts constructively with the incident field to generate a localised 

peak of 2.0 MPa along the z-axis between the scatterers and the phased array. The 

effects of splitting at the focus are further pronounced, with grating lobes approximately 

–0.75 dB and –4.5 dB relative to the main lobe, positioned respectively at ±3.3 mm and 

±6.8 mm from the main lobe along the y-axis. 

 

6.7.3 Binarised apodisation based on geometric ray tracing 

 

The method of binarised apodiation based on geometric ray tracing applied to array-rib 

configuration 6 produces the source velocity distribution displayed in magnitude and 

phase in figures 6.104 and 6.105, respectively. 

 

 

 

 

Figure 6.104 Source velocity magnitudes 

resulting from binarised apodisation based on ray 

tracing. Array-rib configuration 6. 

 Figure 6.105. Source velocity phases resulting 

from binarised apodisation based on ray tracing. 

Array-rib configuration 6. 

 

The above velocity distribution results in only 73 elements of the phased array being 

switched on (approximately 71% of the elements being switched off). The velocity 

distribution defined by the data in figures 6.104 and 6.105 was then used as input data 

to the forward BEM model, which generated the acoustic pressure magnitudes on the 

surface of the ribs shown in figure 6.106. The corresponding pressure magnitudes in the 

y-z plane, obtained at the post-processing stage, are displayed in figure 6.107. 
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Figure 6.106 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Binarised apodisation based 

on geometric ray tracing. Array-rib configuration 

6. 

 Figure 6.107 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Binarised apodisation based on 

geometric ray tracing. Array-rib configuration 6. 

 

The implementation of the binarised apodisation method on this rib-array configuration 

gives rise to a maximum acoustic pressure on the surface of the ribs of 0.91 MPa, with a 

peak focal pressure of 0.70 MPa. This produces an SAR gain of −0.96 dB. Clearly, due 

to effects of multiple scattering on this particular configuration of idealised ribs, the 

binarised apodisation method of focusing is only marginally more successful than the 

spherical focusing case, and still delivers a negative SAR gain. This is at the expense of 

a 46% reduction in peak focal pressure. The grating lobes are now –0.83 dB and –3.6 

dB relative to the main lobe, positioned respectively at ±3.3 mm and ±6.8 mm from the 

main lobe along the y-axis. 

  

6.7.4 Phase conjugation 

 

The first stage of the phase conjugation calculation, i.e. the acoustic pressure field 

produced by a point source in the presence of the ribs, is displayed in the y-z plane in 

figure 6.108, with acoustic pressures at field locations in the vicinity of the singularity 

removed. 
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Figure 6.108Acoustic pressure magnitude in y-z plane resulting from field of 1 MHz point source of unit 

source strength, positioned at the global origin. Array-rib configuration 6. 
 

The source element velocities required for the phase conjugation calculation are 

displayed in magnitude and phase in figures 6.108 and 6.109, respectively. 

 

 

 

 

 

Figure 6.109 Source velocity magnitudes 

resulting from phase conjugation. Array-rib 

configuration 6. 

 Figure 6.110 Source velocity phases resulting 

from phase conjugation. Array-rib configuration 

6. 

 

The focusing vector defined by the above source velocity distribution yields the 

acoustic pressure magnitude on the surface of the ribs shown in figure 6.111. The 

acoustic field pressures in the y-z plane are shown in figure 6.112. 
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Figure 6.111 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Phase conjugation. Array-rib 

configuration 6. 

 Figure 6.112 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. Phase conjugation. Array-rib 

configuration 6. 

 

The phase conjugation method applied to this rib-array configuration gives rise to a 

maximum acoustic pressure on the surface of the ribs of 1.0 MPa, with a peak focal 

pressure of 1.2 MPa. This produces an SAR gain of 3.0 dB. The phase conjugation 

method of focusing is considerably more successful that the binarised apodisation 

method based on geometric ray tracing in terms of both SAR gain and peak focal 

pressure. Furthermore, the grating lobes are now –1.4 dB and –5.6 dB relative to the 

main lobe, positioned respectively at ±3.3 mm and ±6.8 mm from the main lobe along 

the y-axis. 

 

6.7.5 DORT 

 

A value used for imax of 130 was used in this implementation of the DORT method, as 

this value maximised the SAR gain. This generated the magnitude and phase of the 

focusing vector shown in figures 6.113 and 6.114, respectively. 
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Figure 6.113 Source velocity magnitudes 

resulting from DORT method. Array-rib 

configuration 6. 

 Figure 6.114 Source velocity phases resulting 

from DORT method. Array-rib configuration 6. 

 

The corresponding BEM acoustic pressure magnitudes on the surface of the idealised 

ribs and in the y-z plane are displayed in figures 6.115 and 6.116, respectively. 

 

 

 

 

Figure 6.115 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. DORT method. Array-rib 

configuration 6. 

 Figure 6.116 Acoustic pressure magnitude in y-z 

plane resulting from field of 1 MHz multi-

element array. DORT method. Array-rib 

configuration 6. 

 

The DORT method on this rib-array configuration generates a maximum acoustic 

pressure on the surface of the ribs of 0.80 MPa, with a peak focal pressure of 0.68 MPa. 

A negative SAR gain of −0.076 dB is achieved, which nevertheless represents an 

improvement compared with the spherical focusing case and binarised apodisation. The 

grating lobes are now –0.89 dB and –5.0 dB relative to the main lobe, positioned 

respectively at ±3.3 mm and ±6.8 mm from the main lobe along the y-axis. 
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6.7.6 Constrained optimisation 

 

The procedure outlined in section 6.4.6 was repeated, thus adding additional constraints 

to improve the SAR gain and reduce the magnitude of the grating lobes. Figures 6.117 

and 6.118 respectively display the magnitudes and phases of the element velocities of 

the array resulting from the constrained optimisation. 

 

 

 

 

Figure 6.117 Source velocity magnitudes 

resulting from constrained optimisation. Array-rib 

configuration 6. 

 Figure 6.118 Source velocity phases resulting 

from constrained optimisation. Array-rib 

configuration 6. 

 

The velocity distributions in figures 6.117 and 6.118 were subsequently used as input 

data to the BEM formulation. The acoustic pressure magnitudes on the surface of the 

idealised ribs and in the y-z plane are displayed in figures 6.119 and 6.120. 
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Figure 6.119 Acoustic pressure magnitude on 

surface of ribs resulting from field of 1 MHz 

multi-element array. Constrained optimisation. 

Array-rib configuration 6.  

 Figure 6.120 Acoustic pressure magnitude in y-z 

plane resulting from resulting. Constrained 

optimisation. Array-rib configuration 6. 

 

Whilst the NAG® constrained optimisation solver found a local minimum, the 

constraints pertaining to the acoustic pressure magnitudes on the surface of the idealised 

ribs were not satisfied. Indeed, the maximum surface pressure magnitude is 1.3 MPa. 

This corresponds to a 29% reduction in the maximum acoustic pressure at the surface of 

the ribs, instead of the requested 45%. The acoustic pressure magnitude at the focus is 

1.85 MPa, resulting in an SAR gain of 1.9 dB, which is 1.1 dB lower than that provided 

by the phase conjugation method. Nevertheless, the peak focal pressure obtained in this 

instance is 0.65 MPa higher that with the phase conjugation method. Owing to the 

narrow intercostal spacing compared with array-rib configurations 4 and 5, this 

arrangement makes it challenging to retain high focal pressures alongside an SAR gain 

comparable with the phase conjugation method. The grating lobes are comparable with 

those in the phase conjugation case and are –1.5 dB and –5.4 dB relative to the main 

lobe, positioned respectively at ±3.3 mm and ±6.8 mm from the main lobe along the y-

axis. 

 

6.8 Discussion 

 

The SAR gain results on array-rib configurations 1 to 6 are summarised in table 6.1.  
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Table 6.1: SAR gain for the six array-rib configurations and for all methods of focusing. 
Array-rib 

configuration 
Spherical 
focusing 

Binarised 
apodisation 

Phase 
conjugation 

DORT Constrained 
optimisation 

1 7.2 dB 11 dB 12 dB 7.6 dB 12 dB 

2 5.1 dB 7.9 dB 8.2 dB 5.6 dB 8.3 dB 

3 1.7 dB 4.2 dB 7.2 dB 3.3 dB 4.6 dB 

4 6.4 dB 11 dB 12 dB 9.9 dB 12 dB 

5 4.2 dB 7.2 dB 11 dB 5.3 dB 9.2 dB 

6 −1.4 dB −0.96 dB 3.0 dB −0.076 dB 1.9 dB 

 

Whilst the values expressed in table 6.1 give one indicator of the performance of a given 

focusing method on any given array-rib configuration, the peak focal pressures obtained 

are also important. These are displayed in table 6.2. 

 
Table 6.2: Peak focal pressure the for six array-rib configurations and for all methods of focusing. 

Array-rib 
configuration 

Spherical 
focusing 

Binarised 
apodisation 

Phase 
conjugation 

DORT Constrained 
optimisation 

1 3.2 MPa 3.0 MPa 2.7 MPa 2.1 MPa 3.1 MPa 

2 3.4 MPa 3.2 MPa 2.8 MPa 2.0 MPa 3.4 MPa 

3 1.7 MPa 1.3 MPa 1.2 MPa 0.97 MPa 1.7 MPa 

4 3.0 MPa 2.7 MPa 2.1 MPa 1.6 MPa 3.0 MPa 

5 2.3 MPa 1.8 MPa 1.9 MPa 1.2 MPa 2.3 MPa 

6 2.0 MPa 0.70 MPa 1.2 MPa 0.68 MPa 1.8 MPa 

 

The method of focusing which delivers the best overall performance in terms of 

maximising the SAR gain appears to be the phase conjugation method. Despite the fact 

that no constraints are placed on the maximum acoustic pressure magnitudes on the 

surface of the ribs, this method generally performs at least as well as the constrained 

optimisation approach. Nevertheless, the constrained optimisation method performs as 

well as the phase conjugation method for array-rib configurations 1, 2 and 4, where the 

intercostal spacing is large compared with the rib width. However, the phase 

conjugation method consistently results in focal pressures lower than those produced by 

the constrained optimisation method. This may be an issue if the phased-array does not 
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have a wide enough dynamic range that the source velocities may be increased 

sufficiently to produce the focal pressure magnitudes required for tissue ablation. 

 

The binarised apodisation method based on a geometric ray tracing approach lowers 

SAR gains more than the phase conjugation method and the constrained optimisations 

approach. This is particularly true when applied to array-rib configurations 3, 5 and 6, 

which present significant treatment planning challenges due to the narrower intercostal 

spacing. Furthermore, the resulting peak focal pressure generated with binarised 

apodisation is up to 60% lower than that produced by the constrained optimisation 

approach in array-rib configuration 6. Owing to the narrow intercostal spacing, too 

many elements are perhaps deactivated unnecessarily. In a clinical context, this may 

hamper the treatment of deep-seated abdominal tumours in humans. The binarised 

apodisation method does however benefit from the fact that only anatomical data is 

required and no forward propagation model is needed. In the configurations with wide 

intercostal spacing (i.e. 1, 2 and 4), the binarised apodisation method delivers 

comparable performance to the constrained optimisation approach, albeit not quite as 

good. 

 

The DORT method produces SAR gains superior to those generated through spherical 

focusing of the phased array. This is however at the expense of the peak focal pressures, 

which are the lowest out of all the focusing methods considered. The SAR gain also 

falls short of that delivered by the phase conjugation method by 5.7 dB for array-rib 

configuration 5. Overall, the DORT method does not appear to generate SAR gains of 

the same level as those produced by the phase conjugation or constrained optimisation 

approaches. This is likely to be due to the complex shape of the ribs and the fact that 

they cannot easily be assimilated to well-resolved point-like scatterers, an assumption 

generally required when using the DORT method (Prada 2002). It should also be noted 

that, in practice, there remains the issue of determining the value of imax, the number of 

eigenvectors associated with the higher singular values (see section 5.2.3). Unlike the 

case for well-resolved point-like scatterers presented in Appendix B, it is not 

straightforward to separate the “signal” from the “noise” in the singular values of the 

diagonal matrix in equation (5.10). In this chapter, the value of imax was specifically 

chosen to maximise the SAR gain. This was possible because the DORT method was 

implemented using BEM as the forward model, and the acoustic pressures at the focus 

and at the surface of the ribs could readily be obtained at the post-processing stage for 
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all values of imax. This procedure is described further in Appendix B. In a clinical 

context, however, such a procedure would be difficult to implement without a forward 

propagation model. 

 

When assessing the relative merits of the focusing methods investigated in this thesis, 

an important factor to consider is the computational effort required for each method 

compared to its efficacy at generating the required focal pressures whilst keeping the 

SAR at the surface of the ribs below a specified threshold. In that respect, for the 

configurations investigated, phase conjugation appears to have the upper hand, since 

only two BEM calculations are required. Nevertheless, phase conjugation does not 

impose any constraints on the field around the focus (Tanter et al 2001) or in this case 

on the ribs. The constrained optimisation method, as implemented here, requires 

lengthier run times (of the order of two to five days, depending on the number of 

degrees of freedom in the configuration investigated). This is mainly due to the fact that 

256 (the number of elements on the HIFU array) forward calculations must be carried 

out to form the matrices described in 5.2.4.1. Whilst the operations were vectorised, the 

process is still time-consuming. Nevertheless, the BEM code is currently not optimised 

for computational speed and methods exist which may help reduce both run time and 

memory requirements. These will be discussed further in Chapter 7. From a treatment 

planning point of view, the constrained optimisation is likely to provide greater 

flexibility than phase conjugation, particularly if patient-specific acoustic dose rates are 

established for safe and efficient treatments, along with ablation and damage thresholds. 

This data may then be used to define the constraints and plan the treatment accordingly. 

Furthermore, constrained optimisation may be useful when considering electronic 

steering of the beam, designed to enable a volume of tissue to be lesioned without, or 

with only minimal, mechanical repositioning of the transducer. Although the vector of 

pressures in the exterior volume in the cost function (i.e. the ‘desired’ field pressure 

distribution) was generated from the incident pressure field (i.e. in absence of the ribs, see 

equation 5.21), other options could easily be investigated. 

 

Scans of the acoustic pressure magnitude along the x and y axes are shown for array-rib 

configurations 1 to 6 in figures 6.121 to 6.132. These scans are displayed in dB relative 

to the maximum focal acoustic pressure magnitude. 
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Figure 6.121 Acoustic pressure magnitude along 

the x-axis for all focusing methods. Array-rib 

configuration 1. 

Figure 6.122 Acoustic pressure magnitude along 

the y-axis for all focusing methods. Array-rib 

configuration 1. 
 

  
Figure 6.123 Acoustic pressure magnitude along 

the x-axis for all focusing methods. Array-rib 

configuration 2. 

Figure 6.124 Acoustic pressure magnitude along 

the y-axis for all focusing methods. Array-rib 

configuration 2. 
  

  
Figure 6.125 Acoustic pressure magnitude along 

the x-axis for all focusing methods. Array-rib 

configuration 3. 

Figure 6.126 Acoustic pressure magnitude along 

the y-axis for all focusing methods. Array-rib 

configuration 3. 
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Figure 6.127 Acoustic pressure magnitude along 

the x-axis for all focusing methods. Array-rib 

configuration 4. 

Figure 6.128 Acoustic pressure magnitude along 

the y-axis for all focusing methods. Array-rib 

configuration 4. 
 

  
Figure 6.129 Acoustic pressure magnitude along 

the x-axis for all focusing methods. Array-rib 

configuration 5. 

Figure 6.130 Acoustic pressure magnitude along 

the y-axis for all focusing methods. Array-rib 

configuration 5. 
 

  
Figure 6.131 Acoustic pressure magnitude along 

the x-axis for all focusing methods. Array-rib 

configuration 6. 

Figure 6.132 Acoustic pressure magnitude along 

the y-axis for all focusing methods. Array-rib 

configuration 6. 
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For rib-array configurations 1 to 6, an average of the amplitudes along the x-axis and the 
y-axis, respectively, of the two secondary lobes relative to the focal lobe is shown in 
tables 6.3 and 6.4, 
 
Table 6.3: Average secondary lobe level along the x-axis relative to main lobe for the six array-rib 

configurations and for all methods of focusing. 
Array-rib 

configuration 
Spherical 
focusing 

Binarised 
apodisation 

Phase 
conjugation 

DORT Constrained 
optimisation 

1 −11 dB −10 dB −11 dB −11 dB −11 dB 

2 −18 dB −19 dB −19 dB −18 dB −18 dB 

3 −25 dB −23 dB −25 dB −27 dB −24 dB 

4 −16 dB −16 dB −15 dB −13 dB −15 dB 

5 −16 dB −16 dB −16 dB −14 dB −15 dB 

6 −15 dB −16 dB −16 dB −13 dB −15 dB 

 

Table 6.4: Average secondary lobe level along the y-axis relative to main lobe for six array-rib 

configurations and for all methods of focusing. 
Array-rib 

configuration 
Spherical 
focusing 

Binarised 
apodisation 

Phase 
conjugation 

DORT Constrained 
optimisation 

1 −17 dB −18 dB −18 dB −18 dB −18 dB 

2 −8.8 dB −7.7 dB −8.5 dB −8.7 dB −9.0 dB 

3 −3.7 dB −3.1 dB −3.7 dB −3.5 dB −4.1 dB 

4 −4.8 dB −3.7 dB −3.5 dB −4.4 dB −5.1 dB 

5 −2.5 dB −2.4 dB −2.8 dB −2.7 dB −2.9 dB 

6 −0.75 dB −0.83 dB −1.4 dB −0.89 dB −1.5 dB 

 

Figures 6.121 to 6.132, together with tables 6.3 and 6.4, demonstrate that secondary 

lobes are present in the focal plane along both the x and y axes. Along the x-axis, these 

are generally of considerably lower magnitude than the main lobe, for all methods of 

focusing (no more than −10 dB relative to the main lobe for all methods of focusing).  

This is a result of the chosen orientation of the ribs relative to the y-z plane. Along the y-

axis, for array-rib configurations 1 and 2 (i.e. the configurations corresponding to 

human ribs from CT scans), the secondary lobes remain relatively low compared to the 

main lobe, for all methods of focusing (below −7.7 dB). For array-rib configurations 3, 
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4, 5 and 6, along the y-axis, the secondary lobes are of considerably higher magnitude 

than in for configurations 1 and 2, leading to visible splitting of the focus. This effect 

has been widely reported in trans-costal HIFU applications (Li et al 2007, Tanter et al 

2007, Aubry et al 2008, Bobkova et al 2010), both theoretically and experimentally. In 

scatterers which exhibit spatial periodicity, the focal splitting parameters (e.g. the 

distance between the main and secondary lobe) can be obtained by considering the 

diffraction of spherically converging wave (Bobkova et al 2010). Using the parabolic 

approximation (discussed in Chapter 2 in the context of the KZK equation), an 

approximate relationship exists which predicts the acoustic pressure spatial distribution 

through parallel strips. In conjunction with the constrained optimisation approach, the 

multi-element array used here has been shown to lead to a modest reduction in the level 

of the secondary lobes relative to the main lobe (up to 1 dB – see table 6.4). 

Nevertheless, in cases where the intercostal spacing was too narrow compared to the rib 

width and to the wavelength in tissue (e.g. configuration 3), splitting at the focus could 

not be overcome with the current HIFU array owing to basic physics of diffraction. For 

array-rib configurations 1 and 2, which involve human data obtained from CT scans, it 

is interesting to note that focal splitting effects are not significant (see table 6.4). The 

ribs in configuration 3 were adapted from this topology and feature not only a narrower 

intercostal spacing, but one which is more or less constant throughout. This factor may 

significantly increase the magnitude of grating lobes. This is confirmed by the results in 

configuration 4, which involve idealised ribs based on a “best case” configuration (4 

mm rib width and 10 mm intercostal spacing), where secondary lobes are approximately 

5 dB lower than the main lobe for spherical focusing. Further BEM calculations on 

human ribs defined by CT scans on a range of subjects are necessary in order to fully 

underpin the extent of the occurrence of focal splitting in trans-costal HIFU. If it is 

found that focal splitting is indeed problematic, treatment planning strategies based on a 

multiple foci approach may have to be devised. For example, a criterion of 0.3 times the 

focal acoustic intensity magnitude was set by Gavrilov and Hand (2000) to estimate an 

acceptable level of grating lobes when steering multiple foci. 

 

6.9 Summary 

 

In this chapter, the following focusing methods of focusing the field of a multi-element 

HIFU transducer were investigated, using BEM as the forward model.  
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• Spherical focusing. 

• Binarised apodisation based on geometric ray tracing. 

• Phase conjugation. 

• The DORT method. 

• A constrained optimisation method based on the NAG® e04us solver (NAG® 

website). 

 

These methods of focusing through the ribs were implemented on six array-rib 

configurations. All configurations featured the same 1 MHz spherical-section 256 

element array, with pseudo-random spatial distribution of the sources on its surface. 

Three of the configurations featured human ribs (or a variation thereof), and three 

others, idealised ribs. The ability of each method to focus through the ribcage, whilst at 

the same time reducing local acoustic pressure maxima on the surface of the ribs, was 

compared using the criteria based on the specific absorption rate (SAR) defined in 

equation (6.1). Whilst the phase conjugation method delivered superior overall 

performance in terms of SAR gain, the constrained optimisation method was shown to 

provide greater flexibility than phase conjugation in treatment planning applications, 

particularly if patient-specific acoustic dose rates become established for safe and 

efficient treatments, along with ablation and damage thresholds. 

 

It was seen that effects of splitting at the focus in configurations featuring narrow 

intercostal spacing relative to the rib width and to the wavelength in tissue were difficult 

to overcome. However, little splitting of the focus was observed on human ribs from CT 

scans, perhaps because of the variations in intercostal spacing in the anatomy of the 

ribcage. Further BEM calculations on human ribs resulting from CT scans on a range of 

subjects are necessary in order to underpin the extent of the occurrence of focal splitting 

in trans-costal HIFU fully. It was concluded that treatment planning strategies based on 

a multiple foci approach may have to be devised for the thermal ablation of trans-costal 

tumours. 
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Chapter 7 
Conclusions 

 

7.1 Overview 

 

The first aim of the work described in this thesis was to develop and validate a forward BEM 

model which simulates the scattering by human ribs of the field of a multi-element HIFU 

array. The second aim was to use this forward BEM model to solve the inverse problem of 

focusing the field of the HIFU array inside the ribcage, whilst keeping the acoustic dose rate 

on the surface of the ribs below a specified threshold. A range of focusing methods reported 

in the literature was investigated, together with a constrained optimisation approach which 

was developed as part of this thesis work. The first goal of this chapter is to review the aims 

and objectives set out in Chapter 1, i.e. to assess the degree to which these have been 

achieved, and to summarise the contributions of the work. The second goal is to examine 

those areas requiring further investigation and to discuss new challenges arising from the 

work, together with possible solutions. 

 

7.2 Contributions 

 

This section will review the aims and objectives set out in Chapter 1 and compare them 

against the achievements accomplished in this body of work. The degree to which novel 

contributions have been made will be assessed. 

 

Previous work on the modelling of ultrasound in biological media was reviewed in Chapter 2. 

A review of existing and potential trans-costal HIFU modelling approaches was then carried 

out. It was established that many of the existing approaches used to model the propagation of 

ultrasound in the presence of ribs were inadequate. It was determined that there was a 

requirement for linear approaches, which are capable of rigorously addressing acoustic 

scattering in 3D and on large problems, to be developed. The reasons why BEM is 

particularly suited to this task were discussed. Chapter 3 provided a theoretical description of 
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BEM applied to acoustic scattering problems. The model assumptions were stated and 

justified. The description and implementation of the BEM code used in this thesis (supplied 

by PACSYS Ltd, PAFEC website) is contained in Appendix A. 

 

The validation of BEM code against known analytical solutions was described in Chapter 4. 

Good agreement with the analytical solutions was demonstrated. Furthermore, suitable 

numerical input parameters related to the accuracy, speed and convergence of the solution 

were chosen. This chapter also featured a review of HIFU sources, alongside a description of 

the multi-element transducer used in this thesis work. This was a 1 MHz spherical-section 

256 element array, with pseudo-random spatial distribution of the sources on its surface. 

Finally, forward BEM calculations on human ribs were carried out. Initially, perfectly rigid 

ribs were assumed. A surface impedance boundary condition was then implemented with 

properties representative of rib bone. These calculations demonstrated the limitations of 

assuming ribs to be perfectly rigid scatterers. Indeed, the rate of energy absorption per unit 

mass, which is proportional to the square of the acoustic pressure magnitude (Nyborg 1981, 

Duck 2009), was overestimated by 56% when considering the ribs to be perfectly rigid. 

 

Chapter 5 featured a review of the principal HIFU focusing methods for sparing ribs 

described in existing literature. These included binarised apodisation based on geometric ray 

tracing, the phase conjugation method and the DORT method. A novel constrained 

optimisation method using BEM as the forward model was suggested and described, and an 

example on a reduced complexity model presented. 

 

Chapter 6 compared the efficacy of the inverse methods described in Chapter 5 on six 

different array-rib configurations, with the aim of assessing which method is most effective at 

sparing the ribs whilst maintaining high focal pressures. Three of these configurations 

involved human ribs (or a variation thereof) and three others, idealised ribs, consisting of 

cuboid scatterers with rounded edges. All true and idealised ribs were assumed to be locally 

reacting, with a surface impedance representative of rib bone. Results for spherical focusing 

were obtained initially. The first criterion used for assessing the efficacy of each focusing 

method was the SAR gain defined as the logarithmic ratio of the SAR at the target to the SAR 

at the point to be spared. The second criterion used to assess the quality of the focusing was 

the peak focal pressure relative to the maximum level available from the phased array. Whilst 

the phase conjugation method delivered superior overall performance in terms of SAR gain, 

239



the constrained optimisation method was shown to provide greater flexibility than phase 

conjugation in treatment planning applications, particularly if patient-specific acoustic dose 

rates become established for safe and efficient treatments, along with ablation and damage 

thresholds. Effects of splitting at the focus were observed in configurations featuring narrow 

intercostal spaces relative to the rib width and to the wavelength in tissue. These were 

difficult to overcome owing to the basic physics of diffraction. However, little splitting of the 

focus was observed on human ribs from CT scans. 

 

To the author’s knowledge, this is the first time that BEM has been applied to trans-costal 

HIFU problems. Furthermore, other than the author’s journal papers, there does not appear to 

be any published work on trans-costal HIFU simulations on human ribs in 3D to this date. 

Hence, the calculations presented in Chapters 4 and 6 represent a novel contribution to the 

field of trans-costal HIFU simulations. This thesis work demonstrated the limitations of 

simulating ribs as parallel thin strips or cuboid objects which are either perfectly reflecting or 

absorbing. It also highlighted the need to move towards an integrated treatment planning and 

protocol strategy based on the prior acquisition of MR or CT scans. The medical physicist 

will then benefit from a range of options when planning the HIFU treatment and will be able 

to assess which focusing method is the most appropriate for a given patient. The constrained 

optimisation method may prove to be particularly useful in this context. 

  

7.3 Further work 

 

In section 7.2, it has been shown that the aims and objectives outlined in Chapter 1 have been 

achieved, and that a number of novel contributions have been made as a result of this work. 

However, as indicated throughout this thesis, a number of assumptions have been made, and 

there are a number of areas which will benefit from further investigation. The aim of this 

section is to summarise these. 

 

The BEM code used in this thesis work was neither optimised for computational speed, nor 

for minimising the use of RAM. It has been described how BEM leads to fully-populated, 

asymmetric and complex matrices, necessitating the use of an iterative solver. For trans-

costal HIFU applications, run times for a forward problem are of the order of several hours, 

and of up to several days for inverse problems. Approaches based on hierarchical matrices 

methods (Bebendorf 2008) or on the fast multipole method (Liu 2009) may greatly reduce 
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both run times and problem sizes. Using the calculations in Chapter 4 and Chapter 6 as 

benchmarks, it would be highly relevant to investigate the extent to which these methods can 

improve the computational efficiency of BEM when applied to trans-costal HIFU 

simulations. 

 

In the BEM formulation described in this thesis work, the acoustic medium surrounding the 

ribs is assumed to extend to infinity and the soft tissue (i.e. muscle, skin, cartilage and fat) is 

treated as a homogeneous medium. Whilst the speed of propagation of longitudinal waves is 

generally comparable in different soft tissues, and the same is true of the density, it has been 

shown that tissue inhomogeneities can cause aberrations of the focus (Treeby et al 2012). 

Multiple tissue volumes could in principle be implemented using BEM through a 

combination of interior and exterior formulations (Elysée 2011). This would necessitate 

meshing the closed surfaces associated with each region. Problem size may be considerably 

increased, so this should only be attempted once BEM is implemented with improved 

computational efficiently. The properties of rib bone were also considered to be constant as a 

function of positions. The current BEM implementation is in fact not restricted to this 

assumption, and separate complex values of speed of sound and density can be assigned to 

each boundary element patch. The spatial variation of rib bone properties and its impact on 

SAR and SAR gain could be investigated. 

 

During HIFU treatment, the ultrasonic transducer is not coupled directly to the abdomen of 

the patient, as it is generally of spherical-section shape. Instead, a water region is placed 

between the transducer and the abdomen. Whilst the density and speed of sound in water are 

not dissimilar to those in soft tissue, the attenuation coefficient in liver is approximately three 

orders of magnitude higher than that in water at 20°C at 1 MHz (Duck 1990 p75 and p104, 

Fan and Hynynen 1994). Neglecting this will have an impact on the acoustic pressures 

calculated at the focus, which may be considerably underestimated. In order to account for 

this, a correction for the acoustic pressure transmitted at the water/tissue interface could be 

applied using a Rayleigh-Sommerfeld diffraction integral (Hynynen and Fan 1992 and 1994). 

 

It is well known that both longitudinal and shear waves can be generated in bone (Kohles et 

al 1997, Mast et al 1999). As bone is a highly attenuating medium compared to soft tissue, 

absorption of shear waves may play an important part in heating of bone. A full 
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elastodynamic formulation would be required to deal with this phenomenon accurately. This 

could in principle be achieved using an elastodynamic BEM frequency domain formulation 

such as that proposed by Chaillat et al (2007). Another possible approach would consist of 

using a FEM/BEM method (Macey 1987), where the exterior domain would be modelled 

using BEM patches, and the interior domain using structural finite elements. These 

formulations are however likely to be computationally expensive. 

 

The effects of nonlinear propagation have not been considered in this thesis. It is, however, 

well known that HIFU fields can result in highly nonlinear behaviour in the focal region (Wu 

et al 2004), leading to distortion of the acoustic waveform and transfer of energy from the 

fundamental frequency towards higher order harmonics. As nonlinear behaviour is likely to 

be mainly confined to the central focal lobe, a more rigorous treatment of the focal region 

could be envisaged, perhaps using a computational fluid dynamics approach or by 

propagating a source plane transverse to the direction of propagation using a Westervelt 

equation solver. Otherwise, a full-wave nonlinear 3D model for propagation of ultrasound in 

tissue, allowing for shock wave formation and for sharp discontinuities in the media 

interfaces (e.g. tissue/bone), would be required to deal with nonlinearities in the presence of 

ribs. If such a model is developed, it would be interesting to compare it against the BEM 

approach. Furthermore, optimised source velocities obtained using BEM as the forward 

model could serve as input data to such a model. 

 

The focusing SAR gain was investigated in relation to the maximum SAR occurring on the 

surface of the ribs. Clearly, we require focusing criteria based on clinically established dose 

and exposure criteria. These are yet to be established. A heat transfer analysis would 

nevertheless provide insight relating the acoustic field distribution on the surface of the ribs 

to the temperature rise at required locations. This may also help refine the definitions of the 

constraints relating to thresholds and locations. 

 

Finally, it is clear that experimental validation of the proposed method in water, with the use 

of a bone phantom, is required. Hydrophone measurements of acoustic pressures in the focal 

plane under linear excitation conditions and comparison against theoretical results would 

provide further confidence in the BEM approach. 
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This work was carried out as part of a wider project whose goal is the design of a prototype 

trans-costal HIFU system for the treatment of liver and pancreatic tumours. This features a 

multi-element array with electronic steering capabilities, together with a system for ultrasonic 

ablation/cavitation monitoring. The technique presented in this thesis is expected to help 

validate the treatment planning software and inform the treatment protocol. In 

vivo applications will be investigated and are expected to rely upon treatment plans generated 

using virtual propagation models based on anatomical data that has been obtained from CT or 

MR scans of the patient. Treatment monitoring will be performed using an ultrasonic probe 

which is either integrated into the HIFU transducer, or is placed in a separate position (e.g. to 

scan from a subcostal approach). Registration of the ribs from CT images to the patient will 

be carried out as follows: first, a diagnostic ultrasound probe, tracked by an optical 3D 

localiser, will be used to acquire a 3D ultrasound image of the rib surface (the 3D pose of 

each of a series of B-mode ultrasound images is calculated using the 3D tracking data, and 

the images combined to form a 3D image of the region of interest). The CT bone surface may 

then be registered directly and automatically to the ultrasound image using the method 

described by Penney et al (2006). Alternative methods could also be used since the CT scans 

are pre-segmented to produce a geometric representation of the bone surface as part of 

treatment planning and acoustic modelling tasks. Since the HIFU transducer is also tracked in 

3D by the localiser, and registering the ribs using this procedure allows the ribs to be 

localised with respect to the 3D physical reference co-ordinate system of the localiser, the 

correct (planned) physical position and orientation of the HIFU transducer relative to the ribs 

may be determined. 

 

Initially, effects of respiratory movement and organ deformation will be ignored and breath-

hold or gating will be used. A subsequent version of the treatment planning software will 

feature motion compensation capabilities based on methods developed by Rijkhorst et al 

(2011). 

 

7.4 Summary 

 

It has been demonstrated in this chapter that the aims and objectives outlined at the start of 

the work have been achieved. A forward model using BEM, capable of simulating the 

scattering of the field of a multi-element HIFU array by human ribs has been developed. This 

forward BEM model was used to solve the inverse problem of focusing the field of the HIFU 
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array inside the ribcage whilst keeping the acoustic dose rate on the surface of the ribs below 

a specified threshold. A range of focusing methods reported in the literature has been 

investigated together with a constrained optimisation approach developed as part of this 

thesis work. This constrained optimisation method was shown to provide greater flexibility 

than other methods for treatment planning applications, particularly if patient-specific 

acoustic dose rates are to be established for safe and efficient treatments, along with ablation 

and damage thresholds. Areas for future study have been identified in this chapter. These 

include improving the computational efficiency of the BEM code, together with additional 

refinements to the model which would enable the incorporation of tissue inhomogeneities. A 

BEM elastodynamic formulation for modelling shear wave propagation in rib bone has been 

suggested, and the importance of heat transfer modelling outlined. Finally, it was emphasised 

that experimental and clinical validation of the modelling approach is essential.  
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Appendix A 
 

Computational Considerations 
 

A.1 Overview 

 

Chapter 3 deals with the description of BEM for scattering problems. Specific boundary 

conditions at the surface of the scatterer, of relevance to the trans-costal HIFU 

simulations in this thesis, were described. In this appendix, the computational 

considerations pertaining to the implementation of BEM as the forward model are 

explained. Initially, an overview of the Program for Automatic Finite Element 

Calculations (PAFEC) is provided, including a description of its capabilities and a 

justification as to why it was chosen to tackle the BEM simulations in this thesis. It will 

be shown how HIFU simulations on anatomical ribs involving BEM are likely to lead to 

a system of linear equations which is too large to be solved on a single desktop machine 

and how conventional Gaussian elimination methods may be inefficient for this task. It 

will be demonstrated how an iterative solver, the generalised minimal residual 

(GMRES) method, is a highly efficient and stable scheme for solving large systems of 

linear equations involving fully-populated and complex matrices, which are not 

necessarily diagonally dominant, such as those which can be found in scattering 

problems using BEM. A detailed description of the GMRES method will be provided 

and it will be explained why it is particularly efficient for parallel computing. The 

implementation and parallelisation of the PAFEC BEM routines on a dedicated Linux 

computer cluster will then be described. It will be explained how data from a mesh 

resulting from an arbitrary smooth surface, along with the acoustic properties of the 

medium in the exterior domain and of the surface, feed into the PAFEC solver. Pre-

processing, solving the scattering problem and post-processing will be explained. 
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A.2 Program for Automatic Finite Element Calculations 

 

Program for Automatic Finite Element Calculations (PAFEC) is a general purpose 

commercially available finite element and boundary element analysis tool which has 

been established for over 25 years and is provided by PACSYS Ltd., Nottingham, UK. 

It addresses a number of specialist areas including structural vibration, acoustics, heat 

transfer analysis, lubrication, linear and nonlinear piezoelectric analysis. The section of 

the software dealing with acoustic and structure interaction problems using finite and 

boundary elements section was developed by Macey (1987) using FORTRAN. PAFEC 

has been extensively used to model fluid-structure interaction problems, particularly in 

loudspeaker design (Geaves 1995, Dodd and Oclee-Brown 2007). The modelling of 

physiotherapy transducers has also been carried out (Hughes, 2001). Additionally both 

scattering problems (Chinnery et al 1997) and diffraction problems (Macey, 1994) have 

been tackled. PAFEC has also been used in the defence sector to tackle the numerical 

modelling of active sonar arrays (Morgan, 2004). PAFEC has the capability to deal with 

the coupling between the elastic structure and the acoustic wave in a fluid by using a 

combined finite element/boundary element method. 

 

In the context of the calculations in this thesis, boundary element methods based on 

either the Burton-Miller formulation with a purely real wave number, or the surface 

Helmholtz formulation with a complex wave number were required on C0 continuous 

isoparametric eight node quadrilateral elements (see chapter 3). In its current 

commercially-available form, PAFEC does not feature a Burton-Miller formulation for 

such elements and only allows for the definition of a purely real wavenumber to 

characterise the propagation medium in the exterior domain. Nor does it have a 

distributed computing solver for boundary element problems. Nevertheless, PACSYS 

Ltd. were keen to develop their software to tackle large problems, such as those 

encountered in trans-costal HIFU and were interested in providing input to the work in 

this thesis. Given that the code in PAFEC is well documented, traceable, and 

extensively validated, this made PAFEC a suitable choice as a BEM solver. A licensing 

agreement was therefore struck between University College London, the National 

Physical Laboratory and PACSYS Ltd. to make the necessary modifications to the 

source code to provide stand-alone executable files which would enable the calculation 

of the coefficients of the boundary element matrices [H] and [G] (see equation 3.41) for 

the surface boundary conditions and formulations described earlier. 
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A.3 The GMRES method 

 

A.3.1 Rationale for using an iterative solver 

 

The matrices generated by the discretisation of the Kirchhoff-Helmholtz integral 

equation are generally complex, fully-populated and non-symmetric (see chapter 3). 

Hence, for large problem sizes, storing all the elements of the [H] and [G] matrices (see 

equation 3.41) simultaneously may potentially become problematic due to the limited 

availability of RAM on a computing platform. Consider a cylindrical scatterer of 1 cm 

diameter and of 22 cm height, with hemispherical end-caps. These dimensions are 

representative of those of a human adult rib (Mohr et al 2007). When meshing the 

surface of this cylinder with eight node quadrilateral patches, ensuring at least three 

elements per wavelength at 1 MHz (the fundamental frequency of excitation of the 

HIFU array considered in this thesis), this results in 168,655 degrees of freedom (see 

figure A.1). 
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Figure A.1 Cylindrical scatterer with hemispherical end-caps. 1 cm radius, 
total height 22 cm (including an additional 0.5 cm radius for the 

hemispherical end-caps at either end). Meshed to include at least 3 elements 
per wavelength at 1 MHz. 

 

The mesh in figure A.1 leads to RAM requirements of 400 GB just to store the 

coefficients of the [H] matrix in equation (3.41). Clearly, using conventional Gaussian 

elimination methods (Gentle 1998, p87) to invert the matrices generated in this problem 

is inefficient. Also, using a single desktop computer to solve a scattering problem 

involving the above mesh is likely to be inadequate: a distributed computing approach 

implemented on a dedicated cluster is preferable. In general, solving a BEM system of 

equations requires O(M3) operations, where M is the number of unknowns, when a 
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direct solver such as the Gauss elimination method is used. Iterative solvers have been 

shown to be particularly beneficial for tackling BEM systems of equations (Ochmann et 

al 2003). One such iterative solver is the GMRES method, which was proposed by Saad 

and Schultz (1986). This iterative solver performs matrix-vector operations at each 

iteration which results in a reduction of operation counts from O(M3) to O(M2). An 

overview of the GMRES method is now presented. 

 

The GMRES method is based on the minimisation of a residual vector over a Krylov 

subspace. The concept of a Krylov subspace stems from the observation that in any 

sequence of iterates, there exists a smallest set of consecutive iterates which are linearly 

dependent. The coefficients of a vanishing combination are the coefficients of a divisor 

to the characteristic polynomial. A detailed discussion on Krylov subspaces is provided 

by Householder (1975). Iterative Krylov methods for large linear systems of equations 

are reviewed in depth by van der Vorst (2003). 

 

A.3.2 Arnoldi iteration method 

 

Before reviewing the GMRES method, it is useful to consider the Arnoldi iteration 

method (Arnoldi, 1951) which forms the basis of the GMRES algorithm. 

 

Consider a system of linear equations of the form: 

 

𝑨𝒙 = 𝒃         (A.1) 

 

where A is an m × m matrix and 𝒙 and 𝒃 are vectors of dimension m × 1. In this 

appendix, matrix quantities will by depicted in upper case bold letters and vectors in 

lower case bold letters. In the context of matrix and vector notation, brackets will be 

generally be dispensed with. 

 

Consider the Krylov sequence defined as follows. 

 

𝑲𝑛 = {𝒃 𝑨𝒃 𝑨2𝒃 ⋯ 𝑨𝑛−1𝒃}      (A.2) 

 

The nth order Krylov subspace is then defined as: 
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K𝑛 = span{𝒃 𝑨𝒃 𝑨2𝒃 ⋯ 𝑨𝑛−1𝒃}     (A.3) 

 

where span denotes the linear span, which corresponds to the intersection of 

all subspaces containing the set of vectors defined by the Krylov sequence. 

 

The Arnoldi iteration method is applicable to solving both linear systems of equations 

and eigenvalue problems. Consider the similarity transformation of the following form: 

 

𝑨 = 𝑸𝑯𝑸∗         (A.4) 

 

where 𝑯 is an upper Hessenberg matrix and 𝑸 is a unitary matrix, so that 

 

𝑸𝑸∗ = 𝑸∗𝑸 = 𝑰        (A.5) 

 

where * denotes the conjugate transpose and I is the identity matrix. All matrices in 

equation (A.4) are of dimension m × m. 

 

By virtue of the properties of unitary matrices, equation (A.4) may be rewritten as 

follows: 

 

𝑨𝑸 = 𝑸𝑯         (A.6) 

 

If we choose n < m, equation (A.6) may be written as: 

 

𝑨[𝒒1 𝒒2 ⋯ 𝒒𝑛 𝒒𝑛+1 ⋯ 𝒒𝑚]=[𝒒1 𝒒2 ⋯ 𝒒𝑛 𝒒𝑛+1 ⋯ 𝒒𝑚]𝑯 

(A.7) 

 

where 𝒒𝑛 is the nth column of Q and the upper Hessenberg matrix is of the form: 
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𝑯 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ℎ11 ℎ12 ⋯ ℎ1,𝑛 ⋯ ℎ1,𝑚
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0 ℎ32 ℎ33 ℎ3,𝑛 ⋯ ℎ3,𝑚

0 ℎ43 ⋱
0 ⋱ ℎ𝑛−1,𝑛−1 ⋮ ⋮

⋮ ⋱ ℎ𝑛,𝑛−1 ℎ𝑛,𝑛
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0 ⋱ ⋱
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A.8) 

 

Consider only part of the system of equations defined in equation (A.7) so that 

 

𝑸𝑛 = [𝒒1 𝒒2 ⋯ 𝒒𝑛]       (A.9) 

 

and 

 

𝑸𝑛+1 = [𝒒1 𝒒2 ⋯ 𝒒𝑛 𝒒𝑛+1]      (A.10) 

 

The corresponding upper Hessenberg matrix is then: 

 

𝑯𝑛 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
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0 ℎ32 ℎ33 ℎ3,𝑛

0 ℎ43 ⋱
0 ⋱ ℎ𝑛−1,𝑛−1 ⋮

⋮ ⋱ ℎ𝑛,𝑛−1 ℎ𝑛,𝑛

0 ℎ𝑛+1,𝑛⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (A.11) 

 

We have: 

 

𝑨𝑸𝑛 = 𝑸𝑛+1𝑯𝑛        (A.12) 

 

A is of dimension m × m, Qn is m × n, Qn+1 is m × (n + 1) and Hn is (n + 1) × n.  

 

Consider the nth column on both sides of equation (A.12). 

 

𝑨𝒒𝑛 = ℎ1,𝑛𝒒1 + ℎ2,𝑛𝒒2 + ⋯+ ℎ𝑛,𝑛𝒒𝑛 + ℎ𝑛+1,𝑛𝒒𝑛+1   (A.13) 
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By re-writing equation (A.13), a recursive relationship for the vector 𝒒𝑛+1 may be 

obtained as follows: 

 

𝒒𝑛+1 = 𝐴𝒒𝑛−∑ ℎ𝑖,𝑛𝒒𝑖𝑛
𝑖=1

ℎ𝑛+1,𝑛
        (A.14) 

 

This recursive evaluation of the columns of the unitary matrix Q is known as the 

Arnoldi iteration. The first step of the Arnoldi iteration is as follows. 

 

𝒒2 = 𝐴𝒒1−ℎ11𝒒1
ℎ21

        (A.15) 

 

where 𝒒1 is an arbitrary normalised vector. In order to have orthogonality of the 

columns of Q, we require: 

 

𝒒1∗𝒒2 = 0         (A.16) 

 

By pre-multiplying equation (A.15) by the conjugate transpose of 𝒒1, and noting that 𝒒1 

is normalised, we have: 

 

ℎ11 = 𝒒1∗𝑨𝒒1         (A.17) 

 

h21 is calculated by noting that 𝒒2 is also normalised, so that: 

 

ℎ21 = ‖𝐴𝒒1 − ℎ11𝒒1‖       (A.18) 

 

The most expensive operation in the Arnoldi iteration algorithm is the evaluation of the 

matrix-vector product 𝑨𝒒𝑛. Furthermore, it is only this product which is of interest in 

the algorithm and it is therefore unnecessary to store the elements of the matrix 𝑨. 

 

An alternative derivation of the Arnoldi iteration method may be carried out by 

considering the Krylov matrix: 

 

𝑲𝑛 = [𝒃 𝑨𝒃 𝑨2𝒃 ⋯ 𝑨𝑛−1𝒃]      (A.19) 

 

By pre-multiplying both sides of equation (A.19) by A, we have: 
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𝑨𝑲𝑛 = [𝑨𝒃 𝑨2𝒃 𝑨3𝒃 ⋯ 𝑨𝑛𝒃]     (A.20) 

 

The last n−1 columns of 𝑲𝑛 correspond to the first n−1 columns of 𝑨𝑲𝑛. Equation 

(A.20) may therefore be rewritten as follows: 

 

𝑨𝑲𝑛 = 𝑲𝑛[𝒆2, 𝒆3,⋯ , 𝒆𝑛,−𝒄]      (A.21) 

 

where 𝒆𝑖 is a unit vector along the ith direction. Provided that the Krylov matrix is 

invertible, c is given by: 

 

𝒄 = −𝑲𝑛
−1𝑨𝑛𝒃        (A.22) 

 

Equation (A.21) will be re-written as follows: 

 

𝑨𝑲𝑛 = 𝑲𝑛𝑪𝑛         (A.23) 

 

where 𝑪𝑛 is given by: 

 

𝑪𝑛 = [𝒆2, 𝒆3,⋯ , 𝒆𝑛,−𝒄]       (A.24) 

 

Consider a QR decomposition of the Krylov matrix as follows: 

 

𝑲𝑛 = 𝑸𝑛𝑹𝑛         (A.25) 

 

where 𝑸𝑛 is an orthogonal matrix and 𝑹𝑛 is an upper-triangular matrix. Both matrices 

are square and of the same dimension as 𝑲𝑛. By pre-multiplying equation (A.23) by the 

inverse of the Krylov matrix, and by noting that 𝑸𝑛 is orthogonal, we have: 

 

𝑹𝑛−1𝑸𝑛
∗ 𝑨𝑸𝑛𝑹𝑛 = 𝑪𝑛        (A.26) 

 

or 

 

𝑸𝑛
∗ 𝑨𝑸𝑛 = 𝑹𝑛𝑪𝑛𝑹𝑛−1        (A.27) 

 

The upper Hessenberg matrix 𝑯𝒏 is therefore: 
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𝑯𝒏 = 𝑹𝑛𝑪𝑛𝑹𝑛−1        (A.28) 

 

Unless A is a Hermitian matrix, a disadvantage of Arnoldi’s method is that it is both 

computationally expensive and may suffer from convergence issues (Saad and Schultz 

1986). In the above form particularly, the Arnoldi iteration method generates a Krylov 

matrix that is often ill-conditioned, which may lead to difficulties in solving the system 

of linear equations in equation (A.25). Additionally, the inverse of 𝑹𝑛 is also required, 

which may increase computational times. 

 

A.3.3 The GMRES algorithm 

 

To overcome some of the limitations of Arnoldi’s iteration method, the GMRES 

algorithm, was proposed by Saad and Schultz (1986). The GMRES method has the 

ability to deal with arbitrary (nonsingular) square matrices which are not required to be 

diagonally dominant. The GMRES algorithm is a generalisation of the MINRES 

algorithm (Paige and Saunders, 1975) for solving nonsymmetric linear systems, and of 

Arnoldi’s method. The basis for the GMRES scheme is the Arnoldi iteration algorithm, 

where a least squares problem is solved at each step of the iteration. The exact solution 

to the system of linear equations is approximated by a vector 𝒙�𝑛 ∈ K𝑛 so that the l2 

norm of the residual ‖𝒓𝑛‖ = ‖𝑨𝒙�𝑛 − 𝒃‖ is minimised. K𝑛 is the nth order Krylov 

subspace. Assume that 𝒙�𝑛 is related to a column vector c of length n via the Krylov 

matrix defined in equation (A.19): 

 

𝒙�𝑛 = 𝑲𝑛𝒄         (A.29) 

 

The l2 norm of the residual which is required to be minimised is: 

 

‖𝒓𝑛‖ = ‖𝑨𝑲𝑛𝒄 − 𝒃‖        (A.30) 

 

In Section A.2.1, it was established that: 

 

𝑯𝑛 = 𝑸𝑛
∗𝑨𝑸𝑛         (A.31) 

 

This may be interpreted as an orthogonal projection of A onto 𝑲𝑛, with the columns of 

𝑸𝑛 as basis and we may write the approximate solution as: 
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𝒙�𝑛 = 𝑸𝑛𝒚         (A.32) 

 

where y is an appropriate vector of length n. The l2 norm of the residual is then: 

 

‖𝒓𝑛‖ = ‖𝑨𝑸𝑛𝒚 − 𝒃‖        (A.33) 

 

Consider equation (A.12) in the Arnoldi iteration: 

 

𝑨𝑸𝑛 = 𝑸𝑛+1𝑯𝑛        (A.34) 

 

The l2 norm of the residual may now be rewritten as: 

 

‖𝒓𝑛‖ = ‖𝑸𝑛+1𝑯𝑛𝒚 − 𝒃‖       (A.35) 

 

Since pre-multiplication by a unitary matrix does not change the l2 norm, we have: 

 

‖𝒓𝑛‖ = ‖𝑸𝒏+𝟏
∗ 𝑸𝑛+1𝑯𝑛𝒚 − 𝑸𝒏+𝟏

∗ 𝒃‖ = ‖𝑯𝑛𝒚 − 𝑸𝒏+𝟏
∗ 𝒃‖   (A.36) 

 

Consider the matrix-vector product 𝑸𝒏+𝟏
∗ 𝒃: 

 

𝑸𝑛+1
∗ 𝒃 = �

𝒒𝟏∗𝒃
𝒒𝟐∗𝒃
⋮

𝒒𝒏+𝟏∗ 𝒃

�        (A.37) 

 

Since the columns of 𝑸𝑛 form an orthonormal basis to the Krylov subspace K𝑛, we have 

 

𝒒𝒊∗𝒃 = ‖𝒃‖, for i = 1        (A.38) 

 

and 

 

𝒒𝒊∗𝒃 = 0 for i > 1        (A.39) 

 

Hence, 

 

𝑸𝒏+𝟏
∗ 𝒃 = ‖𝒃‖𝒆𝟏        (A.40) 
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We therefore wish to minimise the l2 norm of the residual: 

 

‖𝒓𝑛‖ = ‖𝑯𝑛𝒚 − ‖𝒃‖𝒆𝟏‖       (A.41) 

 

where 

 

𝒙�𝑛 = 𝑸𝑛𝒚         (A.42) 

 

The minimisation may be carried out by using a QR factorisation process (Johnson et al 

1989, p463). By cumulative multiplication of 𝑯𝑛, by Givens rotation matrices of the 

form (Saad and Schultz 1986): 

 

𝑭𝑗 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 0 ⋯ 0

0 1 0
⋱

⋮ 𝑐𝑗 −𝑠𝑗 ⋮
𝑠𝑗 𝑐𝑗

1
⋱

0 0 ⋯ 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

     (A.43) 

 

𝑭𝑗 is of dimension (n +1) × (n +1) for n steps of the GMRES iterations and the scalars 𝑐𝑗 

and 𝑠𝑗 are given by: 

 

𝑐𝑗 = ℎ𝑗𝑗

�ℎ𝑗𝑗
2 +ℎ𝑗+1,𝑗

2
        (A.44) 

 

𝑠𝑗 = ℎ𝑗+1,𝑗

�ℎ𝑗𝑗
2 +ℎ𝑗+1,𝑗

2
        (A.45) 

 

Since ∏ 𝑭𝑗1
𝑗=𝑛  is a unitary matrix, it does not modify the l2 norm: 

 

‖𝒓𝑛‖ = �∏ 𝑭𝑗1
𝑗=𝑛 (𝑯𝑛𝒚 − ‖𝒃‖𝒆1)�      (A.46) 

or 

 

‖𝒓𝑛‖ = ‖𝑿𝑛𝒚 − 𝒈𝒏‖        (A.47) 
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where 

 

𝑿𝑛 = �∏ 𝑭𝒋1
𝑗=𝑛 �𝑯𝑛        (A.48) 

 

and 

 

𝒈𝑛 = �∏ 𝑭𝒋1
𝑗=𝑛 �‖𝒃‖𝒆𝟏       (A.49) 

 

The successive multiplication of the upper Hessenberg matrix by the Givens rotation 

matrices produces 𝑿𝑛, which is an upper triangular matrix of dimension (n + 1) × n 

whose last row comprises of zeros (reference to linear algebra textbook). 𝒈𝑛 is 

effectively the transformed right hand side. The minimisation of ‖𝒓𝑛‖ may therefore be 

achieved by solving the upper triangular linear system of equations which results from 

removing the last row of zeros in 𝑿𝑛. This provides the vector 𝒚. 𝒙�𝒏 may then be 

obtained by pre-multiplying 𝒚 by 𝑸𝑛. 

 

Let 𝒙�1 be an arbitrary initial vector. Each iteration of the GMRES algorithm may 

therefore by summarised as follows: 

 

(i) Carry out the nth step of the Arnoldi iteration by computing new entries for Hn and 

Qn. 

For n = 1, 2, 3, … 

 𝑞𝑛 = 𝒙�𝑛
‖𝒙�𝑛‖

  

 𝒗 = 𝑨𝒒𝑛  

 For j = 1 to n 

  ℎ𝑗𝑛 = 𝒒𝑗∗𝒗  

  𝒗 = 𝒗 − ℎ𝑗𝑛𝒒𝑗  

 End 

ℎ𝑛+1,𝑛 = ‖𝒗‖  

𝒒𝑛+1 = 𝒗
ℎ𝑛+1,𝑛

  

End 
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(ii) Form the Givens rotation matrices Fj and their cumulative product with Hn, compute 

gn and find y which minimises the l2 norm ‖𝑟𝑛‖ = ‖𝑋𝑛𝑦 − 𝑔𝑛‖ 

 

x�n+1 = Qny  

 

The matrix inversion required for the minimisation of the residual norm is not 

computationally expensive, as the dimensions of the matrices and vectors correspond to 

the number of GMRES iterations required, which is typically much smaller than the 

dimension of 𝑨. As with the Arnoldi iteration method, at each iteration, the largest 

operation involves the matrix-vector product 𝑨𝒒𝑛. It is straightforward to parallelise 

this operation over a multi-core computer cluster. 

 

A.3.4 Convergence of the GMRES algorithm 

 

The GMRES algorithm will converge in at most m steps if 𝑨 is of dimension m × m. 

Furthermore, the convergence of the algorithm is monotonic (Saad and Schultz 1986). 

In Section A.2.1, we have seen that the trans-costal HIFU simulations are likely to 

generate matrices where m is of the order of 105. It may therefore be unrealistic to opt 

for full convergence of the GMRES algorithm, and a compromise in terms of accuracy 

vs. speed of computation may have to be sought. The number of iterations for 

simulations involving human ribs will be determined with the help of numerical 

experiments on scattering problems for which there are known analytical solutions. The 

dimensions of the scatterers involved and the frequency of excitation will be 

representative of the trans-costal problems under investigation. This work is described 

in chapter 4. 

 

A.4 Parallelisation of PAFEC BEM routines on a dedicated Linux computer 

cluster 

 

A.4.1 File format 

 

In Section A.3, we have seen that the GMRES provides an efficient way of solving 

large systems of linear equations involving fully-populated and complex matrices, 

which are not necessarily diagonally dominant. This method is therefore particularly 

well-suited to large-scale BEM problems (Ochmann et al 2003, Shen and Liu 2007). In 
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this section, we will describe how the BEM routines were implemented and parallelised 

on a dedicated computer cluster. The main executable file provided by PACSYS Ltd. is 

entitled SCATTER.exe. Running this executable file requires the following input files. 

 

jobname.SCA: this file contains information regarding the properties of the medium and 

the scatterer(s), the coordinates of the nodal positions on the mesh and the mesh 

topology. Assume that there are M nodes in the mesh and Np BE patches. The layout is 

as follows: 

 

Line 1: comment line 

Line 2: number of first node in mesh, number of last node in mesh, total number of BE 

patches, number of iterations in GMRES method 

Line 3: real and imaginary parts of density of medium in exterior domain in kg m-3, real 

and imaginary parts of speed of sound in exterior domain in m s-1. 

Line 4: frequency of excitation in Hz, zero entry, coupling coefficient αc in Burton-

Miller formulation (see Section 3.4). For a surface Helmholtz formulation, the entry for 

αc must be blank. 

Lines 5 to M + 5 – 1: x, y and z values of nodal positions on the surface of the 

scatterer(s) in global Cartesian coordinates in m. 

Lines M + 5 to M + Np + 4: patch reference number, number of nodes per patch (i.e. 8), 

sequence of nodes describing patch topology (as described in figure 3.3). 

 

If a non-rigid boundary condition on the surface of the scatterer is required, in the form 

of a locally reacting surface, the file must be appended with the following lines 

 

ADMITTANCE 

TYPE=1 

Real part of admittance and imaginary part of admittance (in m2 s kg-1). 

 

jobname.INC file: this file contains the incident pressure field at nodal locations on the 

surface of the scatterer. The file format is as follows. 

 

Column 1: node reference number 

Column 2: real part of spatial component of incident acoustic pressure (i.e. in absence 

of the scatterer) at the node defined in column 1 (in Pa). 
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Column 3: imaginary part of spatial component of incident acoustic pressure (i.e. in 

absence of the scatterer) at the node defined in column 1 (in Pa). 

 

jobname.IWG file: this file contains the normal derivative of the incident pressure field 

at nodal locations at the centroid of each BE patch on the surface of the scatterer. The 

file format is the same as for jobname.INC, except that the first column now refers to 

the BE patch number. This file is only required if a Burton-Miller formulation is 

invoked through a non-blank entry for the coupling coefficient αc in the 4th line of 

jobname.SCA. 

 

To obtain the normal derivative of the acoustic pressure at the centroids of the BE 

patches, we require the coordinates of the centroids together with the coordinates of the 

unit normal vectors (see equation 3.23). It should be noted that PAFEC requires the unit 

normal vectors to be inward pointing (i.e. from the surface towards the inside of the 

volume inside the scatterer rather than towards the exterior domain). The executable file 

CENTREINFO.exe can extract this information from the mesh topology and returns data 

in the following form. 

 

Columns 1 to 3: x, y and z values for the coordinates of the BE patch centroids. 

Columns 4 to 6: x, y and z values of the unit vectors normal to the surface at the patch 

centroids. The orientation of the vector is defined in chapter 3. 

 

jobname.PR0 file: this file contains an initial guess for the acoustic pressures on the 

surface of the scatterer, which initialises the GMRES algorithm. The format is the same 

as for jobname.INC. Throughout this thesis, the content of this file was copied from 

jobname.INC. 

 

A.4.2 Running of main executable file 

 

SCATTER.exe must be run on a master core. Three executable communication files are 

invoked when running SCATTER.exe. 

 

• ANGCALC.com: this file launches the calculation of the solid angles required for 

Gaussian quadrature. This is only executed once, as it is specific to the mesh 

topology. 
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• BE-MATMUL.com: this file carries out the multiplication of the matrix resulting 

from the discretisation of the integral term in equation (3.27), involving the first 

derivative of the Green’s function, of the by the trial vector of acoustic pressures 

at the beginning of each GMRES iteration. 

• GRAD-MATMUL.com: this file carries out the multiplication of the matrix 

resulting from the discretisation of the hypersingular integral term in equation 

(3.27), involving the second derivative of the Green’s function, by the trial 

vector of acoustic pressures at the beginning of each GMRES iteration. 

 

The solid angles from the outputs of each sub-job are then assembled into a file. After 

completion of BE-MATMUL.com and GRAD-MATMUL.com the matrix-vector product 

𝑨𝒒𝑛 described in Section A.2 is assembled from the output of the sub-jobs and a 

GMRES iteration is carried out on the master core from which the main programme 

SCATTER.exe has been lauched. At the end of each GMRES iteration, the acoustic 

pressure at nodal locations on the surface of the scatterer(s) is updated. 

 

A.4.3 Pre-processing 

 

Matlab™ script was used to generate the files jobname.INC, jobname.PR0 and 

jobname.IWG. A combination of Matlab™ script and shell script was used to generate 

the appropriate jobname.SCA file, based on the required input quantities. In the context 

of this thesis, the incident field in jobname.INC consisted of one of the three fields 

below. 

 

• A unit amplitude plane with a spatial component of the acoustic pressure of the 

form 𝑒−i𝑘�⃗ ∙𝑟, where 𝑘�⃗  is the propagation vector (Kinsler et al 1982, p108) so that 

𝑘�⃗ = �
𝑘𝑥
𝑘𝑦
𝑘𝑧
� and �𝑘�⃗ � = 𝜔

𝑐
. 

• A unit source strength point source with a spatial component of the acoustic 

pressure of the form 𝑒
−i𝑘�𝑟��⃗ −𝑟��⃗ 𝑞�

�𝑟−𝑟𝑞�
, where 𝑟𝑞 defines the location of the point source. 

• A multi-element spherical-section array modelled as is described in Section 

4.4.2. 
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ANGCALC.com, BE-MATMUL.com and GRAD-MATMUL.com contain Linux Shell 

Script instructions which parallelise the operations over a user-defined number of cores 

on the cluster. Corresponding executable files ANGCALC.exe, BE-MATMUL.exe and 

GRAD-MATMUL.exe are then launched on each node. Specific files must be generated 

in advance which specify the nodal locations at which the solid angle will be calculated 

(in the case of ANGCALC.exe) and the columns of the matrices which will multiply the 

rows of the trial vector (in the case of BE-MATMUL.exe and GRAD-MATMUL.exe). 

The syntax is of the form: 

 

./BE-MATMUL.exe jobname N1 N2 

 

which indicates that the matrix-vector multiplication will be carried out for columns N1  

to N2 of the matrix. The same syntax applies to GRAD-MATMUL.exe. For 

ANGCALC.exe, the syntax is also the same and N1 and N2 define the range of nodes 

over which the solid angle is evaluated. Njob individual Linux Shell script files are 

automatically generated at the pre-processing stage via Matlab™ script, which contain 

commands to execute ANGCALC.exe, BE-MATMUL.exe and GRAD-MATMUL.exe for 

the required values of N1 and N2. 

 

A combination of Matlab™ script and Linux Shell script was used to append templates 

of the .com files with the required job name information together with the number of 

cores over which the job was to be parallelised.  

 

A.4.4 Post-processing 

 

The output files to SCATTER.exe are jobname.PR1 and jobname.LOG. jobname.PR1 

contains the vector of acoustic pressures on the surface of the scatterer(s) estimated after 

the required amount of GMRES iterations. The file format is the same as jobname.PR0 

and jobname.INC. jobname. LOG contains information about the residual norm at each 

GMRES iteration. 

 

Acoustic field pressures in the exterior domain may be calculated from knowledge of 

the acoustic pressures on the surface of the scatterer(s) using equation (3.42). This is 

done using the executable file PRFIELD.exe, which requires the following input files. 
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• jobname.SCA 

• jobname.PR1 

• jobname.FPT 

 

The format of jobname.FPT is as follows. 

 

Line 1: number Nf of field locations 

Lines 2 to Nf + 1: reference number of field location followed by x, y and z coordinates 

in the global Cartesian axis set (in m). 

Lines Nf + 2 to 2Nf + 1: real and imaginary parts of spatial components of incident 

acoustic pressure at above field locations (in Pa). 

 

PRFIELD.exe generates the output file jobname.PR2, which has the same format as 

jobname.PR2. 

 

If acoustic pressures are required at a large number of field locations, it is 

straightforward to automate the generation of the required jobname.FPT files and 

launch PRFIELD.exe over a number of cores. The jobname.PR2 files thus generated 

may then be concatenated so that all the required acoustic field information in the 

exterior domain is contained in one file. 

 

A.5 Summary 

 

The discretisation of the Kirchhoff-Helmholtz equation gives rise to a system of linear 

equations involving fully-populated complex non-symmetric matrices. When meshing 

the surface of a scatterer with dimensions of the order of those of human ribs, at three 

elements per wavelength at an excitation frequency of 1 MHz, problems containing of 

the order of 105 degrees of freedom are likely to be generated. It was established that the 

GMRES iterative algorithm is particularly well-suited to dealing with the nature of the 

matrices. The fact that the most computationally intensive step of the algorithm involves 

a matrix-vector product consequently makes it suitable for distributed computing. 

Hence, the GMRES method was chosen as part of this thesis and was implemented on a 

distributed computing platform to solve the systems of equations generated by the 

boundary element formulations. 
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Boundary element routines from the PAFEC software adapted for eight node 

isoparametric quadrilateral patches and made available as stand-alone executable files 

were used to generate the boundary element matrices. Both Burton-Miller and surface 

Helmholtz formulations were considered, depending on whether or not attenuation is 

accounted for in the exterior domain. Using a combination of Matlab™ script and Linux 

Shell script, an interface was created to conduct the calculations on a dedicated 

computer cluster where, at each iteration of the GMRES algorithm, the matrix-vector 

product of the [H] and [G] matrices by a trial vector (see equation 3.41) was distributed 

over a user-defined number of cores. A disadvantage of this approach is that the 

coefficients of [H] and [G] are re-calculated at the beginning of every iteration, as RAM 

limitations prohibit these matrices from being stored. 

 

If [H] and [G] are m × m, it can be shown that the GMRES algorithm will converge 

after m iterations. Since m is likely to be of the order of 105, a compromise may have to 

be sought between computational speed and required accuracy of the solution. This will 

be determined in chapter 4 via numerical experiments. 
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Appendix B 
Test of the DORT Method on Two Spherical 

Scatterers 
 

B.1 Overview 

 

This appendix describes the implementation of the DORT method on two spherical 

scatterers. A 256 element spherical section HIFU array was used, with the same 

specifications as described in Chapter 4 in figure 4.33. This appendix serves two 

purposes. The first is to describe how the DORT method may be implemented from a 

knowledge of the scattered component of the acoustic field resulting from BEM 

calculations. The second is to validate this implementation against results published for 

the case of two well-resolved point-like spherical scatterers (Prada et al 1996). 

 

The geometric focus of the array was located at the global origin. The spherical 

scatterers were both 5 mm in diameter with their centres located at (0, −2.5, −7.5) cm 

and (0, 2.5, −7.5) cm. The external medium featured acoustic properties representative 

of those of human liver described in 4.3.1. The spheres featured a locally reacting 

surface impedance condition. One sphere was assumed to have a surface impedance 

representative of that of rib bone impedance (see section 4.3.2). The surface impedance 

of the second sphere was set to twice that of the first. The location of the spheres with 

respect to the array is shown in figure B.1. 
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Figure B.1 Position of spherical scatterers with respect to focused array. 

 

B.2 Spherical focusing 

 

The acoustic pressure magnitude on the surface of the spheres is shown in figure B.2. 

The acoustic pressure magnitude in the y-z plane in the vicinity of the spheres is 

displayed in figure B.3. 

 

 

  
Figure B.2 Acoustic pressure magnitude on the 

surface of the spheres. Spherical focusing case. 

Figure B.3 Acoustic pressure field resulting from 

the spherical focusing. 
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B.3 DORT implementation and results 

 

As described in section 5.2.3 the first stage of the DORT method is to obtain the inter-

element transfer matrix [𝐾(𝜔)]. In practice, the array response matrix [𝐾(𝜔)] is 

measured by emitting a pulse on each array element successively and measuring the 

corresponding echoes from the scatterers on the N transducers. Cochard et al (2009) 

employ a time window to select the back-scattered echo from the ribs, and carry out a 

Fourier transform of the selected signal at each frequency within the transducer 

bandwidth. Under continuous wave excitation conditions, [𝐾(𝜔)] can be obtained from 

equation (5.15) by considering that the total pressure ∀𝑟 ∈ 𝑉ext is the sum of the 

incident pressure and the scattered pressure. 

 

([𝑄][𝐻]−1[𝛽]){𝑈} = {𝑝scattered}      (B.1) 

 

where {𝑝scattered} is the vector of scattered pressures at positions on the surface of the 

HIFU array elements. 276 locations on the surface of each element were considered. 

These were positioned along a regular Cartesian grid on the surface of each element. 

{𝑝scattered} was then evaluated N = 256 times where all rows of {𝑈} were set to zero 

except for the row corresponding to the source being excited, which was successively 

set to unity. The scattered pressure was then averaged over the surface of each element, 

resulting in the N × N matrix of inter-element transfer functions [𝐾(𝜔)]. 

 

The singular value decomposition of the array response matrix was then carried out. 

 

[𝐾(𝜔)] = [𝑉(𝜔)][𝛬(𝜔)][𝑊(𝜔)]∗      (B.2) 

where 

• [𝑉(𝜔)] and [𝑊(𝜔)] are unitary matrices and the columns of [𝑊(𝜔)] are the 

eigenvectors of the TRO. 

• [𝛬(𝜔)] is a real diagonal matrix of the singular values. 

 

The singular values are plotted in figure B.4. They correspond the diagonal of the 

matrix [𝛬(𝜔)]. For well-resolved point-like scatterers, the number of significant 

singular values corresponds to the number of scatterers. 
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Figure B.4 Singular values of diagonal matrix 

 

The above figure confirms that there are two obvious significant singular values (the 

first and the second). As the scatterers are not entirely point-like, there are four other 

singular values which appear to be above the noise floor and may therefore be 

significant. The first six columns of [𝑊(𝜔)] are therefore likely to correspond to 

focusing vectors which focus on either of the spheres. When using them as input data 

into the forward BEM model, the plots in figures B.5 to B16 are obtained, confirming 

that the first six focusing vectors do indeed focus on one or both of the spheres.  
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Figure B.5 Acoustic pressure on surface of spheres 

resulting from the focusing vector obtained from 

the first column of [W(ω)]. This vector focuses on 

the least reflective scatterer. 

Figure B.6 Acoustic pressure field resulting from 

the focusing vector obtained from the first column 

of [W(ω)]. This vector focuses on the least 

reflective scatterer. 
 

  
Figure B.7 Acoustic pressure on surface of spheres 

resulting from the focusing vector obtained from 

the second column of [W(ω)]. This vector focuses 

on the most reflective scatterer. 

Figure B.8 Acoustic pressure field resulting from 

the focusing vector obtained from the second 

column of [W(ω)]. This vector focuses on the most 

reflective scatterer. 
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Figure B.9 Acoustic pressure on surface of spheres 

resulting from the focusing vector obtained from 

the third column of [W(ω)]. 

Figure B.10 Acoustic pressure field resulting from 

the focusing vector obtained from the third column 

of [W(ω)]. 
 

  
Figure B.11 Acoustic pressure on surface of 

spheres resulting from the focusing vector obtained 

from the fourth column of [W(ω)]. 

Figure B.12 Acoustic pressure field resulting from 

the focusing vector obtained from the fourth 

column of [W(ω)]. 
 

  
Figure B.13 Acoustic pressure on surface of 

spheres resulting from the focusing vector obtained 

from the fifth column of [W(ω)]. 

Figure B.14 Acoustic pressure field resulting from 

the focusing vector obtained from the fifth column 

of [W(ω)]. 
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Figure B.15 Acoustic pressure on surface of 

spheres resulting from the focusing vector obtained 

from the sixth column of [W(ω)]. 

Figure B.16 Acoustic pressure field resulting from 

the focusing vector obtained from the sixth column 

of [W(ω)]. 
 

By projecting the focusing vector orthogonally onto the first set of eigenvectors 

associated with the higher singular values, we have: 

 

�𝑈projected� = {𝑈focus} − ∑ ({𝑊𝑖}∗{𝑈focus})𝑖max
𝑖=1 {𝑊𝑖}   (B.3)  

 

where 

• {𝑊𝑖} is the ith column of [𝑊(𝜔)] 

• imax is the number of eigenvectors associated with the higher singular values 

(here, imax = 6) 

• �𝑈projected� represents the orthogonal projection of the array element normal 

velocity focusing vector {𝑈focus} 

• * is the conjugate transpose 

 

{𝑈focus} is chosen as the vector of array element velocities which will focus at the 

desired location in absence of the scatterers, i.e. the spherical focusing vector for which 

figures B.2 and B.3 were obtained. The vector �𝑈projected�  which removes the effects 

of focusing onto the scatterers, was computed as described in equation (B.3). The 

resulting acoustic pressure magnitude on the surface of the spheres is shown in figure 

B.17. The acoustic pressure magnitude in the y-z plane in the vicinity of the spheres is 

displayed in figure B.18. 

 

287



  
Figure B.17 Acoustic pressure magnitude on the 

surface of the spheres. DORT method. 

Figure B.18 Acoustic pressure field resulting from 

the DORT method. 
 

By applying the projected vector resulting from the DORT method, the maximum 

acoustic pressure magnitude on the surface of the sphere is reduced from 1.2 MPa to 0.7 

MPa compared with the spherical focusing case. Furthermore, there is a qualitative 

reduction in the backscattered signal in figure B.10 compared with figure B.3 (both 

figures have been plotted on the same colour bar scale). 

 

The acoustic pressure magnitude in the vicinity focus is displayed in the y-z plane for 

the spherical focusing case and for the projected vector using the DORT method in 

figures B.11 and B.12, respectively. 

 

  
Figure B.19 Acoustic pressure field in the vicinity 

of the focus resulting from the spherical focusing. 

Figure B.20 Acoustic pressure field in the vicinity 

of the focus resulting from the application of the 

DORT method. 
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The SAR gain increases from approximately 13 dB for spherical focusing to 15 dB for 

the DORT method on the least reflective scatterer and from 15 dB to 18 dB on the most 

reflective scatterer. 

 

B.4 Discussion 

 

Figures B.2 and B.9 demonstrate that the acoustic pressure on the surface of the spheres 

displays some spatial variation. Furthermore, the location of the pressure maximum on 

each sphere for the spherical focusing case does not correspond with that in figures B.5 

and B.7. The chosen diameter of the spheres compared with the wavelength in the 

exterior domain is perhaps too large for the scatterers to be considered point-like, in this 

case. The DORT method nevertheless delivers a 2 dB and 3 dB increase in SAR gain 

for the least reflective and most reflective scatterer, respectively. Using BEM as a 

forward model offers an opportunity to test the limit of validity of the DORT method so 

as to assess its range of applications in an experimental context. 
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Appendix C 
Cost Function, Constraints and Gradients used in the 

Constrained Optimisation 
 

C.1 Cost function 

 

The cost function F is a function of 2N real variables (elements of the vector {𝑈�}), 

which returns a real scalar. It is defined as follows. 

 

𝐹��𝑈��� = ��𝐶̂��𝑈�� − {𝑝̂}�
2
       (C.1) 

 

or 

 

𝐹�𝑈�1,𝑈�2,⋯ ,𝑈�2𝑁� = ∑ �∑ 𝐶̂𝑖,𝑗𝑈�𝑗2𝑁
𝑗=1 − 𝑝̂𝑖�

22𝑀′
𝑖=1     (C.2) 

 

C.2 Constraints 

 

The constraints, denoted as c, are nonlinear and are require to be input in the format: 

 

𝑐𝑖 ≤ 0          (C.3) 

 

Equation (8) is rewritten as follows. 

 

 

�𝑅𝑒
([𝐴]) −𝐼𝑚([𝐴])

𝐼𝑚([𝐴]) 𝑅𝑒([𝐴]) � �𝑅𝑒
({𝑈})

𝐼𝑚({𝑈})� = �
𝑅𝑒��𝑝𝑠𝑢𝑟𝑓��
𝐼𝑚��𝑝𝑠𝑢𝑟𝑓��

�   (C.4) 

 

or 
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�𝐴̂��𝑈�� = {𝑝̂surf}        (C.5) 

 

The ith
 row and the jth columns of Re([A]) and Im([A]) are defined as AR i,j and AI i,j, 

respectively. Similarly, let the jth row of Re({U}) and Im({U}) be defined as UR i,j and 

UI i,j, respectively. 

 

For all M nodes on the surface S, we require the acoustic pressure magnitude to be less 

than a specified threshold 𝑝surfmax. There are therefore M constraints associated with 

this condition. These can be expressed as follows. 

 

For i ≤ M 

 

𝑐𝑖 = �∑ 𝐴𝑅 𝑖,𝑗𝑈𝑅 𝑗
𝑁
𝑗=1 − ∑ 𝐴𝐼 𝑖,𝑗𝑈𝐼 𝑗𝑁

𝑗=1 �
2

+ �∑ 𝐴𝐼 𝑖,𝑗𝑈𝑅 𝑗
𝑁
𝑗=1 + ∑ 𝐴𝑅 𝑖,𝑗𝑈𝐼 𝑗𝑁

𝑗=1 �
2
−

𝑝surfmax
2   (C.6) 

 

In practice, numerical instability may arise if M is too large. In some cases, a subset of 

the nodes on S may have to be chosen. 

 

In addition, the source velocity magnitudes cannot be greater than the maximum 

amplitude Umax allowed by the dynamic range. This is equivalent to adding the N 

further constraints. 

 

For M < i ≤ M + N 

 

𝑐𝑖 = 𝑈𝑅 𝑖−𝑀
2 + 𝑈𝐼 𝑖−𝑀2 − 𝑈max2        (C.7) 

 

C.3 Gradient of cost function 

 

The gradient of the cost function with respect to its input variables may be expressed as 

follows. 

 

For 1 ≤ k ≤ 2N, 
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𝜕𝐹
𝜕𝑈�𝑘

= 2∑ 𝐶̂𝑖,𝑘 ∑ �𝐶̂𝑖,𝑗𝑈�𝑗 − 𝑝̂𝑖�2𝑁
𝑗=1

2𝑀′
𝑖=1        (C.8) 

 

C.4 Gradient of constraints 

 

The gradient of the constraints with respect to the input variables forms a 2N by M+N 

Jacobian matrix (2N variables and M + N constraints). Its elements are as follows. 

 

For k ≤ N and i ≤ M, 

 
𝜕𝑐𝑖
𝜕𝑈�𝑘

= 2𝐴𝑅 𝑖,𝑘�∑ 𝐴𝑅 𝑖,𝑗𝑈𝑅 𝑗
𝑁
𝑗=1 − ∑ 𝐴𝐼 𝑖,𝑗𝑈𝐼 𝑗𝑁

𝑗=1 � +    (C.8) 

2𝐴𝐼 𝑖,𝑘�∑ 𝐴𝐼 𝑖,𝑗𝑈𝑅 𝑗
𝑁
𝑗=1 +  ∑ 𝐴𝑅 𝑖,𝑗𝑈𝐼 𝑗𝑁

𝑗=1 �   (C.9) 

 

 

For k > N and i ≤ M, 

 
𝜕𝑐𝑖
𝜕𝑈�𝑘

= −2𝐴𝐼 𝑖,𝑘−𝑁�∑ 𝐴𝑅 𝑖,𝑗𝑈𝑅 𝑗
𝑁
𝑗=1 − ∑ 𝐴𝐼 𝑖,𝑗𝑈𝐼 𝑗𝑁

𝑗=1 � +   (C.9) 

2𝐴𝑅 𝑖,𝑘−𝑁�∑ 𝐴𝐼 𝑖,𝑗𝑈𝑅 𝑗
𝑁
𝑗=1 + ∑ 𝐴𝑅 𝑖,𝑗𝑈𝐼 𝑗𝑁

𝑗=1 �   (C.10) 

 

For k ≤ N and i > M, 

 
𝜕𝑐𝑖
𝜕𝑈�𝑘

= 2𝑈𝑅 𝑘    if i = k + M     (C.11) 

 
𝜕𝑐𝑖
𝜕𝑈�𝑘

= 0    if i ≠ k + M     (C.12) 

 

For k > N and i > M, 

 
𝜕𝑐𝑖
𝜕𝑈�𝑘

= 2𝑈𝐼 𝑘−𝑀   if i = k + M − N    (C.13) 

 
𝜕𝑐𝑖
𝜕𝑈�𝑘

= 0    if i ≠ k + M − N    (C.14)  
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Appendix D 
Journal Paper Reprints 
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Appendix E 
Programme Code 
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